WO2013031545A1 - Desalination system and desalination method - Google Patents
Desalination system and desalination method Download PDFInfo
- Publication number
- WO2013031545A1 WO2013031545A1 PCT/JP2012/070796 JP2012070796W WO2013031545A1 WO 2013031545 A1 WO2013031545 A1 WO 2013031545A1 JP 2012070796 W JP2012070796 W JP 2012070796W WO 2013031545 A1 WO2013031545 A1 WO 2013031545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- membrane
- sewage
- pretreatment
- seawater
- Prior art date
Links
- 238000010612 desalination reaction Methods 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims description 25
- 239000012528 membrane Substances 0.000 claims abstract description 164
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 150
- 239000013535 sea water Substances 0.000 claims abstract description 50
- 150000003839 salts Chemical class 0.000 claims abstract description 29
- 238000001914 filtration Methods 0.000 claims abstract description 23
- 238000000746 purification Methods 0.000 claims abstract description 16
- 238000002203 pretreatment Methods 0.000 claims abstract description 8
- 238000005374 membrane filtration Methods 0.000 claims abstract description 7
- 239000010865 sewage Substances 0.000 claims description 111
- 239000008235 industrial water Substances 0.000 claims description 94
- 239000003651 drinking water Substances 0.000 claims description 28
- 235000020188 drinking water Nutrition 0.000 claims description 28
- 239000012466 permeate Substances 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 7
- 238000001223 reverse osmosis Methods 0.000 abstract description 9
- 238000001728 nano-filtration Methods 0.000 abstract description 2
- 239000002351 wastewater Substances 0.000 abstract 2
- 239000012535 impurity Substances 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 16
- 239000013505 freshwater Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 239000012267 brine Substances 0.000 description 10
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 10
- 238000005345 coagulation Methods 0.000 description 9
- 230000015271 coagulation Effects 0.000 description 9
- 101150070175 MBR1 gene Proteins 0.000 description 8
- 238000007781 pre-processing Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 238000003756 stirring Methods 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- -1 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009287 sand filtration Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/029—Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/12—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
- C02F3/1268—Membrane bioreactor systems
- C02F3/1273—Submerged membrane bioreactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/08—Specific process operations in the concentrate stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2649—Filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/02—Elements in series
- B01D2317/022—Reject series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2317/00—Membrane module arrangements within a plant or an apparatus
- B01D2317/02—Elements in series
- B01D2317/025—Permeate series
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the present invention relates to a desalination system and a desalination method for desalinating sewage and seawater.
- desalination system S100 shown in FIG. 7 as a system which desalinates seawater and sewage.
- Production of production water s101 (industrial water) using sewage in the desalination system S100 is performed as follows.
- the salinity of sewage is about 0.1%.
- the sewage is sent to MBR (Membrane Bioreactor) 101 to which the membrane separation activated sludge method is applied by pump p101, the activated sludge in the sewage is removed by MBR 101, and the MBR permeated water that has passed through MBR 101 is Water is sent to a low pressure RO membrane (Reverse Osmosis Membrane) 102 by a pump p102.
- the MBR permeated water that has passed through the MBR 101 is low at a salinity of about 0.1%, so that the low pressure RO membrane 102 is a low pressure RO membrane of about 1 to 2 MPa (megapascal).
- the MBR permeated water sent by the pump p102 is desalinated by permeating the low-pressure RO membrane 102, almost half is produced as production water s101 (industrial water), and the other half is concentrated water s104 containing impurities such as salt. As separated and removed.
- concentrated water s104 having a volume of about 1 ⁇ 2 of sewage concentrated to a salt concentration of about 0.2% containing impurities such as salt removed by the low-pressure RO membrane 102 is sent from the low-pressure RO membrane 102 to the stirring tank 104. Is done.
- Production of production water s102 (industrial water) from seawater in the desalination system S100 is performed as follows.
- the salinity of seawater is about 3-4%.
- Seawater is sent to a UF membrane (Ultrafiltration Membrane) 103 by a pump p103, and the particles are removed by the UF membrane 103 and sent to a stirring tank 104.
- the UF membrane-permeated seawater that has passed through the UF membrane 103 and the concentrated water s104 having a volume of about 1 ⁇ 2 of the sewage concentrated from the sewage by the low-pressure RO membrane 102 are generated by stirring.
- the mixed water s103 is sent to the intermediate pressure RO membrane 105 by the pump p104.
- the UF membrane permeated seawater that has passed through the UF membrane 103 has a salinity of 3-4%, but is diluted with concentrated water s104 having a salinity of about 0.2%.
- An RO membrane (reverse osmosis membrane) of about 3-5 MPa is used.
- the mixed water s103 fed from the agitation tank 104 to the intermediate pressure RO membrane 105 by the pump p104 is desalinated by passing through the intermediate pressure RO membrane 105, and about half of the production water s102 (industrial water) is desalinated. ) And the remaining half is separated and removed as brine s105 containing impurities such as salt. That is, the production water s102 (industrial water) is produced with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
- the brine s105 is separated and drained with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
- the pressure energy of the brine s105 is recovered as rotational energy by the power recovery device 106 and used as a power source (energy source) for sending pressure to the intermediate pressure RO membrane 105 of a part of the mixed water s103 that bypasses the pump p104. It is done.
- the desalination system S200 is configured such that the sewage concentrated water s104 in the desalination system S100 of FIG. 7 is not sent to the stirring tank 204, and sewage desalination and seawater desalination are independently configured.
- a high pressure RO membrane 205 which is a high pressure RO membrane (reverse osmosis membrane) of about 6 to 8 MPa is used.
- sewage passes through the low-pressure RO membrane 202 to be desalinated, and about half of the sewage production water s201 (industrial water) is obtained.
- particles are removed from the seawater by the UF membrane 203, and are passed through the high-pressure RO membrane 205 to be desalinated, so that the production water s202 (drinking water) in half the amount of seawater is obtained.
- the conventional desalination systems S100 and S200 have the following problems. First, it is difficult to cope with a case where needs for industrial water and drinking water are large. For example, in the desalination system S100 of FIG. 7, although industrial water can be increased, the concentrated water s104 is fed to the agitation tank 104 in the seawater desalination process, so that drinking water cannot be taken. On the other hand, in the desalination system S200 of FIG. 8, although drinking water (product water s202) can be taken, when it is going to increase industrial water, it is necessary to increase the amount of sewage intake. Therefore, it is difficult to increase the amount of industrial water in areas where the amount of sewage is limited.
- an object of the present invention is to provide a desalination system and a desalination method capable of effectively using sewage as much as possible and reducing the water production cost of the entire system.
- a desalination system is a desalination system for desalinating sewage and seawater, and a purification device that permeates and purifies the sewage, and a permeated water that permeates the purification device.
- the first RO membrane that generates industrial water while the salt content thereof is contained and removed in the first concentrated water, and the first concentrated water is at least of concentration filtration and filtration of NF membrane
- the first pretreatment apparatus in which any pretreatment is performed and the first treated water that has been pretreated in the first pretreatment apparatus are permeated, and the salt content thereof is contained in the second concentrated water.
- a second RO membrane that is removed and generates industrial water.
- the desalination method according to the present invention of claim 6 is a method for realizing the desalination system of claim 1.
- the desalination system according to claim 3 is a desalination system that desalinates sewage and seawater, a purification device that permeates and purifies the sewage, a permeated water that passes through the purification device, and a salt content thereof.
- a plurality of RO membranes that are contained in the concentrated water and removed and generate industrial water, and the concentrated water removed by any of the plurality of RO membranes is at least one of concentrated filtration and NF membrane filtration
- the desalination method according to claim 8 is a method for realizing the desalination system according to claim 3.
- the desalination system and the desalination method of the present invention it is possible to realize a desalination system and a desalination method capable of effectively using sewage as much as possible and reducing the water production cost of the entire system.
- FIG. 1 It is a notional block diagram of the desalination system of Embodiment 1 which concerns on this invention. It is a notional block diagram of the desalination system of the modification of Embodiment 1.
- FIG. It is a notional block diagram of the desalination system of Embodiment 2.
- FIG. It is a notional block diagram of the desalination system of the deformation
- FIG. It is a notional block diagram of the desalination system of Embodiment 3.
- FIG. It is a notional block diagram of the desalination system of the deformation
- FIG. It is a notional block diagram which shows the conventional desalination system. It is a notional block diagram which shows the other conventional desalination system.
- FIG. 1 is a conceptual configuration diagram of a desalination system according to Embodiment 1 of the present invention.
- the desalination system S of Embodiment 1 includes an industrial water freshwater generation system Sa for freshening industrial water s1 and s2 from sewage, and a drinking water freshwater generation system Sb for freshening drinking water s3 from seawater. It has.
- the industrial desalination system Sa of the desalination system S generates the industrial water s1, so that MBR (Membrane Bioreactor) 1 that permeates sewage to remove and purify solids and bacteria, and sewage that permeates sewage. And a first low pressure RO membrane (Reverse Osmosis Membrane) 2 for removing impurities such as salt and ions contained in the water.
- MBR Membrane Bioreactor
- RO membrane Reverse Osmosis Membrane
- the industrial water freshwater generation system Sa allows the sewage concentrated water s6a separated by the first low-pressure RO membrane 2 to pass therethrough, and the pretreatment device 3 performs flocculation filtration and / or NF treatment.
- the second low-pressure RO membrane (Reverse Osmosis Membrane) 4 that permeates the treated water s7a pretreated by the pretreatment device 3 to remove impurities such as salt and ions contained in the treated water s7a and desalinates it. And.
- the MBR1 performs solid-liquid separation and purifies by removing solids and bacteria from sewage.
- the RO membrane reverse osmosis membrane
- the RO membrane is a semipermeable membrane that allows water to pass through but does not allow low-molecular substances such as salt or ions to pass through. Since the first low-pressure RO membrane 2 has a low sewage salinity concentration of about 0.1%, the sewage is permeated (filtered), so that the salinity and the like can be reduced at a relatively low permeation pressure of about 1 to 2 MPa (megapascal). It is a low-pressure RO membrane to be removed.
- the pretreatment device 3 has a function of coagulation filtration and / or NF treatment.
- the sewage concentrated water s6a is coagulated and filtered to reduce the scale, or harmful substances such as cyan (CN) compounds and heavy metals such as chromium are removed.
- the NF process of the pretreatment device 3 is a process using an NF film.
- NF membrane Nanofiltration Membrane
- CN toxic cyanide
- the second low-pressure RO membrane 4 Since the second low-pressure RO membrane 4 has a low salinity of about 0.2% of the water to be treated s7a, it allows a relatively low permeation pressure of about 1 to 2 MPa (megapascal) by allowing sewage to permeate (filter). This is a low-pressure RO membrane that removes salt and the like.
- the drinking water fresh water generation system Sb which produces fresh drinking water in the desalination system S has the following configuration.
- the drinking water freshwater generation system Sb uniformly mixes a UF membrane (Ultrafiltration Membrane) 5 that permeates seawater to remove particles contained in seawater, and seawater that has permeated through the UF membrane 5 to remove particles.
- a high-pressure RO membrane 7 that removes impurities such as salt and ions contained in the seawater from which particles have been removed and made uniform, and desalinates the water.
- the UF membrane (ultrafiltration membrane) 5 permeates (filters) seawater to perform screening at the molecular level according to the pore size of the membrane and the size of the molecules to be removed in the seawater, thereby removing particles in the seawater.
- the high-pressure RO membrane 7 has a seawater salinity of about 3 to 4%, so the seawater can be permeated (filtered) at a relatively high seawater permeation pressure of about 6 to 8 MPa (megapascals). It is a high-pressure RO membrane (reverse osmosis membrane) that removes and the like.
- the sewage is pumped into the industrial water desalination system Sa by the pump p1 and fed to the MBR1. Sewage passes through MBR1 to remove activated sludge flocs and bacteria.
- the MBR permeated water s5a that has passed through the MBR1 is sent to the first low-pressure RO membrane 2 by the pump p2, and passes through the first low-pressure RO membrane 2, thereby concentrating sewage containing impurities such as salt and ions.
- Water s6a is removed and desalinated to produce industrial water s1.
- the industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage is removed as the sewage concentrated water s6a containing impurities such as salt and ions.
- the sewage concentrated water s6a separated by the first low-pressure RO membrane 2 is sent to the pretreatment device 3, where it is subjected to coagulation filtration and / or NF treatment to remove scales and cyanide compounds. .
- the treated water s7a, in which the sewage concentrated water s6a is pretreated by the pretreatment device 3, is sent to the second low-pressure RO membrane 4 by the pump p3 and permeates the second low-pressure RO membrane 4, thereby allowing the salinity and
- the treated concentrated water s6b containing impurities such as ions is removed and desalinated, and industrial water s2 is produced.
- the industrial water s2 is obtained about 1/2 of the sewage concentrated water s6a, while the remainder of the sewage, that is, about 1/2 of the sewage concentrated water s6a is removed as the treated concentrated water s6b containing impurities such as salt and ions. Is done. Since the sewage concentrated water s6a is about 1/2 of the sewage, the industrial water s2 is obtained about 1/4 of the sewage. As a result, about half of the sewage can be obtained as the industrial water s1, and about 1 ⁇ 4 of the sewage can be obtained as the industrial water s2, so that industrial water having a capacity of about 3/4 of the sewage can be taken.
- seawater is pumped into the drinking water freshwater generation system Sb by the pump p4 and fed to the UF membrane 5.
- Seawater passes through the UF membrane 5 to remove particles in the seawater.
- the UF membrane permeated seawater s5b which is seawater from which particles have been removed by the UF membrane 5, is stirred and made uniform in the stirring tank 6.
- the stirred UF membrane permeated seawater s5b is sent to the high pressure RO membrane 7 by the pump p5.
- the UF membrane-permeable seawater s5b is produced as a brine s8 containing almost half of the salt and impurities such as ions, and the other half is produced as desalinated drinking water s3. Therefore, drinking water s3 that is about half the amount of seawater can be taken.
- the desalination system S of the first embodiment about 3/4 of the amount of industrial water can be taken by the industrial water desalination system Sa, and the drinking water desalination system Sb can increase the intake of inexhaustible seawater. By doing so, the drinking water can be increased. Therefore, it can be adapted when the needs of industrial water and drinking water are great.
- FIG. 3 is a conceptual configuration diagram illustrating the desalination system of the second embodiment.
- the second stage of the pretreatment device 3a and the third low-pressure RO membrane 4a are further added to the industrial desalination system Sa of the desalination system S of the first embodiment.
- the membrane is composed of three stages, and the pretreatment device is composed of two stages. Since the other configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
- the desalination system 2S includes a three-stage low-pressure RO membrane and a two-stage pretreatment apparatus, and includes an industrial water-making water system 2Sa for producing industrial water s1, s2, s2a from sewage. Moreover, the desalination system 2S is equipped with the drinking water fresh water generation system Sb for making the drinking water s3 from seawater similarly to Embodiment 1.
- FIG. 1 A block diagram illustrating an industrial water-making water system 2Sa for producing industrial water s1, s2, s2a from sewage.
- the desalination system 2S is equipped with the drinking water fresh water generation system Sb for making the drinking water s3 from seawater similarly to Embodiment 1.
- the industrial desalination system 2Sa of the desalination system 2S is a second pretreatment that pretreats the concentrated water s6b to be treated, which is removed by the second low-pressure RO membrane 4, in the industrial desalination system Sa of the first embodiment.
- transmits the 2nd to-be-processed concentrated water s7b pre-processed by the 2nd pre-processing apparatus 3a are further provided.
- the second pretreatment device 3 a is a device that performs the same coagulation filtration and / or NF treatment as the pretreatment device 3.
- the coagulation filtration of the second pretreatment device 3a is to coagulate and filter the concentrated water s6b to be treated to reduce the scale, or to remove harmful substances such as cyan (CN-) compounds and heavy metals such as chromium. To do.
- the NF treatment of the second pretreatment device 3a is a treatment using an NF membrane.
- a low molecular weight compound such as a cyan (CN-) compound is obtained. Cut impurities and microorganisms.
- the third low-pressure RO membrane 4a has a low sewage salinity concentration of about 0.4%, the sewage is permeated (filtered) at a relatively low permeation pressure of about 1 to 2 MPa (megapascals) to remove salinity and the like. It is a low-pressure RO membrane to be removed.
- the sewage is pumped into the industrial water desalination system 2Sa by the pump p1 and fed to the MBR1. Sewage passes through MBR1 (and is filtered) to remove activated sludge flocs and bacteria.
- the MBR permeated water s5a that has passed through the MBR1 is sent to the first low-pressure RO membrane 2 by the pump p2, and passes through the first low-pressure RO membrane 2, thereby concentrating sewage containing impurities such as salt and ions.
- Water s6a is removed and desalinated, and industrial water s1 is produced (generated).
- the industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage is removed as the sewage concentrated water s6a containing impurities such as salt and ions.
- the sewage concentrated water s6a separated by the first low-pressure RO membrane 2 is sent to the pretreatment device 3, where it is subjected to coagulation filtration and / or NF treatment to remove scales and cyanide compounds. .
- the treated water s7a, in which the sewage concentrated water s6a is pretreated by the pretreatment device 3, is sent to the second low-pressure RO membrane 4 by the pump p3 and permeates the second low-pressure RO membrane 4, thereby allowing the salinity and
- the treated concentrated water s6b containing impurities such as ions is removed and desalinated to produce (produce) industrial water s2.
- the industrial water s2 is obtained about 1/2 of the water to be treated s7a, while the remaining amount of the water to be treated s7a, that is, about 1/2 of the water to be treated s7a contains the concentration of impurities such as salt and ions. It is removed as s6b. Since the to-be-processed water s7a is about 1/2 of the sewage, the industrial water s2 is obtained about 1/4 of the sewage.
- the to-be-processed concentrated water s6b removed by the second low-pressure RO membrane 4 is sent to the second pretreatment device 3a, and is subjected to coagulation filtration and / or NF treatment in the second pretreatment device 3a. Cyanide compounds and the like are removed.
- the second treated water s7b obtained by pretreating the treated concentrated water s6b by the second pretreatment device 3a is sent to the third low-pressure RO membrane 4a by the pump p3a, and is passed through the third low-pressure RO membrane 4a.
- the second treated concentrated water s6c containing impurities such as salt and ions is removed and desalinated, and industrial water s2a is produced (generated).
- the industrial water s2a is obtained about 1 ⁇ 2 of the second treated water s7b, while the remainder of the second treated water s7b, that is, about 1 ⁇ 2 of the second treated water s7b is salt or ions. It removes as 2nd to-be-processed concentrated water s6c containing impurities, such as. Since the second treated water s7b is about 1 ⁇ 4 of sewage, industrial water s2a is obtained about 8 of sewage.
- the pretreatment device since the pretreatment device has two stages and the low-pressure RO membrane has three stages, a capacity of about 7/8 of sewage taken by industrial water is obtained, and more industrial water is obtained from the sewage. Can be produced. Other functions and effects of the first embodiment are similarly achieved.
- the desalination system 2S includes the industrial water desalination system 2Sa and the drinking water desalination system Sb is illustrated.
- the desalination system 2S ′ includes the industrial desalination system 2S ′. It is good also as a structure which comprises only the fresh water system 2Sa.
- the pretreatment apparatus has two stages and the low pressure RO membrane has three stages. However, the pretreatment apparatus has three stages or more and the low pressure RO membrane has four stages or more. It is good also as a structure similar to the form 2. Thereby, more industrial water can be produced (generated) from sewage.
- FIG. 5 is a conceptual configuration diagram illustrating a desalination system according to the third embodiment.
- the desalination system 3S of the third embodiment has a configuration in which the multi-stage pretreatment device described in the first and second embodiments and the industrial water amount switching means (switching means) for switching the multi-stage low-pressure RO membrane to an arbitrary number of stages are provided. It is a thing. Since the other configuration is the same as the desalination systems S and 2S of the first and second embodiments, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
- the desalination system 3S includes industrial water for producing industrial water s1, s2, s2a, s2b,... From the sewage by providing a plurality of low pressure RO membranes, a plurality of pretreatment devices, industrial water amount switching means, and the like.
- a fresh water generation system 3Sa and a drinking water fresh water generation system Sb for freshly forming drinking water s3 from seawater are provided.
- the first, second, third, and fourth low pressure RO membranes 2, 4, 4a, 4b,... Have sewage salinity concentrations of 0.1%, 0.2%, 0.4%,. Since it is as low as 8%, etc., it is a low-pressure RO membrane that removes salt and the like by permeating (filtering) sewage at a relatively low permeation pressure of about 1 to 2 MPa (megapascal).
- the pretreatment device 3, the second pretreatment device 3a, the third pretreatment device 3b,... are devices that perform aggregation filtration and / or NF treatment, respectively.
- coagulation filtration as described above, brine (concentrated water) is coagulated and filtered to reduce the scale, or harmful substances such as cyan (CN-) compounds and heavy metals such as chromium are removed.
- NF treatment as described above, brine (concentrated water) is permeated (filtered) through the NF membrane to cut low-molecular impurities such as cyan (CN-) compounds and microorganisms.
- the industrial water amount switching means includes valves v1, v2,... And a switching control device 9 that switches the flow paths of the valves v1, v2, v3,.
- the valves v1, v2, v3,... Are three-way valves, and are respectively from the first low-pressure RO membrane 2, the second low-pressure RO membrane 4, the third low-pressure RO membrane 4a, the fourth low-pressure RO membrane 4b,.
- the brine (concentrated water) is drained or switched to the pre-treatment device 3, the second pre-treatment device 3a, the third pre-treatment device 3b,.
- the valves v1, v2,... May be drained or flowed to a downstream pretreatment device, or the longer duration may be set to the normal state.
- the switching control device 9 is a control device that controls switching of the valves v1, v2, v3,..., And the valves v1, v2, v3,... Are respectively the first low-pressure RO membrane 2 and the second low-pressure RO membrane 4. , Whether the brine from the third low-pressure RO membrane 4a,... Is drained or passed to the pre-processing device 3, the second pre-processing device 3a, the third pre-processing device 3b,. Perform switching control.
- the switching control device 9 is stored in a controller (not shown) that controls the entire desalination system 3S.
- the switching control device 9 includes a microcomputer, an interface circuit such as an A / C / D / C converter, a current control circuit that switches operations of the valves v1, v2, v3,.
- the switching operation of the valves v1, v2, v3,... Is described in a control program stored in a ROM (Read Only Memory) of the microcomputer.
- Control of the switching control device 9 is performed as follows.
- the valve v1 is switched to the drain side.
- the other valves v2, v3,... May be switched to any side because the sewage concentrated water s6a is drained by the upstream valve v1.
- the industrial water s1 which MBR permeated water s5a permeate
- the valves v1 and v2 are opened to the second low pressure RO membrane 4 and the third low pressure RO membrane 4a, respectively, while the valve v3 is switched to the drain side.
- the other valves may be switched to any side because the treated concentrated water s6c is drained by the upstream valve v3.
- the industrial water s1 in which the MBR permeated water s5a has permeated the first low-pressure RO membrane 2 and the water to be treated s7a pretreated by the pretreatment device 3 have permeated the second low-pressure RO membrane 4 from the sewage.
- Industrial water s2 and industrial water s2a in which the second treated water s7b pretreated by the second pretreatment device 3a has permeated the second low-pressure RO membrane 4a are obtained.
- valves v1, v2, and v3 are opened to the second low pressure RO membrane 4 and the third low pressure RO membrane 4a, respectively, while the other valves are switched to the drain side.
- the industrial water s1 in which the MBR permeated water s5a has permeated the first low-pressure RO membrane 2 and the water to be treated s7a pretreated by the pretreatment device 3 have permeated the second low-pressure RO membrane 4 from the sewage.
- the third treated water s7c thus made passes through the fourth low-pressure RO membrane 4b to obtain industrial water s2a.
- the third treated concentrated water s6d is removed from the fourth low-pressure RO membrane 4b.
- industrial water can be increased by opening an arbitrary number of valves on the low-pressure RO membrane side.
- the valves v1, v2, v3,... For switching whether to drain or drain the brain (concentrated water) to the plurality of stages of low-pressure RO membranes, the plurality of stages of pretreatment devices, and the next-stage low-pressure RO membranes. Since the switching control device 9 for controlling the switching of the valve is provided, the amount of industrial water to be taken can be freely changed depending on the amount of demand for industrial water and the amount of sewage. Other functions and effects of the first and second embodiments are similarly achieved.
- the desalination system 3S includes the industrial water desalination system 3Sa and the drinking water desalination system Sb is illustrated. However, as shown in FIG. It is good also as a structure which comprises only the fresh water system 3Sa.
- the pretreatment apparatus has two stages and the low pressure RO membrane has three stages.
- the pretreatment apparatus has three stages or more, and the low pressure RO has three stages. It is good also as a structure similar to Embodiment 2 which makes a film
- switching means switching means
- switches means switching means
- switches control device 9 switching means
- the configuration of the industrial water amount switching means (switching means) (valves v1, v2, v3,..., Switching control device 9) described in the third embodiment can be applied to the first and second embodiments.
- MBR1 was illustrated as a purification apparatus which purifies sewage
- purification apparatuses other than MBR such as a natural precipitation method, sand filtration, and disinfection, may be applied.
- the numerical value used by description of the said embodiment shows an example, and is not limited to these numerical values.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
This desalination system (S) desalinates waste water and seawater and comprises the following: a purification device (1) that allows waste water to pass therethrough and purifies the same; a first reverse osmosis membrane (2) that allows passed water (s5a) that was passed through the purification device (1) to pass, causes the salt content of the passed water to be contained in and removed through first condensed water (s6a), and that generates industrial-use water (s1); a first pre-treatment device (3) in which the first condensed water (s6a) is subjected to any one pre-treatment from between at least condensed filtration and nanofiltration membrane filtration; and a second reverse osmosis membrane (4) that passes first treated water (s7a) which was subjected to pre-treatment by the first pre-treatment device (3), that causes the salt content of the passed water to be contained in and removed through condensed water (s6b), and that generates industrial-use water (s2).
Description
本発明は、下水や海水を淡水化する淡水化システムおよび淡水化方法に関する。
The present invention relates to a desalination system and a desalination method for desalinating sewage and seawater.
近年、世界的な人口増や新興国を含む広域な産業の進展から、砂漠地域などでの飲料水や工業用水の造水需要が顕在化している。
従来、海水、下水を淡水化するシステムとして、図7に示す淡水化システムS100がある。
淡水化システムS100における下水を用いた生産水s101(工業用水)の生産は、以下のように遂行される。なお、下水の塩分濃度は、0.1%程度である。 In recent years, demand for drinking water and industrial water production in desert areas has become apparent due to global population growth and development of wide-area industries including emerging countries.
Conventionally, there exists desalination system S100 shown in FIG. 7 as a system which desalinates seawater and sewage.
Production of production water s101 (industrial water) using sewage in the desalination system S100 is performed as follows. The salinity of sewage is about 0.1%.
従来、海水、下水を淡水化するシステムとして、図7に示す淡水化システムS100がある。
淡水化システムS100における下水を用いた生産水s101(工業用水)の生産は、以下のように遂行される。なお、下水の塩分濃度は、0.1%程度である。 In recent years, demand for drinking water and industrial water production in desert areas has become apparent due to global population growth and development of wide-area industries including emerging countries.
Conventionally, there exists desalination system S100 shown in FIG. 7 as a system which desalinates seawater and sewage.
Production of production water s101 (industrial water) using sewage in the desalination system S100 is performed as follows. The salinity of sewage is about 0.1%.
下水は、ポンプp101により、膜分離活性汚泥法が適用されるMBR(Membrane Bioreactor)101に送水され、MBR101で下水中の固形分の活性汚泥などが除去され、MBR101を透過したMBR透過水が、ポンプp102により低圧RO膜(Reverse Osmosis Membrane:逆浸透膜)102に送水される。
なお、MBR101を透過したMBR透過水は、塩分濃度0.1%程度で低いので、低圧RO膜102は、低圧の約1~2MPa(メガパスカル)のRO膜が使用される。 The sewage is sent to MBR (Membrane Bioreactor) 101 to which the membrane separation activated sludge method is applied by pump p101, the activated sludge in the sewage is removed byMBR 101, and the MBR permeated water that has passed through MBR 101 is Water is sent to a low pressure RO membrane (Reverse Osmosis Membrane) 102 by a pump p102.
The MBR permeated water that has passed through theMBR 101 is low at a salinity of about 0.1%, so that the low pressure RO membrane 102 is a low pressure RO membrane of about 1 to 2 MPa (megapascal).
なお、MBR101を透過したMBR透過水は、塩分濃度0.1%程度で低いので、低圧RO膜102は、低圧の約1~2MPa(メガパスカル)のRO膜が使用される。 The sewage is sent to MBR (Membrane Bioreactor) 101 to which the membrane separation activated sludge method is applied by pump p101, the activated sludge in the sewage is removed by
The MBR permeated water that has passed through the
ポンプp102により送水されたMBR透過水は、低圧RO膜102を透過することで淡水化され、ほぼ半分が生産水s101(工業用水)として生産され、残り半分が塩分などの不純物を含む濃縮水s104として分離、除去される。
The MBR permeated water sent by the pump p102 is desalinated by permeating the low-pressure RO membrane 102, almost half is produced as production water s101 (industrial water), and the other half is concentrated water s104 containing impurities such as salt. As separated and removed.
一方、低圧RO膜102で除去された塩分などの不純物を含む塩分濃度0.2%程度に濃縮された下水の約1/2の容量の濃縮水s104は低圧RO膜102から攪拌槽104に送水される。
On the other hand, concentrated water s104 having a volume of about ½ of sewage concentrated to a salt concentration of about 0.2% containing impurities such as salt removed by the low-pressure RO membrane 102 is sent from the low-pressure RO membrane 102 to the stirring tank 104. Is done.
淡水化システムS100における海水からの生産水s102(工業用水)の生産は以下のように遂行される。なお、海水の塩分濃度は、3~4%程度である。
海水は、ポンプp103により、UF膜(Ultrafiltration Membrane)103に送水され、UF膜103で粒子が除去され攪拌槽104に送水される。攪拌槽104では、このUF膜103を透過したUF膜透過海水と、前記した低圧RO膜102で下水から濃縮された下水の1/2程度の容量の濃縮水s104とが攪拌されて生成された混合水s103が、ポンプp104により、中圧RO膜105に送水される。 Production of production water s102 (industrial water) from seawater in the desalination system S100 is performed as follows. The salinity of seawater is about 3-4%.
Seawater is sent to a UF membrane (Ultrafiltration Membrane) 103 by a pump p103, and the particles are removed by theUF membrane 103 and sent to a stirring tank 104. In the agitation tank 104, the UF membrane-permeated seawater that has passed through the UF membrane 103 and the concentrated water s104 having a volume of about ½ of the sewage concentrated from the sewage by the low-pressure RO membrane 102 are generated by stirring. The mixed water s103 is sent to the intermediate pressure RO membrane 105 by the pump p104.
海水は、ポンプp103により、UF膜(Ultrafiltration Membrane)103に送水され、UF膜103で粒子が除去され攪拌槽104に送水される。攪拌槽104では、このUF膜103を透過したUF膜透過海水と、前記した低圧RO膜102で下水から濃縮された下水の1/2程度の容量の濃縮水s104とが攪拌されて生成された混合水s103が、ポンプp104により、中圧RO膜105に送水される。 Production of production water s102 (industrial water) from seawater in the desalination system S100 is performed as follows. The salinity of seawater is about 3-4%.
Seawater is sent to a UF membrane (Ultrafiltration Membrane) 103 by a pump p103, and the particles are removed by the
UF膜103を透過したUF膜透過海水は、3~4%の塩分濃度であるが、塩分濃度0.2%程度の濃縮水s104で希釈されるため、中圧RO膜105は、中圧の約3~5MPaのRO膜(逆浸透膜)が使用される。
攪拌槽104からポンプp104により中圧RO膜105に送水された混合水s103は、中圧RO膜105を透過することで淡水化され、1/2程度が淡水化された生産水s102(工業用水)として生産され、残り1/2程度が塩分などの不純物を含むブラインs105として分離、除去される。つまり、生産水s102(工業用水)は、海水の1/2プラス下水の1/4程度の容量をもって生産される。 The UF membrane permeated seawater that has passed through theUF membrane 103 has a salinity of 3-4%, but is diluted with concentrated water s104 having a salinity of about 0.2%. An RO membrane (reverse osmosis membrane) of about 3-5 MPa is used.
The mixed water s103 fed from theagitation tank 104 to the intermediate pressure RO membrane 105 by the pump p104 is desalinated by passing through the intermediate pressure RO membrane 105, and about half of the production water s102 (industrial water) is desalinated. ) And the remaining half is separated and removed as brine s105 containing impurities such as salt. That is, the production water s102 (industrial water) is produced with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
攪拌槽104からポンプp104により中圧RO膜105に送水された混合水s103は、中圧RO膜105を透過することで淡水化され、1/2程度が淡水化された生産水s102(工業用水)として生産され、残り1/2程度が塩分などの不純物を含むブラインs105として分離、除去される。つまり、生産水s102(工業用水)は、海水の1/2プラス下水の1/4程度の容量をもって生産される。 The UF membrane permeated seawater that has passed through the
The mixed water s103 fed from the
ブラインs105は、海水の1/2プラス下水の1/4程度の容量をもって分離され排水される。
なお、ブラインs105の圧力エネルギは、動力回収装置106で回転エネルギとして回収され、ポンプp104を迂回した一部の混合水s103の中圧RO膜105への送圧の動力源(エネルギ源)として用いられる。 The brine s105 is separated and drained with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
The pressure energy of the brine s105 is recovered as rotational energy by thepower recovery device 106 and used as a power source (energy source) for sending pressure to the intermediate pressure RO membrane 105 of a part of the mixed water s103 that bypasses the pump p104. It is done.
なお、ブラインs105の圧力エネルギは、動力回収装置106で回転エネルギとして回収され、ポンプp104を迂回した一部の混合水s103の中圧RO膜105への送圧の動力源(エネルギ源)として用いられる。 The brine s105 is separated and drained with a capacity of about 1/2 of seawater plus about 1/4 of sewage.
The pressure energy of the brine s105 is recovered as rotational energy by the
従来のその他の淡水化システムとして、図8に示す淡水化システムS200がある。
淡水化システムS200は、図7の淡水化システムS100における下水の濃縮水s104を、攪拌槽204に送水せず、下水の淡水化と海水の淡水化とを独立して構成したものである。 As another conventional desalination system, there is a desalination system S200 shown in FIG.
The desalination system S200 is configured such that the sewage concentrated water s104 in the desalination system S100 of FIG. 7 is not sent to thestirring tank 204, and sewage desalination and seawater desalination are independently configured.
淡水化システムS200は、図7の淡水化システムS100における下水の濃縮水s104を、攪拌槽204に送水せず、下水の淡水化と海水の淡水化とを独立して構成したものである。 As another conventional desalination system, there is a desalination system S200 shown in FIG.
The desalination system S200 is configured such that the sewage concentrated water s104 in the desalination system S100 of FIG. 7 is not sent to the
淡水化システムS200においては、海水は、UF膜203で粒子が除去されるが、攪拌槽204で下水からの送水(図7の下水の濃縮水s104)で希釈されないため、塩分濃度が約3~4%と高い。そのため、高圧の約6~8MPaのRO膜(逆浸透膜)である高圧RO膜205を用いている。
In the desalination system S200, particles of seawater are removed by the UF membrane 203, but are not diluted with the water from the sewage (concentrated water s104 of the sewage in FIG. 7) in the agitation tank 204. As high as 4%. Therefore, a high pressure RO membrane 205 which is a high pressure RO membrane (reverse osmosis membrane) of about 6 to 8 MPa is used.
淡水化システムS200は、下水が低圧RO膜202を透過して淡水化され、下水の約半分の生産水s201(工業用水)が得られる。一方、海水がUF膜203で粒子が除去され、高圧RO膜205を透過して淡水化され、海水の1/2の量の生産水s202(飲料水)が得られる。
In the desalination system S200, sewage passes through the low-pressure RO membrane 202 to be desalinated, and about half of the sewage production water s201 (industrial water) is obtained. On the other hand, particles are removed from the seawater by the UF membrane 203, and are passed through the high-pressure RO membrane 205 to be desalinated, so that the production water s202 (drinking water) in half the amount of seawater is obtained.
その他の構成は、図7の淡水化システムS100と同様であるから、淡水化システムS100の構成要素に200番台の符号を付して示し、詳細な説明は省略する。
なお、本願に係る先行技術文献として特許文献1がある。 Since the other configuration is the same as that of the desalination system S100 of FIG. 7, constituent elements of the desalination system S100 are indicated by reference numerals in the 200s and detailed description thereof is omitted.
In addition, there exists patent document 1 as a prior art document which concerns on this application.
なお、本願に係る先行技術文献として特許文献1がある。 Since the other configuration is the same as that of the desalination system S100 of FIG. 7, constituent elements of the desalination system S100 are indicated by reference numerals in the 200s and detailed description thereof is omitted.
In addition, there exists patent document 1 as a prior art document which concerns on this application.
ところで、従来の淡水化システムS100、S200においては、以下の問題がある。
第1に、工業用水、飲料水それぞれにニーズが大なる場合に対応が困難である。例えば、図7の淡水化システムS100では、工業用を増水できるものの、濃縮水s104を海水の淡水化過程における攪拌槽104に送水するため、飲料水を取水できない。
一方、図8の淡水化システムS200では、飲料水(生産水s202)を取水できるものの、工業用水を増水しようとすると、下水の取水量を増加させる必要がある。そのため、下水の量が限られる地域では、工業用水の増水が困難となる。 Incidentally, the conventional desalination systems S100 and S200 have the following problems.
First, it is difficult to cope with a case where needs for industrial water and drinking water are large. For example, in the desalination system S100 of FIG. 7, although industrial water can be increased, the concentrated water s104 is fed to theagitation tank 104 in the seawater desalination process, so that drinking water cannot be taken.
On the other hand, in the desalination system S200 of FIG. 8, although drinking water (product water s202) can be taken, when it is going to increase industrial water, it is necessary to increase the amount of sewage intake. Therefore, it is difficult to increase the amount of industrial water in areas where the amount of sewage is limited.
第1に、工業用水、飲料水それぞれにニーズが大なる場合に対応が困難である。例えば、図7の淡水化システムS100では、工業用を増水できるものの、濃縮水s104を海水の淡水化過程における攪拌槽104に送水するため、飲料水を取水できない。
一方、図8の淡水化システムS200では、飲料水(生産水s202)を取水できるものの、工業用水を増水しようとすると、下水の取水量を増加させる必要がある。そのため、下水の量が限られる地域では、工業用水の増水が困難となる。 Incidentally, the conventional desalination systems S100 and S200 have the following problems.
First, it is difficult to cope with a case where needs for industrial water and drinking water are large. For example, in the desalination system S100 of FIG. 7, although industrial water can be increased, the concentrated water s104 is fed to the
On the other hand, in the desalination system S200 of FIG. 8, although drinking water (product water s202) can be taken, when it is going to increase industrial water, it is necessary to increase the amount of sewage intake. Therefore, it is difficult to increase the amount of industrial water in areas where the amount of sewage is limited.
第2に、淡水化システムS100、S200とも下水の流入量の変動が大きい場合、下水の流入量の変動に対応する構成になっていない。そのため、下水の流入量の変動に対応できない。
2ndly, when the fluctuation | variation of the inflow of sewage is large in both desalination system S100, S200, it is not the structure corresponding to the fluctuation | variation of the inflow of sewage. Therefore, it cannot cope with fluctuations in the amount of inflow of sewage.
第3に、造水コストは下水を淡水化する方が廉価であるが、下水を有効に利用できる構成となっていないため、システム全体の造水コストが上昇し易い。
例えば、図8の淡水化システムS200では、取水した下水の半分が生産水s201(工業用水)となるが、半分はブラインとして系外に排出される。一方、図7の淡水化システムS100では、下水のうち半分は生産水s101(工業用水)となり、下水の半分の濃縮水s104はその半分が生産水s102(工業用水)となるが、濃縮水s104の半分はブラインとして系外に排出される。
結果的には、下水の3/4は工業用水として利用されるが、淡水化システムS100においても、下水を可及的に有効利用しているものではない。 Thirdly, it is cheaper to desalinate sewage. However, since the sewage is not configured to be used effectively, the cost of the entire system is likely to increase.
For example, in the desalination system S200 of FIG. 8, half of the collected sewage is produced water s201 (industrial water), but half is discharged out of the system as brine. On the other hand, in the desalination system S100 of FIG. 7, half of the sewage is produced water s101 (industrial water) and half of the sewage concentrated water s104 is half produced water s102 (industrial water). Half of this is discharged out of the system as brine.
As a result, 3/4 of the sewage is used as industrial water, but the sewage is not effectively used as much as possible in the desalination system S100.
例えば、図8の淡水化システムS200では、取水した下水の半分が生産水s201(工業用水)となるが、半分はブラインとして系外に排出される。一方、図7の淡水化システムS100では、下水のうち半分は生産水s101(工業用水)となり、下水の半分の濃縮水s104はその半分が生産水s102(工業用水)となるが、濃縮水s104の半分はブラインとして系外に排出される。
結果的には、下水の3/4は工業用水として利用されるが、淡水化システムS100においても、下水を可及的に有効利用しているものではない。 Thirdly, it is cheaper to desalinate sewage. However, since the sewage is not configured to be used effectively, the cost of the entire system is likely to increase.
For example, in the desalination system S200 of FIG. 8, half of the collected sewage is produced water s201 (industrial water), but half is discharged out of the system as brine. On the other hand, in the desalination system S100 of FIG. 7, half of the sewage is produced water s101 (industrial water) and half of the sewage concentrated water s104 is half produced water s102 (industrial water). Half of this is discharged out of the system as brine.
As a result, 3/4 of the sewage is used as industrial water, but the sewage is not effectively used as much as possible in the desalination system S100.
一方、下水に代替して海水の取水量を増加させることはコストがかかるため、海水の取水量を増加させることは、システム全体の造水コスト上昇の起因となる。
On the other hand, it is costly to increase the amount of seawater intake instead of sewage, so increasing the amount of seawater intake increases the water production cost of the entire system.
本発明は上記実状に鑑み、下水を可及的に有効利用できるとともに、システム全体の造水コストを低減できる淡水化システムおよび淡水化方法の提供を目的とする。
In view of the above circumstances, an object of the present invention is to provide a desalination system and a desalination method capable of effectively using sewage as much as possible and reducing the water production cost of the entire system.
上記目的を達成すべく、請求項1の淡水化システムは、下水や海水を淡水化する淡水化システムであって、前記下水を透過させて浄化する浄化装置と、前記浄化装置を透過した透過水を透過させ、その塩分が第1の濃縮水に含まれ除去されるとともに工業用水を生成する第1のRO膜と、前記第1の濃縮水が、少なくとも濃縮ろ過およびNF膜のろ過のうちの何れかの前処理が行われる第1の前処理装置と、前記第1の前処理装置で前処理が行われた第1の被処理水を透過させ、その塩分が第2の濃縮水に含まれ除去されるとともに工業用水を生成する第2のRO膜とを具備している。
In order to achieve the above object, a desalination system according to claim 1 is a desalination system for desalinating sewage and seawater, and a purification device that permeates and purifies the sewage, and a permeated water that permeates the purification device. And the first RO membrane that generates industrial water while the salt content thereof is contained and removed in the first concentrated water, and the first concentrated water is at least of concentration filtration and filtration of NF membrane The first pretreatment apparatus in which any pretreatment is performed and the first treated water that has been pretreated in the first pretreatment apparatus are permeated, and the salt content thereof is contained in the second concentrated water. And a second RO membrane that is removed and generates industrial water.
請求項6の本発明に関わる淡水化方法は、請求項1の淡水化システムを実現する方法である。
The desalination method according to the present invention of claim 6 is a method for realizing the desalination system of claim 1.
請求項3の淡水化システムは、下水や海水を淡水化する淡水化システムであって、前記下水を透過させて浄化する浄化装置と、前記浄化装置を透過した透過水を透過させ、その塩分が濃縮水に含まれ除去されるとともに工業用水を生成する複数のRO膜と、前記複数のRO膜の何れかで除去された濃縮水が、少なくとも濃縮ろ過およびNF膜のろ過のうちの何れかの前処理が行われる単数または複数の前処理装置とを具備している。
The desalination system according to claim 3 is a desalination system that desalinates sewage and seawater, a purification device that permeates and purifies the sewage, a permeated water that passes through the purification device, and a salt content thereof. A plurality of RO membranes that are contained in the concentrated water and removed and generate industrial water, and the concentrated water removed by any of the plurality of RO membranes is at least one of concentrated filtration and NF membrane filtration One or a plurality of pretreatment devices for performing pretreatment.
請求項8の淡水化方法は、請求項3の淡水化システムを実現する方法である。
The desalination method according to claim 8 is a method for realizing the desalination system according to claim 3.
本発明の淡水化システムおよび淡水化方法によれば、下水を可及的に有効利用できるとともに、システム全体の造水コストを低減できる淡水化システムおよび淡水化方法を実現できる。
According to the desalination system and the desalination method of the present invention, it is possible to realize a desalination system and a desalination method capable of effectively using sewage as much as possible and reducing the water production cost of the entire system.
以下、本発明の実施形態について添付図面を参照して説明する。
<<実施形態1>>
図1は、本発明に係る実施形態1の淡水化システムの概念的構成図である。
実施形態1の淡水化システムSは、下水から工業用水s1、s2を造水するための工業用水造水システムSaと、海水から飲料水s3を造水するための飲料水造水システムSbとを具備している。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
<< Embodiment 1 >>
FIG. 1 is a conceptual configuration diagram of a desalination system according to Embodiment 1 of the present invention.
The desalination system S of Embodiment 1 includes an industrial water freshwater generation system Sa for freshening industrial water s1 and s2 from sewage, and a drinking water freshwater generation system Sb for freshening drinking water s3 from seawater. It has.
<<実施形態1>>
図1は、本発明に係る実施形態1の淡水化システムの概念的構成図である。
実施形態1の淡水化システムSは、下水から工業用水s1、s2を造水するための工業用水造水システムSaと、海水から飲料水s3を造水するための飲料水造水システムSbとを具備している。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
<< Embodiment 1 >>
FIG. 1 is a conceptual configuration diagram of a desalination system according to Embodiment 1 of the present invention.
The desalination system S of Embodiment 1 includes an industrial water freshwater generation system Sa for freshening industrial water s1 and s2 from sewage, and a drinking water freshwater generation system Sb for freshening drinking water s3 from seawater. It has.
淡水化システムSの工業用水造水システムSaは、工業用水s1を生成するため、下水を透過させて固形分や細菌などを除去し浄化するMBR(Membrane Bioreactor)1と、下水を透過して下水に含有される塩分やイオンなどの不純物を除去し淡水化する第1の低圧RO膜(Reverse Osmosis Membrane)2とを備えている。
The industrial desalination system Sa of the desalination system S generates the industrial water s1, so that MBR (Membrane Bioreactor) 1 that permeates sewage to remove and purify solids and bacteria, and sewage that permeates sewage. And a first low pressure RO membrane (Reverse Osmosis Membrane) 2 for removing impurities such as salt and ions contained in the water.
さらに、工業用水造水システムSaは、工業用水s2を生成するため、第1の低圧RO膜2で分離される下水濃縮水s6aを透過させて凝集ろ過または/およびNF処理する前処理装置3と、前処理装置3で前処理された被処理水s7aを透過させて被処理水s7aに含有される塩分やイオンなどの不純物を除去し淡水化する第2の低圧RO膜(Reverse Osmosis Membrane)4とを備えている。
Furthermore, in order to produce the industrial water s2, the industrial water freshwater generation system Sa allows the sewage concentrated water s6a separated by the first low-pressure RO membrane 2 to pass therethrough, and the pretreatment device 3 performs flocculation filtration and / or NF treatment. The second low-pressure RO membrane (Reverse Osmosis Membrane) 4 that permeates the treated water s7a pretreated by the pretreatment device 3 to remove impurities such as salt and ions contained in the treated water s7a and desalinates it. And.
MBR1は、固液分離を行い、下水から固形分や細菌などを除去して浄化する。
RO膜(逆浸透膜)は、水は通すが塩分などの低分子物質やイオンを通しにくい半透膜である。第1の低圧RO膜2は、下水の塩分濃度が0.1%程度で低いので、下水を透過させる(ろ過する)ことで、比較的低い透過圧約1~2MPa(メガパスカル)で塩分などを除去する低圧のRO膜である。 MBR1 performs solid-liquid separation and purifies by removing solids and bacteria from sewage.
The RO membrane (reverse osmosis membrane) is a semipermeable membrane that allows water to pass through but does not allow low-molecular substances such as salt or ions to pass through. Since the first low-pressure RO membrane 2 has a low sewage salinity concentration of about 0.1%, the sewage is permeated (filtered), so that the salinity and the like can be reduced at a relatively low permeation pressure of about 1 to 2 MPa (megapascal). It is a low-pressure RO membrane to be removed.
RO膜(逆浸透膜)は、水は通すが塩分などの低分子物質やイオンを通しにくい半透膜である。第1の低圧RO膜2は、下水の塩分濃度が0.1%程度で低いので、下水を透過させる(ろ過する)ことで、比較的低い透過圧約1~2MPa(メガパスカル)で塩分などを除去する低圧のRO膜である。 MBR1 performs solid-liquid separation and purifies by removing solids and bacteria from sewage.
The RO membrane (reverse osmosis membrane) is a semipermeable membrane that allows water to pass through but does not allow low-molecular substances such as salt or ions to pass through. Since the first low-
前処理装置3は、凝集ろ過および/またはNF処理の機能を有している。
前処理装置3の凝集ろ過は、下水濃縮水s6aを凝集ろ過してスケール分を減らしたり、シアン(CN)化合物などの有害物質やクロムなどの重金属を除去する。
前処理装置3のNF処理は、NF膜を用いる処理である。NF膜(Nanofiltration Membrane:ナノろ過膜)は、元素、イオンに対して選択性があり、下水を透過させる(ろ過する)ことで、毒性があるシアン(CN)化合物などの低分子の不純物や微生物をカットする。 Thepretreatment device 3 has a function of coagulation filtration and / or NF treatment.
In the coagulation filtration of thepretreatment device 3, the sewage concentrated water s6a is coagulated and filtered to reduce the scale, or harmful substances such as cyan (CN) compounds and heavy metals such as chromium are removed.
The NF process of thepretreatment device 3 is a process using an NF film. NF membrane (Nanofiltration Membrane) is selective to elements and ions, and allows sewage to permeate (filter), thereby toxic cyanide (CN) compounds and other low molecular impurities and microorganisms To cut.
前処理装置3の凝集ろ過は、下水濃縮水s6aを凝集ろ過してスケール分を減らしたり、シアン(CN)化合物などの有害物質やクロムなどの重金属を除去する。
前処理装置3のNF処理は、NF膜を用いる処理である。NF膜(Nanofiltration Membrane:ナノろ過膜)は、元素、イオンに対して選択性があり、下水を透過させる(ろ過する)ことで、毒性があるシアン(CN)化合物などの低分子の不純物や微生物をカットする。 The
In the coagulation filtration of the
The NF process of the
第2の低圧RO膜4は、被処理水s7aの塩分濃度が0.2%程度で低いので、下水を透過させる(ろ過する)ことで、比較的低い透過圧約1~2MPa(メガパスカル)で塩分などを除去する低圧のRO膜である。
Since the second low-pressure RO membrane 4 has a low salinity of about 0.2% of the water to be treated s7a, it allows a relatively low permeation pressure of about 1 to 2 MPa (megapascal) by allowing sewage to permeate (filter). This is a low-pressure RO membrane that removes salt and the like.
一方、淡水化システムSにおいて飲料水を造水する飲料水造水システムSbは、以下の構成を備えている。
飲料水造水システムSbは、海水を透過させて海水に含有される粒子を除去するUF膜(Ultrafiltration Membrane)5と、UF膜5を透過して粒子が除去された海水を撹拌して一様にする撹拌槽6と、粒子が除去され一様にされた海水に含有される塩分やイオンなどの不純物を除去して淡水化する高圧RO膜7とを備えている。 On the other hand, the drinking water fresh water generation system Sb which produces fresh drinking water in the desalination system S has the following configuration.
The drinking water freshwater generation system Sb uniformly mixes a UF membrane (Ultrafiltration Membrane) 5 that permeates seawater to remove particles contained in seawater, and seawater that has permeated through theUF membrane 5 to remove particles. And a high-pressure RO membrane 7 that removes impurities such as salt and ions contained in the seawater from which particles have been removed and made uniform, and desalinates the water.
飲料水造水システムSbは、海水を透過させて海水に含有される粒子を除去するUF膜(Ultrafiltration Membrane)5と、UF膜5を透過して粒子が除去された海水を撹拌して一様にする撹拌槽6と、粒子が除去され一様にされた海水に含有される塩分やイオンなどの不純物を除去して淡水化する高圧RO膜7とを備えている。 On the other hand, the drinking water fresh water generation system Sb which produces fresh drinking water in the desalination system S has the following configuration.
The drinking water freshwater generation system Sb uniformly mixes a UF membrane (Ultrafiltration Membrane) 5 that permeates seawater to remove particles contained in seawater, and seawater that has permeated through the
UF膜(限外ろ過膜)5は、海水を透過させる(ろ過する)ことで膜の孔径と海水中の除去対象物質の分子の大きさによって分子レベルのふるい分けを行い、海水中の粒子を除去する。
高圧RO膜7は、海水の塩分濃度が3~4%程度であるので、比較的高い海水の透過圧、約6~8MPa(メガパスカル)で海水を透過させる(ろ過する)ことで海水の塩分などを除去する高圧なRO膜(逆浸透膜)である。 The UF membrane (ultrafiltration membrane) 5 permeates (filters) seawater to perform screening at the molecular level according to the pore size of the membrane and the size of the molecules to be removed in the seawater, thereby removing particles in the seawater. To do.
The high-pressure RO membrane 7 has a seawater salinity of about 3 to 4%, so the seawater can be permeated (filtered) at a relatively high seawater permeation pressure of about 6 to 8 MPa (megapascals). It is a high-pressure RO membrane (reverse osmosis membrane) that removes and the like.
高圧RO膜7は、海水の塩分濃度が3~4%程度であるので、比較的高い海水の透過圧、約6~8MPa(メガパスカル)で海水を透過させる(ろ過する)ことで海水の塩分などを除去する高圧なRO膜(逆浸透膜)である。 The UF membrane (ultrafiltration membrane) 5 permeates (filters) seawater to perform screening at the molecular level according to the pore size of the membrane and the size of the molecules to be removed in the seawater, thereby removing particles in the seawater. To do.
The high-pressure RO membrane 7 has a seawater salinity of about 3 to 4%, so the seawater can be permeated (filtered) at a relatively high seawater permeation pressure of about 6 to 8 MPa (megapascals). It is a high-pressure RO membrane (reverse osmosis membrane) that removes and the like.
次に、淡水化システムSの工業用水造水システムSaにおいて、下水から工業用水s1、s2を造水する過程について説明する。
下水は、ポンプp1により工業用水造水システムSa内に圧送され、MBR1に送水される。下水は、MBR1を透過することで活性汚泥フロックや細菌などが除去される。 Next, the process of making industrial water s1, s2 from sewage in the industrial water freshwater generation system Sa of the desalination system S will be described.
The sewage is pumped into the industrial water desalination system Sa by the pump p1 and fed to the MBR1. Sewage passes through MBR1 to remove activated sludge flocs and bacteria.
下水は、ポンプp1により工業用水造水システムSa内に圧送され、MBR1に送水される。下水は、MBR1を透過することで活性汚泥フロックや細菌などが除去される。 Next, the process of making industrial water s1, s2 from sewage in the industrial water freshwater generation system Sa of the desalination system S will be described.
The sewage is pumped into the industrial water desalination system Sa by the pump p1 and fed to the MBR1. Sewage passes through MBR1 to remove activated sludge flocs and bacteria.
MBR1を透過した下水のMBR透過水s5aは、ポンプp2により、第1の低圧RO膜2に送水され、第1の低圧RO膜2を透過することで、塩分やイオンなどの不純物を含む下水濃縮水s6aが除去され淡水化され、工業用水s1が生産される。
工業用水s1は、下水の1/2程度得られる一方、下水の残余の分、すなわち下水の1/2程度が塩分やイオンなどの不純物を含む下水濃縮水s6aとして除去される。 The MBR permeated water s5a that has passed through the MBR1 is sent to the first low-pressure RO membrane 2 by the pump p2, and passes through the first low-pressure RO membrane 2, thereby concentrating sewage containing impurities such as salt and ions. Water s6a is removed and desalinated to produce industrial water s1.
The industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage is removed as the sewage concentrated water s6a containing impurities such as salt and ions.
工業用水s1は、下水の1/2程度得られる一方、下水の残余の分、すなわち下水の1/2程度が塩分やイオンなどの不純物を含む下水濃縮水s6aとして除去される。 The MBR permeated water s5a that has passed through the MBR1 is sent to the first low-
The industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage is removed as the sewage concentrated water s6a containing impurities such as salt and ions.
第1の低圧RO膜2で分離された下水濃縮水s6aは、前処理装置3に送られ、前処理装置3において、凝集ろ過および/またはNF処理され、スケール分やシアン化合物などが除去される。下水濃縮水s6aが前処理装置3で前処理された被処理水s7aは、ポンプp3により、第2の低圧RO膜4に送水され、第2の低圧RO膜4を透過することで、塩分やイオンなどの不純物を含む被処理濃縮水s6bが除去され淡水化され、工業用水s2が生産される。
The sewage concentrated water s6a separated by the first low-pressure RO membrane 2 is sent to the pretreatment device 3, where it is subjected to coagulation filtration and / or NF treatment to remove scales and cyanide compounds. . The treated water s7a, in which the sewage concentrated water s6a is pretreated by the pretreatment device 3, is sent to the second low-pressure RO membrane 4 by the pump p3 and permeates the second low-pressure RO membrane 4, thereby allowing the salinity and The treated concentrated water s6b containing impurities such as ions is removed and desalinated, and industrial water s2 is produced.
工業用水s2は、下水濃縮水s6aの1/2程度得られる一方、下水の残余の分、すなわち下水濃縮水s6aの1/2程度が塩分やイオンなどの不純物を含む被処理濃縮水s6bとして除去される。下水濃縮水s6aは下水の1/2程度であるから、工業用水s2は、下水の1/4程度得られる。
結果的に、工業用水s1が下水の1/2程度得られ、また、工業用水s2が下水の1/4程度得られることから、下水の約3/4の容量の工業用水が取水できる。 The industrial water s2 is obtained about 1/2 of the sewage concentrated water s6a, while the remainder of the sewage, that is, about 1/2 of the sewage concentrated water s6a is removed as the treated concentrated water s6b containing impurities such as salt and ions. Is done. Since the sewage concentrated water s6a is about 1/2 of the sewage, the industrial water s2 is obtained about 1/4 of the sewage.
As a result, about half of the sewage can be obtained as the industrial water s1, and about ¼ of the sewage can be obtained as the industrial water s2, so that industrial water having a capacity of about 3/4 of the sewage can be taken.
結果的に、工業用水s1が下水の1/2程度得られ、また、工業用水s2が下水の1/4程度得られることから、下水の約3/4の容量の工業用水が取水できる。 The industrial water s2 is obtained about 1/2 of the sewage concentrated water s6a, while the remainder of the sewage, that is, about 1/2 of the sewage concentrated water s6a is removed as the treated concentrated water s6b containing impurities such as salt and ions. Is done. Since the sewage concentrated water s6a is about 1/2 of the sewage, the industrial water s2 is obtained about 1/4 of the sewage.
As a result, about half of the sewage can be obtained as the industrial water s1, and about ¼ of the sewage can be obtained as the industrial water s2, so that industrial water having a capacity of about 3/4 of the sewage can be taken.
次に、淡水化システムSの飲料水造水システムSbにおいて、海水から飲料水s3を造水する過程について説明する。
海水は、ポンプp4により飲料水造水システムSb内に圧送され、UF膜5に送水される。海水は、UF膜5を透過することで海水中の粒子が除去される。UF膜5で粒子が除去された海水であるUF膜透過海水s5bは、撹拌槽6で攪拌され一様にされる。 Next, the process of making the drinking water s3 from the seawater in the drinking water freshwater generation system Sb of the desalination system S will be described.
Seawater is pumped into the drinking water freshwater generation system Sb by the pump p4 and fed to theUF membrane 5. Seawater passes through the UF membrane 5 to remove particles in the seawater. The UF membrane permeated seawater s5b, which is seawater from which particles have been removed by the UF membrane 5, is stirred and made uniform in the stirring tank 6.
海水は、ポンプp4により飲料水造水システムSb内に圧送され、UF膜5に送水される。海水は、UF膜5を透過することで海水中の粒子が除去される。UF膜5で粒子が除去された海水であるUF膜透過海水s5bは、撹拌槽6で攪拌され一様にされる。 Next, the process of making the drinking water s3 from the seawater in the drinking water freshwater generation system Sb of the desalination system S will be described.
Seawater is pumped into the drinking water freshwater generation system Sb by the pump p4 and fed to the
そして、攪拌されたUF膜透過海水s5bは、ポンプp5により、高圧RO膜7に送水される。UF膜透過海水s5bは、高圧RO膜7を透過することで、ほぼ半分が塩分やイオンなどの不純物を含むブラインs8として除去され、残り半分が淡水化された飲料水s3として生産される。
従って、海水の約半分の量の飲料水s3が取水できる。 Then, the stirred UF membrane permeated seawater s5b is sent to the high pressure RO membrane 7 by the pump p5. By passing through the high-pressure RO membrane 7, the UF membrane-permeable seawater s5b is produced as a brine s8 containing almost half of the salt and impurities such as ions, and the other half is produced as desalinated drinking water s3.
Therefore, drinking water s3 that is about half the amount of seawater can be taken.
従って、海水の約半分の量の飲料水s3が取水できる。 Then, the stirred UF membrane permeated seawater s5b is sent to the high pressure RO membrane 7 by the pump p5. By passing through the high-pressure RO membrane 7, the UF membrane-permeable seawater s5b is produced as a brine s8 containing almost half of the salt and impurities such as ions, and the other half is produced as desalinated drinking water s3.
Therefore, drinking water s3 that is about half the amount of seawater can be taken.
実施形態1の淡水化システムSによれば、工業用水造水システムSaにより下水の約3/4の量の工業用水を取水できるとともに、飲料水造水システムSbにより無尽蔵な海水の取水量を増加することで飲料水を増水することができる。
従って、工業用水、飲料水それぞれのニーズが大きな場合に適合できる。 According to the desalination system S of the first embodiment, about 3/4 of the amount of industrial water can be taken by the industrial water desalination system Sa, and the drinking water desalination system Sb can increase the intake of inexhaustible seawater. By doing so, the drinking water can be increased.
Therefore, it can be adapted when the needs of industrial water and drinking water are great.
従って、工業用水、飲料水それぞれのニーズが大きな場合に適合できる。 According to the desalination system S of the first embodiment, about 3/4 of the amount of industrial water can be taken by the industrial water desalination system Sa, and the drinking water desalination system Sb can increase the intake of inexhaustible seawater. By doing so, the drinking water can be increased.
Therefore, it can be adapted when the needs of industrial water and drinking water are great.
また、下水の流入量の変動が大きい場合にも、下水の約3/4の量の工業用水を取水できるので、取水した工業用水を貯留することで対応可能である。さらに、下水の量が少ない場合にも、下水の約3/4の量の工業用水を取水できるので、少ない下水を有効に利用して多くの工業用水を取水できる。従って、下水の再利用率を高めることができる。
In addition, even when fluctuations in the amount of inflow of sewage are large, about 3/4 of the amount of industrial water can be taken, so it can be handled by storing the collected industrial water. Furthermore, even when the amount of sewage is small, since about 3/4 of the amount of industrial water can be taken, a large amount of industrial water can be taken by effectively using less sewage. Therefore, the reuse rate of sewage can be increased.
また、第2の低圧RO膜4を透過する前に、下水濃縮水s6aが前処理装置3で凝集ろ過および/またはNF処理するので、後段の第2の低圧RO膜4で目詰まりを起こすことが未然に防止される。
In addition, since the sewage concentrated water s6a is subjected to coagulation filtration and / or NF treatment in the pretreatment device 3 before passing through the second low pressure RO membrane 4, clogging occurs in the second low pressure RO membrane 4 in the subsequent stage. Is prevented in advance.
なお、実施形態1においては、淡水化システムSに工業用水造水システムSaと飲料水造水システムSbとを具備する場合を例示して説明したが、図2に示すように、淡水化システムS´に工業用水造水システムSaのみを具備する構成としてもよい。
In addition, in Embodiment 1, although the case where the desalination system S was equipped with the industrial water desalination system Sa and the drinking water desalination system Sb was illustrated and demonstrated, as shown in FIG. 2, desalination system S It is good also as a structure which comprises only industrial water fresh water generation system Sa in '.
<<実施形態2>>
図3は、実施形態2の淡水化システムを示す概念的構成図である。
実施形態2の淡水化システム2Sは、実施形態1の淡水化システムSの工業用水造水システムSaに、第2の前処理装置3a、第3の低圧RO膜4aをさらに1段加え、低圧RO膜を3段で構成し、前処理装置を2段で構成したものである。
その他の構成は、実施形態1と同様であるから、同様な構成要素には実施形態1と同一の符号を付して示し、詳細な説明は省略する。 <<Embodiment 2 >>
FIG. 3 is a conceptual configuration diagram illustrating the desalination system of the second embodiment.
In thedesalination system 2S of the second embodiment, the second stage of the pretreatment device 3a and the third low-pressure RO membrane 4a are further added to the industrial desalination system Sa of the desalination system S of the first embodiment. The membrane is composed of three stages, and the pretreatment device is composed of two stages.
Since the other configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
図3は、実施形態2の淡水化システムを示す概念的構成図である。
実施形態2の淡水化システム2Sは、実施形態1の淡水化システムSの工業用水造水システムSaに、第2の前処理装置3a、第3の低圧RO膜4aをさらに1段加え、低圧RO膜を3段で構成し、前処理装置を2段で構成したものである。
その他の構成は、実施形態1と同様であるから、同様な構成要素には実施形態1と同一の符号を付して示し、詳細な説明は省略する。 <<
FIG. 3 is a conceptual configuration diagram illustrating the desalination system of the second embodiment.
In the
Since the other configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
淡水化システム2Sは、3段の低圧RO膜および2段の前処理装置を備えて下水から工業用水s1、s2、s2aを造水するための工業用水造水システム2Saを具備している。また、淡水化システム2Sは、実施形態1と同様に、海水から飲料水s3を造水するための飲料水造水システムSbを具備している。
The desalination system 2S includes a three-stage low-pressure RO membrane and a two-stage pretreatment apparatus, and includes an industrial water-making water system 2Sa for producing industrial water s1, s2, s2a from sewage. Moreover, the desalination system 2S is equipped with the drinking water fresh water generation system Sb for making the drinking water s3 from seawater similarly to Embodiment 1. FIG.
淡水化システム2Sの工業用水造水システム2Saは、実施形態1の工業用水造水システムSaに、第2の低圧RO膜4で除去される被処理濃縮水s6bを前処理する第2の前処理装置3aと、第2の前処理装置3aで前処理された第2の被処理濃縮水s7bを透過させる第3の低圧RO膜4aとをさらに備えている。
The industrial desalination system 2Sa of the desalination system 2S is a second pretreatment that pretreats the concentrated water s6b to be treated, which is removed by the second low-pressure RO membrane 4, in the industrial desalination system Sa of the first embodiment. The apparatus 3a and the 3rd low-pressure RO membrane 4a which permeate | transmits the 2nd to-be-processed concentrated water s7b pre-processed by the 2nd pre-processing apparatus 3a are further provided.
第2の前処理装置3aは、前処理装置3と同様な凝集ろ過および/またはNF処理を行う装置である。
第2の前処理装置3aの凝集ろ過は、前記したように、被処理濃縮水s6bを凝集ろ過してスケール分を減らしたり、シアン(CN-)化合物などの有害物質やクロムなどの重金属を除去する。 Thesecond pretreatment device 3 a is a device that performs the same coagulation filtration and / or NF treatment as the pretreatment device 3.
As described above, the coagulation filtration of thesecond pretreatment device 3a is to coagulate and filter the concentrated water s6b to be treated to reduce the scale, or to remove harmful substances such as cyan (CN-) compounds and heavy metals such as chromium. To do.
第2の前処理装置3aの凝集ろ過は、前記したように、被処理濃縮水s6bを凝集ろ過してスケール分を減らしたり、シアン(CN-)化合物などの有害物質やクロムなどの重金属を除去する。 The
As described above, the coagulation filtration of the
第2の前処理装置3aのNF処理は、前記したように、NF膜を用いる処理であり、被処理濃縮水s6bをNF膜に透過させることで、シアン(CN-)化合物などの低分子の不純物や微生物をカットする。
第3の低圧RO膜4aは、下水の塩分濃度が0.4%程度で低いので、比較的低い透過圧約1~2MPa(メガパスカル)で下水を透過させる(ろ過する)ことで、塩分などを除去する低圧のRO膜である。 As described above, the NF treatment of thesecond pretreatment device 3a is a treatment using an NF membrane. By passing the treated concentrated water s6b through the NF membrane, a low molecular weight compound such as a cyan (CN-) compound is obtained. Cut impurities and microorganisms.
Since the third low-pressure RO membrane 4a has a low sewage salinity concentration of about 0.4%, the sewage is permeated (filtered) at a relatively low permeation pressure of about 1 to 2 MPa (megapascals) to remove salinity and the like. It is a low-pressure RO membrane to be removed.
第3の低圧RO膜4aは、下水の塩分濃度が0.4%程度で低いので、比較的低い透過圧約1~2MPa(メガパスカル)で下水を透過させる(ろ過する)ことで、塩分などを除去する低圧のRO膜である。 As described above, the NF treatment of the
Since the third low-
次に、図3に示す淡水化システム2Sの工業用水造水システム2Saにおいて、下水から工業用水s1、s2、s2aを造水する過程について説明する。
下水は、ポンプp1により工業用水造水システム2Sa内に圧送され、MBR1に送水される。下水は、MBR1を透過する(でろ過される)ことで活性汚泥フロックや細菌などが除去される。 Next, the process of making industrial water s1, s2, s2a from sewage in the industrial water freshwater generation system 2Sa of thedesalination system 2S shown in FIG. 3 will be described.
The sewage is pumped into the industrial water desalination system 2Sa by the pump p1 and fed to the MBR1. Sewage passes through MBR1 (and is filtered) to remove activated sludge flocs and bacteria.
下水は、ポンプp1により工業用水造水システム2Sa内に圧送され、MBR1に送水される。下水は、MBR1を透過する(でろ過される)ことで活性汚泥フロックや細菌などが除去される。 Next, the process of making industrial water s1, s2, s2a from sewage in the industrial water freshwater generation system 2Sa of the
The sewage is pumped into the industrial water desalination system 2Sa by the pump p1 and fed to the MBR1. Sewage passes through MBR1 (and is filtered) to remove activated sludge flocs and bacteria.
MBR1を透過した下水のMBR透過水s5aは、ポンプp2により、第1の低圧RO膜2に送水され、第1の低圧RO膜2を透過することで、塩分やイオンなどの不純物を含む下水濃縮水s6aが除去され淡水化され、工業用水s1が生産(生成)される。
工業用水s1は、下水の1/2程度得られる一方、下水の残余の分、すなわち下水の1/2程度が塩分やイオンなどの不純物を含む下水濃縮水s6aとして除去される。 The MBR permeated water s5a that has passed through the MBR1 is sent to the first low-pressure RO membrane 2 by the pump p2, and passes through the first low-pressure RO membrane 2, thereby concentrating sewage containing impurities such as salt and ions. Water s6a is removed and desalinated, and industrial water s1 is produced (generated).
The industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage is removed as the sewage concentrated water s6a containing impurities such as salt and ions.
工業用水s1は、下水の1/2程度得られる一方、下水の残余の分、すなわち下水の1/2程度が塩分やイオンなどの不純物を含む下水濃縮水s6aとして除去される。 The MBR permeated water s5a that has passed through the MBR1 is sent to the first low-
The industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage is removed as the sewage concentrated water s6a containing impurities such as salt and ions.
第1の低圧RO膜2で分離された下水濃縮水s6aは、前処理装置3に送られ、前処理装置3において、凝集ろ過および/またはNF処理され、スケール分やシアン化合物などが除去される。下水濃縮水s6aが前処理装置3で前処理された被処理水s7aは、ポンプp3により、第2の低圧RO膜4に送水され、第2の低圧RO膜4を透過することで、塩分やイオンなどの不純物を含む被処理濃縮水s6bが除去され淡水化され、工業用水s2が生産(生成)される。
The sewage concentrated water s6a separated by the first low-pressure RO membrane 2 is sent to the pretreatment device 3, where it is subjected to coagulation filtration and / or NF treatment to remove scales and cyanide compounds. . The treated water s7a, in which the sewage concentrated water s6a is pretreated by the pretreatment device 3, is sent to the second low-pressure RO membrane 4 by the pump p3 and permeates the second low-pressure RO membrane 4, thereby allowing the salinity and The treated concentrated water s6b containing impurities such as ions is removed and desalinated to produce (produce) industrial water s2.
工業用水s2は、被処理水s7aの1/2程度得られる一方、被処理水s7aの残余の分、すなわち被処理水s7aの1/2程度が塩分やイオンなどの不純物を含む被処理濃縮水s6bとして除去される。
被処理水s7aは下水の1/2程度であるから、工業用水s2は、下水の1/4程度得られる。 The industrial water s2 is obtained about 1/2 of the water to be treated s7a, while the remaining amount of the water to be treated s7a, that is, about 1/2 of the water to be treated s7a contains the concentration of impurities such as salt and ions. It is removed as s6b.
Since the to-be-processed water s7a is about 1/2 of the sewage, the industrial water s2 is obtained about 1/4 of the sewage.
被処理水s7aは下水の1/2程度であるから、工業用水s2は、下水の1/4程度得られる。 The industrial water s2 is obtained about 1/2 of the water to be treated s7a, while the remaining amount of the water to be treated s7a, that is, about 1/2 of the water to be treated s7a contains the concentration of impurities such as salt and ions. It is removed as s6b.
Since the to-be-processed water s7a is about 1/2 of the sewage, the industrial water s2 is obtained about 1/4 of the sewage.
第2の低圧RO膜4で除去された被処理濃縮水s6bは、第2の前処理装置3aに送られ、第2の前処理装置3aにおいて、凝集ろ過および/またはNF処理され、スケール分やシアン化合物などが除去される。被処理濃縮水s6bが第2の前処理装置3aで前処理された第2の被処理水s7bは、ポンプp3aにより、第3の低圧RO膜4aに送水され、第3の低圧RO膜4aを透過することで、塩分やイオンなどの不純物を含む第2の被処理濃縮水s6cが除去され淡水化され、工業用水s2aが生産(生成)される。
The to-be-processed concentrated water s6b removed by the second low-pressure RO membrane 4 is sent to the second pretreatment device 3a, and is subjected to coagulation filtration and / or NF treatment in the second pretreatment device 3a. Cyanide compounds and the like are removed. The second treated water s7b obtained by pretreating the treated concentrated water s6b by the second pretreatment device 3a is sent to the third low-pressure RO membrane 4a by the pump p3a, and is passed through the third low-pressure RO membrane 4a. By permeating, the second treated concentrated water s6c containing impurities such as salt and ions is removed and desalinated, and industrial water s2a is produced (generated).
工業用水s2aは、第2の被処理水s7bの1/2程度得られる一方、第2の被処理水s7bの残余の分、すなわち第2の被処理水s7bの1/2程度が塩分やイオンなどの不純物を含む第2の被処理濃縮水s6cとして除去される。
第2の被処理水s7bは、下水の1/4程度であるので、工業用水s2aは下水の1/8程度得られる。 The industrial water s2a is obtained about ½ of the second treated water s7b, while the remainder of the second treated water s7b, that is, about ½ of the second treated water s7b is salt or ions. It removes as 2nd to-be-processed concentrated water s6c containing impurities, such as.
Since the second treated water s7b is about ¼ of sewage, industrial water s2a is obtained about 8 of sewage.
第2の被処理水s7bは、下水の1/4程度であるので、工業用水s2aは下水の1/8程度得られる。 The industrial water s2a is obtained about ½ of the second treated water s7b, while the remainder of the second treated water s7b, that is, about ½ of the second treated water s7b is salt or ions. It removes as 2nd to-be-processed concentrated water s6c containing impurities, such as.
Since the second treated water s7b is about ¼ of sewage, industrial water s2a is obtained about 8 of sewage.
結果的に、工業用水s1が下水の1/2程度得られ、また、工業用水s2が下水の1/4程度得られ、また、工業用水s2aが下水の1/8程度得られることから、下水の約7/8の容量の工業用水が取水できる。
As a result, about half of the industrial water s1 is obtained, about ¼ of the industrial water s2 is obtained, and about 下 of the industrial water s2a is obtained. About 7/8 capacity of industrial water can be taken.
実施形態2によれば、前処理装置を2段とし、低圧RO膜を3段で構成したので、工業用水が取水した下水の約7/8の容量得られ、下水からより多くの工業用水が生産できる。
その他の実施形態1の作用効果は同様に奏する。 According to the second embodiment, since the pretreatment device has two stages and the low-pressure RO membrane has three stages, a capacity of about 7/8 of sewage taken by industrial water is obtained, and more industrial water is obtained from the sewage. Can be produced.
Other functions and effects of the first embodiment are similarly achieved.
その他の実施形態1の作用効果は同様に奏する。 According to the second embodiment, since the pretreatment device has two stages and the low-pressure RO membrane has three stages, a capacity of about 7/8 of sewage taken by industrial water is obtained, and more industrial water is obtained from the sewage. Can be produced.
Other functions and effects of the first embodiment are similarly achieved.
なお、実施形態2においては、淡水化システム2Sに工業用水造水システム2Saと飲料水造水システムSbとを具備する場合を例示したが、図4に示すように、淡水化システム2S´に工業用水造水システム2Saのみを具備する構成としてもよい。
また、実施形態2においては、前処理装置を2段とし、低圧RO膜を3段で構成する場合を例示したが、前処理装置を3段以上とし、低圧RO膜を4段以上とする実施形態2と同様な構成としてもよい。これにより、下水からさらに多くの工業用水を生産(生成)できる。 In the second embodiment, the case where thedesalination system 2S includes the industrial water desalination system 2Sa and the drinking water desalination system Sb is illustrated. However, as shown in FIG. 4, the desalination system 2S ′ includes the industrial desalination system 2S ′. It is good also as a structure which comprises only the fresh water system 2Sa.
In the second embodiment, the pretreatment apparatus has two stages and the low pressure RO membrane has three stages. However, the pretreatment apparatus has three stages or more and the low pressure RO membrane has four stages or more. It is good also as a structure similar to theform 2. Thereby, more industrial water can be produced (generated) from sewage.
また、実施形態2においては、前処理装置を2段とし、低圧RO膜を3段で構成する場合を例示したが、前処理装置を3段以上とし、低圧RO膜を4段以上とする実施形態2と同様な構成としてもよい。これにより、下水からさらに多くの工業用水を生産(生成)できる。 In the second embodiment, the case where the
In the second embodiment, the pretreatment apparatus has two stages and the low pressure RO membrane has three stages. However, the pretreatment apparatus has three stages or more and the low pressure RO membrane has four stages or more. It is good also as a structure similar to the
<<実施形態3>>
図5は、実施形態3の淡水化システムを示す概念的構成図である。
実施形態3の淡水化システム3Sは、実施形態1、2で説明した複数段の前処理装置、複数段の低圧RO膜を任意の段数に切り換える工業用水量切り換え手段(切り換え手段)を設ける構成としたものである。
その他の構成は、実施形態1、2の淡水化システムS、2Sと同様であるから、同一の構成要素には実施形態1と同一の符号を付して示し、詳細な説明は省略する。 <<Embodiment 3 >>
FIG. 5 is a conceptual configuration diagram illustrating a desalination system according to the third embodiment.
Thedesalination system 3S of the third embodiment has a configuration in which the multi-stage pretreatment device described in the first and second embodiments and the industrial water amount switching means (switching means) for switching the multi-stage low-pressure RO membrane to an arbitrary number of stages are provided. It is a thing.
Since the other configuration is the same as the desalination systems S and 2S of the first and second embodiments, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
図5は、実施形態3の淡水化システムを示す概念的構成図である。
実施形態3の淡水化システム3Sは、実施形態1、2で説明した複数段の前処理装置、複数段の低圧RO膜を任意の段数に切り換える工業用水量切り換え手段(切り換え手段)を設ける構成としたものである。
その他の構成は、実施形態1、2の淡水化システムS、2Sと同様であるから、同一の構成要素には実施形態1と同一の符号を付して示し、詳細な説明は省略する。 <<
FIG. 5 is a conceptual configuration diagram illustrating a desalination system according to the third embodiment.
The
Since the other configuration is the same as the desalination systems S and 2S of the first and second embodiments, the same components are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
淡水化システム3Sは、複数段の低圧RO膜、複数段の前処理装置、工業用水量切り換え手段などを備えて下水から工業用水s1、s2、s2a、s2b、…を造水するための工業用水造水システム3Saと、海水から飲料水s3を造水するための飲料水造水システムSbとを具備している。
The desalination system 3S includes industrial water for producing industrial water s1, s2, s2a, s2b,... From the sewage by providing a plurality of low pressure RO membranes, a plurality of pretreatment devices, industrial water amount switching means, and the like. A fresh water generation system 3Sa and a drinking water fresh water generation system Sb for freshly forming drinking water s3 from seawater are provided.
第1・第2・第3・、第4の低圧RO膜2、4、4a、4b、…は、それぞれ下水の塩分濃度が0.1%、0.2%、0.4%、0.8%、…程度で低いので、比較的低い透過圧約1~2MPa(メガパスカル)で下水を透過させる(ろ過する)ことで、塩分などを除去する低圧のRO膜である。
The first, second, third, and fourth low pressure RO membranes 2, 4, 4a, 4b,... Have sewage salinity concentrations of 0.1%, 0.2%, 0.4%,. Since it is as low as 8%, etc., it is a low-pressure RO membrane that removes salt and the like by permeating (filtering) sewage at a relatively low permeation pressure of about 1 to 2 MPa (megapascal).
前処理装置3、第2の前処理装置3a、第3の前処理装置3b、…は、それぞれ凝集ろ過および/またはNF処理を行う装置である。凝集ろ過は、前記したように、ブライン(濃縮水)を凝集ろ過してスケール分を減らしたり、シアン(CN-)化合物などの有害物質やクロムなどの重金属を除去する。NF処理は、前記したように、ブライン(濃縮水)をNF膜に透過させる(ろ過する)ことで、シアン(CN-)化合物などの低分子の不純物や微生物をカットする。
The pretreatment device 3, the second pretreatment device 3a, the third pretreatment device 3b,... Are devices that perform aggregation filtration and / or NF treatment, respectively. In the coagulation filtration, as described above, brine (concentrated water) is coagulated and filtered to reduce the scale, or harmful substances such as cyan (CN-) compounds and heavy metals such as chromium are removed. In the NF treatment, as described above, brine (concentrated water) is permeated (filtered) through the NF membrane to cut low-molecular impurities such as cyan (CN-) compounds and microorganisms.
工業用水量切り換え手段としては、バルブv1、v2、…と、バルブv1、v2、v3、…の流路を切り換える切り換え制御装置9とを有する。
バルブv1、v2、v3、…は、三方弁であり、それぞれ第1の低圧RO膜2、第2の低圧RO膜4、第3の低圧RO膜4a、第4の低圧RO膜4b、…からのブライン(濃縮水)を、排水するか、または、次段の前処理装置3、第2の前処理装置3a、第3の前処理装置3b…に流すかを切り換える。なお、バルブv1、v2、…は、排水か下流の前処理装置へ流すか、継続時間の長い方をノーマル状態とするとよい。 The industrial water amount switching means includes valves v1, v2,... And a switchingcontrol device 9 that switches the flow paths of the valves v1, v2, v3,.
The valves v1, v2, v3,... Are three-way valves, and are respectively from the first low-pressure RO membrane 2, the second low-pressure RO membrane 4, the third low-pressure RO membrane 4a, the fourth low-pressure RO membrane 4b,. The brine (concentrated water) is drained or switched to the pre-treatment device 3, the second pre-treatment device 3a, the third pre-treatment device 3b,. The valves v1, v2,... May be drained or flowed to a downstream pretreatment device, or the longer duration may be set to the normal state.
バルブv1、v2、v3、…は、三方弁であり、それぞれ第1の低圧RO膜2、第2の低圧RO膜4、第3の低圧RO膜4a、第4の低圧RO膜4b、…からのブライン(濃縮水)を、排水するか、または、次段の前処理装置3、第2の前処理装置3a、第3の前処理装置3b…に流すかを切り換える。なお、バルブv1、v2、…は、排水か下流の前処理装置へ流すか、継続時間の長い方をノーマル状態とするとよい。 The industrial water amount switching means includes valves v1, v2,... And a switching
The valves v1, v2, v3,... Are three-way valves, and are respectively from the first low-
切り換え制御装置9は、バルブv1、v2、v3、…の切り換えを制御する制御装置であり、各バルブv1、v2、v3、…がそれぞれ第1の低圧RO膜2、第2の低圧RO膜4、第3の低圧RO膜4a、…からのブラインを、排水するか、または、次段の前処理装置3、第2の前処理装置3a、第3の前処理装置3b、…に流すかを切り換える制御を行う。
The switching control device 9 is a control device that controls switching of the valves v1, v2, v3,..., And the valves v1, v2, v3,... Are respectively the first low-pressure RO membrane 2 and the second low-pressure RO membrane 4. , Whether the brine from the third low-pressure RO membrane 4a,... Is drained or passed to the pre-processing device 3, the second pre-processing device 3a, the third pre-processing device 3b,. Perform switching control.
切り換え制御装置9は、淡水化システム3S全体を制御する不図示のコントローラに格納されている。具体的には、切り換え制御装置9は、マイクロコンピュータ(microcomputer)、A/C・D/C変換器などのインターフェース回路、バルブv1、v2、v3、…の動作を切り換える電流制御回路などで構成される。バルブv1、v2、v3、…の切り換え動作は、マイコンのROM(Read Only Memory)に記憶される制御プログラムに記述されている。
The switching control device 9 is stored in a controller (not shown) that controls the entire desalination system 3S. Specifically, the switching control device 9 includes a microcomputer, an interface circuit such as an A / C / D / C converter, a current control circuit that switches operations of the valves v1, v2, v3,. The The switching operation of the valves v1, v2, v3,... Is described in a control program stored in a ROM (Read Only Memory) of the microcomputer.
切り換え制御装置9の制御は、以下のように行われる。
第1のモードとして、バルブv1を排水側に切り換える。その他のバルブv2、v3、…は、上流のバルブv1で下水濃縮水s6aが排水されてしまうので、何れの側に切り換えられていてもよい。
これにより、下水から、MBR透過水s5aが第1の低圧RO膜2を透過した工業用水s1が得られる。 Control of the switchingcontrol device 9 is performed as follows.
As a first mode, the valve v1 is switched to the drain side. The other valves v2, v3,... May be switched to any side because the sewage concentrated water s6a is drained by the upstream valve v1.
Thereby, the industrial water s1 which MBR permeated water s5a permeate | transmitted the 1st low voltage |pressure RO membrane 2 is obtained from sewage.
第1のモードとして、バルブv1を排水側に切り換える。その他のバルブv2、v3、…は、上流のバルブv1で下水濃縮水s6aが排水されてしまうので、何れの側に切り換えられていてもよい。
これにより、下水から、MBR透過水s5aが第1の低圧RO膜2を透過した工業用水s1が得られる。 Control of the switching
As a first mode, the valve v1 is switched to the drain side. The other valves v2, v3,... May be switched to any side because the sewage concentrated water s6a is drained by the upstream valve v1.
Thereby, the industrial water s1 which MBR permeated water s5a permeate | transmitted the 1st low voltage |
第2のモードとして、バルブv1のみを第2の低圧RO膜4への流路を開く一方、バルブv2は排水側に切り換える。その他のバルブv3、…は、上流のバルブv2で被処理濃縮水s6bが排水されてしまうので、何れの側に切り換えられていてもよい。
これにより、下水から、MBR透過水s5aが第1の低圧RO膜2を透過した工業用水s1と、前処理装置3で前処理された被処理水s7aが第2の低圧RO膜4を透過した工業用水s2とが得られる。 In the second mode, only the valve v1 is opened to the second low-pressure RO membrane 4, while the valve v2 is switched to the drain side. The other valves v3,... May be switched to any side because the treated concentrated water s6b is drained by the upstream valve v2.
Thereby, the industrial water s1 in which the MBR permeated water s5a has permeated the first low-pressure RO membrane 2 and the water to be treated s7a pretreated by the pretreatment device 3 have permeated the second low-pressure RO membrane 4 from the sewage. Industrial water s2 is obtained.
これにより、下水から、MBR透過水s5aが第1の低圧RO膜2を透過した工業用水s1と、前処理装置3で前処理された被処理水s7aが第2の低圧RO膜4を透過した工業用水s2とが得られる。 In the second mode, only the valve v1 is opened to the second low-
Thereby, the industrial water s1 in which the MBR permeated water s5a has permeated the first low-
第3のモードとして、バルブv1、v2をそれぞれ第2の低圧RO膜4、第3の低圧RO膜4aへの流路を開く一方、バルブv3は排水側に切り換える。その他のバルブは、上流のバルブv3で被処理濃縮水s6cが排水されてしまうので、何れの側に切り換えられていてもよい。
これにより、下水から、MBR透過水s5aが第1の低圧RO膜2を透過した工業用水s1と、前処理装置3で前処理された被処理水s7aが第2の低圧RO膜4を透過した工業用水s2と、第2の前処理装置3aで前処理された第2の被処理水s7bが第2の低圧RO膜4aを透過した工業用水s2aとが得られる。 As a third mode, the valves v1 and v2 are opened to the second lowpressure RO membrane 4 and the third low pressure RO membrane 4a, respectively, while the valve v3 is switched to the drain side. The other valves may be switched to any side because the treated concentrated water s6c is drained by the upstream valve v3.
Thereby, the industrial water s1 in which the MBR permeated water s5a has permeated the first low-pressure RO membrane 2 and the water to be treated s7a pretreated by the pretreatment device 3 have permeated the second low-pressure RO membrane 4 from the sewage. Industrial water s2 and industrial water s2a in which the second treated water s7b pretreated by the second pretreatment device 3a has permeated the second low-pressure RO membrane 4a are obtained.
これにより、下水から、MBR透過水s5aが第1の低圧RO膜2を透過した工業用水s1と、前処理装置3で前処理された被処理水s7aが第2の低圧RO膜4を透過した工業用水s2と、第2の前処理装置3aで前処理された第2の被処理水s7bが第2の低圧RO膜4aを透過した工業用水s2aとが得られる。 As a third mode, the valves v1 and v2 are opened to the second low
Thereby, the industrial water s1 in which the MBR permeated water s5a has permeated the first low-
第4のモードとして、バルブv1、v2、v3をそれぞれ第2の低圧RO膜4、第3の低圧RO膜4aへの流路を開く一方、その他のバルブは排水側に切り換える。
これにより、下水から、MBR透過水s5aが第1の低圧RO膜2を透過した工業用水s1と、前処理装置3で前処理された被処理水s7aが第2の低圧RO膜4を透過した工業用水s2と、第2の前処理装置3aで前処理された第2の被処理水s7bが第2の低圧RO膜4aを透過した工業用水s2aと、第3の前処理装置3bで前処理された第3の被処理水s7cが第4の低圧RO膜4bを透過して工業用水s2aとが得られる。なお、第4の低圧RO膜4bでは第3の被処理濃縮水s6dが除去される。
以下、同様に任意数のバルブを低圧RO膜側に開くことで工業用水を増水できる。 As a fourth mode, the valves v1, v2, and v3 are opened to the second lowpressure RO membrane 4 and the third low pressure RO membrane 4a, respectively, while the other valves are switched to the drain side.
Thereby, the industrial water s1 in which the MBR permeated water s5a has permeated the first low-pressure RO membrane 2 and the water to be treated s7a pretreated by the pretreatment device 3 have permeated the second low-pressure RO membrane 4 from the sewage. Industrial water s2, industrial water s2a in which the second treated water s7b pretreated by the second pretreatment device 3a has permeated the second low-pressure RO membrane 4a, and pretreatment by the third pretreatment device 3b The third treated water s7c thus made passes through the fourth low-pressure RO membrane 4b to obtain industrial water s2a. Note that the third treated concentrated water s6d is removed from the fourth low-pressure RO membrane 4b.
Similarly, industrial water can be increased by opening an arbitrary number of valves on the low-pressure RO membrane side.
これにより、下水から、MBR透過水s5aが第1の低圧RO膜2を透過した工業用水s1と、前処理装置3で前処理された被処理水s7aが第2の低圧RO膜4を透過した工業用水s2と、第2の前処理装置3aで前処理された第2の被処理水s7bが第2の低圧RO膜4aを透過した工業用水s2aと、第3の前処理装置3bで前処理された第3の被処理水s7cが第4の低圧RO膜4bを透過して工業用水s2aとが得られる。なお、第4の低圧RO膜4bでは第3の被処理濃縮水s6dが除去される。
以下、同様に任意数のバルブを低圧RO膜側に開くことで工業用水を増水できる。 As a fourth mode, the valves v1, v2, and v3 are opened to the second low
Thereby, the industrial water s1 in which the MBR permeated water s5a has permeated the first low-
Similarly, industrial water can be increased by opening an arbitrary number of valves on the low-pressure RO membrane side.
実施形態3によれば、複数段の低圧RO膜、複数段の前処理装置、次段の低圧RO膜にブレイン(濃縮水)を流すか排水するかを切り換えるバルブv1、v2、v3、…および該バルブの切り換えを制御する切り換え制御装置9を設けたので、取水する工業用水量を工業用水の需要量や下水量の多寡で自在に変更することができる。
その他の実施形態1、2の作用効果は同様に奏する。 According to the third embodiment, the valves v1, v2, v3,... For switching whether to drain or drain the brain (concentrated water) to the plurality of stages of low-pressure RO membranes, the plurality of stages of pretreatment devices, and the next-stage low-pressure RO membranes. Since the switchingcontrol device 9 for controlling the switching of the valve is provided, the amount of industrial water to be taken can be freely changed depending on the amount of demand for industrial water and the amount of sewage.
Other functions and effects of the first and second embodiments are similarly achieved.
その他の実施形態1、2の作用効果は同様に奏する。 According to the third embodiment, the valves v1, v2, v3,... For switching whether to drain or drain the brain (concentrated water) to the plurality of stages of low-pressure RO membranes, the plurality of stages of pretreatment devices, and the next-stage low-pressure RO membranes. Since the switching
Other functions and effects of the first and second embodiments are similarly achieved.
なお、実施形態3においては、淡水化システム3Sに工業用水造水システム3Saと飲料水造水システムSbとを具備する場合を例示したが、図6に示すように、淡水化システム3S´に工業用水造水システム3Saのみを具備する構成としてもよい。
In the third embodiment, the case where the desalination system 3S includes the industrial water desalination system 3Sa and the drinking water desalination system Sb is illustrated. However, as shown in FIG. It is good also as a structure which comprises only the fresh water system 3Sa.
また、実施形態3で説明した工業用水量切り換え手段においては、前処理装置を2段とし、低圧RO膜を3段で構成する場合を例示したが、前処理装置を3段以上とし、低圧RO膜を4段以上とする実施形態2と同様な構成としてもよい。これにより、下水からさらに多くの工業用水を生産できる。
Further, in the industrial water amount switching means described in the third embodiment, the pretreatment apparatus has two stages and the low pressure RO membrane has three stages. However, the pretreatment apparatus has three stages or more, and the low pressure RO has three stages. It is good also as a structure similar to Embodiment 2 which makes a film | membrane 4 steps or more. Thereby, more industrial water can be produced from sewage.
なお、実施形態3で説明した工業用水量切り換え手段(切り換え手段)(バルブv1、v2、v3、…、切り換え制御装置9)の構成は、実施形態1、2にも適用できることは勿論である。
Of course, the configuration of the industrial water amount switching means (switching means) (valves v1, v2, v3,..., Switching control device 9) described in the third embodiment can be applied to the first and second embodiments.
また、前記実施形態では、下水を浄化する浄化装置として、MBR1を例示したが、自然沈殿法、砂ろ過、消毒などMBR以外の浄化装置を適用しても構わない。
なお、前記実施形態の説明で使用した数値は一例を示したものであり、これらの数値に限定されるものではない。 Moreover, in the said embodiment, although MBR1 was illustrated as a purification apparatus which purifies sewage, purification apparatuses other than MBR, such as a natural precipitation method, sand filtration, and disinfection, may be applied.
In addition, the numerical value used by description of the said embodiment shows an example, and is not limited to these numerical values.
なお、前記実施形態の説明で使用した数値は一例を示したものであり、これらの数値に限定されるものではない。 Moreover, in the said embodiment, although MBR1 was illustrated as a purification apparatus which purifies sewage, purification apparatuses other than MBR, such as a natural precipitation method, sand filtration, and disinfection, may be applied.
In addition, the numerical value used by description of the said embodiment shows an example, and is not limited to these numerical values.
1 MBR(浄化装置)
2 第1の低圧RO膜(第1のRO膜、RO膜)
3 前処理装置(第1の前処理装置、前処理装置)
3a 第2の前処理装置(第2の前処理装置、前処理装置)
3b 第3の前処理装置(第1の前処理装置、前処理装置)
4 第2の低圧RO膜(第2のRO膜、RO膜)
4a 第3の低圧RO膜(第3のRO膜、RO膜)
4b 第4の低圧RO膜(第4のRO膜、RO膜)
5 UF膜
7 高圧RO膜(RO膜)
9 切り換え制御装置(切り換え手段)
S、2S、3S、S´、2S´、3S´ 淡水化システム
s1、s2、s2a、s2b 工業用水
s3 飲料水
s5a MBR透過水(透過水)
s5b UF膜透過海水(処理水)
s6a 下水濃縮水(第1の濃縮水、濃縮水)
s6b 被処理濃縮水(第2の濃縮水、濃縮水)
s6c 第2の被処理濃縮水(第3の濃縮水、濃縮水)
s6d 第3の被処理濃縮水(濃縮水)
s7a 被処理水(第1の被処理水)
s7b 第2の被処理水(第2の被処理水)
v1、v2、v3 バルブ(切り換え手段) 1 MBR (Purification device)
2 First low-pressure RO membrane (first RO membrane, RO membrane)
3 Pre-processing device (first pre-processing device, pre-processing device)
3a Second pretreatment device (second pretreatment device, pretreatment device)
3b Third pretreatment device (first pretreatment device, pretreatment device)
4 Second low-pressure RO membrane (second RO membrane, RO membrane)
4a Third low-pressure RO membrane (third RO membrane, RO membrane)
4b Fourth low pressure RO membrane (fourth RO membrane, RO membrane)
5 UF membrane 7 High-pressure RO membrane (RO membrane)
9 Switching control device (switching means)
S, 2S, 3S, S ', 2S', 3S 'desalination system s1, s2, s2a, s2b Industrial water s3 Drinking water s5a MBR permeated water (permeated water)
s5b UF membrane permeated seawater (treated water)
s6a Sewage concentrated water (first concentrated water, concentrated water)
s6b Processed concentrated water (second concentrated water, concentrated water)
s6c Second treated concentrated water (third concentrated water, concentrated water)
s6d Third treated concentrated water (concentrated water)
s7a treated water (first treated water)
s7b Second treated water (second treated water)
v1, v2, v3 valves (switching means)
2 第1の低圧RO膜(第1のRO膜、RO膜)
3 前処理装置(第1の前処理装置、前処理装置)
3a 第2の前処理装置(第2の前処理装置、前処理装置)
3b 第3の前処理装置(第1の前処理装置、前処理装置)
4 第2の低圧RO膜(第2のRO膜、RO膜)
4a 第3の低圧RO膜(第3のRO膜、RO膜)
4b 第4の低圧RO膜(第4のRO膜、RO膜)
5 UF膜
7 高圧RO膜(RO膜)
9 切り換え制御装置(切り換え手段)
S、2S、3S、S´、2S´、3S´ 淡水化システム
s1、s2、s2a、s2b 工業用水
s3 飲料水
s5a MBR透過水(透過水)
s5b UF膜透過海水(処理水)
s6a 下水濃縮水(第1の濃縮水、濃縮水)
s6b 被処理濃縮水(第2の濃縮水、濃縮水)
s6c 第2の被処理濃縮水(第3の濃縮水、濃縮水)
s6d 第3の被処理濃縮水(濃縮水)
s7a 被処理水(第1の被処理水)
s7b 第2の被処理水(第2の被処理水)
v1、v2、v3 バルブ(切り換え手段) 1 MBR (Purification device)
2 First low-pressure RO membrane (first RO membrane, RO membrane)
3 Pre-processing device (first pre-processing device, pre-processing device)
3a Second pretreatment device (second pretreatment device, pretreatment device)
3b Third pretreatment device (first pretreatment device, pretreatment device)
4 Second low-pressure RO membrane (second RO membrane, RO membrane)
4a Third low-pressure RO membrane (third RO membrane, RO membrane)
4b Fourth low pressure RO membrane (fourth RO membrane, RO membrane)
5 UF membrane 7 High-pressure RO membrane (RO membrane)
9 Switching control device (switching means)
S, 2S, 3S, S ', 2S', 3S 'desalination system s1, s2, s2a, s2b Industrial water s3 Drinking water s5a MBR permeated water (permeated water)
s5b UF membrane permeated seawater (treated water)
s6a Sewage concentrated water (first concentrated water, concentrated water)
s6b Processed concentrated water (second concentrated water, concentrated water)
s6c Second treated concentrated water (third concentrated water, concentrated water)
s6d Third treated concentrated water (concentrated water)
s7a treated water (first treated water)
s7b Second treated water (second treated water)
v1, v2, v3 valves (switching means)
Claims (10)
- 下水や海水を淡水化する淡水化システムであって、
前記下水を透過させて浄化する浄化装置と、
前記浄化装置を透過した透過水を透過させ、その塩分が第1の濃縮水に含まれ除去されるとともに工業用水を生成する第1のRO膜と、
前記第1の濃縮水が、少なくとも濃縮ろ過およびNF膜のろ過のうちの何れかの前処理が行われる第1の前処理装置と、
前記第1の前処理装置で前処理が行われた第1の被処理水を透過させ、その塩分が第2の濃縮水に含まれ除去されるとともに工業用水を生成する第2のRO膜とを
具備することを特徴とする淡水化システム。 A desalination system that desalinates sewage and seawater,
A purification device for permeating and purifying the sewage,
A first RO membrane that permeates the permeated water that has passed through the purification device, the salt content of which is contained and removed in the first concentrated water, and generates industrial water;
A first pretreatment device in which the first concentrated water is subjected to at least a pretreatment of concentration filtration and NF membrane filtration;
A second RO membrane that permeates the first water to be treated that has been pretreated by the first pretreatment device, the salt content of which is contained and removed in the second concentrated water, and generates industrial water; A desalination system characterized by comprising: - 前記第2の濃縮水が、少なくとも濃縮ろ過およびNF膜のろ過のうちの何れかの前処理が行われる第2の前処理装置と、
前記第2の前処理装置で前処理が行われた第2の被処理水を透過させ、その塩分が第3の濃縮水に含まれ除去されるとともに工業用水を生成する第3のRO膜とを
具備することを特徴とする請求項1に記載の淡水化システム。 A second pretreatment device in which the second concentrated water is subjected to at least one of pretreatment of concentration filtration and NF membrane filtration;
A third RO membrane that permeates the second treated water that has been pretreated by the second pretreatment device and removes the salt contained in the third concentrated water and generates industrial water; The desalination system according to claim 1, comprising: - 下水や海水を淡水化する淡水化システムであって、
前記下水を透過させて浄化する浄化装置と、
前記浄化装置を透過した透過水を透過させ、その塩分が濃縮水に含まれ除去されるとともに工業用水を生成する複数のRO膜と、
前記複数のRO膜の何れかで除去された濃縮水が、少なくとも濃縮ろ過およびNF膜のろ過のうちの何れかの前処理が行われる単数または複数の前処理装置とを
具備することを特徴とする淡水化システム。 A desalination system that desalinates sewage and seawater,
A purification device for permeating and purifying the sewage,
A plurality of RO membranes that permeate the permeated water that has passed through the purification device, and whose salt content is contained and removed in the concentrated water and that generates industrial water;
The concentrated water removed by any of the plurality of RO membranes comprises at least one or a plurality of pretreatment devices for performing any pretreatment of concentration filtration and NF membrane filtration. Desalination system. - 前記RO膜で除去される濃縮水側の下流で、当該濃縮水を排水するかまたは下流の前記前処理装置に流すか切り換える切り換え手段を
具備することを特徴とする請求項1から請求項3のうちの何れか一項に記載の淡水化システム。 The switching device according to claim 1, further comprising: a switching unit that switches between draining the concentrated water and flowing it to the downstream pretreatment device downstream of the concentrated water removed by the RO membrane. The desalination system as described in any one of them. - 前記海水を透過させて当該海水中の粒子を除去するUF膜と、
前記UF膜を透過した処理水を透過させ、当該処理水の塩分が除去されるとともに飲料水を生成するRO膜とを
具備することを特徴とする請求項1から請求項3のうちの何れか一項に記載の淡水化システム。 A UF membrane that permeates the seawater to remove particles in the seawater;
The RO membrane which permeate | transmits the treated water which permeate | transmitted the said UF membrane, removes the salt of the said treated water, and produces | generates drinking water is provided, The one of Claims 1-3 characterized by the above-mentioned. The desalination system according to one item. - 下水や海水を淡水化する淡水化方法であって、
前記下水を、浄化装置と第1のRO膜とを透過させて工業用水を生成し、
前記第1のRO膜で除去された第1の濃縮水を、少なくとも濃縮ろ過およびNF膜のろ過のうちの何れかの前処理を行った後、第2のRO膜を透過させて工業用水を生成する
ことを特徴とする淡水化方法。 A desalination method for desalinating sewage and seawater,
The sewage is passed through the purification device and the first RO membrane to produce industrial water,
The first concentrated water removed by the first RO membrane is subjected to at least a pretreatment of either concentration filtration or NF membrane filtration, and then passed through the second RO membrane to supply industrial water. The desalination method characterized by producing | generating. - 前記第2のRO膜で除去された第2の濃縮水が、少なくとも濃縮ろ過およびNF膜のろ過のうちの何れかの前処理を行った後、第3のRO膜を透過させて工業用水を生成する
ことを特徴とする請求項6に記載の淡水化方法。 The second concentrated water removed by the second RO membrane is subjected to at least a pretreatment of either concentration filtration or NF membrane filtration, and then passes through the third RO membrane to supply industrial water. It produces | generates. The desalination method of Claim 6 characterized by the above-mentioned. - 下水や海水を淡水化する淡水化方法であって、
前記下水を、浄化装置を透過させて浄化し、
前記浄化装置を透過した透過水をRO膜に透過させて工業用水を生成する過程と、前記RO膜で除去された濃縮水が、少なくとも濃縮ろ過およびNF膜のろ過のうちの何れかの前処理が行われる過程とを、繰り返して行う
ことを特徴とする淡水化方法。 A desalination method for desalinating sewage and seawater,
Purifying the sewage through a purification device,
The process of generating the industrial water by permeating the permeated water that has passed through the purification device to the RO membrane, and the pre-treatment of at least one of the concentration filtration and the filtration of the NF membrane as the concentrated water removed by the RO membrane A desalination method characterized by repeatedly performing the process in which water is discharged. - 前記RO膜で除去される濃縮水側の下流で、当該濃縮水を、排水するかまたは下流で行われる前記前処理に流すかを切り換える
ことを特徴とする請求項6から請求項8のうちの何れか一項に記載の淡水化方法。 The downstream of the concentrated water side removed by the RO membrane, the concentrated water is switched between draining or flowing to the pretreatment performed downstream. The desalination method as described in any one of Claims. - 前記海水を、UF膜とRO膜と透過させて飲料水を生成する
ことを特徴とする請求項6から請求項8のうちの何れか一項に記載の淡水化方法。 The desalination method according to any one of claims 6 to 8, wherein the seawater is passed through a UF membrane and an RO membrane to generate drinking water.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2014000236A SG2014000236A (en) | 2011-08-26 | 2012-08-16 | Desalination system and desalination method |
IN1447CHN2014 IN2014CN01447A (en) | 2011-08-26 | 2012-08-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-184668 | 2011-08-26 | ||
JP2011184668A JP2013043156A (en) | 2011-08-26 | 2011-08-26 | Desalination system and desalination method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031545A1 true WO2013031545A1 (en) | 2013-03-07 |
Family
ID=47756039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070796 WO2013031545A1 (en) | 2011-08-26 | 2012-08-16 | Desalination system and desalination method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2013043156A (en) |
IN (1) | IN2014CN01447A (en) |
SG (1) | SG2014000236A (en) |
TW (1) | TW201309598A (en) |
WO (1) | WO2013031545A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2878581A1 (en) * | 2013-12-02 | 2015-06-03 | Lappeenrannan Teknillinen Yliopisto | A wastewater purification system |
US9206060B1 (en) * | 2015-05-22 | 2015-12-08 | Basel Abusharkh | Method for purifying liquids |
JP6728857B2 (en) * | 2016-03-25 | 2020-07-22 | 栗田工業株式会社 | Reverse osmosis membrane device and operating method thereof |
JP6882076B2 (en) * | 2017-05-30 | 2021-06-02 | 株式会社東芝 | Carbon dioxide capture system and carbon dioxide capture method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09155344A (en) * | 1995-12-04 | 1997-06-17 | Nitto Denko Corp | Method for desalination of brackish water and apparatus therefor |
JP2008302333A (en) * | 2007-06-11 | 2008-12-18 | Hitachi Plant Technologies Ltd | Method and apparatus for production of fresh water |
JP4481345B1 (en) * | 2008-11-28 | 2010-06-16 | 株式会社神鋼環境ソリューション | Seawater desalination method and seawater desalination apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2010285913C1 (en) * | 2009-08-21 | 2015-12-10 | Toray Industries, Inc. | Fresh water production method |
-
2011
- 2011-08-26 JP JP2011184668A patent/JP2013043156A/en active Pending
-
2012
- 2012-04-23 TW TW101114366A patent/TW201309598A/en unknown
- 2012-08-16 SG SG2014000236A patent/SG2014000236A/en unknown
- 2012-08-16 IN IN1447CHN2014 patent/IN2014CN01447A/en unknown
- 2012-08-16 WO PCT/JP2012/070796 patent/WO2013031545A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09155344A (en) * | 1995-12-04 | 1997-06-17 | Nitto Denko Corp | Method for desalination of brackish water and apparatus therefor |
JP2008302333A (en) * | 2007-06-11 | 2008-12-18 | Hitachi Plant Technologies Ltd | Method and apparatus for production of fresh water |
JP4481345B1 (en) * | 2008-11-28 | 2010-06-16 | 株式会社神鋼環境ソリューション | Seawater desalination method and seawater desalination apparatus |
Also Published As
Publication number | Publication date |
---|---|
SG2014000236A (en) | 2014-03-28 |
TW201309598A (en) | 2013-03-01 |
JP2013043156A (en) | 2013-03-04 |
IN2014CN01447A (en) | 2015-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10071929B2 (en) | Desalination system and desalination method | |
JP4903113B2 (en) | Water treatment system and operation method thereof | |
Zirehpour et al. | Membranes for wastewater treatment | |
WO2013052248A1 (en) | Seawater desalination process and apparatus | |
US10583401B2 (en) | Integrated ultrafiltration and reverse osmosis desalination systems | |
JP2007181822A (en) | Water treatment system for producing drinking water and its operation method | |
JP6194887B2 (en) | Fresh water production method | |
US20180297866A1 (en) | Water treatment system and water treatment method | |
CN106587451B (en) | Deionization integrated treatment method and device for micro-polluted water source water treatment | |
WO2013031545A1 (en) | Desalination system and desalination method | |
JP2003200160A (en) | Water making method and water making apparatus | |
JP4499835B1 (en) | Fresh water generating apparatus and fresh water generating method | |
JP4973823B1 (en) | Seawater desalination system | |
JP2009119435A (en) | Water treatment system for making drinking water and its operation method | |
Jacangelo et al. | The membrane treatment | |
JP4973822B1 (en) | Seawater desalination system | |
JP4941613B1 (en) | Seawater desalination system | |
US20240051848A1 (en) | Method for Purifying Contaminated Water | |
Diamantis et al. | Recovery of reusable water from sewage using aerated flat-sheet membranes | |
Lei et al. | Development of an electrochemical dynamic membrane filtration system for simultaneous separation and disinfection | |
JP2024009663A (en) | Wastewater treatment method and wastewater treatment equipment | |
Yashwanth et al. | IOT based RO water monitoring system | |
Andrunik et al. | Advanced filtration technologies for purification of pre-treated water and wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12828424 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12828424 Country of ref document: EP Kind code of ref document: A1 |