WO2013024787A1 - 有機エレクトロルミネッセンス素子 - Google Patents
有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2013024787A1 WO2013024787A1 PCT/JP2012/070363 JP2012070363W WO2013024787A1 WO 2013024787 A1 WO2013024787 A1 WO 2013024787A1 JP 2012070363 W JP2012070363 W JP 2012070363W WO 2013024787 A1 WO2013024787 A1 WO 2013024787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- layer
- electrode
- light emitting
- organic electroluminescent
- Prior art date
Links
- 238000000605 extraction Methods 0.000 claims abstract description 63
- 238000001579 optical reflectometry Methods 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 74
- 230000003287 optical effect Effects 0.000 claims description 59
- 238000009792 diffusion process Methods 0.000 claims description 50
- 230000010363 phase shift Effects 0.000 claims description 35
- 230000014509 gene expression Effects 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 230000008033 biological extinction Effects 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 8
- 230000031700 light absorption Effects 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 364
- 239000010408 film Substances 0.000 description 76
- 230000000694 effects Effects 0.000 description 62
- 239000000463 material Substances 0.000 description 48
- 239000010409 thin film Substances 0.000 description 47
- 229910052751 metal Inorganic materials 0.000 description 36
- 239000002184 metal Substances 0.000 description 36
- 238000000034 method Methods 0.000 description 14
- 230000006872 improvement Effects 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 230000008859 change Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 239000012044 organic layer Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 230000004907 flux Effects 0.000 description 9
- 239000012788 optical film Substances 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- -1 etc. Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 230000005525 hole transport Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000002310 reflectometry Methods 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000005281 excited state Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000005283 ground state Effects 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 1
- GUPMCMZMDAGSPF-UHFFFAOYSA-N 1-phenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1[C](C=C[CH2])C1=CC=CC=C1 GUPMCMZMDAGSPF-UHFFFAOYSA-N 0.000 description 1
- MQRCTQVBZYBPQE-UHFFFAOYSA-N 189363-47-1 Chemical compound C1=CC=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC=CC=1)C=1C=CC=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MQRCTQVBZYBPQE-UHFFFAOYSA-N 0.000 description 1
- QZTQQBIGSZWRGI-UHFFFAOYSA-N 2-n',7-n'-bis(3-methylphenyl)-2-n',7-n'-diphenyl-9,9'-spirobi[fluorene]-2',7'-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=C3C4(C5=CC=CC=C5C5=CC=CC=C54)C4=CC(=CC=C4C3=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 QZTQQBIGSZWRGI-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910021124 PdAg Inorganic materials 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- UATJOMSPNYCXIX-UHFFFAOYSA-N Trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 UATJOMSPNYCXIX-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- ZCQQLNIJXKORPM-UHFFFAOYSA-K aluminum;4-methylquinoline-8-carboxylate Chemical compound [Al+3].C1=CC=C2C(C)=CC=NC2=C1C([O-])=O.C1=CC=C2C(C)=CC=NC2=C1C([O-])=O.C1=CC=C2C(C)=CC=NC2=C1C([O-])=O ZCQQLNIJXKORPM-UHFFFAOYSA-K 0.000 description 1
- BZMPCNFKYPRLEO-UHFFFAOYSA-K aluminum;5-phenylquinoline-8-carboxylate Chemical compound [Al+3].C12=CC=CN=C2C(C(=O)[O-])=CC=C1C1=CC=CC=C1.C12=CC=CN=C2C(C(=O)[O-])=CC=C1C1=CC=CC=C1.C12=CC=CN=C2C(C(=O)[O-])=CC=C1C1=CC=CC=C1 BZMPCNFKYPRLEO-UHFFFAOYSA-K 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N anhydrous quinoline Natural products N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzoquinoline Natural products C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 235000019646 color tone Nutrition 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 150000002220 fluorenes Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 150000004905 tetrazines Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- JFLKFZNIIQFQBS-FNCQTZNRSA-N trans,trans-1,4-Diphenyl-1,3-butadiene Chemical class C=1C=CC=CC=1\C=C\C=C\C1=CC=CC=C1 JFLKFZNIIQFQBS-FNCQTZNRSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
- H10K50/131—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/19—Tandem OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/852—Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
Definitions
- the present invention relates to an organic electroluminescent device, and more particularly to an organic electroluminescent device having a multi-unit structure having a plurality of light emitting units.
- an organic electroluminescent device has a structure in which an anode made of a transparent electrode, a hole transport layer, a light emitting layer, an electron injection layer, and a cathode are sequentially laminated on the surface of a transparent substrate.
- anode made of a transparent electrode, a hole transport layer, a light emitting layer, an electron injection layer, and a cathode are sequentially laminated on the surface of a transparent substrate.
- light emitted from the light emitting layer is extracted to the outside through the transparent electrode and the transparent substrate by applying a voltage between the anode and the cathode.
- the organic electroluminescent element is characterized in that it is self-luminous, exhibits relatively high efficiency luminous characteristics, and can emit light in various color tones. For this reason, utilization as a light emitting body such as a flat panel display, and utilization as a light source such as a backlight or illumination for a liquid crystal display are expected, and some of them are already put to practical use. There is. In order to further apply and develop the organic electroluminescent device for these applications, development of an organic electroluminescent device having excellent characteristics of high efficiency, long life and high luminance is desired.
- the light extraction efficiency of the organic electroluminescent element is generally said to be about 20 to 30%, and it is still low and there is a large room for improvement.
- this value changes somewhat depending on the light emission pattern and the internal layer structure.
- the material constituting the light generation site and the periphery thereof generally has properties such as high refractive index and light absorbency. Therefore, light can not be effectively propagated to the outside where light emission is observed due to total reflection at the interface of different refractive index, absorption of light by material, etc.
- the light extraction efficiency is low as described above It is considered to be a value. And this means that the light which can not be effectively utilized as so-called light emission occupies 70 to 80% of the total light emission amount, and the expected value of the organic electroluminescent element efficiency improvement by the light extraction efficiency improvement is very large. .
- Patent Document 1 describes that the phase shift ⁇ ( ⁇ ) is calculated using a complex number r ( ⁇ ) calculated from the refractive index and the extinction coefficient in the organic layer and the reflective layer. Then, in consideration of this phase shift ⁇ ( ⁇ ), the optical film thickness D from the light emitting source to the surface of the electrode satisfies all of the following expressions so that the component of light reaching from the substrate to the outside has a maximum value. It is stated to be so.
- ⁇ ( ⁇ ) Arg (r ( ⁇ )) 2 ⁇ / 9 ⁇ ⁇ ( ⁇ ) ⁇ 15 ⁇ / 18
- D ( ⁇ ) ⁇ ( ⁇ ) ⁇ ⁇ / 4 ⁇ 0.73D ( ⁇ ) ⁇ d ( ⁇ ) ⁇ 1.15D ( ⁇ )
- ⁇ represents the maximum peak wavelength of light emission
- ⁇ ( ⁇ ) represents the phase shift due to the reflective electrode
- d ( ⁇ ) represents the optical distance at the wavelength ⁇ between the transmissive electrode and the reflective electrode
- an organic electroluminescent device having a multi-unit structure has attracted attention.
- the multi-unit structure by connecting a plurality of light emitting layers in series via an electrically conductive layer called an intermediate layer, high brightness and high efficiency can be obtained while securing the merit of a thin light source which is a feature of organic electroluminescence. It is possible to realize a long life. By reducing the current density to obtain the same luminance, higher efficiency and longer life can be achieved.
- Patent Document 1 The method described in Patent Document 1 is designed such that the amount of light components emitted in the front direction from the substrate to the maximum value, but as described above, it has merits in high brightness and long life.
- it is very difficult to set a suitable film thickness condition according to the above-mentioned relational expression because the light emission position is plural and the light emission wavelength is plural.
- the organic electroluminescent device comprises a plurality of light emission via one or more light transmissive intermediate layers between a first electrode having light reflectivity and a second electrode having light permeability. It is an organic electroluminescent element by which the layer was laminated
- a preferred embodiment of the organic electroluminescent device is characterized in that the total light reflectance of the semitransparent layer is 10% or more and less than 50%.
- a preferred embodiment of the organic electroluminescent element is characterized in that the semipermeable layer is a layer containing Ag or an alloy containing Ag as a main component.
- the preferred form of the organic electroluminescent device is The weighted average emission wavelength of the first emission source is ⁇ 1 , The weighted average emission wavelength of the second emission source is ⁇ 2 , The phase shift generated by the first electrode represented by the following formula (1) is ⁇ 1 , and Assuming that the phase shift generated in the semitransparent layer represented by the following formula (1) is ⁇ 2 ,
- n 1, k 1 denotes the refractive index of the layer in contact with the reflective layer and the extinction coefficient of each, n 2, k 2 represents the refractive index of the reflective layer and the extinction coefficient of each, n 1 , N 2 , k 1 and k 2 are functions of ⁇
- the phase shift caused by the reflection of the light from the first light source at the first electrode is ⁇ 1 ( ⁇ 1 )
- the phase shift caused by the reflection of the light from the first light emission source in the semitransparent layer is ⁇ 2 ( ⁇ 1 )
- the phase shift caused by the light from the second light emission source is reflected in the light transmission layer expressed as ⁇ 2 ( ⁇ 2 )
- X ⁇ 1 ( ⁇ 1 ) ⁇ ( ⁇ 1 / 4 ⁇ ) + ( ⁇ 1 ⁇ l / 2)
- Y ⁇ 2 ( ⁇ 2 ) ⁇ ( ⁇ 2 / 4 ⁇ ) + ( ⁇ 2 ⁇ m / 2)
- Z ( ⁇ 1 ( ⁇ 1 ) + ⁇ 2 (
- a preferred embodiment of the organic electroluminescent element is characterized in that l ⁇ 1 in the above-mentioned relational expression of X.
- a preferred embodiment of the organic electroluminescent element is characterized in that a light diffusion layer is formed on the light extraction surface side of the second electrode.
- a preferred embodiment of the organic electroluminescent element is characterized in that a light transmitting substrate is provided on the light extraction surface side of the second electrode, and the refractive index of this substrate is 1.55 or more.
- Is a graph showing the relationship between the optical distance and the light intensity shows a D 1 ( ⁇ 1).
- Is a graph showing the relationship between the optical distance and the light intensity shows a D 2 ( ⁇ 1).
- Is a graph showing the relationship between the optical distance and the light intensity shows D 3 a (lambda 2).
- Is a graph showing the relationship between the optical distance and the light intensity shows D 4 a (lambda 2).
- FIG. 1 An example of embodiment of an organic electroluminescent element is shown in FIG.
- This organic electroluminescent element emits a plurality of light via one or more light transmissive intermediate layers 3 between the light reflective first electrode 1 and the light transmissive second electrode 2. It has a configuration in which the layers 4 are stacked.
- Each light emitting layer 4 is provided with a light emitting source 5 made of a light emitting material, and each unit having the light emitting source 5 becomes a light emitting unit 6.
- the organic electroluminescent element has a multi-unit structure including a plurality of light emitting units 6.
- the intermediate layer 3 closest to the first electrode 2 constitutes the first intermediate layer 3. Therefore, when there are a plurality of intermediate layers 3, the intermediate layer 3 closest to the first electrode 2 is the first intermediate layer 3a. When there is one intermediate layer 3, the intermediate layer 3 is the first one. It becomes middle class 3a.
- At least two light emitting units 6 are formed, and the plurality of light emitting units 6 can be numbered as first, second, third,... Sequentially from the first electrode 1 side.
- the number of intermediate layers 3 is one less than the number of light emitting units 6.
- the intermediate layer 3 is provided between the two adjacent light emitting units 6. Due to the presence of the intermediate layer 3, each light emitting unit 6 can be individually provided as a unit for emitting light, and the injection of holes and electrons to each light emitting unit 6 can be made smooth. As a result, light emission can be achieved by the multi-unit, and high luminance and long life of the device can be achieved.
- a first light emitting unit 6a including a first light emitting source 5a is formed between the first electrode 1 and the first intermediate layer 3a.
- the first light emitting source 5a is provided in the first light emitting layer 4a.
- the second light emitting unit 6b including the second light emitting source 5b is formed as the light emitting unit 6 located next to the first light emitting unit 6a. It is done.
- the second light emitting source 5b is provided in the second light emitting layer 4b.
- the light emitting unit 6 may have a structure in which the light emitting layer 4 is sandwiched between the charge transport layer 7 on the first electrode 1 side and the charge transport layer 7 on the second electrode 2 side.
- one of the two charge auxiliary layers 7 is a layer having an electron transporting property, and the other is a hole transporting property.
- the charge transport layer 7 on the first electrode 1 side has electron transportability and the second electrode 2 side
- the charge transport layer 7 can be made to have hole transportability.
- FIG. 2 is another example of the embodiment of the organic electroluminescent element, and the position of the substrate 8 is different from the form of FIG.
- the other configuration is the same as that of the embodiment shown in FIG.
- the first electrode 1 is formed on the substrate 8, and the light emitting units 6 and the intermediate layers 3 are alternately formed from the first electrode 1 side up to the second electrode 2. It is done. In the vicinity of the first electrode 1, the first electrode 1, the first light emitting unit 6a, the first intermediate layer 3a, and the second light emitting unit 6b are provided in this order. The light is extracted from the side of the second electrode 2 which is a light transmitting electrode, that is, the side opposite to the substrate 8. Therefore, the form of FIG. 2 is an organic electroluminescent element of a top emission structure.
- light is generated in the light emitting source 5 by the combination of holes and electrons.
- the light emitted by the light emission source 5 is roughly divided into light directed to the first electrode 1 side and light directed to the second electrode 2 side.
- the light directly from the light emitting source 5 toward the second electrode 2 is transmitted through the second electrode 2 and taken out and emitted to the outside.
- the path of this light is indicated by P1.
- light directed from the light emitting source 5 to the first electrode 1 side is reflected by the first electrode 1 to be light directed to the second electrode 2 side, and is transmitted through the second electrode 2 and taken out. Released into The path of this light is indicated by P2.
- the light direction is changed to make the lamination direction (light extraction direction)
- the light intensity in parallel directions can be increased.
- the strength in the stacking direction increases, the amount of light entering at a shallow angle with respect to the substrate 8 decreases, and more light is extracted to the outside.
- This is called a microcavity effect (hereinafter sometimes referred to simply as the “cavity effect”), and in the present embodiment, the light extraction property can be improved by utilizing the microcavity effect.
- the structure that exerts the microcavity effect is referred to as a microcavity structure (hereinafter sometimes referred to simply as a "cavity structure").
- a microcavity structure for improving the intensity in a specific direction by light interference is applied to an organic electroluminescent element having a multi-unit structure having a plurality of light emitting layers 4. Then, in particular, the microcavity structure is applied to the two light emitting units 6 disposed in the vicinity of the first electrode 1 having light reflectivity and the intermediate layer 3 sandwiched between the light emitting units 6. Thereby, the effect of the microcavity structure can be enhanced to further improve the light extraction performance.
- the absorptivity in the thin film of the smallest film thickness which can be stably formed is the lower limit of the absorptivity in practice.
- the lower limit of the light absorptivity can be, for example, 2%, but may be 1% or 0.5% as long as a stable thin film is obtained.
- the semipermeable layer is preferably a layer containing Ag or an alloy containing Ag as a main component.
- Ag and alloys containing Ag are reflective materials, and by reducing the total light absorptivity in such light reflective materials, it is possible to form a microcavity structure that exploits the interference of light .
- the layer mainly composed of Ag or an alloy containing Ag can be constituted by a metal thin film.
- the metal thin film can form a semipermeable layer that is easy to obtain a microcavity structure.
- the metal thin film of Ag and Ag alloy is excellent also from the point which can ensure light transmittance.
- FIG. 12A to 12C show graphs of the reflection, transmission, and absorption characteristics when the film thickness is changed for the Ag film and the Al film.
- 12A shows the reflection characteristic
- FIG. 12B shows the transmission characteristic
- FIG. 12C shows the absorption characteristic.
- FIG. 12D schematically shows the mechanism of light reflection, transmission, and absorption when passing through the interface.
- Tables 2 and 3 show numerical values of reflection, transmission, and absorption characteristics when changing the film thickness with respect to Ag and Al
- Table 2 shows Ag
- Table 3 shows Al.
- the intermediate layer 3 light can be considered as being divided into reflection, transmission, and absorption.
- the semitransparent layer (first intermediate layer 3a) is required to have low light absorption and appropriate reflectivity.
- the case of using a metal thin film is examined for the semipermeable layer.
- the absorptivity is 10% or less even at a thickness of 150 nm, and application to a microcavity structure is easy.
- the lower limit of the thickness of the metal thin film is about 5 nm from the viewpoint of obtaining a stable thin film.
- the upper limit of the thickness of the metal thin film is not particularly limited, but may be 150 nm or 100 nm. In the case of an Ag film, in order to have a reflectance of less than 50%, for example, the film thickness may be 20 nm or less.
- the material of the metal thin film preferably contains Ag.
- Ag and metals as listed in Table 1 Al, Pt, Rh, Mg, Au, Cu, etc.
- An alloy of Zn, Ti, Pd, Ni can be used.
- an alloy of MgAg and PdAg can be particularly preferably used.
- the content of metals other than Ag in the alloy can be in the range satisfying the above-mentioned total light absorptivity 10% or less, and it may be, for example, about 0 to 3% by mass although it depends on the alloy structure.
- MgAg in Table 1 exemplifies the one having a content of Mg of 1% by mass.
- the semipermeable layer can also be configured by a laminated structure of the above-described metal thin film and a conductive metal oxide film. Also in this case, it is possible to form the intermediate layer 3 which is semi-transmissive and has a low total light absorptivity.
- the conductive metal oxide film include ITO, IZO, AZO, ZnO and the like.
- the conductive metal oxide film may be laminated on the surface on the first electrode 1 side of the metal thin film, or may be laminated on the surface on the second electrode 2 side of the metal thin film, or the metal thin film It may be laminated on both sides of.
- the interference action of light is used, and by setting the optical film thickness (optical distance) of each layer, the interference action is used more effectively to increase the intensity of light in a specific direction. It can be enhanced.
- optical distances D 1 to D 4 are set and illustrated as the optical distances.
- Optical distance D 1 is the optical distance between the first electrode 1 and the first light-emitting source 5a.
- Optical distance D 2 is the optical distance between the first light-emitting source 5a and the first intermediate layer 3a (semipermeable layer).
- Optical distance D 3 is an optical distance between the second light-emitting source 5b and the first intermediate layer 3a (semipermeable layer).
- D 4 The optical distance is the optical distance between the second light-emitting source 5b and the second light extraction side of the electrode 2.
- the optical film thickness (optical distance) derived by multiplying the film thickness d between the light emitting source 5 and the surface of the reflective layer by the refractive index n is 1 / 4 ⁇ of the wavelength ⁇ of light. It is designed to be approximately equal to the odd multiple of. Thereby, the component amount of light emitted from the substrate in the front direction becomes the maximum value.
- This method does not mean that the light is amplified internally, but it means changing the direction of the light and intensifying the light in a specific direction, for example, the front direction that is likely to extract the light into the atmosphere. .
- phase shift of light does not become ⁇ , and refraction and extinction in the organic layer and the reflection layer become involved, and more complicated behavior is exhibited.
- the phase shift of light at this time is represented as ⁇ .
- the optical film thickness can be set using this phase shift ⁇ .
- phase shift ⁇ is a function expressed using the following equation (1).
- n 1, k 1 denotes the refractive index of the layer in contact with the reflective layer and the extinction coefficient of each
- n 2 represents the refractive index of the reflective layer and the extinction coefficient of each
- n 1, n 2 , k 1 and k 2 are functions of ⁇ .
- n 1 , n 2 , k 1 and k 2 are functions of ⁇ , so the phase shift can be expressed as ⁇ ( ⁇ ).
- the weighted average emission wavelength of the first light-emitting source 5a and lambda 1, the weighted average emission wavelength of the second light-emitting source 5b and lambda 2.
- the weighted average emission wavelength is a wavelength calculated using the integral of the spectral intensity obtained by measuring the spectrum of the intensity of the emission wavelength (emission spectrum), and more precisely, the following equation (2) Is the wavelength indicated by
- phase shift which the light of the 1st light emission source 5a produces by reflection in the 1st electrode 1 can be represented as (phi) 1 ((lambda) 1 ).
- phase shift that occurs when the light of the first light emitting source 5a is reflected by the semitransparent layer can be represented as ⁇ 2 ( ⁇ 1 ).
- phase shift that occurs when the light of the second light emitting source 5b is reflected by the semitransparent layer can be expressed as ⁇ 2 ( ⁇ 2 ).
- X ⁇ 1 ( ⁇ 1 ) ⁇ ( ⁇ 1 / 4 ⁇ ) + ( ⁇ 1 ⁇ l / 2)
- Y ⁇ 2 ( ⁇ 2 ) ⁇ ( ⁇ 2 / 4 ⁇ ) + ( ⁇ 2 ⁇ m / 2)
- Z ( ⁇ 1 ( ⁇ 1 ) + ⁇ 2 ( ⁇ 1 )) ⁇ ( ⁇ 1 / 4 ⁇ ) + ( ⁇ 1 ⁇ n / 2)
- l, m and n are integers of 0 or more.
- this n is not related to the symbol n indicating the refractive index.
- D 1 ( ⁇ 1 ) be an optical distance that is the product of the refractive index at the wavelength ⁇ 1 of the medium that fills the space between the first light emitting source 5 a and the first electrode 1 and the film thickness.
- the optical distance is the product of the refractive index and film thickness at a wavelength lambda 1 of the medium filling the space between the first light-emitting source 5a and the semi-permeable layer (first intermediate layer 3a) D 2 (lambda 1 )
- the optical distance which is the product of the refractive index and the film thickness at the wavelength ⁇ 2 of the medium which fills the space between the second light emission source 5 b and the semitransparent layer (first intermediate layer 3 a) is D 3 ( ⁇ 2 ) At this time, it is preferable that these be set to satisfy the following relationship.
- l, m and n in the above equations of X, Y and Z respectively represent independent integers, and when each integer is taken, the above relational expression of optical distance is It is good if it is satisfied.
- these three integers may have a relationship of l ⁇ n ⁇ m.
- the upper limit of l, m and n is not particularly limited, but may be 10, for example.
- phase shift that occurs when the light of the second light emitting unit 6b is reflected by the first electrode 1 can be expressed as ⁇ 1 ( ⁇ 2 ), but this phase shift ⁇ 1 ( ⁇ 2 ) has the above form. It is not necessary to use in particular.
- D 1 to D 4 at each of the wavelengths ⁇ 1 and ⁇ 2 can be obtained from the following general formula related to the optical distance (optical film thickness).
- optical distance D 1 can be obtained by multiplying the refractive index and the thickness of the first charge the auxiliary layer 7a. Also, the optical distances D 1 to D 3 can be obtained similarly.
- D 3 ( ⁇ 2 ) has little effect on the effect, the film thickness does not have to be extremely large or small, so the above range is derived.
- D 1 ( ⁇ 1 ), D 2 ( ⁇ 1 ) and D 3 ( ⁇ 2 ) are preferably in the range within ⁇ 10% of the above-mentioned ideal setting value (90 to 110 Range). This range is more preferably in the range of within ⁇ 5% (D 1 ( ⁇ 1) if for example 0.95 ⁇ X ⁇ D 1 ( ⁇ 1) range of a ⁇ 1.05 ⁇ X), and even more Preferably, it is in the range of ⁇ 3%.
- the optical distance may be calculated by ignoring the thickness of the light emitting layer 4. That is, in the above relational expression, the positions of the light emitting sources 5 may be aligned at one position in the stacking direction. Of course, all of the light emitting sources 5 at arbitrary positions in the light emitting layer 4 may satisfy the above-mentioned relational expression.
- the thickness of the semipermeable layer is ignored and the element is It can also be designed.
- the light emitting source 5 is set at the middle position of the light emitting layer 4, and the first intermediate layer 3a is set at the middle position, neglecting the thickness, D 1 , D 2 , D It is illustrated that the optical distances of 3 and D 4 are set.
- FIGS. 3, 4, 5 and 6 show another example of the embodiment of the organic electroluminescent device.
- the light diffusion layer 9 is provided on the light extraction side (outside side) of the second electrode 2.
- the light diffusion layer 9 is provided on the light extraction surface of the substrate 8.
- the other configuration is the same as that of the embodiment shown in FIG.
- the transparent resin layer 10 is provided on the light extraction surface of the second electrode 2
- the light diffusion layer is provided on the light extraction surface side of the transparent resin layer 10. 9 is provided.
- the other configuration is the same as that of the embodiment shown in FIG.
- the film thickness is designed according to the above-mentioned relational expression, so the light extracted to the atmosphere is relatively large.
- utilizing light interference due to the microcavity effect increases the light emission intensity at a specific wavelength and angle, while the light emission intensity at other wavelengths and angles attenuates or attenuates, so that the light emission depends on the viewing angle.
- the viewing angle characteristics may be degraded.
- the viewing angle characteristic is the quality of the range of the viewing angle in which the light emission can be recognized without color unevenness. When the viewing angle characteristic is deteriorated, the viewing angle becomes narrow and the light emission depends on the angle. That is, the viewing angle dependency is enhanced. Therefore, as a method of suppressing the deterioration of the viewing angle characteristics while utilizing the microcavity effect, it is preferable to provide the light diffusion layer 9 as shown in the form of FIGS.
- the optical distance (D d ( ⁇ 1 )) at the wavelength ⁇ 1 between the light extraction side of the light diffusion layer 9 and the semi-transmissive layer (first intermediate layer 3 a) is
- the light emission peak wavelength ( ⁇ 1 ) of the light emission unit 6a is preferably 10 times or more. With such a relationship, incoherence is enhanced, and the microcavity effect and the diffusion become less relevant.
- the wavelength ( ⁇ 1 ) here may be an emission peak wavelength.
- the wavelength ( ⁇ 1 ) may be a weighted average emission wavelength. This relationship can be expressed by the following equation.
- the upper limit of (D d ( ⁇ 1 )) is not particularly limited, but may be, for example, 100 times or less of ⁇ 1 or the like.
- the letter “d” attached to D uses the initial letter of diffusion.
- the optical distance in the wavelength lambda 1 between the second electrode 2 of the light extraction side surface and the second light-emitting source 5b is expressed as D 4 ( ⁇ 1), a second light-emitting source 5b
- the optical distance at the wavelength ⁇ 1 between the semitransparent layer (first intermediate layer 3a) is represented by D 3 ( ⁇ 1 ).
- the total (D 3 ( ⁇ 1 ) + D 4 ( ⁇ 1 )) is not particularly limited, but may be 10 times or more of the emission peak wavelength ( ⁇ 1 ) of the first light emitting unit 6 a .
- the bottom emission type structure shown in FIG. 3 it is possible to exhibit the effect of improving the viewing angle characteristics while maintaining the microcavity effect by forming the light diffusion layer 9 on the outside of the substrate 8 is there.
- the light diffusion effect and the microcavity effect exert their effects independently without being related to each other.
- the light-diffusion layer 9 since the light-diffusion layer 9 is provided outside, there exists an advantage that the light-diffusion layer 9 can be easily formed compared with the other form.
- the light diffusion layer 9 is formed on the surface of the substrate 8.
- the substrate 8 whose thickness can be easily increased can be disposed between the light diffusion layer 9 and the semitransparent layer. Therefore, the optical distance (D d ( ⁇ 1 )) between the surface on the light extraction side of the light diffusion layer 9 and the semi-transmissive layer can be easily determined at the emission peak wavelength ( ⁇ 1 ) of the first light emitting unit 6a. It becomes possible to make it 10 times or more.
- the light diffusion layer 9 may be provided in contact with the surface of the second electrode 2 or may be provided via the transparent resin layer 10. However, in the case of the top emission structure, as shown in FIG. 6, the transparent resin is interposed between the second electrode 2 and the light diffusion layer 9 so that the microcavity effect and the incoherence of the diffusion layer 9 are maintained. It is preferable to form the layer 10.
- the light diffusion layer 9 can be formed of, for example, a resin layer formed by mixing a high refractive index resin in which metal oxide particles are dispersed and a scattering material.
- the high refractive index resin may have, for example, a refractive index of 1.7 or more.
- the metal oxide particles can use, for example, TiO 2 .
- acrylic particles having a refractive index of about 1.49 can be used.
- pores may be included.
- the light diffusion layer 9 may have a surface on which the unevenness is formed.
- the light diffusion layer 9 imprints an ultraviolet-curable resin having a refractive index of about 1.5 on the surface of the substrate 8 to form asperities, and the surface having the asperities formed thereon has high refractive index as described above. It can form by laminating rate resin.
- the light diffusion layer 9 can be formed of a resin layer formed by mixing a high refractive index resin in which metal oxide particles are dispersed and a scattering material.
- the uneven layer 9a having the uneven surface is formed on the surface of the substrate 8 on the light emitting source 5 side, and the flattening layer planarizes the surface of the light diffusion layer 9 on the surface of the uneven layer 9a. 9b is formed. And the light-diffusion layer 9 is comprised by this uneven
- FIG. 7 shows an example of the embodiment of the organic electroluminescent device.
- two light emitting units 6 are provided, and one intermediate layer 3 (first intermediate layer 3 a) is provided between the light emitting units 6.
- Such a light emitting unit 6 has two multi-unit structures, which are more basic elements, and is an element having a simpler structure and higher practicability.
- the refractive index of the substrate 8 is preferably 1.55 or more.
- FIG. 8A is a schematic graph showing the relationship between the in-plane wave number of light and the Photon number. Of the light emitted internally, about 20% is extracted outside and emitted to the atmosphere. The reason why the light extraction rate is as low as this is because light with a small angle is deactivated as a waveguide mode at the interface between the substrate and the organic layer (thin film) and the interface between the substrate and the air.
- FIG. 8B schematically shows an alignment pattern of light emitted by the light reaching the substrate.
- the light reaching the substrate has an orientation from the point A toward the front (upward in the figure).
- S1 a normal element
- S2 it becomes a circular or horizontally long elliptical photo-orientation property.
- S2 the organic electroluminescent element having a microcavity structure
- the light alignment is changed to be a vertically long oval photo alignment. By changing the light orientation in this manner, more light can be introduced into the substrate.
- the plasmon loss is increased at the film thickness of the primary interference, and the light extraction performance as a whole may be reduced. Therefore, it is preferable to have a structure of secondary interference that suppresses plasmon loss.
- the suppression effect of the plasmon loss can be expected to improve the efficiency.
- the radiation life may be extended and the efficiency may be reduced as the second interference (second cavity (2nd cavity)) is larger (third interference, fourth interference,).
- FIG. 11 is a graph showing the relationship between the film thickness change and the life factor F. That is, although the carrier lifetime changes due to the microcavity effect, and the radiation efficiency (IQE) changes (increases or decreases), the factor F decreases and the efficiency decreases in the 2nd cavity. Therefore, in the 2nd cavity, there is a trade-off between the aforementioned plasmon loss suppression and the efficiency reduction due to the reduction of factor F. However, in the organic electroluminescent device of this embodiment, since a semi-permeable material is used for the intermediate layer, a strong microcavity effect is maintained even in the 2nd cavity. Therefore, since improvement of factor F can be expected, efficiency improvement by plasmon loss suppression is expected.
- X ⁇ 1 ( ⁇ 1 ) ⁇ ( ⁇ 1 / 4 ⁇ ) + ( ⁇ 1 ⁇ l / 2)
- Y ⁇ 2 ( ⁇ 2 ) ⁇ ( ⁇ 2 / 4 ⁇ ) + ( ⁇ 2 ⁇ m / 2)
- Z ( ⁇ 1 ( ⁇ 1 ) + ⁇ 2 ( ⁇ 1 )) ⁇ ( ⁇ 1 / 4 ⁇ ) + ( ⁇ 1 ⁇ n / 2)
- l, m and n are integers of 0 or more.
- organic electroluminescent elements are formed on the first electrode 1, the second electrode 2, the charge assisting layers 7a, 7b, 7c, 7d, the light emitting layers 4a, 4b, and the substrate 8.
- Any appropriate material that can usually be used as the material for the treatment can be used.
- a conductive polymer such as ITO, IZO, tin oxide, zinc oxide, copper iodide, PEDOT, a conductive polymer such as polyaniline, and an optional acceptor or the like
- carbon Examples include conductive light transmitting materials such as nanotubes.
- an electrode material composed of a metal having a small work function, an alloy, an electrically conductive compound, and a mixture thereof, and the difference with the lowest unoccupied molecular orbital (LUMO) level. It is preferable to use one having a work function of 1.9 eV or more and 5 eV or less so that
- an electrode material for example, aluminum, silver, magnesium and the like, and alloys of these with other metals, such as magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy can be mentioned as an example.
- metal conductive materials, metal oxides, etc., and mixtures of these with other metals for example, an extremely thin film composed of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection) A laminated film with a thin film made of aluminum can also be used.
- any material known as a material for an organic electroluminescent device can be used.
- an appropriate material according to the characteristics of each layer constituting the charge assisting layer 7, such as a hole injecting layer, a hole transporting layer, an electron transporting layer, and an electron injecting layer can be used.
- oxides of a plurality of metals other than the oxides of only one metal such as indium and tin, indium and zinc, aluminum and gallium, gallium and zinc, titanium and niobium, etc.
- the hole injection layer made of these materials may be formed by a dry process such as evaporation or transfer, or formed by a wet process such as spin coating, spray coating, die coating, or gravure printing. It may be a membrane.
- the material used for the electron transport layer can be selected from the group of compounds having electron transportability.
- this type of compound include metal complexes known as electron transporting materials such as Alq 3 and compounds having a heterocycle such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, oxadiazole derivatives, etc. Rather, it is possible to use any of the commonly known electron transport materials.
- the material of the electron injection layer is, for example, metal fluorides such as lithium fluoride and magnesium fluoride, metal halides such as metal chlorides represented by sodium chloride and magnesium chloride, aluminum, lithium, cesium, Oxides, nitrides, carbides, oxynitrides of various metals such as cobalt, zirconium, titanium, vanadium, niobium, chromium, tantalum, tungsten, manganese, molybdenum, ruthenium, iron, nickel, copper, gallium, zinc and silicon
- metal fluorides such as lithium fluoride and magnesium fluoride
- metal halides such as metal chlorides represented by sodium chloride and magnesium chloride
- organic electroluminescent element it is possible to increase the total luminous flux even in a multi-unit type structure having a plurality of light emitting layers capable of achieving high brightness and long life, and the viewing angle dependency is suppressed.
- An organic electroluminescent device can be provided. Specifically, the microcavity effect can be utilized by using a metal thin film with small absorption as the intermediate layer 3 connecting the plurality of light emitting layers 4. Further, by optimizing the film thickness of each layer, it is possible to increase the light emitted to the atmosphere and to improve the luminance and the total luminous flux.
- the thin film waveguide mode which is usually said to be 50% of the whole, is moved to the atmosphere side and the substrate waveguide mode side by the microcavity effect, and By taking out, it is possible to achieve high light extraction efficiency. Further, as shown in FIG. 9, the light extraction efficiency can be further enhanced by suppressing the plasmon loss.
- an organic electroluminescent element can be used suitably for a planar light-emitting device, a lighting fixture, etc.
- the first light emitting unit 6a includes a first charge assisting layer 7a including an electron transporting layer and an electron injecting layer, a first light emitting layer 4a, and a second charge assisting layer including a hole injecting layer and a hole transporting layer.
- the second light emitting unit 6b includes a third charge assisting layer 7c including an electron transporting layer and an electron injecting layer, a second light emitting layer 4b, and a fourth charge assisting layer including a hole injecting layer and a hole transporting layer. And the layer 7d.
- the substrate 8 can be made of, for example, glass or the like.
- the second electrode 2 can be made of, for example, ITO or IZO.
- the first electrode 1 can be made of, for example, Al or Ag.
- Each charge auxiliary layer 7 can be configured using an organic material that satisfies each charge characteristic. In the simulation of the present embodiment, the material may not be particularly limited.
- the first light emitting layer 4a and the second light emitting layer 4b are made of light emitting materials having different light emission peak wavelengths.
- the 1st light emitting layer 4a is formed as an orange light emitting layer
- the 2nd light emitting layer 4b is formed as a blue light emitting layer
- the luminescent color as a whole is white.
- an organic electroluminescent device having a white multi-unit structure can be obtained.
- the charge auxiliary layer 7 is composed of a plurality of layers such as a layer having a refractive index n 1 and a film thickness d 1, a layer having a refractive index n 2 and a film thickness d 2 ,.
- the optical distance D of is expressed as follows as the sum of the optical film thicknesses of the respective layers.
- the emission wavelength ⁇ 1 of the first light emitting unit 6a is 600 nm
- the emission wavelength ⁇ 2 of the second light emitting unit 6b is 460 nm.
- This emission wavelength is a weighted average emission wavelength.
- the actual thickness of the first charge transport layer 7a is 80 nm
- the actual thickness of the second charge transport layer 7b is 40 nm
- the actual thickness of the third charge transport layer 7c is 65 nm.
- the actual film thickness of the charge transport layer 7d was 275 nm. The thickness of the light emitting layer 4 was ignored.
- optical distances D 1 to D 4 were set using reflective layers (the first electrode 1 and the first intermediate layer 3 a) whose phase shifts ⁇ 1 and ⁇ 2 are respectively shown in the table.
- An example of a specific device is shown.
- FIG. 13 shows the variation of the total radiant flux (total flux converted to energy) emitted to the outside when the film thickness of the semipermeable layer (the first intermediate layer 3a) is changed in this device.
- the total radiant flux changes when the material of the intermediate layer is changed from Ag to Al.
- FIG. 13 shows that the energy value is lower than the reference value 1.0 (ref) when the Ag film thickness is larger than about 35 nm. This indicates that the higher the reflectance, the lower the light extraction property. From this result, it is understood that the reflectance should not be too high.
- Example 2 In order to confirm the preferable conditions of the film thickness, phase shifts ⁇ 1 and ⁇ 2 of reflection in the cathode and the metal thin film (semi-transmissive layer), and wavelengths ⁇ 1 and ⁇ 2 of the respective light emitting layers 4 a and 4 b are derived. The analysis was conducted on the relationship between the film thickness D 1 to D 4 and the film thickness D 1 to D 4 .
- FIGS. 14A-14D use Ag thin film 15 nm as a semi-transparent layer in the device example of Table 4 and use D 1 ( ⁇ 1 ), D 2 ( ⁇ 1 ), D 3 ( ⁇ 2 ), D 4 ( ⁇
- the change of the total radiant flux value when the optical distance (optical film thickness) of 2 ) is individually changed is shown. That is, for example, in the graph of D 2 ( ⁇ 1 ) in FIG. 14B, D 1 ( ⁇ 1 ), D 4 ( ⁇ 2 ), and D 3 ( ⁇ 2 ) are fixed with the values of Table 4 in the device example of Table 4. The change in light intensity due to the change in D 2 ( ⁇ 1 ) in time is shown.
- D 1 ( ⁇ 1 ) and D 2 ( ⁇ 1 ) change the film thickness to increase and decrease the light intensity rapidly, and these are graphs depicting the locus of chevrons having maximum values.
- the maximum value of D 1 ( ⁇ 1 ) is in the range of 100 to 160 nm, and the maximum value of D 2 ( ⁇ 1 ) is in the range of 60 to 110 nm.
- D 4 ( ⁇ 2 ) is a flat graph with little increase and decrease depending on the film thickness.
- D 3 ( ⁇ 2 ) is a graph which is slightly broad and broad at 50 to 100 nm.
- D 1 ( ⁇ 1 ) ⁇ 1 ( ⁇ 1 ) ⁇ ( ⁇ 1 / 4 ⁇ ) + ( ⁇ 1 ⁇ l / 2)
- D 3 ( ⁇ 2 ) ⁇ 2 ( ⁇ 2 ) ⁇ ( ⁇ 2 / 4 ⁇ ) + ( ⁇ 2 ⁇ m / 2)
- D 1 ( ⁇ 1 ) + D 2 ( ⁇ 1 ) ( ⁇ 1 ( ⁇ 1 ) + ⁇ 2 ( ⁇ 1 )) ⁇ ( ⁇ 1 / 4 ⁇ ) + ( ⁇ 1 ⁇ n / 2)
- l, m, n are integers greater than or equal to 0, they are all set to 0 in the following calculation.
- the optical distance was calculated as follows. In the following calculation formula, the angle is described by converting it from radian ([rad]) to degree ([deg]).
- D 3 ( ⁇ 2 ) slightly deviates from the optimum film thickness condition because it is also somewhat affected by the cavity amplification light, it falls within the preferable range, and the increase and decrease width of the peak is The impact is small because it is small.
- the chromaticity was measured for each element using a luminance meter system, and the viewing angle characteristics (viewing angle dependency) were evaluated. Moreover, about the element in which the film thickness of a semi-permeable layer is the same conditions, the improvement of the light extraction efficiency by the presence or absence of the light-diffusion layer 9 was evaluated as light extraction magnification.
- the configuration of the element is as shown in Table 4, and the film thickness of the Ag semipermeable layer was changed as a parameter.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
2π/9 ≦ θ(λ) ≦ 15π/18
D(λ) = θ(λ)×λ/4π
0.73D(λ)≦d(λ)≦1.15D(λ)
なお、上式において、λは、発光の最大ピーク波長を表し、θ(λ)は、反射電極による位相のずれを表し、d(λ)は、透過電極と反射電極間の波長λにおける光学距離を表す。
前記第一の発光源の重み平均発光波長をλ1、
前記第二の発光源の重み平均発光波長をλ2、
下記式(1)で示される前記第一の電極で生じる位相シフトをφ1、及び、
下記式(1)で示される前記半透過性層で生じる位相シフトをφ2、としたときに、
前記第一の発光源の光が前記第一の電極における反射で生じる位相シフトをφ1(λ1)、
前記第一の発光源の光が前記半透過性層における反射で生じる位相シフトをφ2(λ1)、及び
前記第二の発光源の光が前記半透過性層における反射で生じる位相シフトをφ2(λ2)、として表し、さらに、
X = φ1(λ1)×(λ1/4π)+(λ1×l/2)
Y = φ2(λ2)×(λ2/4π)+(λ2×m/2)
Z = (φ1(λ1)+φ2(λ1))×(λ1/4π)+(λ1×n/2)
(上式において、l,m,nは0以上の整数である)
の関係式でX、Y及びZを表したときに、
前記第一の発光源と前記第一の電極との間を満たす媒質の波長λ1における屈折率と膜厚との積である光学的距離(D1(λ1))、
前記第一の発光源と前記半透過性層との間を満たす媒質の波長λ1における屈折率と膜厚との積である光学的距離(D2(λ1))、及び、
前記第二の発光源と前記半透過性層との間を満たす媒質の波長λ2における屈折率と膜厚との積である光学的距離(D3(λ2))、が、
0.9×X ≦ D1(λ1) ≦ 1.1×X 、
0.1×Y ≦ D3(λ2) ≦ 2.0×Y 、かつ
0.8×Z ≦ D1(λ1)+D2(λ1) ≦ 1.2×Z 、
の関係を満たすように設定されていることを特徴とする。
Y = φ2(λ2)×(λ2/4π)+(λ2×m/2)
Z = (φ1(λ1)+φ2(λ1))×(λ1/4π)+(λ1×n/2)
上式において、l,m,nは0以上の整数である。なお、このnは屈折率を示す記号nとは関係ない。
0.1×Y ≦ D3(λ2) ≦ 2.0×Y 、かつ
0.8×Z ≦ D1(λ1)+D2(λ1) ≦ 1.2×Z 、
の関係。
(上式においてnは屈折率、dは膜厚(物理的膜厚)を示す。)
したがって、例えば、光学的距離D1は、第1の電荷補助層7aにおける屈折率と膜厚とを乗じることによって求めることができる。また、光学的距離D1~D3についても同様に求めることができる。
0.9×X ≦ D1(λ1) ≦ 1.1×X 、
0.9×Y ≦ D3(λ2) ≦ 1.1×Y 、かつ
0.9×Z ≦ D1(λ1)+D2(λ1) ≦ 1.1×Z
となる。
なお、(Dd(λ1))の上限は特にないが、例えば、λ1の100倍以下などであってもよい。ちなみに、Ddにおいて、Dに添えた文字「d」は拡散(diffusion)の頭文字を使用している。
Y = φ2(λ2)×(λ2/4π)+(λ2×m/2)
Z = (φ1(λ1)+φ2(λ1))×(λ1/4π)+(λ1×n/2)
上式において、l,m,nは0以上の整数である。
マルチユニット構造の有機エレクトロルミネッセンス素子において、光学的距離を設定し、素子の好適化を行った。
このようにして計算される光学的距離を上記の関係式に用いるようにする。
膜厚の好適条件を確認するため、陰極及び金属薄膜(半透過性層)における反射の位相シフトφ1、φ2、及び、各発光層4a、4bの波長λ1、λ2と、導出される膜厚D1~D4との関係について解析を行った。
D3(λ2) = φ2(λ2)×(λ2/4π)+(λ2×m/2)
D1(λ1)+D2(λ1)
= (φ1(λ1)+φ2(λ1))×(λ1/4π)+(λ1×n/2)
なお、l、m、nは0以上の整数であるが、以下の計算ではこれらを全て0とした。
D3(λ2) = 110×(460/720) = 70 (nm)
D1(λ1)+D2(λ1)
= 280×(600/720) = 230 (nm)
これは、図14A~図14Dにおける極大値の関係とほぼ一致していることが確認された。なお、D3(λ2)は、キャビティ増幅光の影響も多少受けるために最適な膜厚条件からは少しずれているが、好適な範囲内には収まっており、また、ピークの増減幅が小さいため影響は小さい。また、D1(λ1)のピークは140nmであり、D2(λ1)のピークは80nmである。したがって、表4から、D2(λ1)がピークになるときのD1(λ1)+D2(λ1)は80+130=210nmとなり、また、D1(λ1)がピークになるときのD1(λ1)+D2(λ1)は140+70=210nmとなる。よって、D1(λ1)+D2(λ1)が好適な膜厚条件を満たしていることが確認された。
図7に示すボトムエミッション構造の有機エレクトロルミネッセンスを、表5に示すように半透過性層(第一の中間層3a)の膜厚を変化させて試作した。このとき、基板8の外側の表面に光拡散層9を設けたものと設けていないものを試作した。光拡散層9を設けたものにおいては、光拡散層9の光取り出し側の面と半透過性層との間の波長λ1における光学的距離(Dd(λ1))が、第一の発光ユニット6aの発光ピーク波長(λ1)の10倍以上になるように設計した(図3参照)。各素子について輝度計システムを用いて色度を測定し視野角特性(視野角依存性)を評価した。また、半透過性層の膜厚が同条件の素子について、光拡散層9の有無による光取り出し効率の向上を光取り出し倍率として評価した。なお素子の構成は表4に示すものとし、Ag半透過性層の膜厚をパラメータとして変化させた。視野角特性については下記で示される1931CIE表色系(x,y,z)を用いた1976CIE規格値(u’,v’)の視野角0°~80°における(max-min)の値(Δu’,Δv’)を用いて評価した。この値が小さいほど視野角の依存性が小さく、幅広い視野角で発光を得ることができる。
v’ = 9y/(-2x+12y+3)
表5に、光拡散層9の有無による視野角特性及び光取り出し性の結果を示す。
2 第二の電極
3 中間層
4 発光層
4a 第一の発光層
4b 第二の発光層
5 発光源
5a 第一の発光源
5b 第二の発光源
6 発光ユニット
6a 第一の発光ユニット
6b 第二の発光ユニット
7 電荷補助層
8 基板
9 光拡散層
10 透明樹脂層
Claims (9)
- 光反射性を有する第一の電極と光透過性を有する第二の電極との間に、一又は複数の光透過可能な中間層を介して複数の発光層が積層された有機エレクトロルミネッセンス素子であって、前記第一の電極に最も近い中間層として第一の中間層が形成されており、前記第一の電極と前記第一の中間層との間には、第一の発光源を有する第一の発光層を備える第一の発光ユニットが形成されるとともに、前記第一の中間層の前記第二の電極側には、第二の発光源を有する第二の発光層を備える第二の発光ユニットが形成されており、前記第一の中間層は、光透過性及び光反射性の両方を有し全光線吸収率10%以下の半透過性層により構成されていることを特徴とする、有機エレクトロルミネッセンス素子。
- 前記半透過性層の全光線反射率が10%以上50%未満であることを特徴とする、請求項1に記載の有機エレクトロルミネッセンス素子。
- 前記半透過性層はAg又はAgを含む合金を主成分とする層であることを特徴とする、請求項1又は2に記載の有機エレクトロルミネッセンス素子。
- 前記第一の発光源の重み平均発光波長をλ1、
前記第二の発光源の重み平均発光波長をλ2、
下記式(1)で示される前記第一の電極で生じる位相シフトをφ1、及び、
下記式(1)で示される前記半透過性層で生じる位相シフトをφ2、としたときに、
前記第一の発光源の光が前記第一の電極における反射で生じる位相シフトをφ1(λ1)、
前記第一の発光源の光が前記半透過性層における反射で生じる位相シフトをφ2(λ1)、及び
前記第二の発光源の光が前記半透過性層における反射で生じる位相シフトをφ2(λ2)、として表し、さらに、
X = φ1(λ1)×(λ1/4π)+(λ1×l/2)
Y = φ2(λ2)×(λ2/4π)+(λ2×m/2)
Z = (φ1(λ1)+φ2(λ1))×(λ1/4π)+(λ1×n/2)
(上式において、l,m,nは0以上の整数である)
の関係式でX、Y及びZを表したときに、
前記第一の発光源と前記第一の電極との間を満たす媒質の波長λ1における屈折率と膜厚との積である光学的距離(D1(λ1))、
前記第一の発光源と前記半透過性層との間を満たす媒質の波長λ1における屈折率と膜厚との積である光学的距離(D2(λ1))、及び、
前記第二の発光源と前記半透過性層との間を満たす媒質の波長λ2における屈折率と膜厚との積である光学的距離(D3(λ2))、が、
0.9×X ≦ D1(λ1) ≦ 1.1×X 、
0.1×Y ≦ D3(λ2) ≦ 2.0×Y 、かつ
0.8×Z ≦ D1(λ1)+D2(λ1) ≦ 1.2×Z 、
の関係を満たすように設定されていることを特徴とする、請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。 - 前記Xの関係式において、l≧1であることを特徴とする、請求項4に記載の有機エレクトロルミネッセンス素子。
- 前記X、Y、Zの関係式において、l≧1、m≧1、かつ、n≧1であることを特徴とする、請求項4に記載の有機エレクトロルミネッセンス素子。
- 前記第二の電極の光取り出し面側に光拡散層が形成されていることを特徴とする、請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
- 前記光拡散層の光取り出し側の面と前記半透過性層との間の波長λ1における光学的距離(Dd(λ1))が、前記第一の発光ユニットの発光ピーク波長(λ1)の10倍以上であることを特徴とする、請求項7に記載の有機エレクトロルミネッセンス素子。
- 前記第二の電極の光取り出し面側に光透過性を有する基板が設けられ、この基板の屈折率が1.55以上であることを特徴とする、請求項7に記載の有機エレクトロルミネッセンス素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/238,368 US9112174B2 (en) | 2011-08-12 | 2012-08-09 | Organic electroluminescent element |
JP2013528995A JP5698848B2 (ja) | 2011-08-12 | 2012-08-09 | 有機エレクトロルミネッセンス素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-177204 | 2011-08-12 | ||
JP2011177204 | 2011-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013024787A1 true WO2013024787A1 (ja) | 2013-02-21 |
Family
ID=47715106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070363 WO2013024787A1 (ja) | 2011-08-12 | 2012-08-09 | 有機エレクトロルミネッセンス素子 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9112174B2 (ja) |
JP (1) | JP5698848B2 (ja) |
WO (1) | WO2013024787A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013229218A (ja) * | 2012-04-26 | 2013-11-07 | Konica Minolta Inc | 表示装置 |
WO2014141611A1 (ja) * | 2013-03-13 | 2014-09-18 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子及びそれを用いた照明装置 |
WO2014141623A1 (ja) * | 2013-03-13 | 2014-09-18 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子及びそれを用いた照明装置 |
WO2014185063A1 (ja) * | 2013-05-17 | 2014-11-20 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
JP2017054869A (ja) * | 2015-09-08 | 2017-03-16 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子及び車両用灯具 |
WO2017212852A1 (ja) * | 2016-06-06 | 2017-12-14 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子及び車両用灯具 |
JP2018525766A (ja) * | 2015-08-12 | 2018-09-06 | 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. | 有機エレクトロルミネセント装置及びその製造方法 |
JPWO2017122386A1 (ja) * | 2016-01-14 | 2018-11-01 | コニカミノルタ株式会社 | 電界発光素子 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015072070A1 (ja) * | 2013-11-13 | 2015-05-21 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
CN104966789A (zh) * | 2015-06-30 | 2015-10-07 | 深圳市华星光电技术有限公司 | 一种电荷连接层及其制造方法、叠层oled器件 |
CN105185813A (zh) * | 2015-09-09 | 2015-12-23 | 京东方科技集团股份有限公司 | Oled显示装置及其制备方法 |
CN110473974B (zh) * | 2018-05-11 | 2021-12-24 | 株式会社日本有机雷特显示器 | 发光装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009238507A (ja) * | 2008-03-26 | 2009-10-15 | Kanazawa Inst Of Technology | 有機エレクトロルミネッセンス素子、照明装置および表示装置 |
JP2010103090A (ja) * | 2008-09-29 | 2010-05-06 | Canon Inc | 積層型多色発光表示装置 |
JP2011018451A (ja) * | 2008-06-30 | 2011-01-27 | Canon Inc | 発光表示装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3884564B2 (ja) | 1998-05-20 | 2007-02-21 | 出光興産株式会社 | 有機el発光素子およびそれを用いた発光装置 |
JP4611578B2 (ja) | 2001-07-26 | 2011-01-12 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
JP2004165154A (ja) | 2002-10-24 | 2004-06-10 | Toray Ind Inc | 有機電界発光素子 |
JP4731996B2 (ja) | 2004-05-20 | 2011-07-27 | 株式会社半導体エネルギー研究所 | 発光素子及び表示装置 |
US7126267B2 (en) | 2004-05-28 | 2006-10-24 | Eastman Kodak Company | Tandem OLED having stable intermediate connectors |
JP4378366B2 (ja) * | 2005-08-04 | 2009-12-02 | キヤノン株式会社 | 発光素子アレイ |
JP4966176B2 (ja) | 2007-02-09 | 2012-07-04 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子 |
JP2008225179A (ja) | 2007-03-14 | 2008-09-25 | Sony Corp | 表示装置、表示装置の駆動方法、および電子機器 |
JP2009231274A (ja) | 2008-02-27 | 2009-10-08 | Canon Inc | 有機発光素子及び表示装置 |
JP2010108652A (ja) | 2008-10-28 | 2010-05-13 | Panasonic Electric Works Co Ltd | 有機エレクトロルミネッセンス素子の製造方法 |
JP2011040244A (ja) * | 2009-08-10 | 2011-02-24 | Sony Corp | 発光素子 |
-
2012
- 2012-08-09 JP JP2013528995A patent/JP5698848B2/ja not_active Expired - Fee Related
- 2012-08-09 US US14/238,368 patent/US9112174B2/en not_active Expired - Fee Related
- 2012-08-09 WO PCT/JP2012/070363 patent/WO2013024787A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009238507A (ja) * | 2008-03-26 | 2009-10-15 | Kanazawa Inst Of Technology | 有機エレクトロルミネッセンス素子、照明装置および表示装置 |
JP2011018451A (ja) * | 2008-06-30 | 2011-01-27 | Canon Inc | 発光表示装置 |
JP2010103090A (ja) * | 2008-09-29 | 2010-05-06 | Canon Inc | 積層型多色発光表示装置 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013229218A (ja) * | 2012-04-26 | 2013-11-07 | Konica Minolta Inc | 表示装置 |
US9379359B2 (en) | 2013-03-13 | 2016-06-28 | Panasonic Intellectual Property Management Co., Ltd. | Organic electroluminescence element and lighting device using same |
US9577206B2 (en) | 2013-03-13 | 2017-02-21 | Panasonic Corporation | Organic electroluminescence element and lighting device using same |
EP2975910A4 (en) * | 2013-03-13 | 2016-04-20 | Panasonic Corp | ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE USING THE SAME |
JP5830194B2 (ja) * | 2013-03-13 | 2015-12-09 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子及びそれを用いた照明装置 |
CN105144846A (zh) * | 2013-03-13 | 2015-12-09 | 松下知识产权经营株式会社 | 有机电致发光元件以及使用有机电致发光元件的照明装置 |
WO2014141623A1 (ja) * | 2013-03-13 | 2014-09-18 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子及びそれを用いた照明装置 |
CN105191500A (zh) * | 2013-03-13 | 2015-12-23 | 松下电器产业株式会社 | 有机电致发光元件和使用所述有机电致发光元件的照明设备 |
JP5866552B2 (ja) * | 2013-03-13 | 2016-02-17 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子及びそれを用いた照明装置 |
WO2014141611A1 (ja) * | 2013-03-13 | 2014-09-18 | パナソニック株式会社 | 有機エレクトロルミネッセンス素子及びそれを用いた照明装置 |
CN105144846B (zh) * | 2013-03-13 | 2017-04-12 | 松下知识产权经营株式会社 | 有机电致发光元件以及使用有机电致发光元件的照明装置 |
CN105165123A (zh) * | 2013-05-17 | 2015-12-16 | 松下知识产权经营株式会社 | 有机电致发光元件及照明装置 |
JPWO2014185063A1 (ja) * | 2013-05-17 | 2017-02-23 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
US9786859B2 (en) | 2013-05-17 | 2017-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Organic electroluminescent element and lighting device |
WO2014185063A1 (ja) * | 2013-05-17 | 2014-11-20 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
JP2018525766A (ja) * | 2015-08-12 | 2018-09-06 | 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. | 有機エレクトロルミネセント装置及びその製造方法 |
JP2017054869A (ja) * | 2015-09-08 | 2017-03-16 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子及び車両用灯具 |
JPWO2017122386A1 (ja) * | 2016-01-14 | 2018-11-01 | コニカミノルタ株式会社 | 電界発光素子 |
JPWO2017212852A1 (ja) * | 2016-06-06 | 2019-04-11 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子及び車両用灯具 |
WO2017212852A1 (ja) * | 2016-06-06 | 2017-12-14 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子及び車両用灯具 |
Also Published As
Publication number | Publication date |
---|---|
US20140191226A1 (en) | 2014-07-10 |
JP5698848B2 (ja) | 2015-04-08 |
US9112174B2 (en) | 2015-08-18 |
JPWO2013024787A1 (ja) | 2015-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013024787A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP3703028B2 (ja) | 表示素子およびこれを用いた表示装置 | |
JP4898560B2 (ja) | 有機発光装置 | |
JP5452853B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5975831B2 (ja) | 表示装置 | |
CN102257649B (zh) | 有机电致发光元件 | |
JP5706111B2 (ja) | 有機発光装置 | |
JP4767059B2 (ja) | 有機エレクトロルミネッセント素子 | |
JP5279240B2 (ja) | 多色表示装置 | |
US8823030B2 (en) | Light-emitting device and lighting device | |
JP2011018451A (ja) | 発光表示装置 | |
JP6309707B2 (ja) | 有機発光装置 | |
US9666644B2 (en) | Organic electroluminescent element | |
US20060049419A1 (en) | Light emitting diode device | |
KR20160065795A (ko) | 유기 일렉트로루미네선스 소자 | |
US20100155711A1 (en) | Organic light-emitting element and light-emitting device using the same | |
WO2014010223A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5013418B2 (ja) | 有機el素子 | |
JP4785034B2 (ja) | El素子 | |
JP4945076B2 (ja) | 両面発光型有機el素子 | |
JP2005150042A (ja) | 有機el発光素子 | |
JP4726411B2 (ja) | 発光素子基板およびそれを用いた発光素子 | |
JP2014022100A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2012204094A (ja) | 有機エレクトロルミネッセンス素子 | |
JP2009188045A (ja) | 有機el素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12823846 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013528995 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14238368 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12823846 Country of ref document: EP Kind code of ref document: A1 |