[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013140449A1 - Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component - Google Patents

Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component Download PDF

Info

Publication number
WO2013140449A1
WO2013140449A1 PCT/JP2012/001970 JP2012001970W WO2013140449A1 WO 2013140449 A1 WO2013140449 A1 WO 2013140449A1 JP 2012001970 W JP2012001970 W JP 2012001970W WO 2013140449 A1 WO2013140449 A1 WO 2013140449A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
assembly
lid assembly
electronic
lid
Prior art date
Application number
PCT/JP2012/001970
Other languages
French (fr)
Japanese (ja)
Inventor
久雄 青木
徳雄 黒川
哲哉 江崎
Original Assignee
京セラケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラケミカル株式会社 filed Critical 京セラケミカル株式会社
Priority to PCT/JP2012/001970 priority Critical patent/WO2013140449A1/en
Publication of WO2013140449A1 publication Critical patent/WO2013140449A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00333Aspects relating to packaging of MEMS devices, not covered by groups B81C1/00269 - B81C1/00325
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00865Multistep processes for the separation of wafers into individual elements
    • B81C1/00904Multistep processes for the separation of wafers into individual elements not provided for in groups B81C1/00873 - B81C1/00896
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/055Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads having a passage through the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16251Connecting to an item not being a semiconductor or solid-state body, e.g. cap-to-substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/163Connection portion, e.g. seal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to an electronic component lid assembly that is an assembly of electronic component lids that cover an electronic component, a MEMS chip, and the like, an electronic component using the same, and an electronic component manufacturing method.
  • a lid for electronic components has been used to protect the space of element components such as chips mounted on a substrate.
  • a MEMS microphone including a MEMS chip that converts a sound signal into an electrical signal and a metal lid is known (see, for example, Patent Documents 1 to 3).
  • MEMS Micro Electro Mechanical Systems
  • MEMS means an electromechanical system made up of micro parts that is manufactured by making use of micro processing technology in a semiconductor manufacturing process.
  • a sealed surface acoustic wave device, an acceleration sensor, an open pressure sensor, a flow path sensor, and the like are known.
  • a metal lid is used.
  • the present invention has been made under such circumstances, and includes an electronic component lid assembly for obtaining a compact and lightweight electronic component lid, and the electronic component lid assembly. It aims at providing the used electronic component. Another object of the present invention is to provide a method of manufacturing an electronic component using the electronic component lid assembly.
  • the present inventors obtained the following knowledge as a result of intensive studies to achieve the above object. That is, it is an assembly of lids for electronic parts having a thickness of 0.03 mm to 0.08 mm formed by an electroforming method, and the number of lids for electronic parts having a specific shape is m ⁇ n (m , N are each independently an integer of 2 or more), and a plurality of them are arranged at equal intervals, so that even if the thickness is reduced, it is easy to handle and fits the purpose as a lid for electronic parts. Found to get.
  • the present invention (1) An assembly of electronic component lids having a thickness of 0.03 mm to 0.08 mm, formed by electroforming, having an inner height of 0.05 mm to 1.5 mm, A plurality of lids for electronic parts having side lengths of 0.2 mm to 15 mm are arranged at equal intervals in m vertical x n horizontal (m and n are each independently an integer of 2 or more). A lid body assembly for electronic parts, (2) The electronic component lid assembly is obtained by irradiating a laser beam along a divided portion between adjacent electronic component lids to melt or quench the surface.
  • Lid assembly (3) An electronic component lid assembly having convex shapes at least at three locations on the mounting surface side of the electronic component lid, (4) An electronic component characterized in that the electronic component lid is mounted on a printed wiring board, and (5) vertical m ⁇ horizontal n pieces (m and n are independently An element component assembly is manufactured by mounting an element component consisting of two or more integers), and the electronic component lid assembly according to any one of (1) to (3) above is formed on the element component assembly. The electronic component assembly is manufactured by mounting the electronic component assembly, and then the electronic component assembly is cut into individual pieces to obtain the electronic component.
  • an electronic component can be manufactured at low cost and high efficiency by mounting an element component assembly in which a large number of element components are mounted on a printed wiring board, and mounting the lid assembly for electronic components on the element component assembly. Can do.
  • the external view which shows typically one Embodiment of the cover assembly for electronic components, and its division
  • the schematic diagram which shows one Embodiment of laser hardening.
  • the schematic diagram which shows one Embodiment of the division
  • Sectional drawing which shows one Embodiment of the manufacturing process which manufactures an electronic component with a rotary cutting blade.
  • Sectional drawing which shows one Embodiment of the electronic component by which the cover for electronic components which has a conductive bump was mounted. Sectional drawing which shows one Embodiment of the mounting method of the A section of FIG. Sectional drawing which shows one Embodiment of the manufacturing process of the electronic component using the cover assembly for electronic components which has an electroconductive bump.
  • the top view and sectional drawing which show an example of the cover assembly for electronic components before and behind the opening process of the insulating film by laser irradiation.
  • the schematic diagram which shows one Embodiment of the opening process by laser irradiation.
  • the perspective view and top view which show one Embodiment of the cover for electronic components which has an opening part in an insulating film.
  • the electronic component lid assembly has a large number of vertical x m horizontal x (m and n are each independently an integer of 2 or more) electronic component lids regularly arranged at regular intervals. It is a lid assembly for metal electronic parts.
  • the number of m and n is preferably 2 to 100, and if it is smaller than 2, it does not contribute to productivity and handleability, and if it is larger than 100, a problem occurs in alignment accuracy.
  • the shape of each individual electronic component lid may be circular, square, or rectangular in plan view.
  • the thickness of the electronic component lid is preferably 0.03 mm to 0.08 mm. If the thickness is less than 0.03 mm, the strength is weak and the pressure during pick-and-place may not be able to be tolerated. If it exceeds 0.08 mm, the weight and price increase, which is not preferable.
  • the thickness does not necessarily have to be the same for all portions, and may be different for each portion as long as it is within the above range. Further, a portion subjected to quenching as described later does not necessarily have to be within the above range.
  • the inner height is preferably about 0.05 mm to 1.5 mm, and the length of one side of the top plate is preferably about 0.2 mm to 15 mm. . If the inner height is higher than 1.5 mm, or if the length of one side of the top plate is longer than 15 mm, it is not preferable because the handling property is inferior and the strength required for pick and place cannot be maintained. .
  • the “length of one side” is read as “diameter”.
  • cover for each adjacent electronic component is 0.3 mm or more, and when the space
  • the interval is the interval at the position where the interval is the narrowest in plan view. Further, when the interval changes in the height direction of the electronic component lid, the interval is set at an intermediate position in the height direction.
  • convex shapes at least at three locations on the mounting surface side of the electronic component lid.
  • a desired gap can be provided between the printed wiring board and the electronic component lid.
  • the shape of the convex shape is not particularly limited, such as a prism, a pyramid, a cylinder, or a cone, and the installation location is not particularly limited, such as a corner or a central portion of a side, and the number is not particularly limited, and there are three or more locations. It is fixed stably.
  • the height of the convex shape is not particularly limited, but is preferably 0.01 to 0.1 mm. When the height of the convex shape is within this range, an appropriate gap can be provided for open electronic components such as a pressure sensor and a flow path sensor.
  • the lid assembly for electronic parts as described above is difficult to manufacture by drawing or bending a sheet metal, and is preferably manufactured by an electroforming method which is a replication method of a metal product.
  • This electroforming method is manufactured by depositing a metal with a predetermined thickness on the surface of a matrix by electroplating and then peeling the electrodeposition layer from the matrix.
  • the lid assembly for electronic parts is preferably made of copper, nickel, or an alloy thereof, and in particular, copper, nickel, or nickel-phosphorus, nickel-manganese, nickel-cobalt, nickel-iron. preferable. By using these metals, good strength and shielding properties can be obtained.
  • the matrix used in this electroforming method is not particularly limited, but there are copper, nickel, chromium, brass, etc., and the matrix is immersed in a solution containing a heterocyclic thiadiazole derivative to form a release film. Then, there are a method of performing electroplating and a method of forming a chromic acid film by dipping in a chromic acid solution.
  • the angle for drafting is preferably 10 to 20 degrees.
  • the manufacturing conditions of the electronic component lid assembly are appropriately selected according to the type of electrodeposited metal.
  • nickel electrodeposition nickel chloride bath, nickel sulfate bath, nickel sulfamate bath, nickel borofluoride bath, etc. are generally used, and the current density is set within a range of 2.5 to 15 A / dm 2. Usually, it is produced by energizing for 1 to 2.5 hours.
  • the surface of the grounding portion of the lid assembly for electronic components may be applied to the surface of the grounding portion of the lid assembly for electronic components.
  • the coating resin is preferably an epoxy resin, and a liquid resin or a powder coating can be used.
  • a laser processing machine having a predetermined wavelength is used for melting or quenching the divided parts of the electronic component lid assembly. Specifically, the laser beam output, processing speed, beam diameter, etc. of the laser processing machine are controlled, and the laser beam is irradiated to the divided points, so that the melting point is higher than the transformation point of the metallic electronic component lid material. It is carried out by heating to a temperature range of (2) and cooling by self-cooling (rapid cooling by thermal diffusion of the material itself). Although the transformation point and the melting point differ depending on the type of metal of the lid material for electronic parts, a range of 750 ° C. to 1400 ° C. is generally preferable.
  • the laser processing machine used for melting or quenching is not particularly limited as long as it is a laser processing machine that can be used for micro welding on a metal material.
  • the range of the wavelength of the laser beam of the laser processing machine (including N-order harmonics; N is an integer of 2 or more) is not particularly limited. From the viewpoint of cost, maintenance, productivity, safety, etc., for example, The wavelength range from ultraviolet to near infrared, that is, 190 nm to 2500 nm, preferably 350 nm to 1200 nm.
  • the output is 10 W to 30 W and the processing speed is 50 mm / min to 300 mm / min.
  • the output is 1 W to 2 W, and the processing speed is 50 mm / min to 300 mm / Minutes are preferred.
  • the beam diameter at this time is preferably in the range of 0.02 mm to 0.2 mm.
  • the surface of the lid assembly for the electronic component may elute and a thin linear mark may be formed with the width of the laser beam diameter.
  • FIG. 1 is an external view schematically showing an embodiment of a lid assembly for an electronic component and one of its divided portions.
  • FIG. 2 is a schematic diagram showing an embodiment of laser quenching, and is a schematic diagram showing an example of a path of laser light from a laser processing apparatus (oscillator) to a divided portion.
  • laser processing apparatus oscillator
  • scanning is performed by irradiating a laser beam 4 along a center line 2 between adjacent electronic component lids 3 which are divided portions of the electronic component lid assembly 1.
  • segmentation location of the cover assembly 1 for electronic components is quenched.
  • the laser beam 4 emitted from the laser processing apparatus (oscillator) 5 is reflected by the mirror 6, narrowed by the lens 7, and controlled to enter the divided portion.
  • the laser beam 4 may be directly scanned, but the lid assembly 1 for electronic components is fixed and moved in advance on the stage in order to suppress the falling of dust from the laser head or the like. You may let them.
  • the center line 2 between the adjacent electronic component lids 3 is usually selected, but is not particularly limited.
  • division of the electronic component lid assembly 1 from the viewpoint of smoothness of the fracture surface after division and suppression of occurrence of burrs, cracks, etc.
  • the positional relationship between the location and the V-groove location (part) provided in advance on the printed circuit board (the back side with respect to the surface on which the electronic component lid 1 is mounted) is preferably matched so as to overlap each other.
  • the electronic component lid 3 By dividing the electronic component lid assembly 1 into pieces, the electronic component lid 3 can be easily obtained.
  • the lid assembly 1 for an electronic component irradiated with the laser beam 4 on the divided portion can easily obtain the lid 3 for an electronic component by a simple dividing machine without using a special cutting machine. Can do.
  • the electronic component lid 3 thus obtained is bonded to the printed wiring board by a conventional method such as thermosetting of a conductive adhesive or cream solder reflow.
  • FIG. 3 is an explanatory diagram showing an example of a process of manufacturing an electronic component by laser quenching the electronic component lid assembly 1 in the order of steps.
  • a printed wiring board 9 in which a V-groove 9a has been processed in advance is provided with m component elements 8 in length m ⁇ width n (m and n are each independently an integer of 2 or more.
  • the element component assembly 10 is mounted.
  • the electronic component lid assembly 1 is mounted on a printed wiring board 9 to form an electronic component assembly 11.
  • FIG. 4 is a schematic diagram showing an embodiment of the divider and the electronic component assembly 11 to be divided.
  • the dividing machine 12 includes a base 13, a clamp 14, a dividing head 15, and a conveyor 16.
  • the vertical m ⁇ n horizontal electronic component assemblies 11 stepped according to the arrangement pitch amount between the electronic component lids 3 adjacent on the base 13 are fixed by the lowering of the clamps 14 at the division positions. .
  • the dividing head 15 descends, and the electronic components 111 in the vertical direction (normal direction standing on the paper surface) m pieces are divided into an assembly in a row along the V groove 9 a of the printed wiring board 9. Further, the assembly in which the m electronic components 111 transferred to the next step are arranged in a row by the conveyor 16 is cut into m electronic components 111 in the same manner as described above. By dividing into pieces as described above, a large number of electronic components 111 can be easily obtained.
  • FIG. 5 is an explanatory diagram illustrating an example of a process for manufacturing the electronic component 111 with the rotary cutting blade in the order of processes, and the electronic component 111 is manufactured using the electronic component lid assembly 1 that has not been laser-hardened. It is explanatory drawing which shows an example of a process in process order.
  • the element component 8 is mounted on the printed wiring board 9 to form an element component assembly 10.
  • the electronic component lid assembly 1 is mounted on the printed wiring board 9 to form an electronic component assembly 11.
  • the printed wiring board 9 on which the electronic component lid assembly 1 is mounted is cut into pieces by a rotary cutting blade 17 at an intermediate portion between the adjacent electronic components 111.
  • a plurality of electronic components 111 can be obtained.
  • the element component 8 used in the present invention include a MEMS microphone, a crystal resonator, a wireless module, a time base module, a ceramic resonator, a Bluetooth module, and the like.
  • the electronic component lid assembly 1 may be provided with convex shapes 3 a at at least three locations on the mounting surface side of each electronic component lid 3.
  • the convex shapes 3a at at least three locations, it is possible to provide a desired gap between the printed wiring board 9 and the electronic component lid 3.
  • the shape of the convex shape 3a is not particularly limited, such as a prism, a pyramid, a cylinder, or a cone, and the installation location is not particularly limited, such as a corner portion or a central portion of a side, and the number is not particularly limited.
  • the height of the convex shape 3a is not particularly limited, but is preferably 0.01 to 0.1 mm. When the height of the convex shape 3a is within this range, an appropriate gap can be provided for open electronic components such as a pressure sensor and a flow path sensor.
  • the convex shape 3a can be formed using, for example, the same method as that for the conductive bump 3b described later.
  • the electronic component lid assembly 1 that shields the element component 8 from the outside is also required to be small, thin, and lightweight. Since the adhesive strength with the printed wiring board 9 is reduced due to the reduction in the area of the portion, it is desired to ensure the bonding strength between the electronic component lid assembly 1 and the printed wiring board 9 in the solder reflow mounting. In addition, since the elastic modulus of the electronic component lid assembly 1 decreases as the electronic component lid assembly 1 is made thinner, the warpage due to the difference in linear expansion coefficient between the electronic component lid assembly 1 and the printed wiring board 9 is reduced.
  • the electronic component 111 mounted with the electronic component lid assembly 1 in the element component assembly 10 and solder reflow-mounted is likely to have a large warp.
  • the manufacturing method which can manufacture the electronic component 111 with high connection reliability with few warpages with the cover assembly 1 for electronic components used as a shield case etc. and the ground circuit formed in the printed wiring board 9 is possible. Is required.
  • the manufacturing method of the electronic component 111 includes a step of forming conductive bumps at the junction with the printed wiring board 9 in the lid assembly 1 for electronic components, and using the conductive bumps for electronic components.
  • a method of bonding and conducting via an adhesive is preferred. According to such a manufacturing method, the electronic component lid assembly 1 and the ground circuit of the printed wiring board 9 can be satisfactorily bonded, and the electronic component 111 with less warpage can be obtained.
  • the conductive bump is preferably any one of a plated bump, a stud bump, and a printed bump.
  • the thermosetting adhesive contains (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a curing accelerator, (D) a synthetic rubber, and (E) an inorganic filler as essential components.
  • a sheet-like thermosetting adhesive that is applied to an insulating film substrate and dried to be semi-cured is preferable.
  • the method for forming the conductive bump is not particularly limited, but by using an electrodeposition type in which the bump shape is processed in advance at a predetermined position, the conductive bump is integrally formed at the time of manufacturing the electronic component lid assembly 1. Can be formed.
  • the bump shape into the electrodeposition type in this way, not only the number of processes can be reduced, but also conductive bumps with a uniform height can be obtained, and the shape becomes a stress absorbing structure, thus providing good connection reliability. Sex is obtained.
  • a known forming method such as a metal bump such as a plated bump or a stud bump to which wire bonding is applied, or a printed bump made of a conductive paste can be applied.
  • a plating bump is formed by applying a photoresist film on the surface of the electronic component lid assembly 1 and forming a resist pattern having an opening at a position where the plating bump is formed by exposure and development. Is formed by performing electroless Ni plating using the mask as a mask and further gold plating the surface thereof.
  • a bulge head is formed at the tip of a stud bump wire led out from a capillary, and then swelled by a capillary.
  • the base is formed by pressing the head against the bump grounding portion on the surface of the lid assembly 1 for electronic parts, and the upper part of the base is acclimated in the horizontal direction with a capillary, and then the stud bump wire is cut to form a stud. Form bumps.
  • the formation of the printed bump made of the conductive paste is performed by a printing method using a metal mask.
  • the conductive paste is obtained by blending conductive powder with a synthetic resin as a binder.
  • a synthetic resin as a binder a thermosetting resin, a thermoplastic resin, or a mixed resin thereof can be used. Examples thereof include gold powder, silver powder, copper powder, solder powder, nickel powder, carbon powder, and powder having a conductive material layer on the surface.
  • a publicly known technique there is a B2it (registered trademark, Buried Bump® Interconnection Technology, Toshiba Corporation) method using the silver paste.
  • thermosetting adhesive sheet includes (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a curing accelerator, (D) a synthetic rubber, and (E). It can be produced by applying an inorganic filler as an essential component, diluting with a suitable organic solvent such as methyl ethyl ketone, methyl cellosolve, etc. to form a varnish, drying the film, and semi-curing it.
  • a suitable organic solvent such as methyl ethyl ketone, methyl cellosolve, etc.
  • the drying temperature is preferably 80 to 180 ° C.
  • a film base material normally used as a release film as a film base material For example, polyester, a polyethylene terephthalate, a polypropylene etc. are mentioned.
  • the thickness of the thermosetting adhesive sheet is preferably 5 to 25 ⁇ m. When the thickness is 5 ⁇ m or more, the adhesive strength is maintained, and when the thickness is 25 ⁇ m or less, the connection reliability is not deteriorated and electromagnetic wave leakage is not preferable.
  • an epoxy resin having two or more epoxy groups in one molecule can be used.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin and the like can be mentioned, and these can be used alone or in combination of two or more.
  • an epoxy resin containing a biphenyl skeleton, a naphthalene skeleton, or the like can be preferably used for improving the flame retardancy and dimensional stability of the resin composition.
  • a liquid epoxy resin can be preferably used in order to improve the handleability at the B stage without causing resin cracking or peeling from the film.
  • the epoxy resin curing agent can be used without particular limitation as long as it is a compound that is usually used as a curing agent for epoxy resins.
  • examples of the amine-based curing agent include dicyandiamide and aromatic diamine
  • examples of the phenol-based curing agent include a phenol novolac resin, a cresol novolac resin, a bisphenol A novolac resin, and a triazine-modified novolac resin. It can be used alone or in combination of two or more.
  • a novolak-type curing agent containing a biphenyl skeleton, a naphthalene skeleton, or the like can be preferably used for improving the flame retardancy and dimensional stability of the resin composition.
  • a liquid novolac resin, a liquid aromatic diamine or the like can be preferably used.
  • the curing accelerator can be used without particular limitation as long as it is a compound usually used as a curing accelerator for epoxy resins.
  • imidazoles such as 2-ethyl-4-methylimidazole and 1-benzyl-2-methylimidazole, boron trifluoride amine complex, triphenylphosphine and the like can be mentioned. These may be used alone or in combination of two or more. Can be used.
  • Examples of the synthetic rubber (D) include acrylic rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, butadiene methyl acrylate acrylonitrile rubber, butadiene rubber, carboxyl group-containing acrylonitrile butadiene rubber, vinyl group-containing acrylonitrile butadiene rubber, silicone rubber, urethane rubber, Polyvinyl butyral or the like is used. These can be used alone or in combination of two or more.
  • the compounding amount of the synthetic rubber is preferably 10 to 30 parts by mass, more preferably 15 to 25 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D).
  • the blending amount is 10 parts by mass or more, sufficient adhesive strength can be obtained, and when it is 30 parts by mass or less, the heat resistance, thermal expansion grandchild number, and electrical connection reliability of the adhesive layer can be maintained.
  • a silica, an alumina, aluminum hydroxide, magnesium hydroxide, etc. are used preferably, These can be used individually or in mixture of 2 or more types.
  • the dimensional stability is improved by blending the inorganic filler.
  • the blending amount of the inorganic filler is preferably in the range of 5 to 30% by mass, more preferably in the range of 10 to 20% by mass, based on the total solid content in the composition. When the blending amount is 5% by mass or more, sufficient dimensional stability is obtained, and when it is 30% by mass or less, crack resistance can be maintained.
  • FIG. 7 is a cross-sectional view schematically showing an embodiment of the electronic component 111 on which the electronic component lid 3 having the conductive bump 3b is mounted.
  • FIG. 8 is a process diagram showing an embodiment of a method for mounting a portion corresponding to part A of FIG.
  • conductive bumps 3b are formed at positions in contact with the joints of the printed wiring board 9 in the electronic component lid assembly 1.
  • the conductive bump 3b preferably has a height and a diameter of 0.1 to 0.5 mm. When the diameter is 0.1 mm or more, there is no connection failure, and when the diameter is 0.5 mm or less, the conductive bump 3b does not spread too much due to deformation due to compression, and the insulation is not hindered.
  • the number of conductive bumps 3b to be installed is set according to the shape and size of the electronic component lid assembly 1, but the installation interval is preferably 1 mm or more.
  • the arrangement of the conductive bumps 3b is not particularly limited, such as a linear shape or a zigzag shape.
  • a stable grounding can be obtained by arranging in a zigzag manner.
  • the surface of the grounding portion of the electronic component lid assembly 1 is subjected to gold, silver, or tin plating in order to improve the connection reliability between the conductive bump 3 b and the electronic component lid assembly 1. It is preferable.
  • thermosetting adhesive sheet 21 is disposed between the conductive bump 3b formed on the electronic component lid assembly 1 and the ground circuit 9b.
  • a mounting method using the thermosetting adhesive sheet 21 will be described.
  • the thermosetting adhesive sheet 21 for example, bump through holes 21a are formed in contact portions of the conductive bumps 3b, and the bump through holes 21a and the conductive bumps 3b are aligned and temporarily attached.
  • the hole diameter is preferably about 0.05 to 0.1 mm larger than the bump diameter.
  • thermosetting adhesive sheet 21 may be previously penetrated by the conductive bumps 3b without forming the bump through holes 21a in the thermosetting adhesive sheet 21.
  • the thermosetting adhesive sheet 21 is brought into contact with the conductive bumps 3b formed on the electronic component lid assembly 1 under conditions of 80 to 150 ° C. and a linear pressure of 2 to 200 N / cm. Can be made.
  • thermosetting adhesive sheet when using liquid resin instead of a thermosetting adhesive sheet, a thermosetting adhesive is previously applied to the bonding surface between the electronic component lid assembly 1 and the ground circuit 9b using a dispenser or the like. After drying, the conductive bump 3b is brought into contact therewith.
  • the electronic component lid assembly 1 and the printed wiring board 9 are bonded together by applying heat and pressure with the thermocompression bonding tool 23 from above the electronic component lid assembly 1.
  • the electronic component lid assembly 1 and the ground circuit 9 b are electrically connected to form an electronic component assembly 11.
  • a heating temperature of 150 to 200 ° C., a pressure of 1 to 10 MPa, and a heating and pressing time of 1 to 10 minutes are preferable.
  • the electronic component assembly 11 to which the electronic component lid assembly 1 is thermocompression bonded is subjected to after-curing at 140 to 180 ° C. for 1 to 2 hours as necessary.
  • FIG. 8 (4) shows a cross section of the joint after mounting. Then, the electronic component 111 as shown in FIG. 7 can be manufactured by dividing into pieces as necessary.
  • FIG. 9A for an electronic component in which a thermosetting adhesive sheet 21 is temporarily attached to a surface on which a conductive bump 3b is formed at a predetermined position of a printed wiring board 9 on which an element component 8 is mounted.
  • the lid assembly 1 is brought into contact.
  • FIGS. 9B and 9C the grounding portion (bump forming portion) of the electronic component lid assembly 1 is pressed and heated with the thermocompression bonding tool 23 and bonded to the printed wiring board 9.
  • the electronic component assembly 11 is obtained.
  • FIG. 9 (d) a large number of electronic components 111 can be obtained by cutting into pieces at the intermediate portions of adjacent electronic components 111.
  • the shielding performance is exhibited only when the electronic circuit lid assembly 1 is electrically connected to the ground circuit 9b on the printed wiring board 9 and grounded.
  • the shield case is bonded onto the printed wiring board 9 using solder, conductive adhesive, or the like.
  • the shield case is also reduced in size and height, and insulation inside the shield case is required to ensure reliability as an electronic component.
  • a predetermined insulating resin as an insulating film on the mounting surface and inside of the shield case.
  • various methods can be applied. For example, a mask for providing an opening is formed in a portion of the shield case that is to be joined to the ground electrode of the printed wiring board 9, and then an insulating resin is formed. After applying and curing, the mask is removed to expose the conductive portion.
  • a metal shield case that is a three-dimensional and odd-shaped part, mask formation and mask removal are not always easy, and processing accuracy may be inferior.
  • the electronic component lid has a function of shielding the element component 8 mounted on the printed wiring board 9 from the outside, and has a mounting surface facing the printed wiring board 9 and an insulating film on the inner side.
  • a method for producing the assembly a method in which the following steps (A) to (C) are sequentially performed is preferable.
  • (A) A step of manufacturing the electronic component lid assembly 1.
  • (B) A step of forming an insulating coating by applying an insulating resin composition to the mounting surface and the inside facing the printed wiring board 9 in the electronic component lid assembly 1.
  • (C) A step of irradiating a laser beam to the insulating coating at a position where it is joined to the ground electrode of the printed wiring board 9 in the electronic component lid assembly 1 to form an opening.
  • FIG. 10 shows an example of the insulating film before and after the opening treatment of the insulating coating by laser irradiation as a schematic view seen from the mounting surface side of the lid assembly 1 for electronic components.
  • FIG. 10 (1) is after the insulating film is formed
  • (2) is the figure after the opening is formed by laser irradiation
  • the upper diagram is a plan view
  • the middle diagram A and the lower diagram B are respectively
  • FIG. 3 is a cross-sectional view taken along line AA and line BB in the plan view.
  • the insulating coating 3c is formed on the entire mounting surface and inside of the electronic component lid assembly 1.
  • laser irradiation is performed on the insulating coating 3c at a position connected to the ground circuit 9b of the printed wiring board 9 by soldering or the like.
  • FIG. 10 (2) for example, laser irradiation is performed near the corner of the electronic component lid 3, and the metal portion (conductive portion) of the electronic component lid assembly 1 is exposed at this portion.
  • An opening 3d is formed.
  • the material of the insulating coating 3c is not particularly limited as long as it is a material that can form a coating that maintains insulation between the electronic component lid assembly 1 and the components on the printed wiring board 9 and between the electrodes. It is preferably a thermosetting resin, more preferably an epoxy resin, a polyamide resin, a polyimide resin, a polyester resin, a polyesterimide resin, an acrylic resin, or a styrene block copolymer resin, and particularly preferably an epoxy resin. By using such an insulating material, good insulating properties and heat resistance can be obtained.
  • a colorant that absorbs laser light may be added to the insulating material.
  • the colorant is not particularly limited as long as it is a substance having an absorption range in a wavelength range of 190 nm to 2500 nm, preferably 350 nm to 1200 nm, and capable of absorbing light having a wavelength of 350 nm to 1200 nm and converting it into heat.
  • examples of such a colorant include inorganic pigments, dyes, and organic pigments. Specific examples include inorganic pigments such as carbon black, titanium oxide, and iron oxide, and colorants such as phthalocyanine pigments such as naphthalocyanine.
  • the method for applying the insulating material is not particularly limited, and known methods such as an air spray method, an airless spray method, a bell coating method, a dipping method, and an electrodeposition method can be used.
  • the insulating coating 3c having high reliability can be formed by heating and curing at 80 to 180 ° C. for 20 to 60 minutes.
  • the thickness of the insulating coating 3c is not particularly limited, but is preferably in the range of 5 ⁇ m to 50 ⁇ m. When the thickness of the insulating coating 3c is 5 ⁇ m or more, the insulation reliability is excellent, and when it is 50 ⁇ m or less, the laser processing time for processing the opening 3d can be shortened and productivity is improved.
  • the laser processing machine used for forming the opening 3d is not particularly limited as long as it is a laser processing machine having energy capable of evaporating the insulating material.
  • the range of the wavelength of the laser beam of the laser processing machine (including the Nth order harmonic; N is an integer of 2 or more) is not particularly limited, but from the viewpoint of cost, maintenance, productivity, safety, etc., for example, from near ultraviolet
  • the near-infrared wavelength range that is, preferably 190 nm to 2500 nm, more preferably 350 nm to 1200 nm.
  • the output is 10 W to 20 W and the processing speed is 10 mm / second to 60 mm / second.
  • the output is 0.5 W to 2 W and the processing speed is 50 mm / min. It is preferable to set it to ⁇ 300 mm / min.
  • the beam diameter at this time is preferably in the range of 0.05 mm to 0.2 mm.
  • FIG. 11 shows an embodiment of opening processing by laser irradiation.
  • the laser beam machine is controlled so that the laser beam 4 emitted from the laser beam machine (oscillator) 5 is reflected by the mirror 6, narrowed by the lens 7, and incident on the portion that becomes the opening 3 d of the insulating coating 3 c.
  • the opening 3d of the insulating coating 3c is formed by a pulsed laser irradiation with a predetermined mask diameter, or a trepering method in which laser light with a reduced beam diameter and increased energy density is rotated and irradiated. be able to.
  • the laser beam 4 may be scanned directly, but the laser head unit is fixed so that dust does not fall from the laser head unit, and the shield case assembly 1 is fixed on the stage in advance. And may be moved.
  • FIG. 12 shows an external view and a plan view of an embodiment of the electronic component lid 3 having an opening 3d in the insulating coating 3c.
  • the electronic component lid 3 has, for example, an insulating coating 3c formed on substantially the entire mounting surface side, and fan-shaped openings 3d formed at four corners of the mounting surface.
  • Example 1 [Preparation of lid assembly for electronic parts] A copper matrix having 14 ⁇ 18 square columns (width 2.6 mm ⁇ length 3.6 mm ⁇ height 0.7 mm) at equal intervals is prepared, and the current density is 5 A / in a nickel sulfamate bath. An electric current was passed at dm 2 for 70 minutes to produce an electronic component lid assembly 1 having a thickness of 0.04 mm. Four pieces of the same electronic component lid assembly 1 were produced, and the strength of these was evaluated by the following evaluation method. The results are shown in Table 1.
  • a probe with a tip diameter of 1 mm is attached to a push-in tester that combines an automatic vertical servo stand JS V-H1000 with a force gauge HF-1 (all manufactured by Nihon Keisoku System Co., Ltd.). After placing the probe so that the tip of the probe is in contact with the probe, the probe is lowered at a speed of 2 mm / min, and the load when the center part of the electronic component lid assembly 1 is pushed to 100 ⁇ m is read. It is shown in Table 1. Having a strength of 5N or more was determined as an acceptance criterion and indicated by “ ⁇ ”.
  • the lid assembly 1 for electronic parts formed by the electroforming method has a strength that can be sufficiently applied to pick and place and repair.
  • Example 2-1 Laser microfabrication system MWL-WS05T (manufactured by Fine Devices) along the center line 2 between adjacent electronic component lids 3 for the electronic component lid assembly 1 produced in the same manner as in Example 1.
  • An infrared laser beam having a wavelength of 1100 nm was continuously oscillated at an output of 20 W, scanned at a processing speed of 200 mm / min, and irradiated.
  • the electronic component lid assembly 1 irradiated with the laser beam was mounted at a predetermined position of the printed wiring board 9 on which the cream solder was printed, and mounted on the printed wiring board 9 by solder reflow.
  • the electronic component 111 was obtained by being divided into pieces by the divider 12 shown in FIG. As a result of observing the fracture surface of the electronic component lid 3 in the electronic component 111, it was found that the fracture surface was smooth.
  • Example 2-2 Laser microfabrication system MWL-WS05T (manufactured by Fine Devices) along the center line 2 between adjacent electronic component lids 3 for the electronic component lid assembly 1 produced in the same manner as in Example 1.
  • 355 nm ultraviolet laser light which is the third harmonic of the all-solid-state pulse laser, was oscillated at 20 kHz, scanned at a processing speed of 200 mm / min, and quenched.
  • the electronic component lid assembly 1 irradiated with the laser beam was mounted at a predetermined position of the printed wiring board 9 on which the cream solder was printed, and mounted on the printed wiring board 9 by solder reflow.
  • the electronic component 111 was obtained by being divided into pieces by the divider 12 shown in FIG. As a result of observing the fracture surface of the electronic component lid 3 in the electronic component 111, it was found that the fracture surface was smooth.
  • Example 2-3 The electronic component lid assembly 1 produced in the same manner as in Example 1 was mounted on a predetermined position of the printed wiring board 9 on which cream solder was printed without performing laser quenching, and mounted by solder reflow. Thereafter, as shown in FIG. 5, using a cutting machine having a rotary cutting blade, the rotary cutting blade was cut into individual pieces to obtain an electronic component 111. As a result of observing the fracture surface of the electronic component lid 3 in the electronic component 111, burrs, cracks, and the like were observed on the fracture surface.
  • Example 3-1 14 square x 18 horizontal pillars (width 2.6 mm x length 3.6 mm x height 0.7 mm) at equal intervals, and the interval between adjacent electronic component lids 3 is 1 mm,
  • An electric current was passed at a density of 5 A / dm 2 for 70 minutes to produce a lid assembly 1 for electronic parts having a thickness of 0.04 mm.
  • thermosetting adhesive sheet 21 was temporarily attached in alignment with the conductive bump formation surface of the electronic component lid assembly 1.
  • the electronic component lid assembly 1 is aligned with the element component assembly 10, held and bonded for 2 minutes at a heating temperature of 160 ° C. and a pressure of 5 MPa, and then cured at 160 ° C. for 1 hour. 11 was produced. Similarly, four electronic component assemblies 11 were produced, and warpage was evaluated by the following evaluation method. As a result, the warpage was 0.2 mm.
  • the electronic component assembly 11 is laid flat on a flat plate, and the vertical position of each of the electronic component lid assemblies 3 of the electronic component lid assembly 1 that is 14 vertical x 18 horizontal is m and the horizontal position. Is expressed as (m, n), where (m, n) is (1, 1), (1, 9), (1, 18), (7, 1), (7, 9), ( 7, 18), (14, 1), (14, 9), (14, 18), a total of nine (9 points) electronic component lids 3 are selected, and NEXIV VMR-3020 (trade name, The vertical component (distance) of the warp with respect to the flat plate was measured using Nikon Corporation, and the difference between the maximum value and the minimum value was defined as the warp of the electronic component lid assembly 1 and calculated.
  • Example 3-2 An electronic component lid assembly 1 was produced in the same manner as in Example 3-1, except that the conductive bump 3b was not provided. Further, in the same manner as in Example 3-1, a plurality of element parts were mounted on a printed wiring board 9 having a thickness of 0.1 mm on which cream solder was printed to produce an element part assembly 10. Thereafter, the electronic component lid assembly 1 was aligned with the element component assembly 10 and joined by solder reflow to produce an electronic component assembly 11. Four such electronic component assemblies 11 were prepared, and the warpage was evaluated in the same manner as in Example 3-1. As a result, the warpage was 0.5 mm.
  • Example 4-1 In the same manner as in Example 1, an electronic component lid assembly 1 was produced. 100 parts of an insulating epoxy resin composition TEB9504 (manufactured by Kyocera Chemical Co.), 100 parts of TEB9505 (manufactured by Kyocera Chemical Co., Ltd.) as a curing agent, and TTE8310 (as a solvent) are mounted on the mounting surface side of the lid assembly 1 for electronic parts. 200 parts of Kyocera Chemical Co., Ltd. blended to a thickness of 20 ⁇ m by spray coating, thermally cured at 100 ° C., and an electronic component lid having an insulating coating 3c on the mounting surface side A body assembly 1 was obtained.
  • TEB9504 manufactured by Kyocera Chemical Co.
  • TEB9505 manufactured by Kyocera Chemical Co., Ltd.
  • TTE8310 as a solvent
  • a laser micromachining system MWL-WS05T (manufactured by Fine Devices) is used on the surface of the insulating coating 3c corresponding to the four corners of each electronic component lid 3 in the electronic component lid assembly 1 to obtain a wavelength of 1100 nm. Then, an infrared laser having an output of 15 W was irradiated to form an opening 3d having a diameter of 0.5 mm. Next, the electronic component lid assembly 1 was cut into pieces to obtain an electronic component lid 3 having a width of 5.6 mm, a length of 5.6 mm, and a height of 0.2 mm.
  • Example 4-2 In the same manner as in Example 4-1, a lid assembly 1 for an electronic component having the insulating coating 3c was obtained. On the surface of the insulating coating 3c corresponding to the four corners of each electronic component lid 3 in the electronic component lid assembly 1, an all-solid pulse is applied using a laser micromachining system MWL-WS05T (manufactured by Fine Devices). The third harmonic of the laser (355 nm) was irradiated at a frequency of 20 kHz with a beam diameter of 0.05 nm by a treparing method to form an opening 3d having a diameter of 0.5 mm, which was the same as in Example 4-1.
  • MWL-WS05T manufactured by Fine Devices
  • the electronic component lid assembly 1 was cut into pieces to obtain an electronic component lid 3 having a width of 5.6 mm, a length of 5.6 mm, and a height of 0.2 mm. Thereafter, the electrical resistance was measured in the same manner as in Example 4-1. As a result, it was found that good conductivity could be secured.
  • the lid assembly for electronic parts formed by electroforming has a strength that can be applied to pick and place and repair during handling and mounting. Also, by mounting such a lid assembly for electronic parts on a printed wiring board, a large number of element parts (element parts applied to MEMS microphones, crystal resonators, wireless modules, etc.) are mounted on the printed wiring board.
  • the electronic component assembly in which the electronic component lid assembly is mounted on the element component assembly thus manufactured can be manufactured at low cost and high efficiency, and further, the electronic component can be manufactured at low cost and high efficiency.
  • the lid assembly for electronic components subjected to laser hardening can be easily divided into individual pieces, when mounted on an element component assembly in which a large number of element components are mounted on a printed wiring board, the printed wiring board V Electronic parts can be manufactured at a low cost and with high efficiency by dividing them easily along the groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Micromachines (AREA)

Abstract

This cover assembly for an electronic component is an assembly of a plurality of covers for electronic components formed by electroforming. Covers for electronic components are lined up in equidistant intervals to form a grid of m covers vertically × n covers horizontally (where m and n are each independently integers of 2 or more). The covers for an electronic component have a thickness of 0.03 mm to 0.08 mm, and inside height of 0.05 mm to 1.5 mm, and a length on one side of the top plate of 0.2 mm to 15 mm.

Description

電子部品用蓋体集合体、およびそれを用いた電子部品、ならびに電子部品の製造方法Lid assembly for electronic component, electronic component using the same, and method for manufacturing electronic component
 本発明は、電子部品やMEMSチップ等を覆う電子部品用蓋体の集合体である電子部品用蓋体集合体、およびそれを用いた電子部品、ならびに電子部品の製造方法に関する。 The present invention relates to an electronic component lid assembly that is an assembly of electronic component lids that cover an electronic component, a MEMS chip, and the like, an electronic component using the same, and an electronic component manufacturing method.
 従来から、基板上に実装されるチップ等の素子部品の空間を保護するために、電子部品用蓋体が用いられている。例えば、音信号を電気信号に変換するMEMSチップと金属製蓋体とにより構成されるMEMSマイクロホンが知られている(例えば、特許文献1~3参照)。ここで、MEMS(Micro Electro Mechanical Systems)とは、半導体製造プロセスにおける微細加工技術を駆使して作製された、微小部品からなる電気機械システムを意味する。他にも、密閉型の表面弾性波デバイス、加速度センサーや開放型の圧力センサー、流路センサー等が知られており、チップ等の素子部品を基板上に実装する際に、空間を保持するために金属製蓋体が使用されている。 Conventionally, a lid for electronic components has been used to protect the space of element components such as chips mounted on a substrate. For example, a MEMS microphone including a MEMS chip that converts a sound signal into an electrical signal and a metal lid is known (see, for example, Patent Documents 1 to 3). Here, MEMS (Micro Electro Mechanical Systems) means an electromechanical system made up of micro parts that is manufactured by making use of micro processing technology in a semiconductor manufacturing process. In addition, a sealed surface acoustic wave device, an acceleration sensor, an open pressure sensor, a flow path sensor, and the like are known. In order to maintain a space when an element component such as a chip is mounted on a substrate. A metal lid is used.
 ところで、従来の電子部品用金属製蓋体は、絞り加工によって形成されるため、コストや重量が問題となり、また、素子を多数個配列し一度に多数個のパッケージを生産する場合においては、部品点数が多く生産性が低下するのを免れないという問題があった。このため、繊維強化型樹脂製蓋体からなる電子部品用蓋体集合体が提案されている(例えば、特許文献4,5参照)。 By the way, since the conventional metal lid for electronic parts is formed by drawing, there is a problem of cost and weight, and when a large number of elements are arranged to produce a large number of packages at a time, the parts are There was a problem that the score was unavoidable and productivity was unavoidable. For this reason, an electronic component lid assembly composed of a fiber reinforced resin lid has been proposed (see, for example, Patent Documents 4 and 5).
特開2008-072580号公報JP 2008-072580 A 特開2008-199353号公報JP 2008-199353 A 特開2009-247007号公報JP 2009-247007 A 特開2011-049310号公報JP 2011-049310 A 特開2011-096940号公報JP 2011-096940 A
 しかしながら、樹脂からなる蓋体集合体はコスト増が避けられず、また、強度確保のために蓋体の厚さが必要となり、重量の増加という問題からも、必ずしも充分に満足し得るとは云えなかった。 However, an increase in cost is unavoidable for the lid assembly made of resin, and the thickness of the lid is necessary to ensure strength, and it can be said that the lid assembly is sufficiently satisfactory from the problem of an increase in weight. There wasn't.
 本発明は、このような状況下になされたものであって、小型、軽量化された電子部品用蓋体を得るための電子部品用蓋体集合体、および該電子部品用蓋体集合体を用いた電子部品を提供することを目的とする。また、本発明は、該電子部品用蓋体集合体を用いた電子部品の製造方法を提供することを目的とする。 The present invention has been made under such circumstances, and includes an electronic component lid assembly for obtaining a compact and lightweight electronic component lid, and the electronic component lid assembly. It aims at providing the used electronic component. Another object of the present invention is to provide a method of manufacturing an electronic component using the electronic component lid assembly.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。即ち、電鋳法によって形成した、厚さが0.03mmから0.08mmの電子部品用蓋体の集合体であって、特定形状の電子部品用蓋体を縦m個×横n個(m、nは、それぞれ独立に2以上の整数である)に、複数個を均等間隔で並べてなることで、厚さが薄くなっても取り扱い性に優れ、電子部品用蓋体としての目的に適合し得ることを見出した。また、プリント配線基板にセンサー部品等の素子部品を多数個実装して素子部品集合体となし、これに電子部品用蓋体集合体を実装後、個別に切り分けることで、電子部品を低価格かつ高効率で製造できることを見出した。本発明は、かかる知見に基づいて完成したものである。 The present inventors obtained the following knowledge as a result of intensive studies to achieve the above object. That is, it is an assembly of lids for electronic parts having a thickness of 0.03 mm to 0.08 mm formed by an electroforming method, and the number of lids for electronic parts having a specific shape is m × n (m , N are each independently an integer of 2 or more), and a plurality of them are arranged at equal intervals, so that even if the thickness is reduced, it is easy to handle and fits the purpose as a lid for electronic parts. Found to get. In addition, a large number of element parts such as sensor parts are mounted on a printed wiring board to form an element part assembly, and after mounting a lid assembly for electronic parts on the printed circuit board, the electronic parts can be separated at a low price. It was found that it can be manufactured with high efficiency. The present invention has been completed based on such findings.
 すなわち、本発明は、
(1)電鋳法によって形成した、厚さが0.03mmから0.08mmの電子部品用蓋体の集合体であって、内側の高さが0.05mmから1.5mm、天板の1辺の長さが0.2mmから15mmである電子部品用蓋体を、縦m個×横n個(m、nは、それぞれ独立に2以上の整数である)に複数個を均等間隔で並べてなることを特徴とする電子部品用蓋体集合体、
(2)前記電子部品用蓋体集合体の、隣接する電子部品用蓋体間の分割箇所に沿って、レーザー光を照射し表面を溶融、または焼入れしてなることを特徴とする電子部品用蓋体集合体、
(3)前記電子部品用蓋体の実装面側の少なくとも3箇所に凸形状を有することを特徴とする電子部品用蓋体集合体、
(4)前記電子部品用蓋体をプリント配線基板に実装してなることを特徴とする電子部品、および
(5)プリント配線基板に縦m個×横n個(m、nは、それぞれ独立に2以上の整数である)からなる素子部品を実装して素子部品集合体を作製し、前記素子部品集合体に上記(1)~(3)のいずれかに記載の電子部品用蓋体集合体を実装して電子部品集合体を作製後、前記電子部品集合体を個片に切り分けて電子部品を得ることを特徴とする電子部品の製造方法を提供するものである。
That is, the present invention
(1) An assembly of electronic component lids having a thickness of 0.03 mm to 0.08 mm, formed by electroforming, having an inner height of 0.05 mm to 1.5 mm, A plurality of lids for electronic parts having side lengths of 0.2 mm to 15 mm are arranged at equal intervals in m vertical x n horizontal (m and n are each independently an integer of 2 or more). A lid body assembly for electronic parts,
(2) The electronic component lid assembly is obtained by irradiating a laser beam along a divided portion between adjacent electronic component lids to melt or quench the surface. Lid assembly,
(3) An electronic component lid assembly having convex shapes at least at three locations on the mounting surface side of the electronic component lid,
(4) An electronic component characterized in that the electronic component lid is mounted on a printed wiring board, and (5) vertical m × horizontal n pieces (m and n are independently An element component assembly is manufactured by mounting an element component consisting of two or more integers), and the electronic component lid assembly according to any one of (1) to (3) above is formed on the element component assembly. The electronic component assembly is manufactured by mounting the electronic component assembly, and then the electronic component assembly is cut into individual pieces to obtain the electronic component.
 本発明によれば、軽量でありながら取扱い性に優れた電子部品用蓋体集合体を提供することができる。さらに、プリント配線基板に多数の素子部品を実装した素子部品集合体とし、該素子部品集合体に電子部品用蓋体集合体を実装することで、低価格かつ高効率で電子部品を製造することができる。 According to the present invention, it is possible to provide a lid assembly for an electronic component that is lightweight and excellent in handleability. Further, an electronic component can be manufactured at low cost and high efficiency by mounting an element component assembly in which a large number of element components are mounted on a printed wiring board, and mounting the lid assembly for electronic components on the element component assembly. Can do.
電子部品用蓋体集合体とその分割箇所の一実施形態を模式的に示す外観図。The external view which shows typically one Embodiment of the cover assembly for electronic components, and its division | segmentation location. レーザー焼入れの一実施形態を示す模式図。The schematic diagram which shows one Embodiment of laser hardening. 電子部品用蓋体集合体にレーザー焼入れを施して電子部品を製造する製造工程の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing process which gives laser hardening to the lid | cover aggregate | assembly for electronic components, and manufactures an electronic component. 電子部品の分割方法の一実施形態を示す模式図。The schematic diagram which shows one Embodiment of the division | segmentation method of an electronic component. 回転式切断刃により電子部品を製造する製造工程の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the manufacturing process which manufactures an electronic component with a rotary cutting blade. 実装面側に凸形状を有する電子部品用蓋体が実装され、かつプリント配線基板と電子部品用蓋体との間に空隙が設けられた電子部品の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the electronic component by which the cover for electronic components which has a convex shape is mounted in the mounting surface side, and the space | gap was provided between the printed wiring board and the cover for electronic components. 導電性バンプを有する電子部品用蓋体が実装された電子部品の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the electronic component by which the cover for electronic components which has a conductive bump was mounted. 図7のA部の実装方法の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the mounting method of the A section of FIG. 導電性バンプを有する電子部品用蓋体集合体を用いた電子部品の製造工程の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the manufacturing process of the electronic component using the cover assembly for electronic components which has an electroconductive bump. レーザー照射による絶縁性被膜の開口処理前後の電子部品用蓋体集合体の一例を示す平面図および断面図。The top view and sectional drawing which show an example of the cover assembly for electronic components before and behind the opening process of the insulating film by laser irradiation. レーザー照射による開口処理の一実施形態を示す模式図。The schematic diagram which shows one Embodiment of the opening process by laser irradiation. 絶縁性被膜に開口部を有する電子部品用蓋体の一実施形態を示す斜視図および平面図。The perspective view and top view which show one Embodiment of the cover for electronic components which has an opening part in an insulating film.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
[電子部品用蓋体集合体]
 電子部品用蓋体集合体は、縦m個×横n個(m、nは、それぞれ独立に2以上の整数である)の電子部品用蓋体を均等間隔で規則的に並べてなる多数個取り金属製電子部品用蓋体集合体である。m、nの数は好ましくは2~100であり、2よりも小さいと生産性や取扱い性に寄与せず、100よりも大きいと位置合わせ精度に問題が生じる。個々の電子部品用蓋体の形状は、平面図において円形でも正方形でも、また長方形でもよい。
[Electronic component lid assembly]
The electronic component lid assembly has a large number of vertical x m horizontal x (m and n are each independently an integer of 2 or more) electronic component lids regularly arranged at regular intervals. It is a lid assembly for metal electronic parts. The number of m and n is preferably 2 to 100, and if it is smaller than 2, it does not contribute to productivity and handleability, and if it is larger than 100, a problem occurs in alignment accuracy. The shape of each individual electronic component lid may be circular, square, or rectangular in plan view.
 当該電子部品用蓋体の厚さは、0.03mmから0.08mmが好ましい。0.03mmよりも薄いと強度が弱く、またピックアンドプレース時の圧力に耐えられなくなる虞があり、0.08mmを超えると重量や価格が上昇するため好ましくない。なお、厚さは、必ずしも全ての部分について同一である必要はなく、上記範囲内であれば部分毎に異なっていてもよい。また、後述するような焼き入れを行った部分については、必ずしも上記範囲内となっていなくてもよい。 The thickness of the electronic component lid is preferably 0.03 mm to 0.08 mm. If the thickness is less than 0.03 mm, the strength is weak and the pressure during pick-and-place may not be able to be tolerated. If it exceeds 0.08 mm, the weight and price increase, which is not preferable. The thickness does not necessarily have to be the same for all portions, and may be different for each portion as long as it is within the above range. Further, a portion subjected to quenching as described later does not necessarily have to be within the above range.
 個々の電子部品用蓋体の寸法は、内側の高さが0.05mmから1.5mm程度であることが好ましく、天板の1辺の長さは0.2mmから15mm程度であることが好ましい。内側の高さが1.5mmよりも高くなったり、天板の1辺の長さが15mmよりも長くなると取扱い性に劣り、ピックアンドプレースに必要な強度を保持できなくなる虞があるため好ましくない。ここで、個々の電子部品用蓋体の形状が平面図において円形である場合は、上記「一辺の長さ」は「直径」と読み替えられる。 Regarding the dimensions of the individual electronic component lids, the inner height is preferably about 0.05 mm to 1.5 mm, and the length of one side of the top plate is preferably about 0.2 mm to 15 mm. . If the inner height is higher than 1.5 mm, or if the length of one side of the top plate is longer than 15 mm, it is not preferable because the handling property is inferior and the strength required for pick and place cannot be maintained. . Here, when the shape of each electronic component lid is circular in the plan view, the “length of one side” is read as “diameter”.
 また、隣接する個々の電子部品用蓋体の間隔は0.3mm以上であることが好ましく、間隔が0.3mmよりも小さいと、後述する電鋳法による製造時において、母型からの剥離が難しくなったり、電着の均一性が低下する虞があるため好ましくない。さらに、後述するように個片に切り分けたとき、例えば前記間隔から切断刃の幅を除いた部分が基板との接続面となる。したがって、前記間隔が0.3mm以上であれば良好な接着強度が得られる。前記間隔は、無効な部分を極力少なくするという観点から最大1mm程度とするのが好ましい。なお、間隔は、平面視で最も間隔が狭くなる位置での間隔とする。また、間隔が電子部品用蓋体の高さ方向で変化する場合、高さ方向の中間位置での間隔とする。 Moreover, it is preferable that the space | interval of the lid | cover for each adjacent electronic component is 0.3 mm or more, and when the space | interval is smaller than 0.3 mm, at the time of the manufacture by the electroforming method mentioned later, peeling from a mother die is carried out. This is not preferable because it may be difficult or the uniformity of electrodeposition may be reduced. Furthermore, when it divides | segments into an individual piece so that it may mention later, the part remove | excluding the width | variety of the cutting blade from the said space | interval becomes a connection surface with a board | substrate, for example. Therefore, good adhesive strength can be obtained if the distance is 0.3 mm or more. The distance is preferably about 1 mm at the maximum from the viewpoint of minimizing invalid portions. The interval is the interval at the position where the interval is the narrowest in plan view. Further, when the interval changes in the height direction of the electronic component lid, the interval is set at an intermediate position in the height direction.
 電子部品用蓋体の実装面側には、少なくとも3箇所に凸形状を設置することが好ましい。少なくとも3箇所に凸形状を設置することで、プリント配線板と電子部品用蓋体との間に所望の間隙を設けることができる。このような空隙を設けることで、圧力センサー、流路センサー等の開放型電子部品に最適な電子部品用蓋体を得ることができる。凸形状の形状は、角柱、角錐、円柱、円錐等特に限定されず、また設置箇所は角部もしくは辺の中央部等、特に限定されず、さらに個数についても特に限定されず、3箇所以上あれば安定して固定される。凸形状の高さは、特に限定されないが0.01から0.1mmが好ましい。凸形状の高さがこの範囲にあると圧力センサー、流路センサー等の開放型電子部品に対して、適正な間隙を設置することができる。 It is preferable to provide convex shapes at least at three locations on the mounting surface side of the electronic component lid. By installing convex shapes in at least three places, a desired gap can be provided between the printed wiring board and the electronic component lid. By providing such a gap, it is possible to obtain an electronic component lid that is optimal for open electronic components such as pressure sensors and flow path sensors. The shape of the convex shape is not particularly limited, such as a prism, a pyramid, a cylinder, or a cone, and the installation location is not particularly limited, such as a corner or a central portion of a side, and the number is not particularly limited, and there are three or more locations. It is fixed stably. The height of the convex shape is not particularly limited, but is preferably 0.01 to 0.1 mm. When the height of the convex shape is within this range, an appropriate gap can be provided for open electronic components such as a pressure sensor and a flow path sensor.
[電子部品用蓋体集合体の製造方法]
 上記したような電子部品用蓋体集合体は、板金の絞り加工や曲げ加工では製造することが困難であり、金属製品の複製法である電鋳法によって製造することが好ましい。この電鋳法は、電気めっき法により、母型の表面に所定の厚さで金属を析出させた後、この電着層を母型から剥離することによって製造するものである。
[Method of manufacturing lid assembly for electronic parts]
The lid assembly for electronic parts as described above is difficult to manufacture by drawing or bending a sheet metal, and is preferably manufactured by an electroforming method which is a replication method of a metal product. This electroforming method is manufactured by depositing a metal with a predetermined thickness on the surface of a matrix by electroplating and then peeling the electrodeposition layer from the matrix.
 当該電子部品用蓋体集合体は、銅、ニッケル、または各々の合金からなることが好ましく、特に、銅、ニッケル、またはニッケル-リン、ニッケル-マンガン、ニッケル-コバルト、ニッケル-鉄からなることが好ましい。これらの金属を使用することにより、良好な強度やシールド性が得られる。 The lid assembly for electronic parts is preferably made of copper, nickel, or an alloy thereof, and in particular, copper, nickel, or nickel-phosphorus, nickel-manganese, nickel-cobalt, nickel-iron. preferable. By using these metals, good strength and shielding properties can be obtained.
 この電鋳法において使用する母型については、特に限定されないが、銅、ニッケル、クロム、真鍮製等があり、離型皮膜を形成するために複素環式チアジアゾール誘導体を含む溶液に母型を浸漬したあとに電気めっきを施す方法やクロム酸溶液に浸漬してクロム酸皮膜を形成させる方法がある。また、抜き勾配を付ける場合の角度は10~20度が好ましい。 The matrix used in this electroforming method is not particularly limited, but there are copper, nickel, chromium, brass, etc., and the matrix is immersed in a solution containing a heterocyclic thiadiazole derivative to form a release film. Then, there are a method of performing electroplating and a method of forming a chromic acid film by dipping in a chromic acid solution. In addition, the angle for drafting is preferably 10 to 20 degrees.
 電子部品用蓋体集合体の製造条件は、電着金属の種類によって適宜選定する。例えば、ニッケル電着では、塩化ニッケル浴、硫酸ニッケル浴、スルファミン酸ニッケル浴、ホウフッ化ニッケル浴等が一般に用いられ、電流密度は2.5~15A/dmの範囲で適正な値が設定され、通常1~2.5時間通電して製造する。 The manufacturing conditions of the electronic component lid assembly are appropriately selected according to the type of electrodeposited metal. For example, in nickel electrodeposition, nickel chloride bath, nickel sulfate bath, nickel sulfamate bath, nickel borofluoride bath, etc. are generally used, and the current density is set within a range of 2.5 to 15 A / dm 2. Usually, it is produced by energizing for 1 to 2.5 hours.
 さらに、電子部品用蓋体集合体の接地部表面には、金、銀、または錫めっき処理を施してもよい。このような表面処理を施すことにより電子部品用蓋体集合体と基板との接続安定性が良好になる。また、電子部品用蓋体集合体の内側に樹脂をコーティングすることで絶縁性を付与することもできる。コーティング樹脂としてはエポキシ樹脂が好ましく、液状樹脂や粉体塗料を使用することができる。 Furthermore, gold, silver, or tin plating may be applied to the surface of the grounding portion of the lid assembly for electronic components. By performing such surface treatment, the connection stability between the lid assembly for electronic parts and the substrate is improved. Moreover, insulation can also be provided by coating resin inside the lid assembly for electronic components. The coating resin is preferably an epoxy resin, and a liquid resin or a powder coating can be used.
[レーザー光照射による溶融または焼入れ]
 電子部品用蓋体集合体を電子部品用蓋体の個片に分割する際、またはプリント基板に電子部品用蓋体集合体が実装された電子部品集合体を電子部品の個片に分割する際の分割を容易にするために、電子部品用蓋体集合体の分割箇所にはレーザー光照射による溶融または焼入れを行うことが好ましい。
[Melting or quenching by laser light irradiation]
When dividing an electronic component lid assembly into pieces of electronic component lids, or when dividing an electronic component assembly in which an electronic component lid assembly is mounted on a printed circuit board into pieces of electronic components In order to facilitate the division, it is preferable to perform melting or quenching by irradiation with laser light at the divided portion of the lid assembly for electronic components.
 電子部品用蓋体集合体の分割箇所への溶融または焼入れは、所定の波長を有するレーザー加工機を使用する。具体的には、レーザー加工機のレーザー光の出力、加工速度、ビーム径等を制御し、レーザー光を分割箇所に照射して、金属製電子部品用蓋体材料の変態点以上から溶融点以下の温度範囲に加熱して、自己冷却放冷(材料自身の熱拡散による急速冷却)することによって行う。電子部品用蓋体材料の金属の種類によっても変態点や溶融点は異なるが、一般に750℃~1400℃の範囲が好ましい。例えば、電子部品用蓋体集合体の分割箇所へ溶融または焼入れを行うと、溶融または焼入れ条件(冷却条件にも依存)によっても異なるが、通常、溶融または焼入れされた部位の硬度は増すが、逆に衝撃には脆くなることから、分割が容易となる。 レ ー ザ ー A laser processing machine having a predetermined wavelength is used for melting or quenching the divided parts of the electronic component lid assembly. Specifically, the laser beam output, processing speed, beam diameter, etc. of the laser processing machine are controlled, and the laser beam is irradiated to the divided points, so that the melting point is higher than the transformation point of the metallic electronic component lid material. It is carried out by heating to a temperature range of (2) and cooling by self-cooling (rapid cooling by thermal diffusion of the material itself). Although the transformation point and the melting point differ depending on the type of metal of the lid material for electronic parts, a range of 750 ° C. to 1400 ° C. is generally preferable. For example, when melting or quenching to the divided part of the lid assembly for electronic parts, although it depends on the melting or quenching conditions (depending on the cooling conditions), the hardness of the melted or quenched parts usually increases. On the other hand, since it becomes brittle to impact, the division becomes easy.
 上記したレーザー光照射による溶融または焼入れを適用することで、電子部品用蓋体集合体から電子部品用蓋体の個片への加工を容易に行うことができる。溶融または焼入れに用いるレーザー加工機については、金属材料に対するマイクロ溶接に使用可能なレーザー加工機であれば特に限定されない。また、レーザー加工機のレーザー光の波長の範囲(N次高調波含む;Nは2以上の整数)も、特に限定されないが、コスト、メンテナンス、生産性、安全性等の観点から、例えば、近紫外から近赤外の波長範囲、つまり、190nm~2500nm、好ましくは350nm~1200nmである。 By applying the above-described melting or quenching by laser light irradiation, it is possible to easily process the electronic component lid assembly into pieces of the electronic component lid. The laser processing machine used for melting or quenching is not particularly limited as long as it is a laser processing machine that can be used for micro welding on a metal material. Further, the range of the wavelength of the laser beam of the laser processing machine (including N-order harmonics; N is an integer of 2 or more) is not particularly limited. From the viewpoint of cost, maintenance, productivity, safety, etc., for example, The wavelength range from ultraviolet to near infrared, that is, 190 nm to 2500 nm, preferably 350 nm to 1200 nm.
 例えば、0.03mm~0.08mmの厚さのニッケル製電子部品用蓋体では、波長が1100nmの赤外レーザーを使用する場合、出力10W~30Wで、加工速度を50mm/分~300mm/分とすることが好ましい。同様に、例えば、全固体パルスレーザー(例えば、発振周波数:20kHz)の第三高調波である波長が355nmの紫外レーザーを使用する場合、出力1W~2Wで、加工速度を50mm/分~300mm/分とすることが好ましい。このときのビーム径は0.02mm~0.2mmの範囲にあることが好ましい。 For example, in the case of a lid for nickel electronic parts having a thickness of 0.03 mm to 0.08 mm, when an infrared laser having a wavelength of 1100 nm is used, the output is 10 W to 30 W and the processing speed is 50 mm / min to 300 mm / min. It is preferable that Similarly, for example, when an ultraviolet laser having a wavelength of 355 nm, which is the third harmonic of an all-solid-state pulse laser (for example, oscillation frequency: 20 kHz), is used, the output is 1 W to 2 W, and the processing speed is 50 mm / min to 300 mm / Minutes are preferred. The beam diameter at this time is preferably in the range of 0.02 mm to 0.2 mm.
 尚、レーザー光の照射エネルギーによっては、電子部品用蓋体集合体の表面が溶出し、レーザー光のビーム径の幅で細い線状痕が形成されることがあるが、その深さが電子部品用蓋体集合体の厚さの1/2以下に収まるように上記加工条件を設定することにより、例えばプリント配線基板への実装工程での搬送の際に電子部品用蓋体集合体自体が分割されてしまうおそれもなく、実装後、すなわちプリント配線基板との接合後、良好な分割ができる。 Depending on the irradiation energy of the laser beam, the surface of the lid assembly for the electronic component may elute and a thin linear mark may be formed with the width of the laser beam diameter. By setting the above processing conditions so that the thickness of the lid assembly is less than or equal to 1/2 of the thickness of the lid assembly, the lid assembly for electronic components itself is divided when transported in a mounting process on a printed wiring board, for example. There is no fear of being divided, and after the mounting, that is, after joining with the printed wiring board, a good division can be performed.
 図1は、電子部品用蓋体集合体とその分割箇所の一実施形態を模式的に示す外観図である。また、図2は、レーザー焼入れの一実施形態を示す模式図であり、レーザー加工装置(発振機)から分割箇所までのレーザー光の経路の一例を示す模式図である。 FIG. 1 is an external view schematically showing an embodiment of a lid assembly for an electronic component and one of its divided portions. FIG. 2 is a schematic diagram showing an embodiment of laser quenching, and is a schematic diagram showing an example of a path of laser light from a laser processing apparatus (oscillator) to a divided portion.
 図1に示すように、例えば、電子部品用蓋体集合体1の分割箇所である隣接する電子部品用蓋体3間の中心線2に沿って、レーザー光4を照射し、走査(移動)することで、電子部品用蓋体集合体1の分割箇所を焼入れする。 As shown in FIG. 1, for example, scanning (moving) is performed by irradiating a laser beam 4 along a center line 2 between adjacent electronic component lids 3 which are divided portions of the electronic component lid assembly 1. By doing so, the division | segmentation location of the cover assembly 1 for electronic components is quenched.
 図2に示すように、例えば、レーザー加工装置(発振機)5から出射したレーザー光4は、ミラー6で反射され、レンズ7で絞られ、分割箇所へ入射するように制御される。実際の走査に関しては、レーザー光4を直接走査しても良いが、レーザーヘッド部等からの粉塵の落下を抑制するために、予めステージ上に電子部品用蓋体集合体1を固定して移動させてもよい。 As shown in FIG. 2, for example, the laser beam 4 emitted from the laser processing apparatus (oscillator) 5 is reflected by the mirror 6, narrowed by the lens 7, and controlled to enter the divided portion. For actual scanning, the laser beam 4 may be directly scanned, but the lid assembly 1 for electronic components is fixed and moved in advance on the stage in order to suppress the falling of dust from the laser head or the like. You may let them.
 分割箇所に関しては、通常、隣接する電子部品用蓋体3間の中心線2が選ばれるが、特に制限されない。ただし、プリント配線基板に実装し個片に分割する場合には、分割後の、破断面の平滑性、またバリおよびクラック等の発生の抑制の観点から、電子部品用蓋体集合体1の分割箇所とプリント基板(電子部品用蓋体1を実装する面に対し裏面側)に予め設けたV溝箇所(部)との位置関係については、互いに重なり合うように対応させておくことが好ましい。 Regarding the divided part, the center line 2 between the adjacent electronic component lids 3 is usually selected, but is not particularly limited. However, when mounted on a printed wiring board and divided into individual pieces, division of the electronic component lid assembly 1 from the viewpoint of smoothness of the fracture surface after division and suppression of occurrence of burrs, cracks, etc. The positional relationship between the location and the V-groove location (part) provided in advance on the printed circuit board (the back side with respect to the surface on which the electronic component lid 1 is mounted) is preferably matched so as to overlap each other.
[電子部品用蓋体]
 電子部品用蓋体集合体1を個片に分割することで、容易に電子部品用蓋体3を得ることができる。特に、上記したようにレーザー光4を分割箇所に照射した電子部品用蓋体集合体1は、特別な切断機を用いることなく、簡便な分割機によって容易に電子部品用蓋体3を得ることができる。このようにして得られた電子部品用蓋体3は、導電性接着材の熱硬化またはクリームはんだリフロー等の常法によりプリント配線基板と接合する。
[Electronic component lid]
By dividing the electronic component lid assembly 1 into pieces, the electronic component lid 3 can be easily obtained. In particular, as described above, the lid assembly 1 for an electronic component irradiated with the laser beam 4 on the divided portion can easily obtain the lid 3 for an electronic component by a simple dividing machine without using a special cutting machine. Can do. The electronic component lid 3 thus obtained is bonded to the printed wiring board by a conventional method such as thermosetting of a conductive adhesive or cream solder reflow.
[電子部品の製造方法]
 次に、レーザー焼入れを施した電子部品用蓋体集合体1を使用した電子部品の製造方法について、図3~5を用いて説明する。図3は、電子部品用蓋体集合体1にレーザー焼入れを施して電子部品を製造する工程の一例を工程順に示す説明図である。
[Method of manufacturing electronic parts]
Next, a method for manufacturing an electronic component using the electronic component lid assembly 1 subjected to laser hardening will be described with reference to FIGS. FIG. 3 is an explanatory diagram showing an example of a process of manufacturing an electronic component by laser quenching the electronic component lid assembly 1 in the order of steps.
 まず、図3(a)に示すように、予めV溝9aを加工したプリント配線基板9に、素子部品8を縦m×横n個(m、nは、それぞれ独立に、2以上の整数を表す)を実装して素子部品集合体10とする。その後、図3(b)に示すように、電子部品用蓋体集合体1をプリント配線基板9に実装して電子部品集合体11とする。 First, as shown in FIG. 3A, a printed wiring board 9 in which a V-groove 9a has been processed in advance is provided with m component elements 8 in length m × width n (m and n are each independently an integer of 2 or more. The element component assembly 10 is mounted. Thereafter, as shown in FIG. 3B, the electronic component lid assembly 1 is mounted on a printed wiring board 9 to form an electronic component assembly 11.
 実際の実装は、電子部品用蓋体集合体1とプリント配線基板9との接合により行うが、接合に関しては、導電性接着材の熱硬化またはクリームはんだリフロー等の常法により行う。しかる後、図3(c)におけるV溝9aの位置でプリント配線基板9を個片に分割することで、中心線2に焼入れされた電子部品用蓋体集合体1が同時に一体となって容易に分割され、図3(d)に示す電子部品111の個片を短時間で多数個得ることができる。 Actual mounting is performed by joining the lid assembly 1 for electronic components and the printed wiring board 9, and the joining is performed by a conventional method such as heat curing of a conductive adhesive or cream solder reflow. Thereafter, the printed circuit board 9 is divided into pieces at the position of the V-groove 9a in FIG. 3C, so that the electronic component lid assembly 1 hardened to the center line 2 can be easily integrated together. Thus, a large number of pieces of the electronic component 111 shown in FIG. 3D can be obtained in a short time.
 ここで、電子部品用蓋体集合体1が実装されたプリント配線基板9の個片への分割方法の一実施形態を説明する。図4は、分割機および分割対象である電子部品集合体11の一実施形態を示す模式図である。 Here, an embodiment of a method for dividing the printed wiring board 9 on which the electronic component lid assembly 1 is mounted will be described. FIG. 4 is a schematic diagram showing an embodiment of the divider and the electronic component assembly 11 to be divided.
 まず、分割機12は、ベース13、クランプ14、分割ヘッド15および搬送コンベア16で構成されている。ベース13上を隣接する電子部品用蓋体3間の配列ピッチ量に応じてステップ送りされた縦m個×横n個の電子部品集合体11は、分割位置でクランプ14の下降により固定される。次いで、分割ヘッド15が下降し、プリント配線基板9のV溝9aに沿って、縦方向(紙面に立てた法線方向)m個の電子部品111が一列に連なった集合体に分割する。さらに、搬送コンベア16により、次のステップに移送されたm個の電子部品111が一列に連なった集合体は、上記と同様にして、m個の電子部品111に切り分けられる。このように個片に切り分けることで、容易に多数個の電子部品111を得ることができる。 First, the dividing machine 12 includes a base 13, a clamp 14, a dividing head 15, and a conveyor 16. The vertical m × n horizontal electronic component assemblies 11 stepped according to the arrangement pitch amount between the electronic component lids 3 adjacent on the base 13 are fixed by the lowering of the clamps 14 at the division positions. . Next, the dividing head 15 descends, and the electronic components 111 in the vertical direction (normal direction standing on the paper surface) m pieces are divided into an assembly in a row along the V groove 9 a of the printed wiring board 9. Further, the assembly in which the m electronic components 111 transferred to the next step are arranged in a row by the conveyor 16 is cut into m electronic components 111 in the same manner as described above. By dividing into pieces as described above, a large number of electronic components 111 can be easily obtained.
 図5は、回転式切断刃により電子部品111を製造する工程の一例を工程順に示す説明図であり、レーザー焼入れを施していない電子部品用蓋体集合体1を用いて電子部品111を製造する工程の一例を工程順に示す説明図である。 FIG. 5 is an explanatory diagram illustrating an example of a process for manufacturing the electronic component 111 with the rotary cutting blade in the order of processes, and the electronic component 111 is manufactured using the electronic component lid assembly 1 that has not been laser-hardened. It is explanatory drawing which shows an example of a process in process order.
 まず、図5(a)に示すように、素子部品8をプリント配線基板9に実装して素子部品集合体10とする。その後、図5(b)に示すように、このプリント配線基板9に電子部品用蓋体集合体1を実装して電子部品集合体11とする。次いで、図5(c)に示すように、電子部品用蓋体集合体1が実装されたプリント配線基板9を、隣接する電子部品111の中間部分で回転式切断刃17によって個片に切り分ける。その結果、図5(d)に示すように、複数の電子部品111を得ることができる。 First, as shown in FIG. 5A, the element component 8 is mounted on the printed wiring board 9 to form an element component assembly 10. Thereafter, as shown in FIG. 5B, the electronic component lid assembly 1 is mounted on the printed wiring board 9 to form an electronic component assembly 11. Next, as shown in FIG. 5C, the printed wiring board 9 on which the electronic component lid assembly 1 is mounted is cut into pieces by a rotary cutting blade 17 at an intermediate portion between the adjacent electronic components 111. As a result, as shown in FIG. 5D, a plurality of electronic components 111 can be obtained.
 本発明において用いられる素子部品8としては、具体的には、MEMSマイクロフォン、水晶振動子、無線モジュール、タイムベースモジュール、セラミックレゾネータ、ブルートゥースモジュール等が挙げられる。 Specific examples of the element component 8 used in the present invention include a MEMS microphone, a crystal resonator, a wireless module, a time base module, a ceramic resonator, a Bluetooth module, and the like.
[凸形状]
 電子部品用蓋体集合体1には、例えば、図6に示すように、各電子部品用蓋体3の実装面側の少なくとも3箇所に凸形状3aを設置してもよい。少なくとも3箇所に凸形状3aを設置することで、プリント配線基板9と電子部品用蓋体3との間に、所望の間隙を設けることが可能となる。このような空隙を設けることで、圧力センサー、流路センサー等の開放型電子部品に最適な電子部品用蓋体3を得ることができる。凸形状3aの形状は、角柱、角錐、円柱、円錐等、特に限定されず、また設置箇所は角部もしくは辺の中央部等、特に限定されず、さらに個数についても特に限定されず、3箇所以上あれば安定して固定される。凸形状3aの高さは、特に限定されないが0.01から0.1mmが好ましい。凸形状3aの高さがこの範囲にあると圧力センサー、流路センサー等の開放型電子部品に対して、適正な間隙を設置することができる。凸形状3aは、例えば後述する導電性バンプ3bと同様の方法を用いて形成できる。
[Convex shape]
For example, as shown in FIG. 6, the electronic component lid assembly 1 may be provided with convex shapes 3 a at at least three locations on the mounting surface side of each electronic component lid 3. By providing the convex shapes 3a at at least three locations, it is possible to provide a desired gap between the printed wiring board 9 and the electronic component lid 3. By providing such a gap, it is possible to obtain an electronic component lid 3 that is optimal for open electronic components such as pressure sensors and flow path sensors. The shape of the convex shape 3a is not particularly limited, such as a prism, a pyramid, a cylinder, or a cone, and the installation location is not particularly limited, such as a corner portion or a central portion of a side, and the number is not particularly limited. If it is above, it is fixed stably. The height of the convex shape 3a is not particularly limited, but is preferably 0.01 to 0.1 mm. When the height of the convex shape 3a is within this range, an appropriate gap can be provided for open electronic components such as a pressure sensor and a flow path sensor. The convex shape 3a can be formed using, for example, the same method as that for the conductive bump 3b described later.
[導電性バンプ]
 プリント配線基板9上に実装される素子部品8の小型化が進むにつれ、該素子部品8を外部から遮蔽する電子部品用蓋体集合体1に関しても小型、薄型および軽量化が要求され、例えば接合部の面積縮小等によりプリント配線基板9との接着強度が低下することから、はんだリフロー実装における電子部品用蓋体集合体1とプリント配線基板9との接合強度の確保が望まれている。また、電子部品用蓋体集合体1の薄型化にともなってその弾性率が低下することから、電子部品用蓋体集合体1とプリント配線基板9とのそれぞれの線膨張係数の差による反りの発生が問題となるおそれがあり、特に電子部品用蓋体集合体1を素子部品集合体10に一括して、はんだリフロー実装した電子部品111では反りが大きくなりやすい。このため、シールドケース等となる電子部品用蓋体集合体1とプリント配線基板9に形成されたグランド回路との接続信頼性が高く、かつ反りの少ない電子部品111を製造することができる製造方法が求められている。
[Conductive bump]
As the element component 8 mounted on the printed wiring board 9 is further miniaturized, the electronic component lid assembly 1 that shields the element component 8 from the outside is also required to be small, thin, and lightweight. Since the adhesive strength with the printed wiring board 9 is reduced due to the reduction in the area of the portion, it is desired to ensure the bonding strength between the electronic component lid assembly 1 and the printed wiring board 9 in the solder reflow mounting. In addition, since the elastic modulus of the electronic component lid assembly 1 decreases as the electronic component lid assembly 1 is made thinner, the warpage due to the difference in linear expansion coefficient between the electronic component lid assembly 1 and the printed wiring board 9 is reduced. In particular, the electronic component 111 mounted with the electronic component lid assembly 1 in the element component assembly 10 and solder reflow-mounted is likely to have a large warp. For this reason, the manufacturing method which can manufacture the electronic component 111 with high connection reliability with few warpages with the cover assembly 1 for electronic components used as a shield case etc. and the ground circuit formed in the printed wiring board 9 is possible. Is required.
 このような観点から、電子部品111の製造方法としては、電子部品用蓋体集合体1におけるプリント配線基板9との接合部に導電性バンプを形成する工程と、該導電性バンプを電子部品用蓋体集合体1の上から加熱加圧してプリント配線基板9上に形成したグランド回路と接続する工程とを有し、該電子部品用蓋体集合体1と該プリント配線基板9とを熱硬化性接着剤を介して接着および導通させる方法が好ましい。このような製造方法によれば、電子部品用蓋体集合体1とプリント配線基板9のグランド回路とを良好に接合でき、かつ反りの少ない電子部品111が得られる。 From this point of view, the manufacturing method of the electronic component 111 includes a step of forming conductive bumps at the junction with the printed wiring board 9 in the lid assembly 1 for electronic components, and using the conductive bumps for electronic components. A step of connecting to a ground circuit formed on the printed circuit board 9 by heating and pressing from above the cover assembly 1, and thermosetting the cover assembly 1 for electronic parts and the printed circuit board 9. A method of bonding and conducting via an adhesive is preferred. According to such a manufacturing method, the electronic component lid assembly 1 and the ground circuit of the printed wiring board 9 can be satisfactorily bonded, and the electronic component 111 with less warpage can be obtained.
 導電性バンプは、メッキバンプ、スタッドバンプ、印刷バンプのいずれかであることが好ましい。また、熱硬化性接着剤は、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)硬化促進剤、(D)合成ゴム、および(E)無機フィラーを必須成分として含み、これらを絶縁性フィルム基材に塗布および乾燥して半硬化させたシート状熱硬化性接着剤であることが好ましい。 The conductive bump is preferably any one of a plated bump, a stud bump, and a printed bump. The thermosetting adhesive contains (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a curing accelerator, (D) a synthetic rubber, and (E) an inorganic filler as essential components. A sheet-like thermosetting adhesive that is applied to an insulating film substrate and dried to be semi-cured is preferable.
 導電性バンプの形成方法については、特に限定されないが、所定の位置に予めバンプ形状を加工した電着型を使用することにより、電子部品用蓋体集合体1の作製時に一体に導電性バンプを形成することができる。特に、このように電着型にバンプ形状を加工することにより、工程数削減のみならず、均一な高さの導電性バンプが得られ、さらに形状が応力吸収構造となることから良好な接続信頼性が得られる。その他、メッキバンプやワイヤボンディングを応用したスタッドバンプ等の金属製バンプ、導電性ペーストからなる印刷バンプ等の公知の形成方法を適用できる。 The method for forming the conductive bump is not particularly limited, but by using an electrodeposition type in which the bump shape is processed in advance at a predetermined position, the conductive bump is integrally formed at the time of manufacturing the electronic component lid assembly 1. Can be formed. In particular, by processing the bump shape into the electrodeposition type in this way, not only the number of processes can be reduced, but also conductive bumps with a uniform height can be obtained, and the shape becomes a stress absorbing structure, thus providing good connection reliability. Sex is obtained. In addition, a known forming method such as a metal bump such as a plated bump or a stud bump to which wire bonding is applied, or a printed bump made of a conductive paste can be applied.
 例えば、メッキバンプは、電子部品用蓋体集合体1の表面にフォトレジスト膜を塗布し、メッキバンプが形成される位置に開口部を備えたレジストパターンを露光および現像により形成し、このレジストパターンをマスクとして無電解Niメッキを施し、さらにその表面に金メッキを施すことにより形成する。 For example, a plating bump is formed by applying a photoresist film on the surface of the electronic component lid assembly 1 and forming a resist pattern having an opening at a position where the plating bump is formed by exposure and development. Is formed by performing electroless Ni plating using the mask as a mask and further gold plating the surface thereof.
 また、ワイヤボンディングを応用したスタッドバンプ形成方法としては、スタッド・バンプ・ボンディング法として知られているように、キャピラリーから導出したスタッドバンプ用ワイヤーの先端に膨頭部を形成した後、キャピラリーによって膨頭部を電子部品用蓋体集合体1の表面のバンプ接地箇所に押し当ててベース部を形成し、キャピラリーでベース部の上部を水平方向に馴らした後、スタッドバンプ用ワイヤを切断してスタッドバンプを形成する。 In addition, as a stud bump forming method using wire bonding, as is known as a stud bump bonding method, a bulge head is formed at the tip of a stud bump wire led out from a capillary, and then swelled by a capillary. The base is formed by pressing the head against the bump grounding portion on the surface of the lid assembly 1 for electronic parts, and the upper part of the base is acclimated in the horizontal direction with a capillary, and then the stud bump wire is cut to form a stud. Form bumps.
 導電性ペーストからなる印刷バンプの形成は、メタルマスクを用いた印刷法により行われる。導電性ぺーストは、バインダーとなる合成樹脂に導電性粉末を配合したものであり、バインダーとなる合成樹脂としては、熱硬化性樹脂、熱可塑性樹脂あるいはこれらの混合樹脂が使用でき、導電性粉末としては、金粉末、銀粉末、銅粉末、はんだ粉末、ニッケル粉末、カーボン粉末または表面に導電性物質層を有する粉末等が挙げられる。なかでも、銀粉末とメラミン樹脂、フェノール樹脂とエポキシ樹脂(メラミン樹脂:フェノール樹脂:エポキシ樹脂=5:5:1質量比)、さらに硬化剤、酢酸ジエチレングリコールモノブチルエーテルを主成分とする銀ペーストが好ましく用いられる。公知な手法として、前記銀ペーストを使用した、B2it(登録商標、Buried Bump Interconnection Technology、(株)東芝)法が挙げられる。 The formation of the printed bump made of the conductive paste is performed by a printing method using a metal mask. The conductive paste is obtained by blending conductive powder with a synthetic resin as a binder. As the synthetic resin as a binder, a thermosetting resin, a thermoplastic resin, or a mixed resin thereof can be used. Examples thereof include gold powder, silver powder, copper powder, solder powder, nickel powder, carbon powder, and powder having a conductive material layer on the surface. Among them, silver powder and melamine resin, phenol resin and epoxy resin (melamine resin: phenol resin: epoxy resin = 5: 5: 1 mass ratio), and further a silver paste mainly composed of a curing agent and diethylene glycol monobutyl ether acetate are preferable. Used. As a publicly known technique, there is a B2it (registered trademark, Buried Bump® Interconnection Technology, Toshiba Corporation) method using the silver paste.
 電子部品用蓋体集合体1とプリント配線基板9とを接着する熱硬化性接着剤は、液状にして、またはシート状にして使用されるが、作業性および接続信頼性の点でシート状として好ましく使用される。シート状熱硬化性接着剤(以降、熱硬化性接着シートと記す)は、(A)エポキシ樹脂、(B)エポキシ樹脂硬化剤、(C)硬化促進剤、(D)合成ゴムおよび(E)無機フィラーを必須成分として含み、メチルエチルケトン、メチルセロソルブ等の好適な有機溶剤で希釈してワニスとなしたものを、フィルム基材に塗布および乾燥して半硬化させることにより製造できる。 The thermosetting adhesive for adhering the electronic component lid assembly 1 and the printed wiring board 9 is used in the form of a liquid or a sheet, but in the form of a sheet in terms of workability and connection reliability. Preferably used. A sheet-like thermosetting adhesive (hereinafter referred to as a thermosetting adhesive sheet) includes (A) an epoxy resin, (B) an epoxy resin curing agent, (C) a curing accelerator, (D) a synthetic rubber, and (E). It can be produced by applying an inorganic filler as an essential component, diluting with a suitable organic solvent such as methyl ethyl ketone, methyl cellosolve, etc. to form a varnish, drying the film, and semi-curing it.
 熱硬化性接着剤をフィルム基材に塗布乾燥するにあたっては、乾燥温度は80~180℃の温度が好ましい。フィルム基材としては、通常離型フィルムとして使用されているフィルム基材であれば、特に制限はなく、例えば、ポリエステル、ポリエチレンテレフタレート、ポリプロピレン等が挙げられる。熱硬化性接着シートの厚さは5~25μmが好ましい。厚さが5μm以上であると接着力が保たれ、25μm以下であると接続の信頼性の低下がなく、電磁波漏洩もないため好ましい。 In applying and drying the thermosetting adhesive on the film substrate, the drying temperature is preferably 80 to 180 ° C. There is no restriction | limiting in particular if it is a film base material normally used as a release film as a film base material, For example, polyester, a polyethylene terephthalate, a polypropylene etc. are mentioned. The thickness of the thermosetting adhesive sheet is preferably 5 to 25 μm. When the thickness is 5 μm or more, the adhesive strength is maintained, and when the thickness is 25 μm or less, the connection reliability is not deteriorated and electromagnetic wave leakage is not preferable.
 (A)エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられ、これらは、単独または2種以上混合して使用できる。特に、ビフェニル骨格、ナフタレン骨格等を含有するエポキシ樹脂は、樹脂組成物の難燃性および寸法安定性の向上のために好ましく使用できる。また、樹脂割れやフィルムからの剥離がなく、Bステージでの取り扱い性向上のためには、液状エポキシ樹脂を好ましく使用できる。 (A) As the epoxy resin, an epoxy resin having two or more epoxy groups in one molecule can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin and the like can be mentioned, and these can be used alone or in combination of two or more. In particular, an epoxy resin containing a biphenyl skeleton, a naphthalene skeleton, or the like can be preferably used for improving the flame retardancy and dimensional stability of the resin composition. Moreover, a liquid epoxy resin can be preferably used in order to improve the handleability at the B stage without causing resin cracking or peeling from the film.
 (B)エポキシ樹脂硬化剤としては、通常エポキシ樹脂の硬化剤に使用されている化合物であれば、特に制限なく使用できる。例えば、アミン系硬化剤としては、ジシアンジアミド、芳香族ジアミン等が挙げられ、フェノール系硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、トリアジン変性ノボラック樹脂等が挙げられ、これらは単独または2種以上混合して使用できる。特に、ビフェニル骨格、ナフタレン骨格等を含有するノボラック系硬化剤は、樹脂組成物の難燃性、寸法安定性の向上のために、好ましく使用できる。また、Bステージでの取り扱い性向上のためには、液状ノボラック樹脂、液状芳香族ジアミン等を好ましく使用できる。 (B) The epoxy resin curing agent can be used without particular limitation as long as it is a compound that is usually used as a curing agent for epoxy resins. For example, examples of the amine-based curing agent include dicyandiamide and aromatic diamine, and examples of the phenol-based curing agent include a phenol novolac resin, a cresol novolac resin, a bisphenol A novolac resin, and a triazine-modified novolac resin. It can be used alone or in combination of two or more. In particular, a novolak-type curing agent containing a biphenyl skeleton, a naphthalene skeleton, or the like can be preferably used for improving the flame retardancy and dimensional stability of the resin composition. Further, in order to improve the handleability at the B stage, a liquid novolac resin, a liquid aromatic diamine or the like can be preferably used.
 (C)硬化促進剤としては、通常エポキシ樹脂の硬化促進剤に使用されている化合物であれば、特に制限なく使用できる。例えば、2-エチル-4-メチルイミダゾール、1-べンジル-2-メチルイミダゾール等のイミダゾール類、三フッ化ホウ素アミン錯体、トリフェニルホスフィン等が挙げられ、これらは単独または2種以上混合して使用できる。 (C) The curing accelerator can be used without particular limitation as long as it is a compound usually used as a curing accelerator for epoxy resins. For example, imidazoles such as 2-ethyl-4-methylimidazole and 1-benzyl-2-methylimidazole, boron trifluoride amine complex, triphenylphosphine and the like can be mentioned. These may be used alone or in combination of two or more. Can be used.
 (D)合成ゴムとしては、例えば、アクリルゴム、アクリロニトリルブタジエンゴム、スチレンブタジエンゴム、ブタジエンメチルアクリレートアクリロニトリルゴム、ブタジエンゴム、カルボキシル基含有アクリロニトリルブタジエンゴム、ビニル基含有アクリロニトリルブタジエンゴム、シリコーンゴム、ウレタンゴム、ポリビニルブチラール等が使用される。これらは単独で、または2種以上を組み合わせて用いることができる。 Examples of the synthetic rubber (D) include acrylic rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, butadiene methyl acrylate acrylonitrile rubber, butadiene rubber, carboxyl group-containing acrylonitrile butadiene rubber, vinyl group-containing acrylonitrile butadiene rubber, silicone rubber, urethane rubber, Polyvinyl butyral or the like is used. These can be used alone or in combination of two or more.
 (D)合成ゴムの配合量は、(A)~(D)成分の合計量100質量部に対し、好ましくは、10~30質量部、より好ましくは、15~25質量部である。配合量が10質量部以上では、接着力が十分に得られ、30質量部以下では、接着層の耐熱性、熱膨張孫数および電気的な接続信頼性が維持できる。 (D) The compounding amount of the synthetic rubber is preferably 10 to 30 parts by mass, more preferably 15 to 25 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D). When the blending amount is 10 parts by mass or more, sufficient adhesive strength can be obtained, and when it is 30 parts by mass or less, the heat resistance, thermal expansion grandchild number, and electrical connection reliability of the adhesive layer can be maintained.
 (E)無機フィラーとしては、特に限定されないが、シリカ、アルミナ、水酸化アルミニウム、水酸化マグネシウム等が好ましく用いられ、これらは単独または2種以上混合して使用できる。(E)無機フィラーの配合により、寸法安定性が向上する。(E)無機フィラーの配合量は、組成物中の全固形分量を基準として、5~30質量%の範囲が好ましく、10~20質量%の範囲がより好ましい。配合量が5質量%以上では、十分な寸法安定性が得られ、30質量%以下では、耐クラック性が維持できる。 (E) Although it does not specifically limit as an inorganic filler, A silica, an alumina, aluminum hydroxide, magnesium hydroxide, etc. are used preferably, These can be used individually or in mixture of 2 or more types. (E) The dimensional stability is improved by blending the inorganic filler. (E) The blending amount of the inorganic filler is preferably in the range of 5 to 30% by mass, more preferably in the range of 10 to 20% by mass, based on the total solid content in the composition. When the blending amount is 5% by mass or more, sufficient dimensional stability is obtained, and when it is 30% by mass or less, crack resistance can be maintained.
 図7は、導電性バンプ3bを有する電子部品用蓋体3が実装された電子部品111の一実施形態を模式的に示す断面図である。図8は、図7のA部に相当する部分の実装方法の一実施形態を示す工程図である。 FIG. 7 is a cross-sectional view schematically showing an embodiment of the electronic component 111 on which the electronic component lid 3 having the conductive bump 3b is mounted. FIG. 8 is a process diagram showing an embodiment of a method for mounting a portion corresponding to part A of FIG.
 図8(1)に示すように、電子部品用蓋体集合体1におけるプリント配線基板9の接合部に当接する位置に導電性バンプ3bを形成する。導電性バンプ3bは高さ、直径ともに0.1~0.5mmであることが好ましい。直径が0.1mm以上であると接続不良がなく、0.5mm以下であると圧縮による変形で導電性バンプ3bが広がりすぎることもなく、絶縁性が阻害されることもない。導電性バンプ3bの設置個数は、電子部品用蓋体集合体1の形状や大きさに応じて設定されるが、設置間隔が1mm以上であることが好ましい。導電性バンプ3bの配列については直線状または千鳥状等、特に限定されないが、多数個取りの電子部品用蓋体集合体1の場合は千鳥状に配列することにより安定した接地が得られるため好ましい。また、電子部品用蓋体集合体1の接地部表面は、導電性バンプ3bと電子部品用蓋体集合体1との接続信頼性向上のために、金、銀、または錫めっき処理されてなることが好ましい。 As shown in FIG. 8 (1), conductive bumps 3b are formed at positions in contact with the joints of the printed wiring board 9 in the electronic component lid assembly 1. The conductive bump 3b preferably has a height and a diameter of 0.1 to 0.5 mm. When the diameter is 0.1 mm or more, there is no connection failure, and when the diameter is 0.5 mm or less, the conductive bump 3b does not spread too much due to deformation due to compression, and the insulation is not hindered. The number of conductive bumps 3b to be installed is set according to the shape and size of the electronic component lid assembly 1, but the installation interval is preferably 1 mm or more. The arrangement of the conductive bumps 3b is not particularly limited, such as a linear shape or a zigzag shape. However, in the case of the multi-piece electronic component lid assembly 1, a stable grounding can be obtained by arranging in a zigzag manner. . The surface of the grounding portion of the electronic component lid assembly 1 is subjected to gold, silver, or tin plating in order to improve the connection reliability between the conductive bump 3 b and the electronic component lid assembly 1. It is preferable.
 次に、図8(2)に示すように、電子部品用蓋体集合体1に形成した導電性バンプ3bとグランド回路9bとの間に熱硬化性接着シート21を配置する。なお、この実施形態では、熱硬化性接着シート21を使用した実装方法について説明する。熱硬化性接着シート21には、例えば導電性バンプ3bの当接部にバンプ貫通孔21aを穿設しておき、該バンプ貫通孔21aと導電性バンプ3bを位置合わせして仮付けしておく。孔径はバンプ径より0.05~0.1mm程度大きい孔が好ましい、これにより、接合時に孔内に均一に導電性バンプ3bが広がり信頼性の良好な接地が得られる。 Next, as shown in FIG. 8 (2), a thermosetting adhesive sheet 21 is disposed between the conductive bump 3b formed on the electronic component lid assembly 1 and the ground circuit 9b. In this embodiment, a mounting method using the thermosetting adhesive sheet 21 will be described. In the thermosetting adhesive sheet 21, for example, bump through holes 21a are formed in contact portions of the conductive bumps 3b, and the bump through holes 21a and the conductive bumps 3b are aligned and temporarily attached. . The hole diameter is preferably about 0.05 to 0.1 mm larger than the bump diameter. As a result, the conductive bump 3b spreads uniformly in the hole at the time of bonding, and a reliable grounding can be obtained.
 ここで、熱硬化性接着シート21にバンプ貫通孔21aを穿設せずに、予め導電性バンプ3bで熱硬化性接着シート21を貫通させておいてもよい。この場合は80℃~150℃で線圧2~200N/cmの条件で、熱硬化性接着シート21を電子部品用蓋体集合体1に形成された導電性バンプ3bに当接させることで貫通させることができる。 Here, the thermosetting adhesive sheet 21 may be previously penetrated by the conductive bumps 3b without forming the bump through holes 21a in the thermosetting adhesive sheet 21. In this case, the thermosetting adhesive sheet 21 is brought into contact with the conductive bumps 3b formed on the electronic component lid assembly 1 under conditions of 80 to 150 ° C. and a linear pressure of 2 to 200 N / cm. Can be made.
 なお、熱硬化性接着シートの代わりに液状樹脂を使用する場合は、予め電子部品用蓋体集合体1とグランド回路9bとの接着面にディスペンサー等を用いて、熱硬化性接着剤を塗布および乾燥しておき、その後に導電性バンプ3bを当接する。 In addition, when using liquid resin instead of a thermosetting adhesive sheet, a thermosetting adhesive is previously applied to the bonding surface between the electronic component lid assembly 1 and the ground circuit 9b using a dispenser or the like. After drying, the conductive bump 3b is brought into contact therewith.
 次に、図8(3)に示すように、電子部品用蓋体集合体1の上から熱圧着ツール23により加熱加圧して、電子部品用蓋体集合体1とプリント配線基板9とを接着させるとともに、電子部品用蓋体集合体1とグランド回路9bとを電気的に接続し、電子部品集合体11とする。加熱温度150~200℃、圧力1~10MPa、加熱加圧時間1~10分間が好ましい。電子部品用蓋体集合体1が熱圧着された電子部品集合体11は、必要に応じて140~180℃で1~2時間アフターキュアーを行う。図8(4)は実装後の接合部の断面を示す。その後、必要に応じて個片に分割することで、図7に示すような電子部品111を製造することができる。 Next, as shown in FIG. 8 (3), the electronic component lid assembly 1 and the printed wiring board 9 are bonded together by applying heat and pressure with the thermocompression bonding tool 23 from above the electronic component lid assembly 1. In addition, the electronic component lid assembly 1 and the ground circuit 9 b are electrically connected to form an electronic component assembly 11. A heating temperature of 150 to 200 ° C., a pressure of 1 to 10 MPa, and a heating and pressing time of 1 to 10 minutes are preferable. The electronic component assembly 11 to which the electronic component lid assembly 1 is thermocompression bonded is subjected to after-curing at 140 to 180 ° C. for 1 to 2 hours as necessary. FIG. 8 (4) shows a cross section of the joint after mounting. Then, the electronic component 111 as shown in FIG. 7 can be manufactured by dividing into pieces as necessary.
 次に、導電性バンプ3bを有する電子部品用蓋体集合体1を用いた電子部品111の具体的製造方法について、図9を参照して説明する。まず、図9(a)に示すように、素子部品8を実装したプリント配線基板9の所定に位置に、導電性バンプ3bを形成した面に熱硬化性接着シート21を仮付けした電子部品用蓋体集合体1を当接する。次いで、図9(b)、(c)に示すように、熱圧着ツール23で電子部品用蓋体集合体1の接地部分(バンプ形成部)を加圧、加熱してプリント配線基板9に接着して電子部品集合体11とする。次いで、図9(d)に示すように,隣接する電子部品111の中問部分で個片に切り分けることにより、電子部品111を多数個得ることができる。 Next, a specific method for manufacturing the electronic component 111 using the electronic component lid assembly 1 having the conductive bump 3b will be described with reference to FIG. First, as shown in FIG. 9A, for an electronic component in which a thermosetting adhesive sheet 21 is temporarily attached to a surface on which a conductive bump 3b is formed at a predetermined position of a printed wiring board 9 on which an element component 8 is mounted. The lid assembly 1 is brought into contact. Next, as shown in FIGS. 9B and 9C, the grounding portion (bump forming portion) of the electronic component lid assembly 1 is pressed and heated with the thermocompression bonding tool 23 and bonded to the printed wiring board 9. Thus, the electronic component assembly 11 is obtained. Next, as shown in FIG. 9 (d), a large number of electronic components 111 can be obtained by cutting into pieces at the intermediate portions of adjacent electronic components 111.
[絶縁性被膜]
 電子部品用蓋体集合体1をシールドケースとして用いる場合、プリント配線基板9上のグランド回路9bと電気的に接合し接地することによりはじめてシールド性を発揮する。上記したような導電性バンプ3bを設けない場合、シールドケースはハンダや導電性接着剤等を用いてプリント配線基板9上に接合される。しかしながら、近年、MEMSチップのような微小部品においては、シールドケースも小型・低背化しており、電子部品としての信頼性確保のためにシールドケース内側の絶縁性が要求される。
[Insulating coating]
When the electronic component lid assembly 1 is used as a shield case, the shielding performance is exhibited only when the electronic circuit lid assembly 1 is electrically connected to the ground circuit 9b on the printed wiring board 9 and grounded. When the conductive bump 3b as described above is not provided, the shield case is bonded onto the printed wiring board 9 using solder, conductive adhesive, or the like. However, in recent years, in a micro component such as a MEMS chip, the shield case is also reduced in size and height, and insulation inside the shield case is required to ensure reliability as an electronic component.
 十分な絶縁性を確保するためには、例えば所定の絶縁性樹脂を絶縁性被膜としてシールドケースの実装面および内側に形成する必要がある。絶縁性被膜の形成に関しては、種々の工法を適用でき、例えば、シールドケースにおけるプリント配線基板9の接地電極との接合部となる部分に開口部を設けるためのマスクを形成し、次いで絶縁性樹脂を塗布および硬化した後、マスクを除去し、導電性部分を露出させる。しかしながら、立体で異型部品である金属製シールドケースの場合、マスク形成およびマスク除去が必ずしも容易でなく、また加工精度も劣るおそれがある。 In order to ensure sufficient insulation, for example, it is necessary to form a predetermined insulating resin as an insulating film on the mounting surface and inside of the shield case. With respect to the formation of the insulating film, various methods can be applied. For example, a mask for providing an opening is formed in a portion of the shield case that is to be joined to the ground electrode of the printed wiring board 9, and then an insulating resin is formed. After applying and curing, the mask is removed to expose the conductive portion. However, in the case of a metal shield case that is a three-dimensional and odd-shaped part, mask formation and mask removal are not always easy, and processing accuracy may be inferior.
 このような観点から、プリント配線基板9に実装された素子部品8を外部から遮蔽する機能を有し、かつプリント配線基板9に対向する実装面および内側に絶縁性被膜を有する電子部品用蓋体集合体1の製造方法としては、以下の(A)~(C)の工程を順に行うものが好ましい。
(A)電子部品用蓋体集合体1を製造する工程。
(B)電子部品用蓋体集合体1におけるプリント配線基板9に対向する実装面および内側に絶縁性樹脂組成物を塗布して絶縁性被膜を形成する工程。
(C)電子部品用蓋体集合体1におけるプリント配線基板9の接地電極と接合する位置にある絶縁性被膜にレーザー光を照射して開口部を形成する工程。
From this point of view, the electronic component lid has a function of shielding the element component 8 mounted on the printed wiring board 9 from the outside, and has a mounting surface facing the printed wiring board 9 and an insulating film on the inner side. As a method for producing the assembly 1, a method in which the following steps (A) to (C) are sequentially performed is preferable.
(A) A step of manufacturing the electronic component lid assembly 1.
(B) A step of forming an insulating coating by applying an insulating resin composition to the mounting surface and the inside facing the printed wiring board 9 in the electronic component lid assembly 1.
(C) A step of irradiating a laser beam to the insulating coating at a position where it is joined to the ground electrode of the printed wiring board 9 in the electronic component lid assembly 1 to form an opening.
 図10に、レーザー照射による絶縁性被膜の開口処理前後の一例を、電子部品用蓋体集合体1の実装面側からみた模式図として示す。図10(1)は絶縁性被膜形成後、(2)はレーザー照射による開口部形成後の図であり、それぞれの上段の図は平面図であり、中段の図A、下段の図Bはそれぞれ、上記平面図におけるAA線、BB線における断面図である。 FIG. 10 shows an example of the insulating film before and after the opening treatment of the insulating coating by laser irradiation as a schematic view seen from the mounting surface side of the lid assembly 1 for electronic components. FIG. 10 (1) is after the insulating film is formed, (2) is the figure after the opening is formed by laser irradiation, the upper diagram is a plan view, the middle diagram A and the lower diagram B are respectively FIG. 3 is a cross-sectional view taken along line AA and line BB in the plan view.
 図10(1)に示すように、開口処理前の状態では、電子部品用蓋体集合体1の実装面および内側の全面に絶縁性被膜3cが形成されている。この絶縁性被膜3cのうち、プリント配線基板9のグランド回路9bとハンダ接合等で接続される位置の絶縁性被膜3cにレーザー照射が行われる。図10(2)に示すように、例えば、レーザー照射は電子部品用蓋体3の角部付近に行われ、この部分に電子部品用蓋体集合体1の金属部分(導電部)が露出する開口部3dが形成される。 As shown in FIG. 10 (1), in the state before the opening process, the insulating coating 3c is formed on the entire mounting surface and inside of the electronic component lid assembly 1. Of this insulating coating 3c, laser irradiation is performed on the insulating coating 3c at a position connected to the ground circuit 9b of the printed wiring board 9 by soldering or the like. As shown in FIG. 10 (2), for example, laser irradiation is performed near the corner of the electronic component lid 3, and the metal portion (conductive portion) of the electronic component lid assembly 1 is exposed at this portion. An opening 3d is formed.
 絶縁性被膜3cの材料については、電子部品用蓋体集合体1とプリント配線基板9上の部品間および電極間等との絶縁性を保つ被膜を形成できる材料であれば、特に限定されないが、熱硬化性樹脂であることが好ましく、より好ましくはエポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエステルイミド樹脂、アクリル樹脂、スチレンブロック共重合体樹脂であり、特に好ましくはエポキシ樹脂である。このような絶縁性材料を用いることで、良好な絶縁性や耐熱性が得られる。 The material of the insulating coating 3c is not particularly limited as long as it is a material that can form a coating that maintains insulation between the electronic component lid assembly 1 and the components on the printed wiring board 9 and between the electrodes. It is preferably a thermosetting resin, more preferably an epoxy resin, a polyamide resin, a polyimide resin, a polyester resin, a polyesterimide resin, an acrylic resin, or a styrene block copolymer resin, and particularly preferably an epoxy resin. By using such an insulating material, good insulating properties and heat resistance can be obtained.
 絶縁性材料には、レーザー光の吸収が良好な着色剤を添加してもよい。着色材を添加することによって、レーザー光の吸収効率が上がり、より短時間で、またより少ないエネルギーで加工することができる。着色剤としては、波長190nm~2500nm、好ましくは350nm~1200nmの範囲に吸収域をもち、波長350nm~1200nmの光を吸収して熱に変換し得る物質であれば、特に限定されない。このような着色剤としては、無機顔料、染料、有機顔料が挙げられる。具体的には、カーボンブラック、酸化チタン、酸化鉄等の無機顔料、ナフタロシアニン等のフタロシアニン顔料等の着色剤が挙げられる。 A colorant that absorbs laser light may be added to the insulating material. By adding a coloring material, the absorption efficiency of laser light is increased, and processing can be performed in a shorter time and with less energy. The colorant is not particularly limited as long as it is a substance having an absorption range in a wavelength range of 190 nm to 2500 nm, preferably 350 nm to 1200 nm, and capable of absorbing light having a wavelength of 350 nm to 1200 nm and converting it into heat. Examples of such a colorant include inorganic pigments, dyes, and organic pigments. Specific examples include inorganic pigments such as carbon black, titanium oxide, and iron oxide, and colorants such as phthalocyanine pigments such as naphthalocyanine.
 絶縁性材料の塗布方法は、特に制限されないが、例えば、エアスプレー法、エアレススプレー法、ベル塗装法、浸漬法、電着法等公知の方法を用いることができる。絶縁性材料の塗布後、80℃~180℃で20分間~60分間加熱し、硬化させることで、信頼性の高い絶縁性被膜3cを形成できる。絶縁性被膜3cの厚さは、特に限定されないが、5μm~50μmの範囲が好ましい。絶縁性被膜3cの厚さを5μm以上にすると、絶縁信頼性に優れ、50μm以下にすると、開口部3dの加工のためのレーザー加工時間が短くてすみ、生産性が向上するため好ましい。 The method for applying the insulating material is not particularly limited, and known methods such as an air spray method, an airless spray method, a bell coating method, a dipping method, and an electrodeposition method can be used. After applying the insulating material, the insulating coating 3c having high reliability can be formed by heating and curing at 80 to 180 ° C. for 20 to 60 minutes. The thickness of the insulating coating 3c is not particularly limited, but is preferably in the range of 5 μm to 50 μm. When the thickness of the insulating coating 3c is 5 μm or more, the insulation reliability is excellent, and when it is 50 μm or less, the laser processing time for processing the opening 3d can be shortened and productivity is improved.
 次に、絶縁性被膜3cに開口部3dを形成する方法について説明する。開口部3dの形成に使用するレーザー加工機については、絶縁性材料を蒸散させることのできるエネルギーを有するレーザー加工機であれば特に限定されない。レーザー加工機のレーザー光の波長の範囲(N次高調波含む;Nは2以上の整数)も、特に限定されないが、コスト、メンテナンス、生産性、安全性等の観点から、例えば、近紫外から近赤外の波長範囲、すなわち、好ましくは190nm~2500nm、より好ましくは350nm~1200nmである。 Next, a method for forming the opening 3d in the insulating coating 3c will be described. The laser processing machine used for forming the opening 3d is not particularly limited as long as it is a laser processing machine having energy capable of evaporating the insulating material. The range of the wavelength of the laser beam of the laser processing machine (including the Nth order harmonic; N is an integer of 2 or more) is not particularly limited, but from the viewpoint of cost, maintenance, productivity, safety, etc., for example, from near ultraviolet The near-infrared wavelength range, that is, preferably 190 nm to 2500 nm, more preferably 350 nm to 1200 nm.
 例えば、0.03mm~0.08mmの厚さのニッケル製電子部品用蓋体では、波長が1100nmの赤外レーザーを使用する場合、出力10W~20Wで、加工速度を10mm/秒~60mm/秒とすることが好ましい。同様に、例えば、全固体パルスレーザー(例えば、発振周波数:20kHz)の第三高調波である波長が355nmの紫外レーザーを使用する場合は、出力0.5W~2Wで、加工速度を50mm/分~300mm/分とすることが好ましい。このときのビーム径は0.05mm~0.2mmの範囲にあることが好ましい。 For example, in the case of a lid for nickel electronic parts having a thickness of 0.03 mm to 0.08 mm, when an infrared laser having a wavelength of 1100 nm is used, the output is 10 W to 20 W and the processing speed is 10 mm / second to 60 mm / second. It is preferable that Similarly, for example, when using an ultraviolet laser having a wavelength of 355 nm, which is the third harmonic of an all-solid-state pulse laser (for example, oscillation frequency: 20 kHz), the output is 0.5 W to 2 W and the processing speed is 50 mm / min. It is preferable to set it to ˜300 mm / min. The beam diameter at this time is preferably in the range of 0.05 mm to 0.2 mm.
 図11に、レーザー照射による開口処理の一実施形態を示す。レーザー加工機は、レーザー加工装置(発振機)5から出射したレーザー光4が、ミラー6で反射され、レンズ7で絞られ、絶縁性被膜3cの開口部3dとなる部分に入射するように制御されている。絶縁性被膜3cの開口部3dは、所定のマスク径で絞ったパルスレーザーの照射や、ビーム径を絞ってエネルギー密度を上げたレーザー光を円周状に回転させて照射するトレパリング法により形成することができる。実際の走査に関しては、レーザー光4を直接走査しても良いが、レーザーヘッド部等から粉塵が落下をしないように、レーザーヘッド部等を固定させ、予めステージ上にシールドケース集合体1を固定して移動させてもよい。 FIG. 11 shows an embodiment of opening processing by laser irradiation. The laser beam machine is controlled so that the laser beam 4 emitted from the laser beam machine (oscillator) 5 is reflected by the mirror 6, narrowed by the lens 7, and incident on the portion that becomes the opening 3 d of the insulating coating 3 c. Has been. The opening 3d of the insulating coating 3c is formed by a pulsed laser irradiation with a predetermined mask diameter, or a trepering method in which laser light with a reduced beam diameter and increased energy density is rotated and irradiated. be able to. For actual scanning, the laser beam 4 may be scanned directly, but the laser head unit is fixed so that dust does not fall from the laser head unit, and the shield case assembly 1 is fixed on the stage in advance. And may be moved.
 図12に、絶縁性被膜3cに開口部3dを有する電子部品用蓋体3の一実施形態の外観図および平面図を示す。電子部品用蓋体3は、例えば、実装面側の略全面に絶縁性被膜3cが形成されるとともに、実装面の4隅に扇状の開口部3dが形成されている。 FIG. 12 shows an external view and a plan view of an embodiment of the electronic component lid 3 having an opening 3d in the insulating coating 3c. The electronic component lid 3 has, for example, an insulating coating 3c formed on substantially the entire mounting surface side, and fan-shaped openings 3d formed at four corners of the mounting surface.
 次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1)
[電子部品用蓋体集合体の作製]
 等間隔に14個×18個の四角柱(幅2.6mm×長さ3.6mm×高さ0.7mm)を有する銅製の母型を用意し、スルファミン酸ニッケル浴中で、電流密度5A/dmで70分間通電し、厚さ0.04mmの電子部品用蓋体集合体1を作製した。同電子部品用蓋体集合体1を4個作製し、これらについて、下記の評価方法により強度を評価した。結果を表1に示す。
(Example 1)
[Preparation of lid assembly for electronic parts]
A copper matrix having 14 × 18 square columns (width 2.6 mm × length 3.6 mm × height 0.7 mm) at equal intervals is prepared, and the current density is 5 A / in a nickel sulfamate bath. An electric current was passed at dm 2 for 70 minutes to produce an electronic component lid assembly 1 having a thickness of 0.04 mm. Four pieces of the same electronic component lid assembly 1 were produced, and the strength of these was evaluated by the following evaluation method. The results are shown in Table 1.
<評価方法>
 自動縦型サーボスタンドJS V-H1000にフォースゲージHF-1(いずれも日本計測システム社製)を組み合わせた押し込み試験機に先端径1mmのプローブを取り付け、電子部品用蓋体集合体1の中央部にプローブの先端が接するように設置した後、プローブを2mm/分の速度で下降させ、電子部品用蓋体集合体1の中央部の押し込み量が100μmとなった時の荷重を読み取り、結果を表1に示した。5N以上の強度を有していることを合格基準として判定し、「○」で示した。
<Evaluation method>
A probe with a tip diameter of 1 mm is attached to a push-in tester that combines an automatic vertical servo stand JS V-H1000 with a force gauge HF-1 (all manufactured by Nihon Keisoku System Co., Ltd.). After placing the probe so that the tip of the probe is in contact with the probe, the probe is lowered at a speed of 2 mm / min, and the load when the center part of the electronic component lid assembly 1 is pushed to 100 μm is read. It is shown in Table 1. Having a strength of 5N or more was determined as an acceptance criterion and indicated by “◯”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、電鋳法によって形成された電子部品用蓋体集合体1は、ピックアンドプレースやリペアーにも十分適用可能な強度を有することがわかる。 From Table 1, it can be seen that the lid assembly 1 for electronic parts formed by the electroforming method has a strength that can be sufficiently applied to pick and place and repair.
(実施例2-1)
 実施例1と同様に作製した電子部品用蓋体集合体1について、隣接する個々の電子部品用蓋体3間の中心線2に沿って、レーザー微細加工システムMWL-WS05T(ファインデバイス社製)を用いて、波長1100nmの赤外レーザー光を出力20Wで連続発振し、200mm/分の加工速度で走査し、照射した。次に、クリームはんだを印刷したプリント配線基板9の所定の位置に、前記レーザー光を照射した電子部品用蓋体集合体1を搭載して、はんだリフローによりプリント配線基板9に実装した。その後、図4に示す分割機12で個片に分割して電子部品111を得た。この電子部品111における電子部品用蓋体3の破断面を観察した結果、破断面は平滑であることが認められた。
Example 2-1
Laser microfabrication system MWL-WS05T (manufactured by Fine Devices) along the center line 2 between adjacent electronic component lids 3 for the electronic component lid assembly 1 produced in the same manner as in Example 1. , An infrared laser beam having a wavelength of 1100 nm was continuously oscillated at an output of 20 W, scanned at a processing speed of 200 mm / min, and irradiated. Next, the electronic component lid assembly 1 irradiated with the laser beam was mounted at a predetermined position of the printed wiring board 9 on which the cream solder was printed, and mounted on the printed wiring board 9 by solder reflow. Thereafter, the electronic component 111 was obtained by being divided into pieces by the divider 12 shown in FIG. As a result of observing the fracture surface of the electronic component lid 3 in the electronic component 111, it was found that the fracture surface was smooth.
(実施例2-2)
 実施例1と同様に作製した電子部品用蓋体集合体1について、隣接する個々の電子部品用蓋体3間の中心線2に沿って、レーザー微細加工システムMWL-WS05T(ファインデバイス社製)を用いて、全固体パルスレーザーの第三高調波である355nmの紫外レーザー光を20kHzで発振し、200mm/分の加工速度で走査し、焼入れを行った。次に、クリームはんだを印刷したプリント配線基板9の所定の位置に、前記レーザー光を照射した電子部品用蓋体集合体1を搭載して、はんだリフローによりプリント配線基板9に実装した。その後、図4に示す分割機12で個片に分割して電子部品111を得た。この電子部品111における電子部品用蓋体3の破断面を観察した結果、破断面は平滑であることが認められた。
(Example 2-2)
Laser microfabrication system MWL-WS05T (manufactured by Fine Devices) along the center line 2 between adjacent electronic component lids 3 for the electronic component lid assembly 1 produced in the same manner as in Example 1. , 355 nm ultraviolet laser light, which is the third harmonic of the all-solid-state pulse laser, was oscillated at 20 kHz, scanned at a processing speed of 200 mm / min, and quenched. Next, the electronic component lid assembly 1 irradiated with the laser beam was mounted at a predetermined position of the printed wiring board 9 on which the cream solder was printed, and mounted on the printed wiring board 9 by solder reflow. Thereafter, the electronic component 111 was obtained by being divided into pieces by the divider 12 shown in FIG. As a result of observing the fracture surface of the electronic component lid 3 in the electronic component 111, it was found that the fracture surface was smooth.
(実施例2-3)
 実施例1と同様に作製した電子部品用蓋体集合体1について、レーザー焼入れを行わずに、クリームはんだを印刷したプリント配線基板9の所定の位置に搭載し、はんだリフローにより実装した。その後、図5に示すように回転式切断刃を有する切断機を用いて、該回転式切断刃により個片に切断して電子部品111を得た。この電子部品111における電子部品用蓋体3の破断面を観察した結果、破断面にはバリ、クラック等の発生が認められた。
(Example 2-3)
The electronic component lid assembly 1 produced in the same manner as in Example 1 was mounted on a predetermined position of the printed wiring board 9 on which cream solder was printed without performing laser quenching, and mounted by solder reflow. Thereafter, as shown in FIG. 5, using a cutting machine having a rotary cutting blade, the rotary cutting blade was cut into individual pieces to obtain an electronic component 111. As a result of observing the fracture surface of the electronic component lid 3 in the electronic component 111, burrs, cracks, and the like were observed on the fracture surface.
(実施例3-1)
 等間隔に縦14個×横18個の四角柱(幅2.6mm×長さ3.6mm×高さ0.7mm)を有し、隣接する個々の電子部品用蓋体3の間隔が1mm、その略中央部に1mm間隔で、直径0.2mm、高さ0.15mmの円錐状の導電性バンプ3bが形成されるように構成された母型を用いて、スルファミン酸ニッケル浴中で、電流密度5A/dmで70分間通電し、厚さ0.04mmの電子部品用蓋体集合体1を作製した。
Example 3-1
14 square x 18 horizontal pillars (width 2.6 mm x length 3.6 mm x height 0.7 mm) at equal intervals, and the interval between adjacent electronic component lids 3 is 1 mm, In a nickel sulfamate bath using a master block configured so that conical conductive bumps 3b having a diameter of 0.2 mm and a height of 0.15 mm are formed at approximately 1 mm intervals in the central portion thereof. An electric current was passed at a density of 5 A / dm 2 for 70 minutes to produce a lid assembly 1 for electronic parts having a thickness of 0.04 mm.
 別途、クリームはんだを印刷した厚さ0.1mmのプリント配線基板9に複数の素子部品を実装して素子部品集合体10を作製した。また、熱硬化性接着シート21としてのTFA-880CA-010(商品名、京セラケミカル社製、厚さ0.01mm)の導電性バンプ3bの当接部に直径0.25mmの貫通孔21aを穿設しておき、電子部品用蓋体集合体1の導電バンプ形成面に位置合わせして、該熱硬化性接着シート21を仮付けした。 Separately, a plurality of element parts were mounted on a printed wiring board 9 having a thickness of 0.1 mm on which cream solder was printed to produce an element part assembly 10. Further, a through hole 21a having a diameter of 0.25 mm is formed in a contact portion of a conductive bump 3b of TFA-880CA-010 (trade name, manufactured by Kyocera Chemical Co., Ltd., thickness 0.01 mm) as the thermosetting adhesive sheet 21. The thermosetting adhesive sheet 21 was temporarily attached in alignment with the conductive bump formation surface of the electronic component lid assembly 1.
 次いで、素子部品集合体10に電子部品用蓋体集合体1を位置合わせして、加熱温度160℃、圧力5MPaで2分間保持し接着し、その後160℃で1時間硬化させ、電子部品集合体11を作製した。同様に、電子部品集合体11を4個作製し、それらについて、下記の評価方法により反りを評価した。その結果、反りは0.2mmであった。 Next, the electronic component lid assembly 1 is aligned with the element component assembly 10, held and bonded for 2 minutes at a heating temperature of 160 ° C. and a pressure of 5 MPa, and then cured at 160 ° C. for 1 hour. 11 was produced. Similarly, four electronic component assemblies 11 were produced, and warpage was evaluated by the following evaluation method. As a result, the warpage was 0.2 mm.
[反りの評価方法]
 電子部品集合体11を平盤に平置きして、その電子部品用蓋体集合体1の縦14個×横18個の個々の電子部品用蓋体3について縦の位置をm、横の位置をnとして(m、n)で表した時、(m、n)が(1,1)、(1,9)、(1,18)、(7,1)、(7,9)、(7,18)、(14,1)、(14,9)、(14,18)である合計9個(9点)の電子部品用蓋体3を選択し、NEXIV VMR-3020(商品名、ニコン社製)を用いて、平盤に対する反りの鉛直成分(距離)を測定し、それらの最大値と最小値の差を電子部品用蓋体集合体1の反りとして定義し算出した。
[Evaluation method of warpage]
The electronic component assembly 11 is laid flat on a flat plate, and the vertical position of each of the electronic component lid assemblies 3 of the electronic component lid assembly 1 that is 14 vertical x 18 horizontal is m and the horizontal position. Is expressed as (m, n), where (m, n) is (1, 1), (1, 9), (1, 18), (7, 1), (7, 9), ( 7, 18), (14, 1), (14, 9), (14, 18), a total of nine (9 points) electronic component lids 3 are selected, and NEXIV VMR-3020 (trade name, The vertical component (distance) of the warp with respect to the flat plate was measured using Nikon Corporation, and the difference between the maximum value and the minimum value was defined as the warp of the electronic component lid assembly 1 and calculated.
(実施例3-2)
 導電性バンプ3bを設けない以外は実施例3-1と同様にして電子部品用蓋体集合体1を作製した。また、実施例3-1と同様にして、クリームはんだを印刷した厚さ0.1mmのプリント配線基板9に複数の素子部品を実装して素子部品集合体10を作製した。その後、素子部品集合体10に電子部品用蓋体集合体1を位置合わせしてはんだリフローにより接合して電子部品集合体11を作製した。このような電子部品集合体11を4個作製し、それらについて実施例3-1と同様に反りを評価した。その結果、反りは0.5mmであった。
(Example 3-2)
An electronic component lid assembly 1 was produced in the same manner as in Example 3-1, except that the conductive bump 3b was not provided. Further, in the same manner as in Example 3-1, a plurality of element parts were mounted on a printed wiring board 9 having a thickness of 0.1 mm on which cream solder was printed to produce an element part assembly 10. Thereafter, the electronic component lid assembly 1 was aligned with the element component assembly 10 and joined by solder reflow to produce an electronic component assembly 11. Four such electronic component assemblies 11 were prepared, and the warpage was evaluated in the same manner as in Example 3-1. As a result, the warpage was 0.5 mm.
(実施例4-1)
 実施例1と同様にして電子部品用蓋体集合体1を作製した。この電子部品用蓋体集合体1の実装面側に絶縁性エポキシ樹脂組成物TEB9504(京セラケミカル社製)を100部、硬化剤としてTEB9505(京セラケミカル社製)を100部、および溶剤としてTTE8310(京セラケミカル社製)を200部配合したものを、スプレー塗装法によって20μmの厚さになるように塗布し、100℃で熱硬化させて、実装面側に絶縁性被膜3cを有する電子部品用蓋体集合体1を得た。
Example 4-1
In the same manner as in Example 1, an electronic component lid assembly 1 was produced. 100 parts of an insulating epoxy resin composition TEB9504 (manufactured by Kyocera Chemical Co.), 100 parts of TEB9505 (manufactured by Kyocera Chemical Co., Ltd.) as a curing agent, and TTE8310 (as a solvent) are mounted on the mounting surface side of the lid assembly 1 for electronic parts. 200 parts of Kyocera Chemical Co., Ltd. blended to a thickness of 20 μm by spray coating, thermally cured at 100 ° C., and an electronic component lid having an insulating coating 3c on the mounting surface side A body assembly 1 was obtained.
 この電子部品用蓋体集合体1における個々の電子部品用蓋体3の四隅に相当する絶縁性被膜3cの表面に、レーザー微細加工システムMWL-WS05T(ファインデバイス社製)を用いて、波長1100nm、出力15Wの赤外レーザーを照射し、直径が0.5mmの開口部3dを形成した。次いで、電子部品用蓋体集合体1を個片に切り分け、幅5.6mm×長さ5.6mm×高さ0.2mmの電子部品用蓋体3を得た。 A laser micromachining system MWL-WS05T (manufactured by Fine Devices) is used on the surface of the insulating coating 3c corresponding to the four corners of each electronic component lid 3 in the electronic component lid assembly 1 to obtain a wavelength of 1100 nm. Then, an infrared laser having an output of 15 W was irradiated to form an opening 3d having a diameter of 0.5 mm. Next, the electronic component lid assembly 1 was cut into pieces to obtain an electronic component lid 3 having a width of 5.6 mm, a length of 5.6 mm, and a height of 0.2 mm.
 この電子部品用蓋体3における開口部3dに露出する金属部分と、電子部品用蓋体3の上面(電子部品用蓋体3の実装面に対して裏側となる面)の金属部分との導通を確認するために、アナログマルチテスタSP-18D(三和電気計器株式会社製)を使用し、電気抵抗を測定した。その結果、良好な導電性が確保できていることがわかった。 The electrical connection between the metal part exposed in the opening 3d in the electronic component lid 3 and the metal part on the upper surface of the electronic component lid 3 (the surface on the back side of the mounting surface of the electronic component lid 3). In order to confirm this, the electrical resistance was measured using an analog multi-tester SP-18D (manufactured by Sanwa Denki Keiki Co., Ltd.) As a result, it was found that good conductivity could be secured.
(実施例4-2)
 実施例4-1と同様にして絶縁性被膜3cを有する電子部品用蓋体集合体1を得た。この電子部品用蓋体集合体1における個々の電子部品用蓋体3の四隅に相当する絶縁性被膜3cの表面に、レーザー微細加工システムMWL-WS05T(ファインデバイス社製)を用いて全固体パルスレーザーの第三高調波(355nm)を、周波数20kHzで、0.05nmのビーム径をトレパリング法にて照射して、直径が0.5mmの開口部3dを形成し、実施例4-1と同様に電子部品用蓋体集合体1を個片に切り分け、幅5.6mm×長さ5.6mm×高さ0.2mmの電子部品用蓋体3を得た。その後、実施例4-1と同様に電気抵抗を測定した。その結果、良好な導電性が確保できていることがわかった。
(Example 4-2)
In the same manner as in Example 4-1, a lid assembly 1 for an electronic component having the insulating coating 3c was obtained. On the surface of the insulating coating 3c corresponding to the four corners of each electronic component lid 3 in the electronic component lid assembly 1, an all-solid pulse is applied using a laser micromachining system MWL-WS05T (manufactured by Fine Devices). The third harmonic of the laser (355 nm) was irradiated at a frequency of 20 kHz with a beam diameter of 0.05 nm by a treparing method to form an opening 3d having a diameter of 0.5 mm, which was the same as in Example 4-1. The electronic component lid assembly 1 was cut into pieces to obtain an electronic component lid 3 having a width of 5.6 mm, a length of 5.6 mm, and a height of 0.2 mm. Thereafter, the electrical resistance was measured in the same manner as in Example 4-1. As a result, it was found that good conductivity could be secured.
 電鋳法によって形成された電子部品用蓋体集合体は、取扱い時、および実装時におけるピックアンドプレースやリペアーにも十分適用可能な強度を有する。また、このような電子部品用蓋体集合体をプリント配線基板に実装することで、素子部品(MEMSマイクロフォン、水晶振動子、無線モジュール等に適用される素子部品)がプリント配線基板に多数個実装された素子部品集合体に電子部品用蓋体集合体が実装された電子部品集合体を低価格かつ高効率で製造でき、さらには電子部品を低価格かつ高効率で製造できる。 The lid assembly for electronic parts formed by electroforming has a strength that can be applied to pick and place and repair during handling and mounting. Also, by mounting such a lid assembly for electronic parts on a printed wiring board, a large number of element parts (element parts applied to MEMS microphones, crystal resonators, wireless modules, etc.) are mounted on the printed wiring board. The electronic component assembly in which the electronic component lid assembly is mounted on the element component assembly thus manufactured can be manufactured at low cost and high efficiency, and further, the electronic component can be manufactured at low cost and high efficiency.
 さらに、レーザー焼入れを施した電子部品用蓋体集合体は容易に個片に分割できることから、プリント配線基板に素子部品が多数個実装された素子部品集合体に実装したとき、プリント配線基板のV溝部等に沿って容易に一括に分割でき、低価格かつ高効率で電子部品を製造できる。 Furthermore, since the lid assembly for electronic components subjected to laser hardening can be easily divided into individual pieces, when mounted on an element component assembly in which a large number of element components are mounted on a printed wiring board, the printed wiring board V Electronic parts can be manufactured at a low cost and with high efficiency by dividing them easily along the groove.
 1:電子部品用蓋体集合体、2:中心線、3:電子部品用蓋体、3a:凸形状、3b:導電性バンプ、3c:絶縁性被膜、3d:開口部、4:レーザー光、5:レーザー発振機、6:ミラー、7:レンズ、8:素子部品、9:プリント配線基板、9a:V溝、9b:グランド回路、10:素子部品集合体、11:電子部品集合体、111:電子部品、12:分割機、13:ベース、14:クランプ、15:分割ヘッド、16:搬送コンベア、17:回転式切断刃、21:熱硬化性接着シート、21a:バンプ貫通孔 1: Lid assembly for electronic parts, 2: Center line, 3: Lid for electronic parts, 3a: Convex shape, 3b: Conductive bump, 3c: Insulating coating, 3d: Opening, 4: Laser light, 5: Laser oscillator, 6: Mirror, 7: Lens, 8: Element component, 9: Printed wiring board, 9a: V groove, 9b: Ground circuit, 10: Element component assembly, 11: Electronic component assembly, 111 : Electronic parts, 12: Dividing machine, 13: Base, 14: Clamp, 15: Dividing head, 16: Conveyor, 17: Rotary cutting blade, 21: Thermosetting adhesive sheet, 21a: Bump through-hole

Claims (5)

  1.  電鋳法によって形成した、厚さが0.03mmから0.08mmの電子部品用蓋体の集合体であって、内側の高さが0.05mmから1.5mm、天板の1辺の長さが0.2mmから15mmである電子部品用蓋体を、縦m個×横n個(m、nは、それぞれ独立に2以上の整数である)に複数個を均等間隔で並べてなることを特徴とする電子部品用蓋体集合体。 An assembly of lids for electronic parts having a thickness of 0.03 mm to 0.08 mm, formed by electroforming, having an inner height of 0.05 mm to 1.5 mm and the length of one side of the top plate A plurality of lids for electronic parts having a length of 0.2 mm to 15 mm are arranged at equal intervals in a vertical m × n horizontal direction (m and n are each independently an integer of 2 or more). A cover assembly for electronic parts as a feature.
  2.  前記電子部品用蓋体集合体の、隣接する電子部品用蓋体間の分割箇所に沿って、レーザー光を照射し表面を溶融、または焼入れしてなることを特徴とする請求項1記載の電子部品用蓋体集合体。 2. The electron according to claim 1, wherein the electronic component lid assembly is formed by irradiating a laser beam along a divided portion between adjacent electronic component lids to melt or quench the surface. 3. Parts assembly for parts.
  3.  前記電子部品用蓋体の実装面側の少なくとも3箇所に凸形状を有することを特徴とする請求項1記載の電子部品用蓋体集合体。 The electronic component lid assembly according to claim 1, wherein the electronic component lid assembly has a convex shape at least at three locations on the mounting surface side of the electronic component lid.
  4.  請求項1記載の電子部品用蓋体をプリント配線基板に実装してなることを特徴とする電子部品。 An electronic component comprising the electronic component lid according to claim 1 mounted on a printed wiring board.
  5.  プリント配線基板に縦m個×横n個(m、nは、それぞれ独立に2以上の整数である)からなる素子部品を実装して素子部品集合体を作製し、前記素子部品集合体に請求項1記載の電子部品用蓋体集合体を実装して電子部品集合体を作製後、前記電子部品集合体を個片に切り分けて電子部品を得ることを特徴とする電子部品の製造方法。 An element component assembly is manufactured by mounting element components consisting of m pieces in the vertical direction and n pieces in the horizontal direction (m and n are each independently an integer of 2 or more) on the printed wiring board, and the element component assembly is charged. An electronic component manufacturing method comprising mounting an electronic component lid assembly according to Item 1 to produce an electronic component assembly, and then cutting the electronic component assembly into individual pieces to obtain an electronic component.
PCT/JP2012/001970 2012-03-22 2012-03-22 Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component WO2013140449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001970 WO2013140449A1 (en) 2012-03-22 2012-03-22 Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001970 WO2013140449A1 (en) 2012-03-22 2012-03-22 Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component

Publications (1)

Publication Number Publication Date
WO2013140449A1 true WO2013140449A1 (en) 2013-09-26

Family

ID=49221953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001970 WO2013140449A1 (en) 2012-03-22 2012-03-22 Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component

Country Status (1)

Country Link
WO (1) WO2013140449A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887389A1 (en) * 2013-12-17 2015-06-24 Nxp B.V. A precursor to a packaged electronic component
JP2015170668A (en) * 2014-03-05 2015-09-28 太陽誘電株式会社 Electronic device and manufacturing method thereof
JP2017533341A (en) * 2014-08-27 2017-11-09 プラクスエア エス.ティ.テクノロジー、インコーポレイテッド Electroplating coating
WO2021210214A1 (en) * 2020-04-17 2021-10-21 株式会社村田製作所 Piezoelectric vibrator and method for manufacturing same
US20220329924A1 (en) * 2021-04-13 2022-10-13 Tdk Corporation Lid, MEMS Sensor Component and Methods of Manufacturing
WO2023276798A1 (en) * 2021-06-29 2023-01-05 京セラ株式会社 Wiring board aggregate, lid body aggregate, package set, and method for manufacturing electronic component
JP7468415B2 (en) 2021-03-16 2024-04-16 三菱電機株式会社 Semiconductor device, power conversion device, and method for manufacturing the semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152345A (en) * 1984-12-24 1986-07-11 Toshiba Corp Machining method in combine use with laser beam
JP2001176994A (en) * 1999-12-14 2001-06-29 Sumitomo Metal Electronics Devices Inc Cover member for sealing electronic component mounting container, electronic component housing structure and method of manufacturing the same
JP2005019862A (en) * 2003-06-27 2005-01-20 Kyocera Corp Cabinet structure
JP2006279872A (en) * 2005-03-30 2006-10-12 Kyocera Kinseki Corp Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator
JP2011129845A (en) * 2009-12-16 2011-06-30 Naohiko Kamisaka Electromagnetic wave shield using electroforming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152345A (en) * 1984-12-24 1986-07-11 Toshiba Corp Machining method in combine use with laser beam
JP2001176994A (en) * 1999-12-14 2001-06-29 Sumitomo Metal Electronics Devices Inc Cover member for sealing electronic component mounting container, electronic component housing structure and method of manufacturing the same
JP2005019862A (en) * 2003-06-27 2005-01-20 Kyocera Corp Cabinet structure
JP2006279872A (en) * 2005-03-30 2006-10-12 Kyocera Kinseki Corp Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator
JP2011129845A (en) * 2009-12-16 2011-06-30 Naohiko Kamisaka Electromagnetic wave shield using electroforming

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887389A1 (en) * 2013-12-17 2015-06-24 Nxp B.V. A precursor to a packaged electronic component
JP2015170668A (en) * 2014-03-05 2015-09-28 太陽誘電株式会社 Electronic device and manufacturing method thereof
JP2017533341A (en) * 2014-08-27 2017-11-09 プラクスエア エス.ティ.テクノロジー、インコーポレイテッド Electroplating coating
JP7010694B2 (en) 2014-08-27 2022-02-10 プラクスエア エス.ティ.テクノロジー、インコーポレイテッド Electroplating coating
WO2021210214A1 (en) * 2020-04-17 2021-10-21 株式会社村田製作所 Piezoelectric vibrator and method for manufacturing same
JP7497754B2 (en) 2020-04-17 2024-06-11 株式会社村田製作所 Piezoelectric vibrator and its manufacturing method
JP7468415B2 (en) 2021-03-16 2024-04-16 三菱電機株式会社 Semiconductor device, power conversion device, and method for manufacturing the semiconductor device
US20220329924A1 (en) * 2021-04-13 2022-10-13 Tdk Corporation Lid, MEMS Sensor Component and Methods of Manufacturing
US11956579B2 (en) * 2021-04-13 2024-04-09 Tdk Corporation Lid, MEMS sensor component and methods of manufacturing
WO2023276798A1 (en) * 2021-06-29 2023-01-05 京セラ株式会社 Wiring board aggregate, lid body aggregate, package set, and method for manufacturing electronic component

Similar Documents

Publication Publication Date Title
WO2013140449A1 (en) Cover assembly for electronic component, electronic component using same, and method for manufacturing electronic component
CN1167122C (en) Semiconductor device and making method thereof
TW200930163A (en) Method for manufacturing printed wiring board
US20110308848A1 (en) Resin composition for wiring board, resin sheet for wiring board, composite body, method for producing composite body, and semiconductor device
JP2009152535A (en) Method of manufacturing semiconductor package, and semiconductor plastic package using the same
KR20130133199A (en) Insulating substrate, metal-clad laminate, printed wiring board, and semiconductor device
KR20090069337A (en) Electronic component mounting structure and method for manufacturing the same
JP6718106B2 (en) Manufacturing method of mounting structure
KR20180048576A (en) Method for manufacturing printed wiring board, method for manufacturing semiconductor device
CN104025728A (en) Method for manufacturing substrate having built-in component, and substrate having built-in component manufactured using same
JP2017073424A (en) Wiring board and manufacturing method of the same
CN101543144A (en) Recognition mark, and circuit substrate manufacturing method
JP2016066789A (en) Wiring board manufacturing method and semiconductor package manufacturing method
KR102477543B1 (en) Electromagnetic wave shielding sheet and board with electronic components
JP4983341B2 (en) Insulating resin sheet with copper foil, multilayer printed wiring board, method for producing multilayer printed wiring board, and semiconductor device
JP6301812B2 (en) Wiring board and manufacturing method thereof
KR101908166B1 (en) Method for manufacturing laminated board
US20110095417A1 (en) Leadless semiconductor device terminal
JP5816523B2 (en) Shield case manufacturing method
WO2020090726A1 (en) Electromagnetic shielding film, method for producing shielded printed wiring board, and shielded printed wiring board
US20230060577A1 (en) Connection structure and manufacturing method therefor
WO2021177328A1 (en) Electromagnetic wave shielding film
JP6409390B2 (en) Wiring board, semiconductor package, electronic device, manufacturing method of wiring board, and manufacturing method of semiconductor package
TW201340836A (en) Cap aggregation for electronic components and electronic components using the same, and manufacturing method of electronic components
JP2019179844A (en) Resin sheet for forming solder resist, circuit board, and semiconductor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP