WO2013031963A1 - 充放電支援装置 - Google Patents
充放電支援装置 Download PDFInfo
- Publication number
- WO2013031963A1 WO2013031963A1 PCT/JP2012/072207 JP2012072207W WO2013031963A1 WO 2013031963 A1 WO2013031963 A1 WO 2013031963A1 JP 2012072207 W JP2012072207 W JP 2012072207W WO 2013031963 A1 WO2013031963 A1 WO 2013031963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- charging
- battery
- latest
- estimated
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/20—Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/31—Charging columns specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/65—Monitoring or controlling charging stations involving identification of vehicles or their battery types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/0071—Regulation of charging or discharging current or voltage with a programmable schedule
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
- H02J7/04—Regulation of charging current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/12—Bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/70—Interactions with external data bases, e.g. traffic centres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/52—Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/54—Energy consumption estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/58—Departure time prediction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4278—Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- the present invention relates to a charge / discharge support apparatus that supports charging or discharging of a battery provided in a device.
- This conventional charge / discharge management device is a charge / discharge reward information receiving means for receiving from a charge management central server charge / discharge reward information that defines a reward that can be enjoyed by a customer's charge / discharge behavior and restrictions on the implementation of charge / discharge;
- a calculation unit for creating a charge / discharge plan including a total charge amount in a certain time period and a total discharge amount and an estimated use start time of the electric vehicle so that the reward is maximized based on the charge / discharge reward information, and charge / discharge Charge / discharge command transmission means for instructing the electric vehicle to start / end charge / discharge according to the plan, charge / discharge amount monitoring means for monitoring charge / discharge, and identification of charge / discharge implementation content and itself
- Charge / discharge execution result transmitting means for transmitting the charge / discharge execution result including the individual identification information to the charge management central server is provided.
- an electric vehicle charging system and an electric vehicle charging method as shown in Patent Document 2 below are also known.
- the control device 10 communicates with the electric vehicle via the changeover switch to acquire the vehicle ID, the battery remaining amount, the operation information, and the like.
- the customer's stay time specified from the vehicle ID is predicted using a method such as a neural network, the charge time is calculated from the remaining battery level and the charging speed of the charger, and charging is performed so that the charge time falls within the stay time. Create a schedule.
- the charging amount required for the return trip is calculated from the operation information and the charging time is recalculated.
- the amount of charge is insufficient, an alarm indicating the fact or a message prompting to extend the departure time is output. Thereby, a plurality of electric vehicles can be charged efficiently.
- a power management system disclosed in Patent Document 3 below is also known.
- This conventional power management system includes a secured power amount calculation unit, which learns the power consumption amount of one trip acquired by the travel history acquisition device and necessary basic power amount for normal traveling. Furthermore, based on the weather information from the weather information detection unit, the necessary power for use of the air conditioner or the like is added to determine the reserved power amount. Thereby, the electric power corresponding to a driving
- the travel start time and the travel start distance are predicted from the past power demand.
- the user when the user intends to use a device including a vehicle having a battery with more convenience and certainty, the user needs electric power necessary for running the vehicle (operating the device). It is necessary to complete the charging of the battery by a certain time (time zone) or to complete the discharge from the battery by the time (time zone) when the user runs the vehicle (activates the device). is there. For this purpose, it is necessary to more accurately predict the usage status of the vehicle, in other words, the user's lifestyle, and to make a charge / discharge plan that reflects the usage status of the vehicle.
- the present invention has been made to address the above-described problems, and an object thereof is to provide a charge / discharge support apparatus that performs charge / discharge control by grasping power consumption at each time in a vehicle.
- a feature of the present invention is a charge / discharge support apparatus including a control unit for supporting charging or discharging of a battery provided in a device, wherein the control unit
- the information on the power consumption of the battery is acquired, and based on the acquired information on the power consumption of the battery in the device in the past, the relationship of the estimated required power amount that requires collateral by that time for each time Is created by estimating the charge start time to the battery or the discharge stop time from the battery using the created rule curve, and the charge start time determined by the estimation or the The purpose is to output the discharge stop time.
- the control means acquires and inputs information related to the past battery power consumption in the device, and relates to the past battery power consumption in the device input by the input means.
- the rule curve creating means for creating a rule curve that represents the relationship of the estimated required electric energy that must be secured by that time for each time, and the rule curve created by the rule curve creating means It is also possible to provide output means for estimating and determining the charging start time or discharging stop time from the battery, and outputting the estimating and determining charging start time or discharging stop time. It is.
- the control means is in contact with the rule curve in the vicinity of the local maximum value in the rule curve or always has a value larger than the estimated required electric energy by the rule curve.
- the latest charge stop time which becomes the latest time of the latest charge start time which becomes the latest time among the charge start times to the battery or the discharge stop time from the battery.
- the time can also be estimated and determined.
- the output means uses the rule curve created by the rule curve creation means, contacts the rule curve in the vicinity of the local maximum value in the rule curve, or always needs to be estimated by the rule curve.
- a line segment having a value larger than the amount is set, and the latest charge start time which is the latest time among the charge start times to the battery, or the latest time among the discharge stop times from the battery It is also possible to estimate and determine the latest discharge stop time.
- the control means when there are a plurality of local maximum values in the created rule curve, the control means is in contact with the rule curve in the vicinity of each local maximum value or always needs to be estimated by the rule curve.
- the latest discharge stop time that is the latest among the determined latest discharge stop times can be estimated and determined.
- the output means when there are a plurality of local maximum values in the rule curve created by the rule curve creating means, the output means is in contact with the rule curve in the vicinity of each local maximum value or is always the rule curve.
- the latest charging start time that is the earliest time among the latest charging start times determined by setting each line segment with a value that is larger than the estimated required power amount by each line segment, or each line segment It is possible to estimate and determine the latest discharge stop time that is the latest among the latest discharge stop times determined and estimated by the above.
- the control means matches the upper limit of the battery capacity.
- Set a line segment that passes through a point or always has a value larger than the required power amount estimated by the rule curve, and the latest charging start time or the estimated required power by the rule curve through the point or always It is also possible to set and determine the latest discharge stop time by setting a line segment having a value larger than the amount.
- the output means determines that the estimated required power amount is the battery capacity.
- a line segment that passes through a point that coincides with the upper limit of the current value or always has a value that is larger than the estimated required power amount by the rule curve, and passes through the latest charge start time, or passes through the point, or always the rule. It is also possible to set and determine the latest discharge stop time by setting a line segment having a value larger than the estimated required power amount by the curve.
- the control means determines the line segment for estimating and determining the latest charging start time, the chargeable amount to the battery, the expected temperature when charging the battery,
- the line segment is set by using at least one of a charging voltage supplied to the battery and a charging current supplied to the battery, or the line segment for estimating and determining the latest discharge stop time depends on the battery. It can be set using at least one of a dischargeable amount, an expected temperature when the battery is charged, a discharge voltage supplied from the battery, and a discharge current supplied from the battery.
- the output means determines the line segment for estimating and determining the latest charging start time, the chargeable amount to the battery, the expected temperature at the time of charging the battery, the battery Or the charging current supplied to the battery is set using at least one of the charging voltage and the line segment for estimating and determining the latest discharge stop time is discharged by the battery. It can be set using at least one of a possible amount, an expected temperature when charging the battery, a discharge voltage supplied from the battery, and a discharge current supplied from the battery.
- the device is a plug-in electric vehicle in which a battery is charged from an external power source
- the control means includes information relating to past power consumption of the battery in the plug-in electric vehicle.
- a rule curve may be created that represents the relationship between the estimated required power amounts that require collateral by each time.
- the rule curve creating means needs to secure security for each time by the time based on the past information on the power consumption of the battery in the plug-in electric vehicle that charges the battery from the external power source. It is possible to create a rule curve that represents the relationship of the estimated required power amount.
- the information regarding the power consumption of the battery in the plug-in electric vehicle in the past includes, for example, departure time information indicating the time when the plug-in electric vehicle departed from a predetermined parking position, and the plug-in electric vehicle.
- Arrival time information indicating the time at which the electric vehicle arrived at the predetermined parking position, and a travel distance since the plug-in electric vehicle departed from the predetermined parking position at the departure time represented by the departure time information. It can be any of the travel distance information representing.
- control means estimates based on information regarding the power consumption of the battery in the past in the plurality of devices, and collateral is required for each time by that time.
- Each of the rule curves representing the relationship of the required electric energy is created, and depending on the priority when using the plurality of devices, the charging start time to the battery or the battery using each of the created rule curves
- the discharge stop time may be estimated and determined, and the charge start time or the discharge stop time determined by the estimation may be output.
- the control means makes a line segment that is in contact with the rule curve in the vicinity of the local maximum value in each of the created rule curves or that always has a value larger than the estimated required power amount by the rule curve as the plurality of devices.
- the latest charge start time or the latest discharge stop time can be estimated and determined.
- the rule curve creating means based on the information on the power consumption of the battery in the past in the plurality of devices, needs to be estimated for each time by that time.
- Each of the rule curves representing the relationship between the output and the output means to the battery using each of the rule curves created by the rule curve creation means according to the priority when using the plurality of devices.
- the charge start time or the discharge stop time from the battery is estimated and determined, and the charge start time or the discharge stop time determined by the estimation can be output.
- the rule curve creating means makes a line segment that is in contact with the rule curve in the vicinity of the local maximum value in each of the created rule curves or has a value that is always larger than the estimated required power amount by the rule curve.
- the latest charging start time or the latest discharge stop time can be estimated and determined by setting according to the priority of the plurality of devices.
- the control means (rule curve creating means) of the charging / discharging support device needs to estimate for each time based on the information on the past power consumption of the equipment including the plug-in electric vehicle that charges the battery from the external power source. It is possible to accurately estimate and determine the rule curve indicating the relationship between the electric energy. Then, the control means (output means) of the charge / discharge assist device is based on the rule curve that is accurately estimated and created, for example, the estimated required electric energy required for operating the device (running the vehicle) It is possible to determine and output a charging start time at which charging of the battery can be completed by a time zone (time) in which the maximum value is reached.
- control means (output means) of the charge / discharge support device discharges from the battery when the battery of the device (vehicle) has surplus power, for example, based on the rule curve that is accurately estimated and created.
- the discharge stop time that can be generated can be determined and output.
- the user can grasp
- FIG. 1 is a schematic diagram showing the configuration of a system to which the charge / discharge assisting apparatus according to the present invention can be applied.
- FIG. 2 is a schematic diagram showing the configuration of the charge / discharge assisting apparatus according to the present invention.
- FIG. 3 is a functional block diagram showing functions realized by computer program processing in the electronic control unit of FIG.
- FIG. 4 is a diagram for explaining the predicted departure time map and the predicted arrival time map created by the departure / arrival time prediction map generation unit of FIG.
- FIG. 5 is a diagram for explaining a predicted travel distance map for each departure time zone created by the travel distance prediction map generation unit in FIG. 3.
- FIG. 6 is a diagram for explaining the cumulative travel distance frequency distribution for each time zone approximated by the Weibull distribution.
- FIG. 7 is a schematic diagram showing a rule curve created by the rule curve creation unit of FIG.
- FIG. 8 is a diagram for explaining the determination of the estimated latest charge start time and the estimated latest discharge stop time by the data output unit of FIG.
- FIG. 9 relates to the first modification of the present invention and explains that the data output unit determines the latest charge start time and the estimated latest discharge stop time using a rule curve having a plurality of local maximum values.
- FIG. FIG. 10 relates to a second modification of the present invention, and the data output unit determines the latest charge start time and the estimated latest discharge stop time using a rule curve in which the estimated power amount exceeds the upper limit of the battery capacity. It is a figure for demonstrating.
- FIG. 11 is a diagram for explaining that the data output unit determines the latest charging start time using a plurality of rule curves and device priorities according to the third modification of the present invention.
- FIG. 1 shows a schematic configuration of a system to which the charge / discharge support apparatus can be applied.
- the vehicle 10 constituting this system is equipped with a battery 11, and is a plug-in electric vehicle that can be charged from an external power source, such as an electric vehicle (EV) that runs on the power of the battery 11, It is a plug-in hybrid vehicle (PHV) equipped with an internal combustion engine, or a two-wheeled vehicle such as an electric bicycle, an assist bicycle, and an electric motorcycle.
- EV electric vehicle
- PSV plug-in hybrid vehicle
- a two-wheeled vehicle such as an electric bicycle, an assist bicycle, and an electric motorcycle.
- the vehicle 10 is driven by an inverter 12 that converts DC power output from the battery 11 into three-phase AC power and a three-phase AC power output from the inverter 12 as a travel drive system.
- a traveling motor 13 that rotates the wheels W and a motor control unit 14 that controls the output of the inverter 12 are provided.
- the vehicle 10 can travel by the motor control unit 14 controlling the electric power supplied from the battery 11 to the traveling motor 13 via the inverter 12.
- the vehicle 10 includes a charge / discharge system 20 for charging or discharging the battery 11.
- the charge / discharge system 20 converts the AC power supplied to the power supply / reception connector 21 and the power supply / reception connector 21 provided with the plug K1 of the charge / discharge connection cable K to DC power.
- An AC / DC converter 22 that outputs DC power to the battery 11, converts DC power charged in the battery 11 into AC power, and outputs the AC power from the power supply / reception connector 21 to the charging / discharging connection cable K;
- the vehicle-side charge / discharge control unit 23 (hereinafter simply referred to as “vehicle-side charge / discharge ECU 23”) that controls charging and discharging of the battery 11 is provided.
- the vehicle-side charge / discharge ECU 23 is a microcomputer whose main components are a CPU, ROM, RAM, and the like, and can communicate with the charge / discharge support apparatus 30 via a communication antenna as shown in FIG.
- a charge / discharge control switch 24 is provided on a power supply line between the power supply / reception connector 21 and the AC / DC converter 22.
- the charge / discharge control switch 24 can be switched between an on state and an off state by a control signal from the vehicle side charge / discharge ECU 23.
- the charge / discharge system 20 is provided with an SOC detection unit 25 that detects an SOC (State Of Charge) that is a value (amount of electric power or a remaining battery level) that is provided in the battery 11 and indicates the state of charge of the battery. .
- SOC detection unit 25 outputs a signal representing the SOC to the vehicle side charge / discharge ECU 23.
- the charging / discharging outlet 41 of the charging / discharging stand 40 as a charging / discharging facility installed in a predetermined parking position, such as a user's home or a shared parking lot, By being electrically connected, the battery 11 is supplied with electric power and charged, and the electric power of the battery 11 is discharged to the charging / discharging stand 40.
- the plug K2 of the charging / discharging connection cable K is inserted into the charging / discharging outlet 41 and charging is performed as described above.
- the plug K 1 of the discharge connection cable K is inserted into the power supply / reception connector 21.
- the charging / discharging stand 40 includes a power reception control unit 42 (hereinafter referred to as “power reception ECU 42”).
- the power reception control ECU 42 is a microcomputer whose main components are a CPU, a ROM, a RAM, and the like. As shown in FIG. 1, as shown in FIG. 1, as shown in FIG. By communicating, an appropriate amount of power is received. That is, the power reception control ECU 42 and the vehicle-side charge / discharge ECU 23 are in a predetermined cycle with various information (for example, request code and response code for charging, ID information for specifying the vehicle 10 (ie, user), battery, 11), an appropriate amount of electric power is received. In other words, the battery 11 is appropriately charged and discharged from the battery 11.
- various information for example, request code and response code for charging, ID information for specifying the vehicle 10 (ie, user), battery, 11
- the charging / discharging support device 30 (hereinafter, also simply referred to as “this device 30”) includes, for the vehicle 10, a departure time from a predetermined parking position where the vehicle 10 is parked and an arrival time at the predetermined parking position, The distance traveled by the vehicle 10 from the departure from the predetermined parking position to the arrival (return) at the predetermined parking position is collected and accumulated as a daily behavior pattern (lifestyle) using the vehicle 10. The daily usage situation (more specifically, the usage situation for each day of the week) is accurately predicted from the accumulated behavior pattern of the vehicle 10.
- the charge / discharge support device 30 creates a rule curve that represents the estimated required electric energy (remaining battery amount) for each time (or for each time zone) based on the predicted usage status of the vehicle 10, and this rule The optimum charge start time or discharge stop time is determined based on the curve.
- the apparatus 30 includes an electronic control unit 31, a communication unit 32, and a storage unit 33, which are connected to be communicable with each other, as a minimum necessary configuration. Therefore, the configuration of the apparatus 30 can be changed as appropriate according to the usage mode (installation mode) of the apparatus 30.
- the apparatus 30 includes an input unit 34 and a liquid crystal display unit 35 as shown in FIG. It is also possible to configure and implement as described above.
- the electronic control unit 31 is a microcomputer whose main components are a CPU, ROM, RAM, and the like, and comprehensively controls the operation of the apparatus 30 by executing various programs.
- the communication unit 32 communicates at least with the vehicle side charge / discharge ECU 23 by wireless (or wired).
- the usage mode (installation mode) of the device 30 the predetermined parking position where the vehicle 10 is parked is, for example, a home, and the device 30 is used at home.
- the communication unit 32 can directly communicate with the vehicle-side charge / discharge ECU 23 by short-range wireless communication (or wired communication).
- the communication unit 32 is connected to the vehicle side by wireless communication (or wired communication) via, for example, the Internet communication network (public line network) or a dedicated line network. Communication with the discharge ECU 23 is possible.
- the storage unit 33 includes a storage medium such as a hard disk and a semiconductor memory, and a drive device for the storage medium. Programs and data necessary for the electronic control unit 31 to comprehensively control the operation of the apparatus 30 are stored in advance. I remember it.
- a vehicle travel history database 33a is constructed that stores a travel history of the vehicle 10 that is information relating to past power consumption of the vehicle 10 in a searchable manner.
- a vehicle ID database that stores, for example, a vehicle registration number, a vehicle number, and the like, as ID information (vehicle ID information) for identifying the vehicle 10, for example, can be searched.
- a user ID database that stores searchable ID information (user ID information) for identifying the user of the vehicle 10.
- the input unit 34 includes an operation switch provided in the vicinity of the liquid crystal display unit 35, a panel touch switch that is incorporated in the liquid crystal display unit 35 and detects a touch operation of the display panel, and enables various inputs by the user. Is.
- the liquid crystal display unit 35 displays characters, figures, etc. on the display panel.
- the electronic control unit 31 of the apparatus 30 in the present embodiment includes a data input unit 51, a departure / arrival time prediction map generation unit 52, a travel distance prediction map generation unit 53, a rule curve generation unit 54, and a data output unit 55. .
- the device 30 uses the travel history of the vehicle 10 when creating the rule curve of the vehicle 10 to be charged and discharged. For this reason, in the vehicle 10 of the present embodiment, the departure time starting from the predetermined parking position starting from a predetermined parking position (for example, home) where the charging / discharging stand 40 that can be used for charging and discharging is installed, and It is assumed that the arrival time at which the parking position is reached (returned) can be detected, and the travel distance traveled from the time when the parking position is departed to the return (before arrival) can be detected. In this case, any method can be adopted for detecting the departure time, arrival time, and mileage. For example, the vehicle 10 is equipped with a known navigation unit, and this navigation unit is the current vehicle status.
- the departure time, arrival time, and travel distance may be detected starting from the predetermined parking position.
- the navigation unit mounted on the vehicle 10 detects that the vehicle 10 is based on a change in the current position of the detected vehicle 10. Departing from a predetermined parking position is detected, and departure time information indicating the time when the departure is detected (that is, departure time) is stored in a predetermined storage unit together with the vehicle ID. Further, the navigation unit mounted on the vehicle 10 calculates the travel distance from the departure of the vehicle 10 based on the change in the current position of the detected vehicle 10, and finally the vehicle 10 is predetermined by the user. The travel distance information indicating the travel distance until the vehicle arrives (returns) at the parking position is stored in a predetermined storage unit together with the vehicle ID and departure time information.
- the navigation unit mounted on the vehicle 10 detects that the vehicle 10 has arrived at a predetermined parking position based on a change in the current position of the vehicle 10 being detected, and the time at which this arrival is detected (ie, arrival) Arrival time information representing (time) is stored in a predetermined storage means together with the vehicle ID, departure time information and travel distance information.
- the vehicle-side charge / discharge ECU 23 of the charge / discharge system 20 in the vehicle 10 cooperates with the navigation unit, for example, a travel distance per unit amount of electric power charged in the battery 11 during the current travel, so-called,
- the electricity cost information representing the electricity cost is stored together with the vehicle ID in a predetermined storage means.
- the vehicle-side charge / discharge ECU 23 of the charging system 20 stores the vehicle ID, departure time information, arrival time information, and travel distance information stored in the storage means. While outputting to the apparatus 30, the electricity cost information is output to the apparatus 30.
- the electronic control unit 31 receives the vehicle ID, the departure time information, the arrival time information, the travel distance information, and the electricity cost information output from the vehicle 10 that has finished traveling via the communication unit 32. And the electronic control unit 31 specifies the vehicle 10 using the output vehicle ID. Subsequently, the electronic control unit 31 stores the output departure time information, arrival time information, and travel distance information in the travel history database 33a. At this time, the electronic control unit 31 stores the departure time information, the arrival time information, and the travel distance information, for example, for each day of the week so as to be searchable at a storage position previously formed corresponding to the vehicle 10 in the travel history database 33a. And storing the electricity cost information in accordance with these information.
- the electronic control unit 31 is configured in the state where departure time information, arrival time information, travel distance information, and power consumption information are stored for each day of the week with respect to the vehicle 10 with respect to the travel history database 33a of the storage unit 33.
- the data input unit 51 inputs departure time information, arrival time information, travel distance information, and electricity cost information from the travel history database 33a.
- the data input unit 51 is, for example, a weekday Monday among the departure time information, arrival time information, travel distance information, and power consumption information of the vehicle 10 stored in the travel history database 33a.
- Departure time information on Friday, arrival time information, travel distance information, and electricity cost information can be selectively input.
- the data input unit 51 includes, for example, Saturdays and Sundays that are holidays or departure times from the festival among the departure time information, arrival time information, travel distance information, and electricity cost information stored in the travel history database 33a. Information, arrival time information, travel distance information, and electricity cost information can be selectively input.
- the data input unit 51 sets the departure time for each day of the input information.
- the information and the arrival time information are output to the departure / arrival time prediction map generation unit 52, the travel distance information is output to the travel distance prediction map generation unit 53, and the electricity cost information is output to the rule curve creation unit 54.
- the departure / arrival time prediction map generation unit 52 creates a predicted departure time map for each weekday and holiday of the vehicle 10 and a predicted arrival time map for each weekday and holiday of the vehicle 10 using the following formula 1.
- tj in Equation 1 represents the j-th departure time from the earlier of the departure times represented by the departure time information input by the data input unit 51, and is input by the data input unit 51.
- the predicted departure time map and the estimated arrival time map for weekdays and holidays according to Equation 1 are as shown in FIG.
- the estimated departure time map and the estimated arrival time map it can be understood that the departure time of the vehicle 10 on a weekday indicated by a solid line has a high probability of departure in a certain time zone (for example, 8 o'clock).
- the estimated departure time map and the estimated arrival time map it can be understood that the departure times of the vehicles 10 on the holidays indicated by the broken lines are almost completely departed.
- the departure / arrival time prediction map generation unit 52 predicts from the generated predicted departure time map out of the generated predicted departure time map and predicted arrival time map.
- the predicted departure time time indicating the departure time to be supplied is supplied to the travel distance prediction map generation unit 53.
- the travel distance prediction map generation unit 53 inputs the travel distance information for each day of the week from the data input unit 51 for the vehicle 10 and the predicted departure time information from the departure / arrival time prediction map generation unit 52. Then, the travel distance prediction map generation unit 53 uses the travel distance information and the predicted departure time information to predict the longest travel distance in the departure time zone (that is, the departure time) according to the following formula 2, and the departure by weekdays and holidays. Create an estimated mileage map by time zone.
- P hd in the formula 2 represents the accumulated probability (safety probability) of the departure time zone h and the distance d in the departure time zone h (hereinafter referred to as “distance time zone d”).
- N hd in Equation 2 represents the frequency of the departure time zone h and the distance time zone d, and N h represents the total frequency of the departure time zone h.
- the predicted travel distance map (for example, 8 o'clock, 9 o'clock, 10 o'clock) according to the above formula 2 for each vehicle 10 is as shown in FIG.
- the predicted travel distance map for each departure time zone for example, when attention is paid to the 9 o'clock and 10 o'clock zones, which are the time zones of departure from normal sunrise, there is a probability that the vehicle 10 travels a long distance. Understandable.
- the vehicle 10 according to the predicted sunrise / sunrise predicted time map shown in FIG. 4 created by the departure / arrival time predicted map generation unit 52, for example, as described above, there is a probability of starting at 8 o'clock. high. That is, with respect to the vehicle 10, a lot of data represented by the frequency in the distance time zone d, that is, the travel distance information is collected until 8 o'clock, and the frequency in the distance time zone d, that is, the travel distance information is extremely large after 9 o'clock. Less.
- the appearance cumulative probability (safety probability) P hd calculated according to the equation 2 depends on N hd, that is, the frequency of the departure time zone h and the distance time zone d, for example, the frequency becomes extremely small (or In a situation where the frequency is “0”), for example, a map having an unnatural distribution may be generated, such as 9 o'clock and 10 o'clock in FIG.
- a distribution of a quantity that takes a positive value such as a travel distance is often represented by an exponential distribution family such as an exponential distribution, a Weibull distribution, a gamma distribution, or a lognormal distribution.
- an exponential distribution family such as an exponential distribution, a Weibull distribution, a gamma distribution, or a lognormal distribution.
- it is also effective to express it as a mixed normal distribution or the like. For this reason, in creating the predicted travel distance map for each departure time zone, N pieces of data (t 1 , d 1 ), (t 2 , d) that record that the vehicle has started at time t and traveled a distance d are now recorded.
- the frequency method divides data at certain time steps (for example, one hour), and represents a cumulative distribution of data represented by travel distance information in each time zone in a table.
- This frequency method is effective in that the cumulative distribution of the data represented by the travel distance information in each time zone can be represented by a table, so that an arbitrary distribution can be maintained by reducing the calculation load.
- the number of data is small, for example, as shown in FIG. 5, only a stair-like coarse distribution can be obtained, the distribution cannot be determined in a time zone where no data exists, or information is aggregated into a small number of parameters. There are also demerits such that it is difficult to compare and tabulate with other distributions because it cannot be done.
- Non-parametric method a In the frequency method, it is possible to adopt a non-parametric method that makes no assumptions about the distribution type of the population as a method to eliminate the fact that a stair-like coarse distribution is obtained when the number of data is small. is there. In this case, for example, by adopting a method that does not assume a specific distribution form such as kernel density estimation, an arbitrary distribution can be obtained smoothly. However, even when such a non-parametric method is employed, there is a demerit such that it is difficult to compare and aggregate with other distributions because information cannot be aggregated into a small number of parameters.
- Parametric method b In contrast to the non-parametric method, it is possible to adopt a parametric method in which some assumption is made in advance for the distribution type of the population. Specifically, in this parametric method, the distribution f (d
- a parametric probability such as exponential distribution family such as exponential distribution, Weibull distribution, gamma distribution, lognormal distribution, mixed Gaussian distribution, etc. It is expressed as a distribution, and its parameters are determined every time step (every time step). Thereby, a smooth distribution can be obtained in the travel distance direction. In this case, it is also effective to represent the sum
- the parameter according to the prior distribution can be determined even if the number of data is small or “0” (zero) by giving the parameter prior distribution.
- the prior distribution for example, when a large amount of parameter information related to the vehicle 10 is accumulated, the distribution of these parameters may be a prior distribution.
- the distribution of these parameters may be a prior distribution.
- Equation 3 Equation 3
- a prior distribution centered on “0” (zero) can be given as a prior distribution.
- the time zone parameter in which no data represented by the travel distance information exists is determined only by the prior distribution.
- the prior distribution for example, there is one data number represented by the travel distance information by adopting a distribution in which the average travel distance is almost “0” (zero) and the parameter has the maximum probability.
- the distribution of the travel distance can be naturally selected so that the travel distance is substantially “0” (zero) in the time period during which no travel is performed.
- the probability density of the distribution in which the travel distance is approximately “0” (zero) can be expressed by a delta function.
- the scale parameter T is By setting it to a small positive number, it can behave like a delta function.
- m in the said Formula 5 is a Weibull coefficient.
- FIG. 6 is an approximation of the cumulative mileage distribution for each time zone with a Weibull distribution, and shows a case where a prior distribution based on a gamma distribution is given to a parameter in the Weibull distribution.
- FIG. 6 when the data represented by the actual travel distance information indicated by the solid line is compared with the approximation by the Weibull distribution indicated by the broken line, it can be understood that the data is well approximated by the Weibull distribution.
- the cumulative frequency suddenly approaches “1” near the travel distance of “0” (zero), and the travel distance is appropriately “0”. (Zero).
- 9 o'clock and 10 o'clock are cases where there are several points (one or two points) of data represented by long-distance travel distance information. ”(Zero), it can be understood that the travel distance increases rapidly in the vicinity of“ 0 ”(zero) and then gradually increases as the cumulative distribution.
- the travel distance prediction map generation unit 53 determines the predicted travel distance map for each departure time zone as a rule. This is supplied to the curve creation unit 54.
- the rule curve creation unit 54 obtains the power consumption information of the vehicle 10 from the data input unit 51 and obtains the estimated travel distance map for each departure time zone for weekdays and holidays from the travel distance prediction map generation unit 53. Then, the rule curve creation unit 54 divides the predicted travel distance for each time slot by the power cost of the vehicle 10 represented by the power cost information based on the obtained predicted travel distance map for each departure time slot. By estimating and determining the amount of power (charge amount) required in the time zone, as shown in FIG. 7, the relationship between the estimated required power amount that requires collateral by that time as shown in FIG. Create a rule curve. As described above, when the rule curve corresponding to the vehicle 10 is created, the rule curve creating unit 54 supplies rule curve information representing the created rule curve to the data output unit 55.
- the rule curve information supplied from the rule curve creation unit 54 is acquired. Then, the data output unit 55 accurately creates a charge plan for charging the battery 11 of the vehicle 10 or a discharge plan for discharging power from the battery 11 of the vehicle 10 using the rule curve represented by the rule curve information. Output. Specifically, the data output unit 55, as shown in FIG. 8, in the rule curve represented by the rule curve information, a point (for example, a contact point) near the local maximum value of the estimated required power amount that is accurately predicted.
- the line segment (for example, tangent) represented by the following formula 8 it is appropriate by the time zone in which the most electric power is required, in other words, the time zone in which the vehicle 10 consumes the power of the battery 11 most The estimated latest charging start time for completing charging with a sufficient amount of electric power is estimated and determined.
- the line segment represented by the following formula 9 is set as a line segment that is in contact with the rule curve in the vicinity of the local maximum value or that always has a value larger than the estimated required power amount by the rule curve.
- the right side ⁇ (t) of Equation 8 represents the chargeable amount of the battery 11 at time t
- T (t) in Equation 8 represents the expected temperature at time t
- V in Equation 8 is A charging voltage is represented
- a in Equation 8 represents a charging current. Therefore, the data output unit 55 detects, for example, the expected temperature T (t), which is detected by an outside temperature sensor (not shown) provided in the apparatus 30 or acquired from the outside through communication by the communication unit 32.
- a charging voltage V and a charging current A supplied to the battery 11 of the vehicle 10 by the discharge stand 40 are input, and a line segment represented by the equation 8 (for example, using at least one of these input values (for example, The estimated latest charging start time that is the intersection of the tangent line) and the predetermined remaining battery level is determined. Note that the estimated latest charging start time determined in this way is estimated as the latest charging start time when charging is completed by the time of the local maximum value in the rule curve.
- the estimated required power amount required for running becomes small.
- the surplus power is used, for example, in a house Can also be discharged.
- the discharge plan for discharging power from the battery 11 can be accurately created by the data output unit 55 based on the rule curve represented by the rule curve information, similarly to the above-described charging plan.
- the data output unit 55 in the rule curve represented by the rule curve information, a point (for example, a contact point) near the local maximum value of the estimated required power amount that is accurately predicted.
- the line segment for example, tangent line
- the line segment represented by the following formula 9 is set as a line segment that is in contact with the rule curve in the vicinity of the local maximum value or that always has a value larger than the estimated required power amount by the rule curve.
- the right side ⁇ (t) of Equation 9 represents the dischargeable amount from the battery 11 at time t.
- the data output unit 55 inputs the predicted temperature T (t), the discharge voltage V from the battery 11 and the discharge current A from the battery 11, and uses the above equation using at least one of these input values.
- 9 is used to determine an estimated latest discharge stop time that is an intersection of a line segment (for example, tangent line) 9 and a predetermined remaining battery level.
- the data output unit 55 determines the estimated latest charge start time in the charge plan and the estimated latest discharge stop time in the discharge plan.
- the estimated latest discharge stop time is output to the liquid crystal display unit 35, for example.
- the user can check the time of starting charging the battery 11 of the vehicle 10 and the time of starting discharging very easily. Therefore, for example, the user electrically connects the battery 11 of the vehicle 10 to the charge / discharge station 40 before the estimated latest charging start time and starts charging at the estimated latest charging start time.
- the battery 11 can be charged with the amount of electric power necessary for traveling by the time period when the traveling distance of the vehicle increases, and the vehicle 10 can be used with certainty without worrying about traveling.
- the user for example, by electrically connecting the battery 11 of the vehicle 10 and the charge / discharge station 40 after running the vehicle 10, from the battery 11 until the estimated latest discharge stop time according to the rule curve. Electric power can be discharged, and troublesome operations are not required.
- the user automatically executes the charging plan and the discharging plan determined by the data output unit 55 (that is, the determination of the estimated latest charging start time and the estimated latest discharging stop time).
- the user uses the input unit 34 to output, for example, rule curve information representing the rule curve created by the rule curve creating unit 54 and data output to the electronic control unit 31 of the apparatus 30.
- the electronic control unit 31 uses the communication unit 32 to transmit the rule curve information and time information to the vehicle side charge / discharge ECU 23 of the charge / discharge unit 20.
- the vehicle side charge / discharge ECU 23 acquires the rule curve information and time information transmitted (supplied) from the device 30. Then, the vehicle side charge / discharge ECU 23 transmits the rule curve information and the time information to the power receiving ECU 42 of the charge / discharge stand 40 by short-range wireless communication.
- the power receiving ECU 42 of the charging / discharging stand 40 installed at a predetermined parking position at home receives the transmitted rule curve information and time information, and the rule curve represented by the received rule curve information and According to the estimated latest charging start time represented by the time information, charging can be automatically started when the estimated latest charging start time is reached for the battery 11 of the electrically connected vehicle 10. In addition, the vehicle 10 has gone out.
- the power receiving ECU 42 of the charging / discharging stand 40 installed at a predetermined parking position in the place of going out receives the transmitted rule curve information and time information, and receives the received rule curve.
- the rule curve represented by the information and the estimated latest discharge stop time represented by the time information discharge is automatically started from the battery 11 of the electrically connected vehicle 10 until the estimated latest discharge stop time is reached. Can do.
- the electronic control unit 31 of the present apparatus 30, more specifically, the rule curve creating unit 54 determines the time based on information related to past power consumption of the vehicle 10. It is possible to accurately estimate and determine the rule curve indicating the relationship of the estimated required power amount in (time zone).
- the electronic control unit 31 of the present apparatus 30, more specifically, the data output unit 55 calculates the estimated required electric energy required for driving the vehicle 10 based on the rule curve that is accurately estimated and created. It is possible to determine the estimated latest charging start time at which charging of the battery 11 can be completed by the maximum time zone (time).
- the data output unit 55 is based on the rule curve that is accurately estimated and created, and the estimated latest discharge stop that can be discharged from the battery 11 when the battery 11 of the vehicle 10 has surplus power. The time can be determined. Thereby, the user can charge / discharge the vehicle 10 extremely accurately and reliably. Therefore, a user who uses the vehicle 10 that is the target of such charge / discharge control can reliably use the vehicle in a charged state of the battery 11 and can enjoy extremely good convenience. .
- the rule curve created by the rule curve creation unit 54 has been described as having one local maximum value as shown in FIG.
- the rule curve created by the rule curve creation unit 54 may have a plurality of local maximum values.
- the data output unit 55 from the point (for example, a contact point) near each local maximum value of the estimated required power amount that is accurately predicted, as in the above embodiment.
- the line segment for example, tangent line
- the amount of electric power appropriate for the time period in which the most electric power is required in other words, the time period in which the vehicle travels while consuming the battery power most.
- the estimated latest charging start time for completing charging is estimated and determined.
- a user electrically connects the battery 11 of the vehicle 10 and the charging / discharging stand 40 by the estimated latest charging start time, for example, and starts the estimated latest charging.
- the power receiving ECU 42 of the charging / discharging stand 40 installed at a predetermined parking position receives the rule curve information and the time information, so that the estimated latest When the charging start time is reached, the charging of the battery 11 of the electrically connected vehicle 10 can be automatically started. Therefore, also in the first modification, the user who uses the vehicle 10 can surely use the vehicle in a charged state of the battery 11 and can enjoy very good convenience.
- the data output unit 55 starts from a point (for example, a contact point) near the local maximum value where the estimated required power amount that is accurately predicted is the largest.
- a line segment (for example, a tangent line) represented by Equation 9 is assumed, but when there is a line segment according to Equation 8 from the vicinity of another adjacent local maximum value, the time (estimated) corresponding to these intersection points It is slightly different in that the discharge is stopped at the discharge stop time).
- the user estimates, for example, according to the rule curve by electrically connecting the battery 11 of the vehicle 10 and the charge / discharge stand 40 after the vehicle 10 has traveled.
- the electric power from the battery 11 can be discharged until the discharge stop time, and a troublesome operation is unnecessary.
- the power receiving ECU 42 of the charging / discharging stand 40 follows the estimated discharge stop time represented by the rule curve and time information of the electrically connected vehicle 10. Discharge can be automatically started from the battery 11 until the estimated discharge stop time is reached. Therefore, also in this first modification, the user who uses the vehicle 10 can enjoy very good convenience.
- the estimated required power amount of the rule curve created by the rule curve creation unit 54 is less than or equal to the upper limit of the battery capacity of the battery 11 of the vehicle 10. It was explained assuming that. In this case, for example, due to the influence of aging deterioration of the battery 11 and the like, as shown in FIG. 10, the estimated required power amount in the rule curve created based on the past travel history of the vehicle 10 exceeds the upper limit of the battery capacity. There is a possibility. In addition, about the change of the upper limit of battery capacity, it is good to estimate according to a well-known method.
- the data output unit 55 Assumes the line segment (e.g., tangent line) represented by Equation 8 from the point that the estimated required power amount matches the upper limit of the battery capacity, and the vehicle is The estimated latest charging start time for completing the charging of an appropriate amount of electric power by the time zone during which the electric power is consumed is estimated and determined.
- the data output unit 55 assumes a line segment (for example, a tangent line) represented by the equation 9 from the point that the estimated required power amount matches the upper limit of the battery capacity. A discharge stop time at which discharge from a time zone in which surplus power exists is completed is estimated and determined.
- the user can change the battery 11 and the charging / discharging stand 40 of the vehicle 10 before the estimated latest charging start time, for example. Are connected to each other, and charging is started at the estimated latest charging start time, so that the charging of the battery 11 with the amount of power required for traveling can be completed by the time zone when the traveling distance of the vehicle 10 increases.
- the user electrically connects the battery 11 of the vehicle 10 and the charge / discharge stand 40 after the vehicle 10 has traveled, for example.
- the power receiving ECU 42 of the charging / discharging stand 40 has the estimated latest charging start time or the estimated discharging stop represented by the rule curve and time information. According to the time, when the estimated latest charging start time is reached, the battery 11 of the electrically connected vehicle 10 automatically starts charging, or the estimated latest discharge stop time from the electrically connected battery 11 of the vehicle 10 Discharge can be automatically started until (estimated discharge stop time). Therefore, also in this second modification, the user who uses the vehicle 10 can enjoy very good convenience.
- the vehicle 10 is the charging device 1
- the home appliance is the charging device 2
- the priority ratio between the charging device 1 (vehicle 10) and the charging device 2 (home appliance) is 2.
- the ratio is set to 1 will be described as an example. Needless to say, the priority ratio can be appropriately set by the user.
- the rule curve creation unit 54 creates a rule curve for the home appliance that is the charging device 2.
- the rule curve creation unit 54 for example, a rule curve that represents the relationship of the required power amount that is estimated for each time (time period) based on information related to the consumption of past power output from home appliances. Should be generated.
- the data output part 55 estimates and determines the estimated latest charge start time about each rule curve of the charging equipment 1 and the charging equipment 2.
- the data output unit 55 is represented by the equation 8 as shown in FIG. 11 from a point (for example, a contact) in the vicinity of the local maximum value of the rule curve of the charging device 2 with low priority.
- a line segment (for example, a tangent) is provided.
- the data output unit 55 determines an intersection X between the provided line segment (for example, a tangent) and the time that is the local maximum value in the rule curve of the charging device 1. Further, the data output unit 55 starts from the intersection point X, as shown in FIG.
- a line segment for example, tangent line
- the intersection point Y between the line segment (for example, tangent line) and the estimated required power amount that is the local maximum value in the rule curve of the charging device 1 is determined. Then, as shown in FIG. 11, the data output unit 55 determines the time at the intersection Y as the estimated latest charging start time of the charging device 2.
- the data output unit 55 starts from a point (for example, a contact point) near the local maximum value of the rule curve of the charging device 1 according to the priority ratio as shown in FIG.
- a line segment (for example, a tangent line) in which the chargeable amount ⁇ (t) in Equation 8 is 2/3 is provided.
- the data output unit 55 determines an intersection Z between this line segment (for example, tangent) and the estimated latest charging start time of the charging device 2,
- a line segment for example, a tangent line
- the data output unit 55 determines the intersection of the line segment (for example, tangent line) represented by the equation 8 and the predetermined minimum battery remaining amount as the estimated latest charging start time of the charging device 1.
- the estimated latest discharge stop time in the third modification is determined in the same manner as the estimated latest charge start time in consideration of the priority.
- this third modification there are a plurality of devices that require charging, and when charging these devices, depending on the priority of the devices, the same as in the above embodiment and the first and second modifications In addition, charging can be appropriately completed. About the other effect, the same effect as the said embodiment and the 1st, 2nd modification can be anticipated.
- the rule curve generated by the rule curve generating unit 54 is generated by the travel distance prediction map generating unit 53 according to the expression 1 by the departure / arrival time prediction map generating unit 52.
- the predicted departure time map and the travel distance of the vehicle 10 are used to create a predicted travel distance map for each departure time created by statistical processing.
- a rule curve based on the usage status of the vehicle 10 predicted with extremely high accuracy can be created, so that the charge / discharge plan determined by the data output unit 55 can also be determined with high accuracy.
- the rule curve creation unit 54 generates a rule curve using, for example, the predicted departure time map created by the departure / arrival time prediction map generation unit 52 and the travel distance supplied from the data input unit 51. Needless to say, it can be implemented. In this case, if the travel distance data represented by the travel distance information exists, the accuracy is slightly deteriorated, but a rule curve can be created, and the data output unit 55 uses this rule curve to estimate the maximum value. The late charge start time and the estimated latest discharge stop time can be determined.
- the data output unit 55 uses a predicted arrival time map that is accurately predicted, and the time when the vehicle 10 to be charged / discharged is likely to be parked at a predetermined parking position ( That is, a time at which the cumulative occurrence probability (safety probability) P th is equal to or higher than a predetermined safety probability (for example, 90%) is specified.
- the predetermined safety probability may be set in advance or may be changed as appropriate.
- the data output unit 55 causes the vehicle 10 to move after the specified time (time zone). It is possible to present to the user that the battery 11 is supplied with power and charged, or that the battery 11 of the vehicle 10 is discharged.
- the data output unit 55 uses the predicted predicted departure time map to accurately predict the time when the vehicle 10 to be charged / discharged is likely to depart from a predetermined parking position (that is, the accumulated probability of appearance ( (Safety probability)
- the time at which Pth is equal to or higher than a predetermined safety probability (for example, 90%) is specified.
- a predetermined safety probability for example, 90%
- the battery of the charging / discharging stand 40 and the vehicle 10 is reached by these times. 11 was electrically connected, and the charging was started or the discharging was stopped at the estimated latest charging start time or the estimated latest discharging stop time. In this case, for some reason, the user (or the power reception control ECU 42 of the charging / discharging stand 40) does not start charging especially at the estimated estimated latest charging start time or after the estimated latest charging start time.
- the electronic control unit 31 (more specifically, the data output unit 55) of the device 30 is sufficiently connected to the battery 11 through the liquid crystal display unit 35 until the estimated required power amount is reached. It can be notified that charging may not be possible.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
充放電支援装置10の電子制御ユニット11は、データ入力部51、出発・到着時刻予測マップ生成部52、走行距離予測マップ生成部53、ルールカーブ作成部54、データ出力部55とからなる。入力部51は出発時刻情報、到着時刻情報及び走行距離情報を入力する。予測マップ生成部52は今後の出発予想時刻マップと今後の到着予想時刻マップを作成する。予測マップ生成部53は、走行距離情報及び予測出発時刻情報を用いて出発時間帯における最長走行距離を予測する出発時間帯別予想走行距離マップを作成する。作成部54は、予想走行距離マップに基づき、各時間帯にて必要な電力量を決定してルールカーブを作成する。出力部55は、ルールカーブを用いて充電計画或いは放電計画を精度よく作成して出力する。
Description
本発明は、機器に設けられたバッテリの充電又は放電を支援する充放電支援装置に関する。
従来から、例えば、下記特許文献1に示されているような、充放電管理装置は知られている。この従来の充放電管理装置は、需要家の充放電行動により享受できる報奨及び充電・放電の実施に関する制約を定めた充放電報奨情報を充電管理中央サーバから受信する充放電報奨情報受信手段と、充放電報奨情報に基づいて報奨が最大となるようにある時間帯の充電量の合計及び放電量の合計と電気自動車の推定使用開始時刻とを含む充放電計画を作成する計算部と、充放電計画に従った充電・放電の開始・終了を電気自動車に指令する充放電指令送信手段と、充電・放電を監視する充放電量監視手段と、監視によって充電・放電の実施内容及び自身を識別する個体識別情報を含む充放電実施結果を充電管理中央サーバに送信する充放電実施結果送信手段とを有するようになっている。これにより、需要家の行動を踏まえつつ、電力系統全体のエネルギー消費性能及び社会環境性能を向上させるようになっている。
又、従来から、例えば、下記特許文献2に示されているような、電気自動車充電システム及び電気自動車充電方法も知られている。この従来の電気自動車充電システム及び電気自動車充電方法は、電気自動車が駐車スペースに停車すると、制御装置10が切り替えスイッチ経由で電気自動車と通信して車ID、電池残量、運行情報等を取得し、ニューラルネット等の手法を用いて車IDから特定される客の滞在時間を予測し、電池残量及び充電器の充電速度により充電時間を計算し、その充電時間が滞在時間に収まるように充電スケジュールを作成するようになっている。又、この従来の電気自動車充電システム及び電気自動車充電方法では、計算した充電時間が滞在時間に収まらない場合には、運行情報から帰路に必要な充電量を計算して充電時間を再計算するようになっており、充電量が不十分となる場合には、その旨を示す警報、又は、出発時刻を延長するように促すメッセージを出力するようになっている。これにより、効率的に複数の電気自動車を充電することができるようになっている。
更に、従来から、例えば、下記特許文献3に示される電力マネジメントシステムも知られている。この従来の電力マネジメントシステムは、確保電力量演算部を備えており、この確保電力量演算部は、走行履歴取得装置が取得した1トリップの消費電力量を学習して通常走行における必要基本電力量を求め、更に、天候情報検出部からの天候情報に基づいて空調機等の使用のための必要電力を加算して確保電力量を決定するようになっている。これにより、車載バッテリに走行環境に対応した電力を確保することができ、急な外出にも対応できるようになっている。
ところで、上記特許文献1~3に示された従来の装置やシステムにおいては、過去の電力需要から走行開始時刻や走行開始距離を予測するようになっている。しかしながら、ユーザがより利便性及び確実性を有してバッテリを備えた車両を含む機器を利用しようとする場合には、ユーザが車両を走行させる(機器を作動させる)ために必要な電力を必要な時刻(時間帯)までにバッテリへの充電を完了する、或いは、ユーザが車両を走行させる(機器を作動させる)時刻(時間帯)までにバッテリからの放電を完了しておくことが必要である。このためには、より精度よく車両の利用状況、言い換えれば、ユーザのライフスタイルを予測し、車両の利用状況を反映した充放電計画を立てる必要がある。
本発明は、上記した問題に対処するためになされたものであり、その目的は、車両における各時刻の電力消費を把握して充放電制御を行う充放電支援装置を提供することにある。
上記目的を達成するために、本発明の特徴は、機器に設けられたバッテリの充電又は放電を支援するための制御手段を備えた充放電支援装置において、前記制御手段は、前記機器における過去の前記バッテリの電力消費に関する情報を取得し、この取得した前記機器における過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブを作成し、前記作成したルールカーブを用いて前記バッテリへの充電開始時刻又は前記バッテリからの放電停止時刻を推定して決定し、前記推定して決定した前記充電開始時刻又は前記放電停止時刻を出力することにある。尚、この場合、前記制御手段が、前記機器における過去の前記バッテリの電力消費に関する情報を取得して入力する入力手段と、前記入力手段によって入力された前記機器における過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブを作成するルールカーブ作成手段と、前記ルールカーブ作成手段によって作成されたルールカーブを用いて前記バッテリへの充電開始時刻又は前記バッテリからの放電停止時刻を推定して決定し、前記推定して決定した前記充電開始時刻又は前記放電停止時刻を出力する出力手段とを備えることも可能である。
この場合、前記制御手段は、例えば、前記作成したルールカーブを用いて、前記ルールカーブにおける局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記バッテリへの充電開始時刻のうちの最も遅い時刻となる最遅充電開始時刻、又は、前記バッテリからの放電停止時刻のうちの最も遅い時刻となる最遅放電停止時刻を推定して決定することもできる。尚、この場合、前記出力手段は、前記ルールカーブ作成手段によって作成されたルールカーブを用いて、前記ルールカーブにおける局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記バッテリへの充電開始時刻のうちの最も遅い時刻となる最遅充電開始時刻、又は、前記バッテリからの放電停止時刻のうちの最も遅い時刻となる最遅放電停止時刻を推定して決定することもできる。
そして、この場合、前記制御手段は、例えば、前記作成したルールカーブに複数の局所最大値が存在するとき、各局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定し、各線分によって推定して決定される各最遅充電開始時刻のうちの最も早い時刻となる最遅充電開始時刻、又は、各線分によって推定して決定される各最遅放電停止時刻のうちの最も遅い時刻となる最遅放電停止時刻を推定して決定することができる。尚、この場合、前記出力手段は、前記ルールカーブ作成手段によって作成されたルールカーブに複数の局所最大値が存在するとき、各局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定し、各線分によって推定して決定される各最遅充電開始時刻のうちの最も早い時刻となる最遅充電開始時刻、又は、各線分によって推定して決定される各最遅放電停止時刻のうちの最も遅い時刻となる最遅放電停止時刻を推定して決定することができる。
これらの場合、前記制御手段は、例えば、前記作成したルールカーブによって表される推定消費電力量が前記バッテリにおけるバッテリ容量の上限を超えるときには、前記推定必要電力量が前記バッテリ容量の上限と一致する点を通か又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記最遅充電開始時刻、又は、前記点を通か又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記最遅放電停止時刻を推定して決定することもできる。尚、この場合、前記出力手段は、前記ルールカーブ作成手段によって作成されたルールカーブによって表される推定消費電力量が前記バッテリにおけるバッテリ容量の上限を超えるときには、前記推定必要電力量が前記バッテリ容量の上限と一致する点を通か又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記最遅充電開始時刻、又は、前記点を通か又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記最遅放電停止時刻を推定して決定することもできる。
更に、これらの場合には、前記制御手段は、前記最遅充電開始時刻を推定して決定するための前記線分を、前記バッテリへの充電可能量、前記バッテリの充電時における予想気温、前記バッテリに供給する充電電圧及び前記バッテリに供給する充電電流のうちの少なくとも一つを用いて設定し、又は、前記最遅放電停止時刻を推定して決定するための前記線分を、前記バッテリによる放電可能量、前記バッテリの充電時における予想気温、前記バッテリから供給する放電電圧及び前記バッテリから供給する放電電流のうちの少なくとも一つを用いて設定することができる。尚、この場合には、前記出力手段は、前記最遅充電開始時刻を推定して決定するための前記線分を、前記バッテリへの充電可能量、前記バッテリの充電時における予想気温、前記バッテリに供給する充電電圧及び前記バッテリに供給する充電電流のうちの少なくとも一つを用いて設定し、又は、前記最遅放電停止時刻を推定して決定するための前記線分を、前記バッテリによる放電可能量、前記バッテリの充電時における予想気温、前記バッテリから供給する放電電圧及び前記バッテリから供給する放電電流のうちの少なくとも一つを用いて設定することができる。
又、本発明の他の特徴は、前記機器は外部電源からバッテリを充電するプラグイン式電気車両であり、前記制御手段は、前記プラグイン式電気車両における過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブを作成することにもある。尚、この場合、前記ルールカーブ作成手段が、外部電源からバッテリを充電するプラグイン式電気車両における過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブを作成することができる。
そして、この場合、前記プラグイン式電気車両における過去の前記バッテリの電力消費に関する情報は、例えば、前記プラグイン式電気車両が所定の駐車位置から出発した時刻を表す出発時刻情報及び前記プラグイン式電気車両が前記所定の駐車位置に到着した時刻を表す到着時刻情報と、前記出発時刻情報によって表される出発時刻に前記プラグイン式電気車両が前記所定の駐車位置を出発してからの走行距離を表す走行距離情報のうちのいずれかとすることができる。
更に、本発明の他の特徴は、前記制御手段は、複数の前記機器におけるそれぞれの過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブをそれぞれ作成し、前記複数の機器を使用するときの優先度に応じて、前記作成したそれぞれのルールカーブを用いて前記バッテリへの充電開始時刻又は前記バッテリからの放電停止時刻を推定して決定し、前記推定して決定した前記充電開始時刻又は前記放電停止時刻を出力することにもある。この場合、前記制御手段は、前記作成した各ルールカーブにおける局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を前記複数の機器の優先度に応じて設定して、前記最遅充電開始時刻、又は、前記最遅放電停止時刻を推定して決定することができる。尚、この場合、前記ルールカーブ作成手段は、複数の前記機器におけるそれぞれの過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブをそれぞれ作成し、前記出力手段は、前記複数の機器を使用するときの優先度に応じて、前記ルールカーブ作成手段によって作成されたそれぞれのルールカーブを用いて前記バッテリへの充電開始時刻又は前記バッテリからの放電停止時刻を推定して決定し、前記推定して決定した前記充電開始時刻又は前記放電停止時刻を出力することができる。そして、この場合、前記ルールカーブ作成手段は、前記作成した各ルールカーブにおける局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を前記複数の機器の優先度に応じて設定して、前記最遅充電開始時刻、又は、前記最遅放電停止時刻を推定して決定することができる。
これらによれば、充放電支援装置の制御手段(ルールカーブ作成手段)は、外部電源からバッテリを充電するプラグイン式電気車両を含む機器の過去の電力消費に関する情報に基づいて各時刻に対する推定必要電力量の関係を示すルールカーブを精度よく推定して決定することができる。そして、充放電支援装置の制御手段(出力手段)は、精度よく推定されて作成されたルールカーブに基づいて、例えば、機器を作動させる(車両を走行させる)ために必要となる推定必要電力量が最大となる時間帯(時刻)までにバッテリへの充電を完了させることができる充電開始時刻を決定して出力することができる。又、充放電支援装置の制御手段(出力手段)は、精度よく推定されて作成されたルールカーブに基づいて、例えば、機器(車両)のバッテリが余剰電力を有しているときにバッテリから放電させることができる放電停止時刻を決定して出力することができる。これにより、ユーザは、極めて正確な情報を把握して確実に車両を充放電制御することができる。従って、このような充放電支援の対象となる機器(車両)を利用するユーザは、良好なバッテリの充電状態で機器(車両)を確実に利用することができて、極めて良好な利便性を享受することができる。
以下、本発明の実施形態に係る充放電支援装置について図面を参照しながら説明する。
図1は、充放電支援装置の適用可能なシステムの概略構成を示している。このシステムを構成する車両10は、バッテリ11を搭載しており、外部電源からバッテリ11に充電できるようにしたプラグイン電気車両、例えば、バッテリ11の電力で走行する電気自動車(EV)や、更に内燃機関を備えたプラグインハイブリッド車(PHV)、或いは、電動自転車、アシスト自転車、電動バイク等の二輪車である。ここで、車両10の構成自体は、周知の構成を採用することができ、又、本発明に直接関係しないため、以下に簡単に説明しておく。
車両10は、図1に示すように、走行駆動系として、バッテリ11から出力される直流電力を三相交流電力に変換するインバータ12と、インバータ12から出力される三相交流電力により駆動されて車輪Wを回転させる走行用モータ13と、インバータ12の出力を制御するモータ制御ユニット14とを備えている。これにより、車両10は、モータ制御ユニット14がインバータ12を介してバッテリ11から走行用モータ13に供給される電力を制御することによって走行することができる。
又、車両10は、バッテリ11を充電する又はバッテリ11から放電するための充放電システム20を備えている。充放電システム20は、図1に示すように、充放電用接続ケーブルKのプラグK1が接続可能に設けられた受給電コネクタ21と、受給電コネクタ21に供給される交流電力を直流電力に変換してバッテリ11に直流電力を出力する、及び、バッテリ11に充電されている直流電力を交流電力に変換して受給電コネクタ21から充放電用接続ケーブルKに出力するAC/DC変換器22と、バッテリ11の充電及び放電を制御する車両側充放電制御ユニット23(以下、単に「車両側充放電ECU23」と称呼する。)とを備えている。車両側充放電ECU23は、CPU、ROM、RAM等を主要構成部品とするマイクロコンピュータであり、図1に示すように、充放電支援装置30と通信アンテナを介して通信できるようになっている。又、充放電システム20においては、受給電コネクタ21とAC/DC変換器22との間の電源ラインに、充放電制御スイッチ24が設けられている。この充放電制御スイッチ24は、車両側充放電ECU23からの制御信号によりオン状態とオフ状態とに切り替え可能となっている。さらに、充放電システム20においては、バッテリ11に設けられてバッテリの充電状態を示す値(電力量或いはバッテリ残量)であるSOC(State Of Charge)を検出するSOC検出部25が設けられている。SOC検出部25は、SOCを表す信号を車両側充放電ECU23に出力する。
そして、このような充電システム20を備えた車両10においては、ユーザの自宅或いは共用する駐車場等の所定の駐車位置に設置された充放電施設としての充放電スタンド40の充放電用コンセント41と電気的に接続されることによって、バッテリ11に電力が供給されて充電され、又、バッテリ11の電力が充放電スタンド40に放電される。これにより、車両10のバッテリ11を充電する、又は、車両10のバッテリ11から放電する場合には、充放電用接続ケーブルKのプラグK2を充放電用コンセント41に差し込むとともに、上述したように充放電用接続ケーブルKのプラグK1を受給電コネクタ21に差し込む。これにより、バッテリ11を充電するときには、充放電用コンセント41から車両10のバッテリ11に電力が供給される。一方、バッテリ11から放電するときには、車両10のバッテリ11から充放電用コンセント41に電力が供給される。
ここで、充放電スタンド40は、電力受給制御ユニット42(以下、「電力受給ECU42」と称呼する。)を備えている。電力受給制御ECU42は、CPU、ROM、RAM等を主要構成部品とするマイクロコンピュータであり、図1に示すように、充放電システム20の車両側充放電ECU23と通信アンテナを介して互いに近距離無線通信することにより、適切な量の電力を受給するようになっている。すなわち、電力受給制御ECU42は、車両側充放電ECU23とは、互いに所定の周期により、種々の情報(例えば、充電におけるリクエストコードやレスポンスコード、車両10(すなわち、ユーザ)を特定するID情報、バッテリ11のSOC等)を送受信することにより、適切な量の電力を受給する、言い換えれば、適切にバッテリ11を充電するとともにバッテリ11から放電させるようになっている。
充放電支援装置30(以下、単に「本装置30」とも称呼する。)は、車両10について、車両10が駐車される所定の駐車位置からの出発時刻及び所定の駐車位置への到着時刻と、所定の駐車位置を出発してから所定の駐車位置に到着する(戻る)までに車両10が走行した走行距離とを、車両10を用いた日々の行動パターン(ライフスタイル)として収集して蓄積し、蓄積した車両10の行動パターンから日々の利用状況(より具体的には、曜日毎の利用状況)を精度よく予測する。そして、充放電支援装置30は、このように予測した車両10の利用状況に基づいて各時刻(又は時間帯毎)に対する推定必要電力量(バッテリ残量)を表すルールカーブを作成し、このルールカーブに基づいて最適な充電開始時間又は放電停止時間を決定するようになっている。
このため、本装置30は、図2に概略的に示すように、互いに通信可能に接続された電子制御ユニット31、通信ユニット32及び記憶ユニット33を必要最小限の構成として備えている。従って、本装置30の利用態様(設置態様)に応じてその構成を適宜変更することは可能であり、例えば、図2に示すように、本装置30が入力ユニット34及び液晶表示ユニット35を備えるように構成して実施することも可能である。
電子制御ユニット31は、CPU,ROM、RAM等を主要構成部品とするマイクロコンピュータであり、各種のプログラムを実行することにより、本装置30の作動を統括的に制御する。通信ユニット32は、無線(又は有線)によって、少なくとも、車両側充放電ECU23と通信するものである。尚、本装置30の利用態様(設置態様)に関し、車両10を駐車する所定の駐車位置が、例えば、自宅であり、本装置30が自宅で利用される場合、すなわち、本装置30が車両10に比較的近い位置にて利用される場合には、通信ユニット32が近距離無線通信(又は有線通信)によって直接的に車両側充放電ECU23と通信できるようになっており、所定の駐車位置から遠方に本装置30が設置されて利用されう場合には、通信ユニット32が、例えば、インターネット通信網(公衆回線網)や専用回線網を介した無線通信(又は有線通信)により、車両側充放電ECU23と通信できるようになっている。
記憶ユニット33は、ハードディスクや半導体メモリ等の記憶媒体及び同記憶媒体のドライブ装置を含むものであり、電子制御ユニット31が本装置30の作動を統括的に制御するにあたって必要なプログラム及びデータを予め記憶している。そして、記憶ユニット33内には車両10の過去の電力消費に関する情報である車両10の走行履歴を検索可能に記憶する車両走行履歴データベース33aが構築されている。尚、記憶ユニット33内には、必要に応じて、例えば、車両10を識別するためのID情報(車両ID情報)として、例えば、車両登録番号や車台番号等を検索可能に記憶する車両IDデータベースを構築したり、車両10のユーザを識別するためのID情報(ユーザID情報)を検索可能に記憶するユーザIDデータベースを構築したりすることができる。
入力ユニット34は、液晶表示ユニット35の近傍に設けられた操作スイッチ、液晶表示ユニット35内に組み込まれて表示パネルのタッチ操作を検出するパネルタッチスイッチ等からなり、ユーザによる各種入力を可能とするものである。液晶表示ユニット35は、文字、図形等を表示パネル上に表示するものである。
次に、上記のように構成した本装置30の動作について、電子制御ユニット31内にてコンピュータプログラム処理により実現される機能を表す図3の機能ブロック図を用いて説明する。本実施形態における本装置30の電子制御ユニット31は、データ入力部51、出発・到着時刻予測マップ生成部52、走行距離予測マップ生成部53、ルールカーブ作成部54、データ出力部55とからなる。
尚、本実施形態においては、本装置30は、充放電支援の対象となる車両10のルールカーブを作成するにあたり、車両10の走行履歴を利用する。このため、本実施形態の車両10においては、充放電に利用可能な充放電スタンド40が設置された所定の駐車位置(例えば、自宅)を起点とし、この所定の駐車位置から出発する出発時間及びこの駐車位置に到着する(戻る)到着時間を検出可能であり、この駐車位置を出発してから戻るまでに(到着するまでに)走行した走行距離が検出可能であるとする。この場合、これらの出発時間、到着時間及び走行距離の検出については、如何なる方法をも採用可能であるが、例えば、車両10が周知のナビゲーションユニットを搭載しており、このナビゲーションユニットが車両の現在位置を検出することにより、前記所定の駐車位置を起点として、出発時刻、到着時刻及び走行距離を検出するとよい。或いは、本装置30が車両10の現在位置を通信を介して直接的に取得することにより、車両10の出発時間、到着時間及び走行距離を検出(取得)するようにすることも可能である。
そして、ユーザが車両10を所定の駐車位置から走行を開始する(出発する)と、例えば、車両10に搭載されたナビゲーションユニットは、検出している車両10の現在位置の変化に基づき車両10が所定の駐車位置から出発したことを検知し、この出発を検知した時刻(すなわち、出発時刻)を表す出発時刻情報を所定の記憶手段に車両IDとともに記憶する。又、車両10に搭載されたナビゲーションユニットは、検出している車両10の現在位置の変化に基づき車両10が出発してからの走行距離を算出し、最終的に、ユーザによって車両10が所定の駐車位置に到着する(戻る)までの走行距離を表す走行距離情報を所定の記憶手段に車両ID及び出発時刻情報とともに記憶する。又、車両10に搭載されたナビゲーションユニットは、検出している車両10の現在位置の変化に基づき車両10が所定の駐車位置に到着したことを検知し、この到着を検知した時刻(すなわち、到着時刻)を表す到着時刻情報を所定の記憶手段に車両ID、出発時刻情報及び走行距離情報とともに記憶する。更に、車両10における充放電システム20の車両側充放電ECU23は、ナビゲーションユニットと協働して、例えば、今回の走行に伴い、バッテリ11に充電されている単位電力量当たりの走行距離、所謂、電費を表す電費情報を所定の記憶手段に車両IDとともに記憶する。そして、車両10においては、所定の駐車位置に駐車されると、充電システム20の車両側充放電ECU23が記憶手段に記憶している車両ID、出発時刻情報、到着時刻情報及び走行距離情報を本装置30に出力するとともに、電費情報を本装置30に出力する。
本装置30においては、電子制御ユニット31が通信ユニット32を介して、走行を終えた車両10から出力された車両ID、出発時刻情報、到着時刻情報及び走行距離情報と電費情報とを受信する。そして、電子制御ユニット31は、出力された車両IDを用いて車両10を特定する。続いて、電子制御ユニット31は、出力された出発時刻情報、到着時刻情報及び走行距離情報を走行履歴データベース33aに記憶する。このとき、電子制御ユニット31は、走行履歴データベース33a内に予め車両10に対応して形成された記憶位置にて、例えば、曜日別に出発時刻情報、到着時刻情報及び走行距離情報を検索可能に蓄積して記憶するとともに、これらの情報に合わせて電費情報を記憶する。
このように、記憶ユニット33の走行履歴データベース33aに対して、車両10に関して、曜日別に出発時刻情報、到着時刻情報及び走行距離情報と電費情報とが記憶された状態において、電子制御ユニット31を構成するデータ入力部51は、走行履歴データベース33aから出発時刻情報、到着時刻情報及び走行距離情報と電費情報とを入力する。具体的に例示して説明すると、データ入力部51は、走行履歴データベース33aに蓄積されている車両10の出発時刻情報、到着時刻情報及び走行距離情報と電費情報のうち、例えば、平日である月曜日~金曜日の出発時刻情報、到着時刻情報及び走行距離情報と電費情報とを選択的に入力することができる。或いは、データ入力部51は、走行履歴データベース33aに蓄積されている車両10の出発時刻情報、到着時刻情報及び走行距離情報と電費情報のうち、例えば、休日である土曜日と日曜日又は祭日の出発時刻情報、到着時刻情報及び走行距離情報と電費情報とを選択的に入力することができる。
そして、このように、車両10についての曜日別の出発時刻情報、到着時刻情報及び走行距離情報と電費情報とを入力すると、データ入力部51は、入力した各情報のうち、曜日別の出発時刻情報及び到着時刻情報を出発・到着時刻予測マップ生成部52に出力し、走行距離情報を走行距離予測マップ生成部53に出力し、電費情報をルールカーブ作成部54に出力する。
出発・到着時刻予測マップ生成部52は、下記式1を用いて、車両10の平日と休日別の出発予想時刻マップを作成するとともに、車両10の平日と休日別の到着予想時刻マップを作成する。
ただし、前記式1中のtjは、データ入力部51によって入力された出発時刻情報が表す出発時刻のうちの早い方からj番目の出発時刻を表すものであり、又、データ入力部51によって入力された到着時刻情報が表す到着時刻のうちの早い方からj番目の到着時刻を表すものである。そして、前記式1中のPthは、出発時刻tj(j=0,…n)又は到着時刻tj(j=0,…n)の出現累積確率(安全確率)を表す。又、前記式1中のNtjは、出発時刻tj(j=0,…n)又は到着時刻tj(j=0,…n)における度数を表し、NAllは、出発時刻tj(j=0,…n)又は到着時刻tj(j=0,…n)における合計度数を表す。
そして、前記式1に従って、例えば、車両10について予測した平日と休日の出発予想時刻マップ及び到着予想時刻マップは図4に示すようになる。この出発予想時刻マップ及び到着予想時刻マップによれば、実線により示す平日の車両10の出発時刻はある時間帯(例えば、8時台)に出発する確率が高いことが理解できる。又、この出発予想時刻マップ及び到着予想時刻マップによれば、破線により示す休日の車両10の出発時刻は大凡満遍なく出発していることが理解できる。このように、出発予想時刻マップ及び到着予想時刻マップを作成すると、出発・到着時刻予測マップ生成部52は、作成した出発予想時刻マップ及び到着予想時刻マップのうち、作成した出発予想時刻マップから予測される出発時刻を表す予測出発時間時刻を走行距離予測マップ生成部53に供給する。
走行距離予測マップ生成部53は、車両10について、データ入力部51から曜日別の走行距離情報を入力するとともに、出発・到着時刻予測マップ生成部52から予測出発時刻情報を入力する。そして、走行距離予測マップ生成部53は、走行距離情報及び予測出発時刻情報を用いて、下記式2に従って、出発時間帯(すなわち、出発時刻)における最長走行距離を予測する平日と休日別の出発時間帯別予想走行距離マップを作成する。
ただし、前記式2中のPhdは、出発時間帯hと、この出発時間帯hにおける距離d(以下、「距離時間帯d」と称呼する。)の出現累積確率(安全確率)を表す。又、前記式2中のNhdは、出発時間帯hと距離時間帯dの度数を表し、Nhは、出発時間帯hの合計度数を表す。
そして、前記式2に従って、例えば、車両10について予測した平日の出発時間帯別予想走行距離マップ(例えば、8時、9時、10時)は図5に示すようになる。この出発時間帯別予想走行距離マップによれば、例えば、平日の出発時刻帯である9時台及び10時台に着目してみると、車両10は長距離を走行する確率が存在することが理解できる。
ここで、車両10について、出発・到着時刻予測マップ生成部52によって作成された図4に示した平日の出発予想時刻マップに従えば、上述したように、例えば、8時台に出発する確率が高い。すなわち、車両10に関しては、8時台までは距離時間帯dの度数すなわち走行距離情報によって表されるデータが多く収集され、9時台以降では距離時間帯dの度数すなわち走行距離情報が極端に少なくなる。この場合、前記式2に従って計算される出現累積確率(安全確率)Phdは、Nhdすなわち出発時間帯hと距離時間帯dの度数に依存するため、例えば、度数が極端に少なくなる(或いは度数が「0」)状況では、例えば、図5における9時台及び10時台のように、不自然な分布を有するマップが生成される場合がある。
ところで、走行距離のような正の値を取る量の分布は、指数分布、ワイブル分布、ガンマ分布等指数分布族や対数正規分布で表されることが多い。又、このような分布を表す際には、混合正規分布等で表すことも有効である。このため、出発時間帯別予想走行距離マップを作成するにあたり、今、時刻tに出発して距離dだけ走行したことを記録したN個のデータ(t1,d1),(t2,d2),…,(tN,dN)が得られている場合を想定し、このデータから、時刻tと距離dの同時確率密度関数f(d,t)を作成することを検討する。尚、時刻tと距離dの同時確率密度関数f(d,t)は、時刻tに出発する確率密度f(t)と、時刻tに出発した場合に距離dを走行する条件付きの確率密度関数f(d|t)の積f(d,t)=f(d|t)f(t)としても表すことができる。そして、f(d,t)又はf(t)とf(d|t)をデータから決定する方法としては、以下に示すように、大きく分類して3種類の方法が考えられる。ここで、これらの方法を用いる場合には、例えば、曜日、季節、気温、天候等の環境変数を勘案して適切にデータを区分した後にそれぞれの分類について処理を行うことが効果的である。更に、これらの環境変数を質的変数として、例えば一般化線形モデル等を用いて種々の環境に対するパラメータをまとめて表すことも有効である。
a.頻度法
頻度法は、ある時間ステップ(例えば、1時間)毎にデータを区切り、各時間帯の走行距離情報によって表されるデータの累積分布をテーブルで表すものである。この頻度法では、各時間帯の走行距離情報によって表されるデータの累積分布をテーブルで表すことができるため、計算負荷を小さくして任意の分布を保持できる点で有効である。ただし、データ数が少ないと、例えば、図5で示したように、階段状の粗い分布しか得られない、データが存在しない時間帯では分布が決められない、或いは、少数のパラメータに情報を集約することができないために他の分布との比較や集計が難しくなる等のデメリットも存在する。
頻度法は、ある時間ステップ(例えば、1時間)毎にデータを区切り、各時間帯の走行距離情報によって表されるデータの累積分布をテーブルで表すものである。この頻度法では、各時間帯の走行距離情報によって表されるデータの累積分布をテーブルで表すことができるため、計算負荷を小さくして任意の分布を保持できる点で有効である。ただし、データ数が少ないと、例えば、図5で示したように、階段状の粗い分布しか得られない、データが存在しない時間帯では分布が決められない、或いは、少数のパラメータに情報を集約することができないために他の分布との比較や集計が難しくなる等のデメリットも存在する。
b.ノンパラメトリックな手法
上述したa.頻度法において、データ数が少ない場合に階段状の粗い分布が得られることを解消する方法として、母集団の分布型に対して一切の仮定を設けないノンパラメトリックな手法を採用することが可能である。この場合、例えば、カーネル密度推定などの特定の分布形を仮定しない方法を採用することにより、任意の分布を滑らかに求めることができる。ただし、このようなノンパラメトリックな手法を採用する場合であっても、少数のパラメータに情報を集約することができないために他の分布との比較や集計が難しくなる等のデメリットも存在する。
上述したa.頻度法において、データ数が少ない場合に階段状の粗い分布が得られることを解消する方法として、母集団の分布型に対して一切の仮定を設けないノンパラメトリックな手法を採用することが可能である。この場合、例えば、カーネル密度推定などの特定の分布形を仮定しない方法を採用することにより、任意の分布を滑らかに求めることができる。ただし、このようなノンパラメトリックな手法を採用する場合であっても、少数のパラメータに情報を集約することができないために他の分布との比較や集計が難しくなる等のデメリットも存在する。
c.パラメトリックな手法
b.ノンパラメトリックな手法に対して、予め母集団の分布型に対して何らかの仮定を設けるパラメトリックな手法を採用することが可能である。具体的に、このパラメトリックな手法においては、走行距離方向の分布f(d|t)を、指数分布、ワイブル分布、ガンマ分布等の指数分布族、対数正規分布、混合ガウス分布等のパラメトリックな確率分布で表し、そのパラメータを時間刻み毎(時間ステップ毎)に決定する。これにより、走行距離方向にて滑らかな分布が得られるようになる。尚、この場合、複数の分布の和として表すことも有効となる。そして、このパラメトリックな手法では、パラメータの事前分布を与えておくことにより、データ数が少ない或いは「0」(ゼロ)の場合であっても、事前分布に従ったパラメータを決定することができる。ここで、事前分布に関し、例えば、車両10に関するパラメータの情報が多く蓄積された場合、これらのパラメータの分布を事前分布とすることも可能である。これにより、所定の集団別にパラメータを集約することにより、未だデータが「0」(ゼロ)の新規の集団に対して、合理的なパラメータの事前分布を与えることができ、又、新規の集団におけるパラメータはその集団におけるデータが増えることによって緩やかに修正される。
b.ノンパラメトリックな手法に対して、予め母集団の分布型に対して何らかの仮定を設けるパラメトリックな手法を採用することが可能である。具体的に、このパラメトリックな手法においては、走行距離方向の分布f(d|t)を、指数分布、ワイブル分布、ガンマ分布等の指数分布族、対数正規分布、混合ガウス分布等のパラメトリックな確率分布で表し、そのパラメータを時間刻み毎(時間ステップ毎)に決定する。これにより、走行距離方向にて滑らかな分布が得られるようになる。尚、この場合、複数の分布の和として表すことも有効となる。そして、このパラメトリックな手法では、パラメータの事前分布を与えておくことにより、データ数が少ない或いは「0」(ゼロ)の場合であっても、事前分布に従ったパラメータを決定することができる。ここで、事前分布に関し、例えば、車両10に関するパラメータの情報が多く蓄積された場合、これらのパラメータの分布を事前分布とすることも可能である。これにより、所定の集団別にパラメータを集約することにより、未だデータが「0」(ゼロ)の新規の集団に対して、合理的なパラメータの事前分布を与えることができ、又、新規の集団におけるパラメータはその集団におけるデータが増えることによって緩やかに修正される。
具体的に例示して説明すると、例えば、f(d|t)=g(d;at)となるように、パラメータ(ベクトル)atで表される分布を用いて時間帯を24時間に区分し各時間帯(1時間毎)のatを求める場合には、a0,…,a23の事前分布p(a0,…,a23)を考える。この場合において、このパラメータからN個のデータが観測される確率(尤度)Lは、下記式3により表すことができる。
そして、前記式3をa0,…,a23について最大化することによって、例えば、図6に示すように、パラメータを決定することができる。
又、隣り合う時間帯同士の走行距離分布が滑らかに変化するようにするには、隣り合う時間帯のパラメータの差Δat=at-at+1が「0」(ゼロ)に、又は、比Δat=at/at+1が「1」に近づくような事前分布P(Δat)を与えておけばよい。この場合、例えば、下記式4に示すように、「0」(ゼロ)を中心とする正規分布等を事前分布として与えることができる。
又、このパラメトリックな手法を採用した場合には、走行距離情報によって表されるデータが1つも存在しない時間帯のパラメータは事前分布のみで決まるようになる。このため、事前分布として、例えば、平均走行距離がほぼ「0」(ゼロ)となり、かつ、パラメータが確率最大となる分布を採用することにより、走行距離情報によって表されるデータ数が1つも存在しない時間帯では走行距離がほぼ「0」(ゼロ)となるように走行距離の分布が自然に選択されるようにすることができる。尚、このようにパラメータを決定するときには、例えば、忘却係数を導入しておき、古いデータほど重みを小さくすることによって偶然発生したデータを影響が長く残ることを排除することができる。
更に、この場合、例えば、走行距離がほぼ「0」(ゼロ)となる分布の確率密度はデルタ関数で表わすことができるが、下記式5によって表されるワイブル分布において、尺度パラメータTを非常に小さい正の数に設定することにより、デルタ関数のように振る舞うようにすることができる。
ただし、前記式5中のmはワイブル係数である。
ここで、図6を説明しておく。図6は、各時間帯別の走行距離累積度数分布をワイブル分布で近似したものであり、ワイブル分布におけるパラメータにガンマ分布による事前分布を与えた場合を示している。図6からも明らかなように、実線により示す実際の走行距離情報によって表されるデータと破線により示すワイブル分布による近似とを比較すると、ワイブル分布によって良好に近似されていることが理解できる。特に、走行距離情報によって表されるデータが1つも存在しない時間帯では、走行距離が「0」(ゼロ)付近で急激に累積度数が「1」に近付き、適切に、走行距離が「0」(ゼロ)であることを示している。又、9時台及び10時台は、長距離となる走行距離情報によって表されるデータが数点(1点又は2点)存在する場合を示しているが、事前分布によって走行距離が「0」(ゼロ)となるように制約しているため、累積分布としては、走行距離が「0」(ゼロ)付近で急激に増加し、その後緩やかに増加することが理解できる。
このように、パラメトリックな手法を採用して、走行距離方向の分布f(d|t)を決定することができれば、この分布f(d|t)を走行距離方向にて積分することにより、出発時刻別の累積度数分布F(d|t)を求めることができる。そして、この出発時刻別の累積度数分布F(d|t)において、任意の所定の確率(以下、「所定の安全確率」と称呼する。)に等しくなる走行距離を出発時刻別に求めることにより、出発時刻別及び安全確率別の担保すべき走行距離を求めることができる。尚、平日と休日別の出発時間帯別予想走行距離マップを作成するにあたっては、上述したa~cの各手法を組み合わせて実施可能であることは言うまでもない。そして、走行距離予測マップ生成部53は、走行距離情報及び予測出発時刻情報を用いて、平日と休日別の出発時間帯別予想走行距離マップを作成すると、出発時間帯別予想走行距離マップをルールカーブ作成部54に供給する。
ルールカーブ作成部54においては、データ入力部51から車両10の電費情報を取得するとともに、走行距離予測マップ生成部53から平日と休日別の出発時間帯別予想走行距離マップを取得する。そして、ルールカーブ作成部54は、取得した出発時間帯別予想走行距離マップに基づき、各時間帯毎に予測されている走行距離を電費情報によって表される車両10の電費で除することによって各時間帯にて必要な電力量(充電量)を推定して決定することにより、図7に示すような、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブを作成する。このように、車両10に対応したルールカーブを作成すると、ルールカーブ作成部54は作成したルールカーブを表すルールカーブ情報をデータ出力部55に供給する。
データ出力部55においては、ルールカーブ作成部54から供給されたルールカーブ情報を取得する。そして、データ出力部55は、ルールカーブ情報によって表されるルールカーブを用いて、車両10のバッテリ11を充電する充電計画或いは車両10のバッテリ11から電力を放電する放電計画を精度よく作成して出力する。具体的に、データ出力部55は、ルールカーブ情報によって表されるルールカーブにおいて、図8に示すように、精度よく予測されている推定必要電力量の局所最大値近傍の点(例えば、接点)から、下記式8により表される線分(例えば、接線)を想定し、最も電力が必要な時間帯、言い換えれば、最も車両10がバッテリ11の電力を消費して走行する時間帯までに適切な電力量の充電を完了させる推定最遅充電開始時刻を推定して決定する。尚、下記式9によって表される線分は、局所最大値近傍にてルールカーブに接するか又は常にルールカーブによる推定必要電力量よりも大きな値を有する線分として設定される。
ただし、前記式8の右辺θ(t)は時刻tにおけるバッテリ11への充電可能量を表し、前記式8中のT(t)は時刻tにおける予想気温を表し、前記式8中のVは充電電圧を表し、前記式8中のAは充電電流を表す。従って、データ出力部55は、例えば、本装置30に設けられた図示を省略する外気温センサによって検出される、又は、通信ユニット32による通信によって外部から取得される予想気温T(t)、充放電スタンド40によって車両10のバッテリ11に供給される充電電圧V及び充電電流Aを入力し、これら入力した各値のうちの少なくとも一つを用いて前記式8によって表される線分(例えば、接線)と所定のバッテリ残量との交点となる推定最遅充電開始時刻を決定する。尚、このように決定される推定最遅充電開始時刻は、ルールカーブにおける局所最大値となる時刻までに充電を完了させるときの最も遅い充電開始時刻として推定される。
一方、図8に示すように、ルールカーブにおける局所最大値を超えた時間帯においては、走行に必要な推定必要電力量が小さくなる。このため、例えば、車両10のバッテリ11に走行に必要な電力以上の電力が充電されている、すなわち、余剰電力を有している場合には、この余剰電力を、例えば、家屋で利用する電力として放電することもできる。このように、バッテリ11から電力を放電する放電計画も、上述した充電計画と同様に、データ出力部55は、ルールカーブ情報によって表されるルールカーブに基づいて精度よく作成することができる。
具体的に、データ出力部55は、ルールカーブ情報によって表されるルールカーブにおいて、図8に示すように、精度よく予測されている推定必要電力量の局所最大値近傍の点(例えば、接点)から、前記式8と同様に構成される下記式9により表される線分(例えば、接線)を想定し、余剰電力が存在する時間帯からの放電が完了する推定最遅放電停止時刻を推定して決定する。尚、下記式9によって表される線分は、局所最大値近傍にてルールカーブに接するか又は常にルールカーブによる推定必要電力量よりも大きな値を有する線分として設定される。
ただし、前記式9の右辺φ(t)は時刻tにおけるバッテリ11からの放電可能量を表す。従って、データ出力部55は、予想気温T(t)、バッテリ11からの放電電圧V及びバッテリ11からの放電電流Aを入力し、これら入力した各値のうちの少なくとも一つを用いて前記式9によって表される線分(例えば、接線)と所定のバッテリ残量との交点となる推定最遅放電停止時刻を決定する。
このように、データ出力部55が充電計画における推定最遅充電開始時刻を決定するとともに、放電計画における推定最遅放電停止時刻を決定すると、データ出力部55は、決定した推定最遅充電開始時刻及び推定最遅放電停止時刻を、例えば、液晶表示ユニット35に出力する。これにより、ユーザは、車両10のバッテリ11の充電を開始する時刻と放電を開始する時刻とを極めて容易に確認することができる。従って、ユーザは、例えば、推定最遅充電開始時刻となるまでに車両10のバッテリ11と充放電スタンド40とを電気的に接続し、推定最遅充電開始時刻に充電を開始することによって車両10の走行距離が多くなる時間帯までに走行に必要な電力量のバッテリ11への充電を完了させることができ、走行における不安を覚えることなく確実に車両10を利用して行動することができる。一方、ユーザは、例えば、車両10を走行させた後に車両10のバッテリ11と充放電スタンド40とを電気的に接続しておくことにより、ルールカーブに従って推定最遅放電停止時刻までバッテリ11からの電力の放電を行うことができ、煩わしい操作が不要となる。
尚、この場合、ユーザは、上述したように、データ出力部55が決定する充電計画及び放電計画(すなわち、推定最遅充電開始時刻及び推定最遅放電停止時刻の決定)を自動的に実施させることができる。具体的には、ユーザは、入力ユニット34を利用して、本装置30の電子制御ユニット31に対して、例えば、ルールカーブ作成部54によって作成されたルールカーブを表すルールカーブ情報と、データ出力部55によって決定されて出力された推定最遅充電開始時刻及び推定最遅放電停止時刻を表す時刻情報とを、車両10の充放電ユニット20の車両側充放電ECU23に供給(送信)することを指示することができる。この指示に従って、電子制御ユニット31は、通信ユニット32を利用して、ルールカーブ情報及び時刻情報を、充放電ユニット20の車両側充放電ECU23に送信する。
車両側充放電ECU23においては、本装置30から送信(供給)されたルールカーブ情報及び時刻情報を取得する。そして、車両側充放電ECU23は、充放電スタンド40の電力受給ECU42に対して、近距離無線通信により、ルールカーブ情報及び時刻情報を送信する。これにより、例えば、自宅における所定の駐車位置に設置された充放電スタンド40の電力受給ECU42は、送信されたルールカーブ情報及び時刻情報を受信し、受信したルールカーブ情報によって表されるルールカーブ及び時刻情報によって表される推定最遅充電開始時刻に従い、電気的に接続された車両10のバッテリ11に対して推定最遅充電開始時刻なると自動的に充電を開始することができる。又、車両10が外出しており、例えば、外出先における所定の駐車位置に設置された充放電スタンド40の電力受給ECU42は、送信されたルールカーブ情報及び時刻情報を受信し、受信したルールカーブ情報によって表されるルールカーブ及び時刻情報によって表される推定最遅放電停止時刻に従い、電気的に接続された車両10のバッテリ11から推定最遅放電停止時刻なるまで自動的に放電を開始することができる。
以上の説明からも理解できるように、上記実施形態によれば、本装置30の電子制御ユニット31、より詳しくは、ルールカーブ作成部54は、車両10の過去の電力消費に関する情報に基づいて時刻(時間帯)における推定必要電力量の関係を示すルールカーブを精度よく推定して決定することができる。そして、本装置30の電子制御ユニット31、より詳しくは、データ出力部55は、精度よく推定されて作成されたルールカーブに基づいて、車両10を走行させるために必要となる推定必要電力量が最大となる時間帯(時刻)までにバッテリ11への充電を完了させることができる推定最遅充電開始時刻を決定することができる。又、データ出力部55は、精度よく推定されて作成されたルールカーブに基づいて、車両10のバッテリ11が余剰電力を有しているときにバッテリ11から放電させることができる推定最遅放電停止時刻を決定することができる。これにより、ユーザは、極めて正確にかつ確実に車両10を充放電制御することができる。従って、このような充放電制御の対象となる車両10を利用するユーザは、良好なバッテリ11の充電状態で車両を確実に利用することができて、極めて良好な利便性を享受することができる。
(1)第1変形例
上記実施形態においては、ルールカーブ作成部54が作成するルールカーブが、図7に示したように、1つの局所最大値を有する場合を説明した。この場合、車両10の走行履歴によっては、図9に示すように、ルールカーブ作成部54が作成するルールカーブが複数の局所最大値を有する場合がある。この場合においても、図9に示すように、データ出力部55は、上記実施形態と同様に、精度よく予測されている推定必要電力量の各局所最大値近傍の点(例えば、接点)から、前記式8により表される線分(例えば、接線)を想定し、最も電力が必要な時間帯、言い換えれば、最も車両がバッテリの電力を消費して走行する時間帯までに適切な電力量の充電を完了させる推定最遅充電開始時刻を推定して決定する。
上記実施形態においては、ルールカーブ作成部54が作成するルールカーブが、図7に示したように、1つの局所最大値を有する場合を説明した。この場合、車両10の走行履歴によっては、図9に示すように、ルールカーブ作成部54が作成するルールカーブが複数の局所最大値を有する場合がある。この場合においても、図9に示すように、データ出力部55は、上記実施形態と同様に、精度よく予測されている推定必要電力量の各局所最大値近傍の点(例えば、接点)から、前記式8により表される線分(例えば、接線)を想定し、最も電力が必要な時間帯、言い換えれば、最も車両がバッテリの電力を消費して走行する時間帯までに適切な電力量の充電を完了させる推定最遅充電開始時刻を推定して決定する。
このように、この第1変形例においても、ユーザは、例えば、推定最遅充電開始時刻となるまでに車両10のバッテリ11と充放電スタンド40とを電気的に接続し、推定最遅充電開始時刻に充電を開始することによって車両10の走行距離が多くなる時間帯までに走行に必要な電力量のバッテリ11への充電を完了させることができ、走行における不安を覚えることなく確実に車両10を利用して行動することができる。又、この第1変形例においても、上記実施形態と同様に、所定の駐車位置に設置された充放電スタンド40の電力受給ECU42が、ルールカーブ情報及び時刻情報を受信することによって、推定最遅充電開始時刻になると電気的に接続された車両10のバッテリ11への充電を自動的に開始することができる。従って、この第1変形例においても、車両10を利用するユーザは、良好なバッテリ11の充電状態で車両を確実に利用することができて、極めて良好な利便性を享受することができる。
又、ルールカーブに複数の局所最大値が存在する第1変形例においても、車両10バッテリ11が余剰電力を有する場合には、図9に示すように、バッテリ11から電力を放電することができる。ただし、この第1変形例においては、データ出力部55が、上記実施形態と同様に、精度よく予測されている推定必要電力量が最も多くなる局所最大値近傍の点(例えば、接点)から、前記式9により表される線分(例えば、接線)を想定するが、隣接する他の局所最大値近傍から前記式8に従う線分が存在する場合には、これらの交点に対応する時刻(推定放電停止時刻)にて放電を停止するようになる点で若干異なる。
このように、この第1変形例においても、ユーザは、例えば、車両10を走行させた後に車両10のバッテリ11と充放電スタンド40とを電気的に接続しておくことにより、ルールカーブに従って推定放電停止時刻までバッテリ11からの電力の放電を行うことができ、煩わしい操作が不要となる。又、この第1変形例においても、上記実施形態と同様に、充放電スタンド40の電力受給ECU42がルールカーブ及び時刻情報によって表される推定放電停止時刻に従い、電気的に接続された車両10のバッテリ11から推定放電停止時刻なるまで自動的に放電を開始することができる。従って、この第1変形例においても、車両10を利用するユーザは、極めて良好な利便性を享受することができる。
(2)第2変形例
上記実施形態及び第1変形例においては、ルールカーブ作成部54によって作成されるルールカーブの推定必要電力量が、車両10のバッテリ11のバッテリ容量の上限以下となる場合を想定して説明した。この場合、例えば、バッテリ11の経年劣化等の影響により、図10に示すように、車両10の過去の走行履歴に基づいて作成されるルールカーブにおける推定必要電力量がバッテリ容量の上限を超えてしまう可能性がある。尚、バッテリ容量の上限の変化については、周知の方法に従って推定されるとよい。
上記実施形態及び第1変形例においては、ルールカーブ作成部54によって作成されるルールカーブの推定必要電力量が、車両10のバッテリ11のバッテリ容量の上限以下となる場合を想定して説明した。この場合、例えば、バッテリ11の経年劣化等の影響により、図10に示すように、車両10の過去の走行履歴に基づいて作成されるルールカーブにおける推定必要電力量がバッテリ容量の上限を超えてしまう可能性がある。尚、バッテリ容量の上限の変化については、周知の方法に従って推定されるとよい。
従って、この第2変形例においては、図10に示すように、ルールカーブ作成部54によって作成されたルールカーブにおける局所最大値の推定必要電力量がバッテリ容量の上限を超えるとき、データ出力部55は、推定必要電力量がバッテリ容量の上限と一致する点から前記式8により表される線分(例えば、接線)を想定し、最も電力が必要な時間帯、言い換えれば、最も車両がバッテリの電力を消費して走行する時間帯までに適切な電力量の充電を完了させる推定最遅充電開始時刻を推定して決定する。又、図10にて図示を省略するが、データ出力部55は、推定必要電力量がバッテリ容量の上限と一致する点から前記式9により表される線分(例えば、接線)を想定し、余剰電力が存在する時間帯からの放電が完了する放電停止時刻を推定して決定する。
このように、この第2変形例においても、上記実施形態及び第1変形例と同様に、ユーザは、例えば、推定最遅充電開始時刻となるまでに車両10のバッテリ11と充放電スタンド40とを電気的に接続し、推定最遅充電開始時刻に充電を開始することによって車両10の走行距離が多くなる時間帯までに走行に必要な電力量のバッテリ11への充電を完了させることができ、走行における不安を覚えることなく確実に車両10を利用して行動することができる。又、この第2変形例においても、上記実施形態及び第1変形例と同様に、ユーザは、例えば、車両10を走行させた後に車両10のバッテリ11と充放電スタンド40とを電気的に接続しておくことにより、ルールカーブに従って推定放電停止時刻までバッテリ11からの電力の放電を行うことができ、煩わしい操作が不要となる。又、この第2変形例においても、上記実施形態及び第1変形例と同様に、充放電スタンド40の電力受給ECU42がルールカーブ及び時刻情報によって表される推定最遅充電開始時刻又は推定放電停止時刻に従い、推定最遅充電開始時刻となると電気的に接続された車両10のバッテリ11に自動的に充電を開始したり、電気的に接続された車両10のバッテリ11から推定最遅放電停止時刻(推定放電停止時刻)なるまで自動的に放電を開始することができる。従って、この第2変形例においても、車両10を利用するユーザは、極めて良好な利便性を享受することができる。
(3)第3変形例
上記実施形態、上記第1及び第2変形例においては、充放電制御対象が車両10のみである場合を説明した。ところで、例えば、車両10のようなプラグイン電気車両を複数台所有しておりこれらの車両を充電する場合や、契約電力によって商用電源の電力容量が限られる一般家庭では車両10の他に充電を要する家電製品等が存在する場合がある。すなわち、これらの場合においては、例えば、車両10と他の家電機器とを使用するときの優先度、言い換えれば、充電優先度に応じて、充電開始時刻が決定されることが好ましい。このため、この第3変形例においては、車両10を充電機器1とし、家電製品を充電機器2とし、充電機器1(車両10)と充電機器2(家電製品)との優先度の比を2:1に設定した場合を例示して説明する。尚、優先度の比については、ユーザが適宜設定することができることは言うまでもない。
上記実施形態、上記第1及び第2変形例においては、充放電制御対象が車両10のみである場合を説明した。ところで、例えば、車両10のようなプラグイン電気車両を複数台所有しておりこれらの車両を充電する場合や、契約電力によって商用電源の電力容量が限られる一般家庭では車両10の他に充電を要する家電製品等が存在する場合がある。すなわち、これらの場合においては、例えば、車両10と他の家電機器とを使用するときの優先度、言い換えれば、充電優先度に応じて、充電開始時刻が決定されることが好ましい。このため、この第3変形例においては、車両10を充電機器1とし、家電製品を充電機器2とし、充電機器1(車両10)と充電機器2(家電製品)との優先度の比を2:1に設定した場合を例示して説明する。尚、優先度の比については、ユーザが適宜設定することができることは言うまでもない。
尚、この第3実施形態においては、ルールカーブ作成部54は、充電機器2である家電製品のルールカーブを作成する。この場合、ルールカーブ作成部54は、例えば、家電製品から出力される過去の電力の消費に関する情報等に基づいて時刻毎(時間帯)に対して推定される必要電力量の関係を表すルールカーブを生成するとよい。
そして、この第3変形例においては、図11に示すように、データ出力部55は、充電機器1と充電機器2のそれぞれのルールカーブについて、推定最遅充電開始時刻を推定して決定する。具体的に説明すると、データ出力部55は、優先度の低い充電機器2のルールカーブの局所最大値近傍の点(例えば、接点)から、図11に示すように、前記式8により表される線分(例えば、接線)を設ける。そして、データ出力部55は、この設けた線分(例えば、接線)と、充電機器1のルールカーブにおける局所最大値となる時刻との交点Xを決定する。更に、データ出力部55は、この交点Xから、図11に示すように、優先度の比に従って前記式8のおける充電可能量θ(t)を1/3とした線分(例えば、接線)を設け、この線分(例えば、接線)と充電機器1のルールカーブにおける局所最大値となる推定必要電力量との交点Yを決定する。そして、データ出力部55は、図11に示すように、この交点Yとなる時刻を充電機器2の推定最遅充電開始時刻として決定する。
一方、優先度の高い充電機器1に関しては、データ出力部55は、充電機器1のルールカーブの局所最大値近傍の点(例えば、接点)から、図11に示すように、優先度の比に従って前記式8のおける充電可能量θ(t)を2/3とした線分(例えば、接線)を設ける。そして、データ出力部55は、図11に示すように、この線分(例えば、接線)と充電機器2の推定最遅充電開始時刻との交点Zを決定し、この交点Zから前記式8により表される線分(例えば、接線)を設ける。これにより、データ出力部55は、前記式8によって表される線分(例えば、接線)と所定の最低バッテリ残量との交点が充電機器1の推定最遅充電開始時刻として決定する。尚、この第3変形例における推定最遅放電停止時刻については、上記優先度を考慮した推定最遅充電開始時刻の決定と同様に決定される。
これにより、この第3変形例においては、充電を必要とする機器が複数存在し、これらの機器を充電する場合、機器の優先度に応じて、上記実施形態及び第1,2変形例と同様に、適切に充電を完了させることができる。その他の効果については、上記実施形態及び第1,2変形例と同様の効果が期待できる。
本発明の実施にあたっては、上記実施形態及び各変形例に限定されるものではなく、本発明の目的を逸脱しない限りにおいて、種々の変更が可能である。
例えば、上記実施形態及び各変形例においては、ルールカーブ作成部54が生成するルールカーブは、走行距離予測マップ生成部53が、出発・到着時刻予測マップ生成部52によって前記式1に従って作成された出発予想時刻マップと車両10の走行距離とを用いて、例えば、統計処理により作成した出発時間帯別予想走行距離マップを用いて作成するように実施した。これにより、極めて精度よく予測された車両10の利用状況に基づくルールカーブを作成することができるため、データ出力部55によって決定される充放電計画も極めて精度よく決定することができるようにした。
この場合、ルールカーブ作成部54が、例えば、出発・到着時刻予測マップ生成部52によって作成される出発予想時刻マップとデータ入力部51から供給された走行距離とを用いてルールカーブを生成するように実施可能であることは言うまでもない。この場合、走行距離情報によって表される走行距離のデータが存在すれば、若干精度が悪化するものの、ルールカーブを作成することができて、データ出力部55がこのルールカーブを利用して推定最遅充電開始時刻や推定最遅放電停止時刻を決定することができる。
又、出発・到着時刻予測マップ生成部52によって作成される出発予想時刻マップ及び到着予想時刻マップを用いて、電気的に接続された車両のバッテリを充放電制御することも可能である。すなわち、この場合においては、データ出力部55は、精度よく予測されている到着予想時刻マップを用いて、充放電対象である車両10が所定の駐車位置に駐車されている可能性の高い時刻(すなわち、出現累積確率(安全確率)Pthが所定の安全確率(例えば、90%)以上となる時刻)を特定する。尚、所定の安全確率については、予め設定されるものであってもよいし、適宜変更されるものであってもよい。このように、車両10が所定の駐車位置に駐車されている可能性の高い時刻(時間帯)を特定することにより、データ出力部55は、この特定した時刻以降(時間帯)に車両10のバッテリ11に電力を供給して充電したり、車両10のバッテリ11から電力を放電させたりすることをユーザに提示することができる。
一方で、データ出力部55は、精度よく予測されている出発予想時刻マップを用いて、充放電対象である車両10が所定の駐車位置から出発する可能性の高い時刻(すなわち、出現累積確率(安全確率)Pthが所定の安全確率(例えば、90%)以上となる時刻)を特定する。このように、車両10が所定の駐車位置から出発する可能性の高い時刻(時間帯)を特定することにより、データ出力部55は、この特定した時刻(時間帯)までに車両10のバッテリ11に電力を供給して充電したり、車両10のバッテリ11から電力を放電させたりすることをユーザに提示することができる。
又、上記実施形態及び各変形例においては、データ出力部55によって推定最遅充電開始時刻や推定最遅放電停止時刻を決定されると、これら各時刻までに充放電スタンド40と車両10のバッテリ11とを電気的に接続しておき、推定最遅充電開始時刻や推定最遅放電停止時刻に充電が開始されたり放電が停止されるように実施した。この場合、何らかの事情により、ユーザ(或いは充放電スタンド40の電力受給制御ECU42)が、特に、決定された推定最遅充電開始時刻に充電を開始しない場合や推定最遅充電開始時刻よりも後に自ら充電開始時刻を設定する場合には、本装置30の電子制御ユニット31(より詳しくは、データ出力部55)は、液晶表示ユニット35を介して、バッテリ11に推定必要電力量となるまで十分に充電できない可能性があることを報知することができる。
更に、この場合、本装置30の電子制御ユニット31(より詳しくは、データ出力部55)が液晶表示ユニット35を介して、バッテリ11に推定必要電力量となるまで十分に充電できない可能性があることを報知した後、ユーザ自らが充電開始時刻を設定できないように実施することも可能である。これにより、確実に、充電により、推定必要電力量を確保することができる。
Claims (9)
- 機器に設けられたバッテリの充電又は放電を支援するための制御手段を備えた充放電支援装置において、
前記制御手段は、
前記機器における過去の前記バッテリの電力消費に関する情報を取得し、
この取得した前記機器における過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブを作成し、
前記作成したルールカーブを用いて前記バッテリへの充電開始時刻又は前記バッテリからの放電停止時刻を推定して決定し、
前記推定して決定した前記充電開始時刻又は前記放電停止時刻を出力することを特徴とする充放電支援装置。 - 請求項1に記載した充放電支援装置において、
前記制御手段は、
前記作成したルールカーブを用いて、前記ルールカーブにおける局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記バッテリへの充電開始時刻のうちの最も遅い時刻となる最遅充電開始時刻、又は、前記バッテリからの放電停止時刻のうちの最も遅い時刻となる最遅放電停止時刻を推定して決定することを特徴とする充放電支援装置。 - 請求項2に記載した充放電支援装置において、
前記制御手段は、
前記作成したルールカーブに複数の局所最大値が存在するとき、各局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定し、各線分によって推定して決定される各最遅充電開始時刻のうちの最も早い時刻となる最遅充電開始時刻、又は、各線分によって推定して決定される各最遅放電停止時刻のうちの最も遅い時刻となる最遅放電停止時刻を推定して決定することを特徴とする充放電支援装置。 - 請求項2又は請求項3に記載した充放電支援装置において、
前記制御手段は、
前記作成したルールカーブによって表される推定消費電力量が前記バッテリにおけるバッテリ容量の上限を超えるときには、前記推定必要電力量が前記バッテリ容量の上限と一致する点を通か又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記最遅充電開始時刻、又は、前記点を通か又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を設定して、前記最遅放電停止時刻を推定して決定することを特徴とする充放電支援装置。 - 請求項2ないし請求項4のうちのいずれか一つに記載した充放電支援装置において、
前記制御手段は、
前記最遅充電開始時刻を推定して決定するための前記線分を、
前記バッテリへの充電可能量、前記バッテリの充電時における予想気温、前記バッテリに供給する充電電圧及び前記バッテリに供給する充電電流のうちの少なくとも一つを用いて設定し、又は、
前記最遅放電停止時刻を推定して決定するための前記線分を、
前記バッテリによる放電可能量、前記バッテリの充電時における予想気温、前記バッテリから供給する放電電圧及び前記バッテリから供給する放電電流のうちの少なくとも一つを用いて設定することを特徴とする充放電支援装置。 - 請求項1ないし請求項5のうちのいずれか一つに記載した充放電支援装置において、
前記機器は外部電源からバッテリを充電するプラグイン式電気車両であり、
前記制御手段は、
前記プラグイン式電気車両における過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブを作成することを特徴とする充放電支援装置。 - 請求項6に記載した充放電支援装置において、
前記プラグイン式電気車両における過去の前記バッテリの電力消費に関する情報は、
前記プラグイン式電気車両が所定の駐車位置から出発した時刻を表す出発時刻情報及び前記プラグイン式電気車両が前記所定の駐車位置に到着した時刻を表す到着時刻情報と、前記出発時刻情報によって表される出発時刻に前記プラグイン式電気車両が前記所定の駐車位置を出発してからの走行距離を表す走行距離情報のうちのいずれかであることを特徴とする充放電支援装置。 - 請求項1ないし請求項5のうちのいずれか一つに記載した充放電支援装置において、
前記制御手段は、
複数の前記機器におけるそれぞれの過去の前記バッテリの電力消費に関する情報に基づいて、各時刻に対してその時刻までに担保が必要となる推定必要電力量の関係を表すルールカーブをそれぞれ作成し、
前記複数の機器を使用するときの優先度に応じて、前記作成したそれぞれのルールカーブを用いて前記バッテリへの充電開始時刻又は前記バッテリからの放電停止時刻を推定して決定し、
前記推定して決定した前記充電開始時刻又は前記放電停止時刻を出力することを特徴とする充放電支援装置。 - 請求項8に記載した充放電支援装置において、
前記制御手段は、
前記作成した各ルールカーブにおける局所最大値近傍にて前記ルールカーブに接するか又は常に前記ルールカーブによる推定必要電力量よりも大きな値を有する線分を前記複数の機器の優先度に応じて設定して、前記最遅充電開始時刻、又は、前記最遅放電停止時刻を推定して決定することを特徴とする充放電支援装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12826906.5A EP2752962A4 (en) | 2011-08-31 | 2012-08-31 | DEVICE FOR LOADING / DISCHARGING SUPPORT |
CN201280031393.1A CN103620907B (zh) | 2011-08-31 | 2012-08-31 | 充放电辅助装置 |
US14/241,922 US20140336965A1 (en) | 2011-08-31 | 2012-08-31 | Charge/discharge assist device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-189386 | 2011-08-31 | ||
JP2011189386A JP5897848B2 (ja) | 2011-08-31 | 2011-08-31 | 充放電支援装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031963A1 true WO2013031963A1 (ja) | 2013-03-07 |
Family
ID=47756437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/072207 WO2013031963A1 (ja) | 2011-08-31 | 2012-08-31 | 充放電支援装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140336965A1 (ja) |
EP (1) | EP2752962A4 (ja) |
JP (1) | JP5897848B2 (ja) |
CN (1) | CN103620907B (ja) |
WO (1) | WO2013031963A1 (ja) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5611415B1 (ja) * | 2013-05-17 | 2014-10-22 | 三菱電機株式会社 | 充放電制御装置 |
JP5714073B2 (ja) * | 2013-10-03 | 2015-05-07 | 三菱電機株式会社 | スマートグリッドシステムおよび車載装置 |
JP2015089266A (ja) * | 2013-10-31 | 2015-05-07 | 株式会社東芝 | 充電システム |
US20150301119A1 (en) * | 2014-04-22 | 2015-10-22 | Hyundai Mobis Co., Ltd | Battery sensor for vehicle and method for determining season using battery sensor for vehicle |
US20160052397A1 (en) * | 2014-08-20 | 2016-02-25 | Ford Global Technologies, Llc | System and method of estimating available driving distance using energy consumption data binning |
JP2016063561A (ja) * | 2014-09-16 | 2016-04-25 | 株式会社デンソーウェーブ | 電力制御システム及び電力制御装置 |
DE102014222513B4 (de) | 2014-11-04 | 2020-02-20 | Continental Automotive Gmbh | Verfahren zum Betrieb eines Hybrid- oder Elektrofahrzeugs |
JP6413932B2 (ja) * | 2015-05-29 | 2018-10-31 | 株式会社デンソー | 電力供給制御装置 |
JP6459847B2 (ja) * | 2015-08-20 | 2019-01-30 | トヨタ自動車株式会社 | 充電制御装置 |
RU2733213C2 (ru) * | 2015-08-24 | 2020-09-30 | Антон Николаевич Козлов | Велосипедная мотоциклетная парковочная электрическая станция заряда, разряда элеваторного принципа |
WO2017125867A1 (en) * | 2016-01-18 | 2017-07-27 | Caltec Overseas, Inc. | Method for operation of hydropower reservoir with a 2-parameter elevation rule curve |
EP4422027A1 (en) * | 2016-06-06 | 2024-08-28 | Sony Mobile Communications Inc. | A power usage pattern collector and charging controller |
DE102016215388A1 (de) * | 2016-08-17 | 2018-02-22 | Bayerische Motoren Werke Aktiengesellschaft | Steuerung eines Ruhebetriebs eines Kraftfahrzeugs |
US10549645B2 (en) * | 2017-02-06 | 2020-02-04 | GM Global Technology Operations LLC | Smart-charging apparatus for use with electric-vehicle-sharing stations |
JP6624114B2 (ja) | 2017-02-21 | 2019-12-25 | トヨタ自動車株式会社 | 充放電システム用サーバ及び充放電システム |
JP6655035B2 (ja) * | 2017-03-10 | 2020-02-26 | 株式会社アドバンスドナレッジ研究所 | 情報処理システム、プログラム、環境管理システム、及び、設備管理システム |
CN107402355B (zh) * | 2017-07-24 | 2019-08-27 | 江西优特汽车技术有限公司 | 一种充电时间预估方法 |
US10507730B2 (en) * | 2017-10-19 | 2019-12-17 | Ford Global Technologies, Llc | Electric vehicle cloud-based charge estimation |
GB2568465A (en) * | 2017-11-13 | 2019-05-22 | Jaguar Land Rover Ltd | Determining a charging requirement for an energy storage means of a vehicle |
GB2568466B (en) * | 2017-11-13 | 2022-01-05 | Jaguar Land Rover Ltd | Determining a minimum state of charge for an energy storage means of a vehicle |
WO2020100288A1 (ja) * | 2018-11-16 | 2020-05-22 | 住友電気工業株式会社 | 充電支援システム、方法、及びコンピュータプログラム |
JP6918032B2 (ja) * | 2019-01-17 | 2021-08-11 | 本田技研工業株式会社 | 送受電管理装置及びプログラム |
JP2022523564A (ja) | 2019-03-04 | 2022-04-25 | アイオーカレンツ, インコーポレイテッド | 機械学習を使用するデータ圧縮および通信 |
JP7164494B2 (ja) * | 2019-07-26 | 2022-11-01 | トヨタ自動車株式会社 | 充放電マネージメントシステム |
DE102019134430A1 (de) * | 2019-12-16 | 2021-06-17 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren, Anwendergerät und Computerprodukt in Zusammenhang mit einem Energieversorgungsvorgang eines Fahrzeugs |
US10953765B1 (en) | 2020-01-13 | 2021-03-23 | NAD Grid Corp | Methods and systems for facilitating charging sessions for electric vehicles |
US10836274B1 (en) | 2020-01-13 | 2020-11-17 | NAD Grid Corp. | Methods and systems for facilitating charging sessions for electric vehicles |
US11673483B2 (en) | 2020-01-13 | 2023-06-13 | NAD Grid Corp | Methods and systems for facilitating charging sessions for electric vehicles |
US11724616B2 (en) * | 2020-01-13 | 2023-08-15 | NAD Grid Corp | Methods and systems for facilitating charging sessions for electric vehicles, with improved user interface operation modes |
US10981464B1 (en) * | 2020-01-13 | 2021-04-20 | NAD Grid Corp | Methods and systems for facilitating charging sessions for electric vehicles |
DE102020106292A1 (de) * | 2020-03-09 | 2021-09-09 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Vorrichtung zur Bereitstellung von Ladeinformation |
US11742668B2 (en) * | 2020-10-30 | 2023-08-29 | Hygge Energy Inc. | Methods and systems for green energy charging of electrical vehicles |
CN112782603B (zh) * | 2020-12-29 | 2022-05-17 | 浙大城市学院 | 一种基于区间截尾数据的锂离子电池循环寿命分布拟合方法 |
DE102021116781A1 (de) | 2021-06-30 | 2023-01-05 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Ausführen einer Funktion eines Fahrzeugs, computerlesbares Medium, System, und Fahrzeug |
US12067809B2 (en) | 2021-12-17 | 2024-08-20 | Caterpillar Inc. | Machine and battery system prognostics |
US12054071B2 (en) * | 2022-01-11 | 2024-08-06 | Ford Global Technologies, Llc | Control of vehicle battery |
WO2024078727A1 (en) * | 2022-10-14 | 2024-04-18 | Volvo Autonomous Solutions AB | Intelligent power management for battery charging |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003047168A (ja) * | 2001-08-01 | 2003-02-14 | Nippon Telegr & Teleph Corp <Ntt> | 無停電電源装置 |
JP4164996B2 (ja) | 2000-01-05 | 2008-10-15 | 日産自動車株式会社 | 電力マネジメントシステム |
JP2010081722A (ja) * | 2008-09-25 | 2010-04-08 | Hitachi Ltd | 充放電管理装置 |
WO2010084598A1 (ja) * | 2009-01-23 | 2010-07-29 | トヨタ自動車株式会社 | 充電制御装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081097A (en) * | 1998-01-19 | 2000-06-27 | Matsushita Electric Industrial Co., Ltd. | Method for charging lithium secondary battery |
JP3304883B2 (ja) * | 1998-06-08 | 2002-07-22 | 株式会社日立製作所 | 二次電池システム |
WO2010084592A1 (ja) * | 2009-01-22 | 2010-07-29 | Smk株式会社 | 電子部品実装用回路基板 |
US8384358B2 (en) * | 2009-05-28 | 2013-02-26 | GM Global Technology Operations LLC | Systems and methods for electric vehicle charging and for providing notification of variations from charging expectations |
US20120112696A1 (en) * | 2009-07-15 | 2012-05-10 | Panasonic Corporation | Power control system, power control method, power control device and power control program |
JP5051794B2 (ja) * | 2009-12-17 | 2012-10-17 | トヨタ自動車株式会社 | 充電装置 |
DE102011003993A1 (de) * | 2010-02-15 | 2011-08-18 | DENSO CORPORATION, Aichi-pref. | Laderegler und Navigationsvorrichtung für ein Plug-In-Fahrzeug |
CN102044723B (zh) * | 2010-11-25 | 2013-01-30 | 奇瑞汽车股份有限公司 | 一种电动汽车智能充电方法 |
-
2011
- 2011-08-31 JP JP2011189386A patent/JP5897848B2/ja not_active Expired - Fee Related
-
2012
- 2012-08-31 CN CN201280031393.1A patent/CN103620907B/zh not_active Expired - Fee Related
- 2012-08-31 US US14/241,922 patent/US20140336965A1/en not_active Abandoned
- 2012-08-31 WO PCT/JP2012/072207 patent/WO2013031963A1/ja active Application Filing
- 2012-08-31 EP EP12826906.5A patent/EP2752962A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4164996B2 (ja) | 2000-01-05 | 2008-10-15 | 日産自動車株式会社 | 電力マネジメントシステム |
JP2003047168A (ja) * | 2001-08-01 | 2003-02-14 | Nippon Telegr & Teleph Corp <Ntt> | 無停電電源装置 |
JP2010081722A (ja) * | 2008-09-25 | 2010-04-08 | Hitachi Ltd | 充放電管理装置 |
WO2010084598A1 (ja) * | 2009-01-23 | 2010-07-29 | トヨタ自動車株式会社 | 充電制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2752962A4 |
Also Published As
Publication number | Publication date |
---|---|
JP2013051851A (ja) | 2013-03-14 |
EP2752962A4 (en) | 2015-12-23 |
US20140336965A1 (en) | 2014-11-13 |
EP2752962A1 (en) | 2014-07-09 |
CN103620907A (zh) | 2014-03-05 |
JP5897848B2 (ja) | 2016-04-06 |
CN103620907B (zh) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5897848B2 (ja) | 充放電支援装置 | |
US11884181B2 (en) | Determining a minimum state of charge for an energy storage means of a vehicle | |
US9428067B2 (en) | Vehicle running management system under renewable energy | |
US11698611B2 (en) | Server and power management system | |
JP6160928B2 (ja) | 車載装置、及び、充放電システム | |
CN112789193B (zh) | 用于预测性地控制机动车辆的电能存储器的充电过程的方法和后端设备 | |
JP5542284B2 (ja) | 車両利用支援装置 | |
JP5718871B2 (ja) | 充電システム、充電量管理装置、充電方法及びプログラム | |
US20130103378A1 (en) | Electricity demand prediction | |
CA2922836C (en) | Control device of electrical apparatus and energy management system | |
US11187753B2 (en) | System and method for determining a status of a vehicle battery | |
US20140077766A1 (en) | Charging/discharging support device | |
CN105122585A (zh) | 电动车辆管理系统 | |
KR20230042574A (ko) | 충방전 제어 장치 | |
US20230398890A1 (en) | Display device, energy management system, and schedule display method | |
US12125097B2 (en) | Automatic bidding system and automatic bidding method for power trading | |
JP2021189640A (ja) | 情報処理装置、情報処理方法、およびプログラム | |
US20230045214A1 (en) | Systems and methods for dynamic charger reservations | |
JP7521469B2 (ja) | 管理システム、及びエネルギーマネジメント方法 | |
JP2014087228A (ja) | 車載装置および電力管理システム | |
WO2019044708A1 (ja) | 電力システム、蓄電装置、および電力システムの制御方法 | |
US20240174084A1 (en) | Display device, server and method | |
US20230289841A1 (en) | Management system, display device, and incentive display method | |
CN116766996A (zh) | 服务器以及充电控制方法 | |
JP6990091B2 (ja) | 住宅の電力制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12826906 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14241922 Country of ref document: US |