WO2013005341A1 - Exhaust gas purifier for internal combustion engine - Google Patents
Exhaust gas purifier for internal combustion engine Download PDFInfo
- Publication number
- WO2013005341A1 WO2013005341A1 PCT/JP2011/065642 JP2011065642W WO2013005341A1 WO 2013005341 A1 WO2013005341 A1 WO 2013005341A1 JP 2011065642 W JP2011065642 W JP 2011065642W WO 2013005341 A1 WO2013005341 A1 WO 2013005341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dpf
- ash
- control
- internal combustion
- combustion engine
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9481—Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
- B01D53/949—Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing sulfur oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/0232—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles removing incombustible material from a particle filter, e.g. ash
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/085—Sulfur or sulfur oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0285—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a SOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/02—Combinations of different methods of purification filtering and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/06—Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/06—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an exhaust purification device for an internal combustion engine.
- a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
- PM regeneration since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
- PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
- a reducing agent such as hydrocarbon (HC)
- Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF.
- the ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed.
- Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
- the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash.
- an invention disclosed in Patent Document 1 for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
- the structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
- Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
- Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
- Patent Document 2 which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device.
- SOF Solid Organic Fraction
- unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range.
- the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF.
- JP 2006-289175 A Japanese Patent Laid-Open No. 10-033985
- the present invention provides an exhaust emission control device for an internal combustion engine that can suppress the accumulation of ash on the DPF and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is aimed.
- the present invention provides a configuration in which the ash deposited on the DPF is discharged with a reduced particle size, and the DPF is regenerated (hereinafter referred to as “ash regeneration”). It is an object of the present invention to provide an epoch-making DPF that has an advantageous effect of suppressing an increase in temperature and a decrease in fuel consumption.
- the accumulated ash can be discharged with a reduced particle size.
- a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced.
- the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
- SO 4 needs to be present when the ash is discharged with a reduced particle size.
- SO 4 exists under the condition of air-fuel ratio lean, so control is performed to make the exhaust gas lean to air-fuel ratio.
- the amount of accumulated ash is large, A problem arises in that the amount of SO 4 required for the release of ash is not sufficient relative to the amount, and the ash release rate is low.
- the inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
- Ca calcium
- the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
- Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
- the particle size will be submicron.
- CaSO 4 deposited in the DPF turned into, in a reducing atmosphere becomes CaSO 3 SO 4 is reduced in CaSO 4
- Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form.
- SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
- the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
- the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4.
- No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
- the present invention provides a configuration that provides the amount of SO 4 required when ash is released. That is, according to the present invention, an optimum amount of SO 4 is supplied in accordance with the amount of accumulated ash, and the ash regeneration operation proceeds effectively.
- an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid,
- the acid strength is larger than the acid strength of SO 3 and smaller than the acid strength of SO 4
- an SOx absorption / release catalyst device is provided upstream of the DPF whose surface is coated with a solid acid.
- An exhaust purification device for an internal combustion engine is provided in which the SOx absorption / release catalyst device has a characteristic of releasing SO 4 by increasing the temperature.
- the DPF is constituted by applying a solid acid having an acid strength stronger than SO 3 and weaker than SO 4 on the surface of the DPF.
- a solid acid having an acid strength stronger than SO 3 and weaker than SO 4 on the surface of the DPF.
- the invention of claim 1 includes an SOx absorption / release catalyst device, and the SOx absorption / release catalyst device has a characteristic of releasing SO 4 by raising the temperature. According to the invention of claim 1, Depending on the amount of accumulated ash, the amount of SO 4 required to release ash can be supplied from the SOx absorption / release catalyst device, and the ash is removed at a high release rate.
- An exhaust purification device for an internal combustion engine that can suppress an increase in regeneration temperature and a decrease in fuel consumption is provided.
- the ash regeneration operation control for removing the ash accumulated in the DPF is provided, and the control of the ash regeneration operation includes the control for increasing the temperature of the DPF, and the atmosphere in the DPF.
- the control of the air-fuel ratio of the atmosphere in the DPF includes a stoichiometric or air-fuel ratio rich atmosphere first and then changes to an air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF.
- the temperature increase of the SOx adsorption / release catalyst device is controlled according to the amount of ash to be released from the DPF,
- the ash regeneration operation is performed on the DPF configured in claim 1, and the ash regeneration operation is performed between the control for increasing the temperature of the DPF and the control for increasing the temperature of the DPF.
- Control of the air-fuel ratio of the atmosphere in the DPF, and the control of the air-fuel ratio of the atmosphere in the DPF is a control that first changes to a stoichiometric or air-fuel ratio rich atmosphere and then changes to an air-fuel ratio lean atmosphere, and a lean atmosphere
- the amount of SO 4 in the catalyst is supplied from the SOx absorption / release catalyst device by a necessary amount by controlling the temperature rise of the SOx absorption / release catalyst device according to the amount of ash to be released from the DPF.
- CaSO 4 having a large particle size is reduced to HC, CO, or the like in a stoichiometric or air-fuel ratio rich atmosphere to become CaSO 3 , and the Ca ions of CaSO 3 are combined with the solid acid on the surface of the DPF.
- the air-fuel ratio is changed to a lean atmosphere.
- SO 4 corresponding to the amount of ash to be released from the DPF exists, and Ca on the surface of the DPF
- it combines with SO 4 in a lean atmosphere with high efficiency and becomes CaSO 4 and is released from the DPF.
- an exhaust emission control device for an internal combustion engine that can remove ash at a high release rate in ash regeneration operation, and can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time.
- an ash regeneration configuration is provided, and the ash is completely removed in the ash regeneration operation, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption are suppressed over a long period of time.
- the present invention provides a common effect of providing an exhaust gas purification device for an internal combustion engine.
- FIG. 1 is a diagram illustrating a schematic configuration of an embodiment when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
- FIG. 2 is a view for explaining ash release in the embodiment of control of the SOx adsorption / release catalyst device of the present invention.
- FIG. 3 is a diagram illustrating ash release in another embodiment of the control of the SOx adsorption / release catalyst device of the present invention.
- FIG. 1 is a diagram showing a basic configuration of the present invention.
- a solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of a DPF substrate of DPF 2.
- an SOx absorption / release catalyst device 30 is provided upstream of the DPF 2 in the exhaust system of the internal combustion engine 1.
- the exhaust gas of the internal combustion engine 1 is guided to the DPF 2 via the SOx absorption / release catalyst device 30, SOx in the exhaust gas is collected and removed by the SOx absorption / release catalyst device 30, and PM in the exhaust gas is captured by the DPF 2.
- the exhaust gas that has been collected and removed and from which SOx and PM have been removed is discharged. Since PM collected in the DPF 2 is gradually accumulated, a PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF 2 and burning and removing the PM collected in the DPF 2.
- the ash 3 deposited in the DPF 2 is supplied from the SOx adsorption / release catalyst device 30 with an amount of SO 4 corresponding to the amount of the ash 3 to reduce the particle size.
- the particle size particles 4 pass through the filter gap of the DPF 2 at a high release rate and are discharged together with the exhaust gas.
- FIG. 3 is a diagram for explaining ash release in an embodiment in which the temperature increase control of the SOx adsorption / release catalyst device 30 of the present invention is performed so as to increase to a certain temperature for a certain time.
- the four graphs are graphs for explaining each event for the same time, and the horizontal axis is time.
- the top graph shows the temperature rise of the SOx absorption / release catalyst device 30 (FIG. 1), and the vertical axis T (30) is the temperature of the SOx absorption / release catalyst device 30.
- the second graph from the top shows the periods Z 1 and Z 3 for capturing SOx and the period Z 2 for releasing SO 4 of the SOx adsorption / release catalyst device 30, and the vertical axis SO 4 (L 2 ) is shown in FIG.
- the third graph from the top is a graph showing the ash discharge state, and the vertical axis ash (L 3 ) indicates the ash discharge amount at the position L 3 in FIG.
- the lowermost graph is a graph showing the amount of SO 4 released at the position of L 3
- the vertical axis SO 4 (L 3 ) is the amount of SO 4 released at the position of L 3 . That is, in this embodiment, the lower two graphs show that although ash regeneration is sufficiently performed, surplus SO 4 is generated and surplus SO 4 is discharged downstream of the DPF 2.
- FIG. 2 shows an embodiment in which the drawbacks in the control of FIG. 3 are improved.
- the four graphs in FIG. 2 correspond to the four graphs in FIG. 3 respectively.
- the temperature increase of the SOx adsorption / release catalyst device 30 is controlled in stages, and ash regeneration is performed.
- the temperature rise of the SOx adsorption / release catalyst device 30 is controlled to a relatively low temperature as compared with FIG. That is, as shown in the second graph from the top in FIG. 2, the amount of SO 4 released at the position L 2 is T (30) so that the unreacted SO 4 slip-through does not occur in the ash release reaction.
- Adj in the graph indicates the range of the upper limit value and the lower limit value of the SO 4 release amount that can maintain the necessary ash release rate appropriately. That is, if the temperature rise control of the SOx adsorption / release catalyst device 30 is performed and kept at a constant temperature rise value, the SO 4 release amount gradually decreases. Therefore, when a lower limit is set and the lower limit is approached, The temperature T (30) of the SOx absorption / release catalyst device 30 is further raised to recover the SO 4 release amount.
- a solid acid corresponding to an acid strength of SO 3 or higher and SO 4 or lower is applied on the DPF substrate, and the air-fuel ratio of the atmosphere in the DPF is set to the stoichiometric or rich air-fuel ratio first during the ash regeneration operation.
- the atmosphere is changed to an air-fuel ratio lean atmosphere, and an appropriate amount of SO 4 corresponding to the amount of ash to be released is controlled to be supplied from the SOx adsorption / release catalyst device as shown in FIG.
- the ash having a large particle size in the DPF 2 is completely removed, and an exhaust purification device for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely can be configured.
- the performance of the DPF 2 can be dramatically improved over a long period of time.
- a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to.
- the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
The present invention relates to an exhaust gas purifier for an internal combustion engine installed with a diesel particulate filter (DPF) at an exhaust system of the internal combustion engine. According to the present invention, ash accumulation on the DPF, a long-term increase in pressure drop and particulate matter (PM) regeneration temperature, and a decrease in fuel efficiency may be controlled. A solid acid whose acid strength is larger than an acid strength of SO3 and smaller than an acid strength of SO4 is coated onto a surface of the DPF, and a SOx inhalation and release catalyst device is installed at an upstream of the DPF of the exhaust system of the internal combustion engine to conduct a control for raising a temperature of the DPF, a control of a fuel-air ratio of an atmosphere in the DPF, and a control for supplying SO4 equivalent to the amount of the ash to be released from the SOx inhalation and release catalyst device.
Description
本発明は、内燃機関の排気浄化装置に関する。
The present invention relates to an exhaust purification device for an internal combustion engine.
内燃機関の排気ガス中の粒子状物質(以下「PM」という)の粒子数を低減するためには、内燃機関の排気ガス通路にディーゼルパティキュレートフィルタ(以下「DPF」という)を設置して、排気中のPMを捕集、除去することが一般に行われている。
In order to reduce the number of particles of particulate matter (hereinafter referred to as “PM”) in the exhaust gas of the internal combustion engine, a diesel particulate filter (hereinafter referred to as “DPF”) is installed in the exhaust gas passage of the internal combustion engine, Generally, PM in exhaust gas is collected and removed.
この場合、DPF内に捕集されたPMは次第に堆積していくので、定期的に或いはDPFの性能低下を検知して、DPF内に捕集されたPMを燃焼除去する再生(以下「PM再生」という)運転を行う。
In this case, since the PM collected in the DPF gradually accumulates, regeneration (hereinafter referred to as “PM regeneration”) is performed periodically or by detecting a decrease in the performance of the DPF and burning and removing the PM collected in the DPF. ”).
PM再生運転は、通常、DPFに還元剤、例えばハイドロカーボン(HC)等、を供給しつつ、DPFを加熱することによって行われる。
PM regeneration operation is usually performed by heating the DPF while supplying a reducing agent such as hydrocarbon (HC) to the DPF.
DPFによって排気中のPMを捕集し、DPF内に捕集されたPMを燃焼除去するPM再生運転を行う構成に対しては、その性能向上やコスト低減のため、従来から様々な改良が提案されている。
Various improvements have been proposed to improve the performance and reduce the cost of the PM regeneration operation that collects PM in the exhaust gas using the DPF and burns and removes the PM collected in the DPF. Has been.
しかし、従来のDPFにおいては、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。この問題は、DPF内部にアッシュが堆積することが原因である。
However, in the conventional DPF, if the use of the DPF is continued, even if the PM regeneration operation is performed, the pressure loss of the DPF gradually increases, and if the PM regeneration temperature is not gradually increased, sufficient regeneration is achieved. There is a problem that it will not be performed, and fuel consumption deteriorates. This problem is caused by the accumulation of ash inside the DPF.
アッシュは、エンジンのシリンダー内部に混入したエンジンオイルが燃焼することにより生成し、生成したアッシュ粒子は、DPF内でPMに覆われる。PMに覆われたアッシュ粒子は、DPF内でPM再生運転時の高温条件に晒され、アッシュ粒子を覆っていたPMが燃焼除去される。アッシュの堆積は、このPMが燃焼除去されたアッシュ粒子に、更に熱が加わることによって、アッシュ粒子が凝集し、大粒径化するために発生するものである。
Ash is generated when the engine oil mixed in the cylinder of the engine burns, and the generated ash particles are covered with PM in the DPF. The ash particles covered with PM are exposed to high temperature conditions during the PM regeneration operation in the DPF, and the PM covering the ash particles is burned and removed. Ash deposition occurs because the ash particles are agglomerated and increased in size by further applying heat to the ash particles from which the PM has been burned and removed.
しかし、このようなアッシュの堆積に対しては、今まで有効な解決手段がなく、DPFにアッシュが堆積することによる影響を極力小さくするために、例えば、あらかじめ大容量のDPFを設置しておくという対策がとられていた。
However, there is no effective solution to the accumulation of ash so far, and in order to minimize the influence of the accumulation of ash on the DPF, for example, a large-capacity DPF is installed in advance. Measures were taken.
すなわち、従来のDPFに対する改良や、DPFの再生運転に対する改良は、DPFの捕集効率の改善や、PM再生運転の性能向上を目的とするものであり、アッシュの堆積に対するものではない。PM再生運転の性能向上を目的とするものとしては、例えば特許文献1に示された発明があり、特許文献1には、比較的低温でPMを燃焼させることができるDPFの構成が示されている。
That is, the improvement to the conventional DPF and the improvement to the regeneration operation of the DPF are intended to improve the collection efficiency of the DPF and improve the performance of the PM regeneration operation, and not to the accumulation of ash. As an object for improving the performance of the PM regeneration operation, for example, there is an invention disclosed in Patent Document 1, and Patent Document 1 shows a configuration of a DPF capable of burning PM at a relatively low temperature. Yes.
特許文献1に示されたDPFの構成は、DPF及びこれを用いた排ガス浄化方法において、DPFに活性金属を担持した固体超強酸からなる触媒を、フィルタ表面に保持することを特徴とするものである。
The structure of the DPF disclosed in Patent Document 1 is characterized in that, in the DPF and the exhaust gas purification method using the DPF, a catalyst made of a solid superacid having an active metal supported on the DPF is held on the filter surface. is there.
すなわち、特許文献1の発明は、活性金属を担持した固体超強酸により、PMの燃焼温度を低下させ、従来よりも低温でDPFを、できれば連続的に再生すると共に、CO、HC、NO、NO2をも同時に除去することができるというものである。
That is, the invention of Patent Document 1 reduces the combustion temperature of PM with a solid super strong acid carrying an active metal, and regenerates DPF at a lower temperature than before, preferably continuously, and CO, HC, NO, NO 2 can be removed at the same time.
したがって、特許文献1の発明は、PM再生運転の性能向上を目的としたものであり、アッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。
Therefore, the invention of Patent Document 1 is intended to improve the performance of the PM regeneration operation, and does not correspond to the accumulation of ash. If the use of the DPF is continued, the PM regeneration operation is performed. However, this does not solve the problem that the pressure loss of the DPF gradually increases, and unless the PM regeneration temperature is gradually increased, sufficient regeneration cannot be performed and the fuel consumption deteriorates.
また、特許文献1の発明に類似する触媒構成を開示したものとして、特許文献2の発明があるが、特許文献2には、ディーゼルエンジン排ガス浄化装置用触媒として、白金、パラジウム及びロジウムから選ばれる少なくとも1種の貴金属と、固体の超強酸とを有する触媒を利用すると、ディーゼルエンジン排ガス中の微粒子物質に含まれるSOF(Soluble Organic Fraction)や未燃焼炭化水素などを低温域から浄化することができ、高温域においても二酸化硫黄の酸化抑制効果を示すと記載されており、特許文献2の発明は、特許文献1の発明と類似する効果を狙ったものであり、また、DPFに関するものではない。したがって、DPFへのアッシュの堆積に対応するものではなく、DPFの使用を継続していると、PM再生運転を行っても、次第にDPFの圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなり、燃費が悪化する、という問題を解決するものではない。
Further, as a disclosure of a catalyst structure similar to the invention of Patent Document 1, there is an invention of Patent Document 2, which is selected from platinum, palladium and rhodium as a catalyst for a diesel engine exhaust gas purification device. By using a catalyst having at least one kind of noble metal and a solid super strong acid, it is possible to purify SOF (Soluable Organic Fraction), unburned hydrocarbons, etc. contained in particulate matter in diesel engine exhaust gas from a low temperature range. Further, it is described that the effect of suppressing oxidation of sulfur dioxide is exhibited even in a high temperature range, and the invention of Patent Document 2 aims at an effect similar to the invention of Patent Document 1 and does not relate to DPF. Therefore, it does not correspond to the accumulation of ash on the DPF. If the use of the DPF is continued, the pressure loss of the DPF gradually increases and the PM regeneration temperature gradually increases even if the PM regeneration operation is performed. If this is not done, it will not solve the problem that sufficient regeneration will not be performed and fuel consumption will deteriorate.
本発明は、DPFへのアッシュの堆積を抑制し、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供することを目的としている。
The present invention provides an exhaust emission control device for an internal combustion engine that can suppress the accumulation of ash on the DPF and suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. It is aimed.
すなわち、本発明は、DPFに堆積したアッシュを細粒径化して排出し、DPFを再生(以下「アッシュ再生」という)する構成を提供し、この構成により、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、という有利な効果を奏する、画期的なDPFを提供するものである。
That is, the present invention provides a configuration in which the ash deposited on the DPF is discharged with a reduced particle size, and the DPF is regenerated (hereinafter referred to as “ash regeneration”). It is an object of the present invention to provide an epoch-making DPF that has an advantageous effect of suppressing an increase in temperature and a decrease in fuel consumption.
本発明によれば、堆積したアッシュを細粒径化させて排出することができるので、更に付随する効果として、DPFの設置当初から従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストを低減することもできる。また、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるということである。
According to the present invention, the accumulated ash can be discharged with a reduced particle size. As a further effect, a DPF that is smaller than the conventional DPF can be used from the beginning of the installation of the DPF. Not only cost reduction, but also energy cost of PM regeneration operation can be reduced. In addition, the fact that a small DPF can be used means that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced.
ところで、本発明においてアッシュ再生運転を行う場合、アッシュを細粒径化して排出する際に、SO4が存在する必要がある。以下に説明するように、SO4は、空燃比リーンの条件のもとで存在するので、排気ガスを空燃比リーンにする制御を行うが、堆積したアッシュの量が多いと、堆積したアッシュの量に対してアッシュの放出時に必要なSO4の量が十分でなく、アッシュの放出率が低いという問題が発生する。
By the way, when the ash regeneration operation is performed in the present invention, SO 4 needs to be present when the ash is discharged with a reduced particle size. As will be described below, SO 4 exists under the condition of air-fuel ratio lean, so control is performed to make the exhaust gas lean to air-fuel ratio. However, if the amount of accumulated ash is large, A problem arises in that the amount of SO 4 required for the release of ash is not sufficient relative to the amount, and the ash release rate is low.
本願の発明者は、DPF内部へのアッシュの堆積の問題を研究し、アッシュの堆積原因を分析して、アッシュの主成分が、エンジンオイル中に含まれるカルシウム(Ca)と排気中のSOxとがイオン結合した、CaSO4が主体であり、Ca塩は融点が高いため、排気中ではアッシュが固体としてDPFに流入し、凝集して、大粒径化するという知見を得た。
The inventor of the present application studied the problem of ash accumulation inside the DPF, analyzed the cause of ash accumulation, and the main components of ash were calcium (Ca) contained in engine oil and SOx in exhaust gas. It was found that ash is ion-bonded, CaSO 4 is the main component, and Ca salt has a high melting point, so that in the exhaust gas, ash flows into the DPF as a solid and aggregates to increase the particle size.
更に、本願の発明者は、アッシュの大きさはサブミクロンのオーダーであり、これをナノミクロンのオーダーまで細粒径化すると、アッシュがDPFをすり抜けることを、実験により確認した。
Furthermore, the inventors of the present application have confirmed by experiments that the size of ash is on the order of submicrons, and that the ash slips through the DPF when the ash size is reduced to the order of nanomicrons.
更に、本願の発明者は、サブミクロンの大きさに大粒径化したCaSO4を、還元雰囲気におくと、CaSO4のSO4が還元されてSO3となり、Caとの結合が弱まること、及び、このときDPFの表面上にSO3よりも強い酸が存在すると、CaSO3のCaとSO3との結合が切断され、CaイオンがDPFの表面上のSO3よりも強い酸の上に原子状に分散して結合するということを、実験により確認した。
Furthermore, the inventors of the present application, a CaSO 4 that large grain size to the size of submicron, when placed in a reducing atmosphere, it becomes SO 3 SO 4 of CaSO 4 is reduced, the bond between Ca weakened, At this time, if an acid stronger than SO 3 is present on the surface of the DPF, the bond between Ca and SO 3 in the CaSO 3 is cleaved, and the Ca ions are stronger than the SO 3 on the surface of the DPF. It was confirmed by experiments that the atoms were dispersed and bonded in an atomic form.
更に、本願の発明者は、DPFの表面上のSO3よりも強い酸と結合したCaイオンは、DPFの表面上のSO3よりも強い酸と比べて、更に強い酸が雰囲気中に存在すると、雰囲気中の更に強い酸と結合して、DPFから放出され、DPFをすり抜けて排出されるというということを、実験により確認した。
Furthermore, the inventors of the present application, Ca ions associated with stronger acid than SO 3 on the surface of the DPF is different from the stronger acid than SO 3 on the surface of the DPF, if a stronger acid is present in the atmosphere It was confirmed by an experiment that it binds to a stronger acid in the atmosphere, is released from the DPF, and passes through the DPF to be discharged.
以上を整理すると、DPFの表面上のSO3よりも強い酸として、この酸の酸強度を、SO3よりも強くSO4よりも弱い酸強度とすれば、サブミクロンの大きさに大粒径化してDPF内に堆積したCaSO4は、還元雰囲気において、CaSO4のSO4が還元されてCaSO3となり、CaSO3のCaイオンが、DPFの表面上の酸と結合し、DPFの表面上に原子状に分散する。次に、雰囲気中にSO4を存在させれば、DPFの表面上のCaは、雰囲気中のSO4と結合して、サブナノメートルの大きさのCaSO4となってDPFから放出される。
To summarize the above, if the acid strength of this acid is stronger than SO 3 on the surface of the DPF and the acid strength of this acid is stronger than SO 3 and weaker than SO 4 , the particle size will be submicron. CaSO 4 deposited in the DPF turned into, in a reducing atmosphere, becomes CaSO 3 SO 4 is reduced in CaSO 4, Ca ions CaSO 3 is bonded with the acid on the surface of the DPF, on the surface of the DPF Disperse in atomic form. Next, if SO 4 is present in the atmosphere, the Ca on the surface of the DPF combines with the SO 4 in the atmosphere and becomes sub-nanometer-sized CaSO 4 and is released from the DPF.
排気ガスの雰囲気が、ストイキ又はリッチ雰囲気である場合には、上述の還元雰囲気であり、リーン雰囲気である場合には、リーン雰囲気にはSO4が含まれている。そこで、上述のDPFに対して、雰囲気をストイキ又はリッチ雰囲気にする制御と、次にリーン雰囲気にする制御と、を行えば、ストイキ又はリッチ雰囲気において、DPFに堆積したアッシュのCaイオンが、DPFの表面上に原子状に分散し、次に次にリーン雰囲気において、DPFの表面上のCaが、リーン雰囲気中のSO4と結合してDPFから放出され、サブナノメートルの大きさに細粒径化したCaSO4となってDPFをすり抜け、排出される。
When the exhaust gas atmosphere is a stoichiometric or rich atmosphere, it is the above-described reducing atmosphere, and when it is a lean atmosphere, the lean atmosphere contains SO 4 . Therefore, if control for making the atmosphere stoichiometric or rich and control for making the lean atmosphere next are performed on the above-mentioned DPF, ash Ca ions deposited on the DPF in the stoichiometric or rich atmosphere are converted to DPF. Then, in a lean atmosphere, Ca on the surface of the DPF is combined with SO 4 in the lean atmosphere and released from the DPF, and the fine particle size is reduced to a sub-nanometer size. CaSO 4 is converted to pass through the DPF and discharged.
すなわち、以上の過程では、最初の、サブミクロンの大きさに大粒径化してDPFに堆積したCaSO4が、最終的に、再びCaSO4となってDPFから放出されるが、放出されるCaSO4は、サブナノメートルの大きさに細粒径化されており、DPFをすり抜けて排出される。
That is, in the above process, the first CaSO 4 having a large particle size of submicron and deposited on the DPF is finally released again from the DPF as CaSO 4. No. 4 is reduced in size to a sub-nanometer size and passes through the DPF and is discharged.
しかし、以上のアッシュ再生運転を行う場合、堆積したアッシュの量が多いと、堆積したアッシュの量に対して、アッシュの放出時に必要なSO4の量が十分でなく、アッシュの放出率が低いという問題が発生する。
However, when performing the above-described ash regeneration operation, if the amount of accumulated ash is large, the amount of SO 4 required for releasing the ash is not sufficient with respect to the amount of accumulated ash, and the ash release rate is low. The problem occurs.
本発明は、この問題を解決するために、アッシュの放出時に必要なSO4の量を提供する構成を提供するものである。すなわち、本発明によって、アッシュの堆積量に応じて最適な量のSO4が供給され、アッシュ再生運転が、効果的に進行する。
In order to solve this problem, the present invention provides a configuration that provides the amount of SO 4 required when ash is released. That is, according to the present invention, an optimum amount of SO 4 is supplied in accordance with the amount of accumulated ash, and the ash regeneration operation proceeds effectively.
請求項1に記載の発明によれば、内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、DPFが、表面上に固体酸をコーティングしたDPFであり、固体酸の酸強度が、SO3の酸強度よりも大きくSO4の酸強度よりも小さく、更に、内燃機関の排気系において、表面上に固体酸をコーティングしたDPFの上流に、SOx吸放出触媒装置を備え、SOx吸放出触媒装置が、温度を上昇させることによりSO4を放出する特性を有する、内燃機関の排気浄化装置が提供される。
According to the first aspect of the present invention, there is provided an exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine, wherein the DPF is a DPF whose surface is coated with a solid acid, The acid strength is larger than the acid strength of SO 3 and smaller than the acid strength of SO 4 , and further, in the exhaust system of the internal combustion engine, an SOx absorption / release catalyst device is provided upstream of the DPF whose surface is coated with a solid acid. An exhaust purification device for an internal combustion engine is provided in which the SOx absorption / release catalyst device has a characteristic of releasing SO 4 by increasing the temperature.
すなわち、請求項1の発明では、DPFの表面上に、SO3よりも強くSO4よりも弱い酸強度の固体酸を塗布することによって、DPFを構成する。このように構成したDPFに対して、還元雰囲気にした排気ガスを通過させると、大粒径化してDPFに堆積したCaSO4は、還元雰囲気中で、CaSO4のSO4が還元されてCaSO3となり、CaSO3のCaイオンがDPFの表面上の固体酸と結合し、次に、雰囲気中にSO4を存在させれば、DPFの表面上のCaは、雰囲気中のSO4と結合して、CaSO4となってDPFから放出される。この過程を経て放出されたCaSO4は、細粒径化されているため、最初の大粒径化したCaSO4が、細粒径化されたCaSO4となってDPFから放出され、DPFをすり抜けて排出される。請求項1の発明は、SOx吸放出触媒装置を備え、SOx吸放出触媒装置が、温度を上昇させることによりSO4を放出する特性を有しているので、請求項1の発明によれば、堆積したアッシュの量に応じて、アッシュの放出に必要な量のSO4を、SOx吸放出触媒装置から供給することができ、アッシュが高い放出率で除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。
That is, in the invention of claim 1, the DPF is constituted by applying a solid acid having an acid strength stronger than SO 3 and weaker than SO 4 on the surface of the DPF. Relative thus constituted DPF, when passing the exhaust gas in a reducing atmosphere, CaSO 4 deposited on the DPF with large grain size is in a reducing atmosphere, SO 4 of CaSO 4 is reduced CaSO 3 If the Ca ions of CaSO 3 bind to the solid acid on the surface of the DPF, and then SO 4 is present in the atmosphere, the Ca on the surface of the DPF binds to SO 4 in the atmosphere. , CaSO 4 is released from the DPF. Since the CaSO 4 released through this process has a reduced particle size, the first large-sized CaSO 4 is released from the DPF as the reduced particle size CaSO 4 and passes through the DPF. Discharged. The invention of claim 1 includes an SOx absorption / release catalyst device, and the SOx absorption / release catalyst device has a characteristic of releasing SO 4 by raising the temperature. According to the invention of claim 1, Depending on the amount of accumulated ash, the amount of SO 4 required to release ash can be supplied from the SOx absorption / release catalyst device, and the ash is removed at a high release rate. An exhaust purification device for an internal combustion engine that can suppress an increase in regeneration temperature and a decrease in fuel consumption is provided.
請求項2に記載の発明によれば、DPF内に堆積したアッシュを除去する、アッシュ再生運転の制御を備え、アッシュ再生運転の制御が、DPFの温度を上昇させる制御と、DPF内の雰囲気の空燃比の制御と、を備え、DPF内の雰囲気の空燃比の制御が、DPFの温度を上昇させる制御の間に、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、更に、DPFの温度を上昇させる制御の間、空燃比リーン雰囲気に変化させる制御において、DPFから放出すべきアッシュの量に応じて、SOx吸放出触媒装置の温度上昇を制御し、SOx吸放出触媒装置から放出するSO4の放出量を調節する、請求項1に記載の内燃機関の排気浄化装置、が提供される。
According to the second aspect of the present invention, the ash regeneration operation control for removing the ash accumulated in the DPF is provided, and the control of the ash regeneration operation includes the control for increasing the temperature of the DPF, and the atmosphere in the DPF. The control of the air-fuel ratio of the atmosphere in the DPF includes a stoichiometric or air-fuel ratio rich atmosphere first and then changes to an air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF. Further, in the control for changing to an air-fuel ratio lean atmosphere during the control for increasing the temperature of the DPF, the temperature increase of the SOx adsorption / release catalyst device is controlled according to the amount of ash to be released from the DPF, The exhaust emission control device for an internal combustion engine according to claim 1, wherein the emission amount of SO 4 released from the SOx absorption / release catalyst device is adjusted.
すなわち、請求項2の発明では、請求項1で構成したDPFに対してアッシュ再生運転を行い、アッシュ再生運転が、DPFの温度を上昇させる制御と、DPFの温度を上昇させる制御の間の、DPF内の雰囲気の空燃比の制御と、を備え、DPF内の雰囲気の空燃比の制御が、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、リーン雰囲気中のSO4の量は、DPFから放出すべきアッシュの量に応じて、SOx吸放出触媒装置の温度上昇を制御することによって、必要な量だけSOx吸放出触媒装置から供給される。したがって、大粒径化したCaSO4は、ストイキ又は空燃比リッチ雰囲気中のHC、CO等によって還元されてCaSO3となり、CaSO3のCaイオンがDPFの表面上の固体酸と結合して、DPFの表面上に原子状に分散し、次に、空燃比リーン雰囲気に変化させ、リーン雰囲気中には、DPFから放出すべきアッシュの量に応じたSO4が存在し、DPFの表面上のCaが、リーン雰囲気中のSO4と高効率で結合して、CaSO4となってDPFから放出される。この過程を経て放出されたCaSO4は、細粒径化されているため、最初の、大粒径化してDPFに堆積したCaSO4が、最後に、細粒径化されたCaSO4となってDPFから放出され、DPFをすり抜けて排出される。したがって、アッシュ再生運転においてアッシュが高い放出率で除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置が提供される。
That is, in the invention of claim 2, the ash regeneration operation is performed on the DPF configured in claim 1, and the ash regeneration operation is performed between the control for increasing the temperature of the DPF and the control for increasing the temperature of the DPF. Control of the air-fuel ratio of the atmosphere in the DPF, and the control of the air-fuel ratio of the atmosphere in the DPF is a control that first changes to a stoichiometric or air-fuel ratio rich atmosphere and then changes to an air-fuel ratio lean atmosphere, and a lean atmosphere The amount of SO 4 in the catalyst is supplied from the SOx absorption / release catalyst device by a necessary amount by controlling the temperature rise of the SOx absorption / release catalyst device according to the amount of ash to be released from the DPF. Therefore, CaSO 4 having a large particle size is reduced to HC, CO, or the like in a stoichiometric or air-fuel ratio rich atmosphere to become CaSO 3 , and the Ca ions of CaSO 3 are combined with the solid acid on the surface of the DPF. Next, the air-fuel ratio is changed to a lean atmosphere. In the lean atmosphere, SO 4 corresponding to the amount of ash to be released from the DPF exists, and Ca on the surface of the DPF However, it combines with SO 4 in a lean atmosphere with high efficiency and becomes CaSO 4 and is released from the DPF. CaSO 4 released through this process, because it is fine diameter, the first, CaSO 4 deposited on the DPF with large grain size is, finally, becomes CaSO 4 that is fine diameter It is released from the DPF and passes through the DPF to be discharged. Accordingly, there is provided an exhaust emission control device for an internal combustion engine that can remove ash at a high release rate in ash regeneration operation, and can suppress an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption over a long period of time. .
各請求項に記載の発明によれば、アッシュ再生の構成が提供され、アッシュ再生運転においてアッシュが完全に除去され、長期にわたって圧損の増加や、PM再生温度の増加、また、燃費の低下を抑制することができる、内燃機関の排気浄化装置を提供するという、共通の効果を奏する。
According to the invention described in each claim, an ash regeneration configuration is provided, and the ash is completely removed in the ash regeneration operation, and an increase in pressure loss, an increase in PM regeneration temperature, and a decrease in fuel consumption are suppressed over a long period of time. The present invention provides a common effect of providing an exhaust gas purification device for an internal combustion engine.
図1は、本発明を内燃機関の排気浄化装置に適用した場合の、実施形態の概略構成を説明する図である。
図2は、本発明のSOx吸放出触媒装置の制御の実施形態における、アッシュ放出を説明する図である。
図3は、本発明のSOx吸放出触媒装置の制御の別の実施形態における、アッシュ放出を説明する図である。 FIG. 1 is a diagram illustrating a schematic configuration of an embodiment when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
FIG. 2 is a view for explaining ash release in the embodiment of control of the SOx adsorption / release catalyst device of the present invention.
FIG. 3 is a diagram illustrating ash release in another embodiment of the control of the SOx adsorption / release catalyst device of the present invention.
図2は、本発明のSOx吸放出触媒装置の制御の実施形態における、アッシュ放出を説明する図である。
図3は、本発明のSOx吸放出触媒装置の制御の別の実施形態における、アッシュ放出を説明する図である。 FIG. 1 is a diagram illustrating a schematic configuration of an embodiment when the present invention is applied to an exhaust gas purification apparatus for an internal combustion engine.
FIG. 2 is a view for explaining ash release in the embodiment of control of the SOx adsorption / release catalyst device of the present invention.
FIG. 3 is a diagram illustrating ash release in another embodiment of the control of the SOx adsorption / release catalyst device of the present invention.
以下、添付図面を用いて本発明の実施形態について説明する。なお、複数の添付図面において、同一又は相当する部材には、同一の符号を付している。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the plurality of accompanying drawings, the same or corresponding members are denoted by the same reference numerals.
図1は、本発明の基本構成を示す図であり、DPF2の表面上に、詳細にはDPF2のDPF基材の表面上に、酸強度がSO3以上でSO4以下に相当する固体酸を塗布する。また、内燃機関1の排気系の、DPF2の上流に、SOx吸放出触媒装置30を備える。内燃機関1の排気は、SOx吸放出触媒装置30を経由してDPF2に導かれ、排気中のSOxは、SOx吸放出触媒装置30によって捕集、除去され、排気中のPMは、DPF2によって捕集、除去され、SOx及びPMの除去された排気が排出される。DPF2に捕集されたPMは次第に堆積していくので、定期的に或いはDPF2の性能低下を検知して、DPF2内に捕集されたPMを燃焼除去するPM再生運転を行う。
FIG. 1 is a diagram showing a basic configuration of the present invention. A solid acid corresponding to an acid strength of SO 3 or more and SO 4 or less is formed on the surface of DPF 2, specifically, on the surface of a DPF substrate of DPF 2. Apply. Further, an SOx absorption / release catalyst device 30 is provided upstream of the DPF 2 in the exhaust system of the internal combustion engine 1. The exhaust gas of the internal combustion engine 1 is guided to the DPF 2 via the SOx absorption / release catalyst device 30, SOx in the exhaust gas is collected and removed by the SOx absorption / release catalyst device 30, and PM in the exhaust gas is captured by the DPF 2. The exhaust gas that has been collected and removed and from which SOx and PM have been removed is discharged. Since PM collected in the DPF 2 is gradually accumulated, a PM regeneration operation is performed periodically or by detecting a decrease in the performance of the DPF 2 and burning and removing the PM collected in the DPF 2.
しかし、PM再生運転を繰り返し行っていると、DPF2内にアッシュ3が堆積し、PM再生運転を行っても、次第にDPF2の圧力損失が増加し、また、PM再生温度を次第に増加させなければ十分な再生が行われなくなる、という問題があり、燃費が悪化する。
However, if the PM regeneration operation is repeated, ash 3 accumulates in the DPF 2, and even if the PM regeneration operation is performed, the pressure loss of the DPF 2 gradually increases, and it is sufficient if the PM regeneration temperature is not increased gradually. There is a problem that proper regeneration is not performed, and fuel consumption deteriorates.
本発明では、DPF2のアッシュ再生運転において、DPF2内に堆積したアッシュ3を、アッシュ3の量に応じたSO4の量をSOx吸放出触媒装置30から供給して細粒径化するので、細粒径化粒子4が、高い放出率でDPF2のフィルタ隙間を通り抜け、排気とともに排出される。
In the present invention, in the ash regeneration operation of the DPF 2, the ash 3 deposited in the DPF 2 is supplied from the SOx adsorption / release catalyst device 30 with an amount of SO 4 corresponding to the amount of the ash 3 to reduce the particle size. The particle size particles 4 pass through the filter gap of the DPF 2 at a high release rate and are discharged together with the exhaust gas.
図3は、本発明のSOx吸放出触媒装置30の温度上昇制御を、一定時間、一定温度まで上昇させるように行った場合の実施形態における、アッシュ放出を説明する図である。4つのグラフは、同一時間に対する各事象を説明するグラフであり、横軸は時間である。一番上のグラフは、SOx吸放出触媒装置30(図1)の温度上昇を示し、縦軸T(30)は、SOx吸放出触媒装置30の温度である。上から2番目のグラフは、SOx吸放出触媒装置30の、SOxを捕捉する期間Z1、Z3とSO4を放出する期間Z2とを示し、縦軸SO4(L2)は、図1のL2の位置におけるSO4放出量を示している。上から3番目のグラフは、アッシュの放出状態を示すグラフであり、縦軸アッシュ(L3)は、図1のL3の位置におけるアッシュ放出量を示している。一番下のグラフは、L3の位置におけるSO4放出量を示すグラフであり、縦軸SO4(L3)は、L3の位置におけるSO4放出量である。すなわち、この実施形態では、下の2つのグラフにより、アッシュ再生は十分行われるものの、余剰のSO4が発生し、余剰のSO4はDPF2の下流に排出されてしまうことを示している。
FIG. 3 is a diagram for explaining ash release in an embodiment in which the temperature increase control of the SOx adsorption / release catalyst device 30 of the present invention is performed so as to increase to a certain temperature for a certain time. The four graphs are graphs for explaining each event for the same time, and the horizontal axis is time. The top graph shows the temperature rise of the SOx absorption / release catalyst device 30 (FIG. 1), and the vertical axis T (30) is the temperature of the SOx absorption / release catalyst device 30. The second graph from the top shows the periods Z 1 and Z 3 for capturing SOx and the period Z 2 for releasing SO 4 of the SOx adsorption / release catalyst device 30, and the vertical axis SO 4 (L 2 ) is shown in FIG. It shows SO 4 emission at the position of 1 in L 2. The third graph from the top is a graph showing the ash discharge state, and the vertical axis ash (L 3 ) indicates the ash discharge amount at the position L 3 in FIG. The lowermost graph is a graph showing the amount of SO 4 released at the position of L 3 , and the vertical axis SO 4 (L 3 ) is the amount of SO 4 released at the position of L 3 . That is, in this embodiment, the lower two graphs show that although ash regeneration is sufficiently performed, surplus SO 4 is generated and surplus SO 4 is discharged downstream of the DPF 2.
図2は、図3の制御における欠点を改良した実施形態を示す。図2の4つのグラフは、図3の4つのグラフにそれぞれ対応するものであるが、一番上のグラフでは、SOx吸放出触媒装置30の温度上昇を、段階的に制御し、アッシュ再生の初期は、SOx吸放出触媒装置30の温度上昇を、図3に比べて比較的低い温度に制御し、次に更に昇温するという、段階的な昇温制御を行うことを示している。すなわち、図2の上から2番目のグラフに示すように、L2の位置におけるSO4放出量を、アッシュ放出反応における未反応SO4のすり抜けが生じない量とするように、T(30)を制御する。図2の上から2番目のグラフのSO4(L2)のピークが、図3の対応するグラフのピークよりも低くなっていることに注意されたい。また、グラフ中のAdjは、必要なアッシュ放出速度が適切に保てるSO4放出量の、上限値と下限値の幅を示している。すなわち、SOx吸放出触媒装置30の温度上昇制御を行い、一定の昇温値に保持していると、SO4放出量は次第に減少してくるので、下限値を設け、下限値に接近したら、SOx吸放出触媒装置30の温度T(30)を更に上昇させて、SO4放出量を回復する。また、アッシュの単位時間当たりの放出量を調整して、図2のアッシュ再生期間ZAを、図3のアッシュ再生期間ZAよりも長くすると、アッシュ放出に必要なSO4との反応を効果的に行うことができる。これらの温度上昇T(30)とアッシュ再生期間ZAとの関係は、SOx吸放出触媒装置に利用する触媒の特性や、アッシュの処理量に依存するので、実験によって最適な関係を把握し、マップとして制御システムに組み込むことが好ましい。
FIG. 2 shows an embodiment in which the drawbacks in the control of FIG. 3 are improved. The four graphs in FIG. 2 correspond to the four graphs in FIG. 3 respectively. In the uppermost graph, the temperature increase of the SOx adsorption / release catalyst device 30 is controlled in stages, and ash regeneration is performed. In the initial stage, the temperature rise of the SOx adsorption / release catalyst device 30 is controlled to a relatively low temperature as compared with FIG. That is, as shown in the second graph from the top in FIG. 2, the amount of SO 4 released at the position L 2 is T (30) so that the unreacted SO 4 slip-through does not occur in the ash release reaction. To control. Note that the SO 4 (L 2 ) peak in the second graph from the top in FIG. 2 is lower than the peak in the corresponding graph in FIG. Further, Adj in the graph indicates the range of the upper limit value and the lower limit value of the SO 4 release amount that can maintain the necessary ash release rate appropriately. That is, if the temperature rise control of the SOx adsorption / release catalyst device 30 is performed and kept at a constant temperature rise value, the SO 4 release amount gradually decreases. Therefore, when a lower limit is set and the lower limit is approached, The temperature T (30) of the SOx absorption / release catalyst device 30 is further raised to recover the SO 4 release amount. The effects by adjusting the discharge amount per ashes unit time, the ash playback period Z A in FIG. 2, the longer than ash playback period Z A in FIG. 3, the reaction with SO 4 needed for ash discharge Can be done automatically. The relationship between these temperatures rise T (30) and ash playback period Z A is the characteristic of the catalyst and to be used for the catalytic converter output SOx absorbing, because it depends on the processing amount of ash, to grasp the optimum relationship experimentally, It is preferably incorporated into the control system as a map.
図2のように適切な制御を行うと、上から3番目のグラフに示すように、L3の位置におけるアッシュ放出量を得るとともに、一番下のグラフに示すように、L3の位置におけるSO4すり抜け量をほぼゼロとすることができる。すなわち、この実施形態では、下の2つのグラフにより、アッシュ再生が十分行われ、かつ余剰のSO4が発生せず、DPF2の下流には、SO4が排出されないことを示している。
Doing appropriate control as in FIG. 2, as shown in the third graph from the top, with obtaining ash emissions at the position of L 3, as shown in the bottom graph, in the position of L 3 The amount of SO 4 slip-through can be made almost zero. That is, in this embodiment, the lower two graphs indicate that ash regeneration is sufficiently performed, no surplus SO 4 is generated, and SO 4 is not discharged downstream of the DPF 2.
したがって、DPF基材の上に、酸強度がSO3以上、SO4以下に相当する固体酸を塗布し、アッシュ再生運転中に、DPF内の雰囲気の空燃比を、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させ、更に、図2に示すように、放出すべきアッシュの量に応じた適切なSO4の量をSOx吸放出触媒装置から供給するように制御すると、DPF2内の大粒径化したアッシュが、完全に除去され、いつまでも性能が低下しないDPFを備えた内燃機関の排気浄化装置を構成することができ、DPF2の性能を、長期間にわたって飛躍的に向上させることができるという、有利な効果を奏する。更に、この効果に付随する更なる効果として、DPFの設置当初から、従来よりも小型のDPFを使用することができ、DPFの製造コストの低減のみならず、PM再生運転のエネルギーコストも低減することができる。更に、小型のDPFを使用することができるということは、DPFの車両への搭載スペースを低減することができ、当該DPFを搭載した車両の重量を低減することができるという効果があることにも注目すべきである。
Therefore, a solid acid corresponding to an acid strength of SO 3 or higher and SO 4 or lower is applied on the DPF substrate, and the air-fuel ratio of the atmosphere in the DPF is set to the stoichiometric or rich air-fuel ratio first during the ash regeneration operation. When the atmosphere is changed to an air-fuel ratio lean atmosphere, and an appropriate amount of SO 4 corresponding to the amount of ash to be released is controlled to be supplied from the SOx adsorption / release catalyst device as shown in FIG. The ash having a large particle size in the DPF 2 is completely removed, and an exhaust purification device for an internal combustion engine having a DPF whose performance does not deteriorate indefinitely can be configured. The performance of the DPF 2 can be dramatically improved over a long period of time. There is an advantageous effect that it can be improved. Furthermore, as a further effect that accompanies this effect, a DPF smaller than the conventional one can be used from the beginning of the installation of the DPF, which not only reduces the manufacturing cost of the DPF but also reduces the energy cost of the PM regeneration operation. be able to. Furthermore, the fact that a small DPF can be used has the effect that the space for mounting the DPF on the vehicle can be reduced, and the weight of the vehicle on which the DPF is mounted can be reduced. It should be noted.
1 内燃機関
2 DPF
3 アッシュ
4 細粒径化粒子
5 DPF基材
6 固体酸
30 SOx吸放出触媒装置
L1:SOx吸放出触媒装置入口
L2:DPF入口
L3:DPF出口
T(30):SOx吸放出触媒装置30の温度
SO4(L2):L2の位置におけるSO4放出量
SO4(L3):L3の位置におけるSO4放出量
アッシュ(L3):L2の位置におけるアッシュ放出量
ZA:アッシュ再生
Z1:SOx捕捉期間
Z2:SO4放出期間
Z3:SOx捕捉期間 1Internal combustion engine 2 DPF
3 Ash 4 Fine particle 5 DPF base material 6Solid acid 30 SOx absorption / release catalyst device L 1 : SOx absorption / release catalyst device inlet L 2 : DPF inlet L 3 : DPF outlet T (30): SOx absorption / release catalyst device 30 temperature SO 4 in (L 2): SO 4 emission at the position of L 2 SO 4 (L 3) : SO 4 emission ash (L 3) at the position of L 3: ash emission at the position of L 2 Z A : Ash regeneration Z 1 : SOx capture period Z 2 : SO 4 release period Z 3 : SOx capture period
2 DPF
3 アッシュ
4 細粒径化粒子
5 DPF基材
6 固体酸
30 SOx吸放出触媒装置
L1:SOx吸放出触媒装置入口
L2:DPF入口
L3:DPF出口
T(30):SOx吸放出触媒装置30の温度
SO4(L2):L2の位置におけるSO4放出量
SO4(L3):L3の位置におけるSO4放出量
アッシュ(L3):L2の位置におけるアッシュ放出量
ZA:アッシュ再生
Z1:SOx捕捉期間
Z2:SO4放出期間
Z3:SOx捕捉期間 1
3 Ash 4 Fine particle 5 DPF base material 6
Claims (2)
- 内燃機関の排気系にDPFを配置した、内燃機関の排気浄化装置であって、
前記DPFが、表面上に固体酸をコーティングしたDPFであり、
前記固体酸の酸強度が、SO3の酸強度よりも大きくSO4の酸強度よりも小さく、
更に、前記内燃機関の排気系において、表面上に固体酸をコーティングした前記DPFの上流に、SOx吸放出触媒装置を備え、
前記SOx吸放出触媒装置が、温度を上昇させることによりSO4を放出する特性を有する、
内燃機関の排気浄化装置。 An exhaust purification device for an internal combustion engine in which a DPF is disposed in an exhaust system of the internal combustion engine,
The DPF is a DPF having a surface coated with a solid acid,
The acid strength of the solid acid is greater than the acid strength of SO 3 and less than the acid strength of SO 4 ;
Further, in the exhaust system of the internal combustion engine, an SOx absorption / release catalyst device is provided upstream of the DPF whose surface is coated with a solid acid,
The SOx absorption / release catalyst device has a characteristic of releasing SO 4 by raising the temperature;
An exhaust purification device for an internal combustion engine. - 前記DPF内に堆積したアッシュを除去する、アッシュ再生運転の制御を備え、
前記アッシュ再生運転の制御が、
DPFの温度を上昇させる制御と、
DPF内の雰囲気の空燃比の制御と、を備え、
前記DPF内の雰囲気の空燃比の制御が、前記DPFの温度を上昇させる制御の間に、先にストイキ又は空燃比リッチ雰囲気とし、次に空燃比リーン雰囲気に変化させる制御であり、
更に、前記DPFの温度を上昇させる制御の間、空燃比リーン雰囲気に変化させる制御において、前記DPFから放出すべきアッシュの量に応じて、前記SOx吸放出触媒装置の温度上昇を制御し、前記SOx吸放出触媒装置から放出するSO4の放出量を調節する、
請求項1に記載の内燃機関の排気浄化装置。 An ash regeneration operation control for removing ash deposited in the DPF;
The control of the ash regeneration operation is
Control to increase the temperature of the DPF;
An air-fuel ratio control of the atmosphere in the DPF,
The control of the air-fuel ratio of the atmosphere in the DPF is a control for changing the atmosphere to the stoichiometric or air-fuel ratio rich atmosphere first and then changing to the air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF.
Further, in the control to change the air-fuel ratio lean atmosphere during the control to increase the temperature of the DPF, the temperature increase of the SOx adsorption / release catalyst device is controlled according to the amount of ash to be released from the DPF, Adjusting the amount of SO 4 released from the SOx absorption / release catalyst device,
The exhaust emission control device for an internal combustion engine according to claim 1.
Priority Applications (26)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/065642 WO2013005341A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust gas purifier for internal combustion engine |
EP12741114.8A EP2726175B1 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
PCT/JP2012/067406 WO2013005851A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
JP2013555656A JP5655961B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
EP12741115.5A EP2726176A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
PCT/JP2012/067407 WO2013005852A1 (en) | 2011-07-01 | 2012-06-29 | Particulate Filter |
CN201280030742.8A CN103619438B (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
JP2013555681A JP5626487B2 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
US14/126,904 US9011569B2 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
EP12738240.6A EP2726173B1 (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
PCT/JP2012/067405 WO2013005850A2 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
US14/126,997 US9057299B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
CN201280032271.4A CN103635245B (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
PCT/JP2012/067404 WO2013005849A1 (en) | 2011-07-01 | 2012-06-29 | Exhaust Purification System for Internal Combustion Engine |
JP2013535609A JP5494893B2 (en) | 2011-07-01 | 2012-06-29 | How to remove ash from particulate filters |
CN201280031473.7A CN103619441B (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
EP12741116.3A EP2726177B1 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
JP2013555657A JP2014520227A (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
CN201280031454.4A CN103619439B (en) | 2011-07-01 | 2012-06-29 | For the emission control system of internal combustion engine |
EP12738239.8A EP2726172B1 (en) | 2011-07-01 | 2012-06-29 | Particulate filter |
CN201280031461.4A CN103619440B (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
US14/110,811 US8778053B2 (en) | 2011-07-01 | 2012-06-29 | Method of removing ash from particulate filter |
US14/126,947 US9057298B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
US14/127,355 US9080480B2 (en) | 2011-07-01 | 2012-06-29 | Exhaust purification system for internal combustion engine |
JP2014514345A JP2014520229A (en) | 2011-07-01 | 2012-06-29 | Exhaust gas purification device for internal combustion engine |
PCT/JP2012/067408 WO2013005853A2 (en) | 2011-07-01 | 2012-06-29 | Method of Removing Ash from Particulate Filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/065642 WO2013005341A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust gas purifier for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013005341A1 true WO2013005341A1 (en) | 2013-01-10 |
Family
ID=47436713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/065642 WO2013005341A1 (en) | 2011-07-01 | 2011-07-01 | Exhaust gas purifier for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013005341A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113340605A (en) * | 2021-04-29 | 2021-09-03 | 广西玉柴机器股份有限公司 | Tractor whole vehicle carbon accumulation test method and system |
JP2022509617A (en) * | 2018-11-19 | 2022-01-21 | パーキンズ エンジンズ カンパニー リミテッド | How to control the operation of the exhaust gas treatment equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1054268A (en) * | 1996-08-08 | 1998-02-24 | Toyota Motor Corp | Exhaust emission control device for diesel engine |
JP2004513771A (en) * | 2001-05-16 | 2004-05-13 | ケイエイチ ケミカルズ カンパニー、リミテッド | Catalyst for purification of diesel engine exhaust gas |
JP2010007639A (en) * | 2008-06-30 | 2010-01-14 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
-
2011
- 2011-07-01 WO PCT/JP2011/065642 patent/WO2013005341A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1054268A (en) * | 1996-08-08 | 1998-02-24 | Toyota Motor Corp | Exhaust emission control device for diesel engine |
JP2004513771A (en) * | 2001-05-16 | 2004-05-13 | ケイエイチ ケミカルズ カンパニー、リミテッド | Catalyst for purification of diesel engine exhaust gas |
JP2010007639A (en) * | 2008-06-30 | 2010-01-14 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022509617A (en) * | 2018-11-19 | 2022-01-21 | パーキンズ エンジンズ カンパニー リミテッド | How to control the operation of the exhaust gas treatment equipment |
CN113340605A (en) * | 2021-04-29 | 2021-09-03 | 广西玉柴机器股份有限公司 | Tractor whole vehicle carbon accumulation test method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5735983B2 (en) | NOx trap | |
JP5683598B2 (en) | Improved diesel oxidation catalyst | |
RU2455503C2 (en) | Device with internal combustion engine operating on lean mixture and exhaust system | |
JP6974145B2 (en) | Automotive catalyst post-treatment system | |
JPWO2011162030A1 (en) | Exhaust gas purification catalyst device using selective reduction catalyst, exhaust gas purification method, and diesel vehicle equipped with exhaust gas purification catalyst device | |
KR20130129241A (en) | Architectural diesel oxidation catalyst for enhanced no2 generator | |
US8986636B2 (en) | Apparatus and method for filtering engine exhaust gases | |
WO2013005341A1 (en) | Exhaust gas purifier for internal combustion engine | |
JP2009228575A (en) | Diesel engine exhaust emission control device | |
JP4567968B2 (en) | Exhaust gas purification device and exhaust gas purification method | |
WO2013005340A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005335A1 (en) | Exhaust purification apparatus for internal combustion engine | |
JPWO2013005341A1 (en) | Exhaust gas purification device for internal combustion engine | |
WO2013005338A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005337A1 (en) | Exhaust purification apparatus for internal combustion engine | |
WO2013005334A1 (en) | Exhaust purification apparatus for internal combustion engine | |
JPWO2013005340A1 (en) | Exhaust gas purification device for internal combustion engine | |
WO2013005342A1 (en) | Exhaust purification device for internal combustion engine | |
JPWO2013005338A1 (en) | Exhaust gas purification device for internal combustion engine | |
JPWO2013005337A1 (en) | Exhaust gas purification device for internal combustion engine | |
WO2013005339A1 (en) | Exhaust purification device for internal combustion engine | |
WO2013005336A1 (en) | Exhaust purification apparatus for internal combustion engine | |
JP2009007982A (en) | Exhaust emission control device for internal combustion engine | |
JPWO2013005334A1 (en) | Exhaust gas purification device for internal combustion engine | |
JPWO2013005342A1 (en) | Exhaust gas purification device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012504601 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11869072 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11869072 Country of ref document: EP Kind code of ref document: A1 |