WO2013005338A1 - Exhaust purification apparatus for internal combustion engine - Google Patents
Exhaust purification apparatus for internal combustion engine Download PDFInfo
- Publication number
- WO2013005338A1 WO2013005338A1 PCT/JP2011/065637 JP2011065637W WO2013005338A1 WO 2013005338 A1 WO2013005338 A1 WO 2013005338A1 JP 2011065637 W JP2011065637 W JP 2011065637W WO 2013005338 A1 WO2013005338 A1 WO 2013005338A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dpf
- exhaust gas
- ash
- internal combustion
- combustion engine
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/70—Non-metallic catalysts, additives or dopants
- B01D2255/707—Additives or dopants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/905—Catalysts having a gradually changing coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/915—Catalyst supported on particulate filters
- B01D2255/9155—Wall flow filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0682—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/04—Sulfur or sulfur oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an exhaust purification device for an internal combustion engine.
- a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
- PM regeneration since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
- PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
- a reducing agent such as hydrocarbon (HC)
- Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF.
- the ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed.
- Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
- the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash.
- an invention disclosed in Patent Document 1 for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
- the structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
- Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
- Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
- Patent Document 2 which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device.
- SOF Solid Organic Fraction
- unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range.
- the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF.
- JP 2006-289175 A Japanese Patent Laid-Open No. 10-033985
- the present invention provides an exhaust emission control device for an internal combustion engine that can suppress the accumulation of ash on the DPF and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is aimed.
- the present invention provides a configuration in which the ash deposited on the DPF is discharged with a reduced particle size, and the DPF is regenerated (hereinafter referred to as “ash regeneration”). It is an object of the present invention to provide an epoch-making DPF that has an advantageous effect of suppressing an increase in temperature and a decrease in fuel consumption.
- the accumulated ash can be discharged with a reduced particle size.
- a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced.
- the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
- the inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
- Ca calcium
- the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
- Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
- the particle size will be submicron.
- CaSO 4 deposited in the DPF turned into, in a reducing atmosphere becomes CaSO 3 SO 4 is reduced in CaSO 4
- Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form.
- SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
- the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
- the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4.
- No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
- DPF usually has a wall part parallel to the flow of exhaust gas and a bottom part opposite to the exhaust gas inlet of DPF, and ash is deposited near the DPF inlet.
- the amount of deposition is small, the deposition amount gradually increases along the flow direction of the exhaust gas on the parallel wall portion, and deposition is performed so that the deposition amount is the largest at the bottom.
- an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is parallel to the flow of exhaust gas, and the DPF A DPF having a surface coated with a solid acid, the acid strength of the solid acid being greater than the acid strength of SO 3 and the acid strength of SO 4
- an exhaust gas purification apparatus for an internal combustion engine which is smaller and has a coating amount of solid acid at the bottom portion than in the vicinity of the exhaust gas inlet of the parallel wall portion of the DPF.
- the DPF is constituted by coating the surface of the DPF with a solid acid having an acid strength stronger than SO 3 and weaker than SO 4.
- the coating is performed so that the coating amount is larger at the bottom portion than in the vicinity of the exhaust gas inlet of the parallel wall portion.
- the CaSO 4 released through this process has a reduced particle size
- the first large-sized CaSO 4 is released from the DPF as the reduced particle size CaSO 4 and passes through the DPF. Discharged. Therefore, the ash is efficiently removed according to the distribution of the accumulation amount in the DPF, and the exhaust gas purification of the internal combustion engine can suppress the increase in pressure loss, the increase in PM regeneration temperature, and the decrease in fuel consumption over a long period of time.
- the coating amount of the solid acid increases from the vicinity of the exhaust gas inlet of the parallel wall portion of the DPF toward the bottom portion, and the coating amount of the solid acid increases most at the bottom portion.
- the DPF is constituted by coating the surface of the DPF with a solid acid having an acid strength stronger than that of SO 3 and weaker than that of SO 4. Coating is performed so that the coating amount increases from the vicinity of the exhaust gas inlet of the parallel wall portion toward the bottom, and the coating amount is maximized at the bottom.
- the amount of ash deposited is small in the vicinity of the DPF inlet, and gradually increases along the flow direction of the exhaust gas on the parallel walls.
- the CaSO 4 released through this process has a reduced particle size
- the first large-sized CaSO 4 is released from the DPF as the reduced particle size CaSO 4 and passes through the DPF. Discharged. Therefore, the ash is efficiently removed according to the distribution of the accumulation amount in the DPF, and the exhaust gas purification of the internal combustion engine can suppress the increase in pressure loss, the increase in PM regeneration temperature, and the decrease in fuel consumption over a long period of time.
- the ash regeneration configuration is provided, and the ash is efficiently removed in the ash regeneration operation, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption are suppressed over a long period of time.
- the present invention has a common effect of providing an exhaust gas purification device for an internal combustion engine.
- FIG. 1 is a diagram illustrating a schematic configuration of an embodiment when the present invention is applied to a DPF
- (a) is a diagram illustrating the entire DPF
- (b) is a diagram illustrating a state inside the DPF. It is a figure expanded and demonstrated.
- FIG. 2 is a diagram illustrating a schematic configuration of the embodiment when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
- FIG. 2 is a diagram for explaining a schematic configuration of the embodiment when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
- a solid acid corresponding to an acid strength of SO 3 or higher and SO 4 or lower is applied on the surface of the DPF 2, specifically, on the surface of the DPF base material of the DPF 2, A solid acid corresponding to an acid strength of SO 3 or higher and SO 4 or lower is applied.
- the exhaust gas from the internal combustion engine is guided to the DPF 2, and the PM in the exhaust gas is collected and removed by the DPF 2, and the exhaust gas from which the PM has been removed is discharged. Since the PM collected in the DPF gradually accumulates, PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF.
- the reduced size particles 4 pass through the filter gap of the DPF and are discharged together with the exhaust gas.
- the DPF 2 has a wall portion 11 that is parallel to the flow of the exhaust gas, and a bottom portion 12 on the opposite side of the DPF from the exhaust gas inlet.
- the ash 3 is deposited so that the amount of accumulation is small near the entrance of the DPF 2, the amount of accumulation gradually increases along the flow direction of the exhaust gas in the parallel walls 11, and the amount of accumulation is the largest at the bottom 12. .
- the DPF 2 when the DPF 2 is configured by coating the surface of the DPF 2 with the solid acid 6 having an acid strength stronger than that of SO 3 and weaker than that of SO 4 , as shown in FIG.
- the coating amount of the solid acid 6 is coated so that the bottom portion 12 is larger than the vicinity of the exhaust gas inlet of the parallel wall portion 11 of the DPF 2.
- the solid gas is not coated in the vicinity of the exhaust gas inlet of the parallel wall portion 11 of the DPF 2 and only the bottom portion is coated, or in another embodiment, the parallel wall portion 11 of the DPF 2 is coated.
- the solid acid is coated with a thickness t 1 from the exhaust gas inlet to a predetermined distance a, and then solid with a thickness t 2 greater than t 1 from the distance a to the bottom (ie, t 1 ⁇ t 2 ).
- the coating amount is gradually increased from the vicinity of the exhaust gas inlet of the parallel wall portion 11 of the DPF 2 toward the bottom portion 12, and the coating amount is maximized at the bottom portion 12. Coating with solid acid.
- FIG. 1A schematically illustrates the coating amount of the solid acid 6, the solid acid 6 is actually coated on the inner surface of the DPF 2.
- the solid acid 6 having an acid strength of SO 3 or higher and SO 4 or lower is formed on the base material on the inner surface of the DPF 2, as shown in FIG.
- Coating is performed so that the bottom 12 is larger than in the vicinity of the gas inlet, and during the ash regeneration operation, the air-fuel ratio of the atmosphere in the DPF 2 is first changed to a stoichiometric or air-fuel ratio rich atmosphere and then changed to an air-fuel ratio lean atmosphere.
- the ash 3 having a large particle size in the DPF 2 is decomposed more from the vicinity of the entrance of the DPF 2 toward the bottom 12 in accordance with the distribution of the accumulation amount of the ash 3, and an efficient ash regeneration operation is performed. It can be carried out.
- the solid acid 6 is coated such that the bottom 12 is larger than the vicinity of the exhaust gas inlet of the parallel wall 11 of the DPF 2, which means that the exhaust gas passing through the DPF 2 is exhausted. Since the pressure loss of the flow of gas passing through the wall portion 11 can be reduced, there is also an effect that the pressure loss can be reduced as a whole of the DPF 2.
- an exhaust gas purification apparatus for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely, and to dramatically improve the performance of the DPF over a long period of time.
- a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to.
- the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Provided is an exhaust purification apparatus for an internal combustion engine with a DPF disposed in the exhaust system of the internal combustion engine, such that accumulation of ash in the DPF can be suppressed, and increases in pressure loss and PM regeneration temperature as well as a decrease in fuel efficiency can be suppressed over a long period. A surface of the DPF, which includes a wall portion parallel to the flow of exhaust gas and a bottom portion on the opposite side to an exhaust gas inlet, is coated with a solid acid with an acid strength greater than the acid strength of SO3 and smaller than the acid strength of SO4 such that the amount of coating is greater toward the bottom portion than around the exhaust gas inlet on the parallel wall portion of the DPF (2).
Description
本発明は、内燃機関の排気浄化装置に関する。
The present invention relates to an exhaust purification device for an internal combustion engine.
内燃機関の排気ガス中の粒子状物質(以下「PM」という)の粒子数を低減するためには、内燃機関の排気ガス通路にディーゼルパティキュレートフィルタ(以下「DPF」という)を設置して、排気中のPMを捕集、除去することが一般に行われている。
In order to reduce the number of particles of particulate matter (hereinafter referred to as “PM”) in the exhaust gas of the internal combustion engine, a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
この場合、DPF内に捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去する再生(以下「PM再生」という)運転を行う。
In this case, since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
PM再生運転は、通常、DPFに還元剤、例えばハイドロカーボン(HC)等、を供給しつつ、DPFを加熱することによって行われる。
PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
DPFによって排気中のPMを捕集し、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う構成に対しては、その性能向上やコスト低減のため、従来から様々な改良が提案されている。
Various improvements have been proposed to improve the performance and reduce the cost of the PM regeneration operation that collects PM in the exhaust gas using the DPF and burns and removes the PM collected in the DPF. Has been.
しかし、従来のDPFにおいては、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。この問題は、DPF内部にアッシュが堆積することが原因である。
However, in the conventional DPF, if the use of the DPF is continued, even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and if the PM regeneration temperature is not gradually increased, sufficient regeneration is achieved. There is a problem that it will not be performed, and fuel consumption deteriorates. This problem is caused by the accumulation of ash inside the DPF.
アッシュは、エンジンのシリンダー内部に混入したエンジンオイルが燃焼することにより生成し、生成したアッシュ粒子は、DPF内でPMに覆われる。PMに覆われたアッシュ粒子は、DPF内でPM再生運転時の高温条件に晒され、アッシュ粒子を覆っていたPMが燃焼除去される。アッシュの堆積は、このPMが燃焼除去されたアッシュ粒子に、更に熱が加わることによって、アッシュ粒子が凝集し、大粒径化するために発生するものである。
Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF. The ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed. Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
しかし、このようなアッシュの堆積に対しては、今まで有効な解決手段がなく、DPFにアッシュが堆積することによる影響を極力小さくするために、例えば、あらかじめ大容量のDPFを設置しておくという対策がとられていた。
However, there is no effective solution to the accumulation of ash so far, and in order to minimize the influence of the accumulation of ash on the DPF, for example, a large-capacity DPF is installed in advance. Measures were taken.
すなわち、従来のDPFに対する改良や、DPFの再生運転に対する改良は、DPFの捕集効率の改善や、PM再生運転の性能向上を目的とするものであり、アッシュの堆積に対するものではない。PM再生運転の性能向上を目的とするものとしては、例えば特許文献1に示された発明があり、特許文献1には、比較的低温でPMを燃焼させることができるDPFの構成が示されている。
That is, the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash. As an object for improving the performance of the PM regeneration operation, for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
特許文献1に示されたDPFの構成は、DPF及びこれを用いた排ガス浄化方法において、DPFに活性金属を担持した固体超強酸からなる触媒を、フィルタ表面に保持することを特徴とするものである。
The structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
すなわち、特許文献1の発明は、活性金属を担持した固体超強酸により、PMの燃焼温度を低下させ、従来よりも低温でDPFを、できれば連続的に再生すると共に、CO、HC、NO、NO2をも同時に除去することができるというものである。
That is, the invention of Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
したがって、特許文献1の発明は、PM再生運転の性能向上を目的としたものであり、アッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。
Therefore, the invention of Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
また、特許文献1の発明に類似する触媒構成を開示したものとして、特許文献2の発明があるが、特許文献2には、ディーゼルエンジン排ガス浄化装置用触媒として、白金、パラジウム及びロジウムから選ばれる少なくとも1種の貴金属と、固体の超強酸とを有する触媒を利用すると、ディーゼルエンジン排ガス中の微粒子物質に含まれるSOF(Soluble Organic Fraction)や未燃焼炭化水素などを低温域から浄化することができ、高温域においても二酸化硫黄の酸化抑制効果を示すと記載されており、特許文献2の発明は、特許文献1の発明と類似する効果を狙ったものであり、また、DPFに関するものではない。したがって、DPFへのアッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。
Further, as a disclosure of a catalyst structure similar to the invention of Patent Document 1, there is an invention of Patent Document 2, which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device. By using a catalyst having at least one kind of noble metal and a solid super strong acid, it is possible to purify SOF (Soluable Organic Fraction), unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range. Further, it is described that the effect of suppressing oxidation of sulfur dioxide is exhibited even in a high temperature range, and the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF. Therefore, it does not correspond to the accumulation of ash on the DPF. If the use of the DPF is continued, the pressure loss of the DPF gradually increases and the PM regeneration temperature gradually increases even if the PM regeneration operation is performed. If this is not done, it will not solve the problem that sufficient regeneration will not be performed and fuel consumption will deteriorate.
本発明は、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供することを目的としている。
The present invention provides an exhaust emission control device for an internal combustion engine that can suppress the accumulation of ash on the DPF and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is aimed.
すなわち、本発明は、DPFに堆積したアッシュを細粒径化して排出し、DPFを再生(以下「アッシュ再生」という)する構成を提供し、この構成により、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、という有利な効果を奏する、画期的なDPFを提供するものである。
That is, the present invention provides a configuration in which the ash deposited on the DPF is discharged with a reduced particle size, and the DPF is regenerated (hereinafter referred to as “ash regeneration”). It is an object of the present invention to provide an epoch-making DPF that has an advantageous effect of suppressing an increase in temperature and a decrease in fuel consumption.
本発明によれば、堆積したアッシュを細粒径化させて排出することができるので、更に付随する効果として、DPFの設置当初から従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストを低減することもできる。また、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるということである。
According to the present invention, the accumulated ash can be discharged with a reduced particle size. As a further effect, a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced. In addition, the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
本願の発明者は、DPF内部へのアッシュの堆積の問題を研究し、アッシュの堆積原因を分析して、アッシュの主成分が、エンジンオイル中に含まれるカルシウム(Ca)と排気中のSOxとがイオン結合した、CaSO4が主体であり、Ca塩は融点が高いため、排気中ではアッシュが固体としてDPFに流入し、凝集して、大粒径化するという知見を得た。
The inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
更に、本願の発明者は、アッシュの大きさはサブミクロンのオーダーであり、これをナノミクロンのオーダーまで細粒径化すると、アッシュがDPFをすり抜けることを、実験により確認した。
Furthermore, the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
更に、本願の発明者は、サブミクロンの大きさに大粒径化したCaSO4を、還元雰囲気におくと、CaSO4のSO4が還元されてSO3となり、Caとの結合が弱まること、及び、このときDPFの表面上にSO3よりも強い酸が存在すると、CaSO3のCaとSO3との結合が切断され、CaイオンがDPFの表面上のSO3よりも強い酸の上に原子状に分散して結合するということを、実験により確認した。
Furthermore, the inventors of the present application, a CaSO 4 that large grain size to the size of submicron, when placed in a reducing atmosphere, it becomes SO 3 SO 4 of CaSO 4 is reduced, the bond between Ca weakened, At this time, if an acid stronger than SO 3 is present on the surface of the DPF, the bond between Ca and SO 3 in the CaSO 3 is cleaved, and the Ca ions are stronger than the SO 3 on the surface of the DPF. It was confirmed by experiments that the atoms were dispersed and bonded in an atomic form.
更に、本願の発明者は、DPFの表面上のSO3よりも強い酸と結合したCaイオンは、DPFの表面上のSO3よりも強い酸と比べて、更に強い酸が雰囲気中に存在すると、雰囲気中の更に強い酸と結合して、DPFから放出され、DPFをすり抜けて排出されるというということを、実験により確認した。
Furthermore, the inventors of the present application, Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
以上を整理すると、DPFの表面上のSO3よりも強い酸として、この酸の酸強度を、SO3よりも強くSO4よりも弱い酸強度とすれば、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSO4は、還元雰囲気において、CaSO4のSO4が還元されてCaSO3となり、CaSO3のCaイオンが、DPFの表面上の酸と結合し、DPFの表面上に原子状に分散する。次に、雰囲気中にSO4を存在させれば、DPFの表面上のCaは、雰囲気中のSO4と結合して、サブナノメートルの大きさのCaSO4となってDPFから放出される。
To summarize the above, if the acid strength of this acid is stronger than SO 3 on the surface of the DPF and the acid strength of this acid is stronger than SO 3 and weaker than SO 4 , the particle size will be submicron. CaSO 4 deposited in the DPF turned into, in a reducing atmosphere, becomes CaSO 3 SO 4 is reduced in CaSO 4, Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form. Next, if SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
排気ガスの雰囲気が、ストイキ又はリッチ雰囲気である場合には、上述の還元雰囲気であり、リーン雰囲気である場合には、リーン雰囲気にはSO4が含まれている。そこで、上述のDPFに対して、雰囲気をストイキ又はリッチ雰囲気にする制御と、次にリーン雰囲気にする制御と、を行えば、ストイキ又はリッチ雰囲気において、DPFに堆積したアッシュのCaイオンが、DPFの表面上に原子状に分散し、次に次にリーン雰囲気において、DPFの表面上のCaが、リーン雰囲気中のSO4と結合してDPFから放出され、サブナノメートルの大きさに細粒径化したCaSO4となってDPFをすり抜け、排出される。
When the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
すなわち、以上の過程では、最初の、サブミクロンの大きさに大粒径化してDPFに堆積したCaSO4が、最終的に、再びCaSO4となってDPFから放出されるが、放出されるCaSO4は、サブナノメートルの大きさに細粒径化されており、DPFをすり抜けて排出される。
That is, in the above process, the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4. No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
ところで、通常、DPFは、排気ガスの流れに対して平行な壁部と、DPFの排気ガス入口とは反対側の底部と、を有しており、アッシュの堆積は、DPFの入口近傍では堆積量が少なく、平行な壁部の排気ガスの流れ方向に沿って次第に堆積量が増加し、底部では最も堆積量が多いように、堆積する。
By the way, DPF usually has a wall part parallel to the flow of exhaust gas and a bottom part opposite to the exhaust gas inlet of DPF, and ash is deposited near the DPF inlet. The amount of deposition is small, the deposition amount gradually increases along the flow direction of the exhaust gas on the parallel wall portion, and deposition is performed so that the deposition amount is the largest at the bottom.
したがって、堆積したアッシュの分解も、堆積量に応じて、DPFの入り口近傍から底部に向かって、より多く分解されるようにする必要がある。
Therefore, it is necessary to further decompose the accumulated ash from the vicinity of the DPF entrance toward the bottom in accordance with the amount of accumulation.
請求項1に記載の発明によれば、内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、DPFが、排気ガスの流れに対して平行な壁部と、DPFの排気ガス入口とは反対側の底部と、を有し、DPFが、表面上に固体酸をコーティングしたDPFであり、固体酸の酸強度が、SO3の酸強度よりも大きくSO4の酸強度よりも小さく、コーティングが、DPFの、平行な壁部の排気ガス入口近傍よりも、底部のほうが、固体酸のコーティング量が多いことを特徴とする、内燃機関の排気浄化装置が提供される。
According to the first aspect of the present invention, there is provided an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is parallel to the flow of exhaust gas, and the DPF A DPF having a surface coated with a solid acid, the acid strength of the solid acid being greater than the acid strength of SO 3 and the acid strength of SO 4 There is provided an exhaust gas purification apparatus for an internal combustion engine, which is smaller and has a coating amount of solid acid at the bottom portion than in the vicinity of the exhaust gas inlet of the parallel wall portion of the DPF.
すなわち、請求項1の発明では、DPFの表面上に、SO3よりも強くSO4よりも弱い酸強度の固体酸をコーティングすることによって、DPFを構成するが、固体酸のコーティング量を、DPFの平行な壁部の排気ガス入口近傍よりも、底部のほうが、コーティング量が多くなるようにコーティングする。このように構成したDPFに対して、還元雰囲気にした排気ガスを通過させると、アッシュの堆積は、DPFの入口近傍では堆積量が少なく、平行な壁部の排気ガスの流れ方向に沿って次第に堆積量が増加し、底部では最も堆積量が多いように堆積しているので、大粒径化してDPFに堆積したCaSO4が、還元雰囲気中で還元されてCaSO3となり、CaSO3のCaイオンが、DPFの表面上の固体酸と結合するときに、アッシュの堆積量の分布に応じてDPFの表面上の固体酸と結合し易くなり、次に、雰囲気中にSO4を存在させれば、DPFの表面上のCaは、雰囲気中のSO4と結合して、CaSO4となってDPFから放出される。この過程を経て放出されたCaSO4は、細粒径化されているため、最初の大粒径化したCaSO4が、細粒径化されたCaSO4となってDPFから放出され、DPFをすり抜けて排出される。したがって、アッシュが、DPF内の堆積量の分布に応じて効率よく除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。
That is, in the invention of claim 1, the DPF is constituted by coating the surface of the DPF with a solid acid having an acid strength stronger than SO 3 and weaker than SO 4. The coating is performed so that the coating amount is larger at the bottom portion than in the vicinity of the exhaust gas inlet of the parallel wall portion. When exhaust gas in a reducing atmosphere is passed through the DPF configured as described above, the amount of ash deposited is small in the vicinity of the DPF inlet, and gradually increases along the flow direction of the exhaust gas on the parallel walls. Since the amount of deposit increases and the deposit is deposited so that the amount of deposit is the largest at the bottom, CaSO 4 having a large particle size and deposited on the DPF is reduced in a reducing atmosphere to CaSO 3 , and the Ca ions of CaSO 3 However, when it binds to the solid acid on the surface of the DPF, it becomes easy to bind to the solid acid on the surface of the DPF according to the distribution of the amount of ash deposited. Next, if SO 4 is present in the atmosphere, , Ca on the surface of the DPF is combined with SO 4 in the atmosphere to become CaSO 4 and released from the DPF. Since the CaSO 4 released through this process has a reduced particle size, the first large-sized CaSO 4 is released from the DPF as the reduced particle size CaSO 4 and passes through the DPF. Discharged. Therefore, the ash is efficiently removed according to the distribution of the accumulation amount in the DPF, and the exhaust gas purification of the internal combustion engine can suppress the increase in pressure loss, the increase in PM regeneration temperature, and the decrease in fuel consumption over a long period of time. An apparatus is provided.
請求項2に記載の発明によれば、コーティングが、DPFの、平行な壁部の排気ガス入口近傍から底部に向かって、固体酸のコーティング量が増加し、底部で固体酸のコーティング量が最も多くなるコーティングであることを特徴とする、請求項1に記載の内燃機関の排気浄化装置が提供される。
According to the invention described in claim 2, the coating amount of the solid acid increases from the vicinity of the exhaust gas inlet of the parallel wall portion of the DPF toward the bottom portion, and the coating amount of the solid acid increases most at the bottom portion. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is an increased number of coatings.
すなわち、請求項2の発明では、DPFの表面上に、SO3よりも強くSO4よりも弱い酸強度の固体酸をコーティングすることによって、DPFを構成するが、固体酸のコーティング量を、DPFの平行な壁部の排気ガス入口近傍から底部に向かってコーティング量が増加し、底部でコーティング量が最も多くなるようにコーティングする。このように構成したDPFに対して、還元雰囲気にした排気ガスを通過させると、アッシュの堆積は、DPFの入口近傍では堆積量が少なく、平行な壁部の排気ガスの流れ方向に沿って次第に堆積量が増加し、底部では最も堆積量が多いように堆積しているので、大粒径化してDPFに堆積したCaSO4が、還元雰囲気中で還元されてCaSO3となり、CaSO3のCaイオンが、DPFの表面上の固体酸と結合するときに、アッシュの堆積量の分布に応じて、更にDPFの表面上の固体酸と結合し易くなり、次に、雰囲気中にSO4を存在させれば、DPFの表面上のCaは、雰囲気中のSO4と結合して、CaSO4となってDPFから放出される。この過程を経て放出されたCaSO4は、細粒径化されているため、最初の大粒径化したCaSO4が、細粒径化されたCaSO4となってDPFから放出され、DPFをすり抜けて排出される。したがって、アッシュが、DPF内の堆積量の分布に応じて効率よく除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。
That is, in the invention of claim 2, the DPF is constituted by coating the surface of the DPF with a solid acid having an acid strength stronger than that of SO 3 and weaker than that of SO 4. Coating is performed so that the coating amount increases from the vicinity of the exhaust gas inlet of the parallel wall portion toward the bottom, and the coating amount is maximized at the bottom. When exhaust gas in a reducing atmosphere is passed through the DPF configured as described above, the amount of ash deposited is small in the vicinity of the DPF inlet, and gradually increases along the flow direction of the exhaust gas on the parallel walls. Since the amount of deposit increases and the deposit is deposited so that the amount of deposit is the largest at the bottom, CaSO 4 having a large particle size and deposited on the DPF is reduced in a reducing atmosphere to CaSO 3 , and the Ca ions of CaSO 3 However, when combined with the solid acid on the surface of the DPF, it becomes easier to bind with the solid acid on the surface of the DPF depending on the distribution of the amount of ash deposited, and then SO 4 is present in the atmosphere. Then, Ca on the surface of the DPF combines with SO 4 in the atmosphere to become CaSO 4 and is released from the DPF. Since the CaSO 4 released through this process has a reduced particle size, the first large-sized CaSO 4 is released from the DPF as the reduced particle size CaSO 4 and passes through the DPF. Discharged. Therefore, the ash is efficiently removed according to the distribution of the accumulation amount in the DPF, and the exhaust gas purification of the internal combustion engine can suppress the increase in pressure loss, the increase in PM regeneration temperature, and the decrease in fuel consumption over a long period of time. An apparatus is provided.
各請求項に記載の発明によれば、アッシュ再生の構成が提供され、アッシュ再生運転においてアッシュが効率よく除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供するという、共通の効果を奏する。
According to the invention described in each claim, the ash regeneration configuration is provided, and the ash is efficiently removed in the ash regeneration operation, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption are suppressed over a long period of time. The present invention has a common effect of providing an exhaust gas purification device for an internal combustion engine.
図1は、本発明をDPFに適用した場合の、実施形態の概略構成を説明する図であり、(a)はDPFの全体を説明する図であり、(b)は、DPF内部の状態を拡大して説明する図である。
図2は、本発明を内燃機関の排気浄化装置に適用した場合の、実施形態の概略構成を説明する図である。 FIG. 1 is a diagram illustrating a schematic configuration of an embodiment when the present invention is applied to a DPF, (a) is a diagram illustrating the entire DPF, and (b) is a diagram illustrating a state inside the DPF. It is a figure expanded and demonstrated.
FIG. 2 is a diagram illustrating a schematic configuration of the embodiment when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
図2は、本発明を内燃機関の排気浄化装置に適用した場合の、実施形態の概略構成を説明する図である。 FIG. 1 is a diagram illustrating a schematic configuration of an embodiment when the present invention is applied to a DPF, (a) is a diagram illustrating the entire DPF, and (b) is a diagram illustrating a state inside the DPF. It is a figure expanded and demonstrated.
FIG. 2 is a diagram illustrating a schematic configuration of the embodiment when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
以下、添付図面を用いて本発明の実施形態について説明する。なお、複数の添付図面において、同一又は相当する部材には、同一の符号を付している。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the plurality of accompanying drawings, the same or corresponding members are denoted by the same reference numerals.
図2は、本発明を内燃機関の排気浄化装置に適用した場合の、実施形態の概略構成を説明する図であり、DPF2の表面上に、詳細にはDPF2のDPF基材の表面上に、酸強度がSO3以上でSO4以下に相当する固体酸を塗布する。内燃機関の排気がDPF2に導かれ、排気中のPMはDPF2によって捕集、除去され、PMの除去された排気が排出される。DPFに捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う。
FIG. 2 is a diagram for explaining a schematic configuration of the embodiment when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine. On the surface of the DPF 2, specifically, on the surface of the DPF base material of the DPF 2, A solid acid corresponding to an acid strength of SO 3 or higher and SO 4 or lower is applied. The exhaust gas from the internal combustion engine is guided to the DPF 2, and the PM in the exhaust gas is collected and removed by the DPF 2, and the exhaust gas from which the PM has been removed is discharged. Since the PM collected in the DPF gradually accumulates, PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF.
しかし、PM再生運転を繰り返し行っていると、DPF内にアッシュ3が堆積し、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。
However, if the PM regeneration operation is repeatedly performed, the ash 3 accumulates in the DPF, and even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and it is sufficient if the PM regeneration temperature is not increased gradually. There is a problem that proper regeneration is not performed, and fuel consumption deteriorates.
本発明では、DPF内に堆積したアッシュ3を細粒径化するので、細粒径化粒子4が、DPFのフィルタ隙間を通り抜け、排気とともに排出される。
In the present invention, since the ash 3 deposited in the DPF is reduced in size, the reduced size particles 4 pass through the filter gap of the DPF and are discharged together with the exhaust gas.
この場合、DPF2は、図1(b)に示すように、排気ガスの流れに対して平行な壁部11と、DPFの排気ガス入口とは反対側の底部12と、を有しており、アッシュ3の堆積は、DPF2の入口近傍では堆積量が少なく、平行な壁部11の排気ガスの流れ方向に沿って次第に堆積量が増加し、底部12では最も堆積量が多いように、堆積する。
In this case, as shown in FIG. 1B, the DPF 2 has a wall portion 11 that is parallel to the flow of the exhaust gas, and a bottom portion 12 on the opposite side of the DPF from the exhaust gas inlet. The ash 3 is deposited so that the amount of accumulation is small near the entrance of the DPF 2, the amount of accumulation gradually increases along the flow direction of the exhaust gas in the parallel walls 11, and the amount of accumulation is the largest at the bottom 12. .
したがって、堆積したアッシュ3の分解も、堆積量に応じて、DPFの入り口近傍から底部12に向かって、より多く分解されるようにする必要がある。
Therefore, it is necessary to further decompose the accumulated ash 3 according to the amount of accumulation from the vicinity of the DPF entrance toward the bottom 12.
そこで、本発明では、DPF2の表面上にSO3よりも強くSO4よりも弱い酸強度の固体酸6をコーティングすることによってDPF2を構成するに際し、図1(a)に示すように、DPF2の表面上に、固体酸6のコーティング量を、DPF2の平行な壁部11の排気ガス入口近傍よりも底部12のほうが多くなるようにコーティングする。例えば、一実施例では、DPF2の平行な壁部11の排気ガス入口近傍には固体酸をコーティングせず、底部のみコーティングしたり、又は、他の実施例では、DPF2の平行な壁部11の排気ガス入口から所定の距離aまでは厚さt1で固体酸をコーティングし、次に、距離aから底部まで、t1よりも厚い厚さt2(すなわち、t1<t2)で固体酸をコーティングしたり、更に、別の実施例では、DPF2の平行な壁部11の排気ガス入口近傍から底部12に向かって次第にコーティング量が増加し、底部12でコーティング量が最も多くなるように固体酸をコーティングする。図1(a)では、固体酸6のコーティング量を説明するために、模式的に表現しているが、実際には、固体酸6のコーティングは、DPF2の内部表面に対して行う。
Therefore, in the present invention, when the DPF 2 is configured by coating the surface of the DPF 2 with the solid acid 6 having an acid strength stronger than that of SO 3 and weaker than that of SO 4 , as shown in FIG. On the surface, the coating amount of the solid acid 6 is coated so that the bottom portion 12 is larger than the vicinity of the exhaust gas inlet of the parallel wall portion 11 of the DPF 2. For example, in one embodiment, the solid gas is not coated in the vicinity of the exhaust gas inlet of the parallel wall portion 11 of the DPF 2 and only the bottom portion is coated, or in another embodiment, the parallel wall portion 11 of the DPF 2 is coated. The solid acid is coated with a thickness t 1 from the exhaust gas inlet to a predetermined distance a, and then solid with a thickness t 2 greater than t 1 from the distance a to the bottom (ie, t 1 <t 2 ). In another embodiment, the coating amount is gradually increased from the vicinity of the exhaust gas inlet of the parallel wall portion 11 of the DPF 2 toward the bottom portion 12, and the coating amount is maximized at the bottom portion 12. Coating with solid acid. Although FIG. 1A schematically illustrates the coating amount of the solid acid 6, the solid acid 6 is actually coated on the inner surface of the DPF 2.
したがって、DPF2の内部表面の基材の上に、酸強度がSO3以上、SO4以下に相当する固体酸6を、図1(a)に示すように、DPF2の平行な壁部11の排気ガス入口近傍よりも底部12のほうが多くなるようにコーティングし、アッシュ再生運転中に、DPF2内の雰囲気の空燃比を、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させるように制御すると、DPF2内の大粒径化したアッシュ3が、アッシュ3の堆積量の分布に応じて、DPF2の入り口近傍から底部12に向かってより多く分解され、効率的なアッシュ再生運転を行うことができる。
Therefore, the solid acid 6 having an acid strength of SO 3 or higher and SO 4 or lower is formed on the base material on the inner surface of the DPF 2, as shown in FIG. Coating is performed so that the bottom 12 is larger than in the vicinity of the gas inlet, and during the ash regeneration operation, the air-fuel ratio of the atmosphere in the DPF 2 is first changed to a stoichiometric or air-fuel ratio rich atmosphere and then changed to an air-fuel ratio lean atmosphere. As a result of the control, the ash 3 having a large particle size in the DPF 2 is decomposed more from the vicinity of the entrance of the DPF 2 toward the bottom 12 in accordance with the distribution of the accumulation amount of the ash 3, and an efficient ash regeneration operation is performed. It can be carried out.
また、固体酸6を、図1(a)に示すように、DPF2の平行な壁部11の排気ガス入口近傍よりも底部12のほうが多くなるようにコーティングするということは、DPF2を通過する排気ガスの、壁部11を通過する流れの圧損を低減することができるので、DPF2全体として圧損を低減することができるという効果もある。
In addition, as shown in FIG. 1A, the solid acid 6 is coated such that the bottom 12 is larger than the vicinity of the exhaust gas inlet of the parallel wall 11 of the DPF 2, which means that the exhaust gas passing through the DPF 2 is exhausted. Since the pressure loss of the flow of gas passing through the wall portion 11 can be reduced, there is also an effect that the pressure loss can be reduced as a whole of the DPF 2.
以上のように、本発明によれば、いつまでも性能が低下しないDPFを備えた内燃機関の排気浄化装置を効果的に構成することができ、DPFの性能を、長期間にわたって飛躍的に向上させることができるという、有利な効果を奏する。更に、この効果に付随する更なる効果として、DPFの設置当初から、従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストも低減することができる。更に、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるという効果があることにも注目すべきである。
As described above, according to the present invention, it is possible to effectively configure an exhaust gas purification apparatus for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely, and to dramatically improve the performance of the DPF over a long period of time. There is an advantageous effect of being able to. Furthermore, as a further effect that accompanies this effect, a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to. Furthermore, the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.
1 内燃機関
2 DPF
3 アッシュ
4 細粒径化粒子
6 固体酸
11 壁部
12 底部 1Internal combustion engine 2 DPF
3Ash 4 Fine particle 6 Solid acid 11 Wall 12 Bottom
2 DPF
3 アッシュ
4 細粒径化粒子
6 固体酸
11 壁部
12 底部 1
3
Claims (2)
- 内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、
前記DPFが、排気ガスの流れに対して平行な壁部と、前記DPFの排気ガス入口とは反対側の底部と、を有し、
前記DPFが、表面上に固体酸をコーティングしたDPFであり、
前記固体酸の酸強度が、SO3の酸強度よりも大きくSO4の酸強度よりも小さく、
前記コーティングが、前記DPFの、前記平行な壁部の排気ガス入口近傍よりも、前記底部のほうが、固体酸のコーティング量が多いことを特徴とする、
内燃機関の排気浄化装置。 An exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine,
The DPF has a wall portion parallel to the flow of exhaust gas, and a bottom portion opposite to the exhaust gas inlet of the DPF;
The DPF is a DPF having a surface coated with a solid acid,
The acid strength of the solid acid is greater than the acid strength of SO 3 and less than the acid strength of SO 4 ;
The coating is characterized in that the coating amount of the solid acid is larger at the bottom than in the vicinity of the exhaust gas inlet of the parallel wall of the DPF.
An exhaust purification device for an internal combustion engine. - 前記コーティングが、前記DPFの、前記平行な壁部の排気ガス入口近傍から前記底部に向かって、固体酸のコーティング量が増加し、前記底部で固体酸のコーティング量が最も多くなるコーティングであることを特徴とする、
請求項1に記載の内燃機関の排気浄化装置。 The coating is a coating in which the coating amount of the solid acid increases from the vicinity of the exhaust gas inlet of the parallel wall portion toward the bottom portion of the DPF, and the coating amount of the solid acid increases at the bottom portion. Characterized by the
The exhaust emission control device for an internal combustion engine according to claim 1.
Priority Applications (26)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/065637 WO2013005338A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust purification apparatus for internal combustion engine |
US14/126,947 US9057298B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
JP2013555681A JP5626487B2 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
CN201280031461.4A CN103619440B (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
PCT/JP2012/067405 WO2013005850A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
US14/110,811 US8778053B2 (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
JP2013555656A JP5655961B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
JP2014514345A JP2014520229A (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
EP12738240.6A EP2726173B1 (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
US14/127,355 US9080480B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
EP12738239.8A EP2726172B1 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
JP2013535609A JP5494893B2 (en) | 2011-07-01 | 2012-06-29 | How to remove ash from particulate filters |
PCT/JP2012/067406 WO2013005851A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
US14/126,904 US9011569B2 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
PCT/JP2012/067408 WO2013005853A2 (en) | 2011-07-01 | 2012-06-29 | Method of Removing Ash from Particulate Filter |
US14/126,997 US9057299B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
EP12741115.5A EP2726176A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
JP2013555657A JP2014520227A (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
CN201280030742.8A CN103619438B (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
CN201280032271.4A CN103635245B (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
CN201280031454.4A CN103619439B (en) | 2011-07-01 | 2012-06-29 | For the emission control system of internal combustion engine |
EP12741114.8A EP2726175B1 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
PCT/JP2012/067404 WO2013005849A1 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
PCT/JP2012/067407 WO2013005852A1 (en) | 2011-07-01 | 2012-06-29 | Particulate Filter |
CN201280031473.7A CN103619441B (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
EP12741116.3A EP2726177B1 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/065637 WO2013005338A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust purification apparatus for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013005338A1 true WO2013005338A1 (en) | 2013-01-10 |
Family
ID=47436710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/065637 WO2013005338A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust purification apparatus for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013005338A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106545385A (en) * | 2016-12-05 | 2017-03-29 | 潍柴动力股份有限公司 | A kind of diesel particulate traps and diesel engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1033985A (en) * | 1996-07-19 | 1998-02-10 | Ict:Kk | Catalyst for purifying exhaust gas from diesel engine |
JP2004513771A (en) * | 2001-05-16 | 2004-05-13 | ケイエイチ ケミカルズ カンパニー、リミテッド | Catalyst for purification of diesel engine exhaust gas |
JP2004239197A (en) * | 2003-02-07 | 2004-08-26 | Mazda Motor Corp | Engine exhaust fine particulate reduction device |
JP2006289175A (en) * | 2005-04-06 | 2006-10-26 | Japan Energy Corp | Diesel particulate filter and exhaust gas cleaning method using this |
-
2011
- 2011-07-01 WO PCT/JP2011/065637 patent/WO2013005338A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1033985A (en) * | 1996-07-19 | 1998-02-10 | Ict:Kk | Catalyst for purifying exhaust gas from diesel engine |
JP2004513771A (en) * | 2001-05-16 | 2004-05-13 | ケイエイチ ケミカルズ カンパニー、リミテッド | Catalyst for purification of diesel engine exhaust gas |
JP2004239197A (en) * | 2003-02-07 | 2004-08-26 | Mazda Motor Corp | Engine exhaust fine particulate reduction device |
JP2006289175A (en) * | 2005-04-06 | 2006-10-26 | Japan Energy Corp | Diesel particulate filter and exhaust gas cleaning method using this |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106545385A (en) * | 2016-12-05 | 2017-03-29 | 潍柴动力股份有限公司 | A kind of diesel particulate traps and diesel engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101899919B1 (en) | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine | |
Russell et al. | Diesel oxidation catalysts | |
KR20150128701A (en) | Selective catalytic reduction catalyst systems | |
US9341098B2 (en) | Automotive catalytic aftertreatment system | |
JPH10159552A (en) | Exhaust gas emission control device | |
JP2014510220A (en) | Exhaust gas treatment device for lean combustion internal combustion engine including oxidation catalyst and method for recovering oxidation activity of oxidation catalyst | |
Kang et al. | Characteristics of the simultaneous removal of PM and NOx using CuNb-ZSM-5 coated on diesel particulate filter | |
Kang et al. | Effect of copper precursor on simultaneous removal of PM and NOx of a 2-way SCR/CDPF | |
US8092767B2 (en) | Method of decomposing nitrogen dioxide | |
EP2761146B1 (en) | Apparatus and method for filtering engine exhaust gases | |
EP2629881A1 (en) | NOx STORAGE COMPONENT | |
EP2298432A1 (en) | Exhaust gas purifier | |
WO2013005338A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005341A1 (en) | Exhaust gas purifier for internal combustion engine | |
WO2013005340A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005335A1 (en) | Exhaust purification apparatus for internal combustion engine | |
JPWO2013005338A1 (en) | Exhaust gas purification device for internal combustion engine | |
JP2007332849A (en) | Exhaust gas purification apparatus | |
JPWO2013005340A1 (en) | Exhaust gas purification device for internal combustion engine | |
WO2013005339A1 (en) | Exhaust purification device for internal combustion engine | |
US20220297063A1 (en) | Metal Foil Catalyst For The Control Of Emissions From Diesel Engines | |
WO2013005334A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005337A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005342A1 (en) | Exhaust purification device for internal combustion engine | |
JPWO2013005341A1 (en) | Exhaust gas purification device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012503158 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11869087 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11869087 Country of ref document: EP Kind code of ref document: A1 |