JP4941613B1 - Seawater desalination system - Google Patents
Seawater desalination system Download PDFInfo
- Publication number
- JP4941613B1 JP4941613B1 JP2011284249A JP2011284249A JP4941613B1 JP 4941613 B1 JP4941613 B1 JP 4941613B1 JP 2011284249 A JP2011284249 A JP 2011284249A JP 2011284249 A JP2011284249 A JP 2011284249A JP 4941613 B1 JP4941613 B1 JP 4941613B1
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- water
- seawater
- pressure
- sewage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/144—Wave energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
Abstract
【課題】海水から飲料水を生産できると共に工業用水を増水でき、造水コストを低廉にする。
【解決手段】本発明の海水淡水化システムは、下水から活性汚泥を除去し浄化する浄化装置1と、浄化装置1の透過水から塩分を第1の濃縮水s6に含み除去し、工業用水s1を生成する第1のRO膜2と、海水中の粒子を除去するUF膜3と、UF膜3を透過した処理水s5bの塩分が第2の濃縮水s7に含み除去され飲料水s2を生成する第2のRO膜4と、第2のRO膜4で除去された第2の濃縮水s7と第1のRO膜2で除去された第1の濃縮水s6とが攪拌される攪拌装置5と、攪拌装置5で撹拌された混合液の塩分が第3の濃縮水s9に含まれ除去され工業用水s3が生成される第3のRO膜6と、第2の濃縮水s7の圧力エネルギを回収する第1の動力回収装置34および第3の濃縮水s9の圧力エネルギを回収する第2の動力回収装置36の少なくとも何れかとを具備する。
【選択図】図3[PROBLEMS] To produce drinking water from seawater and increase industrial water, thereby reducing water production costs.
The seawater desalination system of the present invention removes activated sludge from sewage and purifies it, and removes salt from the permeate of the purifier 1 in the first concentrated water s6 to remove industrial water s1. The first RO membrane 2 that generates water, the UF membrane 3 that removes particles in seawater, and the salt content of the treated water s5b that has permeated through the UF membrane 3 are contained in the second concentrated water s7 and removed to produce drinking water s2. The second RO membrane 4 to be stirred, the second concentrated water s7 removed by the second RO membrane 4 and the first concentrated water s6 removed by the first RO membrane 2 are stirred. Then, the salt energy of the mixed liquid stirred by the stirring device 5 is contained in the third concentrated water s9 and removed, and the pressure energy of the third RO film 6 from which the industrial water s3 is generated and the pressure energy of the second concentrated water s7 is obtained. The second motion for recovering the pressure energy of the first power recovery device 34 and the third concentrated water s9 to be recovered. Comprising the at least any of the recovery device 36.
[Selection] Figure 3
Description
本発明は、海水と下水とを淡水化する海水淡水化システムに関する。 The present invention relates to a seawater desalination system for desalinating seawater and sewage.
近年、世界的な人口増や新興国を含む広域な産業の進展から、砂漠地域などでの飲料水や工業用水の造水需要が顕在化している。
従来、海水、下水を淡水化するシステムとして、図5に示す淡水化システムS100がある。
In recent years, demand for drinking water and industrial water production in desert areas has become apparent due to global population growth and development of wide-area industries including emerging countries.
Conventionally, there exists desalination system S100 shown in FIG. 5 as a system which desalinates seawater and sewage.
淡水化システムS100における下水を用いた生産水s101(工業用水)の生産は以下のように遂行される。なお、下水の塩分濃度は、0.1%程度である。
下水は、ポンプp101によりMBR(Membrane Bioreactor)101に送水され、MBR101で下水中の固形分の活性汚泥などが除去され、MBR101を透過したMBR透過水が、ポンプp102により低圧RO膜(Reverse Osmosis Membrane)102に送水される。
Production of production water s101 (industrial water) using sewage in the desalination system S100 is performed as follows. The salinity of sewage is about 0.1%.
The sewage is sent to MBR (Membrane Bioreactor) 101 by pump p101, the activated sludge of solids in the sewage is removed by MBR101, and the MBR permeated water that has permeated MBR101 is converted to low pressure RO membrane (Reverse Osmosis Membrane by pump p102. ) 102.
なお、MBR101を透過したMBR透過水は、塩分濃度0.1%程度であり低いので、RO膜は、低圧の約1〜2MPa(メガパスカル)のRO膜(逆浸透膜)である低圧RO膜102が使用される。
ポンプp102により送水されたMBR透過水は、低圧RO膜102を透過することで塩分などの不純物を含む濃縮水s104がほぼ半分除去され淡水化され、残り半分の生産水s101の工業用水が生産される。
Since the MBR permeated water that has passed through MBR101 has a salt concentration of about 0.1% and is low, the RO membrane is a low pressure RO membrane (reverse osmosis membrane) of about 1-2 MPa (megapascal). 102 is used.
The MBR permeated water sent by the pump p102 passes through the low-
一方、低圧RO膜102で除去された塩分などの不純物を含む塩分濃度0.2%程度に濃縮された下水の約1/2の容量の濃縮水s104は低圧RO膜102から攪拌槽104に送水される。
淡水化システムS100における海水からの生産水s102である工業用水の生産は以下のように遂行される。なお、海水の塩分濃度は、3〜4%程度である。
On the other hand, concentrated water s104 having a volume of about ½ of sewage concentrated to a salt concentration of about 0.2% containing impurities such as salt removed by the low-
Production of industrial water as production water s102 from seawater in the desalination system S100 is performed as follows. In addition, the salt concentration of seawater is about 3 to 4%.
海水は、ポンプp103により、UF膜103に送水され、UF膜103で粒子が除去され攪拌槽104に送水される。攪拌槽104では、このUF膜103を透過したUF膜透過海水と、前記した低圧RO膜102で下水から濃縮された下水の1/2程度の容量の濃縮水s104とが攪拌された後、ポンプp104により、中圧RO膜105に送水される。
Seawater is fed to the
UF膜103を透過したUF膜透過海水は、3〜4%の塩分濃度であるが、塩分濃度0.2%の濃縮水s104で希釈されるので、中圧の約3〜5MPaのRO膜(逆浸透膜)の中圧RO膜105が使用される。
攪拌槽104からポンプp104により中圧RO膜105に送水された混合水s103は、中圧RO膜105を透過することで、1/2程度が塩分などの不純物を含むブラインs105として除去され、残り1/2程度が淡水化された生産水s102(工業用水)として生産される。つまり、生産水s102の工業用水は、海水の1/2プラス下水の1/4程度の容量をもって生産される。
The UF membrane-permeated seawater that has passed through the
The mixed water s103 sent from the
一方、中圧RO膜105で除去された塩分などの不純物を含む塩分濃度が混合水s103の2倍程度に濃縮されたブラインs105が、中圧RO膜105から除去される。つまり、ブラインs105は、海水の1/2プラス下水の1/4程度の容量をもって排水される。
なお、ブラインs105の圧力エネルギは、動力回収装置106で回転エネルギとして回収され、ポンプp104を迂回した一部の混合水s103の中圧RO膜105への送圧の動力源(エネルギ源)として用いられる。
On the other hand, the brine s105 in which the salt concentration including impurities such as the salt removed by the medium
The pressure energy of the brine s105 is recovered as rotational energy by the
従来のその他の淡水化システムとして、図6に示す淡水化システムS200がある。
淡水化システムS200は、図5の淡水化システムS100における下水の濃縮水s104を、攪拌槽204に送水せず、下水の淡水化と海水の淡水化とを独立して構成したものである。
As another conventional desalination system, there is a desalination system S200 shown in FIG.
The desalination system S200 is configured such that the sewage concentrated water s104 in the desalination system S100 of FIG. 5 is not sent to the
淡水化システムS200においては、攪拌槽204で塩分濃度が高い海水が下水からの送水(図5の下水の濃縮水s104)で希釈されないため、塩分濃度が約3〜4%と高く高圧の約6〜8MPaの高圧RO膜205を用いている。
その他の構成は、図5の淡水化システムS100と同様であるから、淡水化システムS100の構成要素に200番台の符号を付して示し、詳細な説明は省略する。
In the desalination system S200, seawater having a high salinity concentration in the
Since the other configuration is the same as that of the desalination system S100 of FIG. 5, the components of the desalination system S100 are denoted by reference numerals in the 200s and detailed description thereof is omitted.
淡水化システムS200は、下水が低圧RO膜202を透過して淡水化され、下水の約半分の生産水s201の工業用水が得られる。一方、海水が高圧RO膜205を透過して淡水化され、海水の1/2の量の生産水s202の飲料水が得られる。
従来の淡水化システムS100(図5参照)は、淡水化システムS200(図6参照)に比較し、次のメリットがある。
In the desalination system S200, sewage passes through the low-
The conventional desalination system S100 (see FIG. 5) has the following advantages over the desalination system S200 (see FIG. 6).
第1に、図5の淡水化システムS100では、下水から生産水s101を造水する過程で除去された排水(濃縮水s104)を、海水から生産水s102を造水する過程に用いるため、海水からの生産水の生産量が高められるメリットがある。
具体的には、下水からの排水(濃縮水s104)を用いない場合には、海水からの生産水は海水の1/2程度の容量であったものが、下水の1/2程度の容量増水した分、生産水s102の工業用水を多く取水できる。
First, in the desalination system S100 of FIG. 5, since the waste water (concentrated water s104) removed in the process of producing the production water s101 from the sewage is used in the process of producing the production water s102 from the seawater, There is an advantage that the amount of production water from can be increased.
Specifically, when wastewater from the sewage (concentrated water s104) is not used, the production water from seawater has a capacity of about 1/2 that of seawater, but the volume of the sewage is increased to about 1/2. Therefore, a large amount of industrial water can be taken from the production water s102.
第2に、海水(塩分濃度3〜4%程度)が、下水の低圧RO膜102での濃縮水s104(塩分濃度0.2%程度)が加えられるため、海水が希釈され塩分濃度が低下する。そのため、下水からの排水(濃縮水s104)を用いない場合には、海水は塩分濃度が高いため、高圧RO膜が必要であったのが、濃縮水s104で希釈されるため、中圧RO膜105で済み、ポンプp104の動力を高圧RO膜の場合に比較し低下させることができる。
Secondly, seawater (salt concentration of about 3 to 4%) is added with concentrated water s104 (salt concentration of about 0.2%) in the sewage low-
なお、中圧RO膜の透過圧力は、約3〜5MPaであるのに対し、高圧RO膜の透過圧力は約6〜8MPaであり、高圧RO膜を透過させるためには、中圧RO膜より大きな動力(エネルギ)を必要とする。
なお、本願に係る先行技術文献として特許文献1がある。
The permeation pressure of the medium pressure RO membrane is about 3 to 5 MPa, whereas the permeation pressure of the high pressure RO membrane is about 6 to 8 MPa. Requires great power (energy).
In addition, there exists
ところで、従来の図5に示す淡水化システムS100においては、以下の問題がある。
第1に、一般に飲料水の需要が大きいものの、海水を淡水化する過程で下水の一部(濃縮水s104)を混合させるために、海水から飲料水を造水することができない。
第2に、通常、海水の供給量が下水の供給量に比較し大きい場合が多いにも拘らず、海水の供給量が大きい場合には、海水を淡水化する過程に下水を加える効果が低減する。
Incidentally, the conventional desalination system S100 shown in FIG. 5 has the following problems.
First, although demand for drinking water is generally large, in order to mix a part of sewage (concentrated water s104) in the process of desalinating seawater, it is not possible to produce drinking water from seawater.
Secondly, the effect of adding sewage to the process of desalinating seawater is reduced when the supply amount of seawater is large even though the supply amount of seawater is usually large compared to the supply amount of sewage. To do.
具体的には、海水の供給量が大きい場合、下水の一部を、海水を淡水化する過程に加えても、海水に対する相対量が小さいため、塩分濃度がさして低下せず、淡水化するためのRO膜(図5の中圧RO膜105に相当)への透過圧力の削減効果が低下する。結果として、RO膜の透過圧力を得るための動力(エネルギ)削減効果が低下する。加えて、生産水s102の増水効果も低下する。
Specifically, when the supply amount of seawater is large, even if a part of the sewage is added to the process of desalinating seawater, the relative amount to seawater is small, so the salinity concentration does not decrease and the water is desalinated. The effect of reducing the permeation pressure to the RO membrane (corresponding to the medium-
第3に、動力回収装置106は高圧の方が効率は高いが、中圧RO膜105を使用するので、動力回収装置106を効率が高いところで稼働できない。そのため、高いエネルギ回収率を得ることが困難である。
Third, although the
第4に、低圧RO膜102と中圧RO膜105との異なる逆浸透膜を使用するので、メンテナンス性が良好とは言い難い。
Fourth, since different reverse osmosis membranes for the low
本発明は上記実状に鑑み、海水から飲料水を生産できるとともに工業用水を増水でき、造水コストが低廉な海水淡水化システムの提供を目的とする。 In view of the above situation, an object of the present invention is to provide a seawater desalination system that can produce drinking water from seawater, increase industrial water, and reduce water production costs.
上記目的を達成すべく、本発明に関わる海水淡水化システムは、海水と下水とから工業用水と飲料水とを得るための海水淡水化システムであって、前記下水を透過させて活性汚泥を除去し浄化する浄化装置と、前記浄化装置を透過した透過水を透過させ、その塩分が第1の濃縮水に含まれ除去されるとともに工業用水を生成する第1のRO膜と、前記海水を透過させて当該海水中の粒子を除去するUF膜と、前記UF膜を透過した処理水を透過させ、当該処理水の塩分が第2の濃縮水に含まれ除去されるとともに飲料水を生成する第2のRO膜と、前記第2のRO膜で除去された前記第2の濃縮水と前記第1のRO膜で除去された第1の濃縮水とが送られ攪拌される攪拌装置と、前記攪拌装置で撹拌された混合液を透過させ、その塩分が第3の濃縮水に含まれ除去されるとともに工業用水を生成する第3のRO膜と、前記第2の濃縮水の圧力エネルギを回収する第1の動力回収装置および前記第3の濃縮水の圧力エネルギを回収する第2の動力回収装置のうちの少なくとも何れかとを具備している。 In order to achieve the above object, a seawater desalination system according to the present invention is a seawater desalination system for obtaining industrial water and drinking water from seawater and sewage, and removes activated sludge by permeating the sewage. A purification device that purifies the water, a permeated water that has permeated through the purification device, and a first RO membrane that generates industrial water while the salt content is contained and removed in the first concentrated water; The UF membrane that removes particles in the seawater and the treated water that has passed through the UF membrane are permeated, and the salt content of the treated water is contained in the second concentrated water and removed, and the drinking water is generated. A stirring device in which the second RO membrane removed by the second RO membrane, the second concentrated water removed by the second RO membrane, and the first concentrated water removed by the first RO membrane are sent and stirred; The mixed liquid stirred by the stirrer is permeated and the salt content is third. A third RO membrane that is contained in the concentrated water and removed and generates industrial water, a first power recovery device that recovers the pressure energy of the second concentrated water, and a pressure energy of the third concentrated water And at least one of the second power recovery devices to be recovered.
本発明の海水淡水化システムによれば、海水から飲料水を生産できるとともに工業用水を増水でき、造水コストが低廉な海水淡水化システムを実現できる。 According to the seawater desalination system of the present invention, it is possible to produce drinking water from seawater, increase industrial water, and realize a seawater desalination system with low water production costs.
以下、本発明の実施形態について添付図面を参照して説明する。
<<実施形態1>>
図1は、本発明に係る実施形態1の淡水化システムの概念的構成図である。
実施形態1の淡水化システムSは、下水から工業用水s1を造水するために、下水から活性汚泥などを除去し浄化するMBR(Membrane Bioreactor)1と、下水に含有される塩分やイオンなどの不純物を除去し淡水化する低圧RO膜(Reverse Osmosis Membrane)2とを具備している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<<
FIG. 1 is a conceptual configuration diagram of a desalination system according to
The desalination system S of the first embodiment includes an MBR (Membrane Bioreactor) 1 that removes activated sludge from sewage and purifies it in order to produce industrial water s1 from sewage, and salt and ions contained in the sewage. And a low pressure RO membrane (Reverse Osmosis Membrane) 2 for removing impurities and desalinating.
MBR1は、固液分離を行い、下水から活性汚泥など(固形分や細菌など)を除去し浄化する。
RO膜(逆浸透膜)は、水は通すが塩分などの低分子物質やイオンを通しにくい半透膜である。低圧RO膜2は、下水の塩分濃度が0.1%程度で低いので、比較的低い透過圧約1〜2MPa(メガパスカル)で塩分などを除去する低圧のRO膜である。
MBR1 performs solid-liquid separation and removes activated sludge (such as solids and bacteria) from sewage and purifies it.
The RO membrane (reverse osmosis membrane) is a semipermeable membrane that allows water to pass through but does not allow low-molecular substances such as salt or ions to pass through. The low-pressure RO membrane 2 is a low-pressure RO membrane that removes salt and the like at a relatively low permeation pressure of about 1 to 2 MPa (megapascal) because the sewage has a low salinity concentration of about 0.1%.
また、淡水化システムSは、海水から飲料水s2を造水するために、海水に含有される粒子を除去するUF膜(Ultrafiltration Membrane)3と、海水に含有される塩分やイオンなどの不純物を除去し淡水化する高圧RO膜4とを具備している。
UF膜(限外ろ過膜)3は、膜の孔径と海水中の除去対象物質の分子の大きさによって分子レベルのふるい分けを行い、除去対象である粒子を除去する。
高圧RO膜4は、海水の塩分濃度が3〜4%程度であるので、比較的高い透過圧、約6〜8MPa(メガパスカル)で塩分などを除去する高圧のRO膜である。
In addition, the desalination system S has a UF membrane (Ultrafiltration Membrane) 3 that removes particles contained in seawater and impurities such as salt and ions contained in seawater in order to produce drinking water s2 from seawater. And a high-pressure RO membrane 4 to be removed and desalinated.
The UF membrane (ultrafiltration membrane) 3 performs molecular level sieving according to the pore size of the membrane and the molecular size of the substance to be removed in seawater, and removes the particles to be removed.
The high-pressure RO membrane 4 is a high-pressure RO membrane that removes salt and the like with a relatively high permeation pressure and about 6 to 8 MPa (megapascals) because the salt concentration of seawater is about 3 to 4%.
さらに、淡水化システムSは、海水から工業用水s3を造水するために、前記したUF膜3、高圧RO膜4に加えて、高圧RO膜4から除去された塩分やイオンなどの不純物を含む海水濃縮水s7と、低圧RO膜2から除去された塩分やイオンなどの不純物を含む下水濃縮水s6とを撹拌する攪拌槽5と、攪拌槽5からの混合液に含有される塩分やイオンなどの不純物を除去して淡水化する高圧RO膜6とを具備している。
Further, the desalination system S includes impurities such as salts and ions removed from the high-pressure RO membrane 4 in addition to the
高圧RO膜6は、海水のほぼ2倍の塩分濃度(約6〜8%の塩分濃度)の海水濃縮水s7と、下水のほぼ2倍の塩分濃度(約0.2%の塩分濃度)の下水濃縮水s6との混合液を淡水化するため、比較的高い透過圧、約6〜8MPa(メガパスカル)で塩分などを除去する高圧のRO膜である。なお、海水のほぼ2倍の塩分濃度約6〜8%の海水濃縮水s7は、下水濃縮水s6(約0.2%の塩分濃度)が加えられ希釈され、塩分濃度が低下される。 The high-pressure RO membrane 6 has a seawater concentration s7 that is approximately twice the salinity of seawater (about 6-8% salinity) and a sewage that is almost twice the salinity (about 0.2% salinity). In order to desalinate the mixed solution with the sewage concentrated water s6, it is a high pressure RO membrane that removes salt and the like with a relatively high permeation pressure and about 6-8 MPa (megapascal). The seawater concentrated water s7 having a salinity concentration of about 6 to 8%, which is almost twice that of seawater, is diluted by adding the sewage concentrated water s6 (about 0.2% salinity concentration) to lower the salinity concentration.
次に、淡水化システムSにおいて、下水から工業用水s1を造水する過程について説明する。
下水は、ポンプp1により、MBR1に送水され、MBR1を透過して下水から活性汚泥フロックや細菌などが除去される。MBR1を透過した下水のMBR透過水s5aは、ポンプp2により、低圧RO膜2に送水され、低圧RO膜2を透過することで、塩分やイオンなどの不純物を含む下水濃縮水s6が除去され淡水化され、工業用水s1が生産される。
Next, the process of making industrial water s1 from sewage in the desalination system S will be described.
The sewage is sent to the MBR1 by the pump p1, passes through the MBR1, and the activated sludge flocs and bacteria are removed from the sewage. The sewage MBR permeated water s5a that has passed through the MBR1 is sent to the low-pressure RO membrane 2 by the pump p2, and passes through the low-pressure RO membrane 2, thereby removing the concentrated sewage water s6 containing impurities such as salt and ions, and fresh water. And industrial water s1 is produced.
工業用水s1は、下水の1/2程度得られる一方、下水の残余の分、すなわち下水の1/2程度が塩分やイオンなどの不純物を含む下水濃縮水s6として除去される。
低圧RO膜2で除去された塩分やイオンなどの不純物を含む塩分濃度0.2%程度に濃縮された下水濃縮水s6は、低圧RO膜2から攪拌槽5に送水される。
The industrial water s1 is obtained about 1/2 of the sewage, while the remainder of the sewage, that is, about 1/2 of the sewage is removed as the sewage concentrated water s6 containing impurities such as salt and ions.
Sewage concentrated water s6 concentrated to a salt concentration of about 0.2% containing impurities such as salt and ions removed by the low-pressure RO membrane 2 is sent from the low-pressure RO membrane 2 to the
次に、淡水化システムSにおいて、海水から生産水である飲料水s2および工業用水s3を造水する過程について説明する。
海水は、ポンプp3により、UF膜3に送水され、UF膜3を透過して海水中の粒子が除去される。そして、UF膜3で粒子が除去された海水のUF膜透過海水s5bは、ポンプp4により、高圧RO膜4に送水される。UF膜3を透過したUF膜透過海水s5bは、高圧RO膜4を透過することで、ほぼ半分が塩分やイオンなどの不純物を含む海水濃縮水s7として除去され、残りの半分が淡水化された飲料水s2として生産される。
Next, in the desalination system S, the process of making the drinking water s2 and industrial water s3 which are production water from seawater is demonstrated.
Seawater is sent to the
一方、高圧RO膜4で除去された海水の1/2程度の容量の塩分濃度6〜8%程度の海水濃縮水s7は、攪拌槽5で、低圧RO膜2で除去された下水の1/2程度の容量の下水濃縮水s6(塩分濃度0.2%程度)と攪拌され希釈されることで、約6〜8%の塩分濃度が低下する。
On the other hand, the seawater concentrated water s7 having a salinity of about 6 to 8% having a volume of about 1/2 of the seawater removed by the high-pressure RO membrane 4 is 1/2 of the sewage removed by the low-pressure RO membrane 2 in the
海水濃縮水s7と下水濃縮水s6との塩分濃度が低下した混合液は、ポンプp5により、高圧RO膜6に送水される。
攪拌槽5からの下水濃縮水s6と海水濃縮水s7との混合液は、高圧RO膜6を透過することで、ほぼ半分が塩分やイオンなどの不純物を含むブラインs9として除去され、残りの半分が淡水化された工業用水s3として生産される。
The mixed liquid in which the salinity concentration of the seawater concentrated water s7 and the sewage concentrated water s6 is lowered is sent to the high pressure RO membrane 6 by the pump p5.
The mixed liquid of the sewage concentrated water s6 and the seawater concentrated water s7 from the
実施形態1の淡水化システムSによれば、以下の効果を奏する。
1.海水を淡水化する経路に下水を混合させないため、需要が大きい飲料水s2が生産できる。
According to the desalination system S of
1. Since the sewage is not mixed in the path for desalinating the seawater, the drinking water s2 with high demand can be produced.
2.下水の淡水化の過程で除去されたブラインの下水濃縮水s6が、海水の淡水化の過程で除去されたブラインの海水濃縮水s7に加えられ、工業用水s3が造水されるので、淡水化システムS全体の工業用水の造水量を増加することができる。 2. The brine sewage concentrated water s6 removed in the sewage desalination process is added to the brine seawater concentrated s7 removed in the seawater desalination process to produce industrial water s3. The amount of industrial water produced by the entire system S can be increased.
例えば、実施形態1の淡水化システムSで量2(容量2)の下水と、量2(容量2)の海水とを淡水化するとする。
量2の下水からは、低圧RO膜2を透過させることで量1の工業用水s1が得られる。一方、量2の海水からは高圧RO膜4を透過させることで量1の飲料水s2を生産できる。さらに、高圧RO膜4で除去された量1の海水濃縮水s7と、低圧RO膜2で除去された量1の下水濃縮水s6とを撹拌して高圧RO膜6を透過させることで、量1の工業用水s3が取水される。
結果的に、実施形態1の淡水化システムSでは、量2の下水と量2の海水とから、量1の飲料水s2と量2の工業用水s1、s3が得られる。
For example, assume that the desalination system S of the first embodiment desalinates sewage with an amount of 2 (capacity 2) and seawater with an amount of 2 (capacity 2).
From the sewage of the amount 2, the industrial water s1 of the
As a result, in the desalination system S of
同一条件の量2の下水と量2の海水を、図5に示す従来例1の淡水化システムS100によって淡水化する場合、以下のようになる。
図5に示すように、量2の下水は、低圧RO膜102により淡水化され量1の工業用水(生産水s101)が生産される。また、量2の海水には、攪拌槽104で量1の下水の濃縮水s104が加えられるので、中圧RO膜105を透過することで、量2の海水と量1の下水の濃縮水s104の1/2の1.5の量の工業用水(生産水s102)が生産される。
従って、従来例1の淡水化システムS100では、量1の生産水s101と量1.5の生産水s102とを合計し、量2.5の工業用水が得られることになる。
When the sewage of the quantity 2 and the seawater of the quantity 2 of the same conditions are desalinated by the desalination system S100 of the conventional example 1 shown in FIG.
As shown in FIG. 5, the amount of sewage 2 is desalinated by the low-
Therefore, in the desalination system S100 of Conventional Example 1, the amount of production water s101 and the amount of production water s102 of the
よって、実施形態1の淡水化システムSと、従来例1の淡水化システムS100とを比較すると、実施形態1の淡水化システムSが量0.5の飲料水を多く得ることができる。なお、図5の淡水化システムS100では、量2.5の工業用水しか得られないが、実施形態1の淡水化システムSは、量2の工業用水に加えて、量1の飲料水が得られるメリットがある。
Therefore, when the desalination system S of
また、同一条件の量2の下水と量2の海水とで、従来例2の図6に示す淡水化システムS200によって淡水化する場合、以下のようになる。
量2の下水は、図6に示すように、低圧RO膜202を透過させることで淡水化され、量1の工業用水(生産水s201)が得られる。一方、量2の海水は高圧RO膜205を透過させることで淡水化され、量1の飲料水(生産水s202)が得られる。
Further, when desalination is performed with the sewage of the amount 2 and the seawater of the amount 2 under the same conditions by the desalination system S200 shown in FIG.
As shown in FIG. 6, the amount 2 of sewage is desalinated by permeating through the low-
従って、量2の下水と量2の海水を使用する場合、実施形態1の淡水化システムSと、従来例2の淡水化システムS200とを比較すると、実施形態1の淡水化システムSが量1の工業用水を多く得ることができる。 Therefore, when using the amount 2 of sewage and the amount 2 of seawater, the desalination system S of the first embodiment is compared with the desalination system S of the first embodiment and the desalination system S200 of the conventional example 2. A lot of industrial water can be obtained.
3.淡水化システムS(図1参照)では、例えば、下水濃縮水s6の利用を停止したり調整することで、工業用水の需要の変動に柔軟に対応できる。そのため、必要に応じて、工業用水を造水することができ、工業用水の需要変動に対応できる。 3. In the desalination system S (see FIG. 1), for example, by stopping or adjusting the use of the sewage concentrated water s6, it is possible to flexibly cope with fluctuations in demand for industrial water. Therefore, if necessary, industrial water can be produced, and the demand for industrial water can be accommodated.
4.淡水化システムSでは、攪拌槽5で塩分濃度6〜8%程度の海水濃縮水s7を、塩分濃度0.2%程度の下水濃縮水s6で希釈するので、塩分濃度が低下する。そのため、海水濃縮水s7の下流側で高圧RO膜4と同タイプの高圧RO膜6を使用することが可能である。
4). In the desalination system S, since the seawater concentrated water s7 having a salinity of about 6 to 8% is diluted with the sewage concentrated water s6 having a salinity of about 0.2% in the
塩分濃度が高いほど、高圧なRO膜を使用する必要があることから、塩分濃度が高いほど高圧な動力源が必要となる。そのため、塩分濃度6〜8%程度の海水濃縮水s7の場合には超高圧なRO膜を使用する必要があり、超高圧を出力する動力源が必要なところ、実施形態1の淡水化システムSでは、塩分濃度6〜8%程度の海水濃縮水s7を塩分濃度0.2%程度の下水濃縮水s6で希釈するので高圧RO膜を使用でき、動力の削減が可能となる。 Since it is necessary to use a high-pressure RO membrane as the salinity concentration increases, a higher-pressure power source is required as the salinity concentration increases. Therefore, in the case of seawater concentrated water s7 having a salinity of about 6 to 8%, it is necessary to use an ultra-high pressure RO membrane, and a power source that outputs ultra-high pressure is required. Then, since the seawater concentrated water s7 having a salinity of about 6 to 8% is diluted with the sewage concentrated water s6 having a salinity of about 0.2%, a high-pressure RO membrane can be used, and power can be reduced.
5.また、高圧RO膜4、6が同タイプなので、メンテナンスが容易でメンテナンス性が良好である。よって、淡水化システムSの維持管理上のメリットが大である。 5). Moreover, since the high-pressure RO membranes 4 and 6 are the same type, maintenance is easy and maintenance is good. Therefore, the merit in the maintenance management of the desalination system S is great.
<<実施形態2>>
図2は、実施形態2の淡水化システムを示す概念的構成図である。
実施形態2の淡水化システム2Sは、実施形態1の淡水化システムSの低圧RO膜2を省略した(設置しないで)構成としたものである。その他の構成は、実施形態1の淡水化システムSと同様な構成であるから、同一の構成要素には同一の符号を付して示し、詳細な説明は省略する。
<< Embodiment 2 >>
FIG. 2 is a conceptual configuration diagram illustrating a desalination system according to the second embodiment.
The desalination system 2S of the second embodiment is configured such that the low pressure RO membrane 2 of the desalination system S of the first embodiment is omitted (not installed). Since the other configuration is the same as that of the desalination system S of the first embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
淡水化システム2Sにおいては、下水は、ポンプp1により、MBR1に送水され、MBR1を透過して下水から活性汚泥フロックや細菌などが除去される。そして、MBR1を透過したMBR透過水s22は、攪拌槽5に送水される。攪拌槽5では、UF膜3を透過するとともに高圧RO膜4で除去された海水濃縮水s7とMBR透過水s22とが攪拌された後、ポンプp5により、高圧RO膜6に送水される。
In the desalination system 2S, the sewage is sent to the MBR1 by the pump p1, passes through the MBR1, and the activated sludge flocs and bacteria are removed from the sewage. Then, the MBR permeated water s22 that has passed through the MBR1 is sent to the
ここで、塩分濃度約6〜8%の海水濃縮水s7は、攪拌槽5において、塩分濃度約0.1%のMBR透過水s22が加えられ希釈され、塩分濃度が低下される。
海水濃縮水s7とMBR透過水s22との混合液は、ポンプp5によって加圧され、高圧RO膜6を透過することで、半分が塩分やイオンなどの不純物を含むブラインs23として除去され、残り半分が淡水化された工業用水s21として生産される。
Here, the seawater concentrated water s7 having a salinity of about 6 to 8% is diluted with the MBR permeated water s22 having a salinity of about 0.1% in the
The mixed liquid of the seawater concentrated water s7 and the MBR permeated water s22 is pressurized by the pump p5 and passes through the high-pressure RO membrane 6, so that half is removed as the brine s23 containing impurities such as salt and ions, and the other half. Is produced as desalinated industrial water s21.
実施形態2によれば、実施形態1の低圧RO膜2を設置しないので、低圧RO膜2の製造、設置費用がかからず、コスト削減が可能である。
また、RO膜(逆浸透膜)が、同一種類の高圧RO膜4、6となるので、メンテナンスが容易でさらにメンテナンス性が向上する。よって、維持管理性がより良好となる。
なお、実施形態1の淡水化システムSの作用効果は同様に奏する。
According to the second embodiment, since the low-pressure RO membrane 2 of the first embodiment is not installed, the manufacturing and installation costs of the low-pressure RO membrane 2 are not required, and the cost can be reduced.
Further, since the RO membrane (reverse osmosis membrane) becomes the same type of high-pressure RO membranes 4 and 6, maintenance is easy and the maintainability is further improved. Therefore, the maintainability becomes better.
In addition, the effect of the desalination system S of
<<変形形態1>>
図3は、変形形態1の淡水化システムを示す概念的構成図である。
変形形態1の淡水化システム3Sは、実施形態1の淡水化システムSの高圧RO膜4、6の除去流の下流にそれぞれ動力回収装置34、36を設けて動力を再利用する構成としたものである。
これ以外の構成は、実施形態1の淡水化システムSの構成と同様であるから、同一の構成要素には、同一の符号を付して示し、詳細な説明は省略する。
<<
FIG. 3 is a conceptual configuration diagram illustrating a desalination system according to the first modification.
The desalination system 3S according to the first modification is configured to recycle power by providing
Since the configuration other than this is the same as the configuration of the desalination system S of the first embodiment, the same components are denoted by the same reference numerals and detailed description thereof is omitted.
淡水化システム3Sにおいて、高圧RO膜4で除去された海水濃縮水s7はポンプp4により高圧に加圧されているため、高い圧力エネルギを有している。
そこで、淡水化システム3Sでは、高圧RO膜4からの海水濃縮水s7の流路に動力回収装置34を設けている。
In the desalination system 3S, the seawater concentrated water s7 removed by the high-pressure RO membrane 4 is pressurized to a high pressure by the pump p4, and therefore has high pressure energy.
Therefore, in the desalination system 3S, a
動力回収装置34は、高圧RO膜4で除去された海水濃縮水s7の圧力エネルギを回転エネルギとして回収し、UF膜3を透過した後にポンプp4を迂回して流れるUF膜透過海水s31に動力として付与し、UF膜透過海水s31を高圧RO膜4へ圧送する動力として用いている。
The
同様に、高圧RO膜6で除去されたブライン(海水濃縮水)s9はポンプp5により高圧に加圧されているため、高い圧力エネルギを有している。
そこで、淡水化システム3Sでは、高圧RO膜6からのブライン(海水濃縮水)s9の流路に動力回収装置36を設けている。
Similarly, since the brine (seawater concentrated water) s9 removed by the high-pressure RO membrane 6 is pressurized to a high pressure by the pump p5, it has high pressure energy.
Therefore, in the desalination system 3S, a
動力回収装置36は、ブライン(海水濃縮水)s9の圧力エネルギを回転エネルギとして回収し、攪拌槽5で混合された後にポンプp5を迂回して流れる攪拌槽通過水s32に動力として付与し、攪拌槽通過水s32を高圧RO膜6へ圧送する動力として用いている。
The
変形形態1の淡水化システム3Sによれば、高圧RO膜4からの除去流の高圧の海水濃縮水s7の下流の流路に動力回収装置34を設けるとともに、高圧RO膜6からの除去流の高圧のブライン(海水濃縮水)s9の下流の流路に動力回収装置36を設けている。
動力回収装置34、36は、それぞれ高圧の海水濃縮水s7、ブラインs9の圧力エネルギを回転エネルギとして回収できるので、効率が高い状態で使用することが可能である。従って、実施形態1の淡水化システムSの動力(エネルギ)の削減が可能であり、省エネルギ化を図ることが可能である。
According to the desalination system 3S of the first modification, the
Since the
<<変形形態2>>
図4は、変形形態2の淡水化システムを示す概念的構成図である。
変形形態2の淡水化システム4Sは、実施形態2の淡水化システム2Sに、変形形態1と同様に、高圧RO膜4、6の除去流(s41、s42)の下流に動力回収装置44、46を設けたものである。
その他の構成は、実施形態2の淡水化システム2Sと同様であるから、同一の構成要素には同一の符号を付して示し、詳細な説明は省略する。
<< Modification 2 >>
FIG. 4 is a conceptual configuration diagram illustrating a desalination system according to the second modification.
The desalination system 4S according to the second modification is similar to the desalination system 2S according to the second embodiment, in the same manner as the first modification, in the downstream of the removal flow (s41, s42) of the high-pressure RO membranes 4 and 6; Is provided.
Since other configurations are the same as the desalination system 2S of the second embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
変形形態2の淡水化システム4Sでは、動力回収装置44、46でそれぞれ海水濃縮水s7、ブラインs23の圧力エネルギを回転エネルギとして回収し、それぞれUF膜透過海水s41、攪拌槽通過水s42の圧送力を得ることができる。
In the desalination system 4S of variant 2, the
変形形態2の淡水化システム3Sによれば、実施形態2の淡水化システム2Sの動力(エネルギ)の削減が可能であり、省エネルギ化を図ることができる。 According to the desalination system 3S of the modification 2, the power (energy) of the desalination system 2S of the embodiment 2 can be reduced, and energy saving can be achieved.
<<その他の実施形態>>
なお、変形形態1では、動力回収装置34、36の両方を設けた場合を例示したが、動力回収装置34、36のうちの何れかを設けるように構成してもよい。同様に、変形形態2では、動力回収装置44、46の両方を設けた場合を例示したが、動力回収装置44、46のうちの何れかを設けるように構成してもよい。
<< Other Embodiments >>
In the first modification, the case where both of the
また、変形形態1において、動力回収装置34、36で回収した動力を、それぞれUF膜透過海水s31、攪拌槽通過水s32の圧送力とした場合を例示したが、これ以外の動力として利用してもよい。同様に、変形形態2において、動力回収装置44,46で回収した動力を、それぞれUF膜透過海水s41、攪拌槽通過水s42の圧送力とした場合を例示したが、例示したものとは異なる動力として利用してもよい。
なお、前記の実施形態、変形形態では、下水から活性汚泥を除去し浄化する浄化装置として、MBRを例示したが、自然沈殿法、砂ろ過、消毒などMBR1以外の浄化装置を適用しても構わない。
また、前記の実施形態、変形形態の説明で使用した数値は一例を示したものであり、これらの数値に限定されるものではない。
Moreover, in the
In the above-described embodiments and modifications, MBR is exemplified as a purification device that removes and purifies activated sludge from sewage, but purification devices other than MBR1, such as natural precipitation, sand filtration, and disinfection, may be applied. Absent.
In addition, the numerical values used in the description of the above-described embodiments and modifications are examples, and are not limited to these numerical values.
1 MBR(浄化装置)
2 低圧RO膜(第1のRO膜)
3 UF膜
4 高圧RO膜(第2のRO膜)
5 攪拌槽(攪拌装置)
6 高圧RO膜(第3のRO膜)
34 動力回収装置(第1の動力回収装置)
36 動力回収装置(第2の動力回収装置)
3S 淡水化システム(海水淡水化システム)
s1、s3 工業用水
s2 飲料水
s5b UF膜透過海水(処理水)
s6 下水濃縮水(第1の濃縮水)
s7 海水濃縮水(第2の濃縮水)
s9 ブライン(第3の濃縮水)
1 MBR (Purification device)
2 Low pressure RO membrane (first RO membrane)
3 UF membrane 4 High-pressure RO membrane (second RO membrane)
5 Stirring tank (stirring device)
6 High-pressure RO membrane (third RO membrane)
34 Power recovery device (first power recovery device)
36 Power recovery device (second power recovery device)
3S desalination system (seawater desalination system)
s1, s3 Industrial water s2 Drinking water s5b UF membrane permeated seawater (treated water)
s6 Sewage concentrated water (first concentrated water)
s7 Seawater concentrated water (second concentrated water)
s9 brine (third concentrated water)
Claims (1)
前記下水を透過させて活性汚泥を除去し浄化する浄化装置と、
前記浄化装置を透過した透過水を透過させ、その塩分が第1の濃縮水に含まれ除去されるとともに工業用水を生成する第1のRO膜と、
前記海水を透過させて当該海水中の粒子を除去するUF膜と、
前記UF膜を透過した処理水を透過させ、当該処理水の塩分が第2の濃縮水に含まれ除去されるとともに飲料水を生成する第2のRO膜と、
前記第2のRO膜で除去された前記第2の濃縮水と前記第1のRO膜で除去された第1の濃縮水とが送られ攪拌される攪拌装置と、
前記攪拌装置で撹拌された混合液を透過させ、その塩分が第3の濃縮水に含まれ除去されるとともに工業用水を生成する第3のRO膜と、
前記第2の濃縮水の圧力エネルギを回収する第1の動力回収装置および前記第3の濃縮水の圧力エネルギを回収する第2の動力回収装置のうちの少なくとも何れかとを
具備することを特徴とする海水淡水化システム。 A seawater desalination system for obtaining industrial water and drinking water from seawater and sewage,
A purification device for removing activated sludge by permeating the sewage and purifying,
A first RO membrane that permeates the permeated water that has passed through the purification device, the salt content of which is contained and removed in the first concentrated water, and generates industrial water;
A UF membrane that permeates the seawater to remove particles in the seawater;
A second RO membrane that allows the treated water that has permeated through the UF membrane to pass through, the salt content of the treated water is contained and removed in the second concentrated water, and generates drinking water;
A stirrer in which the second concentrated water removed by the second RO membrane and the first concentrated water removed by the first RO membrane are sent and stirred;
A third RO membrane that permeates the mixed solution stirred by the stirring device and removes the salt contained in the third concentrated water and generates industrial water;
And at least one of a first power recovery device that recovers pressure energy of the second concentrated water and a second power recovery device that recovers pressure energy of the third concentrated water. Seawater desalination system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011284249A JP4941613B1 (en) | 2011-12-26 | 2011-12-26 | Seawater desalination system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011284249A JP4941613B1 (en) | 2011-12-26 | 2011-12-26 | Seawater desalination system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011184648A Division JP5843522B2 (en) | 2011-08-26 | 2011-08-26 | Seawater desalination method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4941613B1 true JP4941613B1 (en) | 2012-05-30 |
JP2013043173A JP2013043173A (en) | 2013-03-04 |
Family
ID=46395349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011284249A Active JP4941613B1 (en) | 2011-12-26 | 2011-12-26 | Seawater desalination system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4941613B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102701326A (en) * | 2012-06-07 | 2012-10-03 | 中国海洋大学 | Seawater desalinizing technology deeply treated by reverse osmosis membrane after mixing wastewater with seawater |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003285058A (en) * | 2002-03-27 | 2003-10-07 | Mitsubishi Heavy Ind Ltd | Salt-containing water desalination system |
JP2005279540A (en) * | 2004-03-30 | 2005-10-13 | Toray Eng Co Ltd | Desalination system |
WO2010061879A1 (en) * | 2008-11-28 | 2010-06-03 | 株式会社神鋼環境ソリューション | Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water |
JP2010125395A (en) * | 2008-11-27 | 2010-06-10 | Mitsubishi Heavy Ind Ltd | Multistage seawater desalination equipment and operation control method of multistage seawater desalination equipment |
WO2011010500A1 (en) * | 2009-07-21 | 2011-01-27 | 東レ株式会社 | Water producing system |
WO2011021420A1 (en) * | 2009-08-21 | 2011-02-24 | 東レ株式会社 | Fresh water generator |
WO2011021415A1 (en) * | 2009-08-21 | 2011-02-24 | 東レ株式会社 | Fresh water production method |
WO2011077815A1 (en) * | 2009-12-25 | 2011-06-30 | 東レ株式会社 | Water production system and operation method therefor |
WO2011155281A1 (en) * | 2010-06-09 | 2011-12-15 | 株式会社神鋼環境ソリューション | Freshwater-generating device, and freshwater-generating method |
-
2011
- 2011-12-26 JP JP2011284249A patent/JP4941613B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003285058A (en) * | 2002-03-27 | 2003-10-07 | Mitsubishi Heavy Ind Ltd | Salt-containing water desalination system |
JP2005279540A (en) * | 2004-03-30 | 2005-10-13 | Toray Eng Co Ltd | Desalination system |
JP2010125395A (en) * | 2008-11-27 | 2010-06-10 | Mitsubishi Heavy Ind Ltd | Multistage seawater desalination equipment and operation control method of multistage seawater desalination equipment |
WO2010061879A1 (en) * | 2008-11-28 | 2010-06-03 | 株式会社神鋼環境ソリューション | Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water |
WO2011010500A1 (en) * | 2009-07-21 | 2011-01-27 | 東レ株式会社 | Water producing system |
WO2011021420A1 (en) * | 2009-08-21 | 2011-02-24 | 東レ株式会社 | Fresh water generator |
WO2011021415A1 (en) * | 2009-08-21 | 2011-02-24 | 東レ株式会社 | Fresh water production method |
WO2011077815A1 (en) * | 2009-12-25 | 2011-06-30 | 東レ株式会社 | Water production system and operation method therefor |
WO2011155281A1 (en) * | 2010-06-09 | 2011-12-15 | 株式会社神鋼環境ソリューション | Freshwater-generating device, and freshwater-generating method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102701326A (en) * | 2012-06-07 | 2012-10-03 | 中国海洋大学 | Seawater desalinizing technology deeply treated by reverse osmosis membrane after mixing wastewater with seawater |
Also Published As
Publication number | Publication date |
---|---|
JP2013043173A (en) | 2013-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5843522B2 (en) | Seawater desalination method | |
JP4903113B2 (en) | Water treatment system and operation method thereof | |
JP2007181822A (en) | Water treatment system for producing drinking water and its operation method | |
US20180297866A1 (en) | Water treatment system and water treatment method | |
WO2013031544A1 (en) | Desalinization system and desalinization method | |
US20130206697A1 (en) | Fresh Water Generating Apparatus and Fresh Water Generating Method | |
JP3957081B1 (en) | Water treatment system for drinking water production and operation method thereof | |
JP2003200160A (en) | Water making method and water making apparatus | |
JP4973823B1 (en) | Seawater desalination system | |
Hung et al. | Membrane processes and their potential applications for fresh water provision in Vietnam. | |
JP2008149284A (en) | Water treatment system for producing drinking water and its operation method | |
JP4499835B1 (en) | Fresh water generating apparatus and fresh water generating method | |
JP4113568B1 (en) | Water treatment system for drinking water production and operation method thereof | |
JP4973822B1 (en) | Seawater desalination system | |
WO2013031545A1 (en) | Desalination system and desalination method | |
JP4941613B1 (en) | Seawater desalination system | |
Nave et al. | Introductory chapter: Osmotically driven membrane processes | |
WO2011155282A1 (en) | Fresh water-generating device and fresh water-generating method | |
WO2016193855A1 (en) | Reverse osmosis based potable water system with improved yield |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4941613 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |