[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013140626A1 - Display device, method for driving same, and display screen device - Google Patents

Display device, method for driving same, and display screen device Download PDF

Info

Publication number
WO2013140626A1
WO2013140626A1 PCT/JP2012/057609 JP2012057609W WO2013140626A1 WO 2013140626 A1 WO2013140626 A1 WO 2013140626A1 JP 2012057609 W JP2012057609 W JP 2012057609W WO 2013140626 A1 WO2013140626 A1 WO 2013140626A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
voltage
screen
image
video
Prior art date
Application number
PCT/JP2012/057609
Other languages
French (fr)
Japanese (ja)
Inventor
吉岡 俊博
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/057609 priority Critical patent/WO2013140626A1/en
Priority to JP2014505951A priority patent/JP5856284B2/en
Publication of WO2013140626A1 publication Critical patent/WO2013140626A1/en
Priority to US14/831,192 priority patent/US9785028B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/16Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source
    • G09G3/18Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a display device, a driving method thereof, and a display screen device.
  • Some display devices project image light onto a screen to display the image on the screen.
  • a liquid crystal light control device which can control the transmittance
  • a dimming screen using the technology of the liquid crystal dimming device and to use this dimming screen as a screen for projecting an image.
  • the dimming screen when the image is projected, the dimming screen is controlled to be scattered and transmitted, for example, so that the image is projected on the dimming screen.
  • the dimming screen scatters incident light.
  • a small transparent transmission state can be controlled so that the other side of the dimming screen is seen through.
  • the display device cannot display the image and the background on the screen.
  • the invention described in claim 1 includes a screen having an optical layer whose optical state changes by application of a voltage, a plurality of control electrodes arranged side by side along the optical layer in order to apply a voltage to the optical layer, and a screen.
  • a control unit that switches between a predetermined video state and a non-video state that is an optical state different from the predetermined video state.
  • the screen is switched in synchronization with the projection of the light, the optical state of the screen where the image light is projected is set to the video state, and the optical state of the video state is determined by a voltage having an amplitude of 2 or more. Holding a display device.
  • the invention according to claim 11 is a driving method of a display device for displaying an image of image light projected from a projector on a screen having an optical layer whose optical state changes by application of a voltage, the optical state of the screen being changed.
  • the controlling unit applies a voltage to a plurality of control electrodes arranged side by side along the optical layer, displays an image based on image light on a screen having the optical layer and the plurality of control electrodes, and projects the image light.
  • the screen is switched between a predetermined image state in which the image light is scattered and a non-image state which is an optical state different from the predetermined image state for each divided region in which each control electrode is formed.
  • the optical state of the portion of the screen where the image light is projected was the video state, the optical state of the image state, it is held by two or more of the amplitude of the voltage is a driving method of a display device.
  • the invention according to claim 12 has an optical layer whose optical state changes when a voltage is applied, and a plurality of control electrodes arranged side by side along the optical layer for applying a voltage to the optical layer, and is projected
  • a control unit that controls to switch between a non-image state that is a different optical state, and the control unit determines the optical state of the plurality of divided regions during the projection period of the image light
  • a display screen that is switched in synchronization with the projection so that the optical state of the portion of the screen on which the image light is projected is the image state, and the optical state of the image state is held by a voltage having an amplitude of 2 or more. It is the location.
  • FIG. 1 is a schematic configuration diagram of a display device according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the synchronous control of screen scanning and driving.
  • FIG. 3 is an explanatory diagram of a projector that continuously projects a plane image.
  • FIG. 4 is an explanatory diagram of a projector that projects a plane image by time modulation.
  • FIG. 5 is an explanatory diagram of a projector that scans the screen.
  • FIG. 6 is a schematic cross-sectional view of the screen.
  • FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes.
  • FIG. 8 is a schematic timing chart of screen scanning and driving.
  • FIG. 9 is an explanatory diagram of a display state in which the image by the image light overlaps the screen background.
  • FIG. 10 is a schematic timing chart showing an example of the relationship between the drive voltage waveform of a general normal mode screen, which is a conventional example, and the optical state.
  • FIG. 11 is a timing chart showing an optical state of a plurality of divided regions where the luminance unevenness of the video occurs.
  • FIG. 12 is a timing chart showing optical states of a plurality of divided regions in the first embodiment.
  • FIG. 13 is a schematic timing chart showing the relationship between the two-level driving voltage waveform and the optical state in the present embodiment.
  • FIG. 14 is a schematic timing chart showing the relationship between the two-level driving voltage waveform and the optical state for a plurality of control electrodes.
  • FIG. 10 is a schematic timing chart showing an example of the relationship between the drive voltage waveform of a general normal mode screen, which is a conventional example, and the optical state.
  • FIG. 11 is a timing chart showing an
  • FIG. 15 is a schematic timing chart showing an example of a relationship between a driving voltage waveform of a general reverse mode screen as a conventional example and an optical state.
  • FIG. 16 is a diagram illustrating an example of optical characteristics of the screen in the reverse mode.
  • FIG. 17 is a schematic timing chart showing two-level drive voltage waveforms in the second embodiment.
  • FIG. 18 is a schematic timing chart showing the relationship between the two-level driving voltage waveform and the optical state for a plurality of control electrodes.
  • FIG. 19 is a schematic timing chart showing two-level drive voltage waveforms using a half cycle in the third embodiment (for a normal mode screen).
  • FIG. 20 is a schematic timing chart showing a two-level drive voltage waveform using a half cycle in the third embodiment (for a screen in the reverse mode).
  • FIG. 21 is a schematic timing chart showing three-level drive voltage waveforms in the fourth embodiment.
  • FIG. 22 is a schematic configuration diagram of a display device according to the fifth embodiment.
  • FIG. 23 is a schematic configuration diagram of a modified example of the display device according to the second embodiment of the present invention using a reflective screen.
  • FIG. 1 is a schematic configuration diagram of a display device 1 according to the first embodiment.
  • the display device 1 in FIG. 1 includes a projector 11 that projects image light, a screen 21 that can control the optical state, and a synchronization control unit 31.
  • the synchronization control unit 31 is connected to the projector 11 and the screen 21.
  • the display device 1 of the present embodiment is a transmissive projection device that transmits and scatters image light from the projector 11 through a screen 21.
  • the synchronization control unit 31 controls the screen 21 on which the image is projected to a state where the projected image light is scattered while being transmitted, and controls the screen 21 to a transmission state when it is not projected.
  • the state of being scattered and transmitted is an image state
  • the transparent state of being less scattered of incident light and having a high parallel light transmittance is a non-image state.
  • the display device 1 can be used as, for example, a sign boat that displays advertisements and the like.
  • FIG. 2 is an explanatory diagram of synchronous control of scanning and driving of the screen 21.
  • the projector 11 vertically scans the screen 21 from the top to the bottom with image light modulated by the image information.
  • the projector 11 scans the screen 21 vertically from top to bottom for each scanning repetition period (hereinafter also referred to as a scanning cycle).
  • 2A to 2E show the scanning state at each time point in one scanning cycle in the scanning order.
  • the screen 21 in FIG. 2 has five divided regions 22.
  • the five divided regions 22 are arranged vertically along the scanning direction of the image light.
  • the synchronization control unit 31 controls the optical states of the five divided regions 22 individually in synchronization with the one-dimensional vertical scanning of the screen 21 by the projector 11.
  • each divided region 22 is controlled to a non-image state, that is, a transparent transmissive state with small scattering of incident light.
  • the scanning light of the projector 11 is first applied to the uppermost divided area 22 of the screen 21 as shown in FIG.
  • reference numeral 221 is used to distinguish the divided region 22 irradiated with the scanning light from other divided regions 22 that are not scanned.
  • the synchronization control unit 31 specifies a period during which the uppermost divided area 221 is scanned in the scanning cycle based on the synchronization signal from the projector, and controls the uppermost divided area 221 to the video state.
  • the image light that scans the uppermost divided area 221 is scattered by the divided area 221 in the scattering state and passes through the screen 21.
  • the synchronization control unit 31 specifies a period during which the second divided region 221 from the top in the scanning cycle is scanned, and controls the second divided region 221 from the top to the video state.
  • the image light that scans the second divided region 221 from the top is scattered by the divided region 221 in the scattering state and passes through the screen 21.
  • the synchronization control unit 31 controls the second divided area 221 from the top to the video state, and then controls the uppermost divided area 22 to the non-video state. Thereafter, as shown in FIGS. 2C to 2E, the synchronization control unit 31 controls the divided area 221 scanned by the scanning light to the video state, and sets the other divided areas 22 to the non-video state. Control.
  • the portion of the screen 21 irradiated with the scanning light is maintained in the video state. Thereby, the image light that scans the screen 21 is transmitted through the screen 21 in a scattered state. Further, the portion of the screen 21 that is not irradiated with the scanning light is controlled to a non-image state. Each divided region 22 is controlled to a transparent transmission state in a non-video state during most of the period that is not scanned by the scanning light. During the image light projection period, the see-through characteristic of the screen 21 is obtained while maintaining the image visibility.
  • the projector 11 only needs to be able to project video light modulated by video information onto the screen 21.
  • the video information is obtained from a video signal input to the projector 11.
  • Video signals include, for example, NTSC (National Television Standards Committee), analog video signals such as PAL (Phase Alternation by Line), MPEG-TS (Moving Picture Experts Group-Transport Stream) format, HDV (High -There are video signals in digital format such as Definition Video) format.
  • the projector 11 may receive not only a moving image video signal but also a still image video signal such as JPEG (Joint Photographic Experts Group). In this case, the projector 11 may scan the screen 21 repeatedly with the same video light for displaying a still image.
  • FIG. 3 to 5 are explanatory diagrams of the projection method of the projector 11.
  • FIG. 3 is an explanatory diagram of the projector 11 that continuously projects a plane image.
  • FIG. 4 is an explanatory diagram of the projector 11 that projects a plane image by time modulation.
  • FIG. 5 is an explanatory diagram of the projector 11 that scans the screen 21.
  • FIG. 3A is an explanatory diagram of a method in which the projector 11 regularly projects image light.
  • image light is always projected onto the screen 21 in the scanning cycle.
  • the screen 21 must always be in a scattering state.
  • the optical state of the screen 21 is controlled so as to increase the parallel light transmittance, the luminance of the image decreases.
  • the horizontal axis of FIGS. 3B and 3C is the scanning cycle (time). The same applies to FIGS. 4B, 4C, 5B, and 5C.
  • FIG. 4A is an explanatory diagram of a method in which the projector 11 projects image light at an interval.
  • image light is projected on the screen 21 in a short period of time during a part of the scanning cycle.
  • the screen 21 may be in a scattering state during the partial period.
  • FIG. 5A is an explanatory diagram of a projection method in which the projector 11 scans the screen 21.
  • video light is always projected onto the screen 21 during the scanning cycle.
  • the image light is projected in a part of the scanning period as shown in FIG.
  • each part of the screen only needs to be in a scattering state in the partial scanning period TP in which each part is scanned.
  • the see-through characteristic of the screen 21 can be achieved without causing a decrease in the luminance of the image in the scanning period. can get.
  • the projector 11 that projects the image light may be of any of the above projection methods. However, in order to suppress the generation of image light that is not used for scattering, the method of FIG. 4 or FIG. 5 is desirable. Moreover, a response time is required for the change in the optical state of the screen 21. For this reason, the projection method of FIG. 5 in which the response time is easily secured is preferable to FIG. In the following description, a case where the projector 11 of the projection method shown in FIG. 5 is used will be described.
  • a line-shaped image corresponding to a part of the screen 21 is sequentially projected onto the display surface of the screen 21 during a scanning period that is a scanning period of the image light.
  • the projector 11 can be a transmissive or reflective liquid crystal light valve that sequentially shifts the black state (the state in which no projection light is emitted) on the screen 21 during the scanning cycle, but other elements can also be used. Good.
  • the projector 11 may perform raster scanning in a video scanning cycle and project video light on the display surface of the screen 21 dot-sequentially.
  • a laser projector that reflects and shakes the irradiation direction of the image-modulated light beam with a movable mirror can be used.
  • the projector 11 can be considered in the same manner as the image light irradiation position being sequentially scanned in one direction on the screen 21.
  • the screen 21 may be anything that can change the optical state by an electrical signal such as voltage or current.
  • a light control screen that uses a liquid crystal material and changes a scattering state and a transparent transmission state with small scattering of incident light may be used.
  • the light control screen uses, for example, a liquid crystal element such as a polymer-dispersed liquid crystal, or an element that controls a transparent transmission state with small scattering of incident light by moving white powder in a transparent cell. There is something that uses.
  • the screen 21 can be switched between a transparent transmission state where the scattering of incident light is small and a scattering state when the plurality of divided regions 22 dividing the screen 21 are independent of each other.
  • the screen 21 only needs to have a plurality of divided regions divided into strips so as to correspond to the main scanning direction of the projector 11 (for example, the vertical direction in FIG. 2).
  • the screen 21 may be a screen in which regions divided into rectangles are arranged in a matrix so as to correspond to the scanning direction and sub-scanning direction of the projector 11 (for example, the horizontal direction of the image).
  • FIG. 6 is a schematic cross-sectional view of the screen 21 that can control the optical state for each divided region 22.
  • FIG. 6 also shows the synchronization control unit 31.
  • FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes on the screen 21 of FIG.
  • the screen 21 in the example of FIG. 6 has an optical layer 25 in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass plates 23 and 24.
  • a counter electrode 26 is formed on the entire surface of one glass plate 24 on the optical layer 25 side.
  • a plurality of control electrodes 27 are arranged side by side on the optical layer 25 side of the other glass plate 23.
  • An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the optical layer 25.
  • the counter electrode 26 and the control electrode 27 are formed as transparent electrodes by using, for example, ITO (indium tin oxide).
  • the optical layer 25 is disposed between the plurality of control electrodes 27 and the counter
  • the plurality of control electrodes 27 divide the area of the screen 21 irradiated with the image light into strips in one direction (for example, the scanning direction).
  • the plurality of control electrodes 27 are individually connected to the synchronization control unit 31 and applied with individual voltages. Adjacent control electrodes 27 are arranged apart from each other. In FIG. 6, the counter electrode 26 is grounded. A voltage is applied so as to generate a potential difference between the control electrode 27 and the counter electrode 26. Note that the voltage of the driving waveform described below indicates a potential difference between the control electrode 27 and the counter electrode 26.
  • the voltage applied to the control electrode 27 is applied to the optical layer 25 in a region corresponding to the control electrode 27.
  • the alignment state of the liquid crystal in the optical layer 25 changes depending on the voltage applied to the control electrode 27.
  • the optical layer 25 can be adjusted for each divided region 22 between a transparent transmission state where the scattering of incident light is small and a scattering state where the incident light is scattered.
  • the width of the gap region in the optical layer 25 corresponding to the region where the control electrode 27 is not formed between the control electrodes 27 is about 5 to 100 micrometers, and is desirably as narrow as possible.
  • the thickness of the optical layer 25 is several to several tens of micrometers, and is determined in consideration of optical characteristics and drive voltage.
  • the synchronization control unit 31 is connected to the projector 11 and the screen 21.
  • the synchronization control unit 31 controls the optical state of the screen 21 in synchronization with the projection of the image light of the projector 11.
  • a synchronization signal synchronized with the scanning cycle of the projector 11 can be used.
  • the synchronization control unit 31 sets the plurality of divided regions 22 so that the portion irradiated with the projection light of the projector 11 is maintained in the video state (scattering state in the present embodiment). In the scanning order, the transparent transmission state is controlled to the scattering state.
  • each divided region 22 of the screen 21 is in a scattering state as a video state in a period Ton including a video period in which projection light is irradiated to the region.
  • the screen 21 has transparency that can recognize the object on the back surface, and can scatter and transmit image light with the same brightness as when the screen is always in a scattering state. That is, it is possible to achieve both a see-through property capable of recognizing a background object and a high image visibility.
  • FIG. 8 is a schematic timing chart of scanning and driving of the screen 21.
  • the horizontal axis is time.
  • the vertical axis indicates the position in the vertical direction of the screen, and corresponds to a plurality of divided regions 22 on the screen 21.
  • Each divided region 22 of the screen 21 is controlled from a transparent transmission state to a scattering state before the timing at which the image light starts to scan each region. Further, the divided region 22 in the scattering state is controlled from the scattering state to the transparent transmission state after the scanning of the region is completed.
  • the plurality of divided regions 22 are sequentially switched to the video state by shifting the time in the scanning order by controlling the video state in synchronization with the partial scanning period TP in which the image light is irradiated to each region by scanning. It is done.
  • the image light that scans the screen 21 is efficiently scattered by the portion maintained in the image state, and it is possible to obtain bright and high visibility.
  • Information on the switching timing for the synchronization control is sent from the projector 11 to the synchronization control unit 31 as a synchronization signal.
  • the synchronization control unit 31 preferably controls the voltage applied to each control electrode 27 so that the projection light is irradiated during a period in which the optical state of each divided region 22 is stable in a predetermined scattering state.
  • the optical state of each divided region 22 is switched according to the signal waveform of the voltage applied to the control electrode 27.
  • the information on the switching timing output from the projector 11 to the synchronization control unit 31 may include information on timing at which the projector 11 starts scanning each frame and a scanning speed (scanning delay / shift).
  • the projector 11 and the synchronization control unit 31 may be capable of wireless communication using electromagnetic waves such as microwaves and infrared rays, and information for obtaining these synchronizations may be exchanged by radio signals.
  • the synchronization control unit 31 of the present embodiment switches the optical state of the plurality of divided regions 22 in the scanning period T of the video light in synchronization with the scanning of the video light by the projector 11 and
  • the optical state of the part where the image light is projected is defined as an image state. Therefore, the screen 21 can display an image because the portion irradiated with the image light is maintained in the scattering state in the period Ton including the timing when the image light is irradiated.
  • the screen 21 since the screen 21 is controlled to be in a transparent transmissive state at times other than the period Ton during the projection period of the image light, the screen 21 can be seen through.
  • FIG. 9 is an explanatory diagram of a display state in which the image by the image light and the background of the screen 21 overlap.
  • an image of a person 41 by video light is shown on the right side of the screen 21, and a tree 42 as a background on the other side of the screen 21 can be seen on the left side.
  • the display device 1 using the screen 21 that operates in the normal mode will be further described.
  • the screen 21 operating in the normal mode the screen 21 is in a scattering state in a normal state where no voltage is applied.
  • a transparent transmission state with parallel light transmittance corresponding to the applied voltage is obtained.
  • the optical state of the screen 21 a predetermined scattering state corresponds to an image state, and a transparent transmission state having a higher parallel light transmittance than that corresponds to a non-image state.
  • FIG. 10 is a schematic timing chart showing an example of the relationship between the drive voltage waveform of the conventional normal mode screen 21 as a conventional example and the optical state.
  • FIG. 10A shows a voltage waveform applied to the control electrode 27 by the synchronization control unit 31.
  • the horizontal axis is time.
  • the vertical axis represents voltage.
  • FIG. 10B shows the optical state of the optical layer 25.
  • the vertical axis represents the transmittance of parallel rays. Small parallel light transmittance indicates strong scattering.
  • a voltage is applied to the optical layer 25 operating in the normal mode in a non-video state where no video is displayed.
  • This voltage is preferably a voltage that maximizes the parallel light transmittance, for example.
  • the driving voltage waveform in the non-video state period controlled to the transmissive state is an example of two rectangular wave AC cycles, but is not limited thereto.
  • the optical layer 25 is stabilized in a constant scattering state after the application of the voltage is stopped. In general, it takes several milliseconds to several tens of milliseconds.
  • the screen 21 used in the present embodiment changes the optical state in response to an electrical signal such as voltage or current.
  • the screen 21 includes a light control screen that uses a liquid crystal material to change a scattering state and a transparent transmission state.
  • the optical state of the light modulating material generally exhibits a transient response to changes in the electrical signal. If a constant electric signal (including removing the electric signal) is applied, it does not immediately converge to a certain optical state.
  • FIG. 11 is a timing chart showing the optical state of the plurality of divided regions 22 in which the luminance unevenness of the video occurs.
  • the horizontal axis is time, and the vertical axis is drive voltage.
  • FIG. 11 is an example in which the driving voltage having the waveform of FIG. 10 is applied to four consecutive divided regions 22 in synchronization with the scanning of the image light.
  • the timings of the four drive voltage waveforms are shifted in synchronization with scanning.
  • the divided regions 22 are sequentially driven at a high speed in synchronization with the scanning of the image light, the divided regions 22 previously controlled in the scattering state are strongly scattered at the end of each partial scanning period TP. While the state is controlled, the divided region 22 which is controlled to the scattering state later is in a weak scattering state.
  • the end timing of each partial scanning period TP is illustrated so as to coincide with the end timing of the period Ton including the video period for displaying the video. It may be slightly delayed from the end timing of the partial scanning period TP.
  • the scanning of the image light moves from the previous divided area 22 to the subsequent divided area 22 at the end of the partial scanning period TP. Therefore, the intensity of scattering is discontinuously switched at the boundary portion of the divided region 22, and streaky luminance unevenness occurs in the video.
  • the optical state of the screen 21 is sequentially switched for each divided region 22 in synchronization with the scanning of the image light, it is necessary to suppress these image quality degradations.
  • FIG. 12 is a timing chart showing optical states of a plurality of divided regions in the present embodiment that can suppress luminance unevenness.
  • the horizontal axis is time.
  • the vertical axis represents the parallel light transmittance.
  • Low parallel light transmittance means strong scattering.
  • curves indicating the optical states of the four continuous divided regions 22 are drawn in an overlapping manner.
  • each divided region 22 may be in a certain optical state (scattering state).
  • FIG. 13 is a schematic timing chart showing the relationship between the two-level drive voltage waveform and the optical state in the present embodiment.
  • FIG. 13A shows a drive voltage waveform applied to the screen 21 operating in the normal mode.
  • the horizontal axis is time, and the vertical axis is voltage.
  • FIG. 13B shows the optical state of the screen 21 operating in the normal mode.
  • the horizontal axis is time, and the vertical axis is parallel light transmittance.
  • FIG. 13 when the divided region 22 of the screen 21 is controlled from the transparent transmission state to the scattering state, first, application of the drive voltage is stopped. Thereafter, a small second-stage driving voltage is applied. By applying this second stage voltage, the intensity of scattering can be stabilized at a substantially constant required value. However, the intensity of scattering is relatively reduced as compared with the case where the application of the drive voltage is simply stopped to control the divided region to the maximum scattering state.
  • the synchronization control unit 31 applies a voltage applied to the control electrode 27 in synchronization with the scanning of the image light. , Stop shortly before the projection light is applied to the area. From the timing when the voltage application is stopped, the optical layer 25 in the divided region 22 starts to change from the transparent transmission scattering to the scattering state.
  • the response time of the optical layer 25 is unique to the screen 21 and is affected by temperature and the like. In general, it takes several milliseconds to several tens of milliseconds to reach a stable maximum scattering state with minimum parallel light transmittance.
  • the synchronization control unit 31 resumes application of a voltage for controlling the control electrode 27 to the transmission state. From that timing, the optical layer 25 in the divided region 22 starts to change from the scattering state to the transparent transmission state. Since these response times are required, when switching the divided region 22 between the image state and the transmission state of the minimum parallel light transmittance in synchronization with the scanning of the image light, both good see-through property and visibility are compatible. There is not enough time to make it happen.
  • FIG. 14 is a schematic timing chart showing the relationship between the two-level drive voltage waveform and the optical state for the plurality of control electrodes 27.
  • 14A to 14D show voltages applied to four consecutive control electrodes 27.
  • FIG. The horizontal axis is time, and the vertical axis is voltage.
  • FIGS. 14E to 14H show optical characteristics of four continuous divided regions 22 corresponding to FIGS. 14A to 14D.
  • the horizontal axis is time, and the vertical axis is parallel light transmittance. In the following description, changes in the optical state are described using changes in parallel light transmittance.
  • the decrease in parallel light transmittance indicates an increase in scattering.
  • a high voltage for controlling the transparent transmission state is applied to the four consecutive control electrodes 27 in a period in which each of the four control electrodes 27 is not scanned. Then, the voltage application is stopped before each scanning period, and then a low voltage is applied. The applied voltage is AC.
  • FIGS. 14E to 14H the four continuous divided regions 22 are controlled from the transparent transmission state to the constant scattering state in synchronization with the scanning of the image light.
  • a high voltage for controlling the transmission state is again applied to the four consecutive control electrodes 27 after each scanning is completed.
  • the four continuous divided regions 22 are controlled from the scattering state to the transparent transmission state in synchronization with the scanning of the image light.
  • the reference timing information for the synchronization control is sent from the projector 11 to the synchronization control unit 31.
  • the synchronization control unit 31 switches the voltage to be applied to each control electrode 27 based on the reference timing so that the projection light is not irradiated during a period in which the scattering characteristics are not constant.
  • the screen 21 of the present embodiment operates in the normal mode in which the parallel light transmittance is increased by applying a voltage, and scatters the projected image light. Further, the synchronization control unit 31 switches the voltage applied to the plurality of divided regions 22 in the scanning order in the scanning period of the image light, and controls each divided region 22 to the video state in the partial scanning period TP in which each is scanned. Then, the non-video state is controlled in a period in which each is not scanned, that is, in a period other than the partial scanning period TP. In addition, when controlling the divided region 22 to the video state, the synchronization control unit 31 increases the applied voltage after stopping the voltage application to the control electrode 27, and applies voltages having a plurality of values with two amplitudes.
  • the optical state of the divided region 22 is held in a predetermined scattering state in which the degree of scattering is lower than the maximum scattering state of the divided region 22, and the scattering state of the divided region 22 in the partial scanning period TP scanned with image light is determined. Stabilize. As a result, the scattering characteristics of each divided region 22 in the partial scanning period TP are maintained constant.
  • the image light irradiated on the screen 21 is scattered by a plurality of divided regions 22 controlled to a constant scattering state. In the image displayed on the screen 21, uneven brightness is suppressed when the scattering state is not controlled to be constant. In the present embodiment, since voltages with two amplitudes are applied to each divided region 22, there is no need to delay scanning until each divided region 22 is controlled to the maximum scattering state.
  • the optical state can be switched at high speed in synchronization with the scanning of the image light. Therefore, each divided region 22 can be controlled to be in a transparent transmissive state for a long time, and the screen 21 can be better seen through, so that the see-through characteristic of the screen 21 can be obtained while brightening the image.
  • the response time for switching the optical state of the screen 21 in the normal mode is long, the parallel light transmittance of the screen 21 is kept high, and the high see-through characteristic of the screen 21 and good image visibility are obtained. While obtaining the see-through characteristic of the screen 21, it is possible to display an image by scattering image light uniformly and without waste.
  • the time from when the voltage is controlled to 0 V until the application of the low voltage for making the scattering constant is 5 milliseconds or less, preferably 2 milliseconds or less.
  • the effective scattering period of each divided region 22 can be shortened.
  • a low drive voltage applied to obtain a constant scattering state and a high drive voltage to control the transmission state are applied as substantially low-frequency AC voltages.
  • the liquid crystal element in order to ensure the reliability and suppress the deterioration, it is preferable to suppress the direct current component of the voltage applied to the optical layer 25 and drive it with an alternating voltage.
  • the non-video period Toff to be controlled to the transmission state since the non-video period Toff to be controlled to the transmission state is long, the effective AC frequency in the transmission state affects the power consumption. In this embodiment, since the AC voltage is as low as possible, the power consumption can be suppressed.
  • a display device 1 using a screen 21 that operates in the reverse mode will be described.
  • the screen 21 operating in the reverse mode the screen 21 is in a transparent transmissive state in a normal state where no voltage is applied.
  • a scattering state of parallel light scattering rate (transmittance) according to the applied voltage is obtained.
  • the configuration and basic operation of the optical device of the present embodiment are the same as those of the optical device of the first embodiment.
  • the scattering state corresponds to the video state.
  • FIG. 15 is a schematic timing chart showing an example of the relationship between the drive voltage waveform of the screen 21 in a general reverse mode, which is a conventional example, and the optical state.
  • FIG. 15A shows a voltage waveform applied to the control electrode 27. The horizontal axis is time. The vertical axis represents voltage.
  • FIG. 15B shows the optical state of the optical layer 25. The vertical axis represents the transmittance of parallel rays. Small parallel light transmittance indicates strong scattering.
  • a voltage is applied to the optical layer 25 operating in the reverse mode in a period Ton including a video period for displaying a video in the scanning cycle of the video light. This voltage is preferably a voltage that maximizes the parallel light transmittance, for example.
  • the driving voltage waveform in the period Ton controlled to the scattering state is an example of two rectangular wave AC cycles, but is not limited thereto.
  • voltage application is started so that the optical layer 25 in the divided region 22 is in a scattering state.
  • the optical layer 25 gradually transitions from a transparent transmission state to a scattering state after a voltage is applied.
  • the drive voltage waveform of FIG. 15A to each control electrode 27, the optical state of the divided region 22 corresponding to each control electrode 27 is synchronized with the scanning of the screen 21 and transparent transmission is performed. It is possible to switch between a state and a scattering state.
  • FIG. 16 is a diagram illustrating an example of optical characteristics of the screen 21 in the reverse mode.
  • the horizontal axis represents the amplitude of the applied voltage.
  • the left vertical axis corresponds to the characteristic curve A and is a convergent optical state (scattering intensity).
  • the right vertical axis corresponds to the characteristic curve B and is the response period.
  • the response time refers to the time from the start of voltage application until the intensity of scattering reaches 90% of the maximum optical characteristic stabilized at the voltage.
  • the threshold voltage VTH is a voltage at which the optical characteristic starts to change from the optical state of 0V.
  • the first voltage V1 is a voltage that maximizes the converged optical state (scattering intensity).
  • the second voltage V2 is higher than the first voltage V1.
  • the intensity of scattering in the converged state starts to change from the 0V state. Thereafter, the intensity of the scattering changes as the applied voltage increases.
  • the applied voltage reaches the first voltage V1
  • the intensity of the scattered scattering is maximized.
  • the voltage exceeds the first voltage V1 the intensity of the scattered scattering starts to decrease.
  • the second voltage V2 converges to a scattering intensity lower than that of V1.
  • the optical state may increase or decrease with the characteristic having the maximum according to the applied voltage.
  • the response time has a substantially inversely proportional characteristic that becomes shorter as the voltage applied to the screen 21 in the reverse mode is higher. That is, the second voltage V2 has a constant optical state in a short time. As shown in the example of FIG. 16, the response time of the screen 21 becomes longer when the applied voltage is lower. For this reason, even if a voltage equal to or lower than the first voltage V1 is applied when the optical state is to be switched in a short time, such as when a drive voltage waveform synchronized with the scanning of the image light is applied, the predetermined voltage is applied. In many cases, a stable scattering state cannot be obtained within this time.
  • the optical state of the optical layer 25 is constant during the period Ton including the video period to be controlled to the scattering state. It cannot be stabilized.
  • the optical state of the divided region 22 cannot be flattened, and the optical state of the adjacent divided region cannot be made substantially equal at the timing when the image light is irradiated. , Luminance unevenness is visually recognized at the region boundary.
  • the synchronization control unit 31 applies a plurality of levels of voltage to the screen 21 in the reverse mode in a period Ton including a video period in which each divided region 22 is controlled to be in a scattering state by voltage application.
  • FIG. 17 is a schematic timing chart showing two-level drive voltage waveforms in the first embodiment. Specifically, as shown in FIG. 17, the synchronization control unit 31 first applies a voltage waveform composed of the second voltage V2 to the control electrode 27 in the divided region 22 slightly before the projection light is irradiated. To start. When the second voltage V2 is applied, the response time (rise time) is sufficiently fast.
  • the synchronization control unit 31 applies the first voltage V1 following the application of the second voltage V2.
  • the 1st voltage V1 is a voltage which can be made into the maximum scattering state in general.
  • the first voltage V1 is a voltage that converges to the optical state when switching from the second voltage V2 to the first voltage V1.
  • the first voltage V1 and the second voltage V2 are applied as low-frequency AC voltages.
  • the first voltage V1 is switched from the second voltage V2 and applied at the timing when the scattering state that changes momentarily by the second voltage V2 becomes maximum.
  • the scattering rate (transmittance) of parallel rays can be maintained at a constant level during the period Ton including the video period in which the optical layer 25 is controlled to be in a scattering state by applying a plurality of values of voltage. .
  • a certain scattering state is obtained.
  • the maximum scattering is achieved by application of the second voltage V2 so that the scattering state immediately after the end of the application period of the second voltage V2 becomes a maximum value (a value at which the parallel light transmittance is minimized).
  • the applied voltage is switched from the second voltage V2 to the first voltage V1.
  • the synchronization control unit 31 stops the voltage application to the control electrode 27. From this timing, the optical layer 25 in the divided region 22 starts to change from the scattering state to the transmission state. Thereby, the plurality of divided regions 22 can be sequentially controlled to be in a scattering state, and each divided region 22 can be held in a transmissive state for a long period in the non-video period Toff.
  • FIG. 18 is a schematic timing chart showing the relationship between the two-level driving voltage waveform and the optical state for a plurality of control electrodes.
  • 18A to 18D show voltages applied to four consecutive control electrodes 27.
  • FIG. The horizontal axis is time, and the vertical axis is voltage.
  • FIGS. 18E to 18H show optical characteristics of four continuous divided regions 22 corresponding to FIGS. 14A to 14D.
  • the horizontal axis is time, and the vertical axis is parallel light transmittance. As shown in FIGS.
  • the four continuous divided regions 22 are controlled from the scattering state to the transmission state.
  • the reference timing information for the synchronization control is sent from the projector 11 to the synchronization control unit 31.
  • the synchronization control unit 31 sequentially switches the voltage applied to the plurality of control electrodes 27 based on the reference timing so that the projection light is not irradiated during a period in which the scattering characteristics are not stable.
  • the screen 21 operates in the reverse mode in which the transmissivity of parallel rays is reduced by applying a voltage, and scatters the projected image light. Further, the synchronization control unit 31 switches the voltage applied to the plurality of divided regions 22 in the scanning order in the scanning period of the image light, and controls each divided region 22 to the video state in the partial scanning period TP in which each is scanned. Then, the non-video state is controlled in a period in which each is not scanned, that is, a period other than the partial scanning period TP.
  • the synchronization control unit 31 decreases the applied voltage after applying a voltage to the control electrode 27 and applies voltages having a plurality of values with two amplitudes.
  • the optical state of 22 is held in a predetermined scattering state whose degree of scattering is lower than the maximum scattering state of the divided region 22, and the scattering state of the divided region 22 in the partial scanning period TP scanned with image light is stabilized. .
  • the scattering characteristics of each divided region 22 in the partial scanning period TP are maintained constant.
  • the image light irradiated on the screen 21 is scattered by a plurality of divided regions 22 controlled to a constant scattering state.
  • each divided region 22 can be controlled to be in a transparent transmissive state for a long time, and the screen 21 can be better seen through, so that the see-through characteristic of the screen 21 can be obtained while brightening the image.
  • the parallel light transmittance of the screen 21 is kept high, and the high see-through characteristic of the screen 21 and good image visibility are obtained. While obtaining the see-through characteristic of the screen 21, it is possible to display an image by scattering image light uniformly and without waste.
  • the voltage initially applied to the control electrode 27 by the synchronization control unit 31 to control the divided region 22 to the video state is a second voltage V2 higher than the first voltage V1 that can bring the divided region 22 into the maximum scattering state.
  • the voltage to be applied after being lowered may be set to a voltage equal to or lower than the first voltage V1 that can achieve the maximum scattering state. Thereby, the switching time to the parallel light transmittance in a stable scattering state can be minimized.
  • FIG. 19 is a schematic timing chart showing a two-level driving voltage waveform using a half cycle in the third embodiment.
  • FIG. 19 is used for the screen 21 in the normal mode.
  • low voltage AC voltage of several cycles is applied to each divided region 22 of the screen 21 operating in the normal mode in the second half of the period Ton including the video period.
  • a high voltage AC voltage of several cycles is applied in the non-video period Toff.
  • the polarity of the applied voltage changes.
  • the orientation of the optical layer 25 is also switched. This may result in a dip in the parallel light transmittance, i.e., a spike in the scattering state.
  • a dip occurs, and the scattering state changes and the image quality deteriorates.
  • the voltage applied in the period Ton including the video period is a unipolar square wave.
  • the application time of the square wave voltage may be the same as that in the first embodiment.
  • the low voltage applied in the second half of the period Ton including the video period is a half wave (half cycle) square wave in which the polarity does not change during the period.
  • the voltage applied during the non-video period Toff is a half-wave square wave.
  • the voltage applied in the second half of the period Ton including the video period and the voltage applied in the non-video period Toff are both a half-wave square wave.
  • the spikes are not generated.
  • power consumption can be reduced by adopting a half cycle.
  • FIG. 20 is a schematic timing chart showing a two-level drive voltage waveform using a half cycle in the third embodiment.
  • FIG. 19 is used for the screen 21 in the reverse mode.
  • an alternating voltage of several cycles is applied to each divided region 22 of the screen 21 operating in the reverse mode in the video state.
  • the polarity of the voltage is switched during the period Ton including the video period.
  • the orientation of the optical layer 25 is also switched.
  • a dip in the parallel light transmittance that is, a spike like spike may occur in the scattering state.
  • a dip is generated, and the scattering state is changed to deteriorate the image quality.
  • the voltage applied in the period Ton including the video period is a unipolar square wave.
  • the application time may be the same period as in the second embodiment.
  • the high voltage applied in the first half of the period Ton including the video period is a half wave (half cycle) square wave.
  • the low voltage applied in the second half of the non-video period Toff is a half-wave square wave.
  • the high voltage applied in the first half of the period Ton including the video period and the low voltage applied in the second half are both formed into a half-wave square wave.
  • FIGS. 20B to 20D by using a half cycle and using a unipolar voltage in a period Ton including a video period, a spike-like spike is not generated. Moreover, power consumption can be reduced by adopting a half cycle.
  • the applied voltage that is maintained in the transmissive state in the transparent period (non-video period Toff) of the screen 21 in the normal mode is a unipolar square wave or bipolar (2m + 1) / It is a rectangular wave of 2 cycles (m is an integer).
  • m is an integer
  • the first high voltage in the period Ton including the reverse mode video period is applied.
  • the rise of the applied voltage is slow. Therefore, if a bipolar waveform is used as the high voltage at the time of start-up, the rise of optical characteristics is wasted at the time when the polarity is switched. As a result, the rise time becomes longer. As a result, the haze during operation increases.
  • the polarity switching time can be reduced even when driving a large load capacity region by increasing the area by making the high voltage during this startup period a unipolar square wave.
  • the synchronization control unit 31 sets the voltage applied to the control electrode 27 as a half-cycle voltage whose polarity does not change during the application period. Therefore, in the screen 21 in the normal mode, the fluctuation in the transmittance of parallel light that occurs when an AC voltage is used is suppressed, and the luminance unevenness in the second half of the video period or the fluctuation in the parallel light transmittance in the non-video period. Can be suppressed. In the reverse mode screen 21, fluctuations in parallel light transmittance that occur when an AC voltage is used can be suppressed, and luminance unevenness in the latter half of the video period can be suppressed.
  • the synchronization control unit 31 switches the polarity of the voltage applied to the control electrode 27 in the scanning period T of the plurality of image lights in units of the scanning period T. Therefore, although a DC voltage is applied to the optical layer 25 in each scanning period T, a DC component of the voltage applied to the optical layer 25 in a plurality of scanning periods T can be suppressed.
  • FIG. 21 is a schematic timing chart showing three-level drive voltage waveforms in the fourth embodiment.
  • FIG. 21A shows three-level drive voltage waveforms applied to the control electrode 27 of the screen 21 in the normal mode.
  • the horizontal axis is time, and the vertical axis is voltage.
  • the drive voltage in FIG. 21A is an AC voltage with three amplitudes (6 levels + 0 V).
  • a voltage waveform having an intermediate level different from the voltage applied in the second half is applied. Thereby, it is possible to speed up the return from the scattering state to the transmission state.
  • FIG. 21B shows three-level drive voltage waveforms applied to the control electrode 27 of the screen 21 in the reverse mode.
  • the drive voltage in FIG. 21B is an AC voltage with three amplitudes (6 levels + 0 V).
  • an AC voltage having three amplitudes (6 levels + 0 V) is applied in a period Ton including a video period.
  • Ton a voltage waveform at an intermediate level different from the voltage applied in each period is applied between the period of rising from the transmission state to the scattering state and the period of maintaining the constant scattering state.
  • FIG. 22 is a schematic configuration diagram of a display device 1 according to the fifth embodiment of the present invention.
  • the display device 1 of the fifth embodiment includes a temperature sensor 51.
  • the temperature sensor 51 is disposed on the screen 21 and detects the temperature of the screen 21.
  • the temperature sensor 51 is connected to the synchronization control unit 31 and outputs a signal indicating the detected temperature.
  • the synchronization control unit 31 adjusts the drive voltage waveform based on the panel temperature detected by the temperature sensor 51. For example, the synchronization control unit 31 changes the voltage (amplitude) of the drive waveform based on the detected temperature. Alternatively, the synchronization control unit 31 changes the pulse period or AC frequency of the drive waveform based on the detected temperature. Alternatively, the synchronization control unit 31 changes the voltage of the drive waveform and the pulse period or AC frequency based on the detected temperature. For example, the synchronization control unit 31 may determine a drive voltage or the like according to the detected temperature using a preset reference table in which the relationship between the detected temperature and the drive voltage is set.
  • the synchronization control unit 31 may determine a reference voltage in which the relationship between the waveform of the drive voltage and the detected temperature is set in advance, and the drive voltage corresponding to the temperature detected by the interpolation value based on the reference table. Good.
  • the display device 1 functions as a drive system including the temperature detection system of the screen 21 and the drive waveform control system.
  • the display device 1 functions as a drive system including the temperature detection system of the screen 21 and the drive waveform control system.
  • the present embodiment even if the response speed of the screen 21 varies depending on the temperature of the screen 21 (liquid crystal temperature), it is possible to suppress luminance variation due to this variation.
  • the screen 21 is controlled to be in the scattering state in the image state, and is scattered while transmitting the image light.
  • the screen 21 may be controlled to be in a high scattering state in the video state, and may be scattered while reflecting the video light.
  • the screen 21 functions as a reflective screen positioned between the projector 11 and the viewer.
  • FIG. 23 is a schematic configuration diagram of a modified example of the display device 1 according to the second embodiment of the present invention using the reflective screen 21.
  • the projector is disposed on the viewer side with respect to the reflective screen 21. Even in this case, by applying the present invention, the image 41 by the image light and the background 42 of the screen 21 can be overlapped and displayed on the screen 21 as shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A video to display and a background are displayed superimposed on a screen, exhibiting both good visibility and transparency. A plurality of control electrodes (27) are lined up along an optical layer (25) on said screen (21), which is scanned by video light from a projector (11). A synchronization control unit (31) applies voltages to the plurality of control electrodes (27), and over the course of a video-light scanning cycle (T), each segment (22) of the screen (21) is switched between a video state and a non-video state. In synchronization with the video-light scanning, the synchronization control unit (31) switches the optical states of the plurality of segments (22) over the course of the video-light scanning cycle (T) and sets the optical states of parts of the screen (21) onto which the video light is projected to video states maintained by voltages with amplitudes greater than or equal to 2.

Description

表示装置、その駆動方法、および表示用スクリーン装置Display device, driving method thereof, and display screen device
 本発明は、表示装置、その駆動方法、および表示用スクリーン装置に関する。 The present invention relates to a display device, a driving method thereof, and a display screen device.
 表示装置には、スクリーンに映像光を投影して、スクリーンに映像を表示させるものがある。
 調光デバイスには、透過率を制御できる液晶調光デバイスがある(特許文献1)。
Some display devices project image light onto a screen to display the image on the screen.
There exists a liquid crystal light control device which can control the transmittance | permeability in the light control device (patent document 1).
特開2007-219419号公報JP 2007-219419 A
 ところで、液晶調光デバイスの技術を用いて調光スクリーンを形成し、この調光スクリーンを、映像を映すためのスクリーンとして使用することが考えられる。
 このような表示装置では、映像を映すときには調光スクリーンをたとえば散乱して透過する状態に制御して、調光スクリーンに映像を映し、それ以外のときには、調光スクリーンをたとえば入射光の散乱が小さい透明な透過状態に制御して、調光スクリーンの向こう側をシースルーさせるようにすることができる。
 しかしながら、このような調光スクリーンを、映像を映すためのスクリーンとして用いたとしても、映像光の投影期間中は、スクリーンを散乱状態に制御する必要がある。
 よって、良好な視認性とシースルー性をもって、スクリーンに映す映像と、スクリーンの向こう側の景色とを、スクリーンで重ねて表示することはできない。
By the way, it is conceivable to form a dimming screen using the technology of the liquid crystal dimming device and to use this dimming screen as a screen for projecting an image.
In such a display device, when the image is projected, the dimming screen is controlled to be scattered and transmitted, for example, so that the image is projected on the dimming screen. In other cases, for example, the dimming screen scatters incident light. A small transparent transmission state can be controlled so that the other side of the dimming screen is seen through.
However, even if such a dimming screen is used as a screen for projecting an image, it is necessary to control the screen in a scattering state during the projection period of the image light.
Therefore, it is not possible to display the image projected on the screen and the scenery on the other side of the screen on the screen with good visibility and see-through.
 このように表示装置では、スクリーンに、映像と背景とを重ねて表示することができない。 As described above, the display device cannot display the image and the background on the screen.
 請求項1記載の発明は、電圧の印加により光学状態が変化する光学層、および光学層に電圧を印加するために光学層に沿って並べて配置される複数の制御電極を有するスクリーンと、スクリーンに映像光を投影して映像を表示させるプロジェクタと、複数の制御電極に電圧を印加し、映像光の投影期間において、スクリーンを、各制御電極が形成された分割領域毎に、映像光を散乱する所定の映像状態とこれと異なる光学状態である非映像状態との間で切り替える制御部と、を有し、制御部は、映像光の投影期間における複数の分割領域の光学状態を、プロジェクタによる映像光の投影に同期させて切り替えて、スクリーンについての、映像光が投影される部位の光学状態を映像状態とし、映像状態の光学状態を、2以上の振幅の電圧により保持する、表示装置である。 The invention described in claim 1 includes a screen having an optical layer whose optical state changes by application of a voltage, a plurality of control electrodes arranged side by side along the optical layer in order to apply a voltage to the optical layer, and a screen. A projector for projecting image light to display an image and a voltage applied to a plurality of control electrodes, and during the image light projection period, the screen scatters image light for each divided region where each control electrode is formed. A control unit that switches between a predetermined video state and a non-video state that is an optical state different from the predetermined video state. The screen is switched in synchronization with the projection of the light, the optical state of the screen where the image light is projected is set to the video state, and the optical state of the video state is determined by a voltage having an amplitude of 2 or more. Holding a display device.
 請求項11記載の発明は、プロジェクタから投影される映像光による映像を、電圧の印加により光学状態が変化する光学層を有するスクリーンに表示する表示装置の駆動方法であって、スクリーンの光学状態を制御する制御部は、光学層に沿って並べて配置される複数の制御電極に電圧を印加して、光学層および複数の制御電極を有するスクリーンに、映像光による映像を表示させ、映像光の投影期間において、スクリーンを、各制御電極が形成された分割領域毎に、映像光を散乱する所定の映像状態とこれと異なる光学状態である非映像状態との間で切り替え、映像光の投影期間における複数の分割領域の光学状態を、プロジェクタによる映像光の投影に同期させて切り替えて、スクリーンについての、映像光が投影される部位の光学状態を映像状態とし、映像状態の光学状態を、2以上の振幅の電圧により保持する、表示装置の駆動方法である。 The invention according to claim 11 is a driving method of a display device for displaying an image of image light projected from a projector on a screen having an optical layer whose optical state changes by application of a voltage, the optical state of the screen being changed. The controlling unit applies a voltage to a plurality of control electrodes arranged side by side along the optical layer, displays an image based on image light on a screen having the optical layer and the plurality of control electrodes, and projects the image light. In the period, the screen is switched between a predetermined image state in which the image light is scattered and a non-image state which is an optical state different from the predetermined image state for each divided region in which each control electrode is formed. By switching the optical state of the plurality of divided areas in synchronization with the projection of the image light by the projector, the optical state of the portion of the screen where the image light is projected Was the video state, the optical state of the image state, it is held by two or more of the amplitude of the voltage is a driving method of a display device.
 請求項12記載の発明は、電圧の印加により光学状態が変化する光学層、および光学層に電圧を印加するために光学層に沿って並べて配置される複数の制御電極を有し、投影された映像光による映像を表示するスクリーンと、複数の制御電極に電圧を印加し、映像光の投影期間において、制御電極が形成された各分割領域を、映像光を散乱する所定の映像状態とこれと異なる光学状態である非映像状態との間で切り替えるように制御する制御部と、を有し、制御部は、映像光の投影期間における複数の分割領域の光学状態を、スクリーンへの映像光の投影に同期させて切り替えて、スクリーンについての、映像光が投影される部位の光学状態を映像状態とし、映像状態の光学状態を、2以上の振幅の電圧により保持する、表示用スクリーン装置である。 The invention according to claim 12 has an optical layer whose optical state changes when a voltage is applied, and a plurality of control electrodes arranged side by side along the optical layer for applying a voltage to the optical layer, and is projected A screen for displaying an image by image light, a voltage applied to a plurality of control electrodes, and a predetermined image state in which image light is scattered in each divided region in which the control electrode is formed during the image light projection period A control unit that controls to switch between a non-image state that is a different optical state, and the control unit determines the optical state of the plurality of divided regions during the projection period of the image light, A display screen that is switched in synchronization with the projection so that the optical state of the portion of the screen on which the image light is projected is the image state, and the optical state of the image state is held by a voltage having an amplitude of 2 or more. It is the location.
図1は、本発明の第1実施形態に係る表示装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a display device according to the first embodiment of the present invention. 図2は、スクリーンの走査と駆動との同期制御の説明図である。FIG. 2 is an explanatory diagram of the synchronous control of screen scanning and driving. 図3は、連続的に面映像を投影するプロジェクタの説明図である。FIG. 3 is an explanatory diagram of a projector that continuously projects a plane image. 図4は、時間変調により面映像を投影するプロジェクタの説明図である。FIG. 4 is an explanatory diagram of a projector that projects a plane image by time modulation. 図5は、スクリーンを走査するプロジェクタの説明図である。FIG. 5 is an explanatory diagram of a projector that scans the screen. 図6は、スクリーンの模式的な断面図である。FIG. 6 is a schematic cross-sectional view of the screen. 図7は、複数の制御電極の配置を示すスクリーンの模式的な正面図である。FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes. 図8は、スクリーンの走査と駆動との模式的なタイミングチャートである。FIG. 8 is a schematic timing chart of screen scanning and driving. 図9は、映像光による映像とスクリーンの背景とが重なる表示状態の説明図である。FIG. 9 is an explanatory diagram of a display state in which the image by the image light overlaps the screen background. 図10は、従来例である一般的なノーマルモードのスクリーンの駆動電圧波形と光学状態との関係の一例を示す模式的なタイミングチャートである。FIG. 10 is a schematic timing chart showing an example of the relationship between the drive voltage waveform of a general normal mode screen, which is a conventional example, and the optical state. 図11は、映像の輝度ムラが発生する、複数の分割領域の光学状態を示すタイミングチャートである。FIG. 11 is a timing chart showing an optical state of a plurality of divided regions where the luminance unevenness of the video occurs. 図12は、第1実施形態での複数の分割領域の光学状態を示すタイミングチャートである。FIG. 12 is a timing chart showing optical states of a plurality of divided regions in the first embodiment. 図13は、本実施形態での2レベルの駆動電圧波形と光学状態との関係を示す模式的なタイミングチャートである。FIG. 13 is a schematic timing chart showing the relationship between the two-level driving voltage waveform and the optical state in the present embodiment. 図14は、複数の制御電極についての2レベルの駆動電圧波形と光学状態との関係を示す模式的なタイミングチャートである。FIG. 14 is a schematic timing chart showing the relationship between the two-level driving voltage waveform and the optical state for a plurality of control electrodes. 図15は、従来例である一般的なリバースモードのスクリーンの駆動電圧波形と光学状態との関係の一例を示す模式的なタイミングチャートである。FIG. 15 is a schematic timing chart showing an example of a relationship between a driving voltage waveform of a general reverse mode screen as a conventional example and an optical state. 図16は、リバースモードのスクリーンの光学特性の一例を示す図である。FIG. 16 is a diagram illustrating an example of optical characteristics of the screen in the reverse mode. 図17は、第2実施形態での2レベルの駆動電圧波形を示す模式的なタイミングチャートである。FIG. 17 is a schematic timing chart showing two-level drive voltage waveforms in the second embodiment. 図18は、複数の制御電極についての2レベルの駆動電圧波形と光学状態との関係を示す模式的なタイミングチャートである。FIG. 18 is a schematic timing chart showing the relationship between the two-level driving voltage waveform and the optical state for a plurality of control electrodes. 図19は、第3実施形態における、ハーフサイクルを利用した2レベルの駆動電圧波形を示す模式的なタイミングチャートである(ノーマルモードのスクリーン用)。FIG. 19 is a schematic timing chart showing two-level drive voltage waveforms using a half cycle in the third embodiment (for a normal mode screen). 図20は、第3実施形態における、ハーフサイクルを利用した2レベルの駆動電圧波形を示す模式的なタイミングチャートである(リバースモードのスクリーン用)。FIG. 20 is a schematic timing chart showing a two-level drive voltage waveform using a half cycle in the third embodiment (for a screen in the reverse mode). 図21は、第4実施形態における、3レベルの駆動電圧波形を示す模式的なタイミングチャートである。FIG. 21 is a schematic timing chart showing three-level drive voltage waveforms in the fourth embodiment. 図22は、第5実施形態に係る表示装置の概略構成図である。FIG. 22 is a schematic configuration diagram of a display device according to the fifth embodiment. 図23は、反射型のスクリーンを用いた、本発明の第2実施形態に係る表示装置の変形例の概略構成図である。FIG. 23 is a schematic configuration diagram of a modified example of the display device according to the second embodiment of the present invention using a reflective screen.
 以下、本発明の実施形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
 図1は、第1実施形態に係る表示装置1の概略構成図である。
 図1の表示装置1は、映像光を投影するプロジェクタ11と、光学状態を制御可能なスクリーン21と、同期制御部31と、を有する。同期制御部31は、プロジェクタ11とスクリーン21とに接続される。
 本実施形態の表示装置1は、プロジェクタ11の映像光をスクリーン21で透過散乱する透過型プロジェクション装置である。
 同期制御部31は、映像が投影されるスクリーン21を、投影された映像光を透過しつつ散乱する状態に制御し、投影されていない場合に透過状態に制御する。
 スクリーン21の光学状態は、散乱して透過する状態が映像状態であり、それよりも入射光の散乱が小さく且つ平行光線透過率が高い透明な透過状態が非映像状態である。
 表示装置1は、たとえば広告などを表示するサインボートなどとして利用できる。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a display device 1 according to the first embodiment.
The display device 1 in FIG. 1 includes a projector 11 that projects image light, a screen 21 that can control the optical state, and a synchronization control unit 31. The synchronization control unit 31 is connected to the projector 11 and the screen 21.
The display device 1 of the present embodiment is a transmissive projection device that transmits and scatters image light from the projector 11 through a screen 21.
The synchronization control unit 31 controls the screen 21 on which the image is projected to a state where the projected image light is scattered while being transmitted, and controls the screen 21 to a transmission state when it is not projected.
As for the optical state of the screen 21, the state of being scattered and transmitted is an image state, and the transparent state of being less scattered of incident light and having a high parallel light transmittance is a non-image state.
The display device 1 can be used as, for example, a sign boat that displays advertisements and the like.
 次に、図1の表示装置1の基本的な動作原理を説明する。
 図2は、スクリーン21の走査と駆動との同期制御の説明図である。
 プロジェクタ11は、映像情報で変調された映像光で、スクリーン21を上から下へ縦に走査する。プロジェクタ11は、走査の繰り返し期間(以下、走査周期ともいう。)毎に、スクリーン21を上から下へ縦に走査する。
 図2(A)から(E)は、1回の走査周期中の各時点での走査状態を、走査順で示すものである。
 図2のスクリーン21は、5つの分割領域22を有する。5つの分割領域22は、映像光の走査方向に沿って縦に配列される。
 同期制御部31は、プロジェクタ11によるスクリーン21の一次元の縦方向の走査に同期させて、5つの分割領域22の光学状態を個別に制御する。各分割領域22は、映像光が投影されていない場合、非映像状態、すなわち入射光の散乱が小さい透明な透過状態に制御される。
Next, the basic operation principle of the display device 1 of FIG. 1 will be described.
FIG. 2 is an explanatory diagram of synchronous control of scanning and driving of the screen 21.
The projector 11 vertically scans the screen 21 from the top to the bottom with image light modulated by the image information. The projector 11 scans the screen 21 vertically from top to bottom for each scanning repetition period (hereinafter also referred to as a scanning cycle).
2A to 2E show the scanning state at each time point in one scanning cycle in the scanning order.
The screen 21 in FIG. 2 has five divided regions 22. The five divided regions 22 are arranged vertically along the scanning direction of the image light.
The synchronization control unit 31 controls the optical states of the five divided regions 22 individually in synchronization with the one-dimensional vertical scanning of the screen 21 by the projector 11. When the image light is not projected, each divided region 22 is controlled to a non-image state, that is, a transparent transmissive state with small scattering of incident light.
 映像光の走査が開始されると、プロジェクタ11の走査光は、まず、図2(A)のように、スクリーン21の最上部の分割領域22に照射される。以下、この説明において、走査光が照射される分割領域22について、走査されていない他の分割領域22から区別するために、符号221を使用する。同期制御部31は、プロジェクタからの同期信号に基づいて、走査周期中での、この最上部の分割領域221が走査される期間を特定し、最上部の分割領域221を映像状態に制御する。最上部の分割領域221を走査する映像光は、散乱状態の分割領域221により散乱され、スクリーン21を透過する。
 映像光の走査は、次に、図2(B)のように、スクリーン21の上から2番目の分割領域221に移動する。同期制御部31は、走査周期中での、この上から2番目の分割領域221が走査される期間を特定し、上から2番目の分割領域221を映像状態に制御する。上から2番目の分割領域221を走査する映像光は、散乱状態の分割領域221により散乱され、スクリーン21を透過する。また、同期制御部31は、上から2番目の分割領域221を映像状態に制御した後、最上部の分割領域22を非映像状態に制御する。
 その後も、図2(C)から(E)に示すように、同期制御部31は、走査光により走査される分割領域221を映像状態に制御し、それ以外の分割領域22を非映像状態に制御する。
When the scanning of the image light is started, the scanning light of the projector 11 is first applied to the uppermost divided area 22 of the screen 21 as shown in FIG. Hereinafter, in this description, reference numeral 221 is used to distinguish the divided region 22 irradiated with the scanning light from other divided regions 22 that are not scanned. The synchronization control unit 31 specifies a period during which the uppermost divided area 221 is scanned in the scanning cycle based on the synchronization signal from the projector, and controls the uppermost divided area 221 to the video state. The image light that scans the uppermost divided area 221 is scattered by the divided area 221 in the scattering state and passes through the screen 21.
Next, the scanning of the image light moves to the second divided region 221 from the top of the screen 21 as shown in FIG. The synchronization control unit 31 specifies a period during which the second divided region 221 from the top in the scanning cycle is scanned, and controls the second divided region 221 from the top to the video state. The image light that scans the second divided region 221 from the top is scattered by the divided region 221 in the scattering state and passes through the screen 21. Further, the synchronization control unit 31 controls the second divided area 221 from the top to the video state, and then controls the uppermost divided area 22 to the non-video state.
Thereafter, as shown in FIGS. 2C to 2E, the synchronization control unit 31 controls the divided area 221 scanned by the scanning light to the video state, and sets the other divided areas 22 to the non-video state. Control.
 以上の同期制御により、スクリーン21についての走査光が照射される部位は、映像状態に維持される。これにより、スクリーン21を走査する映像光は、散乱状態のスクリーン21を透過する。
 また、スクリーン21についての走査光が照射されない部位は、非映像状態に制御される。各分割領域22は、走査光により走査されていない殆どの期間において、非映像状態の透明な透過状態に制御される。映像光の投影期間中に、映像の視認性を保ちつつ、スクリーン21のシースルー特性が得られる。
Through the above-described synchronization control, the portion of the screen 21 irradiated with the scanning light is maintained in the video state. Thereby, the image light that scans the screen 21 is transmitted through the screen 21 in a scattered state.
Further, the portion of the screen 21 that is not irradiated with the scanning light is controlled to a non-image state. Each divided region 22 is controlled to a transparent transmission state in a non-video state during most of the period that is not scanned by the scanning light. During the image light projection period, the see-through characteristic of the screen 21 is obtained while maintaining the image visibility.
 プロジェクタ11は、スクリーン21へ、映像情報により変調された映像光を投影できるものであればよい。
 なお、映像情報は、プロジェクタ11に入力される映像信号から得られる。映像信号には、たとえば、NTSC(National Television Standards Committee)方式、PAL(Phase Alternation by Line)方式のようなアナログ方式の映像信号、MPEG-TS(Moving Picture Experts Group - Transport Stream)フォーマット、HDV(High-Definition Video)フォーマットのようなデジタルフォーマットの映像信号がある。プロジェクタ11には、動画の映像信号だけでなく、たとえばJPEG(Joint Photographic Experts Group)のような静止画の映像信号が入力されてもよい。この場合、プロジェクタ11は、静止画を表示するための同じ映像光で、スクリーン21を繰り返し走査すればよい。
The projector 11 only needs to be able to project video light modulated by video information onto the screen 21.
Note that the video information is obtained from a video signal input to the projector 11. Video signals include, for example, NTSC (National Television Standards Committee), analog video signals such as PAL (Phase Alternation by Line), MPEG-TS (Moving Picture Experts Group-Transport Stream) format, HDV (High -There are video signals in digital format such as Definition Video) format. The projector 11 may receive not only a moving image video signal but also a still image video signal such as JPEG (Joint Photographic Experts Group). In this case, the projector 11 may scan the screen 21 repeatedly with the same video light for displaying a still image.
 図3から5は、プロジェクタ11の投影方式の説明図である。図3は、連続的に面映像を投影するプロジェクタ11の説明図である。図4は、時間変調により面映像を投影するプロジェクタ11の説明図である。図5は、スクリーン21を走査するプロジェクタ11の説明図である。 3 to 5 are explanatory diagrams of the projection method of the projector 11. FIG. 3 is an explanatory diagram of the projector 11 that continuously projects a plane image. FIG. 4 is an explanatory diagram of the projector 11 that projects a plane image by time modulation. FIG. 5 is an explanatory diagram of the projector 11 that scans the screen 21.
 図3(A)は、プロジェクタ11が定常的に映像光を投影する方式の説明図である。この場合、スクリーン21には、図3(B)に示すように、走査周期において映像光が常に投影されている。スクリーン21は、図3(C)に示すように、常に散乱状態とする必要がある。この場合、平行光線透過率を高くするようにスクリーン21の光学状態を制御すると、映像の輝度が減少する。
 なお、図3(B)、(C)の横軸は、走査周期(時間)である。図4(B)、(C)、図5(B)、(C)も同様である。
FIG. 3A is an explanatory diagram of a method in which the projector 11 regularly projects image light. In this case, as shown in FIG. 3B, image light is always projected onto the screen 21 in the scanning cycle. As shown in FIG. 3C, the screen 21 must always be in a scattering state. In this case, if the optical state of the screen 21 is controlled so as to increase the parallel light transmittance, the luminance of the image decreases.
Note that the horizontal axis of FIGS. 3B and 3C is the scanning cycle (time). The same applies to FIGS. 4B, 4C, 5B, and 5C.
 図4(A)は、プロジェクタ11がインターバルを空けて映像光を投影する方式の説明図である。この場合、スクリーン21には、図4(B)に示すように、走査周期の一部において短期的に映像光が投影される。スクリーン21は、図4(C)に示すように、該一部の期間において散乱状態とすればよい。そして、該一部以外の期間において、スクリーン21の平行光線透過率を高くするようにスクリーン21の光学状態を制御すると、走査周期おいて、映像の輝度低下を招くことなく、スクリーン21のシースルー特性が得られる。定常的に映像光を投影する場合に比べ、同一輝度を得るには、1走査周期に対する散乱状態の時間程度のデューティ(図中duty:a)の概ね逆数倍の強さの投影光が必要となる。従って高いシースルー特性を得るには、強力なパルス発光の投影光出力が必要である。 FIG. 4A is an explanatory diagram of a method in which the projector 11 projects image light at an interval. In this case, as shown in FIG. 4B, image light is projected on the screen 21 in a short period of time during a part of the scanning cycle. As shown in FIG. 4C, the screen 21 may be in a scattering state during the partial period. When the optical state of the screen 21 is controlled so as to increase the parallel light transmittance of the screen 21 in a period other than the part, the see-through characteristic of the screen 21 is not caused in the scanning cycle without causing a decrease in the luminance of the image. Is obtained. In order to obtain the same brightness compared to the case of projecting image light constantly, projection light whose intensity is approximately the reciprocal of the duty (duty: a) in the scattering state for one scanning period is required. It becomes. Therefore, in order to obtain a high see-through characteristic, a powerful pulsed projection light output is required.
 図5(A)は、プロジェクタ11がスクリーン21を走査する投影方式の説明図である。この場合、スクリーン21には、走査周期において常に映像光が投影される。しかしながら、スクリーン21の各部に注目すると、図5(B)に示すように走査周期の一部において映像光が投影されている。このため、図5(C)に示すように、スクリーンの各部は、各々が走査される部分走査期間TPにおいて散乱状態になればよい。また、スクリーン21の各部分は、該部分走査期間TP以外の期間において平行光線透過率を高くするように制御すれば、走査周期において、映像の輝度低下を招くことなく、スクリーン21のシースルー特性が得られる。 FIG. 5A is an explanatory diagram of a projection method in which the projector 11 scans the screen 21. In this case, video light is always projected onto the screen 21 during the scanning cycle. However, paying attention to each part of the screen 21, the image light is projected in a part of the scanning period as shown in FIG. For this reason, as shown in FIG. 5C, each part of the screen only needs to be in a scattering state in the partial scanning period TP in which each part is scanned. Further, if each part of the screen 21 is controlled so as to increase the parallel light transmittance in a period other than the partial scanning period TP, the see-through characteristic of the screen 21 can be achieved without causing a decrease in the luminance of the image in the scanning period. can get.
 映像光を投影するプロジェクタ11は、上記いずれの投影方式のものでもよい。
 ただし、散乱に利用されない映像光の発生を抑制するためには、図4または図5の方式が望ましい。また、スクリーン21の光学状態の変化には、応答時間が必要である。このため、応答時間が確保し易い図5の投影方式が、図4よりも望ましい。以下の説明では、図5の投影方式のプロジェクタ11を利用した場合ついて説明する。
The projector 11 that projects the image light may be of any of the above projection methods.
However, in order to suppress the generation of image light that is not used for scattering, the method of FIG. 4 or FIG. 5 is desirable. Moreover, a response time is required for the change in the optical state of the screen 21. For this reason, the projection method of FIG. 5 in which the response time is easily secured is preferable to FIG. In the following description, a case where the projector 11 of the projection method shown in FIG. 5 is used will be described.
 図5の駆動方式では、映像光の走査周期である走査周期中に、スクリーン21の一部に相当するライン状の映像が、順次、スクリーン21の表示面に投影される。
 このプロジェクタ11には、走査周期中にスクリーン21上で黒状態(投射光が出ない状態)を順次シフトさせる透過型あるいは反射型液晶ライトバルブなどを使用できるが、これ以外の素子を用いてもよい。
 また、プロジェクタ11は、映像の走査周期においてラスター走査し、スクリーン21の表示面に映像光を点順次で投影するものでもよい。このプロジェクタ11では、映像変調された光ビームの照射方向を可動ミラーで反射して振るような、例えばレーザプロジェクタなどを用いることができる。このプロジェクタ11は、映像光の照射位置がスクリーン21上の一方向に順次走査されているものと同様に考えることができる。
In the driving method of FIG. 5, a line-shaped image corresponding to a part of the screen 21 is sequentially projected onto the display surface of the screen 21 during a scanning period that is a scanning period of the image light.
The projector 11 can be a transmissive or reflective liquid crystal light valve that sequentially shifts the black state (the state in which no projection light is emitted) on the screen 21 during the scanning cycle, but other elements can also be used. Good.
Alternatively, the projector 11 may perform raster scanning in a video scanning cycle and project video light on the display surface of the screen 21 dot-sequentially. As the projector 11, for example, a laser projector that reflects and shakes the irradiation direction of the image-modulated light beam with a movable mirror can be used. The projector 11 can be considered in the same manner as the image light irradiation position being sequentially scanned in one direction on the screen 21.
 スクリーン21は、電圧や電流などの電気信号により光学状態を変化できるものであればよい。
 例えば、液晶材料を用い、散乱状態と入射光の散乱が小さい透明な透過状態を変化させる調光スクリーンなどでよい。調光スクリーンには、たとえば、高分子分散液晶などの液晶素子を用いたもの、透明セル内の白色粉体を移動させることで散乱状態と入射光の散乱が小さい透明な透過状態を制御する素子などを用いたものがある。
The screen 21 may be anything that can change the optical state by an electrical signal such as voltage or current.
For example, a light control screen that uses a liquid crystal material and changes a scattering state and a transparent transmission state with small scattering of incident light may be used. The light control screen uses, for example, a liquid crystal element such as a polymer-dispersed liquid crystal, or an element that controls a transparent transmission state with small scattering of incident light by moving white powder in a transparent cell. There is something that uses.
 また、スクリーン21は、スクリーン21を分割する複数の分割領域22が、それぞれ独立したタイミングで、入射光の散乱が小さい透明な透過状態と、散乱状態との間で切り替えることができるものであればよい。
 たとえば、スクリーン21は、プロジェクタ11の主走査方向(たとえば図2での縦方向)に対応するように短冊状に分割された複数の分割領域を有するものであればよい。
 この他にも、スクリーン21は、プロジェクタ11の走査方向および副走査方向(たとえば映像の横方向)に対応するように、矩形に分割された領域がマトリクス状に配列されたものでもよい。
In addition, the screen 21 can be switched between a transparent transmission state where the scattering of incident light is small and a scattering state when the plurality of divided regions 22 dividing the screen 21 are independent of each other. Good.
For example, the screen 21 only needs to have a plurality of divided regions divided into strips so as to correspond to the main scanning direction of the projector 11 (for example, the vertical direction in FIG. 2).
In addition, the screen 21 may be a screen in which regions divided into rectangles are arranged in a matrix so as to correspond to the scanning direction and sub-scanning direction of the projector 11 (for example, the horizontal direction of the image).
 図6は、分割領域22毎に光学状態を制御可能なスクリーン21の模式的な断面図である。図6には、同期制御部31も図示されている。
 図7は、図6のスクリーン21での、複数の制御電極の配置を示すスクリーンの模式的な正面図である。
 図6の例のスクリーン21は、一対の透明なガラス板23,24の間に液晶を含む複合材料を挟み込んだ光学層25を有する。
 一方のガラス板24の光学層25側には、全面に対向電極26が形成される。
 他方のガラス板23の光学層25側には、複数の制御電極27が並べて配置される。
 電極26、27と光学層25との間に、絶縁体からなる中間層を形成してもよい。
 対向電極26および制御電極27は、たとえばITO(酸化インジウム・スズ)により、透明電極として形成される。
 光学層25は、複数の制御電極27と対向電極26との間に配置される。
FIG. 6 is a schematic cross-sectional view of the screen 21 that can control the optical state for each divided region 22. FIG. 6 also shows the synchronization control unit 31.
FIG. 7 is a schematic front view of a screen showing the arrangement of a plurality of control electrodes on the screen 21 of FIG.
The screen 21 in the example of FIG. 6 has an optical layer 25 in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass plates 23 and 24.
A counter electrode 26 is formed on the entire surface of one glass plate 24 on the optical layer 25 side.
A plurality of control electrodes 27 are arranged side by side on the optical layer 25 side of the other glass plate 23.
An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the optical layer 25.
The counter electrode 26 and the control electrode 27 are formed as transparent electrodes by using, for example, ITO (indium tin oxide).
The optical layer 25 is disposed between the plurality of control electrodes 27 and the counter electrode 26.
 複数の制御電極27は、スクリーン21の映像光が照射される領域を、一方向(たとえば走査方向)で短冊状に分割する。
 複数の制御電極27は、同期制御部31に個別に接続され、個別の電圧が印加される。
 隣接する制御電極27は、互いに離間して配列される。
 図6では、対向電極26は、接地されている。
 制御電極27と対向電極26との間に電位差を生じるように電圧が印加される。なお、以下に説明する駆動波形の電圧は、制御電極27と対向電極26との電位差を示している。
 制御電極27に印加された電圧は、当該制御電極27に対応する領域の光学層25に印加される。光学層25内の液晶の配向状態は、制御電極27の印加電圧により変化する。光学層25は、分割領域22毎に、入射光の散乱が小さい透明な透過状態と、入射光を散乱する散乱状態との間で調整できる。
 なお、制御電極27の間の、制御電極27が形成されていない領域に対応した光学層25内のギャップ領域の幅は、5から100マイクロメートル程度であり、可能な限り狭いことが望ましい。光学層25の厚さは、数から数十マイクロメートルであり、光学特性と駆動電圧を考慮して決定される。
The plurality of control electrodes 27 divide the area of the screen 21 irradiated with the image light into strips in one direction (for example, the scanning direction).
The plurality of control electrodes 27 are individually connected to the synchronization control unit 31 and applied with individual voltages.
Adjacent control electrodes 27 are arranged apart from each other.
In FIG. 6, the counter electrode 26 is grounded.
A voltage is applied so as to generate a potential difference between the control electrode 27 and the counter electrode 26. Note that the voltage of the driving waveform described below indicates a potential difference between the control electrode 27 and the counter electrode 26.
The voltage applied to the control electrode 27 is applied to the optical layer 25 in a region corresponding to the control electrode 27. The alignment state of the liquid crystal in the optical layer 25 changes depending on the voltage applied to the control electrode 27. The optical layer 25 can be adjusted for each divided region 22 between a transparent transmission state where the scattering of incident light is small and a scattering state where the incident light is scattered.
The width of the gap region in the optical layer 25 corresponding to the region where the control electrode 27 is not formed between the control electrodes 27 is about 5 to 100 micrometers, and is desirably as narrow as possible. The thickness of the optical layer 25 is several to several tens of micrometers, and is determined in consideration of optical characteristics and drive voltage.
 同期制御部31は、プロジェクタ11とスクリーン21とに接続される。
 同期制御部31は、プロジェクタ11の映像光の投影に同期させて、スクリーン21の光学状態を制御する。
 プロジェクタ11から同期制御部31へ入力される同期信号は、たとえばプロジェクタ11の走査周期に同期した同期信号などを用いることができる。
The synchronization control unit 31 is connected to the projector 11 and the screen 21.
The synchronization control unit 31 controls the optical state of the screen 21 in synchronization with the projection of the image light of the projector 11.
As the synchronization signal input from the projector 11 to the synchronization control unit 31, for example, a synchronization signal synchronized with the scanning cycle of the projector 11 can be used.
 図7のスクリーン21のようにスクリーン21が一方向に短冊状に分割されている場合、プロジェクタ11の投影光は、スクリーン21の分割方向に順次走査される。
 同期制御部31は、プロジェクタ11からの同期信号に基づいて、プロジェクタ11の投影光が照射される部位が映像状態(本実施形態では散乱状態)に維持されるように、複数の分割領域22を、走査順で、透明な透過状態から散乱状態に制御する。
 この同期制御により、スクリーン21の各分割領域22は、当該領域に投影光が照射される映像期間を含む期間Tonにおいて、映像状態としての散乱状態になる。また、投影光が照射されない非映像期間Toffにおいては、非映像状態としての透明な透過状態となる。
 スクリーン21は、その背面の物体を認識しうる透明さを有しつつ、常時散乱状態とした場合と同等の明るさで映像光を散乱して透過できる。つまり、背景物体を認識することが可能なシースルー性と、映像の高い視認性とを両立することが可能となる。
When the screen 21 is divided into strips in one direction like the screen 21 in FIG. 7, the projection light of the projector 11 is sequentially scanned in the division direction of the screen 21.
Based on the synchronization signal from the projector 11, the synchronization control unit 31 sets the plurality of divided regions 22 so that the portion irradiated with the projection light of the projector 11 is maintained in the video state (scattering state in the present embodiment). In the scanning order, the transparent transmission state is controlled to the scattering state.
By this synchronization control, each divided region 22 of the screen 21 is in a scattering state as a video state in a period Ton including a video period in which projection light is irradiated to the region. Further, in the non-image period Toff where the projection light is not irradiated, a transparent transmission state as a non-image state is obtained.
The screen 21 has transparency that can recognize the object on the back surface, and can scatter and transmit image light with the same brightness as when the screen is always in a scattering state. That is, it is possible to achieve both a see-through property capable of recognizing a background object and a high image visibility.
 図8は、スクリーン21の走査と駆動との模式的なタイミングチャートである。横軸は、時間である。縦軸は、スクリーンの縦方向の位置を示し、スクリーン21での複数の分割領域22に対応する。
 スクリーン21の各分割領域22は、各々の領域を映像光が走査し始めるタイミングより前に、透明な透過状態から散乱状態に制御される。また、散乱状態の分割領域22は、当該領域についての走査が終了した後に、散乱状態から透明な透過状態に制御される。
 複数の分割領域22は、各々の領域に映像光が走査により照射される部分走査期間TPに同期して映像状態に制御されることにより、走査順で、時間をずらして、順次映像状態へ切り替えられる。スクリーン21を走査する映像光は、映像状態に維持された部分により、効率よく散乱され、明るく高い視認性を得ることができる。
FIG. 8 is a schematic timing chart of scanning and driving of the screen 21. The horizontal axis is time. The vertical axis indicates the position in the vertical direction of the screen, and corresponds to a plurality of divided regions 22 on the screen 21.
Each divided region 22 of the screen 21 is controlled from a transparent transmission state to a scattering state before the timing at which the image light starts to scan each region. Further, the divided region 22 in the scattering state is controlled from the scattering state to the transparent transmission state after the scanning of the region is completed.
The plurality of divided regions 22 are sequentially switched to the video state by shifting the time in the scanning order by controlling the video state in synchronization with the partial scanning period TP in which the image light is irradiated to each region by scanning. It is done. The image light that scans the screen 21 is efficiently scattered by the portion maintained in the image state, and it is possible to obtain bright and high visibility.
 この同期制御のための切り替えタイミングの情報は、同期信号としてプロジェクタ11から同期制御部31に送出される。
 同期制御部31は、好ましくは、各分割領域22の光学状態が所定の散乱状態に安定している期間に投影光が照射されるように、各制御電極27へ印加する電圧を制御する。各分割領域22の光学状態は、制御電極27へ印加する電圧の信号波形により、切り替わる。
 特に、プロジェクタ11が同期制御部31へ出力する切り替えタイミングの情報には、プロジェクタ11の各フレームの走査を開始するタイミングの情報と、走査速度(走査の遅延/シフト)とを含めるとよい。これにより、フレーム周波数が変化した場合にも、映像を乱すことなく、良好なシースルー表示を実現できる。
 なお、プロジェクタ11および同期制御部31をマイクロ波、赤外線などの電磁波を用いたワイヤレス通信可能とし、これらの同期を得るための情報を無線信号により授受してもよい。
Information on the switching timing for the synchronization control is sent from the projector 11 to the synchronization control unit 31 as a synchronization signal.
The synchronization control unit 31 preferably controls the voltage applied to each control electrode 27 so that the projection light is irradiated during a period in which the optical state of each divided region 22 is stable in a predetermined scattering state. The optical state of each divided region 22 is switched according to the signal waveform of the voltage applied to the control electrode 27.
In particular, the information on the switching timing output from the projector 11 to the synchronization control unit 31 may include information on timing at which the projector 11 starts scanning each frame and a scanning speed (scanning delay / shift). Thereby, even when the frame frequency changes, it is possible to realize a good see-through display without disturbing the video.
The projector 11 and the synchronization control unit 31 may be capable of wireless communication using electromagnetic waves such as microwaves and infrared rays, and information for obtaining these synchronizations may be exchanged by radio signals.
 以上の同期制御により、本実施形態の同期制御部31は、映像光の走査周期Tにおける複数の分割領域22の光学状態を、プロジェクタ11による映像光の走査に同期させて切り替えて、スクリーン21についての、映像光が投影される部位の光学状態を映像状態とする。
 よって、スクリーン21は、映像光が照射されるタイミングを含む期間Tonにおいて、映像光が照射される部位が散乱状態に維持されるため、映像を表示できる。
 しかも、スクリーン21は、映像光の投影期間中に、各部位が期間Ton以外の時間では透明な透過状態に制御されるので、スクリーン21を透視することができる。人間の目にはスクリーン21の透過光が平均(積分)化されて見えるので、十分短い走査周期の場合、フリッカを感じることのないシースルー特性が得られる。
 これにより、たとえば図1の設置環境下では、図9の画像を視認できる。
 図9は、映像光による映像とスクリーン21の背景とが重なる表示状態の説明図である。
 図9では、スクリーン21の右側に映像光による人物41の像が映り、左側に、スクリーン21の向こう側にある背景としての樹木42を見ることができる。
Through the above-described synchronization control, the synchronization control unit 31 of the present embodiment switches the optical state of the plurality of divided regions 22 in the scanning period T of the video light in synchronization with the scanning of the video light by the projector 11 and The optical state of the part where the image light is projected is defined as an image state.
Therefore, the screen 21 can display an image because the portion irradiated with the image light is maintained in the scattering state in the period Ton including the timing when the image light is irradiated.
Moreover, since the screen 21 is controlled to be in a transparent transmissive state at times other than the period Ton during the projection period of the image light, the screen 21 can be seen through. Since the light transmitted through the screen 21 appears to be averaged (integrated) to the human eye, a see-through characteristic without flicker is obtained in a sufficiently short scanning period.
Thereby, for example, in the installation environment of FIG. 1, the image of FIG. 9 can be visually recognized.
FIG. 9 is an explanatory diagram of a display state in which the image by the image light and the background of the screen 21 overlap.
In FIG. 9, an image of a person 41 by video light is shown on the right side of the screen 21, and a tree 42 as a background on the other side of the screen 21 can be seen on the left side.
 第1実施形態では、さらに、ノーマルモードで動作するスクリーン21を用いる表示装置1を説明する。
 ノーマルモードで動作するスクリーン21では、電圧を印加していない通常状態において、スクリーン21が散乱状態となる。電圧を印加すると、印加電圧に応じた平行光線透過率の透明な透過状態となる。
 そして、スクリーン21の光学状態は、所定の散乱状態が映像状態に対応し、それよりも平行光線透過率が高い透明な透過状態が非映像状態に対応する。
In the first embodiment, the display device 1 using the screen 21 that operates in the normal mode will be further described.
In the screen 21 operating in the normal mode, the screen 21 is in a scattering state in a normal state where no voltage is applied. When a voltage is applied, a transparent transmission state with parallel light transmittance corresponding to the applied voltage is obtained.
As for the optical state of the screen 21, a predetermined scattering state corresponds to an image state, and a transparent transmission state having a higher parallel light transmittance than that corresponds to a non-image state.
 図10は、従来例である一般的なノーマルモードのスクリーン21の駆動電圧波形と光学状態との関係の一例を示す模式的なタイミングチャートである。
 図10(A)は、同期制御部31が制御電極27に印加する電圧波形である。横軸は時間である。縦軸は電圧である。
 図10(B)は、光学層25の光学状態である。縦軸は平行光線の透過率である。平行光線透過率が小さいことは散乱が強いことを示している。
FIG. 10 is a schematic timing chart showing an example of the relationship between the drive voltage waveform of the conventional normal mode screen 21 as a conventional example and the optical state.
FIG. 10A shows a voltage waveform applied to the control electrode 27 by the synchronization control unit 31. The horizontal axis is time. The vertical axis represents voltage.
FIG. 10B shows the optical state of the optical layer 25. The vertical axis represents the transmittance of parallel rays. Small parallel light transmittance indicates strong scattering.
 図10に示すように、ノーマルモードで動作する光学層25は、映像を表示しない非映像状態で、電圧が印加される。この電圧は、たとえば平行光線透過率が最大となる電圧が望ましい。図10(A)では、透過状態に制御する非映像状態の期間での駆動電圧波形は、矩形波交流2サイクルの例であるが、これに限定するものではない。
 各分割領域22が映像光により走査される場合、該分割領域22の光学層25が散乱状態になるように、電圧の印加を停止する。光学層25は、電圧を取り去ってから徐々に透明な透過状態から散乱状態へ移行する。
 このように、図10(A)の1レベルの駆動電圧波形を各制御電極27に印加することにより、各制御電極27に対応する分割領域22の光学状態を、スクリーン21の走査に同期させて透明な透過状態と散乱状態との間で切り替えることができる。
As shown in FIG. 10, a voltage is applied to the optical layer 25 operating in the normal mode in a non-video state where no video is displayed. This voltage is preferably a voltage that maximizes the parallel light transmittance, for example. In FIG. 10A, the driving voltage waveform in the non-video state period controlled to the transmissive state is an example of two rectangular wave AC cycles, but is not limited thereto.
When each divided region 22 is scanned with image light, the application of voltage is stopped so that the optical layer 25 of the divided region 22 is in a scattering state. The optical layer 25 gradually shifts from the transparent transmission state to the scattering state after the voltage is removed.
In this way, by applying the one-level drive voltage waveform of FIG. 10A to each control electrode 27, the optical state of the divided region 22 corresponding to each control electrode 27 is synchronized with the scanning of the screen 21. It is possible to switch between a transparent transmission state and a scattering state.
 しかしながら、ノーマルモードで動作するスクリーン21に対して、電圧の印加と停止とを切り替えて、その光学状態を変化させる場合、電圧の印加を停止してから光学層25が一定の散乱状態に安定するまでに、一般的に数ミリ秒から数十ミリ秒を要する。
 本実施形態で利用するスクリーン21は、たとえば電圧や電流など電気信号に応答して光学状態を変化させるものである。このスクリーン21には、たとえば、液晶材料を用い、散乱状態と透明な透過状態を変化させる調光スクリーンがある。調光材料の光学状態は、一般に電気信号の変化に対して過渡的な応答を示す。一定の電気信号(電気信号を取り去ることも含む)を加えれば、直ちに一定の光学状態に収束するものではない。
 たとえば、スクリーン21に電圧を印加しない場合に散乱状態となるノーマルモードの調光スクリーンの場合、散乱状態に制御するために電圧を取り去ってから、一定の散乱特性に安定するまでにスクリーン固有の一定の時間を要する。その結果、走査周期中に分割領域22の光学状態を切り替える制御を実行したとしても、スクリーン21の光学状態を、映像光を良好に散乱し、且つ背面を好適に視認できる透過特性に制御することは容易でない。
However, when the optical state of the screen 21 operating in the normal mode is switched between application and stop and the optical state is changed, the optical layer 25 is stabilized in a constant scattering state after the application of the voltage is stopped. In general, it takes several milliseconds to several tens of milliseconds.
The screen 21 used in the present embodiment changes the optical state in response to an electrical signal such as voltage or current. For example, the screen 21 includes a light control screen that uses a liquid crystal material to change a scattering state and a transparent transmission state. The optical state of the light modulating material generally exhibits a transient response to changes in the electrical signal. If a constant electric signal (including removing the electric signal) is applied, it does not immediately converge to a certain optical state.
For example, in the case of a normal mode dimming screen that is in a scattering state when no voltage is applied to the screen 21, after the voltage is removed in order to control the scattering state, a constant characteristic inherent to the screen is obtained until the scattering is stabilized. Takes time. As a result, even if the control for switching the optical state of the divided region 22 is executed during the scanning cycle, the optical state of the screen 21 is controlled to a transmission characteristic that can scatter the image light well and can visually recognize the back surface suitably. Is not easy.
 分割領域22の光学状態が一定の散乱状態に安定しない場合、スクリーン21に投影された映像には、輝度ムラが発生する。 When the optical state of the divided area 22 is not stable in a certain scattering state, luminance unevenness occurs in the image projected on the screen 21.
 第1に、各分割領域22が映像光により走査される部分走査期間TPにおいて分割領域22の光学状態が一定の散乱状態に安定しない場合、該分割領域22を映像光で走査して得られる映像には、部分走査期間TP中での光学状態の変動に対応する散乱ムラが発生する。
 図10(B)の例であれば、該分割領域22の走査を開始した直後の映像光は、該分割領域22の走査を終了する直前の映像光と比べて、低い散乱率で散乱される。その結果、輝度が相対的に低下する。
First, in the partial scanning period TP in which each divided region 22 is scanned with video light, when the optical state of the divided region 22 is not stable in a certain scattering state, an image obtained by scanning the divided region 22 with video light In this case, scattering unevenness corresponding to the change in the optical state during the partial scanning period TP occurs.
In the example of FIG. 10B, the image light immediately after the start of scanning of the divided region 22 is scattered at a lower scattering rate than the image light immediately before the scan of the divided region 22 is finished. . As a result, the luminance is relatively lowered.
 第2に、各分割領域22の光学状態が一定に制御されない場合、隣接して配置されて、順番に走査される複数の分割領域22の間で、輝度ムラが発生する。
 特に分割領域22の境界部分の周辺では、映像信号にはない明暗(輝度差)が発生し、境界に沿った筋状の輝度ムラが発生する。
 図11は、映像の輝度ムラが発生する、複数の分割領域22の光学状態を示すタイミングチャートである。横軸は時間であり、縦軸は駆動電圧である。
 図11は、映像光の走査に同期させて、図10の波形の駆動電圧を、連続する4つの分割領域22に印加する例である。このため、4つの駆動電圧波形は、走査に同期させて、タイミングがずれている。
 図11に示すように、映像光の走査に同期させて分割領域22を高速に順次駆動した場合、各部分走査期間TPの終了時点では、先に散乱状態に制御された分割領域22が強い散乱状態制御されているのに対し、後に散乱状態に制御された分割領域22は弱い散乱状態となっている。
 なお、図11では、各部分走査期間TPの終了タイミングが、映像を表示する映像期間を含む期間Tonの終了タイミングと一致するように図示されているが、実際には、期間Tonの終了タイミングを、部分走査期間TPの終了タイミングよりやや遅らせるとよい。
 そして、映像光の走査は、この部分走査期間TPの終了時点で、先の分割領域22から後の分割領域22へ移動する。
 よって、分割領域22の境界部分では、散乱の強さが不連続に切り替わり、映像には筋状の輝度ムラが発生する。
 このようにスクリーン21の光学状態を、映像光の走査に同期させて分割領域22毎に順次切り替える場合、これらの画質劣化を抑制する必要がある。
 このためには、映像光が走査される部位の散乱の強さを、当該領域の映像光の走査時間において一定に維持する必要がある。
 たとえば投影光がスクリーン21の分割領域22を跨ぐタイミングにおいて、前後の分割領域22の散乱状態を同じに揃える必要がある。
Secondly, when the optical state of each divided region 22 is not controlled to be constant, luminance unevenness occurs between the plurality of divided regions 22 arranged adjacently and scanned in order.
In particular, light and darkness (luminance difference) that does not exist in the video signal occurs around the boundary portion of the divided region 22, and streaky luminance unevenness along the boundary occurs.
FIG. 11 is a timing chart showing the optical state of the plurality of divided regions 22 in which the luminance unevenness of the video occurs. The horizontal axis is time, and the vertical axis is drive voltage.
FIG. 11 is an example in which the driving voltage having the waveform of FIG. 10 is applied to four consecutive divided regions 22 in synchronization with the scanning of the image light. Therefore, the timings of the four drive voltage waveforms are shifted in synchronization with scanning.
As shown in FIG. 11, when the divided regions 22 are sequentially driven at a high speed in synchronization with the scanning of the image light, the divided regions 22 previously controlled in the scattering state are strongly scattered at the end of each partial scanning period TP. While the state is controlled, the divided region 22 which is controlled to the scattering state later is in a weak scattering state.
In FIG. 11, the end timing of each partial scanning period TP is illustrated so as to coincide with the end timing of the period Ton including the video period for displaying the video. It may be slightly delayed from the end timing of the partial scanning period TP.
Then, the scanning of the image light moves from the previous divided area 22 to the subsequent divided area 22 at the end of the partial scanning period TP.
Therefore, the intensity of scattering is discontinuously switched at the boundary portion of the divided region 22, and streaky luminance unevenness occurs in the video.
As described above, when the optical state of the screen 21 is sequentially switched for each divided region 22 in synchronization with the scanning of the image light, it is necessary to suppress these image quality degradations.
For this purpose, it is necessary to keep the intensity of scattering of the portion where the image light is scanned constant during the image light scanning time of the region.
For example, at the timing when the projection light crosses the divided area 22 of the screen 21, it is necessary to make the scattering states of the front and rear divided areas 22 the same.
 図12は、輝度ムラを抑制できる、本実施形態での複数の分割領域の光学状態を示すタイミングチャートである。横軸は時間である。縦軸は平行光線透過率である。平行光線透過率が低いことは散乱が強いことを意味している。
 図12には、連続する4つの分割領域22の光学状態を示す曲線が重ねて描画されている。
 連続する4つの分割領域22の光学状態を、映像光の走査に同期させて順次切り替えつつ、平行光線透過率が安定しないことに起因する輝度ムラを抑制する場合、図12に示すように、各部分走査期間TPにおいて、各分割領域22を一定の光学状態(散乱状態)とすればよい。
 また、隣接する分割領域22の間で映像光が移動するタイミングでは、該隣接する分割領域22の光学状態(散乱状態)を揃えればよい。
 このようにスクリーン21の走査部位の光学状態をほぼ一定の光学状態に制御することにより、映像の輝度ムラを抑制できる。
FIG. 12 is a timing chart showing optical states of a plurality of divided regions in the present embodiment that can suppress luminance unevenness. The horizontal axis is time. The vertical axis represents the parallel light transmittance. Low parallel light transmittance means strong scattering.
In FIG. 12, curves indicating the optical states of the four continuous divided regions 22 are drawn in an overlapping manner.
When the optical state of the four consecutive divided regions 22 is sequentially switched in synchronization with the scanning of the image light and the luminance unevenness caused by the unstable parallel light transmittance is suppressed, as shown in FIG. In the partial scanning period TP, each divided region 22 may be in a certain optical state (scattering state).
Moreover, what is necessary is just to arrange | equalize the optical state (scattering state) of this adjacent division area 22 in the timing to which image light moves between adjacent division areas 22. FIG.
In this way, by controlling the optical state of the scanning part of the screen 21 to a substantially constant optical state, the luminance unevenness of the image can be suppressed.
 図13は、本実施形態での、2レベルの駆動電圧波形と光学状態との関係を示す模式的なタイミングチャートである。図13(A)は、ノーマルモードで動作するスクリーン21に印加する駆動電圧波形である。横軸は時間であり、縦軸は電圧である。図13(B)は、ノーマルモードで動作するスクリーン21の光学状態である。横軸は時間であり、縦軸は平行光線透過率である。
 図13では、スクリーン21の分割領域22を透明な透過状態から散乱状態に制御する際に、まず、駆動電圧の印加を停止する。
 その後、小さい第2段目の駆動電圧を印加する。
 この第2段目の電圧を印加することにより、散乱の強さを略一定の必要な値に安定させることができる。
 ただし、単に駆動電圧の印加を停止して分割領域を最大の散乱状態に制御する場合に比べて、散乱の強さが相対的に低下してしまう。
FIG. 13 is a schematic timing chart showing the relationship between the two-level drive voltage waveform and the optical state in the present embodiment. FIG. 13A shows a drive voltage waveform applied to the screen 21 operating in the normal mode. The horizontal axis is time, and the vertical axis is voltage. FIG. 13B shows the optical state of the screen 21 operating in the normal mode. The horizontal axis is time, and the vertical axis is parallel light transmittance.
In FIG. 13, when the divided region 22 of the screen 21 is controlled from the transparent transmission state to the scattering state, first, application of the drive voltage is stopped.
Thereafter, a small second-stage driving voltage is applied.
By applying this second stage voltage, the intensity of scattering can be stabilized at a substantially constant required value.
However, the intensity of scattering is relatively reduced as compared with the case where the application of the drive voltage is simply stopped to control the divided region to the maximum scattering state.
 次に、図13(A)の駆動電圧波形の印加タイミングについて詳しく説明する。
 各分割領域22を、各々が走査される部分走査期間TPにおいて散乱状態(映像状態)に制御する場合、同期制御部31は、映像光の走査に同期させて、制御電極27に印加する電圧を、投影光が当該領域に照射される少し前に停止する。
 電圧印加が停止されたタイミングから、分割領域22の光学層25は、透明な透過散乱から散乱状態へ変化し始める。光学層25の応答時間は、スクリーン21に固有のものであり、温度などに影響される。最小の平行光線透過率で安定した最大の散乱状態に至るまでには、一般的に、数ミリ秒から数十ミリ秒以上の時間を要する。
 散乱状態に制御した分割領域22の走査が終了した後、同期制御部31は、制御電極27に対して、透過状態に制御するための電圧の印加を再開する。そのタイミングから、分割領域22の光学層25は、散乱状態から透明な透過状態へ変化し始める。
 これらの応答時間が必要になるため、映像光の走査に同期させて分割領域22を最小の平行光線透過率の映像状態と透過状態との間で切り替える場合、良好なシースルー性と視認性を両立させるためには時間が不足する。
 その結果、非映像期間Toffにおいて散乱(ヘイズ)による濁り感の少ない良好な透明表示(非映像状態での透過表示)を実現するためには、映像状態に制御するために電圧を取り去った後に、短時間のうちに映像光の走査が開始されるようにする必要がある。光学状態の変化が続いている間に、映像光で走査する必要に迫られる。
 そこで、図13(A)では、複数の値の電圧パルスまたは交流電圧を印加することにより、分割領域22の散乱状態を保持し、該分割領域22の部分走査期間TPの前に、散乱状態を略一定に安定化させる。
Next, the application timing of the drive voltage waveform in FIG.
When each divided region 22 is controlled to be in a scattering state (image state) in the partial scanning period TP in which each region is scanned, the synchronization control unit 31 applies a voltage applied to the control electrode 27 in synchronization with the scanning of the image light. , Stop shortly before the projection light is applied to the area.
From the timing when the voltage application is stopped, the optical layer 25 in the divided region 22 starts to change from the transparent transmission scattering to the scattering state. The response time of the optical layer 25 is unique to the screen 21 and is affected by temperature and the like. In general, it takes several milliseconds to several tens of milliseconds to reach a stable maximum scattering state with minimum parallel light transmittance.
After the scanning of the divided region 22 controlled to the scattering state is completed, the synchronization control unit 31 resumes application of a voltage for controlling the control electrode 27 to the transmission state. From that timing, the optical layer 25 in the divided region 22 starts to change from the scattering state to the transparent transmission state.
Since these response times are required, when switching the divided region 22 between the image state and the transmission state of the minimum parallel light transmittance in synchronization with the scanning of the image light, both good see-through property and visibility are compatible. There is not enough time to make it happen.
As a result, in order to realize a good transparent display (transparent display in the non-image state) with less turbidity due to scattering (haze) in the non-image period Toff, after removing the voltage to control to the image state, It is necessary to start scanning of image light within a short time. While the optical state continues to change, it is necessary to scan with image light.
Therefore, in FIG. 13A, by applying a voltage pulse or an alternating voltage of a plurality of values, the scattering state of the divided region 22 is maintained, and the scattering state is changed before the partial scanning period TP of the divided region 22. Stabilize almost constant.
 次に、複数の値の駆動電圧を、複数の分割領域22に印加する例について説明する。
 図14は、複数の制御電極27についての2レベルの駆動電圧波形と光学状態との関係を示す模式的なタイミングチャートである。
 図14(A)から(D)は、連続する4つの制御電極27に印加する電圧である。横軸は時間であり、縦軸は電圧である。図14(E)から(H)は、図14(A)から(D)に対応する、連続する4つの分割領域22の光学特性である。横軸は時間であり、縦軸は平行光線透過率である。なお、以下の説明では光学状態の変化を平行光線透過率の変化を用いて説明している。本発明スクリーンでは、平行光線透過率の減少は散乱の増大を示している。
 図14(A)から(D)に示すように、連続する4個の制御電極27には、各々が走査されない期間では、透明な透過状態に制御するための高い電圧が印加される。そして、各々が走査される期間の前に、電圧印加が停止され、その後に低い電圧が印加される。印加電圧は、交流とされている。これにより、図14(E)から(H)に示すように、連続する4個の分割領域22は、映像光の走査に同期して、透明な透過状態から一定の散乱状態に制御される。
 また、図14(A)から(D)に示すように、連続する4個の制御電極27には、各々の走査が終了した後、透過状態に制御するための高い電圧が再び印加される。これにより、図14(E)から(H)に示すように、連続する4個の分割領域22は、映像光の走査に同期して、散乱状態から透明な透過状態に制御される。
 なお、この同期制御のための基準タイミングの情報は、プロジェクタ11から同期制御部31へ送出される。散乱特性が一定に安定していない期間に投影光が照射されることがないように、同期制御部31は、該基準タイミングに基づいて、各制御電極27に印加する電圧を切り替える。
Next, an example in which drive voltages having a plurality of values are applied to the plurality of divided regions 22 will be described.
FIG. 14 is a schematic timing chart showing the relationship between the two-level drive voltage waveform and the optical state for the plurality of control electrodes 27.
14A to 14D show voltages applied to four consecutive control electrodes 27. FIG. The horizontal axis is time, and the vertical axis is voltage. FIGS. 14E to 14H show optical characteristics of four continuous divided regions 22 corresponding to FIGS. 14A to 14D. The horizontal axis is time, and the vertical axis is parallel light transmittance. In the following description, changes in the optical state are described using changes in parallel light transmittance. In the screen of the present invention, the decrease in parallel light transmittance indicates an increase in scattering.
As shown in FIGS. 14A to 14D, a high voltage for controlling the transparent transmission state is applied to the four consecutive control electrodes 27 in a period in which each of the four control electrodes 27 is not scanned. Then, the voltage application is stopped before each scanning period, and then a low voltage is applied. The applied voltage is AC. As a result, as shown in FIGS. 14E to 14H, the four continuous divided regions 22 are controlled from the transparent transmission state to the constant scattering state in synchronization with the scanning of the image light.
Further, as shown in FIGS. 14A to 14D, a high voltage for controlling the transmission state is again applied to the four consecutive control electrodes 27 after each scanning is completed. As a result, as shown in FIGS. 14E to 14H, the four continuous divided regions 22 are controlled from the scattering state to the transparent transmission state in synchronization with the scanning of the image light.
The reference timing information for the synchronization control is sent from the projector 11 to the synchronization control unit 31. The synchronization control unit 31 switches the voltage to be applied to each control electrode 27 based on the reference timing so that the projection light is not irradiated during a period in which the scattering characteristics are not constant.
 以上のように、本実施形態のスクリーン21は、電圧が印加されることで平行光線透過率が高くなるノーマルモードで動作し、投影された映像光を散乱する。
 また、同期制御部31は、映像光の走査周期において複数の分割領域22に印加する電圧を走査順で切り替えて、各分割領域22を、各々が走査される部分走査期間TPにおいて映像状態に制御し、各々が走査されていない期間、すなわち部分走査期間TP以外の期間において非映像状態に制御する。
 しかも、同期制御部31は、分割領域22を映像状態に制御する場合、制御電極27への電圧印加を停止した後に印加電圧を上げて、2つの振幅による複数の値の電圧を印加し、該分割領域22の光学状態を、分割領域22の最大の散乱状態より散乱の程度が低い所定の散乱状態に保持し、映像光で走査される部分走査期間TPでの該分割領域22の散乱状態を安定させる。
 その結果、各分割領域22の部分走査期間TPでの散乱特性が一定に維持される。スクリーン21へ照射された映像光は、一定の散乱状態に制御された複数の分割領域22により散乱される。スクリーン21に映し出される映像では、散乱状態が一定に制御されていない場合の輝度ムラが抑制される。
 また、本実施形態では、各分割領域22に2つの振幅による電圧を印加しているので、各分割領域22を最大の散乱状態に制御するまで走査を遅らせる必要が無く、複数の分割領域22の光学状態を、映像光の走査に同期させて高速に切り替えることができる。よって、各分割領域22を長時間にわたって透明な透過状態に制御でき、スクリーン21をより良好に透視できるため、映像を明るくしつつ、スクリーン21のシースルー特性が得られる。ノーマルモードのスクリーン21の光学状態の切り替えの応答時間が長いにもかかわらず、スクリーン21の平行光線透過率を高く保ち、スクリーン21の高いシースルー特性と良好な映像の視認性が得られる。
 スクリーン21のシースルー特性を得ながら、映像光を無駄なく且つ均一に散乱して映像を表示することができる。
 特に、本実施形態では、電圧を0Vに制御してから、散乱を一定状態にするための低い電圧の印加までの時間を、5ミリ秒以下、好ましくは2ミリ秒以下とするとよい。これにより、各分割領域22の実効的な散乱期間を短くでき、ひいては投影光の走査に同期させて光学状態を切り替える制御を実行したとしても、スクリーン21の透明性が高く保持される。
 また、本実施形態では、一定の散乱状態にするために印加する低い駆動電圧、および透過状態に制御するための高い駆動電圧を、実質的に低周波の交流電圧として印加している。液晶素子では、その信頼性を確保し、劣化を抑制するために、光学層25に印加される電圧の直流成分を抑え、交流電圧で駆動するとよい。ノーマルモードでは、透過状態に制御する非映像期間Toffが長いので、透過状態時の実効的な交流周波数が消費電力に影響する。本実施形態では、可能な限り周波数が低い交流電圧としているので、消費電力を抑制できる。
As described above, the screen 21 of the present embodiment operates in the normal mode in which the parallel light transmittance is increased by applying a voltage, and scatters the projected image light.
Further, the synchronization control unit 31 switches the voltage applied to the plurality of divided regions 22 in the scanning order in the scanning period of the image light, and controls each divided region 22 to the video state in the partial scanning period TP in which each is scanned. Then, the non-video state is controlled in a period in which each is not scanned, that is, in a period other than the partial scanning period TP.
In addition, when controlling the divided region 22 to the video state, the synchronization control unit 31 increases the applied voltage after stopping the voltage application to the control electrode 27, and applies voltages having a plurality of values with two amplitudes. The optical state of the divided region 22 is held in a predetermined scattering state in which the degree of scattering is lower than the maximum scattering state of the divided region 22, and the scattering state of the divided region 22 in the partial scanning period TP scanned with image light is determined. Stabilize.
As a result, the scattering characteristics of each divided region 22 in the partial scanning period TP are maintained constant. The image light irradiated on the screen 21 is scattered by a plurality of divided regions 22 controlled to a constant scattering state. In the image displayed on the screen 21, uneven brightness is suppressed when the scattering state is not controlled to be constant.
In the present embodiment, since voltages with two amplitudes are applied to each divided region 22, there is no need to delay scanning until each divided region 22 is controlled to the maximum scattering state. The optical state can be switched at high speed in synchronization with the scanning of the image light. Therefore, each divided region 22 can be controlled to be in a transparent transmissive state for a long time, and the screen 21 can be better seen through, so that the see-through characteristic of the screen 21 can be obtained while brightening the image. Although the response time for switching the optical state of the screen 21 in the normal mode is long, the parallel light transmittance of the screen 21 is kept high, and the high see-through characteristic of the screen 21 and good image visibility are obtained.
While obtaining the see-through characteristic of the screen 21, it is possible to display an image by scattering image light uniformly and without waste.
In particular, in this embodiment, the time from when the voltage is controlled to 0 V until the application of the low voltage for making the scattering constant is 5 milliseconds or less, preferably 2 milliseconds or less. Thereby, the effective scattering period of each divided region 22 can be shortened. As a result, even when the control for switching the optical state in synchronization with the scanning of the projection light is executed, the transparency of the screen 21 is kept high.
In the present embodiment, a low drive voltage applied to obtain a constant scattering state and a high drive voltage to control the transmission state are applied as substantially low-frequency AC voltages. In the liquid crystal element, in order to ensure the reliability and suppress the deterioration, it is preferable to suppress the direct current component of the voltage applied to the optical layer 25 and drive it with an alternating voltage. In the normal mode, since the non-video period Toff to be controlled to the transmission state is long, the effective AC frequency in the transmission state affects the power consumption. In this embodiment, since the AC voltage is as low as possible, the power consumption can be suppressed.
[第2実施形態]
 第2実施形態では、リバースモードで動作するスクリーン21を用いる表示装置1を説明する。
 リバースモードで動作するスクリーン21では、電圧を印加していない通常状態において、スクリーン21が透明な透過状態となる。電圧を印加すると、印加電圧に応じた平行光線の散乱率(透過率)の散乱状態となる。
 本実施形態の光学装置の構成および基本的動作は、第1実施形態の光学装置と同様である。そして、スクリーン21は、散乱状態が映像状態に対応する。
[Second Embodiment]
In the second embodiment, a display device 1 using a screen 21 that operates in the reverse mode will be described.
In the screen 21 operating in the reverse mode, the screen 21 is in a transparent transmissive state in a normal state where no voltage is applied. When a voltage is applied, a scattering state of parallel light scattering rate (transmittance) according to the applied voltage is obtained.
The configuration and basic operation of the optical device of the present embodiment are the same as those of the optical device of the first embodiment. In the screen 21, the scattering state corresponds to the video state.
 図15は、従来例である一般的なリバースモードのスクリーン21の駆動電圧波形と光学状態との関係の一例を示す模式的なタイミングチャートである。
 図15(A)は、制御電極27に印加する電圧波形である。横軸は時間である。縦軸は電圧である。図15(B)は、光学層25の光学状態である。縦軸は平行光線の透過率である。平行光線透過率が小さいことは散乱が強いことを示している。
 リバースモードで動作する光学層25には、図15に示すように、映像光の走査周期中の、映像を表示する映像期間を含む期間Tonにおいて、電圧が印加される。この電圧は、たとえば平行光線透過率が最大となる電圧が望ましい。図15(A)では、散乱状態に制御する期間Tonの駆動電圧波形は、矩形波交流2サイクルの例であるが、これに限定するものではない。
 分割領域22が走査される場合、該分割領域22の光学層25が散乱状態になるように、電圧の印加を開始する。光学層25は、電圧が印加されてから徐々に透明な透過状態から散乱状態へ移行する。
 このように、図15(A)の駆動電圧波形を各制御電極27に印加することにより、各制御電極27に対応する分割領域22の光学状態を、スクリーン21の走査に同期させて透明な透過状態と散乱状態との間で切り替えることができる。
FIG. 15 is a schematic timing chart showing an example of the relationship between the drive voltage waveform of the screen 21 in a general reverse mode, which is a conventional example, and the optical state.
FIG. 15A shows a voltage waveform applied to the control electrode 27. The horizontal axis is time. The vertical axis represents voltage. FIG. 15B shows the optical state of the optical layer 25. The vertical axis represents the transmittance of parallel rays. Small parallel light transmittance indicates strong scattering.
As shown in FIG. 15, a voltage is applied to the optical layer 25 operating in the reverse mode in a period Ton including a video period for displaying a video in the scanning cycle of the video light. This voltage is preferably a voltage that maximizes the parallel light transmittance, for example. In FIG. 15A, the driving voltage waveform in the period Ton controlled to the scattering state is an example of two rectangular wave AC cycles, but is not limited thereto.
When the divided region 22 is scanned, voltage application is started so that the optical layer 25 in the divided region 22 is in a scattering state. The optical layer 25 gradually transitions from a transparent transmission state to a scattering state after a voltage is applied.
Thus, by applying the drive voltage waveform of FIG. 15A to each control electrode 27, the optical state of the divided region 22 corresponding to each control electrode 27 is synchronized with the scanning of the screen 21 and transparent transmission is performed. It is possible to switch between a state and a scattering state.
 ここで、リバースモードのスクリーン21の光学特性について説明する。
 図16は、リバースモードのスクリーン21の光学特性の一例を示す図である。
 横軸は、印加電圧の振幅である。左縦軸は、特性曲線Aに対応し、収束する光学状態(散乱の強さ)である。右縦軸は、特性曲線Bに対応し、応答期間である。
 ここで、応答時間とは、電圧の印加を開始してから、散乱の強さが当該電圧で安定する最大の光学特性の90%に到達するまでの時間をいう。
 そして、閾値電圧VTHは、光学特性が0Vの光学状態から変化し始める電圧である。
 第1電圧V1は、収束する光学状態(散乱の強さ)が最大となる電圧である。
 第2電圧V2は、第1電圧V1より高い電圧である。
Here, the optical characteristics of the screen 21 in the reverse mode will be described.
FIG. 16 is a diagram illustrating an example of optical characteristics of the screen 21 in the reverse mode.
The horizontal axis represents the amplitude of the applied voltage. The left vertical axis corresponds to the characteristic curve A and is a convergent optical state (scattering intensity). The right vertical axis corresponds to the characteristic curve B and is the response period.
Here, the response time refers to the time from the start of voltage application until the intensity of scattering reaches 90% of the maximum optical characteristic stabilized at the voltage.
The threshold voltage VTH is a voltage at which the optical characteristic starts to change from the optical state of 0V.
The first voltage V1 is a voltage that maximizes the converged optical state (scattering intensity).
The second voltage V2 is higher than the first voltage V1.
 図16に示すように、リバースモードのスクリーン21の光学層25に印加する電圧を上げてゆき、閾値電圧VTHを超えると、収束状態での散乱の強さが、0Vの状態から変化し始める。その後、散乱の強さは、印加電圧の増加に応じて変化する。
 印加電圧が第1電圧V1に達すると、収束する散乱の強さが最大となる。
 第1電圧V1を超えると、収束する散乱の強さが下がりはじめる。第2電圧 V2では、V1における散乱の強さより低い散乱の強さに収束する。
 このように光学状態は、印加電圧に応じて最大を持つ特性で増減する場合がある。
As shown in FIG. 16, when the voltage applied to the optical layer 25 of the screen 21 in the reverse mode is increased and exceeds the threshold voltage VTH, the intensity of scattering in the converged state starts to change from the 0V state. Thereafter, the intensity of the scattering changes as the applied voltage increases.
When the applied voltage reaches the first voltage V1, the intensity of the scattered scattering is maximized.
When the voltage exceeds the first voltage V1, the intensity of the scattered scattering starts to decrease. The second voltage V2 converges to a scattering intensity lower than that of V1.
Thus, the optical state may increase or decrease with the characteristic having the maximum according to the applied voltage.
 これに対し、応答時間は、リバースモードのスクリーン21への印加電圧が高いほど、短くなる略逆比例の特性となる。
 すなわち、第2電圧V2は短時間で光学状態が一定の値となる。
 図16の例にあるように、スクリーン21の応答時間は、印加電圧が低いと、長くなる。
 このため、映像光の走査に同期させた駆動電圧波形を印加する場合のように、短時間で光学状態を切り替えようとする場合には、第1電圧V1以下の電圧を印加しても、所定の時間内に安定した散乱状態が得られない場合が多い。
 すなわち、リバースモードにおいて最適な散乱状態を得るようにV1の電圧を印加するようにしたとしても、光学層25の光学状態は、散乱状態に制御したい映像期間を含む期間Ton中に、一定の散乱状態に安定させることができない。その結果、散乱状態に制御する期間Tonにおいて、分割領域22の光学状態を平坦化できず、また、映像光が照射されるタイミングにおいて、隣接する分割領域の光学状態をほぼ等しくすることができないので、領域境界に輝度ムラが視認される。
On the other hand, the response time has a substantially inversely proportional characteristic that becomes shorter as the voltage applied to the screen 21 in the reverse mode is higher.
That is, the second voltage V2 has a constant optical state in a short time.
As shown in the example of FIG. 16, the response time of the screen 21 becomes longer when the applied voltage is lower.
For this reason, even if a voltage equal to or lower than the first voltage V1 is applied when the optical state is to be switched in a short time, such as when a drive voltage waveform synchronized with the scanning of the image light is applied, the predetermined voltage is applied. In many cases, a stable scattering state cannot be obtained within this time.
That is, even if the voltage V1 is applied so as to obtain an optimal scattering state in the reverse mode, the optical state of the optical layer 25 is constant during the period Ton including the video period to be controlled to the scattering state. It cannot be stabilized. As a result, in the period Ton controlled to the scattering state, the optical state of the divided region 22 cannot be flattened, and the optical state of the adjacent divided region cannot be made substantially equal at the timing when the image light is irradiated. , Luminance unevenness is visually recognized at the region boundary.
 このようにリバースモードのスクリーン21を映像光の走査に同期させて制御した場合、分割領域22が、透明な透過状態と最大の散乱状態との間で切り替わるために応答時間を要する。映像光の走査に同期させて制御する場合において、分割領域22が、最大の散乱状態に安定するまで待って映像光が走査されるようにするためには、時間が不足する。
 その結果、部分走査期間TPにおいて一定の散乱状態を得ることができない。
 すなわち、図15(B)のように、最大の散乱状態となる電圧の印加を開始したとしても、光学層25の光学状態は、散乱状態に制御する期間内で、一定の状態に安定しない。光学状態は、平坦化しない。
 分割領域22の光学状態が一定の散乱状態に安定しない場合、スクリーン21に投影された映像には、輝度ムラが発生する。
When the screen 21 in the reverse mode is controlled in synchronization with the scanning of the image light in this way, a response time is required for the divided region 22 to switch between the transparent transmission state and the maximum scattering state. In the case where the control is performed in synchronization with the scanning of the image light, it takes time for the divided region 22 to be scanned until the divided region 22 is stabilized in the maximum scattering state.
As a result, a constant scattering state cannot be obtained in the partial scanning period TP.
That is, as shown in FIG. 15B, even if the application of a voltage at which the maximum scattering state is started, the optical state of the optical layer 25 is not stable in a constant state within the period of controlling to the scattering state. The optical state is not flattened.
When the optical state of the divided region 22 is not stable in a constant scattering state, luminance unevenness occurs in the image projected on the screen 21.
 そこで、同期制御部31は、各分割領域22を電圧印加により散乱状態に制御する映像期間を含む期間Tonにおいて、リバースモードのスクリーン21に対して、複数レベルの電圧を印加する。
 図17は、第1実施形態での2レベルの駆動電圧波形を示す模式的なタイミングチャートである。
 具体的には、図17に示すように、同期制御部31は、まず、投影光が照射される少し前に、該分割領域22の制御電極27に、第2電圧V2からなる電圧波形の印加を開始する。
 第2電圧V2を印加した場合、応答時間(立上り時間)は十分速くなる。この波形を連続して印加した場合には、光学特性は、散乱の強度が最大の散乱状態になった後、緩やかに減少し、散乱状態が最大より若干低い一定値に収束する。つまり、この第2電圧V2を印加し続けた場合でも、光学状態変化が続いている時間に、映像光を照射しなければならない。
 そこで、図17に示すように、同期制御部31は、第2電圧V2の印加に続けて、第1電圧V1を印加する。
 第1電圧V1は、概ね最大の散乱状態にできる電圧である。また、第1電圧V1は、第2電圧V2から第1電圧V1へ切り替える時の光学状態に収束させるような電圧である。
 なお、第1電圧V1および第2電圧V2は、低周波の交流電圧として印加される。
 また、第1電圧V1は、第2電圧V2によって刻々と変化する散乱状態が最大となるタイミングにおいて、第2電圧V2から切り替えて、印加される。
Therefore, the synchronization control unit 31 applies a plurality of levels of voltage to the screen 21 in the reverse mode in a period Ton including a video period in which each divided region 22 is controlled to be in a scattering state by voltage application.
FIG. 17 is a schematic timing chart showing two-level drive voltage waveforms in the first embodiment.
Specifically, as shown in FIG. 17, the synchronization control unit 31 first applies a voltage waveform composed of the second voltage V2 to the control electrode 27 in the divided region 22 slightly before the projection light is irradiated. To start.
When the second voltage V2 is applied, the response time (rise time) is sufficiently fast. When this waveform is applied continuously, the optical characteristics gradually decrease after the scattering intensity reaches the maximum scattering state, and the scattering state converges to a constant value slightly lower than the maximum. That is, even when the second voltage V2 is continuously applied, it is necessary to irradiate the image light during the time when the optical state change continues.
Therefore, as illustrated in FIG. 17, the synchronization control unit 31 applies the first voltage V1 following the application of the second voltage V2.
The 1st voltage V1 is a voltage which can be made into the maximum scattering state in general. The first voltage V1 is a voltage that converges to the optical state when switching from the second voltage V2 to the first voltage V1.
The first voltage V1 and the second voltage V2 are applied as low-frequency AC voltages.
In addition, the first voltage V1 is switched from the second voltage V2 and applied at the timing when the scattering state that changes momentarily by the second voltage V2 becomes maximum.
 以上のように、本実施形態では、複数の値の電圧印加により、光学層25を散乱状態に制御する映像期間を含む期間Tonにおいて、平行光線の散乱率(透過率)を一定レベルに保持できる。部分走査期間TPでは、一定の散乱状態になる。
 特に、本実施形態では、第2電圧V2の印加期間の終了直後での散乱状態が最大値(平行光線透過率が極小となる値)になるように、第2電圧V2の印加により最大の散乱状態となるタイミングで、印加電圧を第2電圧V2から第1電圧V1へ切り替えている。
As described above, in the present embodiment, the scattering rate (transmittance) of parallel rays can be maintained at a constant level during the period Ton including the video period in which the optical layer 25 is controlled to be in a scattering state by applying a plurality of values of voltage. . In the partial scanning period TP, a certain scattering state is obtained.
In particular, in the present embodiment, the maximum scattering is achieved by application of the second voltage V2 so that the scattering state immediately after the end of the application period of the second voltage V2 becomes a maximum value (a value at which the parallel light transmittance is minimized). At the timing when the state is reached, the applied voltage is switched from the second voltage V2 to the first voltage V1.
 また、図17に示すように、散乱状態に制御した分割領域22の走査が終了した後、同期制御部31は、制御電極27に対する電圧印加を停止する。このタイミングから、分割領域22の光学層25は、散乱状態から透過状態へ変化し始める。
 これにより、複数の分割領域22を順番に散乱状態に制御し、かつ、各分割領域22を、非映像期間Toffにおいて長期間にわたり透過状態に保持できる。
As shown in FIG. 17, after the scanning of the divided region 22 controlled to the scattering state is completed, the synchronization control unit 31 stops the voltage application to the control electrode 27. From this timing, the optical layer 25 in the divided region 22 starts to change from the scattering state to the transmission state.
Thereby, the plurality of divided regions 22 can be sequentially controlled to be in a scattering state, and each divided region 22 can be held in a transmissive state for a long period in the non-video period Toff.
 次に、複数の値の駆動電圧を複数の分割領域22に印加する例について説明する。
 図18は、複数の制御電極についての2レベルの駆動電圧波形と光学状態との関係を示す模式的なタイミングチャートである。
 図18(A)から(D)は、連続する4つの制御電極27に印加する電圧である。横軸は時間であり、縦軸は電圧である。図18(E)から(H)は、図14(A)から(D)に対応する、連続する4つの分割領域22の光学特性である。横軸は時間であり、縦軸は平行光線透過率である。
 図18(A)から(D)に示すように、連続する4個の制御電極27には、各々が走査されない非映像期間Toffでは、透過状態に制御するために電圧の印加が停止される。そして、各々が走査される部分走査期間TPの前に、電圧印加が開始され、その後に低い電圧が印加される。印加電圧は、交流とされている。このような電圧波形の印加により、図18(E)から(H)に示すように、連続する4個の分割領域22は、透過状態から一定の散乱状態に制御される。
 また、図18(A)から(D)に示すように、連続する4個の制御電極27には、各々の走査が終了した後、透過状態に制御するために電圧の印加が停止される。このような電圧波形の印加により、図18(E)から(H)に示すように、連続する4個の分割領域22は、散乱状態から透過状態に制御される。
 なお、この同期制御のための基準タイミングの情報は、プロジェクタ11から同期制御部31へ送出される。散乱特性が一定に安定していない期間に投影光の照射がなされないように、同期制御部31は、該基準タイミングに基づいて、複数の制御電極27に印加する電圧を順次切り替える。
Next, an example in which drive voltages having a plurality of values are applied to the plurality of divided regions 22 will be described.
FIG. 18 is a schematic timing chart showing the relationship between the two-level driving voltage waveform and the optical state for a plurality of control electrodes.
18A to 18D show voltages applied to four consecutive control electrodes 27. FIG. The horizontal axis is time, and the vertical axis is voltage. FIGS. 18E to 18H show optical characteristics of four continuous divided regions 22 corresponding to FIGS. 14A to 14D. The horizontal axis is time, and the vertical axis is parallel light transmittance.
As shown in FIGS. 18A to 18D, in the non-video period Toff in which each of the four consecutive control electrodes 27 is not scanned, voltage application is stopped in order to control the transmission state. Then, voltage application is started before the partial scanning period TP in which each is scanned, and then a low voltage is applied. The applied voltage is AC. By applying such a voltage waveform, as shown in FIGS. 18E to 18H, the four continuous divided regions 22 are controlled from the transmission state to the constant scattering state.
Further, as shown in FIGS. 18A to 18D, the application of voltage to the four consecutive control electrodes 27 is stopped in order to control the transmission state after each scanning is completed. By applying such a voltage waveform, as shown in FIGS. 18E to 18H, the four continuous divided regions 22 are controlled from the scattering state to the transmission state.
The reference timing information for the synchronization control is sent from the projector 11 to the synchronization control unit 31. The synchronization control unit 31 sequentially switches the voltage applied to the plurality of control electrodes 27 based on the reference timing so that the projection light is not irradiated during a period in which the scattering characteristics are not stable.
 以上のように、本実施形態では、スクリーン21は、電圧が印加されることで平行光線の透過率が低くなるリバースモードで動作し、投影された映像光を散乱する。
 また、同期制御部31は、映像光の走査周期において複数の分割領域22に印加する電圧を走査順で切り替えて、各分割領域22を、各々が走査される部分走査期間TPにおいて映像状態に制御し、各々が走査されていない期間、すなわち部分走査期間TP以外の期間において非映像状態に制御する。
 しかも、同期制御部31は、分割領域22を映像状態に制御する場合、制御電極27に電圧を印加した後に印加電圧を下げて、2つの振幅による複数の値の電圧を印加し、該分割領域22の光学状態を、分割領域22の最大の散乱状態より散乱の程度が低い所定の散乱状態に保持し、映像光で走査される部分走査期間TPでの該分割領域22の散乱状態を安定させる。
 その結果、各分割領域22の部分走査期間TPでの散乱特性が一定に維持される。スクリーン21へ照射された映像光は、一定の散乱状態に制御された複数の分割領域22により散乱される。スクリーン21に映し出される映像では、散乱状態が一定に制御されていない場合での輝度ムラが抑制される。
 また、本実施形態では、各分割領域22に2つの振幅による電圧を印加しているので、各分割領域22を最大の散乱状態に制御するまで走査を遅らせる必要が無く、複数の分割領域22の光学状態を、映像光の走査に同期させて高速に切り替えることができる。よって、各分割領域22を長時間にわたって透明な透過状態に制御でき、スクリーン21をより良好に透視できるため、映像を明るくしつつ、スクリーン21のシースルー特性が得られる。リバースモードのスクリーン21の光学状態の切り替えの応答時間が長いにもかかわらず、スクリーン21の平行光線透過率を高く保ち、スクリーン21の高いシースルー特性と良好な映像の視認性が得られる。
 スクリーン21のシースルー特性を得ながら、映像光を無駄なく且つ均一に散乱して映像を表示することができる。
 特に、分割領域22を映像状態に制御するために同期制御部31が制御電極27に最初に印加する電圧を、分割領域22を最大の散乱状態にできる第1電圧V1より高い第2電圧V2とし、その後に下げて印加する電圧を、最大の散乱状態にできる第1電圧V1以下の電圧とするとよい。これにより、安定した散乱状態での平行光線透過率への切り替え時間を最小限に抑えることができる。
As described above, in the present embodiment, the screen 21 operates in the reverse mode in which the transmissivity of parallel rays is reduced by applying a voltage, and scatters the projected image light.
Further, the synchronization control unit 31 switches the voltage applied to the plurality of divided regions 22 in the scanning order in the scanning period of the image light, and controls each divided region 22 to the video state in the partial scanning period TP in which each is scanned. Then, the non-video state is controlled in a period in which each is not scanned, that is, a period other than the partial scanning period TP.
In addition, when controlling the divided region 22 to the video state, the synchronization control unit 31 decreases the applied voltage after applying a voltage to the control electrode 27 and applies voltages having a plurality of values with two amplitudes. The optical state of 22 is held in a predetermined scattering state whose degree of scattering is lower than the maximum scattering state of the divided region 22, and the scattering state of the divided region 22 in the partial scanning period TP scanned with image light is stabilized. .
As a result, the scattering characteristics of each divided region 22 in the partial scanning period TP are maintained constant. The image light irradiated on the screen 21 is scattered by a plurality of divided regions 22 controlled to a constant scattering state. In the image displayed on the screen 21, luminance unevenness when the scattering state is not controlled to be constant is suppressed.
In the present embodiment, since voltages with two amplitudes are applied to each divided region 22, there is no need to delay scanning until each divided region 22 is controlled to the maximum scattering state. The optical state can be switched at high speed in synchronization with the scanning of the image light. Therefore, each divided region 22 can be controlled to be in a transparent transmissive state for a long time, and the screen 21 can be better seen through, so that the see-through characteristic of the screen 21 can be obtained while brightening the image. In spite of the long response time for switching the optical state of the screen 21 in the reverse mode, the parallel light transmittance of the screen 21 is kept high, and the high see-through characteristic of the screen 21 and good image visibility are obtained.
While obtaining the see-through characteristic of the screen 21, it is possible to display an image by scattering image light uniformly and without waste.
In particular, the voltage initially applied to the control electrode 27 by the synchronization control unit 31 to control the divided region 22 to the video state is a second voltage V2 higher than the first voltage V1 that can bring the divided region 22 into the maximum scattering state. Then, the voltage to be applied after being lowered may be set to a voltage equal to or lower than the first voltage V1 that can achieve the maximum scattering state. Thereby, the switching time to the parallel light transmittance in a stable scattering state can be minimized.
[第3実施形態]
 第3実施形態では、以上の実施形態の表示装置1の変形例を説明する。
 第3実施形態では、制御電極27に印加する各電圧をハーフサイクルとすることにより、以上の実施形態よりも更に輝度ムラ等を抑制する。
[Third Embodiment]
In the third embodiment, a modification of the display device 1 of the above embodiment will be described.
In the third embodiment, by setting each voltage applied to the control electrode 27 to a half cycle, luminance unevenness and the like are further suppressed as compared to the above embodiment.
 図19は、第3実施形態における、ハーフサイクルを利用した2レベルの駆動電圧波形を示す模式的なタイミングチャートである。図19は、ノーマルモードのスクリーン21に用いるものである。
 第1実施形態では、図19(A)に示すように、ノーマルモードで動作するスクリーン21の各分割領域22に対して、映像期間を含む期間Tonの後半において数サイクルの低電圧の交流電圧を印加し、非映像期間Toffにおいて数サイクルの高電圧の交流電圧を印加している。
 そして、交流電圧を印加すると、印加電圧の極性が変化する。光学層25の配向も切り替われる。
 これにより、平行光線透過率にディップ、すなわち散乱状態に棘状のスパイクが生じる場合がある。
 一定の散乱状態を保持する必要がある部分走査期間TPにこの現象が発生するとディップを生じ、散乱状態に変化が生じて画質が劣化する。
FIG. 19 is a schematic timing chart showing a two-level driving voltage waveform using a half cycle in the third embodiment. FIG. 19 is used for the screen 21 in the normal mode.
In the first embodiment, as shown in FIG. 19A, low voltage AC voltage of several cycles is applied to each divided region 22 of the screen 21 operating in the normal mode in the second half of the period Ton including the video period. A high voltage AC voltage of several cycles is applied in the non-video period Toff.
When an AC voltage is applied, the polarity of the applied voltage changes. The orientation of the optical layer 25 is also switched.
This may result in a dip in the parallel light transmittance, i.e., a spike in the scattering state.
When this phenomenon occurs in the partial scanning period TP where it is necessary to maintain a certain scattering state, a dip occurs, and the scattering state changes and the image quality deteriorates.
 これを避けるために、本実施形態では、図19(B)から(D)に示すように、映像期間を含む期間Ton等において印加する電圧を、片極性の方形波とする。方形波の電圧の印加時間は、第1実施形態と同じ期間とすればよい。
 具体的には、図19(B)では、映像期間を含む期間Tonの後半に印加する低電圧を、当該期間中に極性変化しない半波(ハーフサイクル)の方形波にしている。
 図19(C)では、非映像期間Toffに印加する電圧を、半波の方形波にしている。
 図19(D)では、映像期間を含む期間Tonの後半に印加する電圧、および非映像期間Toffに印加する電圧をともに、半波の方形波にしている。
 図19(B)から(D)に示すようにハーフサイクルを利用し、映像期間を含む期間Tonおよび/または非映像期間Toffに片極性の電圧を用いることにより、棘状のスパイクが生じなくなる。
 また、ハーフサイクルを採用することにより、消費電力を削減できる。
In order to avoid this, in this embodiment, as shown in FIGS. 19B to 19D, the voltage applied in the period Ton including the video period is a unipolar square wave. The application time of the square wave voltage may be the same as that in the first embodiment.
Specifically, in FIG. 19B, the low voltage applied in the second half of the period Ton including the video period is a half wave (half cycle) square wave in which the polarity does not change during the period.
In FIG. 19C, the voltage applied during the non-video period Toff is a half-wave square wave.
In FIG. 19D, the voltage applied in the second half of the period Ton including the video period and the voltage applied in the non-video period Toff are both a half-wave square wave.
As shown in FIGS. 19B to 19D, by using a half cycle and using a unipolar voltage in the period Ton including the video period and / or the non-video period Toff, the spikes are not generated.
Moreover, power consumption can be reduced by adopting a half cycle.
 しかしながら、ハーフサイクルを利用すると、各走査周期において、光学層25に、実効的に直流バイアスが印加される。
 このため、図19(B)から(D)においては、奇数番目の走査周期と、偶数番目の走査周期とで、フレームごとに極性を反転させている。
 なお、図19(B)の場合、映像期間を含む期間Tonに続く非映像期間Toffでの電圧波形も、走査周期毎に、位相を半サイクルシフトさせている。このようなシフトをしないと、倍周期(半分の周波数)で透過状態が変動することになり、画面全体にヘイズフリッカが発生する可能性がある。
However, when the half cycle is used, a DC bias is effectively applied to the optical layer 25 in each scanning period.
For this reason, in FIGS. 19B to 19D, the polarity is inverted for each frame in the odd-numbered scan cycle and the even-numbered scan cycle.
In the case of FIG. 19B, the phase of the voltage waveform in the non-video period Toff following the period Ton including the video period is also shifted by a half cycle for each scanning period. Without such a shift, the transmission state fluctuates with a double period (half frequency), and haze flicker may occur on the entire screen.
 図20は、第3実施形態における、ハーフサイクルを利用した2レベルの駆動電圧波形を示す模式的なタイミングチャートである。図19は、リバースモードのスクリーン21に用いるものである。
 第2実施形態では、図20(A)に示すように、リバースモードで動作するスクリーン21の各分割領域22に対して、映像状態において数サイクルの交流電圧を印加している。
 この場合、映像期間を含む期間Ton中に、電圧の極性が切り替わる。光学層25の配向も切り替われる。
 映像期間を含む期間Tonに印加電圧の極性が変化する場合、平行光線透過率にディップすなわち散乱状態に棘状のスパイクが生じる場合がある。
 一定の散乱状態に保持する必要がある部分走査期間TPにこの現象が発生するとディップを生じ、散乱状態に変化が生じて画質が劣化する。
FIG. 20 is a schematic timing chart showing a two-level drive voltage waveform using a half cycle in the third embodiment. FIG. 19 is used for the screen 21 in the reverse mode.
In the second embodiment, as shown in FIG. 20A, an alternating voltage of several cycles is applied to each divided region 22 of the screen 21 operating in the reverse mode in the video state.
In this case, the polarity of the voltage is switched during the period Ton including the video period. The orientation of the optical layer 25 is also switched.
When the polarity of the applied voltage changes during the period Ton including the video period, a dip in the parallel light transmittance, that is, a spike like spike may occur in the scattering state.
When this phenomenon occurs in the partial scanning period TP that needs to be maintained in a constant scattering state, a dip is generated, and the scattering state is changed to deteriorate the image quality.
 これを避けるために、本実施形態では、図20(B)から(D)に示すように、映像期間を含む期間Tonにおいて印加する電圧を、片極性の方形波とする。印加時間は、第2実施形態と同じ期間とすればよい。
 具体的には、図20(B)では、映像期間を含む期間Tonの前半に印加する高い電圧を、半波(ハーフサイクル)の方形波にしている。
 図20(C)では、非映像期間Toffの後半に印加する低い電圧を、半波の方形波にしている。
 図20(D)では、映像期間を含む期間Tonの前半に印加する高い電圧、および後半に印加する低い電圧をともに、半波の方形波にしている。
 図20(B)から(D)に示すようにハーフサイクルを利用し、映像期間を含む期間Tonに片極性の電圧を用いることにより、棘状のスパイクが生じなくなる。
 また、ハーフサイクルを採用することにより、消費電力を削減できる。
In order to avoid this, in this embodiment, as shown in FIGS. 20B to 20D, the voltage applied in the period Ton including the video period is a unipolar square wave. The application time may be the same period as in the second embodiment.
Specifically, in FIG. 20B, the high voltage applied in the first half of the period Ton including the video period is a half wave (half cycle) square wave.
In FIG. 20C, the low voltage applied in the second half of the non-video period Toff is a half-wave square wave.
In FIG. 20D, the high voltage applied in the first half of the period Ton including the video period and the low voltage applied in the second half are both formed into a half-wave square wave.
As shown in FIGS. 20B to 20D, by using a half cycle and using a unipolar voltage in a period Ton including a video period, a spike-like spike is not generated.
Moreover, power consumption can be reduced by adopting a half cycle.
 しかしながら、ハーフサイクルを利用すると、各走査周期において、光学層25に、実効的に直流バイアスが印加される。
 このため、図20(B)から(D)においては、奇数番目の走査周期と、偶数番目の走査周期とで、走査周期ごとに極性を反転させる。
 また、図20(C)に示すように、リバースモードの場合、立ち上り期間の波形の位相を半サイクルシフトさせることが望ましい。
However, when the half cycle is used, a DC bias is effectively applied to the optical layer 25 in each scanning period.
For this reason, in FIGS. 20B to 20D, the polarity is inverted for each scanning period between the odd-numbered scanning period and the even-numbered scanning period.
Further, as shown in FIG. 20C, in the reverse mode, it is desirable to shift the phase of the waveform in the rising period by a half cycle.
 以上のように、本実施形態では、分割領域22の光学状態を制御する場合にハーフサイクルの電圧を印加しているので、映像期間を含む期間Tonにおいて散乱状態が変動し難くなり、および/または、非映像期間Toffにおいて透過状態が変動し難くなる。
 また、図19(C)では、ノーマルモードのスクリーン21の透明期間(非映像期間Toff)において透過状態に保持する印加電圧を、1走査周期Tにおいて片極性の方形波または両極性(2m+1)/2サイクル(mは整数)の矩形波としている。これにより、高電圧の印加期間での周波数をできるだけ低くでき、消費電力を低減できる。なお、mサイクルの矩形波周期は一定でなくてもよい。
 また、図20(B)では、リバースモードの映像期間を含む期間Tonの最初の高電圧を印加している。これにより、以下の問題を回避できる。
 すなわち、特に負荷容量の大きい領域(大面積など)を駆動する場合では印加電圧の立ち上がりが鈍るので、この立ち上げ時の高電圧として両極性波形を用いると極性が切り替わる時間に光学特性立ち上がりの無駄を生じ、結果として立ち上がり時間が長くなってしまう。その結果、動作時のヘイズが増加する。
 図20(B)のように、この立ち上げ期間での高電圧を片極性方形波とすることにより、大面積化して大きな負荷容量の領域を駆動する場合であっても、極性切り替えの時間のロスを削減でき、ひいてはヘイズを抑制し、表示品位を向上できる。
 なお、図20(B)では、実効的に直流バイアスが印加されるので、走査周期ごとに極性を反転させるとよい。そして、映像期間を含む期間Tonの後半に印加する低電圧についても、走査周期ごとに位相を半サイクルシフトさせるとよい。このシフトを実行しないと、倍周期(半分の周波数)で散乱状態が変動することになり、表示画像にフリッカが発生する可能性がある。
 また、図19(D)または図20(D)のように、半波電圧を組み合わせることにより、更に効果を高めることができる。この方法を用い場合、第1電圧V1と第2電圧V2との電圧差が実効的に直流バイアスとなるので、走査周期ごとに極性を反転させるとよい。
As described above, in the present embodiment, since the half-cycle voltage is applied when controlling the optical state of the divided region 22, the scattering state is less likely to fluctuate in the period Ton including the video period, and / or In the non-video period Toff, the transmission state hardly changes.
In FIG. 19C, the applied voltage that is maintained in the transmissive state in the transparent period (non-video period Toff) of the screen 21 in the normal mode is a unipolar square wave or bipolar (2m + 1) / It is a rectangular wave of 2 cycles (m is an integer). Thereby, the frequency in the application period of a high voltage can be made as low as possible, and power consumption can be reduced. The rectangular wave period of m cycles may not be constant.
In FIG. 20B, the first high voltage in the period Ton including the reverse mode video period is applied. Thereby, the following problems can be avoided.
That is, when driving a region with a large load capacity (such as a large area), the rise of the applied voltage is slow. Therefore, if a bipolar waveform is used as the high voltage at the time of start-up, the rise of optical characteristics is wasted at the time when the polarity is switched. As a result, the rise time becomes longer. As a result, the haze during operation increases.
As shown in FIG. 20B, the polarity switching time can be reduced even when driving a large load capacity region by increasing the area by making the high voltage during this startup period a unipolar square wave. Loss can be reduced, and as a result, haze can be suppressed and display quality can be improved.
In FIG. 20B, since the DC bias is effectively applied, it is preferable to reverse the polarity every scanning cycle. Further, the phase of the low voltage applied in the second half of the period Ton including the video period may be shifted by a half cycle for each scanning period. If this shift is not performed, the scattering state will fluctuate with a double period (half frequency), and flicker may occur in the display image.
Further, as shown in FIG. 19D or FIG. 20D, the effect can be further enhanced by combining the half-wave voltages. When this method is used, the voltage difference between the first voltage V1 and the second voltage V2 effectively becomes a DC bias, and therefore the polarity may be reversed every scanning period.
 以上のように、本実施形態では、同期制御部31は、制御電極27に印加する電圧を、印加期間中に極性が変化しないハーフサイクルの電圧としている。
 よって、ノーマルモードのスクリーン21においては、交流電圧を使用した場合に生じる平行光線の透過率の変動を抑制し、映像期間の後半での輝度ムラ、または非映像期間での平行光線透過率の変動を抑えることができる。
 また、リバースモードのスクリーン21においては、交流電圧を使用した場合に生じる平行光線透過率の変動を抑制し、映像期間の後半での輝度ムラを抑えることができる。
As described above, in the present embodiment, the synchronization control unit 31 sets the voltage applied to the control electrode 27 as a half-cycle voltage whose polarity does not change during the application period.
Therefore, in the screen 21 in the normal mode, the fluctuation in the transmittance of parallel light that occurs when an AC voltage is used is suppressed, and the luminance unevenness in the second half of the video period or the fluctuation in the parallel light transmittance in the non-video period. Can be suppressed.
In the reverse mode screen 21, fluctuations in parallel light transmittance that occur when an AC voltage is used can be suppressed, and luminance unevenness in the latter half of the video period can be suppressed.
 また、本実施形態では、同期制御部31は、複数の映像光の走査周期Tにおいて制御電極27に印加する電圧の極性を、走査周期Tを単位として切り替えている。
 よって、各走査周期Tでは光学層25に直流電圧が印加されてしまうものの、複数の走査周期Tにおいて光学層25に印加される電圧の直流成分を抑えることができる。
In the present embodiment, the synchronization control unit 31 switches the polarity of the voltage applied to the control electrode 27 in the scanning period T of the plurality of image lights in units of the scanning period T.
Therefore, although a DC voltage is applied to the optical layer 25 in each scanning period T, a DC component of the voltage applied to the optical layer 25 in a plurality of scanning periods T can be suppressed.
[第4実施形態]
 第4実施形態では、以上の実施形態の表示装置1の変形例を説明する。
 第4実施形態では、制御電極27に印加する電圧を3つ以上のレベルとした表示装置1について説明する。
 図21は、第4実施形態における、3レベルの駆動電圧波形を示す模式的なタイミングチャートである。
[Fourth Embodiment]
4th Embodiment demonstrates the modification of the display apparatus 1 of the above embodiment.
In the fourth embodiment, a display device 1 in which the voltage applied to the control electrode 27 has three or more levels will be described.
FIG. 21 is a schematic timing chart showing three-level drive voltage waveforms in the fourth embodiment.
 図21(A)は、ノーマルモードのスクリーン21の制御電極27に印加する3レベルの駆動電圧波形である。横軸は時間であり、縦軸は電圧である。
 図21(A)の駆動電圧は、3振幅(6レベル+0V)の交流電圧である。透過状態に制御する非映像期間Toffの当初において、後半で印加する電圧とは異なる中間レベルの電圧波形を印加する。
 これにより、散乱状態から透過状態への戻りを高速化できる。
FIG. 21A shows three-level drive voltage waveforms applied to the control electrode 27 of the screen 21 in the normal mode. The horizontal axis is time, and the vertical axis is voltage.
The drive voltage in FIG. 21A is an AC voltage with three amplitudes (6 levels + 0 V). At the beginning of the non-video period Toff controlled to the transmission state, a voltage waveform having an intermediate level different from the voltage applied in the second half is applied.
Thereby, it is possible to speed up the return from the scattering state to the transmission state.
 図21(B)は、リバースモードのスクリーン21の制御電極27に印加する3レベルの駆動電圧波形である。
 図21(B)の駆動電圧は、3振幅(6レベル+0V)の交流電圧である。この駆動電圧は、映像期間を含む期間Tonにおいて、3振幅(6レベル+0V)の交流電圧を印加する。具体的には、透過状態から散乱状態へ立ち上げる期間と、一定の散乱状態に保持する期間の間に、それぞれの期間で印加する電圧とは異なる中間レベルの電圧波形を印加する例である。
 これにより、1つのスクリーン21内で、複数の分割領域22の間で応答時間にバラツキが生じている場合でも、その影響を抑えることができる。
FIG. 21B shows three-level drive voltage waveforms applied to the control electrode 27 of the screen 21 in the reverse mode.
The drive voltage in FIG. 21B is an AC voltage with three amplitudes (6 levels + 0 V). As the drive voltage, an AC voltage having three amplitudes (6 levels + 0 V) is applied in a period Ton including a video period. Specifically, it is an example in which a voltage waveform at an intermediate level different from the voltage applied in each period is applied between the period of rising from the transmission state to the scattering state and the period of maintaining the constant scattering state.
Thereby, even when the response time varies among the plurality of divided regions 22 in one screen 21, the influence can be suppressed.
[第5実施形態]
 第5実施形態では、以上の実施形態の表示装置1の変形例を説明する。
 図22は、本発明の第5実施形態に係る表示装置1の概略構成図である。
 第5実施形態の表示装置1は、図22に示すように、温度センサ51を有する。
 温度センサ51は、スクリーン21に配置され、スクリーン21の温度を検出する。
 温度センサ51は、同期制御部31に接続され、検出温度を示す信号を出力する。
[Fifth Embodiment]
5th Embodiment demonstrates the modification of the display apparatus 1 of the above embodiment.
FIG. 22 is a schematic configuration diagram of a display device 1 according to the fifth embodiment of the present invention.
As shown in FIG. 22, the display device 1 of the fifth embodiment includes a temperature sensor 51.
The temperature sensor 51 is disposed on the screen 21 and detects the temperature of the screen 21.
The temperature sensor 51 is connected to the synchronization control unit 31 and outputs a signal indicating the detected temperature.
 同期制御部31は、温度センサ51により検出されたパネル温度に基づいて、駆動電圧波形を調整する。
 同期制御部31は、たとえば、検出した温度に基づき、駆動波形の電圧(振幅)を変化させる。
 または、同期制御部31は、検出した温度に基づき、駆動波形のパルス周期または交流周波数を変化させる。
 または、同期制御部31は、検出した温度に基づき、駆動波形の電圧と、パルス周期または交流周波数とを変化させる。
 なお、同期制御部31は、たとえば、検出温度と駆動電圧の関係が設定された、予め設定された参照テーブルを用いて、検出した温度に応じた駆動電圧等を決定すればよい。
 この他にもたとえば、同期制御部31は、駆動電圧の波形と検出温度との関係が予め設定された参照テーブルと、それに基づく内挿値によって検出した温度に応じた駆動電圧等を決定すればよい。
The synchronization control unit 31 adjusts the drive voltage waveform based on the panel temperature detected by the temperature sensor 51.
For example, the synchronization control unit 31 changes the voltage (amplitude) of the drive waveform based on the detected temperature.
Alternatively, the synchronization control unit 31 changes the pulse period or AC frequency of the drive waveform based on the detected temperature.
Alternatively, the synchronization control unit 31 changes the voltage of the drive waveform and the pulse period or AC frequency based on the detected temperature.
For example, the synchronization control unit 31 may determine a drive voltage or the like according to the detected temperature using a preset reference table in which the relationship between the detected temperature and the drive voltage is set.
In addition to this, for example, the synchronization control unit 31 may determine a reference voltage in which the relationship between the waveform of the drive voltage and the detected temperature is set in advance, and the drive voltage corresponding to the temperature detected by the interpolation value based on the reference table. Good.
 以上のように、本実施形態の表示装置1は、スクリーン21の温度の検出系と、駆動波形の制御系とを含む駆動システムとして機能する。
 また、本実施形態では、スクリーン21の応答速度が、スクリーン21の温度(液晶温度)に依存して変動する場合であっても、この変動による輝度変動を抑制できる。
As described above, the display device 1 according to the present embodiment functions as a drive system including the temperature detection system of the screen 21 and the drive waveform control system.
In the present embodiment, even if the response speed of the screen 21 varies depending on the temperature of the screen 21 (liquid crystal temperature), it is possible to suppress luminance variation due to this variation.
 以上の各実施形態は、本発明の好適な実施形態の例であるが、本発明は、これに限定されるものではなく、発明の要旨を逸脱しない範囲において種々の変形または変更が可能である。
 たとえば上記実施形態では、スクリーン21は、映像状態で散乱状態に制御され、映像光を透過しつつ散乱している。この他にもたとえば、スクリーン21は、映像状態で高い散乱状態に制御され、映像光を反射しつつ散乱してもよい。この場合、スクリーン21は、プロジェクタ11と視聴者の間に位置する反射型スクリーンとして機能する。
 図23は、反射型のスクリーン21を用いた、本発明の第2実施形態に係る表示装置1の変形例の概略構成図である。
 図23において、プロジェクタは、反射型のスクリーン21について、視聴者側に配置される。この場合でも、本発明を適用することにより、図9に示すように、映像光による映像41とスクリーン21の背景42とをスクリーン21で重ねて表示できる。
Each of the above embodiments is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications or changes can be made without departing from the scope of the invention. .
For example, in the above-described embodiment, the screen 21 is controlled to be in the scattering state in the image state, and is scattered while transmitting the image light. In addition, for example, the screen 21 may be controlled to be in a high scattering state in the video state, and may be scattered while reflecting the video light. In this case, the screen 21 functions as a reflective screen positioned between the projector 11 and the viewer.
FIG. 23 is a schematic configuration diagram of a modified example of the display device 1 according to the second embodiment of the present invention using the reflective screen 21.
In FIG. 23, the projector is disposed on the viewer side with respect to the reflective screen 21. Even in this case, by applying the present invention, the image 41 by the image light and the background 42 of the screen 21 can be overlapped and displayed on the screen 21 as shown in FIG.
1 表示装置
11 プロジェクタ
21 スクリーン
22 分割領域
25 光学層
27 制御電極
31 同期制御部(制御部)
51 温度センサ
T 走査周期
TP 部分走査期間
Ton 映像期間を含む期間
Toff 非映像期間
DESCRIPTION OF SYMBOLS 1 Display apparatus 11 Projector 21 Screen 22 Division | segmentation area | region 25 Optical layer 27 Control electrode 31 Synchronization control part (control part)
51 Temperature Sensor T Scanning Period TP Partial Scanning Period Ton Period Including Video Period Toff Non-Video Period

Claims (12)

  1.  電圧の印加により光学状態が変化する光学層、および前記光学層に電圧を印加するために前記光学層に沿って並べて配置される複数の制御電極を有するスクリーンと、
     前記スクリーンに映像光を投影して映像を表示させるプロジェクタと、
     前記複数の制御電極に電圧を印加し、映像光の投影期間において、前記スクリーンを、各前記制御電極が形成された分割領域毎に、前記映像光を散乱する所定の映像状態とこれと異なる光学状態である非映像状態との間で切り替える制御部と、
     を有し、
     前記制御部は、
      映像光の投影期間における前記複数の分割領域の光学状態を、前記プロジェクタによる映像光の投影に同期させて切り替えて、前記スクリーンについての、前記映像光が投影される部位の光学状態を前記映像状態とし、
      映像状態の光学状態を、2以上の振幅の電圧により保持する、
     表示装置。
    An optical layer whose optical state changes by application of a voltage, and a screen having a plurality of control electrodes arranged side by side along the optical layer in order to apply a voltage to the optical layer;
    A projector for projecting image light onto the screen to display an image;
    A voltage is applied to the plurality of control electrodes, and in a projection period of image light, the screen is optically different from a predetermined image state in which the image light is scattered for each divided region where the control electrodes are formed. A control unit that switches between a non-video state that is a state;
    Have
    The controller is
    The optical state of the plurality of divided regions in the projection period of the image light is switched in synchronization with the projection of the image light by the projector, and the optical state of the portion of the screen on which the image light is projected is the image state age,
    The optical state of the image state is held by a voltage having an amplitude of 2 or more.
    Display device.
  2.  前記プロジェクタは、映像光により前記スクリーンを走査し、
     前記制御部は、
      映像光の走査周期において前記複数の分割領域に印加する電圧を走査順で切り替えて、各前記分割領域を、各々が走査される部分走査期間において映像状態に制御し、各々が走査されていない期間において非映像状態に制御する、
     請求項1記載の表示装置。
    The projector scans the screen with image light,
    The controller is
    The voltage applied to the plurality of divided regions in the scanning period of the image light is switched in the scanning order, and each of the divided regions is controlled to the video state in the partial scanning period in which each is scanned, and each is not scanned Control to a non-video state in
    The display device according to claim 1.
  3.  前記スクリーンは、電圧が印加されることで平行光線透過率が高くなるノーマルモードで動作し、前期映像状態において投影された映像光を散乱し、
     前記制御部は、
      非映像状態に制御する分割領域の前記制御電極に電圧を印加して、該分割領域を透過状態に制御し、
      映像状態に制御する分割領域の前記制御電極に印加する電圧を、前記非映像状態での印加電圧より下げて、映像光で走査される分割領域を散乱状態に制御し、映像光を散乱させる、
     請求項1または2記載の表示装置。
    The screen operates in a normal mode in which parallel light transmittance is increased by applying a voltage, and scatters image light projected in the previous image state,
    The controller is
    A voltage is applied to the control electrode of the divided area to be controlled to a non-image state, and the divided area is controlled to a transmissive state,
    The voltage applied to the control electrode of the divided region to be controlled to the video state is lower than the applied voltage in the non-video state, and the divided region scanned with the video light is controlled to be in the scattering state, and the video light is scattered.
    The display device according to claim 1 or 2.
  4.  前記制御部は、
      前記分割領域を映像状態に制御する場合、前記制御電極への電圧印加を停止した後に印加電圧を上げて、該分割領域の光学状態を、前記分割領域の最大の散乱状態より散乱の程度が低い所定の散乱状態に保持し、映像光で走査される部分走査期間での該分割領域の散乱状態を安定させる、
     請求項3記載の表示装置。
    The controller is
    When controlling the divided region to the video state, the applied voltage is increased after the voltage application to the control electrode is stopped, and the optical state of the divided region is less scattered than the maximum scattering state of the divided region. Hold in a predetermined scattering state, and stabilize the scattering state of the divided region in a partial scanning period scanned with image light,
    The display device according to claim 3.
  5.  前記スクリーンは、電圧が印加されることで散乱が強くなるリバースモードで動作し、投影された映像光を散乱し、
     前記制御部は、
      非映像状態に制御する分割領域の前記制御電極への電圧の印加を停止して、該分割領域を透明な透過状態に制御し、
      映像状態に制御する分割領域の前記制御電極に電圧を印加し、映像光で走査される分割領域を散乱状態に制御し、映像光を散乱させる、
     請求項1または2記載の表示装置。
    The screen operates in a reverse mode in which scattering is increased when a voltage is applied, and scatters projected image light,
    The controller is
    Stop application of voltage to the control electrode of the divided region to be controlled to a non-image state, and control the divided region to a transparent transmission state;
    A voltage is applied to the control electrode of the divided region to be controlled to the image state, the divided region scanned with the image light is controlled to the scattering state, and the image light is scattered.
    The display device according to claim 1 or 2.
  6.  前記制御部は、
      前記分割領域を映像状態に制御する場合、前記制御電極に電圧を印加した後に印加電圧を下げて、該分割領域の光学状態を、前記分割領域を散乱状態に保持し、映像光で走査される部分走査期間での該分割領域の散乱状態を安定させる、
     請求項5記載の表示装置。
    The controller is
    When the divided area is controlled to be in an image state, a voltage is applied to the control electrode and then the applied voltage is lowered, and the optical state of the divided area is held in the scattered state and scanned with image light. Stabilizing the scattering state of the divided regions in the partial scanning period;
    The display device according to claim 5.
  7.  前記分割領域を映像状態に制御するために前記制御部が前記制御電極に最初に印加する電圧は、前記分割領域を最大の散乱状態にできる電圧より高い電圧であり、
     その後に下げて印加される電圧は、前記最大の散乱状態にできる電圧である、
     請求項6記載の表示装置。
    The voltage initially applied to the control electrode by the control unit to control the divided region to the video state is a voltage higher than a voltage capable of bringing the divided region into a maximum scattering state.
    Thereafter, the voltage applied by lowering the voltage is a voltage that can achieve the maximum scattering state.
    The display device according to claim 6.
  8.  前記分割領域を映像状態に制御するために前記制御部が前記制御電極に最初に印加する電圧は、
      該電圧による散乱が最大となるタイミングで変更される、
     請求項7記載の表示装置。
    The voltage initially applied to the control electrode by the control unit to control the divided region to a video state is:
    It is changed at the timing when the scattering due to the voltage is maximized.
    The display device according to claim 7.
  9.  前記制御部は、
      前記制御電極に印加する電圧を、実質的に低周波の交流電圧とした、
     請求項1から7のいずれか一項記載の表示装置。
    The controller is
    The voltage applied to the control electrode is a substantially low frequency alternating voltage,
    The display device according to claim 1.
  10.  前記制御部は、
      複数の映像光の投影期間において前記制御電極に印加する電圧の極性を、前記投影期間を単位として切り替えて、前記複数の投影期間において前記光学層に印加される電圧の直流成分を抑える、
     請求項1から7のいずれか一項記載の表示装置。
    The controller is
    The polarity of the voltage applied to the control electrode in a plurality of projection periods of video light is switched in units of the projection period, and the direct current component of the voltage applied to the optical layer in the plurality of projection periods is suppressed.
    The display device according to claim 1.
  11.  プロジェクタから投影される映像光による映像を、電圧の印加により光学状態が変化する光学層を有するスクリーンに表示する表示装置の駆動方法であって、
     前記スクリーンの光学状態を制御する制御部は、
      前記光学層に沿って並べて配置される複数の制御電極に電圧を印加して、前記光学層および前記複数の制御電極を有するスクリーンに、映像光による映像を表示させ、
      映像光の投影期間において、前記スクリーンを、各前記制御電極が形成された分割領域毎に、前記映像光を散乱する所定の映像状態とこれと異なる光学状態である非映像状態との間で切り替え、
      映像光の投影期間における複数の前記分割領域の光学状態を、前記プロジェクタによる映像光の投影に同期させて切り替えて、前記スクリーンについての、前記映像光が投影される部位の光学状態を前記映像状態とし、
      映像状態の光学状態を、2以上の振幅の電圧により保持する、
     表示装置の駆動方法。
    A display device driving method for displaying an image of image light projected from a projector on a screen having an optical layer whose optical state changes by application of a voltage,
    The control unit for controlling the optical state of the screen,
    A voltage is applied to a plurality of control electrodes arranged side by side along the optical layer, and an image by image light is displayed on a screen having the optical layer and the plurality of control electrodes,
    During the image light projection period, the screen is switched between a predetermined image state in which the image light is scattered and a non-image state which is an optical state different from the predetermined image state for each divided region where the control electrodes are formed. ,
    The optical state of the plurality of divided regions in the projection period of the video light is switched in synchronization with the projection of the video light by the projector, and the optical state of the portion of the screen on which the video light is projected is the video state age,
    The optical state of the image state is held by a voltage having an amplitude of 2 or more.
    A driving method of a display device.
  12.  電圧の印加により光学状態が変化する光学層、および前記光学層に電圧を印加するために前記光学層に沿って並べて配置される複数の制御電極を有し、投影された映像光による映像を表示するスクリーンと、
     前記複数の制御電極に電圧を印加し、映像光の投影期間において、前記制御電極が形成された各分割領域を、前記映像光を散乱する所定の映像状態とこれと異なる光学状態である非映像状態との間で切り替えるように制御する制御部と、
     を有し、
     前記制御部は、
      映像光の投影期間における前記複数の分割領域の光学状態を、前記スクリーンへの映像光の投影に同期させて切り替えて、前記スクリーンについての、前記映像光が投影される部位の光学状態を前記映像状態とし、
      映像状態の光学状態を、2以上の振幅の電圧により保持する、
     表示用スクリーン装置。
    An optical layer whose optical state is changed by applying a voltage, and a plurality of control electrodes arranged side by side along the optical layer for applying a voltage to the optical layer, and displays an image based on the projected image light And a screen to
    A voltage is applied to the plurality of control electrodes, and in a projection period of image light, each divided region in which the control electrode is formed has a non-image in a predetermined image state in which the image light is scattered and an optical state different from the predetermined image state A controller that controls to switch between states;
    Have
    The controller is
    The optical state of the plurality of divided areas in the projection period of the image light is switched in synchronization with the projection of the image light onto the screen, and the optical state of the portion of the screen on which the image light is projected is changed to the image State and
    The optical state of the image state is held by a voltage having an amplitude of 2 or more.
    Screen device for display.
PCT/JP2012/057609 2012-03-23 2012-03-23 Display device, method for driving same, and display screen device WO2013140626A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/057609 WO2013140626A1 (en) 2012-03-23 2012-03-23 Display device, method for driving same, and display screen device
JP2014505951A JP5856284B2 (en) 2012-03-23 2012-03-23 Display device, driving method thereof, and display screen device
US14/831,192 US9785028B2 (en) 2012-03-23 2015-08-20 Display apparatus, driving method thereof, and screen apparatus for displaying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057609 WO2013140626A1 (en) 2012-03-23 2012-03-23 Display device, method for driving same, and display screen device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14387411 A-371-Of-International 2012-03-23
US14/831,192 Continuation US9785028B2 (en) 2012-03-23 2015-08-20 Display apparatus, driving method thereof, and screen apparatus for displaying

Publications (1)

Publication Number Publication Date
WO2013140626A1 true WO2013140626A1 (en) 2013-09-26

Family

ID=49222117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057609 WO2013140626A1 (en) 2012-03-23 2012-03-23 Display device, method for driving same, and display screen device

Country Status (2)

Country Link
JP (1) JP5856284B2 (en)
WO (1) WO2013140626A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068941A (en) * 2013-09-27 2015-04-13 パイオニア株式会社 Display device and driving method for display device
WO2015125207A1 (en) * 2014-02-18 2015-08-27 パイオニア株式会社 Display control device
WO2015132907A1 (en) * 2014-03-05 2015-09-11 パイオニア株式会社 Display control device
JP2018032914A (en) * 2016-08-23 2018-03-01 旭硝子株式会社 Video display method and video display system
CN111355991A (en) * 2020-03-13 2020-06-30 Tcl移动通信科技(宁波)有限公司 Video playing method and device, storage medium and mobile terminal
JP2020108169A (en) * 2016-08-23 2020-07-09 Agc株式会社 Video display method and video display system
JP2021184062A (en) * 2020-05-22 2021-12-02 大日本印刷株式会社 Dimmer
WO2022219927A1 (en) * 2021-04-16 2022-10-20 ソニーセミコンダクタソリューションズ株式会社 Drive circuit for display panel, display device, and drive method for display panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191726A (en) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Presence display device
JPH0682748A (en) * 1992-08-31 1994-03-25 Takiron Co Ltd Projection image pickup device
JPH06194627A (en) * 1992-12-24 1994-07-15 Casio Comput Co Ltd Driving method for macromolecule dispersion type liquid crystal display element
JP2004184979A (en) * 2002-09-03 2004-07-02 Optrex Corp Image display apparatus
JP2007219414A (en) * 2006-02-20 2007-08-30 Fujifilm Corp Driving method of liquid crystal dimming device
JP2010197486A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Image-displaying system and image communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191726A (en) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Presence display device
JPH0682748A (en) * 1992-08-31 1994-03-25 Takiron Co Ltd Projection image pickup device
JPH06194627A (en) * 1992-12-24 1994-07-15 Casio Comput Co Ltd Driving method for macromolecule dispersion type liquid crystal display element
JP2004184979A (en) * 2002-09-03 2004-07-02 Optrex Corp Image display apparatus
JP2007219414A (en) * 2006-02-20 2007-08-30 Fujifilm Corp Driving method of liquid crystal dimming device
JP2010197486A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Image-displaying system and image communication system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068941A (en) * 2013-09-27 2015-04-13 パイオニア株式会社 Display device and driving method for display device
WO2015125207A1 (en) * 2014-02-18 2015-08-27 パイオニア株式会社 Display control device
JPWO2015125207A1 (en) * 2014-02-18 2017-03-30 パイオニア株式会社 Display control device
WO2015132907A1 (en) * 2014-03-05 2015-09-11 パイオニア株式会社 Display control device
JPWO2015132907A1 (en) * 2014-03-05 2017-03-30 パイオニア株式会社 Display control device
JP2018032914A (en) * 2016-08-23 2018-03-01 旭硝子株式会社 Video display method and video display system
JP2020108169A (en) * 2016-08-23 2020-07-09 Agc株式会社 Video display method and video display system
CN111355991A (en) * 2020-03-13 2020-06-30 Tcl移动通信科技(宁波)有限公司 Video playing method and device, storage medium and mobile terminal
CN111355991B (en) * 2020-03-13 2022-03-25 Tcl移动通信科技(宁波)有限公司 Video playing method and device, storage medium and mobile terminal
JP2021184062A (en) * 2020-05-22 2021-12-02 大日本印刷株式会社 Dimmer
JP7468142B2 (en) 2020-05-22 2024-04-16 大日本印刷株式会社 Light control device
WO2022219927A1 (en) * 2021-04-16 2022-10-20 ソニーセミコンダクタソリューションズ株式会社 Drive circuit for display panel, display device, and drive method for display panel

Also Published As

Publication number Publication date
JPWO2013140626A1 (en) 2015-08-03
JP5856284B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5856284B2 (en) Display device, driving method thereof, and display screen device
US9785028B2 (en) Display apparatus, driving method thereof, and screen apparatus for displaying
JP3027298B2 (en) Liquid crystal display with backlight control function
JP5943283B2 (en) Flat panel display for displaying stereoscopic image, method for displaying stereoscopic image, and controller for flat panel display for displaying stereoscopic image
US20100020002A1 (en) Scanning backlight for lcd
JP6419334B2 (en) Backlight unit, driving method thereof, and liquid crystal display device
WO2014033807A1 (en) Display device and drive method for display device
JP2008276053A (en) Liquid crystal display
JP5856285B2 (en) Display device, driving method thereof, and display screen device
US9448466B2 (en) Display device and drive method for display device
WO2013140627A1 (en) Display device, method for driving same, and display screen device
JP2000322029A (en) Liquid crystal display device
WO2015045067A1 (en) Display device and control method for display device
JP2010197806A (en) Liquid crystal display, control method, and electronic equipment
JP2019070844A (en) Display device and drive method for display device
JP2015226296A (en) Display divice
JP2022023983A (en) Display device and drive method for display device
JP6297291B2 (en) Display device and driving method of display device
JP2023082004A (en) Display device and drive method for display device
JP2020173467A (en) Display device and drive method for display device
US20170025073A1 (en) Displaying method and displaying apparatus
JP2006119206A (en) Liquid crystal display
JP2017156768A (en) Display device and drive method for display device
US20160027395A1 (en) Display apparatus, driving method thereof and screen apparatus for displaying
WO2014080466A1 (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872280

Country of ref document: EP

Kind code of ref document: A1