WO2013024819A1 - ポリイミド金属積層体の製造方法 - Google Patents
ポリイミド金属積層体の製造方法 Download PDFInfo
- Publication number
- WO2013024819A1 WO2013024819A1 PCT/JP2012/070508 JP2012070508W WO2013024819A1 WO 2013024819 A1 WO2013024819 A1 WO 2013024819A1 JP 2012070508 W JP2012070508 W JP 2012070508W WO 2013024819 A1 WO2013024819 A1 WO 2013024819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyimide
- film
- polyamic acid
- layer
- self
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/74—Joining plastics material to non-plastics material
- B29C66/742—Joining plastics material to non-plastics material to metals or their alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1085—Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/14—Semiconductor wafers
Definitions
- the present invention relates to a polyimide metal laminate, and more particularly to a polyimide metal laminate excellent in heat resistance and adhesion at the interface between the metal layer and the polyimide film.
- Polyimide films are widely used in fields such as electric / electronic devices and semiconductors because they are excellent in heat resistance, chemical resistance, mechanical strength, electrical properties, dimensional stability, and the like.
- a flexible printed wiring board FPC
- a copper-clad laminated board formed by laminating a copper foil on one or both sides of a polyimide film is used.
- Patent Literature 1 describes a method in which a polyimide having a thermocompression bonding polyimide layer on a surface and a metal foil such as a copper foil are bonded together by thermocompression bonding.
- the polyimide metal laminate produced by this method is excellent in heat resistance and adhesiveness.
- materials that can be used as thermocompression bonding polyimide are limited.
- Patent Document 2 and Patent Document 5 describe polyimides using a triazine-based diamine, and describe examples in which a laminate of a metal foil and a polyimide film is manufactured by applying a polyimide solution to the metal foil.
- Patent Document 3 discloses a terminal-modified imide oligomer using a triazine diamine
- Patent Document 4 discloses a polymer electrolyte using a triazine diamine. ing.
- An object of the present invention is to provide a method for producing a polyimide metal laminate in which metal layers are laminated on both sides of a polyimide film having good adhesion between the polyimide film and the metal layer and excellent heat resistance.
- the present invention relates to the following matters.
- After forming a conductive film it heats at the maximum heating temperature of 440 degrees C or less, imidizes, and forms the said polyimide layer (a),
- the manufacturing method of the polyimide metal laminated body characterized by the above-mentioned.
- R 1 represents a hydrogen atom or an alkyl group or aryl group having 1 to 12 carbon atoms
- R 2 represents a hydrogen atom or an alkyl group or aryl group having 1 to 12 carbon atoms.
- the polyimide film has a single layer structure of the polyimide layer (a)
- the film is imidized by heating at a maximum heating temperature of 440 ° C. or less, and 1 of the polyimide layer (a) Item 3.
- the polyimide film has a multilayer structure having the polyimide layer (a) and another polyimide layer (b),
- the polyimide layer (a) is located on the outermost surfaces on both sides of the multilayer structure, and the polyimide layer (b) is located inside the multilayer structure,
- the solution of the polyamic acid (a) and the solution of the polyamic acid (b) that gives the polyimide layer (b) are at least the solution of the polyamic acid (a), the uppermost layer and the lowermost layer.
- a self-supporting film is formed from the obtained multilayer liquid film, imidized by heating at a maximum heating temperature of 440 ° C. or less, Item 3.
- the polyimide film has a multilayer structure having the polyimide layer (a) and another polyimide layer (b),
- the polyimide layer (a) is located on the outermost surfaces on both sides of the multilayer structure, and the polyimide layer (b) is located inside the multilayer structure
- the solution of the polyamic acid (a) is applied on both sides of the self-supporting film obtained from the solution of the polyamic acid (b) that gives the polyimide layer (b), and then dried.
- the above item 1 wherein the self-supporting film having a multilayer structure is formed and then imidized by heating at a maximum heating temperature of 440 ° C. or less to form the polyimide layer (a) and the polyimide layer (b).
- Item 6 The polyimide metal according to any one of Items 1 to 5, wherein the diamine compound represented by the general formula (1) is 2,4-bis (4-aminoanilino) -6-anilino-1,3,5-triazine. A manufacturing method of a layered product.
- Item 7 The method for producing a polyimide metal laminate according to any one of Items 1 to 6, wherein the diamine component contains the diamine compound represented by the general formula (1) in the range of 5 to 100 mol%.
- Item 7 The method for producing a polyimide metal laminate according to any one of Items 1 to 6, wherein the diamine component contains the diamine compound represented by the general formula (1) in a range of 25 to 100 mol%.
- Item 9 The method for producing a polyimide metal laminate according to any one of Items 1 to 8, wherein the diamine component further contains at least one compound selected from paraphenylenediamine and 4,4'-diaminodiphenyl ether.
- tetracarboxylic dianhydride component contains at least one compound selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride
- the inventors of the present invention when producing a polyimide film using a triazine-based diamine, the polyimide film obtained by selecting an appropriate curing temperature has a suitable heat fusion property, and as a result, It is possible to laminate by thermocompression bonding with metal foil such as copper foil, and in the polyimide film in which metal foil is laminated on both sides, it has been found that the adhesiveness is good and the heat resistance is excellent, leading to the present invention It is.
- the production method of the present invention includes a step of forming a polyimide film in which at least both surfaces of the film are formed by the polyimide layer (a), It has the process of superimposing a metal layer on both surfaces of the said polyimide film, and carrying out thermocompression bonding.
- the polyimide layer (a) is prepared by heating a solution of polyamic acid (a) obtained by reacting a tetracarboxylic dianhydride component with a diamine component containing a diamine compound represented by the following general formula (1) to the highest temperature. It is obtained by heating at a temperature of 440 ° C. or lower.
- R 1 represents a hydrogen atom or an alkyl group or aryl group having 1 to 12 carbon atoms
- R 2 represents a hydrogen atom or an alkyl group or aryl group having 1 to 12 carbon atoms.
- the polyimide film may have a single layer structure of a polyimide layer (a), or the surface is composed of a polyimide layer (a) with another polyimide layer (single layer or multiple layers) interposed therebetween.
- a multilayer structure may be used. Examples of the multilayer structure include a three-layer structure such as polyimide layer (a) / polyimide layer (b) / polyimide layer (a).
- the polyimide film is divided into a case of a single layer structure of a polyimide layer (a) (hereinafter referred to as a single layer type film) and a case of a multilayer structure including other polyimide layers (hereinafter referred to as a multilayer type film). A method will be described.
- tetracarboxylic dianhydride component may be omitted and referred to as a “tetracarboxylic acid component”.
- This polyimide film comprises a tetracarboxylic dianhydride component and a diamine compound represented by the general formula (1) in an amount exceeding 0 and 100 mol%, preferably 5 to 100 mol%, more preferably 10 to 100 mol%, It is preferably obtained by reacting with a diamine component containing 15 to 100 mol%, more preferably 17 to 100 mol%, particularly preferably 20 to 100 mol%, and in a specific embodiment, 25 to 100 mol%. It is a polyimide film formed with a single layer of polyimide.
- the polyimide film is obtained by thermal imidization and / or chemical imidization, and when it contains a plurality of tetracarboxylic acid components and diamine components, it may be randomly copolymerized or block copolymerized. These may be used in combination.
- the thickness of the polyimide film is not particularly limited, but is 5 to 120 ⁇ m, preferably 12.5 to 75 ⁇ m, and more preferably 12.5 to 50 ⁇ m.
- a support in the form of a film containing a polyamic acid solution (including a polyamic acid solution composition in which an imidization catalyst, a dehydrating agent, a release aid, inorganic fine particles and the like are selectively added to the polyamic acid solution as necessary) Casting on top and drying by heating to obtain a self-supporting film, followed by dehydration and desolvation by heating to obtain a polyimide film (thermal imidization);
- a cyclization catalyst and a dehydrating agent are added to the polyamic acid solution, and the polyamic acid solution composition added by selecting inorganic fine particles and the like as necessary is cast on a support in a film form.
- a method of obtaining a polyimide film by dehydrating cyclization and heating and drying as necessary to obtain a self-supporting film, followed by removing the solvent and imidizing it by heating (chemical imidization) Is mentioned.
- the heating temperature in the heat treatment step is 440 ° C. or less, preferably 400 ° C. or less, more preferably 280 ° C., as the maximum heating temperature (maximum heating temperature). More than 440 ° C., more preferably more than 280 ° C. and not more than 400 ° C., particularly preferably 320 to 370 ° C., and in a specific embodiment, 340 to 370 ° C., further 350 to 370 ° C.
- the polyimide film obtained as a result is a polyimide metal laminate, the peel strength is excellent. Details will be described later in the heat treatment (imidization) step.
- the heating when heating at the maximum heating temperature, the heating may be performed on the support or may be peeled off from the support.
- tetracarboxylic dianhydride constituting the tetracarboxylic acid component include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), pyromellitic dianhydride (PMDA).
- the tetracarboxylic acid component preferably contains at least s-BPDA and / or PMDA.
- s-BPDA is preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 75 mol% or more in 100 mol% of the tetracarboxylic acid component.
- a polyimide film obtained using a tetracarboxylic acid component containing s-BPDA in such a ratio is excellent in mechanical properties and the like.
- PMDA is preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 75 mol% or more.
- a polyimide film obtained using a tetracarboxylic acid component containing PMDA in such a ratio is excellent in mechanical properties.
- the diamine component includes a diamine compound represented by the general formula (1).
- R 1 represents a hydrogen atom or an alkyl group or aryl group having 1 to 12 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms)
- R 2 represents a hydrogen atom or an alkyl group or an aryl group having 1 to 12 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms)
- R 1 and R 2 may be different from each other; It may be the same.
- alkyl group or aryl group having 1 to 12 carbon atoms of R 1 and R 2 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, phenyl, benzyl, naphthyl, methylphenyl, and biphenyl.
- the other two connecting groups excluding the NR 1 R 2 group, are 4-aminoanilino groups (para position).
- diamine compound represented by the general formula (1) examples include 2,4-bis (4-aminoanilino) -6-anilino-1,3,5-triazine and 2,4-bis (4-aminoanilino).
- ) -6-Benzylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-naphthylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino)- 6-biphenylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-diphenylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6- Dibenzylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-dinaphthylamino-1,3,5-triazine, 2,4-bis (4
- a diamine component may contain the diamine compound generally used for manufacture of a polyimide other than the diamine compound represented by General formula (1) (combined diamine compound).
- a diamine compound generally used for manufacture of a polyimide other than the diamine compound represented by General formula (1) (combined diamine compound).
- One benzene nucleus diamine such as paraphenylenediamine (1,4-diaminobenzene; PPD), 1,3-diaminobenzene, 2,4-toluenediamine, 2,5-toluenediamine, 2,6-toluenediamine, etc.
- Diaminodiphenyl ethers such as 4,4′-diaminodiphenyl ether (DADE), 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4 , 4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 3,3'-dimethyl-4 , 4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis (4-aminophenyl) ) Sulfide, 4,4
- the benzene core of three diamines 4) 3,3′-bis (3-aminophenoxy) biphenyl, 3,3′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [3- (3-aminophenoxy) phenyl] ether, bis [3- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, Bis [4- (4-aminophenoxy) phenyl] ether, bis [3- (3-aminophenoxy) phenyl] ketone, bis [3- (4-aminophenoxy) phenyl] ketone, bis [4- (3-amino Phenoxy) phenyl] ketone, bis [4- (4-a
- a diamine compound preferably selected from paraphenylenediamine (PPD) and diaminodiphenyl ethers is used, more preferably PPD, 4,4′-diamino. It contains one or more compounds selected from diphenyl ether and 3,4'-diaminodiphenyl ether.
- PPD paraphenylenediamine
- diaminodiphenyl ethers preferably selected from paraphenylenediamine (PPD) and diaminodiphenyl ethers
- PPD paraphenylenediamine
- diaminodiphenyl ethers more preferably PPD, 4,4′-diamino. It contains one or more compounds selected from diphenyl ether and 3,4'-diaminodiphenyl ether.
- the polyimide film obtained by this is excellent in mechanical properties and the like.
- the combined use of PPD is particularly advantageous in that a polyimide having excellent mechanical properties can be obtained.
- the combined use of 4,4′-diaminodiphenyl ether and / or 3,4′-diaminodiphenyl ether is advantageous in terms of high peel strength in addition to excellent mechanical properties of the resulting polyimide.
- the content of the diamine compound represented by the general formula (1) is advantageous in that a large peel strength can be obtained from a relatively small amount of about 5 mol% or more.
- the polyimide of the present invention is excellent in not containing at least one proton conductive functional group selected from the group consisting of —SO 3 H, —COOH and —PO 3 H 2 as shown in Patent Document 4. It is preferable because it has heat resistance.
- the polyamic acid (polyimide precursor) (a) that gives the polyimide layer (a) can be obtained by reacting a tetracarboxylic acid component and a diamine component by a known method. For example, an approximately equimolar amount is obtained in an organic solvent. To obtain a polyamic acid solution (which may be partially imidized as long as a uniform solution state is maintained). Alternatively, it combines the two or more polyamic acid is excessive advance either component, after combining the respective polyamic acid solution may be mixed under reaction conditions. The polyamic acid solution thus obtained can be used for the production of a self-supporting film as it is or after removing or adding a solvent if necessary.
- organic solvent of the polyamic acid solution a known solvent can be used, and N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N -Amides such as diethylformamide and hexamethylsulfuramide, sulfoxides such as dimethylsulfoxide and diethylsulfoxide, and sulfones such as dimethylsulfone and diethylsulfone. These solvents may be used alone or in combination.
- N-methyl-2-pyrrolidone N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide and the like are preferable.
- These organic solvents may be used alone or in combination of two or more.
- the concentration of all monomers in the organic polar solvent may be appropriately selected according to the purpose of use and the purpose of production, for example, the concentration of all monomers in the organic polar solvent is It is preferably 10% by mass to 30% by mass, more preferably 15% by mass to 27% by mass, and particularly preferably 18% by mass to 26% by mass.
- the polymerization reaction of the aromatic tetracarboxylic acid component and the aromatic diamine component is, for example, substantially equimolar or either component (acid component or diamine component).
- the reaction is carried out at a reaction temperature of 100 ° C. or lower, preferably 80 ° C. or lower, for about 0.2 to 60 hours to obtain a polyamic acid solution.
- an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles, and the like may be added to the polyamic acid solution as necessary. If it is chemical imidation, you may add a cyclization catalyst, a dehydrating agent, inorganic fine particles, etc. to a polyamic acid solution as needed. An organic phosphorus-containing compound, inorganic fine particles, and the like may be added to the polyimide solution. Further, polyimide fine particles that are insoluble in an organic solvent can be used instead of the inorganic fine particles.
- the imidization catalyst examples include a substituted or unsubstituted nitrogen-containing heterocyclic compound, an N-oxide compound of the nitrogen-containing heterocyclic compound, a substituted or unsubstituted amino acid compound, an aromatic hydrocarbon compound having a hydroxyl group, or an aromatic heterocyclic compound.
- Cyclic compounds such as 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, etc.
- Benzimidazoles such as alkylimidazole and N-benzyl-2-methylimidazole, isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n- Substituted pyridines such as propylpyridine It can be used to apply.
- the amount of the imidization catalyst used is preferably about 0.01 to 2 times equivalent, particularly about 0.02 to 1 time equivalent to the amic acid unit of the polyamic acid.
- organic phosphorus-containing compounds examples include monocaproyl phosphate, monooctyl phosphate, monolauryl phosphate, monomyristyl phosphate, monocetyl phosphate, monostearyl phosphate, triethylene glycol monotridecyl Monophosphate of ether, monophosphate of tetraethylene glycol monolauryl ether, monophosphate of diethylene glycol monostearyl ether, dicaproyl phosphate, dioctyl phosphate, dicapryl phosphate, dilauryl phosphate, dimyristyl phosphate, Dicetyl phosphate, distearyl phosphate, diethylene phosphate of tetraethylene glycol mononeopentyl ether, trie Diphosphate of glycol mono tridecyl ether, diphosphate of tetraethyleneglycol monolauryl ether, and phosphoric acid esters such as diphosphate esters of diethylene glycol monostearyl
- amine ammonia, monomethylamine, monoethylamine, monopropylamine, monobutylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, monoethanolamine, diethanolamine, triethanolamine Etc.
- Cyclization catalysts include aliphatic tertiary amines such as trimethylamine and triethylenediamine, aromatic tertiary amines such as dimethylaniline, and heterocyclic tertiary amines such as isoquinoline, pyridine, ⁇ -picoline and ⁇ -picoline. Etc.
- dehydrating agent examples include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride.
- Inorganic fine particles include fine particle titanium dioxide powder, silicon dioxide (silica) powder, magnesium oxide powder, aluminum oxide (alumina) powder, inorganic oxide powder such as zinc oxide powder, fine particle silicon nitride powder, and titanium nitride powder.
- Inorganic nitride powder such as silicon carbide powder, inorganic carbide powder such as silicon carbide powder, and inorganic salt powder such as particulate calcium carbonate powder, calcium sulfate powder, and barium sulfate powder.
- These inorganic fine particles may be used in combination of two or more. In order to uniformly disperse these inorganic fine particles, a means known per se can be applied.
- the self-supporting film of the polyamic acid (a) solution has a degree of self-supporting after casting a polyamic acid solution on a support to form a liquid film (meaning a stage before a normal curing process) For example, it is manufactured by heating to such an extent that it can be peeled off from the support.
- the solid content concentration of the polyamic acid (a) solution used in the present invention is not particularly limited as long as it is in a viscosity range suitable for production, but is usually preferably 10% by mass to 30% by mass, and more preferably 15% by mass to 27%. More preferably, it is more preferably 18% by mass to 26% by mass.
- the heating temperature and heating time at the time of preparing the self-supporting film can be appropriately determined.
- the heating may be performed at a temperature of 100 to 180 ° C. for about 1 to 60 minutes.
- the support is not particularly limited as long as it can cast a polyamic acid solution, but a smooth substrate is preferably used.
- a metal drum or belt such as stainless steel is used.
- the self-supporting film is not particularly limited as long as the solvent is removed and / or imidized to such an extent that it can be peeled off from the support, but in thermal imidization, the loss on heating is 20 to 50 mass. %, And when the weight loss on heating is in the range of 20 to 50% by mass and the imidization ratio is in the range of 7 to 55%, the mechanical properties of the self-supporting film are sufficient. In addition, if the heat loss and imidization rate of the self-supporting film are within the above ranges, it becomes easy to apply the coating solution uniformly and cleanly on the surface of the self-supporting film, and foams into the polyimide film obtained after imidization. , Cracks, crazes, cracks, cracks and the like are not observed, which is preferable.
- the loss on heating of the self-supporting film is a value obtained by the following formula from the mass W1 of the self-supporting film and the mass W2 of the film after curing.
- Heat loss (mass%) ⁇ (W1-W2) / W1 ⁇ ⁇ 100
- the imidation ratio of a partially imidized self-supporting film is determined by measuring the IR spectrum of the self-supporting film and its fully cured product (polyimide film) by the ATR method, and measuring the peak area or height of the vibration band. It can be calculated using the ratio.
- the vibration band peak a symmetric stretching vibration band of an imidecarbonyl group, a benzene ring skeleton stretching vibration band, or the like is used.
- the FT-IR spectrum of the self-supporting film and its full-cure film (polyimide film) is obtained by using a FT / IR6100 manufactured by JASCO Corporation with a Ge crystal and a multiple reflection ATR method with an incident angle of 45 °.
- Imidation rate (%) ⁇ (X1 / X2) / (Y1 / Y2) ⁇ ⁇ 100 (1)
- X1 peak height of 1775 cm ⁇ 1 of the self-supporting film
- X2 peak height of 1515 cm ⁇ 1 of the self-supporting film
- Y1 peak height of 1775 cm ⁇ 1 of the full cure film
- Y2 The peak height of 1515 cm ⁇ 1 of the full cure film.
- ⁇ Heat treatment (imidization) step> the self-supporting film is heat-treated to obtain a polyimide film.
- the maximum heating temperature is 440 ° C. or lower, preferably 400 ° C. or lower.
- the heat treatment it is appropriate to first gradually perform imidization of the polymer and evaporation / removal of the solvent at a temperature of about 100 ° C. to less than 350 ° C. for about 0.05 to 5 hours, particularly 0.1 to 3 hours. is there.
- the heat treatment is performed stepwise at a relatively low temperature of about 100 ° C. to about 170 ° C. for about 0.5-30 minutes, and then at a temperature above 170 ° C. and below 220 ° C.
- the second heat treatment is preferably performed for 0.5 to 30 minutes, and then the third heat treatment is preferably performed at a high temperature exceeding 220 ° C. and less than 300 ° C. for about 0.5 to 30 minutes.
- the fourth high temperature heat treatment at a high temperature of not higher than ° C, preferably not higher than 400 ° C. Also, this heating process can be performed sequentially or continuously.
- pin tenters, clips, frames, etc. at least the edges in the direction perpendicular to the longitudinal direction of the long self-supporting film, that is, the width direction of the film May be fixed, and heat treatment may be performed by expanding and contracting in the width direction or the length direction as necessary.
- the polyimide film of the present invention obtained as described above may be further subjected to sandblasting, corona treatment, plasma treatment, etching treatment and the like.
- the polyimide film of the present invention when the diamine concentration of the general formula (1) in the total diamine component is high (for example, 30 mol% or more), the polyimide film of the present invention obtained has a good polyimide film appearance. Therefore, it is preferable that the polyimide film is thicker (for example, 25 ⁇ m or more) than when it is thin.
- the tetracarboxylic acid component is PMDA and the diamine concentration of the general formula (1) in the total diamine component is high (for example, 80 mol% or more), in order to obtain a polyimide film having a good film appearance
- the maximum heating temperature in the heat treatment (imidization) step is preferably low (for example, 300 to 400 ° C.).
- the peel strength of the polyimide metal laminate tends to be higher when s-BPDA is used as the tetracarboxylic acid component than when PMDA is used.
- the tetracarboxylic acid component is PMDA and the diamine concentration of the general formula (1) in all diamine components is high (for example, 80 mol% or more), the peel strength of the polyimide metal laminate can be increased.
- the manufacturing method of the multilayer film which has a polyimide layer (a) as an outermost surface layer is demonstrated.
- the multilayer film is a polyimide film having a surface composed of a polyimide layer (a) with another polyimide layer (single layer or multiple layers) interposed therebetween.
- a multilayer structure a structure in which three layers such as polyimide layer (a) / polyimide layer (b) / polyimide layer (a) are laminated in contact with each other will be described as an example, but when the inner layer is two or more layers, It can be similarly manufactured considering that there are two or more polyimide layers (b) formed of different materials.
- “Laminated in contact” means that the polyimide layer (a) is laminated in contact with the surface of the polyimide layer (b).
- the contact portion (boundary region) between the laminated polyimide layer (a) and the polyimide layer (b) is a polyamic acid (a) solution that forms each polyimide layer; It may be chemically modified with the polyamic acid (b) solution to form an intermediate layer (including a gradient layer whose composition changes continuously). A form in which this intermediate layer is formed is also included in the present invention.
- the multilayer film is advantageous in that the polyimide layer (a) can impart heat-fusibility to the surface while maintaining excellent properties such as the mechanical properties and heat resistance of the polyimide layer (b).
- the thickness of the polyimide layer (a) can be arbitrarily changed, and is, for example, about 0.2 ⁇ m to 100 ⁇ m per layer.
- it is, for example, 0.2 ⁇ m to 100 ⁇ m, preferably 0.5 ⁇ m to 100 ⁇ m per layer; when the coating method is adopted, it is, for example, 0.2 ⁇ m per layer. It is ⁇ 10 ⁇ m, preferably 0.2 ⁇ m to 3 ⁇ m.
- the thickness of the polyimide layer (b) can be arbitrarily changed, and is, for example, about 5 to 75 ⁇ m, preferably about 12.5 to 50 ⁇ m per layer.
- the thickness of the multilayer polyimide film including the polyimide layer (a) and the polyimide layer (b) is not particularly limited, but is 5 to 120 ⁇ m, preferably 12.5 to 75 ⁇ m, more preferably 12.5 to 50 ⁇ m. is there.
- a method for producing a polyimide film having a multilayer structure there are a multilayer extrusion method and a coating method, and there are a thermal imidization method and a chemical imidization method, respectively, and therefore, they are classified into the following four methods.
- a method having a step of obtaining a polyimide film (coextrusion-thermal imidization); (I-2)
- a polyamic acid (a) solution for providing a polyimide layer (a) and a polyamic acid (b) solution for providing a polyimide layer (b) are formed on a support by a coextrusion-casting film forming method.
- a method comprising a step of obtaining a polyimide film (coextrusion-chemical imidization); (II-1) a step of casting a polyamic acid (b) solution capable of obtaining a polyimide layer (b) on a support and drying by heating to obtain a self-supporting film; both sides of the self-supporting film A method in which a polyamic acid (a) solution is applied to the substrate, followed by thermal dehydration and desolvation to obtain a polyimide film (coating method-thermal imidization); (II-2) A polyamic acid (b) solution capable of obtaining a polyimide layer (b) is cast on a support, chemically dehydrated and cyclized, and dried by heating as necessary to be self-supporting.
- a method (coating method) having a step of obtaining a film and a step of obtaining a polyimide film by applying a polyamic acid (a) solution to one or both sides of this self-supporting film and then removing the solvent by heating and imidization. -Chemical imidization).
- the above polyamic acid solution may be added with an imidization catalyst, a dehydrating agent, a release aid, inorganic fine particles, etc. as necessary.
- a catalyst, a cyclization catalyst, and a dehydrating agent are added, and if necessary, inorganic fine particles and the like may be added.
- either the polyimide layer (a) or the polyimide layer (b) may be thermally imidized and the other may be chemically imidized.
- tetracarboxylic dianhydride used for the polyimide layer (b) include those exemplified as the tetracarboxylic acid component that is a raw material for the polyimide layer (a).
- the tetracarboxylic acid component preferably contains at least s-BPDA and / or PMDA.
- s-BPDA is preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 75 mol% or more in 100 mol% of the tetracarboxylic acid component.
- a polyimide film obtained using a tetracarboxylic acid component containing s-BPDA in such a ratio is excellent in mechanical properties and the like.
- PMDA in 100 mol% of the tetracarboxylic acid component, is preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 75 mol% or more.
- a polyimide film obtained using a tetracarboxylic acid component containing PMDA in such a ratio is excellent in mechanical properties.
- the polyimide film obtained by this is excellent in mechanical properties and the like.
- the polyimide layer (b) is preferably a polyimide produced from s-BPDA and PPD or optionally PPD and diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether and 3,4'-diaminodiphenyl ether.
- the PPD / diaminodiphenyl ether (molar ratio) is preferably 100/0 to 85/15.
- PMDA aromatic tetracarboxylic dianhydride which is a combination of s-BPDA and PMDA, PPD, tolidine (ortho form, meta form), 4,4′-diaminodiphenyl ether, 3,4′-diamino
- polyimides made from aromatic diamines such as diaminodiphenyl ethers such as diphenyl ether.
- the aromatic diamine PPD or an aromatic diamine having a PPD / diaminodiphenyl ether (molar ratio) of 90/10 to 10/90 is preferable.
- s-BPDA / PMDA is preferably 0/100 to 90/10.
- a polyimide produced from PMDA and PPD and diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether and 3,4'-diaminodiphenyl ether.
- the diaminodiphenyl ethers / PPD (molar ratio) is preferably 90/10 to 10/90.
- the polyamic acid (b) solution for providing the polyimide layer (b) can be obtained by reacting a tetracarboxylic acid component and a diamine component by a known method. For example, an approximately equimolar amount is reacted in an organic solvent. Thus, a polyamic acid solution (a part of which may be imidized as long as a uniform solution state is maintained) can be obtained. Alternatively, it combines the two or more polyamic acid is excessive advance either component, after combining the respective polyamic acid solution may be mixed under reaction conditions. The polyamic acid solution thus obtained can be used for the production of a self-supporting film as it is or after removing or adding a solvent if necessary.
- the solvent, reaction conditions, additives and the like for preparing the polyamic acid (b) solution are basically the same as those described in the section for preparing the polyamic acid (a) solution in the method for producing a single layer film.
- the polyamic acid (a) solution used in the method for producing a multilayer film is basically the same as that described in the method for producing a single layer film.
- the concentration of all monomers in the organic polar solvent is appropriately selected according to the purpose of use and the purpose of production, and the concentration and viscosity of the solution are also appropriately selected according to the purpose.
- the concentration of all monomers in the organic polar solvent is preferably 5 to 40% by mass, more preferably 6 to 35% by mass, and particularly preferably 10 to 30% by mass. It is preferable.
- the polyamic acid (a) solution in the case of the coextrusion-casting film forming method (multilayer extrusion method), for example, as in the method for producing a single layer film, all the monomers in an organic polar solvent are prepared.
- the concentration is preferably 10% by mass to 30% by mass, more preferably 15% by mass to 27% by mass, and particularly preferably 18% by mass to 26% by mass.
- the polyamic acid solution (a) is appropriately determined within a range that allows a polymerization reaction and is easy to handle.
- the solid content concentration of the polymer solution (a) used for coating is preferably 1 to 15% by mass, more preferably 2 to 8% by mass, so that this concentration is obtained during polymerization.
- the monomer concentration at the time of polymerization may be determined, or polymerization may be carried out at a high concentration and diluted to form a coating solution.
- a polyamic acid (a) solution and a polyamic acid (b) solution are cast on a support to form a multilayer liquid film, and dried by heating to obtain a self-supporting film (gel film).
- a self-supporting film gel film
- it is coextruded into three layers of polyamic acid (a) solution / polyamic acid (b) solution / polyamic acid (a) solution and becomes self-supporting (meaning a stage before a normal curing step) ), For example, is heated to such an extent that it can be peeled off from the support to produce a self-supporting film.
- the solid content concentration of the polyamic acid solution (b) is not particularly limited as long as it is in a viscosity range suitable for production, but is usually preferably 5 to 40% by mass, more preferably 6 to 35% by mass, particularly preferably. Is 10 to 30% by mass.
- the solid content concentration of the polyamic acid (a) solution is not particularly limited as long as it is in a viscosity range suitable for production, but is usually preferably 10% by mass to 30% by mass, more preferably 15% by mass to 27% by mass. It is preferably 18% by mass to 26% by mass.
- the temperature conditions, support, and other conditions during the production of the self-supporting film are the same as in the method for producing a single layer film.
- the self-supporting film (b) is first formed only from the polyamic acid (b) solution.
- the production conditions are the same as those for the multilayer coextrusion described above except that only the polyamic acid (b) solution is extruded.
- a polyamic acid (a) solution is apply
- the rotational viscosity of the polyamic acid (a) solution may be any viscosity that can be applied to a self-supporting film, and is 0.5 to 50000 centipoise (mPa ⁇ s). It is preferable that The solid concentration of the polymer solution (a) is preferably 1 to 15% by mass, more preferably 2 to 8% by mass. In the polymerization, the monomer concentration may be adjusted so that the concentration becomes this level, and the reaction may be performed, or a polymerization solution having a high solid content concentration may be appropriately diluted.
- the coating amount of the polyamic acid (a) solution can be determined as appropriate. In particular, it is preferable to determine the thickness of the polyimide layer (a).
- the polyamic acid (a) solution can be applied to the self-supporting film (b) by a known method, for example, gravure coating method, spin coating method, silk screen method, dip coating method, spray coating method, bar coating.
- a known method for example, gravure coating method, spin coating method, silk screen method, dip coating method, spray coating method, bar coating.
- known coating methods such as a method, a knife coating method, a roll coating method, a blade coating method, and a die coating method.
- the liquid film formed by coating in this way is dried at 50 ° C. to 180 ° C., for example, to form a self-supporting film having a multilayer structure.
- the preferred heat loss value and imidation ratio of the multilayer self-supporting film are in the same range as in the case of the single layer film.
- ⁇ Heat treatment (imidization) step> The self-supporting film having a multilayer structure obtained as described above can be heat-treated in the same manner as described for the single-layer film to obtain a polyimide film. Subsequent processing and the like can be similarly performed.
- Polyimide metal laminate >> A metal layer is laminated
- a metal foil is preferably used. Although it does not specifically limit as metal foil, Metals, such as copper and copper alloys, such as an electrolytic copper foil and a rolled copper foil, aluminum and an aluminum alloy, stainless steel, nickel, and a nickel alloy (42 alloys etc.), can be used.
- the thickness of the metal foil is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, more preferably 3 to 35 ⁇ m, still more preferably 6 to 25 ⁇ m, and particularly preferably 8 to 20 ⁇ m.
- the surface roughness (Rz) of the metal foil is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 7 ⁇ m, still more preferably 0.1 to 5 ⁇ m, and particularly preferably 0.5 to 5 ⁇ m.
- the metal foil is particularly preferably copper and copper alloys such as electrolytic copper foil and rolled copper foil. Examples of such copper foil include 3EC-III and 3EC-VLP (both manufactured by Mitsui Metal Mining Co., Ltd.).
- a protective foil for example, a carrier foil that serves to reinforce and protect the metal foil is laminated on the metal foil.
- the material of the protective foil (carrier foil) is not particularly limited and can be bonded to a metal foil such as an ultrathin copper foil, and has a role of reinforcing and protecting the metal foil such as an ultrathin copper foil.
- an aluminum foil, a copper foil, a resin foil whose surface is metal-coated, or the like can be used.
- the thickness of the protective foil (carrier foil) is not particularly limited as long as it can reinforce a thin metal foil, and is generally 10 to 200 ⁇ m, more preferably 12 to 100 ⁇ m, and particularly preferably 15 to 75 ⁇ m. .
- Protective foil may be used as long as it is planarly bonded to an ultrathin metal foil such as an ultrathin copper foil.
- the protective foil flows through a continuous manufacturing process in a form bonded to a metal foil such as an ultrathin copper foil, and is bonded to the metal foil layer at least until the end of the manufacture of the metal foil laminated polyimide resin substrate. It maintains the state and facilitates handling.
- a method of removing protective foil (carrier foil) from metal foil such as copper foil (1) A method of peeling and removing the protective foil (carrier foil) after laminating a metal foil with protective foil (carrier foil) on the polyimide film, (2) A method of removing the protective foil (carrier foil) by an etching method after laminating a metal foil with a protective foil (carrier foil) on the polyimide film can be exemplified.
- the carrier foil since the copper component that becomes the electrolytic copper foil is electrodeposited on the surface of the carrier foil, the carrier foil needs to have at least conductivity.
- a metal foil as a metal layer is laminated in direct contact with both surfaces of the polyimide film without using an adhesive.
- the metal foil laminated on both sides of the polyimide film may be the same or different.
- a heating device, a pressing device, or a heating and pressing device can be used.
- the heating condition and the pressurizing condition are preferably selected appropriately and are not particularly limited as long as they can be laminated continuously or batchwise. However, it is preferably carried out continuously using a roll laminate or a double belt press.
- coating of a silane coupling agent etc. may be given to the adhesion surface of metal foil and / or the surface of a polyimide film.
- a polyimide film and a metal foil having a long-side both surfaces having heat-fusibility are overlapped so that the metal foil comes on both sides of the polyimide film, preferably about 150 to 250 ° C. in-line immediately before introduction,
- preheating is performed using a preheater such as a hot air supply device or an infrared heater so that preheating can be performed at a temperature higher than 150 ° C. and lower than 250 ° C. for about 2 to 120 seconds.
- the temperature of the heat fusing zone of the pair of fusing rolls or double belt press is 20 ° C. higher than the glass transition temperature of the heat fusible polyimide, and further heat fusing. It is heat-sealed under pressure in a temperature range of 30 ° C. or higher than the glass transition temperature of the conductive polyimide, and further in a temperature range of 400 ° C. or lower, particularly in a temperature range of 50 ° C. or higher to 400 ° C. higher than the glass transition temperature.
- the temperature of the heat fusion zone is, for example, a temperature range of 280 to 370 ° C., preferably 300 to 370 ° C.
- a double belt press in particular, it is subsequently cooled under pressure in a cooling zone.
- it is cooled to a temperature lower by 20 ° C. or more than the glass transition temperature of the heat-fusible polyimide, further from 30 ° C. or more to 110 ° C., preferably 115 ° C., more preferably 120 ° C., and laminated to form a roll. Wind up.
- stacked on both surfaces of a polyimide film is obtained.
- the polyimide film and the metal layer can be heat-sealed at a relatively low temperature.
- Preheating the polyimide film before thermocompression is preferable because it can reduce appearance defects due to foaming of the laminate after thermocompression due to moisture contained in the polyimide.
- the double belt press can perform high temperature heating and cooling under pressure, and is preferably a hydraulic type using a heat medium.
- the polyimide metal laminate can be made to have a take-up speed of 1 m / min or more by laminating by heat fusion-cooling under pressure using a double belt press, and is long and has a width of about 400 mm or more.
- the value of the linear expansion coefficient of the polyimide film is close to that of the metal foil, the warpage of the polyimide metal laminate can be reduced.
- a protective material that is, two protective materials
- the layers may be laminated by heat-sealing and cooling under pressure.
- any material can be used as long as it is non-heat-sealable and has good surface smoothness to the polyimide layer (a) and the metal foil during the production of the laminate, for example, a metal foil,
- a metal foil In particular, copper foil, stainless steel foil, aluminum foil, high heat-resistant polyimide film (for example, Ube Industries, Upilex S (registered trademark), Toray DuPont Kapton H (registered trademark)), etc., thickness of 5 to 125 ⁇ m
- the grades are preferably mentioned, and in particular, Upilex S manufactured by Ube Industries, Ltd. is preferred.
- the polyimide metal laminate obtained as described above is a printed circuit board, a flexible printed circuit board, a TAB tape, a COF tape, or a metal wiring, or a cover substrate such as a metal wiring or a chip member such as an IC chip. It can be used as a material for electronic parts and electronic devices such as base substrates such as liquid crystal displays, organic electroluminescence displays, electronic paper, and solar cells.
- the physical properties of the polyimide film were evaluated according to the following methods.
- a) The peel strength of the polyimide metal laminate is a peel strength at T peel, and was measured at a peel rate of 50 mm / min in an environment of a temperature of 23 ° C. and a relative humidity of 50%. This was designated as “initial peel strength”.
- a test piece required for peel strength measurement with a T peel was prepared as follows. The polyimide metal laminate was cut into strips having a width of 5 mm and a length of 150 mm and divided into five test pieces.
- the copper foil on both sides of one end of the test piece of the polyimide metal laminate is gripped by a chuck, and one copper foil is pulled in the direction opposite to that of the other one by 180 °. It measured by peeling the adhesive surface of copper foil. The above measurement was performed from each end of the same test piece to half the length in the longitudinal direction. This measurement was performed on five test pieces, and a total of 10 points were measured. Then, the average value was calculated and used as the peel strength described in Tables 1 to 3 of the present application. In peeling of a polyimide film and copper foil, it peels on the surface with the weaker adhesive force among the copper foil laminated
- the measured peel strength is the peel strength of the surface with weaker adhesive force.
- the polyimide metal laminate was treated in a hot air dryer at 150 ° C. for 24 hours, and then the peel strength was measured. This was defined as “peel strength after heat resistance”.
- the method for measuring the peel strength is the same as the method described in a) above.
- s-BPDA-ATDA A predetermined amount of N, N-dimethylacetamide (DMAc) and 2,4-bis (4-aminoanilino) -6-anilino-1,3,5-triazine (ATDA) as a diamine component were added to the polymerization tank. Then, while stirring at 40 ° C., 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) as a tetracarboxylic acid component was added stepwise to approximately equimolar amounts with all diamine components.
- DMAc N, N-dimethylacetamide
- ATDA 2,4-bis (4-aminoanilino) -6-anilino-1,3,5-triazine
- polyamic acid polymerization solution (polyimide precursor solution) having a solid content concentration of 18% by mass was obtained.
- monostearyl phosphate ester triethanolamine salt was added to this polyamic acid polymerization solution in the ratio of 0.25 mass part with respect to 100 mass parts of polyamic acid, and it mixed uniformly, and the polyamic acid solution A was obtained. .
- s-BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
- PMDA pyromellitic dianhydride
- monostearyl phosphate triethanolamine salt is added to the polyamic acid polymerization solution at a ratio of 0.25 parts by mass with respect to 100 parts by mass of the polyamic acid, and mixed uniformly to obtain a polyamic acid solution C. It was.
- s-BPDA 4,4′-biphenyltetracarboxylic dianhydride
- s-BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
- PMDA pyromellitic dianhydride
- monostearyl phosphate triethanolamine salt is added to the polyamic acid polymerization solution at a ratio of 0.25 parts by mass with respect to 100 parts by mass of the polyamic acid, and mixed uniformly to obtain a polyamic acid solution L. It was.
- Example 1 The polyamic acid solution A was cast into a thin film on a glass plate, heated at 138 ° C. for 435 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film.
- This self-supporting film are fixed with a pin tenter, and are continuously heated and imidized from 150 ° C. to 320 ° C. (maximum heating temperature is 320 ° C.) using an oven in 9 minutes. -1) was obtained.
- Example 2 A self-supporting film was obtained in the same manner as in Example 1. Four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 340 ° C. in 10 minutes using an oven to obtain a polyimide film (PI-2) having a thickness of 50 ⁇ m. Using a polyimide film (PI-2), a polyimide metal laminate (PI-2) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-2) was measured, and the results are shown in Table 1.
- Example 3 A self-supporting film was obtained in the same manner as in Example 1. The four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 350 ° C. for 10 minutes using an oven to obtain a polyimide film (PI-3) having a thickness of 50 ⁇ m. Using a polyimide film (PI-3), a polyimide metal laminate (PI-3) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-3) was measured, and the results are shown in Table 1.
- Example 4 Using a polyimide film (PI-3), a polyimide metal laminate (PI-4) in which copper foils were laminated on both sides by the same method as in Example 3 except that the temperature was changed to 300 ° C. among the thermocompression bonding conditions. Obtained. The peel strength of the polyimide metal laminate (PI-4) was measured, and the results are shown in Table 1.
- Example 5 A self-supporting film was obtained in the same manner as in Example 1.
- this self-supporting film was fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 370 ° C. in 11 minutes using an oven to obtain a polyimide film (PI-5) having a thickness of 50 ⁇ m.
- a polyimide film (PI-5) having copper foil laminated on both sides was obtained in the same manner as in Example 1.
- the peel strength of the polyimide metal laminate (PI-5) was measured, and the results are shown in Table 1.
- Example 6 The polyamic acid solution A was cast into a thin film on a glass plate and heated at 138 ° C. for 210 seconds using a hot plate to obtain a self-supporting film. Without making it peel from a glass plate, the heating imidation was continuously performed from 150 degreeC to 370 degreeC on the glass plate in 11 minutes. After cooling, the polyimide film was peeled off from the glass plate by dipping in water. After drying, a polyimide film (PI-6) having a thickness of 12.5 ⁇ m was obtained. A polyimide metal laminate in which copper foil is laminated on both sides in the same manner as in Example 1 except that the polyimide film (PI-6) is used and the temperature is changed to 370 ° C. and the time is changed to 30 minutes. (PI-6) was obtained. The peel strength of the polyimide metal laminate (PI-6) was measured, and the results are shown in Table 1.
- Example 7 The polyamic acid solution A was cast into a thin film on a glass plate, heated at 138 ° C. for 210 seconds using a hot plate, and then peeled from the glass plate to obtain a self-supporting film. Four sides of this self-supporting film were fixed to a frame tenter, and continuously heated and imidized from 150 ° C. to 370 ° C. for 11 minutes using an oven to obtain a polyimide film (PI-7) having a thickness of 35 ⁇ m. A polyimide metal laminate (PI-7) having copper foil laminated on both sides was obtained in the same manner as in Example 6 except that the polyimide film (PI-7) was used. The peel strength of the polyimide metal laminate (PI-7) was measured, and the results are shown in Table 1.
- Example 8 The polyamic acid solution A was cast into a thin film on a glass plate, heated at 138 ° C. for 270 seconds using a hot plate, and then peeled from the glass plate to obtain a self-supporting film. Four sides of this self-supporting film were fixed to a frame tenter, and continuously heated and imidized from 150 ° C. to 370 ° C. in 11 minutes using an oven to obtain a polyimide film (PI-8) having a thickness of 50 ⁇ m. A polyimide metal laminate (PI-8) having copper foil laminated on both sides was obtained in the same manner as in Example 6 except that the polyimide film (PI-8) was used. The peel strength of the polyimide metal laminate (PI-8) was measured, and the results are shown in Table 1.
- Example 9 The polyamic acid solution B was cast into a thin film on a glass plate, heated at 138 ° C. for 375 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film. The four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 370 ° C. in 11 minutes using an oven to obtain a polyimide film (PI-9) having a thickness of 50 ⁇ m. Using a polyimide film (PI-9), a polyimide metal laminate (PI-9) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-9) was measured, and the results are shown in Table 1.
- Example 10 The polyamic acid solution C was cast into a thin film on a glass plate, heated at 138 ° C. for 435 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film. Four sides of this self-supporting film were fixed with a pin tenter and imidized continuously by heating from 150 ° C. to 370 ° C. in 11 minutes using an oven to obtain a polyimide film (PI-10) having a thickness of 50 ⁇ m. Using a polyimide film (PI-10), a polyimide metal laminate (PI-10) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-10) was measured, and the results are shown in Table 1.
- Example 11 A self-supporting film was obtained in the same manner as in Example 1. The four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 400 ° C. in 12 minutes using an oven to obtain a polyimide film (PI-11) having a thickness of 50 ⁇ m. Using the polyimide film (PI-11), a polyimide metal laminate (PI-11) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-11) was measured, and the results are shown in Table 1.
- Example 1 A self-supporting film was obtained in the same manner as in Example 1. Four sides of this self-supporting film were fixed with a pin tenter and imidized continuously by heating from 150 ° C. to 450 ° C. in 16 minutes using an oven to obtain a polyimide film (PI-12) having a thickness of 50 ⁇ m. Using a polyimide film (PI-12), a polyimide metal laminate (PI-12) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-12) was measured, and the results are shown in Table 1.
- Example 2 In the same manner as in Example 6, a self-supporting film was obtained. Without making it peel from a glass plate, the heating imidation was continuously performed in 18 minutes from 150 degreeC to 490 degreeC on the glass plate. After cooling, the polyimide film was peeled off from the glass plate by dipping in water. After drying, a polyimide film (PI-13) having a film thickness of 12.5 ⁇ m was obtained. Using a polyimide film (PI-13), a polyimide metal laminate (PI-13) having copper foil laminated on both sides was obtained in the same manner as in Example 6. The peel strength of the polyimide metal laminate (PI-13) was measured, and the results are shown in Table 1.
- Example 3 In the same manner as in Example 7, a self-supporting film was obtained. Four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 490 ° C. in 18 minutes using an oven to obtain a polyimide film (PI-14) having a thickness of 35 ⁇ m. Using a polyimide film (PI-14), a polyimide metal laminate (PI-14) having copper foil laminated on both sides was obtained in the same manner as in Example 6. The peel strength of the polyimide metal laminate (PI-14) was measured, and the results are shown in Table 1.
- Example 4 In the same manner as in Example 8, a self-supporting film was obtained. Four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 490 ° C. in 18 minutes using an oven to obtain a polyimide film (PI-15) having a thickness of 50 ⁇ m. Using a polyimide film (PI-15), a polyimide metal laminate (PI-15) having copper foil laminated on both sides was obtained in the same manner as in Example 6. The peel strength of the polyimide metal laminate (PI-15) was measured, and the results are shown in Table 1.
- Example 5 A polyimide film (PI-16) having a thickness of 50 ⁇ m was obtained in the same manner as in Comparative Example 4 except that the polyamic acid solution was changed to D. Using a polyimide film (PI-16), a polyimide metal laminate (PI-16) having copper foil laminated on both sides was obtained in the same manner as in Example 6. The peel strength of the polyimide metal laminate (PI-16) was extremely low and could not be measured. The results are shown in Table 1.
- Example 6 A polyimide film (PI-17) having a thickness of 50 ⁇ m was obtained in the same manner as in Example 5 except that the polyamic acid solution was changed to D. Using a polyimide film (PI-17), a polyimide metal laminate (PI-17) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-17) was extremely low and could not be measured. The results are shown in Table 1.
- Example 12 Using a polyimide film (PI-2), a polyimide metal laminate (PI-18) in which a copper foil was laminated on both sides by the same method as in Example 2 except that the temperature was changed to 340 ° C. in the thermocompression bonding conditions. Obtained. The peel strength of the polyimide metal laminate (PI-18) was measured, and the results are shown in Table 2.
- Example 13 Using a polyimide film (PI-2), a polyimide metal laminate (PI-19) in which copper foils were laminated on both sides by the same method as in Example 2 except that the temperature was changed to 350 ° C. in the thermocompression bonding conditions. Obtained. The peel strength of the polyimide metal laminate (PI-19) was measured, and the results are shown in Table 2.
- Example 14 A self-supporting film was obtained in the same manner as in Example 9. Four sides of this self-supporting film were fixed with a pin tenter and imidized by heating continuously from 150 ° C. to 350 ° C. in 10 minutes using an oven to obtain a polyimide film (PI-20) having a thickness of 50 ⁇ m. Using a polyimide film (PI-20), a polyimide metal laminate (PI-20) having copper foil laminated on both sides was obtained in the same manner as in Example 9. The peel strength of the polyimide metal laminate (PI-20) was measured, and the results are shown in Table 2.
- Example 15 A self-supporting film was obtained in the same manner as in Example 1. Four sides of this self-supporting film were fixed with a pin tenter, and were continuously heated and imidized from 150 ° C. to 420 ° C. in 14 minutes using an oven to obtain a polyimide film (PI-21) having a thickness of 50 ⁇ m. Using a polyimide film (PI-21), a polyimide metal laminate (PI-21) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-21) was measured, and the results are shown in Table 2.
- Example 16 A self-supporting film was obtained in the same manner as in Example 1. Four sides of this self-supporting film were fixed with a pin tenter, and were continuously heated and imidized from 150 ° C. to 430 ° C. in 14 minutes using an oven to obtain a polyimide film (PI-22) having a thickness of 50 ⁇ m. Using a polyimide film (PI-22), a polyimide metal laminate (PI-22) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-22) was measured, and the results are shown in Table 2.
- Example 17 A self-supporting film was obtained in the same manner as in Example 1. The four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 440 ° C. in 14 minutes using an oven to obtain a polyimide film (PI-23) having a thickness of 50 ⁇ m. Using a polyimide film (PI-23), a polyimide metal laminate (PI-23) having copper foil laminated on both sides was obtained in the same manner as in Example 1. The peel strength of the polyimide metal laminate (PI-23) was measured, and the results are shown in Table 2.
- Example 18 Example 2 except that the polyimide foil (PI-2) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Mining & Smelting Co., Ltd. and the temperature was changed to 280 ° C. in the thermocompression bonding conditions. A polyimide metal laminate (PI-24) having copper foil laminated on both sides by the method was obtained. The peel strength of the polyimide metal laminate (PI-24) was measured, and the results are shown in Table 3.
- Example 19 Example 2 except that the polyimide film (PI-2) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Mining & Smelting Co., Ltd. A polyimide metal laminate (PI-25) in which copper foil was laminated on both sides by the method was obtained. The peel strength of the polyimide metal laminate (PI-25) was measured, and the results are shown in Table 3.
- Example 20 Polyimide metal with copper foil laminated on both sides by the same method as in Example 2 except that the polyimide film (PI-2) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Kinzoku Co., Ltd. A laminate (PI-26) was obtained. The peel strength of the polyimide metal laminate (PI-26) was measured, and the results are shown in Table 3.
- Example 21 Example 2 except that the polyimide film (PI-2) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Mining & Smelting Co., Ltd. and the temperature was changed to 340 ° C. in the thermocompression bonding conditions.
- the peel strength of the polyimide metal laminate (PI-27) was measured, and the results are shown in Table 3.
- Example 22 Example 2 except that the polyimide film (PI-2) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Mining & Smelting Co., Ltd. A polyimide metal laminate (PI-28) in which copper foil was laminated on both sides by the method was obtained. The peel strength of the polyimide metal laminate (PI-28) was measured, and the results are shown in Table 3.
- Example 23 Polyimide metal with copper foil laminated on both sides by the same method as in Example 5 except that the polyimide foil (PI-5) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Metal Mining Co., Ltd. A laminate (PI-29) was obtained. The peel strength of the polyimide metal laminate (PI-29) was measured, and the results are shown in Table 3.
- Example 24 Polyimide metal with copper foil laminated on both sides by the same method as in Example 14 except that the polyimide foil (PI-20) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Metal Mining Co., Ltd. A laminate (PI-30) was obtained. The peel strength of the polyimide metal laminate (PI-30) was measured, and the results are shown in Table 3.
- Example 25 Polyimide metal with copper foil laminated on both sides by the same method as in Example 9 except that the polyimide film (PI-9) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Metal Mining Co., Ltd. A laminate (PI-31) was obtained. The peel strength of the polyimide metal laminate (PI-31) was measured, and the results are shown in Table 3.
- Example 26 The polyamic acid solution E was cast into a thin film on a glass plate, heated at 138 ° C. for 370 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film.
- the four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 350 ° C. in 10 minutes using an oven to obtain a polyimide film (PI-32) having a thickness of 50 ⁇ m.
- PI-32 polyimide film having a thickness of 50 ⁇ m.
- Example 27 A self-supporting film was obtained in the same manner as in Example 26. Four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 370 ° C. in 11 minutes using an oven to obtain a polyimide film (PI-33) having a thickness of 50 ⁇ m. A polyimide metal laminate (PI-33) having copper foil laminated on both sides was obtained in the same manner as in Example 26 except that the polyimide film (PI-33) was used. The peel strength of the polyimide metal laminate (PI-33) was measured, and the results are shown in Table 3.
- Example 28 Using a polyimide film (PI-33), a polyimide metal laminate (PI-34) in which copper foils were laminated on both sides by the same method as in Example 27 except that the temperature was changed to 350 ° C. among the thermocompression bonding conditions. Obtained. The peel strength of the polyimide metal laminate (PI-34) was measured, and the results are shown in Table 3.
- Example 29 The polyamic acid solution F was cast into a thin film on a glass plate, heated at 138 ° C. for 360 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film.
- Four sides of this self-supporting film were fixed with a pin tenter and imidized by heating continuously from 150 ° C. to 350 ° C. for 10 minutes using an oven to obtain a polyimide film (PI-35) having a thickness of 50 ⁇ m.
- PI-35 polyimide film having a thickness of 50 ⁇ m.
- a metal laminate (PI-35) was obtained.
- the peel strength of the polyimide metal laminate (PI-35) was measured, and the results are shown in Table 3.
- Example 30 The polyamic acid solution G was cast into a thin film on a glass plate, heated at 138 ° C. for 360 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film.
- Four sides of this self-supporting film were fixed with a pin tenter, and were continuously heated and imidized from 150 ° C. to 350 ° C. in 10 minutes using an oven to obtain a polyimide film (PI-36) having a thickness of 50 ⁇ m.
- PI-36 polyimide film having a thickness of 50 ⁇ m.
- Example 31 The polyamic acid solution H was cast into a thin film on a glass plate, heated at 138 ° C. for 360 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film.
- Four sides of this self-supporting film were fixed with a pin tenter and imidized by heating continuously from 150 ° C. to 350 ° C. for 10 minutes using an oven to obtain a polyimide film (PI-37) having a thickness of 50 ⁇ m.
- Comparative Example 7 Polyimide metal with copper foil laminated on both sides by the same method as Comparative Example 6 except that polyimide foil (PI-17) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Kinzoku Co., Ltd. A laminate (PI-38) was obtained. The peel strength of the polyimide metal laminate (PI-38) was low. The results are shown in Table 3.
- Example 32 The polyamic acid solution J was cast into a thin film on a glass plate, heated at 130 ° C. for 360 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film.
- the four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 350 ° C. for 10 minutes using an oven to obtain a polyimide film (PI-40) having a thickness of 50 ⁇ m.
- PI-40 polyimide film having a thickness of 50 ⁇ m.
- a metal laminate (PI-40) was obtained.
- the peel strength of the polyimide metal laminate (PI-40) was measured, and the results are shown in Table 4.
- Example 33 The polyamic acid solution K was cast into a thin film on a glass plate, heated at 130 ° C. for 360 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film.
- the four sides of this self-supporting film were fixed with a pin tenter, and continuously heated and imidized from 150 ° C. to 350 ° C. for 10 minutes using an oven to obtain a polyimide film (PI-41) having a thickness of 50 ⁇ m.
- Example 34 The polyamic acid solution L was cast into a thin film on a glass plate, heated at 130 ° C. for 360 seconds using a hot plate, and peeled from the glass plate to obtain a self-supporting film. Four sides of this self-supporting film were fixed with a pin tenter and imidized by heating continuously from 150 ° C. to 350 ° C. in 10 minutes using an oven to obtain a polyimide film (PI-42) having a thickness of 50 ⁇ m. Polyimide with copper foil laminated on both sides by the same method as in Example 1 except that the polyimide foil (PI-42) was used and the copper foil was changed to 3EC-VLP (thickness: 18 ⁇ m) manufactured by Mitsui Kinzoku Co., Ltd. A metal laminate (PI-42) was obtained. The peel strength of the polyimide metal laminate (PI-42) was measured, and the results are shown in Table 4.
- Example 29 using 50 mol% DADE as the diamine is greater than that of Example 26 using 50 mol% PPD as the diamine.
- Example 30 in which 80% by mole of DADE and 20% by mole of para-ATDA were used as diamines showed a very high adhesiveness of 1.19 kN / m.
- Example 33 The initial peel strength of Example 33 using 40 mol% DADE, 40 mol% PPD, and 20 mol% para-ATDA as the diamine showed a very high adhesion of 1.40 kN / m. From these results, it was found that when PPD, DADE and para-ATDA were used together as the diamine component, higher adhesion was exhibited as compared with the case where only PPD and ATDA were used as the diamine component.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Laminated Bodies (AREA)
Abstract
Description
前記ポリイミドフィルムの両面に金属層を熱圧着する工程とを有し、
前記ポリイミドフィルムの形成工程において、テトラカルボン酸二無水物成分と、下記一般式(1)で示されるジアミン化合物を含むジアミン成分とを反応させて得られたポリアミック酸(a)の溶液から自己支持性フィルムを形成した後、最高加熱温度が440℃以下の温度で加熱してイミド化し、前記ポリイミド層(a)を形成すること
を特徴とするポリイミド金属積層体の製造方法。
2.ポリアミック酸(a)の溶液から自己支持性フィルムを形成した後、最高加熱温度が320~370℃の温度で加熱してイミド化し、ポリイミド層(a)を形成する上記項1記載のポリイミド金属積層体の製造方法。
前記ポリイミドフィルムの形成工程において、前記ポリアミック酸(a)の溶液から自己支持性フィルムを形成した後、最高加熱温度が440℃以下の温度で加熱してイミド化し、前記ポリイミド層(a)の1層構造のポリイミドフィルムを形成する上記項1または2記載のポリイミド金属積層体の製造方法。
前記ポリイミド層(a)は、多層構造の両側の最表面に位置し、前記ポリイミド層(b)は、多層構造の内部に位置しており、
前記ポリイミドフィルムの形成工程において、前記ポリアミック酸(a)の溶液と、前記ポリイミド層(b)を与えるポリアミック酸(b)の溶液を、少なくともポリアミック酸(a)の溶液が、最上層と最下層となるようにして少なくとも3層を有する多層液膜を形成した後、得られた多層液膜から自己支持性フィルムを形成し、最高加熱温度が440℃以下の温度で加熱してイミド化し、前記ポリイミド層(a)と前記ポリイミド層(b)とを形成する上記項1または2記載のポリイミド金属積層体の製造方法。
前記ポリイミド層(a)は、多層構造の両側の最表面に位置し、前記ポリイミド層(b)は、多層構造の内部に位置し、
前記ポリイミドフィルムの形成工程において、前記ポリイミド層(b)を与えるポリアミック酸(b)の溶液から得られる自己支持性フィルムの両面に、前記ポリアミック酸(a)の溶液を塗工した後、乾燥して多層構造を有する自己支持性フィルムを形成した後、最高加熱温度が440℃以下の温度で加熱してイミド化し、前記ポリイミド層(a)と前記ポリイミド層(b)とを形成する上記項1または2記載のポリイミド金属積層体の製造方法。
前記ポリイミドフィルムの両面に金属層を重ね合わせ、熱圧着する工程を有する。
ポリイミド層(a)の単一層で構成されるポリイミドフィルムの製造方法を説明する。
このポリイミドフィルムは、テトラカルボン酸二無水物成分と、一般式(1)で示されるジアミン化合物を、0を超え100モル%、好ましくは5~100モル%、さらに好ましくは10~100モル%、好ましくは15~100モル%、より好ましくは17~100モル%、特に好ましくは20~100モル%、特定の実施形態においては25~100モル%の割合で含むジアミン成分とを反応させて得られるポリイミドの単一層で形成されるポリイミドフィルムである。
(1)ポリアミック酸溶液(ポリアミック酸溶液に必要に応じてイミド化触媒、脱水剤、離型助剤、無機微粒子などを選択して加えたポリアミック酸溶液組成物を含む)をフィルム状に支持体上に流延し、加熱乾燥して自己支持性フィルムを得た後、加熱により脱水環化、脱溶媒することによりポリイミドフィルムを得る方法(熱イミド化);
(2)ポリアミック酸溶液に環化触媒および脱水剤を加え、さらに必要に応じて無機微粒子などを選択して加えたポリアミック酸溶液組成物をフィルム状に支持体上に流延し、化学的に脱水環化させて、必要に応じて加熱乾燥して自己支持性フィルムを得た後、これを加熱により脱溶媒、イミド化することによりポリイミドフィルムを得る方法(化学イミド化)
が挙げられる。
テトラカルボン酸成分を構成するテトラカルボン酸二無水物の具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、ピロメリット酸二無水物(PMDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、オキシジフタル酸二無水物、ジフェニルスルホン-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(6FDA)、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス〔(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物などを挙げることができる。これらは単独でも、2種以上を混合して用いることもできる。用いるテトラカルボン酸二無水物は、所望の特性などに応じて適宜選択することができる。
s-BPDAをこのような割合で含むテトラカルボン酸成分を用いて得られるポリイミドフィルムは機械的特性などに優れる。また、異なる実施形態においては、例えばテトラカルボン酸成分100モル%中に、PMDAを好ましくは50モル%以上、より好ましくは70モル%以上、特に好ましくは75モル%以上含む。PMDAをこのような割合で含むテトラカルボン酸成分を用いて得られるポリイミドフィルムは機械的特性などに優れる。
R1は水素原子または炭素数1~12(好ましくは炭素数1~10、さらに好ましくは炭素数1~6)のアルキル基またはアリール基を示し、
R2は水素原子または炭素数1~12(好ましくは炭素数1~10、さらに好ましくは炭素数1~6)のアルキル基またはアリール基を示し、R1とR2は異なっていても良く、同じであっても良い。
1)パラフェニレンジアミン(1,4-ジアミノベンゼン;PPD)、1,3-ジアミノベンゼン、2,4-トルエンジアミン、2,5-トルエンジアミン、2,6-トルエンジアミンなどのベンゼン核1つのジアミン、
2)4,4’-ジアミノジフェニルエーテル(DADE)、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル類、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン、
3)1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン、
4)3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン核4つのジアミン、
などを挙げることができる。これらは単独でも、2種以上を混合して用いることもできる。用いるジアミンは、所望の特性などに応じて適宜選択することができる。
ポリイミド層(a)を与えるポリアミック酸(ポリイミド前駆体)(a)は、テトラカルボン酸成分とジアミン成分とを公知の方法で反応させて得ることができ、例えば略等モル量を、有機溶媒中で反応させてポリアミック酸の溶液(均一な溶液状態が保たれていれば一部がイミド化されていてもよい)を得ることができる。また、予めどちらかの成分が過剰である2種類以上のポリアミック酸を合成しておき、各ポリアミック酸溶液を一緒にした後、反応条件下で混合してもよい。このようにして得られたポリアミック酸溶液はそのまま、あるいは必要であれば溶媒を除去または加えて、自己支持性フィルムの製造に使用することができる。
ポリアミック酸(a)溶液の自己支持性フィルムは、ポリアミック酸溶液を支持体上に流延塗布して液膜を形成後、自己支持性となる程度(通常のキュア工程前の段階を意味する)、例えば支持体上より剥離することができる程度にまで加熱して製造される。
より具体的には、自己支持性フィルムと、そのフルキュアフィルム(ポリイミドフィルム)のFT-IRスペクトルを、日本分光製FT/IR6100を用いて、Geクリスタル、入射角45°の多重反射ATR法で測定し、1775cm-1のイミドカルボニル基の非対称伸縮振動のピーク高さと1515cm-1の芳香環の炭素-炭素対称伸縮振動のピーク高さの比を用いて、次式(1)によりイミド化率を算出できる。
但し、
X1:自己支持性フィルムの1775cm-1のピーク高さ、
X2:自己支持性フィルムの1515cm-1のピーク高さ、
Y1:フルキュアフィルムの1775cm-1のピーク高さ、
Y2:フルキュアフィルムの1515cm-1のピーク高さ、とする。
次いで、自己支持性フィルムを加熱処理してポリイミドフィルムを得る。本発明においては、高い接着強度を得るためには、加熱処理工程における最高加熱温度の制御が重要である。最高加熱温度は、440℃以下、好ましくは400℃以下であり、一方、イミド化反応が進行するのに必要な温度以上に加熱する必要があり、好ましくは280℃を超え440℃以下、より好ましくは280℃を超え400℃以下、特に好ましくは320~370℃、特定の実施形態においては340~370℃、さらには350~370℃である。
次に、多層型フィルムの製造方法について説明する。多層型フィルムは、他のポリイミド層(単層または複数層)を間に挟んで、表面がポリイミド層(a)で構成されるポリイミドフィルムである。多層構造として、ポリイミド層(a)/ポリイミド層(b)/ポリイミド層(a)のような3層が接して積層された構造を例に説明するが、内部層が2層以上のときは、異なる材料で形成されたポリイミド層(b)が2層以上あると考えて同様に製造することができる。
(I-2)共押出し-流延製膜法によって、ポリイミド層(a)を与えるポリアミック酸(a)溶液と、ポリイミド層(b)を与えるポリアミック酸(b)溶液とを、支持体上に流延し、化学的に脱水環化させて、必要に応じて加熱乾燥して自己支持性フィルムを得る工程と、得られた自己支持性フィルムを、加熱脱溶媒し、イミド化を完結させてポリイミドフィルムを得る工程を有する方法(共押出-化学イミド化);
(II-1)ポリイミド層(b)を得ることができるポリアミック酸(b)溶液を支持体上に流延し、加熱乾燥して自己支持性フィルムを得る工程と、この自己支持性フィルムの両面にポリアミック酸(a)溶液を塗布し、次いで、熱的に脱水環化、脱溶媒させてポリイミドフィルムを得る工程を有する方法(塗工法-熱イミド化);
(II-2)ポリイミド層(b)を得ることができるポリアミック酸(b)溶液を支持体上に流延し、化学的に脱水環化させて、必要に応じて加熱乾燥して自己支持性フィルムを得る工程と、この自己支持性フィルムの片面または両面にポリアミック酸(a)溶液を塗布し、次いで、これを加熱脱溶媒、イミド化することによりポリイミドフィルムを得る工程を有する方法(塗工法-化学イミド化)。
ポリイミド層(a)の原料は、ポリイミド層(a)の単一層型フィルムの製造方法で説明した通りであるので、ここでは、ポリイミド層(b)の原料について説明する。
ポリイミド層(b)を与えるためのポリアミック酸(b)溶液は、テトラカルボン酸成分とジアミン成分とを公知の方法で反応させて得ることができ、例えば略等モル量を、有機溶媒中で反応させてポリアミック酸の溶液(均一な溶液状態が保たれていれば一部がイミド化されていてもよい)を得ることができる。また、予めどちらかの成分が過剰である2種類以上のポリアミック酸を合成しておき、各ポリアミック酸溶液を一緒にした後、反応条件下で混合してもよい。このようにして得られたポリアミック酸溶液はそのまま、あるいは必要であれば溶媒を除去または加えて、自己支持性フィルムの製造に使用することができる。
まず、共押出し-流延製膜法により自己支持性フィルムを形成する場合{(I-1)と(I-2)の場合}を説明する。
以上のようにして得られた多層構造の自己支持性フィルムを、単一層型フィルムで説明したのと同じように加熱処理してポリイミドフィルムを得ることができる。その後の処理等も同様に行うことができる。
以上のようにして得られた、少なくとも表面にポリイミド層(a)を有するポリイミドフィルムの両面に金属層を熱圧着により積層する。
使用される金属層としては、金属箔が好適に用いられる。金属箔としては、特に限定されないが、電解銅箔や圧延銅箔などの銅および銅合金、アルミニウムおよびアルミニウム合金、ステンレス、ニッケルおよびニッケル合金(42合金など)等の金属を用いることができる。金属箔の厚みは、特に限定されないが、好ましくは1~100μm、より好ましくは2~50μm、より好ましくは3~35μm、さらに好ましくは6~25μm、特に好ましくは8~20μmが好ましい。また、金属箔の表面粗さ(Rz)は、好ましくは0.1~10μm、より好ましくは0.1~7μm、さらに好ましくは0.1~5μm、特に好ましくは0.5~5μmである。金属箔は、電解銅箔や圧延銅箔などの銅および銅合金であることが特に好ましい。このような銅箔としては、例えば、3EC-IIIや3EC-VLP(いずれも三井金属鉱業株式会社製)などが挙げられる。
(1)ポリイミドフィルムに保護箔(キャリア箔)付金属箔を積層後に、保護箔(キャリア箔)を引き剥がして除去する方法、
(2)ポリイミドフィルムに保護箔(キャリア箔)付金属箔を積層後に、保護箔(キャリア箔)をエッチング法にて除去する方法
などを挙げることができる。
次に、ポリイミドフィルムの両面に金属層としての金属箔を、接着剤を介することなく、直接接して積層する。ポリイミドフィルムの両面に積層する金属箔は、同種でも異種でも良い。金属箔と、熱融着性を有するポリイミドフィルムとを積層するには、加熱装置、加圧装置又は加熱加圧装置を用いることができる。加熱条件、加圧条件は適切に選択して行うことが好ましく、連続又はバッチでラミネートできれば特に限定されないが、ロールラミネートまたはダブルベルトプレス等を用いて連続して行うことが好ましい。なお、金属箔の接着面および/またはポリイミドフィルムの表面に、シランカップリング剤の塗布等による表面処理がされていてもよい。
ポリイミドフィルムの物性の評価は以下の方法に従って行った。
a)ポリイミド金属積層体の剥離強度は、Tピールでの剥離強度であり、温度23℃、相対湿度50%の環境下で、50mm/分の剥離速度で測定した。これを「初期剥離強度」とした。Tピールでの剥離強度測定に要する試験片は以下のように作製した。ポリイミド金属積層体を幅5mm、長さ150mmの短冊状に切り出し、5つの試験片に分けた。Tピールでの剥離強度については、ポリイミド金属積層体の試験片の一端の両面の銅箔をそれぞれチャックで把持し、一方の銅箔を他方のそれと180°反対の方向に引っ張ることでポリイミドフィルムと銅箔の接着面を剥離させることにより測定した。上述の測定を同一試験片のそれぞれの端部から長手方向の半分の長さまで行った。この測定を5つの試験片について行い、合計10点の測定を行った後、その平均値を算出し、本願の表1~3に記載の剥離強度とした。ポリイミドフィルムと銅箔の剥離においては、ポリイミドフィルムの両面に積層された銅箔のうち、より接着力の弱い方の面で剥離する。従って、測定された剥離強度はより接着力の弱い面の剥離強度である。
b)ポリイミド金属積層体を、150℃の熱風乾燥機中で24時間処理し、その後剥離強度を測定した。これを「耐熱後剥離強度」とした。剥離強度の測定方法は、上記a)で説明した方法と同じである。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、ジアミン成分として2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Aを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、ジアミン成分としてパラフェニレンジアミン(PPD)、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、ATDAの量を70モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Bを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、ジアミン成分として4,4’-ジアミノジフェニルエーテル(DADE)、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、ATDAの量を80モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、ピロメリット酸二無水物(PMDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。このとき、全酸二無水物成分中、s-BPDAの量を50モル%とした。そして、このポリアミック酸の重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Cを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、ジアミン成分としてパラフェニレンジアミン(PPD)を加えた。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Dを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、ジアミン成分としてパラフェニレンジアミン(PPD)、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、ATDAの量を50モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Eを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、4,4’-ジアミノジフェニルエーテル(DADE)、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、ATDAの量を50モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Fを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、4,4’-ジアミノジフェニルエーテル(DADE)、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、ATDAの量を20モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Gを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、4,4’-ジアミノジフェニルエーテル(DADE)、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、ATDAの量を5モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Hを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、4,4’-ジアミノジフェニルエーテル(DADE)を加えた。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Iを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、4,4’-ジアミノジフェニルエーテル(DADE)、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、ATDAの量を10モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Jを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、ジアミン成分として4,4’-ジアミノジフェニルエーテル(DADE)、パラフェニレンジアミン(PPD)および2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、DADEの量を40モル%、PPDの量を40モル%、ATDAの量を20モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。そして、このポリアミック酸の重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Kを得た。
重合槽に所定量のN,N-ジメチルアセトアミド(DMAc)、ジアミン成分として4,4’-ジアミノジフェニルエーテル(DADE)、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン(ATDA)を加えた。全ジアミン成分中、ATDAの量を10モル%とした。その後、40℃で撹拌しながら、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、ピロメリット酸二無水物(PMDA)を全ジアミン成分と略等モルまで段階的に添加して反応させ、固形分濃度が18質量%であるポリアミック酸の重合溶液(ポリイミド前駆体溶液)を得た。このとき、全酸二無水物成分中、s-BPDAの量を50モル%とした。そして、このポリアミック酸の重合溶液に、ポリアミック酸100質量部に対して0.25質量部の割合でモノステアリルリン酸エステルトリエタノールアミン塩を添加し、均一に混合し、ポリアミック酸溶液Lを得た。
ポリアミック酸溶液Aをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で435秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。
実施例1と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から340℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-2)を得た。ポリイミドフィルム(PI-2)を用いて実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-2)を得た。ポリイミド金属積層体(PI-2)の剥離強度を測定し、結果を表1に示す。
実施例1と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-3)を得た。ポリイミドフィルム(PI-3)を用いて実施例1と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-3)を得た。ポリイミド金属積層体(PI-3)の剥離強度を測定し、結果を表1に示す。
ポリイミドフィルム(PI-3)を用いて、熱圧着条件のうち温度を300℃に変更した以外は実施例3と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-4)を得た。ポリイミド金属積層体(PI-4)の剥離強度を測定し、結果を表1に示す。
実施例1と同様にして自己支持性フィルムを得た。
ポリアミック酸溶液Aをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で210秒加熱し、自己支持性フィルムを得た。ガラス板から剥離させることなく、ガラス板上で150℃から370℃まで11分で連続的に加熱イミド化を行った。冷却後,水に浸すことによりポリイミドフィルムをガラス板より剥離させた。乾燥後,厚み12.5μmのポリイミドフィルム(PI-6)を得た。ポリイミドフィルム(PI-6)を用いて、熱圧着条件のうち温度を370℃、時間を30分に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-6)を得た。ポリイミド金属積層体(PI-6)の剥離強度を測定し、結果を表1に示す。
ポリアミック酸溶液Aをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で210秒加熱した後、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺を枠テンターに固定し、オーブンを用いて、150℃から370℃まで11分で連続的に加熱イミド化して、厚み35μmのポリイミドフィルム(PI-7)を得た。ポリイミドフィルム(PI-7)を用いた以外は、実施例6と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-7)を得た。ポリイミド金属積層体(PI-7)の剥離強度を測定し、結果を表1に示す。
ポリアミック酸溶液Aをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で270秒加熱した後、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺を枠テンターに固定し、オーブンを用いて、150℃から370℃まで11分で連続的に加熱イミド化して、厚み50μmのポリイミドフィルム(PI-8)を得た。ポリイミドフィルム(PI-8)を用いた以外は、実施例6と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-8)を得た。ポリイミド金属積層体(PI-8)の剥離強度を測定し、結果を表1に示す。
ポリアミック酸溶液Bをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で375秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から370℃まで11分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-9)を得た。ポリイミドフィルム(PI-9)を用いて、実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-9)を得た。ポリイミド金属積層体(PI-9)の剥離強度を測定し、結果を表1に示す。
ポリアミック酸溶液Cをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で435秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から370℃まで11分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-10)を得た。ポリイミドフィルム(PI-10)を用いて、実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-10)を得た。ポリイミド金属積層体(PI-10)の剥離強度を測定し、結果を表1に示す。
実施例1と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から400℃まで12分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-11)を得た。ポリイミドフィルム(PI-11)を用いて、実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-11)を得た。ポリイミド金属積層体(PI-11)の剥離強度を測定し、結果を表1に示す。
実施例1と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から450℃まで16分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-12)を得た。ポリイミドフィルム(PI-12)を用いて、実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-12)を得た。ポリイミド金属積層体(PI-12)の剥離強度を測定し、結果を表1に示す。
実施例6と同様にして、自己支持性フィルムを得た。ガラス板から剥離させることなく、ガラス板上で150℃から490℃まで18分で連続的に加熱イミド化を行った。冷却後,水に浸すことによりポリイミドフィルムをガラス板より剥離させた。乾燥後、膜厚12.5μmのポリイミドフィルム(PI-13)を得た。ポリイミドフィルム(PI-13)を用いて、実施例6と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-13)を得た。ポリイミド金属積層体(PI-13)の剥離強度を測定し、結果を表1に示す。
実施例7と同様にして、自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から490℃まで18分で連続的に加熱イミド化して、膜厚35μmのポリイミドフィルム(PI-14)を得た。ポリイミドフィルム(PI-14)を用いて、実施例6と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-14)を得た。ポリイミド金属積層体(PI-14)の剥離強度を測定し、結果を表1に示す。
実施例8と同様にして、自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から490℃まで18分で連続的に加熱イミド化して、膜厚50μmのポリイミドフィルム(PI-15)を得た。
ポリイミドフィルム(PI-15)を用いて、実施例6と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-15)を得た。ポリイミド金属積層体(PI-15)の剥離強度を測定し、結果を表1に示す。
ポリアミック酸溶液をDに変えた以外は比較例4と同様にして,膜厚50μmのポリイミドフィルム(PI-16)を得た。ポリイミドフィルム(PI-16)を用いて、実施例6と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-16)を得た。ポリイミド金属積層体(PI-16)の剥離強度は,接着強度が極めて低く,測定不可能であった。結果を表1に示す。
ポリアミック酸溶液をDに変えた以外は実施例5と同様にして、膜厚50μmのポリイミドフィルム(PI-17)を得た。ポリイミドフィルム(PI-17)を用いて,実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-17)を得た。ポリイミド金属積層体(PI-17)の剥離強度は、接着強度が極めて低く、測定不可能であった。結果を表1に示す。
ポリイミドフィルム(PI-2)を用いて、熱圧着条件のうち温度を340℃に変更した以外は実施例2と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-18)を得た。ポリイミド金属積層体(PI-18)の剥離強度を測定し、結果を表2に示す。
ポリイミドフィルム(PI-2)を用いて、熱圧着条件のうち温度を350℃に変更した以外は実施例2と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-19)を得た。ポリイミド金属積層体(PI-19)の剥離強度を測定し、結果を表2に示す。
実施例9と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-20)を得た。ポリイミドフィルム(PI-20)を用いて、実施例9と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-20)を得た。ポリイミド金属積層体(PI-20)の剥離強度を測定し、結果を表2に示す。
実施例1と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から420℃まで14分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-21)を得た。ポリイミドフィルム(PI-21)を用いて、実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-21)を得た。ポリイミド金属積層体(PI-21)の剥離強度を測定し、結果を表2に示す。
実施例1と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から430℃まで14分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-22)を得た。ポリイミドフィルム(PI-22)を用いて、実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-22)を得た。ポリイミド金属積層体(PI-22)の剥離強度を測定し、結果を表2に示す。
実施例1と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から440℃まで14分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-23)を得た。ポリイミドフィルム(PI-23)を用いて、実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-23)を得た。ポリイミド金属積層体(PI-23)の剥離強度を測定し、結果を表2に示す。
ポリイミドフィルム(PI-2)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に、熱圧着条件のうち温度を280℃に変更した以外は実施例2と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-24)を得た。ポリイミド金属積層体(PI-24)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-2)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に、熱圧着条件のうち温度を300℃に変更した以外は実施例2と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-25)を得た。ポリイミド金属積層体(PI-25)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-2)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例2と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-26)を得た。ポリイミド金属積層体(PI-26)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-2)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に、熱圧着条件のうち温度を340℃に変更した以外は実施例2と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-27)を得た。ポリイミド金属積層体(PI-27)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-2)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に、熱圧着条件のうち温度を350℃に変更した以外は実施例2と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-28)を得た。ポリイミド金属積層体(PI-28)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-5)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例5と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-29)を得た。ポリイミド金属積層体(PI-29)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-20)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例14と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-30)を得た。ポリイミド金属積層体(PI-30)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-9)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例9と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-31)を得た。ポリイミド金属積層体(PI-31)の剥離強度を測定し、結果を表3に示す。
ポリアミック酸溶液Eをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で370秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-32)を得た。ポリイミドフィルム(PI-32)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-32)を得た。ポリイミド金属積層体(PI-32)の剥離強度を測定し、結果を表3に示す。
実施例26と同様にして自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から370℃まで11分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-33)を得た。ポリイミドフィルム(PI-33)を用いた以外は実施例26と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-33)を得た。ポリイミド金属積層体(PI-33)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-33)を用いて、熱圧着条件のうち温度を350℃に変更した以外は実施例27と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-34)を得た。ポリイミド金属積層体(PI-34)の剥離強度を測定し、結果を表3に示す。
ポリアミック酸溶液Fをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で360秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-35)を得た。ポリイミドフィルム(PI-35)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-35)を得た。ポリイミド金属積層体(PI-35)の剥離強度を測定し、結果を表3に示す。
ポリアミック酸溶液Gをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で360秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-36)を得た。ポリイミドフィルム(PI-36)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-36)を得た。ポリイミド金属積層体(PI-36)の剥離強度を測定し、結果を表3に示す。
ポリアミック酸溶液Hをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で360秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-37)を得た。ポリイミドフィルム(PI-37)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-37)を得た。ポリイミド金属積層体(PI-37)の剥離強度を測定し、結果を表3に示す。
ポリイミドフィルム(PI-17)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は比較例6と同様な方法により両面に銅箔を積層したポリイミド金属積層体(PI-38)を得た。ポリイミド金属積層体(PI-38)の剥離強度は、接着強度が低かった。結果を表3に示す。
ポリアミック酸溶液Iをガラス板上に薄膜状にキャストし、ホットプレートを用いて138℃で360秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から370℃まで11分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-39)を得た。ポリイミドフィルム(PI-39)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-39)を得た。ポリイミド金属積層体(PI-39)の剥離強度は、接着強度が低かった。結果を表3に示す。
ポリアミック酸溶液Jをガラス板上に薄膜状にキャストし、ホットプレートを用いて130℃で360秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-40)を得た。ポリイミドフィルム(PI-40)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-40)を得た。ポリイミド金属積層体(PI-40)の剥離強度を測定し、結果を表4に示す。
ポリアミック酸溶液Kをガラス板上に薄膜状にキャストし、ホットプレートを用いて130℃で360秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-41)を得た。ポリイミドフィルム(PI-41)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-41)を得た。ポリイミド金属積層体(PI-41)の剥離強度を測定し、結果を表4に示す。
ポリアミック酸溶液Lをガラス板上に薄膜状にキャストし、ホットプレートを用いて130℃で360秒加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、オーブンを用いて、150℃から350℃まで10分で連続的に加熱イミド化して,厚み50μmのポリイミドフィルム(PI-42)を得た。ポリイミドフィルム(PI-42)を用いて、銅箔を三井金属鉱業株式会社製3EC-VLP(厚み:18μm)に変更した以外は実施例1と同様な方法により、両面に銅箔を積層したポリイミド金属積層体(PI-42)を得た。ポリイミド金属積層体(PI-42)の剥離強度を測定し、結果を表4に示す。
(1)加熱処理(イミド化)工程における最高加熱温度が440℃以下、好ましくは400℃以下で加熱イミド化(キュア)したポリイミドフィルムは、450℃を超える温度でキュアした場合のポリイミドフィルムと比較して、初期剥離強度および耐熱後剥離強度ともに格段に高い。
(2)実施例1~11において、耐熱後の剥離強度は、初期剥離強度と比較してほぼ同等か、またはそれ以上の値を示す。
(3)酸成分としてPMDAを用いた実施例10の初期剥離強度は、PMDAを用いない実施例5のそれよりも大きい。
(4)パラ-ATDAをジアミン成分として用いなかった場合は、熱融着性を示さなかった。
(5)ジアミンにDADEを50モル%用いた実施例29の初期剥離強度は、ジアミンにPPDを50モル%用いた実施例26のそれよりも大きい。
(6)ジアミンにDADEを80モル%、パラ-ATDAを20モル%用いた実施例30の初期剥離強度は、1.19kN/mと非常に高い接着性を示した。一方、DADEのみをジアミン成分として用いた比較例8では、熱融着性を示さなかった。これらのことから、DADEとパラ-ATDAをジアミン成分として用いた場合、ジアミン成分中に含まれるパラ-ATDAの割合が少なくても高い接着性を示すことが分かった。
(7)ジアミンにDADEを40モル%、PPDを40モル%およびパラ-ATDAを20モル%用いた実施例33の初期剥離強度は、1.40kN/mと非常に高い接着性を示した。これらのことから、ジアミン成分としてPPD、DADEおよびパラ-ATDAを共存させて用いた場合、ジアミン成分としてPPDとATDAのみを用いた場合と比較して、より高い接着性を示すことが分かった。
Claims (10)
- 少なくともフィルムの両面が、ポリイミド層(a)により形成されたポリイミドフィルムを形成する工程と、
前記ポリイミドフィルムの両面に金属層を熱圧着する工程とを有し、
前記ポリイミドフィルムの形成工程において、テトラカルボン酸二無水物成分と、下記一般式(1)で示されるジアミン化合物を含むジアミン成分とを反応させて得られたポリアミック酸(a)の溶液から自己支持性フィルムを形成した後、最高加熱温度が440℃以下の温度で加熱してイミド化し、前記ポリイミド層(a)を形成すること
を特徴とするポリイミド金属積層体の製造方法。
- ポリアミック酸(a)の溶液から自己支持性フィルムを形成した後、最高加熱温度が320~370℃の温度で加熱してイミド化し、ポリイミド層(a)を形成する請求項1記載のポリイミド金属積層体の製造方法。
- 前記ポリイミドフィルムが、前記ポリイミド層(a)の1層構造であり、
前記ポリイミドフィルムの形成工程において、前記ポリアミック酸(a)の溶液から自己支持性フィルムを形成した後、最高加熱温度が440℃以下の温度で加熱してイミド化し、前記ポリイミド層(a)の1層構造のポリイミドフィルムを形成する請求項1または2記載のポリイミド金属積層体の製造方法。 - 前記ポリイミドフィルムが、前記ポリイミド層(a)と、他のポリイミド層(b)とを有する多層構造であり、
前記ポリイミド層(a)は、多層構造の両側の最表面に位置し、前記ポリイミド層(b)は、多層構造の内部に位置しており、
前記ポリイミドフィルムの形成工程において、前記ポリアミック酸(a)の溶液と、前記ポリイミド層(b)を与えるポリアミック酸(b)の溶液を、少なくともポリアミック酸(a)の溶液が、最上層と最下層となるようにして少なくとも3層を有する多層液膜を形成した後、得られた多層液膜から自己支持性フィルムを形成し、最高加熱温度が440℃以下の温度で加熱してイミド化し、前記ポリイミド層(a)と前記ポリイミド層(b)とを形成する請求項1または2記載のポリイミド金属積層体の製造方法。 - 前記ポリイミドフィルムが、前記ポリイミド層(a)と、他のポリイミド層(b)とを有する多層構造であり、
前記ポリイミド層(a)は、多層構造の両側の最表面に位置し、前記ポリイミド層(b)は、多層構造の内部に位置し、
前記ポリイミドフィルムの形成工程において、前記ポリイミド層(b)を与えるポリアミック酸(b)の溶液から得られる自己支持性フィルムの両面に、前記ポリアミック酸(a)の溶液を塗工した後、乾燥して多層構造を有する自己支持性フィルムを形成した後、最高加熱温度が440℃以下の温度で加熱してイミド化し、前記ポリイミド層(a)と前記ポリイミド層(b)とを形成する請求項1または2記載のポリイミド金属積層体の製造方法。 - 一般式(1)で示すジアミン化合物が、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジンである請求項1~5のいずれか1項に記載のポリイミド金属積層体の製造方法。
- 前記ジアミン成分が、一般式(1)で示すジアミン化合物を5~100モル%の範囲で含む請求項1~6のいずれか1項に記載のポリイミド金属積層体の製造方法。
- 前記ジアミン成分が、一般式(1)で示すジアミン化合物を25~100モル%の範囲で含む請求項1~6のいずれか1項に記載のポリイミド金属積層体の製造方法。
- 前記ジアミン成分が、さらにパラフェニレンジアミンおよび4,4’-ジアミノジフェニルエーテルから選ばれる少なくとも1つの化合物を含む請求項1~8のいずれか1項に記載のポリイミド金属積層体の製造方法。
- 前記テトラカルボン酸二無水物成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物から選ばれる少なくとも1つの化合物を含む請求項1~9のいずれか1項に記載のポリイミド金属積層体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147006225A KR101978005B1 (ko) | 2011-08-12 | 2012-08-10 | 폴리이미드 금속 적층체의 제조 방법 |
US14/238,071 US9375877B2 (en) | 2011-08-12 | 2012-08-10 | Method for manufacturing polyimide metal laminate |
JP2013529008A JP5880561B2 (ja) | 2011-08-12 | 2012-08-10 | ポリイミド金属積層体の製造方法 |
CN201280050240.1A CN103889710B (zh) | 2011-08-12 | 2012-08-10 | 制备聚酰亚胺金属层压体的方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011177174 | 2011-08-12 | ||
JP2011-177174 | 2011-08-12 | ||
JP2012017365 | 2012-01-30 | ||
JP2012-017365 | 2012-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013024819A1 true WO2013024819A1 (ja) | 2013-02-21 |
Family
ID=47715137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070508 WO2013024819A1 (ja) | 2011-08-12 | 2012-08-10 | ポリイミド金属積層体の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9375877B2 (ja) |
JP (1) | JP5880561B2 (ja) |
KR (1) | KR101978005B1 (ja) |
CN (1) | CN103889710B (ja) |
TW (1) | TWI577546B (ja) |
WO (1) | WO2013024819A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101740803B1 (ko) | 2015-07-07 | 2017-05-26 | 마이크로코즘 테크놀리지 씨오.,엘티디 | 폴리이미드 수지를 포함한 금속 적층판 및 그 제조 방법 |
JP2019156921A (ja) * | 2018-03-09 | 2019-09-19 | 国立大学法人岩手大学 | ポリイミド、ポリイミドフィルム、ポリイミド金属積層体及び、ポリアミド酸 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102239605B1 (ko) * | 2014-12-23 | 2021-04-12 | 주식회사 두산 | 양면 연성 금속 적층판 및 그 제조방법 |
US11021606B2 (en) * | 2017-09-13 | 2021-06-01 | E I Du Pont De Nemours And Company | Multilayer film for electronic circuitry applications |
CN110218322A (zh) * | 2019-06-20 | 2019-09-10 | 江汉大学 | 含三嗪基聚酰亚胺模塑粉及其制备方法 |
KR102268708B1 (ko) * | 2020-09-10 | 2021-06-25 | (주)상아프론테크 | 동박적층판(ccl)용 저유전 복합필름 및 이를 포함하는 저유전 동박적층판(ccl) |
CN113912847B (zh) * | 2021-10-19 | 2024-06-18 | 波米科技有限公司 | 一种聚合物、液晶取向剂、液晶取向膜及液晶取向膜的应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07102649B2 (ja) * | 1990-05-30 | 1995-11-08 | 宇部興産株式会社 | 金属箔積層フィルムの製造法 |
JP2004098659A (ja) * | 2002-07-19 | 2004-04-02 | Ube Ind Ltd | 銅張積層板及びその製造方法 |
JP2010031102A (ja) * | 2008-07-28 | 2010-02-12 | Iwate Univ | ポリイミドおよびその製造法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666723A (en) * | 1969-08-01 | 1972-05-30 | Ciba Geigy Corp | Polyimides from 2,6-diamino-s-triazines and dianhydrides |
US3803075A (en) | 1969-08-01 | 1974-04-09 | Ciba Geigy Corp | Soluble polyimides from 2,6-diamino-s-triazines and dianhydrides |
US4543295A (en) * | 1980-09-22 | 1985-09-24 | The United States Of America As Represented By The Director Of The National Aeronautics And Space Administration | High temperature polyimide film laminates and process for preparation thereof |
EP0459452A3 (en) | 1990-05-30 | 1992-04-08 | Ube Industries, Ltd. | Aromatic polyimide film laminated with metal foil |
US5372891A (en) * | 1990-08-22 | 1994-12-13 | Industrial Technology Research Institute | Flexible copper/polyimide and barbituric acid modified bismaleimide blend/polyimide laminate |
JPH07102649A (ja) | 1993-10-06 | 1995-04-18 | Misawa Homes Co Ltd | 建築用パネルの接続構造 |
TWI298988B (en) | 2002-07-19 | 2008-07-11 | Ube Industries | Copper-clad laminate |
WO2004018545A1 (ja) * | 2002-08-20 | 2004-03-04 | Nippon Mektron, Limited | 新規ポリイミド共重合体およびその金属積層体 |
JP2007169392A (ja) * | 2005-12-20 | 2007-07-05 | Asahi Kasei Corp | ポリアミド酸ワニス組成物および金属ポリイミド複合体 |
JP5182744B2 (ja) | 2007-09-28 | 2013-04-17 | 株式会社カネカ | 高分子電解質及びこれを用いた燃料電池用電解質膜 |
JP5181618B2 (ja) * | 2007-10-24 | 2013-04-10 | 宇部興産株式会社 | 金属箔積層ポリイミド樹脂基板 |
JP5050269B2 (ja) | 2008-04-28 | 2012-10-17 | 独立行政法人 宇宙航空研究開発機構 | 末端変性イミドオリゴマーおよびワニス並びにその高弾性率硬化物 |
JP5129108B2 (ja) * | 2008-05-16 | 2013-01-23 | 旭化成イーマテリアルズ株式会社 | ポリアミド酸ワニス組成物、ポリイミド樹脂、および金属−ポリイミド複合体 |
JP5533890B2 (ja) | 2010-02-10 | 2014-06-25 | 宇部興産株式会社 | ポリイミドフィルム、およびこれらのポリイミド積層体、ポリイミド金属積層体 |
-
2012
- 2012-08-10 JP JP2013529008A patent/JP5880561B2/ja active Active
- 2012-08-10 CN CN201280050240.1A patent/CN103889710B/zh active Active
- 2012-08-10 TW TW101129032A patent/TWI577546B/zh active
- 2012-08-10 US US14/238,071 patent/US9375877B2/en active Active
- 2012-08-10 KR KR1020147006225A patent/KR101978005B1/ko active IP Right Grant
- 2012-08-10 WO PCT/JP2012/070508 patent/WO2013024819A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07102649B2 (ja) * | 1990-05-30 | 1995-11-08 | 宇部興産株式会社 | 金属箔積層フィルムの製造法 |
JP2004098659A (ja) * | 2002-07-19 | 2004-04-02 | Ube Ind Ltd | 銅張積層板及びその製造方法 |
JP2010031102A (ja) * | 2008-07-28 | 2010-02-12 | Iwate Univ | ポリイミドおよびその製造法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101740803B1 (ko) | 2015-07-07 | 2017-05-26 | 마이크로코즘 테크놀리지 씨오.,엘티디 | 폴리이미드 수지를 포함한 금속 적층판 및 그 제조 방법 |
JP2019156921A (ja) * | 2018-03-09 | 2019-09-19 | 国立大学法人岩手大学 | ポリイミド、ポリイミドフィルム、ポリイミド金属積層体及び、ポリアミド酸 |
JP7101352B2 (ja) | 2018-03-09 | 2022-07-15 | 国立大学法人岩手大学 | ポリイミド、ポリイミドフィルム、ポリイミド金属積層体及び、ポリアミド酸 |
Also Published As
Publication number | Publication date |
---|---|
KR101978005B1 (ko) | 2019-05-13 |
US9375877B2 (en) | 2016-06-28 |
TWI577546B (zh) | 2017-04-11 |
TW201311437A (zh) | 2013-03-16 |
KR20140050715A (ko) | 2014-04-29 |
JP5880561B2 (ja) | 2016-03-09 |
US20140290853A1 (en) | 2014-10-02 |
CN103889710B (zh) | 2016-01-13 |
CN103889710A (zh) | 2014-06-25 |
JPWO2013024819A1 (ja) | 2015-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5637325B2 (ja) | ポリイミド積層体およびその製造方法 | |
JP5904202B2 (ja) | ポリイミドフィルムおよびそれを用いた金属積層板 | |
TWI408200B (zh) | 新穎之聚醯亞胺膜、使用其所得之黏著膜、及可撓性金屬貼合積層板 | |
JP5880561B2 (ja) | ポリイミド金属積層体の製造方法 | |
JP5594289B2 (ja) | ポリイミドフィルムおよびポリイミドフィルムの製造方法 | |
WO2012081478A1 (ja) | 三層共押出ポリイミドフィルムの製造方法 | |
JP5716493B2 (ja) | ポリイミドフィルムの製造方法、ポリイミドフィルムおよびそれを用いたポリイミド金属積層体 | |
JP5391905B2 (ja) | ポリイミドフィルムおよびポリイミドフィルムの製造方法 | |
WO2013157565A1 (ja) | 熱融着性ポリイミドフィルム、熱融着性ポリイミドフィルムの製造方法及び熱融着性ポリイミドフィルムを用いたポリイミド金属積層体 | |
KR20140054244A (ko) | 열융착성 폴리이미드 필름 및 그의 제조방법, 열융착성 폴리이미드 필름을 사용한 폴리이미드 금속 적층체 | |
JP2015129200A (ja) | 熱融着性ポリイミドフィルム、及びそれを用いたポリイミド金属積層体 | |
JP5499555B2 (ja) | ポリイミドフィルムおよびポリイミドフィルムの製造方法 | |
JP2012158149A (ja) | ポリイミド系多層フィルムの製造方法 | |
JP2001270037A (ja) | フレキシブル金属箔積層体及びその製造法 | |
JP5355993B2 (ja) | 接着フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12824157 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013529008 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147006225 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14238071 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12824157 Country of ref document: EP Kind code of ref document: A1 |