[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013094592A1 - ブレーキ制御装置 - Google Patents

ブレーキ制御装置 Download PDF

Info

Publication number
WO2013094592A1
WO2013094592A1 PCT/JP2012/082763 JP2012082763W WO2013094592A1 WO 2013094592 A1 WO2013094592 A1 WO 2013094592A1 JP 2012082763 W JP2012082763 W JP 2012082763W WO 2013094592 A1 WO2013094592 A1 WO 2013094592A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
control device
brake fluid
circuit
pump
Prior art date
Application number
PCT/JP2012/082763
Other languages
English (en)
French (fr)
Inventor
大澤 俊哉
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013094592A1 publication Critical patent/WO2013094592A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/161Systems with master cylinder
    • B60T13/165Master cylinder integrated or hydraulically coupled with booster
    • B60T13/166Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition

Definitions

  • the present invention relates to a brake control device.
  • a stroke simulator for storing brake fluid flowing out from the master cylinder is provided on a circuit connecting the master cylinder and the suction side of the pump.
  • An example related to the technique described above is described in Patent Document 1.
  • An object of the present invention is to provide a brake control device that can suppress fluctuations in pedal effort when the brake pedal is stepped on after switching from regenerative braking force to friction braking force.
  • the volume of the secondary side chamber accompanying the volume expansion of the primary side chamber is generated while the brake fluid flowing out from the master cylinder flows into the primary side chamber of the stroke simulator to generate the pedal depression force.
  • the wheel cylinder pressure is adjusted using the brake fluid that has flowed out of the secondary chamber due to the reduction.
  • the brake control device of the present invention it is possible to suppress fluctuations in the pedal effort when the brake pedal is stepped up after switching from the regenerative braking force to the friction braking force.
  • FIG. 4 is a flowchart illustrating a flow of a brake fluid pressure control process executed by the brake control unit BCU according to the first embodiment.
  • 6 is a setting map of a target wheel cylinder pressure Pw0 corresponding to a master cylinder pressure Pm0 when regenerative cooperative control is not performed. It is a setting map of target wheel cylinder pressure Pw0 'according to brake pedal stroke Sp0 when not implementing regenerative cooperative control.
  • Example 1 it is a time chart which shows the operation
  • Example 1 it is a time chart which shows the operation
  • It is explanatory drawing which shows the sudden decrease of the pedal effort of a brake pedal which generate
  • FIG. It is a circuit block diagram of the brake control apparatus of Example 2. It is a flowchart which shows the flow of the brake fluid pressure control process of the non-regenerative wheel (rear wheel) performed with the brake control unit BCU of Example 2. In Example 2, it is a time chart which shows the operation
  • Example 2 the time chart showing the operation of brake fluid pressure control of the non-regenerative wheel (rear wheel) when the driver depresses the brake pedal during the regenerative cooperative control to maintain a certain stroke and then depresses the brake pedal. It is. It is a circuit block diagram of the brake control apparatus of Example 3.
  • FIG. 10 is a setting map of a target wheel cylinder pressure Pw0 for a non-regenerative wheel (rear wheel) according to a master cylinder pressure Pm0 in Embodiment 3.
  • FIG. FIG. 10 is a setting map of a target wheel cylinder pressure Pw0 ′ for a non-regenerative wheel (rear wheel) according to a brake pedal stroke Sp0 in Embodiment 3.
  • Example 3 it is a time chart which shows the operation
  • the time chart showing the operation of the brake fluid pressure control of the non-regenerative wheel (rear wheel) when the driver depresses the brake pedal during the regenerative cooperative control to maintain a constant stroke and then depresses the brake pedal. It is.
  • FIG. 1 is a system configuration diagram showing a braking / driving system of an electric vehicle to which the brake control device of the first embodiment is applied
  • FIG. 2 is a circuit configuration diagram of the brake control device of the first embodiment.
  • the hydraulic pressure control unit (hydraulic pressure adjustment unit) HU is based on the friction braking force command from the brake control unit (hydraulic pressure control unit) BCU, the wheel cylinder W / C (FL) of the left front wheel FL, the right rear wheel RR
  • the hydraulic pressures of the wheel cylinder W / C (RR), the wheel cylinder W / C (FR) of the right front wheel FR, and the wheel cylinder W / C (RL) of the left rear wheel RL are increased, decreased or held.
  • Motor generator MG is a three-phase AC motor, and performs power running or regenerative operation based on a command from motor control unit MCU, and applies driving force or regenerative braking force to left and right front wheels FL, FR.
  • the inverter INV performs the power running operation of the motor generator MG by converting the DC power of the battery BATT into AC power based on a drive command from the motor control unit MCU and supplying the AC power to the motor generator MG.
  • the AC power generated by the motor generator MG is converted into DC power and the battery BATT is charged to regenerate the motor generator MG.
  • the motor control unit MCU outputs a drive command to the inverter INV based on the drive force command from the drive controller 1. Also, based on the regenerative braking force command from the brake control unit BCU, the regenerative command is output to the inverter INV.
  • the motor control unit MCU sends the state of output control of the driving force or regenerative braking force by the motor generator MG and the maximum regenerative braking force that can be generated at present to the brake control unit BCU and drive controller 1 via the communication line 2. send.
  • the “maximum regenerative braking force that can be generated” is, for example, the battery SOC estimated from the voltage between terminals of the battery BATT and the current value, or the vehicle speed (vehicle speed) calculated (estimated) by the wheel speed sensor 3.
  • the calculation is performed in consideration of the steering characteristic of the vehicle. That is, at the time of full charge when the battery SOC is in the upper limit value or near the upper limit value, it is necessary to prevent overcharge from the viewpoint of battery protection.
  • the maximum regenerative braking force that can be generated by motor generator MG decreases.
  • the motor generator MG, the inverter INV, the battery BATT, and the motor control unit MCU constitute a regenerative braking device that generates a regenerative braking force for the wheels (left and right front wheels FL, FR).
  • the drive controller 1 receives the accelerator opening from the accelerator opening sensor 4, the vehicle speed (vehicle speed) calculated by the wheel speed sensor 3, the battery SOC, and the like directly or via the communication line 2.
  • the drive controller 1 controls the operation of the motor generator MG by a driving force command to the motor control unit MCU based on information from each sensor.
  • the brake control unit BCU is connected to the brake fluid pressure from the first pressure sensor 5, the brake pedal stroke amount from the brake pedal stroke sensor (brake operation state detection unit) 6, and the steering angle sensor 7 directly or via the communication line 2. Steering wheel angle, wheel speeds from the wheel speed sensor 3, yaw rate from the yaw rate sensor 8, brake fluid pressure from the second pressure sensor 9 to be described later, battery SOC, and the like.
  • the first pressure sensor 5 detects a brake fluid pressure closer to the master cylinder M / C than the connection point (connection position) of the pipe line 11 to be described later, that is, the master cylinder pressure.
  • the second pressure sensor 9 detects the discharge pressure of the pipe 12, that is, the pump P described later.
  • the brake control unit BCU calculates the braking force (all wheels) required for the vehicle based on the information from each sensor, etc., and distributes the necessary braking force between the regenerative braking force and the friction braking force, Operation control of the hydraulic pressure control unit HU by the friction braking force command to the control unit BCU and operation control of the motor generator MG by the regenerative braking force command to the motor control unit MCU are performed.
  • the regenerative cooperative control the regenerative braking force is given priority over the friction braking force, and the maximum (maximum regenerative control) is used without using the hydraulic pressure as long as the necessary braking force can be covered by the regenerative component.
  • the area of regeneration is expanded to (power).
  • the brake control unit BCU reduces the regenerative braking force when the regenerative braking is limited due to a decrease or increase in the vehicle speed, etc., and increases the friction braking force by that amount. Ensure the necessary braking force.
  • reducing the regenerative braking force to increase the friction braking force is referred to as switching from the regenerative braking force to the friction braking force, and conversely reducing the friction braking force to increase the regenerative braking force. This is called switching from power to regenerative braking force.
  • the brake control unit BCU performs control to increase / decrease or maintain the wheel cylinder pressure using the discharge pressure of the pump P.
  • the wheel cylinder pressure is automatically increased or decreased based on the braking force required for various vehicle controls including anti-lock brake control (hereinafter referred to as ABS control) as well as the boost control that boosts the driver's brake pedal force.
  • ABS control anti-lock brake control
  • Automatic braking control can be executed.
  • the ABS control means that when it is detected that a wheel tends to be locked during a driver's braking operation, the wheel cylinder pressure is reduced or reduced in order to generate the maximum braking force while preventing the wheel from being locked. This control repeats holding and increasing pressure.
  • a vehicle behavior stability control for stabilizing the vehicle behavior by controlling the wheel cylinder pressure of a predetermined wheel to be controlled.
  • the brake assist control that generates higher pressure in the wheel cylinder W / C than the pressure that is actually generated in the master cylinder M / C when the driver operates the brake, and auto-cruise automatically depending on the relative relationship with the preceding vehicle Control for generating a braking force automatically.
  • the hydraulic control unit HU according to the first embodiment has a piping structure called an X piping, which includes two systems of a P system (first piping system) and an S system (second piping system).
  • part described in FIG. 2 show P system and S system
  • FL, RR, FR, and RL are front left wheel, rear right wheel, front right wheel, rear left. Indicates that it corresponds to a ring.
  • the description of P, S or FL, RR, FR, RL is omitted when the P, S system or each wheel is not distinguished.
  • the hydraulic control unit HU according to the first embodiment uses a closed hydraulic circuit.
  • the closed hydraulic circuit is a hydraulic circuit that returns the brake fluid supplied to the wheel cylinder W / C to the reservoir tank RSV via the master cylinder M / C.
  • the brake pedal BP is connected to the master cylinder M / C via the input rod IR.
  • the left front wheel cylinder W / C (FL) and the right rear wheel wheel cylinder W / C (RR) are connected to the P system, and the right front wheel wheel cylinder W / C (FR), The wheel cylinder W / C (RL) on the left rear wheel is connected.
  • the P system and the S system are provided with a pump PP and a pump PS.
  • the pump PP and the pump PS are, for example, a plunger pump or a gear pump, which is driven by one motor M, pressurizes the brake fluid sucked from the suction part 10a, and discharges it to the discharge part 10b.
  • the master cylinder M / C and the discharge part 10b of the pump P are connected by a pipe line 11 and a pipe line 12.
  • the pipe 11 is provided with a gate-out valve 13 which is a proportional solenoid valve of a normally open type (fully opened when not energized and operates in a closing direction when energized).
  • the pipeline 11 is provided with a pipeline 14 that bypasses the gate-out valve 13.
  • a check valve 15 is provided on the pipeline 14. The check valve 15 allows the flow of brake fluid from the master cylinder M / C to the wheel cylinder W / C and prohibits the flow in the opposite direction.
  • the pipe 12 is a second brake circuit that connects a first brake circuit (pipes 11, 16), which will be described later, and the discharge portion 10b of the pump P.
  • a check valve 17 is provided on the pipeline 12.
  • the check valve 17 allows the flow of brake fluid in the direction from the pump P toward the first brake circuit, and prohibits the flow in the opposite direction.
  • the discharge part 10b of the pump P and the wheel cylinder W / C are connected by a pipe line 16.
  • an inlet valve 18 which is a normally open electromagnetic valve corresponding to each wheel cylinder W / C is provided.
  • a pipe line 19 that bypasses the inlet valve 18 is provided on the pipe line 16, and a check valve 20 is provided in the pipe line 19.
  • This check valve 20 allows the flow of brake fluid in the direction from the wheel cylinder W / C toward the pump P, and prohibits the flow in the opposite direction.
  • the pipe line 16 is connected at a connection point between the pipe line 11 and the pipe line 12, and a second pressure sensor 9 is provided at this connection point.
  • the first brake that connects the master cylinder M / C that generates the brake fluid pressure by the driver's brake operation and the wheel cylinder W / C that is configured so that the brake fluid pressure acts by the pipeline 11 and the pipeline 16.
  • a circuit is constructed.
  • the position on the master cylinder side with respect to the gate-out valve 13 on the pipe 11 and the suction part 10a of the pump P are connected by pipes 21 and 22.
  • a reservoir 23 is provided between the pipe line 21 and the pipe line 22.
  • the reservoir 23 includes a pressure sensitive check valve 24.
  • the check valve 24 prohibits inflow of the brake fluid into the reservoir 23 when a predetermined amount of brake fluid is stored or when the pressure in the pipe line 21 exceeds a predetermined pressure. A high pressure is prevented from being applied to the suction part 10a of the pump P.
  • the check valve 24 is opened regardless of the pressure in the pipeline 21 when the pressure in the pipeline 22 or the pipeline 25 described later becomes low due to the operation of the pump P. Allow the brake fluid to flow into.
  • the pipe 21 and the pipe 22 constitute a third brake circuit that connects the position on the master cylinder side with respect to the gate-out valve 13 on the first brake circuit and the suction portion 10a of the pump P.
  • the reservoir 23 is connected to the reservoir 23 on the pipe line 16 on the wheel cylinder side of the inlet valve 18.
  • the pipe 25 and the pipe 22 constitute a fourth brake circuit that connects the position on the wheel cylinder side with respect to the inlet valve 18 on the first brake circuit and the suction side 10a of the pump P.
  • a position on the conduit 25 on the reservoir side of the outlet valve 26 and the conduit 21 are connected by a conduit 27.
  • the pipe line 27 is a fifth brake circuit that connects the fourth brake circuit and the master cylinder M / C.
  • a stroke simulator 28 is provided on the pipe line 27.
  • FIG. 3 is a schematic diagram showing the configuration of the stroke simulator 28.
  • the brake fluid is stored, and the brake fluid flowing out from the master cylinder M / C by the driver's brake pedal operation can flow.
  • One space 28a is provided.
  • the first space 28a is partitioned into a primary chamber 28c and a secondary chamber 28d by a piston (movable member) 28b that can move in the axial direction inside the stroke simulator 28.
  • the brake fluid that has flowed out of the master cylinder M / C flows into the primary chamber 28c.
  • the piston 28b is biased toward the primary side chamber 28c by a coil spring (biasing means) 28e.
  • the reaction force of the coil spring 28e is set so as to obtain a good brake feel according to the depression force of the brake pedal BP of the driver.
  • the favorable reaction force characteristic is non-linear, for example, when the brake pedal stroke amount is large, the rate of increase of the reaction force with respect to the stroke increase is relatively large.
  • the stroke simulator 28 when the brake fluid flows into the primary chamber 28c, the volume of the primary chamber 28c increases, and the volume of the secondary chamber 28d decreases accordingly. At this time, the brake fluid flowing out from the secondary side chamber 28d is stored in the reservoir 23.
  • a portion upstream of the stroke simulator 28 in the pipe line 27 (master cylinder side) is a stroke simulator connection circuit 30 that connects the master cylinder M / C and the primary chamber 28c.
  • a pump connection circuit 31 that connects the suction portion 10a of the pump P and the secondary chamber 28d is configured by a portion downstream of the stroke simulator 28 (reservoir side) of the conduit 27 and the conduit 22. .
  • FIG. 4 is a flowchart showing the flow of the brake fluid pressure control process executed by the brake control unit BCU of the first embodiment, and each step will be described below.
  • step S1 the gate-in valve 29, the gate-out valve 13, the inlet valve 18, the outlet valve 26, and the motor M are all turned off.
  • step S2 it is determined whether or not to perform brake fluid pressure control. If YES, the process proceeds to step S3, and if NO, the process proceeds to return.
  • the driver starts the operation of the brake pedal BP it is determined that the brake fluid pressure control is performed.
  • the gate-in valve 29 is turned on.
  • a target wheel cylinder pressure is calculated based on the master cylinder pressure.
  • FIG. 5 and 6 are setting examples of the target wheel cylinder pressure when the regeneration cooperative control is not performed.
  • FIG. 5 is a setting map of the target wheel cylinder pressure Pw0 corresponding to the master cylinder pressure Pm0.
  • the target wheel cylinder pressure Pw0 has a linear characteristic proportional to the master cylinder pressure Pm0.
  • An upper limit is set for the target wheel cylinder pressure Pw0.
  • FIG. 6 is a setting map of the target wheel cylinder pressure Pw0 ′ according to the brake pedal stroke Sp0.
  • the target wheel cylinder pressure Pw0 ′ is a non-linearity in which the increase rate with respect to the brake pedal stroke Sp0 decreases as the brake pedal stroke Sp0 increases. Characteristic.
  • An upper limit is set for the target wheel cylinder pressure Pw0 ′.
  • the target wheel cylinder pressure when performing regenerative cooperative control is the value obtained by subtracting the wheel cylinder pressure equivalent to the regenerative braking force from Pw0 when obtaining from the master cylinder pressure Pm0, and regenerating from Pw0 'when obtaining from the brake pedal stroke Sp0.
  • the wheel cylinder pressure corresponding to the braking force is reduced.
  • step S5 it is determined whether or not pump pressure increase is necessary. If YES, the process proceeds to step S8, and if NO, the process proceeds to step S6. In step S6, it is determined whether or not the wheel cylinder pressure needs to be maintained. If YES, the process proceeds to step S9. If NO, the process proceeds to step S7. In step S7, it is determined whether or not pressure reduction to the master cylinder side is necessary. If YES, the process proceeds to step S10, and if NO, the process proceeds to step S11. In step S8, the master cylinder pressure is increased by turning on the gate-out valve 13 to an intermediate opening, turning on the motor M, and operating the pump P.
  • step S9 the wheel-out valve 13 is turned on and closed, the motor M is turned off and the pump P is deactivated, so that the wheel cylinder pressure is maintained.
  • step S10 the brake fluid is returned to the master cylinder side by turning on the gate-out valve 13 to the intermediate opening, turning off the motor M, and deactivating the pump P.
  • step S11 the gate outlet valve 13 is turned on and closed, the outlet valve 26 is turned on and opened, the motor M is turned off and the pump P is deactivated, so that the brake fluid is supplied from the wheel cylinder W / C to the reservoir 23. Miss some or all of In step S12, it is determined whether or not the wheel cylinder pressure is the target wheel cylinder pressure.
  • step S13 it is determined whether or not to terminate the brake fluid pressure control. If YES, the process proceeds to step S14, and if NO, the process proceeds to step S4.
  • step S14 the gate-in valve 29, the gate-out valve 13, the inlet valve 18, the outlet valve 26, and the motor M are all turned off.
  • FIG. 7 is a time chart illustrating the operation of the brake fluid pressure control when the driver depresses the brake pedal and maintains a certain stroke during regenerative cooperative control in the first embodiment.
  • the brake fluid that has flowed into the hydraulic control unit HU from the master cylinder M / C is stored in the primary chamber 28c of the stroke simulator 28, and a pedal stroke is ensured.
  • a good pedal reaction force characteristic can be obtained by the urging force of the coil spring 28e.
  • the brake fluid stored in the secondary chamber 28d flows out of the secondary chamber 28d and is stored in the reservoir 23.
  • the regenerative braking force starts to decrease due to a decrease in the vehicle speed, and pump boosting is required to raise the friction braking force.
  • the gate-out valve 13 is set to the intermediate opening, the motor M is turned on.
  • the pump P is operated and the brake fluid stored in the reservoir 23 is sucked and pressurized to increase the pressure of the wheel cylinder (step S8).
  • the amount of brake fluid stored in the chamber 28c on the primary side of the stroke simulator 28 does not change.
  • the gate-out valve 13 is turned on and closed, the motor M is turned off, and the pump P is deactivated.
  • the wheel cylinder pressure is maintained (step S9).
  • the gate-out valve 13 is gradually opened (step S10).
  • the brake fluid in the wheel cylinder W / C is returned to the master cylinder M / C, and the brake fluid stored in the primary chamber 28c of the stroke simulator 28 passes through the check valve 24 to the stroke simulator. 28 is returned to the secondary chamber 28d.
  • the gate-in valve 29 and the gate-out valve 13 are turned off, and the brake fluid pressure control is finished.
  • FIG. 8 is a time chart illustrating the operation of the brake fluid pressure control when the driver depresses the brake pedal and maintains a certain stroke during the regeneration cooperative control and then depresses the brake pedal in the first embodiment.
  • the period from time t20 to t22 performs the same operation as the period from t10 to t12 in FIG.
  • the pressure increase of the wheel cylinder is continued by the pump pressure increase (step S8).
  • the brake fluid that has flowed into the fluid pressure control unit HU from the master cylinder M / C due to additional depression is stored in the chamber 28c on the primary side of the stroke simulator 28.
  • the gate cylinder 13 is maintained by turning on and closing the gate-out valve 13 and turning off the motor M to deactivate the pump P (step S23). S9).
  • the period from time t24 to t25 performs the same operation as the period from time t13 to t14 in FIG.
  • a stroke simulator that stores a brake fluid corresponding to a brake operation amount corresponding to a regenerative braking force on a circuit connecting a master cylinder and a pump suction side is known. Yes.
  • the solenoid valve provided between the stroke simulator and the master cylinder is closed on the above circuit.
  • the wheel cylinder is increased by sucking and pressurizing the brake fluid stored in the stroke simulator with a pump.
  • FIG. 9 is an explanatory diagram showing a sudden decrease in the pedal force of the brake pedal that occurs when the driver depresses the brake pedal after switching from the regenerative braking force to the friction braking force in the conventional device.
  • Sp1 and Fp1 are the pedal stroke and pedal effort generated by the stroke simulator when the driver depresses the brake pedal.
  • the pedal stroke and pedal effort corresponding to when the amount decreases.
  • the solenoid valve between the stroke simulator and the master cylinder closes.
  • the solenoid valve is opened in response to the driver's brake pedal depression, the amount of brake fluid in the stroke simulator decreases from before the stepping increase. ing.
  • the pedal stroke remains at the value Sp1 before the stepping on, the pedaling force suddenly decreases from Fp1 to Fp2, giving the driver a sense of slipping off of the reaction force.
  • FIG. 10 is an explanatory diagram illustrating the pedal depression force fluctuation suppressing action when the driver depresses the brake pedal after switching from the regenerative braking force to the friction braking force in the first embodiment.
  • Sp1 'and Fp1' are the pedal stroke and pedal force generated by the stroke simulator when the driver steps on the brake pedal
  • Sp2 'and Fp2' are the pedal stroke and pedal when the driver steps on the brake pedal. It is a pedaling force.
  • the brake fluid stored in the reservoir 23 is used to increase the wheel cylinder W / C, so the amount of brake fluid in the chamber 28c on the primary side of the stroke simulator 28 is maintained. Is done.
  • the gate-in valve 29 is opened when the brake pedal BP of the driver is increased, the pedal effort increases from Fp1 'to Fp2' as the pedal stroke increases from Sp1 'to Sp2'. There is no sudden decrease in pedal effort. In other words, since the pedal effort is determined only by the characteristics of the stroke simulator 28 (spring force of the coil spring 28e), fluctuations in the pedal effort can be suppressed, and the driver can be prevented from feeling a reaction force missing.
  • the brake control device has the following effects.
  • the piston 28b is divided into a chamber 28c and a secondary chamber 28d, and the volume of the primary chamber 28c is increased by the inflowing brake fluid, while the volume of the secondary chamber 28d is reduced.
  • Stroke simulator 28 having a biasing means (coil spring 28e) for applying a biasing force to primary side chamber 28c, and secondary side chamber 28d by reducing the volume of secondary side chamber 28d.
  • a hydraulic control unit HU that adjusts the hydraulic pressure of the wheel cylinder W / C (FL, FR, RL, RR) provided on the wheels FL, FR, RL, RR using the brake fluid flowing out from . Therefore, even when the driver increases the brake pedal after switching the regenerative braking force to the friction braking force, the amount of brake fluid in the primary chamber 28c that generates the pedal reaction force is maintained, so Fluctuations in pedal effort can be suppressed, and a good pedal feel can be secured.
  • the hydraulic pressure control unit HU includes a pump P that sucks the brake fluid that has flowed out of the secondary chamber 28d and supplies the sucked brake fluid to the wheel cylinder W / C. Therefore, a desired wheel cylinder pressure can be obtained by increasing the pressure of the brake fluid flowing out from the secondary chamber 28d.
  • the hydraulic pressure control unit HU includes a pump P that sucks the brake fluid flowing out from the secondary chamber 28d and supplies the sucked brake fluid to the wheel cylinder W / C.
  • a pump connection circuit 31 that connects the chamber 28d on the secondary side and a reservoir 23 provided in the pump connection circuit 31 are provided, and the pump P sucks brake fluid through the reservoir 23.
  • the urging means is a coil spring 28e, and creates a brake pedal reaction force by the spring force of the coil spring 28e. Therefore, a desired pedal reaction force characteristic can be realized with a simple configuration using the coil spring 28e.
  • FIG. 11 is a circuit configuration diagram of the brake control device according to the second embodiment.
  • the piping system of the hydraulic pressure control unit HU is a so-called H piping system.
  • the hydraulic pressure control unit HU of the second embodiment has a P system (first piping system) consisting of a group of left and right front wheels FL and FR and an S system (second piping system) consisting of a group of left and right rear wheels RL and RR. .
  • the second embodiment is different from the first embodiment in that the pipe line 27, the stroke simulator 28, and the gate-in valve 29 are provided only in the P system. [Brake fluid pressure control processing] FIG.
  • step S21 all of the gate-out valve 13, the inlet valve 18, the outlet valve 26, and the motor M are turned off.
  • step S22 it is determined whether or not to perform brake fluid pressure control. If YES, the process proceeds to step S23, and if NO, the process proceeds to return.
  • step S23 a target wheel cylinder pressure is calculated based on the master cylinder pressure.
  • step S24 it is determined whether or not pump pressure increase is necessary. If YES, the process proceeds to step S27, and if NO, the process proceeds to step S25. In step S25, it is determined whether or not the wheel cylinder pressure needs to be maintained. If YES, the process proceeds to step S28, and if NO, the process proceeds to step S26. In step S26, it is determined whether or not pressure reduction to the master cylinder is necessary. If YES, the process proceeds to step S29, and if NO, the process proceeds to step S30.
  • step S27 the master cylinder pressure is increased by turning on the gate-out valve 13 to the intermediate opening, turning on the motor M, and operating the pump P.
  • step S28 the wheel-out valve 13 is turned on and closed, the motor M is turned off and the pump P is deactivated, so that the wheel cylinder pressure is maintained.
  • step S29 the brake fluid is returned to the master cylinder side by turning on the gate-out valve 13 to an intermediate opening, turning off the motor M, and deactivating the pump P.
  • step S30 the gate outlet valve 13 is turned on and closed, the outlet valve 26 is turned on and opened, the motor M is turned off and the pump P is deactivated, so that the brake fluid is supplied from the wheel cylinder W / C to the reservoir 23.
  • step S31 it is determined whether or not the wheel cylinder pressure is the target wheel cylinder pressure. If YES, the process proceeds to step S32, and if NO, the process proceeds to step S24. In step S32, it is determined whether or not to terminate the brake fluid pressure control. If YES, the process proceeds to step S33, and if NO, the process proceeds to step S23. In step S33, the gate-out valve 13, the inlet valve 18, the outlet valve 26, and the motor M are all turned off.
  • FIG. 13 is a time chart illustrating the operation of brake fluid pressure control of the non-regenerative wheel (rear wheel) when the driver depresses the brake pedal and maintains a certain stroke during regenerative cooperative control in the second embodiment.
  • the brake fluid pressure control is started. Since the master cylinder pressure is less than the target wheel cylinder pressure and the pump pressure needs to be increased, the gate-out valve 13 is set to an intermediate opening, the motor M is turned on and the pump P is operated.
  • Brake fluid is sucked and pressurized from the M / C to increase the pressure of the wheel cylinder (step S27).
  • the driver kept the brake pedal BP stroke constant, so the gate-out valve 13 is turned on and closed, the motor M is turned off and the pump P is deactivated to maintain the wheel cylinder pressure (step) S28).
  • the gate-out valve 13 is gradually opened (step S29). As a result, the brake fluid in the wheel cylinder W / C is returned to the master cylinder M / C.
  • the gate-out valve 13 is turned OFF, and the brake fluid pressure control is ended.
  • FIG. 14 shows the operation of brake fluid pressure control of a non-regenerative wheel (rear wheel) when the driver depresses the brake pedal during the regenerative cooperative control to maintain a constant stroke and then depresses the brake pedal. It is a time chart which shows. In addition, since it is the same as Example 1 shown in FIG. 8 about a regeneration wheel (front wheel), description is abbreviate
  • the period from time t20 to t22 performs the same operation as the period from t10 to t12 in FIG.
  • the gate-out valve 13 is set to an intermediate opening, the motor M is turned on, the pump P is operated, and the master cylinder M / C is connected via the pipeline 21.
  • the brake fluid is sucked and pressurized to increase the pressure of the wheel cylinder (step S27).
  • the gate cylinder 13 is maintained by turning on and closing the gate-out valve 13 and turning off the motor M to deactivate the pump P (step S23).
  • S28 The period from time t24 to t25 performs the same operation as the period from time t12 to t13 in FIG.
  • the brake control device according to the second embodiment has the same effects as the first embodiment.
  • Example 2 since the stroke simulator 28 is provided only in the P system (front wheel system) of the H piping system, the S system (rear wheel system) only needs to perform the boost control as the brake fluid pressure control. For this reason, compared with Example 1, the cost reduction by reduction of the number of solenoid valves and simplification of control can be aimed at. Moreover, the power consumption in brake hydraulic pressure control can be reduced by reducing the number of solenoid valves.
  • FIG. 15 is a circuit configuration diagram of the brake control device according to the third embodiment.
  • the third embodiment is different from the first embodiment in that the piping system of the hydraulic pressure control unit HU is an H piping system.
  • the brake fluid pressure control process of the third embodiment is substantially the same as that of the first embodiment shown in FIG. 4, but the target wheel cylinder for the non-regenerative wheel (rear wheel) in the method for calculating the target wheel cylinder pressure in step S4. Only the pressure calculation method is different from the first embodiment.
  • 16 and 17 are setting examples of the target wheel cylinder pressure of the non-regenerative wheel (rear wheel) in the third embodiment.
  • FIG. 16 is a setting map of the target wheel cylinder pressure Pw0 for the non-regenerative wheel (rear wheel) according to the master cylinder pressure Pm0 in the third embodiment.
  • the target wheel cylinder pressure Pw2 for the non-regenerative wheel is proportional to the master cylinder pressure Pm0.
  • the upper limit is set, but the value is smaller than the target wheel cylinder pressure Pw0 of the regenerative wheel (for example, about 1/2).
  • FIG. 17 is a setting map of the target wheel cylinder pressure Pw0 ′ of the non-regenerative wheel (rear wheel) according to the brake pedal stroke Sp0 in the third embodiment, and the target wheel cylinder pressure Pw2 ′ of the non-regenerative wheel is the brake pedal stroke Sp0.
  • FIG. 18 is a time chart illustrating the operation of brake fluid pressure control for non-regenerative wheels (rear wheels) when the driver depresses the brake pedal and maintains a certain stroke during regenerative cooperative control in the third embodiment.
  • brake fluid pressure control is started and the gate-in valve 29 is turned on.
  • the gate-out valve 13 is set to an intermediate opening, the motor M is turned on and the pump P is operated.
  • the brake fluid flowing out of the chamber 28d and stored in the reservoir 23 is sucked and pressurized to increase the pressure of the wheel cylinder (step S8).
  • the brake fluid that has flowed into the fluid pressure control unit HU from the master cylinder M / C is stored in the chamber 28c on the primary side of the stroke simulator 28, and a pedal stroke is ensured. Further, a good pedal reaction force characteristic can be obtained by the urging force of the coil spring 28e.
  • step S9 the driver kept the brake pedal BP stroke constant, so the gate-out valve 13 is turned on and closed, the motor M is turned off and the pump P is deactivated to maintain the wheel cylinder pressure (step) S9).
  • step S10 since the driver has started to depress the brake pedal BP, the gate-out valve 13 is gradually opened (step S10).
  • the brake fluid in the wheel cylinder W / C is returned to the master cylinder M / C, and the brake fluid stored in the primary chamber 28c of the stroke simulator 28 passes through the check valve 24 to the stroke simulator. 28 is returned to the secondary chamber 28d.
  • the gate-in valve 29 and the gate-out valve 13 are turned off, and the brake fluid pressure control is finished.
  • FIG. 19 shows the operation of brake fluid pressure control of the non-regenerative wheel (rear wheel) when the driver depresses the brake pedal during the regenerative cooperative control to maintain a constant stroke and then depresses the brake pedal in the third embodiment. It is a time chart which shows. In addition, since it is the same as Example 1 shown in FIG. 7 about a regeneration wheel (front wheel), description is abbreviate
  • the gate-out valve 13 is set to an intermediate opening, the motor M is turned on, the pump P is operated, and the flow is discharged from the chamber 28d on the secondary side of the stroke simulator 28. Then, the brake fluid stored in the reservoir 23 is sucked and pressurized to increase the pressure of the wheel cylinder (step S8).
  • the gate cylinder 13 is maintained by turning on and closing the gate-out valve 13 and turning off the motor M to deactivate the pump P (step S23). S9).
  • the period from time t24 to t25 performs the same operation as the period from time t12 to t13 in FIG.
  • the brake control device has the same operational effects as the first embodiment. Furthermore, in Example 3, the target wheel cylinder pressure of the non-regenerative wheel (rear wheel) corresponding to the master cylinder pressure or the brake pedal stroke is set smaller than the target wheel cylinder pressure of the regenerative wheel (front wheel). In other words, a larger regenerative braking force is generated on the regenerative wheel side by making the friction braking force of the non-regenerative wheel (rear wheel) smaller than the friction braking force of the regenerative wheel (front wheel) with respect to the braking force required by the driver. Energy recovery efficiency can be increased.
  • the hydraulic pressure adjusting unit sucks in brake fluid flowing out of the secondary chamber, and supplies the sucked brake fluid to the wheel cylinder;
  • a reservoir that is provided between the suction side of the pump and the secondary chamber and temporarily stores brake fluid that has flowed out of the secondary chamber;
  • a brake control device comprising: Therefore, since the brake fluid flowing out from the secondary chamber can be temporarily stored in the reservoir, the wheel cylinder pressure can be adjusted without affecting the amount of brake fluid in the primary chamber and the master cylinder pressure.
  • a stroke simulator connection circuit for connecting the master cylinder and the primary chamber;
  • a gate-in valve provided in the stroke simulator connection circuit for adjusting a connection state between the primary chamber and the master cylinder;
  • a brake control device comprising: Therefore, the operation and non-operation of the stroke simulator can be switched by opening and closing the gate-in valve.
  • the brake control device is for a vehicle including a regenerative braking device that generates an electrical braking force for a wheel including the wheel cylinder, A brake operation amount detector for detecting an operation amount of the brake pedal; A control unit for calculating a braking force to be generated by the pump and the regenerative braking device so that a braking force corresponding to the detected brake operation amount is generated; With The brake fluid corresponding to the brake operation amount corresponding to the braking force generated by the calculated regenerative braking device flows into the primary chamber, and the brake fluid flowing out from the secondary chamber enters the reservoir. A brake control device that is stored.
  • the regenerative cooperative control that secures the braking force required for the vehicle with the braking force required for the vehicle by combining the regenerative braking force and the frictional braking force can be realized, and the energy recovery efficiency can be improved.
  • the pump sucks the brake fluid stored in the reservoir and adjusts the hydraulic pressure of the wheel cylinder when the braking force by the regenerative braking device calculated by the control unit decreases. Brake control device. Therefore, when the regenerative braking force decreases, the braking force necessary for the vehicle can be ensured by switching from the regenerative braking force to the friction braking force.
  • a first space provided in a circuit connecting the master cylinder and the wheel cylinder, in which brake fluid is stored and in which brake fluid that has flowed out of the master cylinder by a driver's brake pedal operation can flow;
  • the space is partitioned into a primary side chamber into which the brake fluid flows and a secondary side chamber, and the volume of the primary side chamber is expanded by the inflow brake fluid, while the volume of the secondary side chamber is increased.
  • a stroke simulator having a contracting piston, and a coil spring that urges the piston toward the primary chamber.
  • a brake control device comprising: Therefore, even when the pressure of the wheel cylinder is increased while the brake fluid is stored in the primary chamber, the amount of brake fluid in the primary chamber that generates the pedal reaction force is maintained. Fluctuations in pedaling force when the brake pedal is increased can be suppressed, and a good pedal feel can be secured. Further, since the brake fluid stored in the reservoir can be pumped up and supplied to the wheel cylinder, a desired wheel cylinder pressure can be obtained.
  • a gate-in valve provided on the circuit for adjusting a connection state between the primary chamber and the master cylinder; A reservoir connection circuit that branches from between the gate-in valve and the master cylinder on the circuit and connects to the reservoir;
  • a brake control device comprising: Therefore, the operation and non-operation of the stroke simulator can be switched by opening and closing the gate-in valve.
  • the stroke simulator is deactivated, the brake fluid flowing out from the master cylinder can be supplied to the wheel cylinder at a desired boost ratio by increasing the pump pressure.
  • the brake control device is for a vehicle including a regenerative braking device that generates an electrical braking force for a wheel including the wheel cylinder, A brake operation amount detector for detecting an operation amount of the brake pedal; A control unit for calculating a braking force to be generated by the pump and the regenerative braking device so that a braking force corresponding to the detected brake operation amount is generated; With The brake fluid corresponding to the brake operation amount corresponding to the braking force generated by the calculated regenerative braking device flows into the primary chamber, and the brake fluid flowing out from the secondary chamber enters the reservoir. A brake control device that is stored.
  • the regenerative cooperative control that secures the braking force required for the vehicle with the braking force required for the vehicle by combining the regenerative braking force and the frictional braking force can be realized, and the energy recovery efficiency can be improved.
  • the pump and the gate-out valve suck in the brake fluid stored in the reservoir and adjust the hydraulic pressure of the wheel cylinder when the braking force by the regenerative braking device calculated by the control unit decreases.
  • a brake control device Therefore, when the regenerative braking force decreases, the braking force necessary for the vehicle can be ensured by switching from the regenerative braking force to the friction braking force.
  • a brake control device wherein each of a first piping system including a left front wheel and a right rear wheel and a second piping system including a right front wheel and a left rear wheel of the vehicle includes the circuit. Therefore, in both systems of the X piping, it is possible to suppress fluctuations in the pedal effort when the driver steps on the brake after increasing the pressure of the wheel cylinder while the brake fluid is stored in the stroke simulator.
  • a brake control device wherein each of a first piping system including a left front wheel and a right front wheel and a second piping system including a right rear wheel and a left rear wheel of the vehicle includes the circuit. Therefore, in both systems of the H piping, it is possible to suppress fluctuations in the pedal effort when the driver steps on the brake after increasing the pressure of the wheel cylinder while the brake fluid is stored in the stroke simulator.
  • a primary chamber and a secondary chamber, and a piston for reducing the volume of the secondary chamber while expanding the volume of the primary chamber by the inflow brake fluid; and the piston A coil spring that biases the chamber toward the primary side, and a stroke simulator, A gate-in valve provided between the stroke simulator and the master cylinder;
  • the reservoir temporarily stores the brake fluid that has flowed out of the secondary chamber by reducing the volume of the secondary chamber according to the brake operation amount,
  • the pump wherein the pump sucks in brake fluid stored in the reservoir when the regenerative braking device is operated, and discharges the brake fluid to the first brake circuit. Therefore, even when the driver increases the brake pedal after switching the regenerative braking force to the friction braking force, the amount of brake fluid in the primary side that generates the pedal reaction force is maintained. Variation can be suppressed, and a good
  • the control unit includes a hydraulic pressure control unit that operates the gate-out valve, the inlet valve, the outlet valve, and the pump according to a regenerative state of the regenerative braking device to control a brake hydraulic pressure.
  • Brake control device Therefore, the friction braking force can be controlled according to the regenerative state of the regenerative braking device so that a braking force corresponding to the amount of brake operation is generated while ensuring a good pedal feel.
  • BP brake pedal FL Left front wheel FR Right front wheel HU hydraulic pressure control unit (hydraulic pressure adjustment unit) M / C master cylinder RL left rear wheel RR right rear wheel W / C wheel cylinder 28 Stroke simulator 28a 1st space 28b Piston (movable member) 28c Primary room 28d Secondary room 28e Coil spring (biasing means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

 内部にブレーキ液が貯留され、ドライバのブレーキペダル操作によりマスタシリンダから流出したブレーキ液が流入可能な第1空間と、第1空間をブレーキ液が流入する一次側の室と二次側の室とに区画し、流入したブレーキ液によって一次側の室の容積を拡大する一方、二次側の室の容積を縮小するピストンと、ピストンに対して一次側の室への付勢力を付与するコイルスプリングと、を備えたストロークシミュレータと、二次側の室の容積が縮小することで二次側の室から流出したブレーキ液を用いて車輪に設けられたホイルシリンダの液圧を調整する液圧制御ユニットと、を備える。

Description

ブレーキ制御装置
 本発明は、ブレーキ制御装置に関する。
 従来のブレーキ制御装置では、マスタシリンダとポンプの吸入側とを接続する回路上に、マスタシリンダから流出したブレーキ液を貯留するストロークシミュレータを設けている。上記説明の技術に関係する一例は、特許文献1に記載されている。
 上述の従来装置において、回生制動力から摩擦制動力へのすり替え後のブレーキペダル踏み増し時におけるペダル踏力の変動を抑制して欲しいとのニーズがある。
特開2010-47201号公報
 本発明の目的は、回生制動力から摩擦制動力へのすり替え後のブレーキペダル踏み増し時におけるペダル踏力の変動を抑制できるブレーキ制御装置を提供することにある。
 本発明のブレーキ制御装置では、マスタシリンダから流出したブレーキ液をストロークシミュレータの一次側の室に流入させてペダル踏力を生成しつつ、一次側の室の容積拡大に伴う二次側の室の容積縮小によって二次側の室から流出したブレーキ液を用いてホイルシリンダ圧を調整する。
 よって、本発明のブレーキ制御装置では、回生制動力から摩擦制動力へのすり替え後のブレーキペダル踏み増し時におけるペダル踏力の変動を抑制できる。
実施例1のブレーキ制御装置を適用した電動車両の制駆動系を示すシステム構成図 実施例1のブレーキ制御装置の回路構成図である。 ストロークシミュレータ28の構成を示す模式図である。 実施例1のブレーキコントロールユニットBCUで実行されるブレーキ液圧制御処理の流れを示すフローチャートである。 回生協調制御を実施しないときのマスタシリンダ圧Pm0に応じた目標ホイルシリンダ圧Pw0の設定マップである。 回生協調制御を実施しないときのブレーキペダルストロークSp0に応じた目標ホイルシリンダ圧Pw0'の設定マップである。 実施例1において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持したときのブレーキ液圧制御の動作を示すタイムチャートである。 実施例1において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持し、その後ブレーキペダルを踏み増ししたときのブレーキ液圧制御の動作を示すタイムチャートである。 従来装置において回生制動力から摩擦制動力へのすり替え後にドライバがブレーキペダルを踏み増ししたときに発生するブレーキペダルの踏力の急減を示す説明図である。 実施例1において回生制動力から摩擦制動力へのすり替え後にドライバがブレーキペダルを踏み増ししたときのペダル踏力変動抑制作用を示す説明図である。 実施例2のブレーキ制御装置の回路構成図である。 実施例2のブレーキコントロールユニットBCUで実行される非回生輪(後輪)のブレーキ液圧制御処理の流れを示すフローチャートである。 実施例2において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持したときの非回生輪(後輪)のブレーキ液圧制御の動作を示すタイムチャートである。 実施例2において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持し、その後ブレーキペダルを踏み増ししたときの非回生輪(後輪)のブレーキ液圧制御の動作を示すタイムチャートである。 実施例3のブレーキ制御装置の回路構成図である。 実施例3におけるマスタシリンダ圧Pm0に応じた非回生輪(後輪)の目標ホイルシリンダ圧Pw0の設定マップである。 実施例3におけるブレーキペダルストロークSp0に応じた非回生輪(後輪)の目標ホイルシリンダ圧Pw0'の設定マップである。 実施例3において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持したときの非回生輪(後輪)のブレーキ液圧制御の動作を示すタイムチャートである。 実施例3において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持し、その後ブレーキペダルを踏み増ししたときの非回生輪(後輪)のブレーキ液圧制御の動作を示すタイムチャートである。
 以下、本発明のブレーキ制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。
 なお、以下に説明する実施例は、多くのニーズに適応できるように検討されており、回生制動力から摩擦制動力へのすり替え後のブレーキペダル踏み増し時におけるペダル踏力の変動を抑制できることは検討されたニーズの1つである。
 〔実施例1〕
 まず、構成を説明する。
 図1は実施例1のブレーキ制御装置を適用した電動車両の制駆動系を示すシステム構成図、図2は実施例1のブレーキ制御装置の回路構成図である。
 [システム構成]
 液圧制御ユニット(液圧調整部)HUは、ブレーキコントロールユニット(液圧制御部)BCUからの摩擦制動力指令に基づいて、左前輪FLのホイルシリンダW/C(FL)、右後輪RRのホイルシリンダW/C(RR)、右前輪FRのホイルシリンダW/C(FR)、左後輪RLのホイルシリンダW/C(RL)の各液圧を増減または保持する。
 モータジェネレータMGは、三相交流モータであり、モータコントロールユニットMCUからの指令に基づいて力行または回生運転し、左右前輪FL,FRに駆動力または回生制動力を付与する。
 インバータINVは、モータコントロールユニットMCUからの駆動指令に基づいて、バッテリBATTの直流電力を交流電力に変換しモータジェネレータMGに供給することで、モータジェネレータMGを力行運転する。一方、モータコントロールユニットMCUからの回生指令に基づいて、モータジェネレータMGで発生する交流電力を直流電力に変換してバッテリBATTを充電することで、モータジェネレータMGを回生運転する。
 モータコントロールユニットMCUは、駆動コントローラ1からの駆動力指令に基づいて、インバータINVに駆動指令を出力する。また、ブレーキコントロールユニットBCUからの回生制動力指令に基づいて、インバータINVに回生指令を出力する。
 モータコントロールユニットMCUは、モータジェネレータMGによる駆動力または回生制動力の出力制御の状況と、現時点で発生可能な最大回生制動力を、通信線2を介してブレーキコントロールユニットBCU、駆動コントローラ1へと送る。ここで、「発生可能な最大回生制動力」は、例えば、バッテリBATTの端子間電圧と電流値とから推定されるバッテリSOCや、車輪速センサ3により算出(推定)される車体速(車速)から算出する。また、旋回時には、車両のステア特性も加味して算出する。
 すなわち、バッテリSOCが上限値または上限値に近い状態にある満充電時には、バッテリ保護の観点から過充電防止を図る必要がある。また、制動により車速が減少した場合、モータジェネレータMGで発生可能な最大回生制動力は減少する。さらに、高速走行時に回生制動を行うと、インバータINVが高負荷となるため、高速走行時にも最大回生制動力を制限する。
 モータジェネレータMG、インバータINV、バッテリBATTおよびモータコントロールユニットMCUより、車輪(左右前輪FL,FR)に対して回生制動力を発生させる回生制動装置が構成される。
 駆動コントローラ1は、直接または通信線2を介して、アクセル開度センサ4からのアクセル開度、車輪速センサ3により算出される車速(車体速)、バッテリSOC等が入力される。
 駆動コントローラ1は、各センサからの情報に基づき、モータコントロールユニットMCUへの駆動力指令によるモータジェネレータMGの動作制御を行う。
 ブレーキコントロールユニットBCUは、直接または通信線2を介して、第1圧力センサ5からのブレーキ液圧、ブレーキペダルストロークセンサ(ブレーキ操作状態検出部)6からのブレーキペダルストローク量、操舵角センサ7からのハンドル操舵角、車輪速センサ3からの各車輪速、ヨーレートセンサ8からのヨーレート、後述する第2圧力センサ9からのブレーキ液圧、バッテリSOC等が入力される。第1圧力センサ5は、後述する管路11の管路27との接続点(接続位置)よりもマスタシリンダM/C寄りのブレーキ液圧、すなわちマスタシリンダ圧を検出する。第2圧力センサ9は、後述する管路12、すなわちポンプPの吐出圧を検出する。
 ブレーキコントロールユニットBCUは、上記各センサ等からの情報に基づいて車両に必要な制動力(全ての輪)を算出すると共に、必要な制動力を回生制動力と摩擦制動力とに配分し、ブレーキコントロールユニットBCUへの摩擦制動力指令による液圧制御ユニットHUの動作制御と、モータコントロールユニットMCUへの回生制動力指令によるモータジェネレータMGの動作制御とを行う。
 ここで、実施例1では、回生協調制御として、摩擦制動力よりも回生制動力を優先し、必要な制動力を回生分で賄える限りは液圧分を用いることなく、最大限(最大回生制動力)まで回生分の領域を拡大している。これにより、特に加減速を繰り返す走行パターンにおいて、エネルギ回収効率が高く、より低い車速まで回生制動によるエネルギの回収を実現している。なお、ブレーキコントロールユニットBCUは、回生制動中、車速の低下や上昇等に伴い回生制動力が制限される場合には、回生制動力を減少させ、その分だけ摩擦制動力を増加させて車両に必要な制動力を確保する。以下、回生制動力を減少させて摩擦制動力を増加させることを回生制動力から摩擦制動力へのすり替えといい、逆に、摩擦制動力を減少させて回生制動力を増加させることを摩擦制動力から回生制動力へのすり替えという。
 ブレーキコントロールユニットBCUは、ポンプPの吐出圧を用いてホイルシリンダ圧を増減または保持する制御を行う。これにより、ドライバのブレーキ踏力を倍力する倍力制御の他、アンチロックブレーキ制御(以下、ABS制御という)を始めとして各種車両制御で要求される制動力に基づき自動的にホイルシリンダ圧を増減圧する自動制動制御を実行可能である。
 ここで、ABS制御とは、ドライバのブレーキ操作時に車輪がロック傾向になったことを検知すると、当該車輪に対し、ロックを防止しつつ最大の制動力を発生させるためにホイルシリンダ圧の減圧・保持・増圧を繰り返す制御である。また、上記自動制動制御には、車両旋回時にオーバーステア傾向やアンダーステア傾向が強くなったことを検出すると、所定の制御対象輪のホイルシリンダ圧を制御して車両挙動安定化を図る車両挙動安定制御に加え、ドライバのブレーキ操作時に実際にマスタシリンダM/Cで発生する圧力よりも高い圧力をホイルシリンダW/Cで発生させるブレーキアシスト制御、オートクルーズコントロールにより先行車との相対関係に応じて自動的に制動力を発生させる制御が含まれる。
 [ブレーキ回路構成]
 実施例1の液圧制御ユニットHUは、P系統(第1の配管系)とS系統(第2の配管系)との2系統からなる、X配管と呼ばれる配管構造を有している。なお、図2に記載された各部位の符号の末尾に付けられたP,SはP系統、S系統を示し、FL,RR,FR,RLは左前輪、右後輪、右前輪、左後輪に対応することを示す。以下の説明では、P,S系統または各輪を区別しないとき、P,SまたはFL,RR,FR,RLの記載を省略する。
 実施例1の液圧制御ユニットHUは、クローズド油圧回路を用いている。ここで、クローズド油圧回路とは、ホイルシリンダW/Cへ供給されたブレーキ液を、マスタシリンダM/Cを介してリザーバタンクRSVへと戻す油圧回路をいう。
 ブレーキペダルBPは、インプットロッドIRを介してマスタシリンダM/Cに接続されている。
 P系統には、左前輪のホイルシリンダW/C(FL)、右後輪のホイルシリンダW/C(RR)が接続され、S系統には、右前輪のホイルシリンダW/C(FR)、左後輪のホイルシリンダW/C(RL)が接続される。また、P系統、S系統には、ポンプPP、ポンプPSが設けられている。ポンプPP、ポンプPSは、例えば、プランジャポンプまたはギヤポンプであって、1つのモータMにより駆動され、吸入部10aから吸入したブレーキ液を加圧して吐出部10bへ吐出する。
 マスタシリンダM/CとポンプPの吐出部10bとは、管路11と管路12により接続される。管路11には、常開型(非通電時に全開し、通電時に閉方向へ作動する)の比例電磁弁であるゲートアウトバルブ13が設けられている。管路11には、ゲートアウトバルブ13を迂回する管路14が設けられている。管路14上には、チェックバルブ15が設けられている。チェックバルブ15は、マスタシリンダM/CからホイルシリンダW/Cへ向かうブレーキ液の流れを許容し、反対方向の流れを禁止する。
 管路12は、後述する第1ブレーキ回路(管路11,16)とポンプPの吐出部10bとを接続する第2ブレーキ回路である。管路12上には、チェックバルブ17が設けられている。チェックバルブ17は、ポンプPから第1ブレーキ回路へ向かう方向へのブレーキ液の流れを許容し、反対方向の流れを禁止する。
 ポンプPの吐出部10bとホイルシリンダW/Cとは、管路16により接続される。管路16上には、各ホイルシリンダW/Cに対応する常開型の電磁弁であるインレットバルブ18が設けられている。
 管路16上には、インレットバルブ18を迂回する管路19が設けられ、この管路19には、チェックバルブ20が設けられている。このチェックバルブ20は、ホイルシリンダW/CからポンプPへ向かう方向へのブレーキ液の流れを許容し、反対方向の流れを禁止する。管路16は、管路11と管路12との接続点で接続され、この接続点には、第2圧力センサ9が設けられている。
 管路11と管路16とにより、ドライバのブレーキ操作によってブレーキ液圧を発生するマスタシリンダM/Cとブレーキ液圧が作用するように構成されたホイルシリンダW/Cとを接続する第1ブレーキ回路が構成される。
 管路11上であってゲートアウトバルブ13よりもマスタシリンダ側の位置とポンプPの吸入部10aとは管路21,22により接続される。管路21と管路22との間には、リザーバ23が設けられている。リザーバ23は、圧力感応型のチェックバルブ24を備える。チェックバルブ24は、所定量のブレーキ液が貯留された場合、または、管路21内の圧力が所定圧を超える高圧となった場合、リザーバ23内へのブレーキ液の流入を禁止することで、ポンプPの吸入部10aに高圧が印加されるのを防止する。なお、チェックバルブ24は、ポンプPが作動して管路22内または後述する管路25内の圧力が低くなった場合には、管路21内の圧力にかかわらず開弁し、リザーバ23内へのブレーキ液の流入を許容する。管路21と管路22とにより、第1ブレーキ回路上であってゲートアウトバルブ13よりもマスタシリンダ側の位置とポンプPの吸入部10aとを接続する第3ブレーキ回路が構成される。
 管路16上であってインレットバルブ18よりもホイルシリンダ側の位置とリザーバ23とは管路25により接続されている。管路25と管路22とにより第1ブレーキ回路上であってインレットバルブ18よりもホイルシリンダ側の位置とポンプPの吸入側10aとを接続する第4ブレーキ回路が構成される。
 管路25上には、常閉型(非通電時に全閉し、通電時に開方向へ作動する)の比例電磁弁であるアウトレットバルブ26が設けられている。
 管路25上であってアウトレットバルブ26よりもリザーバ側の位置と管路21とは管路27により接続されている。管路27は、第4ブレーキ回路とマスタシリンダM/Cとを接続する第5ブレーキ回路である。
 [ストロークシミュレータ]
 管路27上には、ストロークシミュレータ28設けられている。また、ストロークシミュレータ28よりもマスタシリンダ側の位置には、常閉型の電磁弁であるゲートインバルブ29が設けられている。
 図3は、ストロークシミュレータ28の構成を示す模式図であり、ストロークシミュレータ28の内部には、ブレーキ液が貯留されドライバのブレーキペダル操作によりマスタシリンダM/Cから流出したブレーキ液が流入可能な第1空間28aが設けられている。第1空間28aは、ストロークシミュレータ28の内部を軸方向移動可能なピストン(可動部材)28bによって一次側の室28cと二次側の室28dとに区画されている。一次側の室28cには、マスタシリンダM/Cから流出したブレーキ液が流入する。ピストン28bは、コイルスプリング(付勢手段)28eにより一次側の室28c側へ付勢されている。コイルスプリング28eの反力は、ドライバのブレーキペダルBPの踏力に応じて良好なブレーキフィールが得られるような反力となるように設定されている。ここで、良好な反力特性は、例えば、ブレーキペダルストローク量が大きいときはストローク増に対する反力の増加率が比較的大きいというように非線形であることが望ましい。
 ストロークシミュレータ28は、ブレーキ液が一次側の室28cに流入することにより一次側の室28cの容積が拡大し、それに応じて二次側の室28dの容積が縮小する。このとき、二次側の室28dから流出したブレーキ液はリザーバ23内に貯留される。
 管路27のストロークシミュレータ28よりも上流側(マスタシリンダ側)の部分は、マスタシリンダM/Cと一次側の室28cとを接続するストロークシミュレータ接続回路30である。
また、管路27のストロークシミュレータ28よりも下流側(リザーバ側)の部分と管路22とによりポンプPの吸入部10aと二次側の室28dとを接続するポンプ接続回路31が構成される。
 [ブレーキ液圧制御処理]
 図4は、実施例1のブレーキコントロールユニットBCUで実行されるブレーキ液圧制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。
 ステップS1では、ゲートインバルブ29、ゲートアウトバルブ13、インレットバルブ18、アウトレットバルブ26、モータMをすべてOFFする。
 ステップS2では、ブレーキ液圧制御を行うか否かを判定し、YESの場合はステップS3へ進み、NOの場合はリターンへ移行する。ここでは、ドライバがブレーキペダルBPの操作を開始したとき、ブレーキ液圧制御を行うと判定する。
 ステップS3では、ゲートインバルブ29をONする。
 ステップS4では、マスタシリンダ圧に基づいて目標ホイルシリンダ圧を算出する。図5,6は回生協調制御を実施しないときの目標ホイルシリンダ圧の設定例である。図5はマスタシリンダ圧Pm0に応じた目標ホイルシリンダ圧Pw0の設定マップであり、目標ホイルシリンダ圧Pw0は、マスタシリンダ圧Pm0に比例した線形特性とする。なお、目標ホイルシリンダ圧Pw0には上限を設ける。図6はブレーキペダルストロークSp0に応じた目標ホイルシリンダ圧Pw0'の設定マップであり、目標ホイルシリンダ圧Pw0'は、ブレーキペダルストロークSp0が大きくなるほど、ブレーキペダルストロークSp0に対する増加の割合が小さくなる非線形特性とする。なお、目標ホイルシリンダ圧Pw0'には上限を設ける。
 回生協調制御を実施するときの目標ホイルシリンダ圧は、マスタシリンダ圧Pm0から求める場合はPw0から回生制動力相当のホイルシリンダ圧を減じた値とし、ブレーキペダルストロークSp0から求める場合はPw0'から回生制動力相当のホイルシリンダ圧を減じた値とする。
 ステップS5では、ポンプ増圧が必要であるか否かを判定し、YESの場合はステップS8へ進み、NOの場合はステップS6へ進む。
 ステップS6では、ホイルシリンダ圧保持が必要であるか否かを判定し、YESの場合はステップS9へ進み、NOの場合はステップS7へ進む。
 ステップS7では、マスタシリンダ側への減圧が必要であるか否かを判定し、YESの場合はステップS10へ進み、NOの場合はステップS11へ進む。
 ステップS8では、ゲートアウトバルブ13をONして中間開度とし、モータMをONしてポンプPを作動することで、マスタシリンダ圧を増圧する。
 ステップS9では、ゲートアウトバルブ13をONして閉じ、モータMをOFFしてポンプPを非作動とすることで、ホイルシリンダ圧を保持する。
 ステップS10では、ゲートアウトバルブ13をONして中間開度とし、モータMをOFFしてポンプPを非作動とすることで、ブレーキ液をマスタシリンダ側へ戻す。
 ステップS11では、ゲートアウトバルブ13をONして閉じ、アウトレットバルブ26をONして開き、モータMをOFFしてポンプPを非作動とすることで、ホイルシリンダW/Cからリザーバ23へブレーキ液の一部または全部を逃がす。
 ステップS12では、ホイルシリンダ圧が目標ホイルシリンダ圧であるか否かを判定し、YESの場合はステップS13へ進み、NOの場合はステップS5へ進む。
 ステップS13では、ブレーキ液圧制御を終了するか否かを判定し、YESの場合はステップS14へ進み、NOの場合はステップS4へ進む。ここでは、ドライバがブレーキペダルBPの操作を終了したとき、ブレーキ液圧制御を終了すると判定する。
 ステップS14では、ゲートインバルブ29、ゲートアウトバルブ13、インレットバルブ18、アウトレットバルブ26、モータMをすべてOFFする。
 次に、作用を説明する。
 [ブレーキ液圧制御作用]
 図7は、実施例1において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持したときのブレーキ液圧制御の動作を示すタイムチャートである。
 時点t10では、ドライバがブレーキペダルBPの踏み込みを開始したため、ブレーキ液圧制御を開始し、ゲートインバルブ29をONする。マスタシリンダ圧=目標ホイルシリンダ圧であり、ポンプ増圧は不要であるため、ゲートアウトバルブ13をONして閉じる(ステップS11)。これにより、マスタシリンダM/Cから液圧制御ユニットHU内に流入したブレーキ液は、ストロークシミュレータ28の一次側の室28cに貯留され、ペダルストロークが確保される。また、コイルスプリング28eの付勢力によって良好なペダル反力特性が得られる。
このとき、ストロークシミュレータ28では、二次側の室28dに貯留されていたブレーキ液が二次側の室28dから流出してリザーバ23に貯留される。
 時点t11では、車速の低下により回生制動力が減少を開始し、摩擦制動力を立ち上げるためにポンプ増圧が必要となるため、ゲートアウトバルブ13を中間開度とし、モータMをONしてポンプPを作動し、リザーバ23に貯留されたブレーキ液を吸入、加圧してホイルシリンダを増圧する(ステップS8)。このとき、ストロークシミュレータ28の一次側の室28cに貯留されたブレーキ液量は変化しない。
 時点t12では、回生制動力がゼロとなり、回生制動力から摩擦制動力へのすり替えが終了したため、ゲートアウトバルブ13をONして閉じ、モータMをOFFしてポンプPを非作動とすることでホイルシリンダ圧を保持する(ステップS9)。
 時点t13では、ドライバがブレーキペダルBPの踏み戻しを開始したため、ゲートアウトバルブ13を徐々に開く(ステップS10)。これにより、ホイルシリンダW/Cのブレーキ液はマスタシリンダM/Cへと戻されると共に、ストロークシミュレータ28の一次側の室28cに貯留されていたブレーキ液は、チェックバルブ24を経由してストロークシミュレータ28の二次側の室28dに戻される。
 時点t14では、ブレーキペダルBPの操作量がゼロとなったため、ゲートインバルブ29とゲートアウトバルブ13をOFFし、ブレーキ液圧制御を終了する。
 図8は、実施例1において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持し、その後ブレーキペダルを踏み増ししたときのブレーキ液圧制御の動作を示すタイムチャートである。
 時点t20からt22までの期間は、図7のt10からt12までの期間と同じ動作を行うため、説明を省略する。
 時点t22では、ドライバがブレーキペダルBPの踏み増しを開始したため、ポンプ増圧によりホイルシリンダの増圧を継続する(ステップS8)。このとき、踏み増しによりマスタシリンダM/Cから液圧制御ユニットHU内に流入したブレーキ液はストロークシミュレータ28の一次側の室28cに貯留される。
 時点t23では、ドライバがブレーキペダルBPのストロークを一定に維持したため、ゲートアウトバルブ13をONして閉じ、モータMをOFFしてポンプPを非作動とすることでホイルシリンダ圧を保持する(ステップS9)。
 時点t24からt25までの期間は、図7の時点t13からt14までの期間と同じ動作を行うため、説明を省略する。
 [ペダル踏力変動抑制作用]
 従来のブレーキ制御装置としては、マスタシリンダとポンプの吸入側とを接続する回路上に、回生制動力に対応するブレーキ操作量に応じたブレーキ液を貯留するストロークシミュレータを設けたものが知られている。この従来装置では、回生協調制御中に車両の速度減少等に伴い回生制動力から摩擦制動力へのすり替えを行う際、上記回路上でストロークシミュレータとマスタシリンダとの間に設けた電磁弁を閉じ、ストロークシミュレータに貯留されたブレーキ液をポンプで吸入、加圧することでホイルシリンダを増圧している。
 上記従来装置において、回生制動力から摩擦制動力へのすり替え後にドライバがブレーキペダルを踏み増しした場合、電磁弁を開いてマスタシリンダから流出したブレーキ液をストロークシミュレータに貯留する必要がある。このとき、ストロークシミュレータ内のブレーキ液量はポンプ増圧前に比べて減少しているため、電磁弁を開いたときにペダル踏力が急減するという問題があった。
 図9は、従来装置において回生制動力から摩擦制動力へのすり替え後にドライバがブレーキペダルを踏み増ししたときに発生するブレーキペダルの踏力の急減を示す説明図である。図において、Sp1とFp1はドライバがブレーキペダルを踏み込んでストロークシミュレータにより生成されたペダルストロークとペダル踏力であり、Sp2とFp2は回生制動力を摩擦制動力にすり替えるために、ストロークシミュレータ内のブレーキ液量が減少したときに相当するペダルストロークとペダル踏力である。
 ドライバがブレーキペダルをSp1まで踏み込むと、ストロークシミュレータとマスタシリンダとの間の電磁弁は閉じる。この状態で回生制動力から摩擦制動力へのすり替えが実施された後、ドライバのブレーキペダル踏み増しに応じて電磁弁を開いたとき、ストロークシミュレータ内のブレーキ液量は踏み増し前よりも減少している。ところが、ペダルストロークは踏み増し前の値Sp1のままであるため、ペダル踏力がFp1からFp2に急減し、ドライバに反力の抜け感を与えてしまう。
 これに対し、実施例1のブレーキ制御装置では、マスタシリンダM/Cから流出したブレーキ液をストロークシミュレータ28の一次側の室28cに流入させてペダル反力を生成しつつ、一次側の室28cの容積拡大に伴う二次側の室28dの容積縮小によって二次側の室28dから流出したブレーキ液をポンプPで吸入、加圧してホイルシリンダW/Cを増圧する。
 図10は、実施例1において回生制動力から摩擦制動力へのすり替え後にドライバがブレーキペダルを踏み増ししたときのペダル踏力変動抑制作用を示す説明図である。図において、Sp1'とFp1'はドライバがブレーキペダルを踏み込んでストロークシミュレータにより生成されたペダルストロークとペダル踏力であり、Sp2'とFp2'はドライバがブレーキペダルを踏み増ししたときのペダルストロークとペダル踏力である。
 ドライバがブレーキペダルをSp1'まで踏み込むと、ゲートインバルブ29が開くことでストロークシミュレータ28の一次側の室28cにマスタシリンダM/Cから流出したブレーキ液が貯留される。同時に、ストロークシミュレータ28の二次側の室28dに貯留されていたブレーキ液が二次側の室28dから流出してリザーバ23に貯留される。回生制動力から摩擦制動力へのすり替え時は、リザーバ23に貯留されたブレーキ液を用いてホイルシリンダW/Cを増圧するため、ストロークシミュレータ28の一次側の室28c内のブレーキ液量は維持される。この後、ドライバのブレーキペダルBPの踏み増し時にゲートインバルブ29を開いた場合、ペダルストロークがSp1'からSp2'へと増加するのに応じてペダル踏力がFp1'からFp2'へと増大し、ペダル踏力が急減することはない。すなわち、ペダル踏力は、ストロークシミュレータ28による特性(コイルスプリング28eのバネ力)のみによって決まるため、ペダル踏力の変動が抑えられ、ドライバに反力の抜け感を与えるのを抑制できる。
 次に、効果を説明する。
 実施例1のブレーキ制御装置にあっては、以下に列挙する効果を奏する。
 (1) 内部にブレーキ液が貯留され、ドライバのブレーキペダル操作によりマスタシリンダM/Cから流出したブレーキ液が流入可能な第1空間28aと、第1空間28aをブレーキ液が流入する一次側の室28cと二次側の室28dとに区画し、流入したブレーキ液によって一次側の室28cの容積を拡大する一方、二次側の室28dの容積を縮小するピストン28bと、ピストン28bに対して一次側の室28cへの付勢力を付与する付勢手段(コイルスプリング28e)と、を備えたストロークシミュレータ28と、二次側の室28dの容積が縮小することで二次側の室28dから流出したブレーキ液を用いて車輪FL,FR,RL,RRに設けられたホイルシリンダW/C(FL,FR,RL,RR)の液圧を調整する液圧制御ユニットHUと、を備えた。
 よって、回生制動力を摩擦制動力にすり替えた後、ドライバがブレーキペダルを踏み増しした場合であっても、ペダル反力を生成する一次側の室28c内のブレーキ液量は維持されるため、ペダル踏力の変動を抑制でき、良好なペダルフィールを確保できる。
 (2) 液圧制御ユニットHUは、二次側の室28dから流出したブレーキ液を吸入し、吸入したブレーキ液をホイルシリンダW/Cへ供給するポンプPを備えている。
 よって、二次側の室28dから流出したブレーキ液をポンプ増圧することで所望のホイルシリンダ圧が得られる。
 (3) マスタシリンダM/Cと一次側の室28cとを接続するストロークシミュレータ接続回路30と、ストロークシミュレータ接続回路30に設けられ一次側の室28cとマスタシリンダM/Cとの接続状態を調整するゲートインバルブ29と、を備えた。
 よって、ゲートインバルブ29の開閉によってストロークシミュレータ28の作動と非作動を切り替えることができる。
 (4) 液圧制御ユニットHUは、二次側の室28dから流出したブレーキ液を吸入し、吸入したブレーキ液をホイルシリンダW/Cへ供給するポンプPを備え、ポンプPの吸入部10aと二次側の室28dとを接続するポンプ接続回路31と、ポンプ接続回路31に設けられたリザーバ23と、を設け、ポンプPは、リザーバ23を介してブレーキ液を吸入する。
 よって、二次側の室28dから流出したブレーキ液を一時的にリザーバ23に貯留できるため、一次側の室28c内のブレーキ液量やマスタシリンダ圧に影響を及ぼすことなくホイルシリンダ圧を調整できる。
 (5) 付勢手段は、コイルスプリング28eであってコイルスプリング28eのバネ力によってブレーキペダル反力を創生する。
 よって、コイルスプリング28eを用いた簡素な構成で所望のペダル反力特性を実現できる。
 〔実施例2〕
 図11は、実施例2のブレーキ制御装置の回路構成図である。
 実施例2では、液圧制御ユニットHUの配管系統をいわゆるH配管系統としたものである。実施例2の液圧制御ユニットHUは、左右前輪FL,FRのグループからなるP系統(第1配管系統)と、左右後輪RL,RRのグループからなるS系統(第2配管系統)を有する。
 実施例2では、P系統にのみ管路27、ストロークシミュレータ28およびゲートインバルブ29を設けた点で実施例1と相違する。
 [ブレーキ液圧制御処理]
 図12は、実施例2のブレーキコントロールユニットBCUで実行される非回生輪(後輪)のブレーキ液圧制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、回生輪(前輪)のブレーキ液圧制御については図4に示した実施例1と同じであるため、説明を省略する。
 ステップS21では、ゲートアウトバルブ13、インレットバルブ18、アウトレットバルブ26、モータMをすべてOFFする。
 ステップS22では、ブレーキ液圧制御を行うか否かを判定し、YESの場合はステップS23へ進み、NOの場合はリターンへ移行する。
 ステップS23では、マスタシリンダ圧に基づいて目標ホイルシリンダ圧を算出する。目標ホイルシリンダ圧は、図4のステップS4におけるPw0、Pw0'相当とする。
 ステップS24では、ポンプ増圧が必要であるか否かを判定し、YESの場合はステップS27へ進み、NOの場合はステップS25へ進む。
 ステップS25では、ホイルシリンダ圧保持が必要であるか否かを判定し、YESの場合はステップS28へ進み、NOの場合はステップS26へ進む。
 ステップS26では、マスタシリンダ側への減圧が必要であるか否かを判定し、YESの場合はステップS29へ進み、NOの場合はステップS30へ進む。
 ステップS27では、ゲートアウトバルブ13をONして中間開度とし、モータMをONしてポンプPを作動することで、マスタシリンダ圧を増圧する。
 ステップS28では、ゲートアウトバルブ13をONして閉じ、モータMをOFFしてポンプPを非作動とすることで、ホイルシリンダ圧を保持する。
 ステップS29では、ゲートアウトバルブ13をONして中間開度とし、モータMをOFFしてポンプPを非作動とすることで、ブレーキ液をマスタシリンダ側へ戻す。
 ステップS30では、ゲートアウトバルブ13をONして閉じ、アウトレットバルブ26をONして開き、モータMをOFFしてポンプPを非作動とすることで、ホイルシリンダW/Cからリザーバ23へブレーキ液の一部または全部を逃がす。
 ステップS31では、ホイルシリンダ圧が目標ホイルシリンダ圧であるか否かを判定し、YESの場合はステップS32へ進み、NOの場合はステップS24へ進む。
 ステップS32では、ブレーキ液圧制御を終了するか否かを判定し、YESの場合はステップS33へ進み、NOの場合はステップS23へ進む。
 ステップS33では、ゲートアウトバルブ13、インレットバルブ18、アウトレットバルブ26、モータMをすべてOFFする。
 次に、作用を説明する。
 [ブレーキ液圧制御作用]
 図13は、実施例2において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持したときの非回生輪(後輪)のブレーキ液圧制御の動作を示すタイムチャートである。なお、回生輪(前輪)については図7に示した実施例1と同じであるため、説明を省略する。
 時点t10では、ドライバがブレーキペダルBPの踏み込みを開始したため、ブレーキ液圧制御を開始する。マスタシリンダ圧<目標ホイルシリンダ圧であり、ポンプ増圧が必要であるため、ゲートアウトバルブ13を中間開度とし、モータMをONしてポンプPを作動し、管路21を介してマスタシリンダM/Cからブレーキ液を吸入、加圧してホイルシリンダを増圧する(ステップS27)。
 時点t11では、ドライバがブレーキペダルBPのストロークを一定に維持したため、ゲートアウトバルブ13をONして閉じ、モータMをOFFしてポンプPを非作動とすることでホイルシリンダ圧を保持する(ステップS28)。
 時点t12では、ドライバがブレーキペダルBPの踏み戻しを開始したため、ゲートアウトバルブ13を徐々に開く(ステップS29)。これにより、ホイルシリンダW/Cのブレーキ液はマスタシリンダM/Cへと戻される。
 時点t13では、ブレーキペダルBPの操作量がゼロとなったため、ゲートアウトバルブ13をOFFし、ブレーキ液圧制御を終了する。
 図14は、実施例2において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持し、その後ブレーキペダルを踏み増ししたときの非回生輪(後輪)のブレーキ液圧制御の動作を示すタイムチャートである。なお、回生輪(前輪)については図8に示した実施例1と同じであるため、説明を省略する。
 時点t20からt22までの期間は、図13のt10からt12までの期間と同じ動作を行うため、説明を省略する。
 時点t22では、ドライバがブレーキペダルBPの踏み増しを開始したため、ゲートアウトバルブ13を中間開度とし、モータMをONしてポンプPを作動し、管路21を介してマスタシリンダM/Cからブレーキ液を吸入、加圧してホイルシリンダを増圧する(ステップS27)。
 時点t23では、ドライバがブレーキペダルBPのストロークを一定に維持したため、ゲートアウトバルブ13をONして閉じ、モータMをOFFしてポンプPを非作動とすることでホイルシリンダ圧を保持する(ステップS28)。
 時点t24からt25までの期間は、図13の時点t12からt13までの期間と同じ動作を行うため、説明を省略する。
 以上のように、実施例2のブレーキ制御装置にあっては、実施例1と同様の作用効果を奏する。
 さらに、実施例2では、H配管系統のP系統(前輪系統)にのみストロークシミュレータ28を設けたため、S系統(後輪系統)はブレーキ液圧制御として倍力制御のみを実施すればよい。このため、実施例1と比較して、電磁弁数の削減や制御の簡素化によるコストダウンを図ることができる。また、電磁弁数を削減できることでブレーキ液圧制御における消費電力を低減できる。
 〔実施例3〕
 図15は、実施例3のブレーキ制御装置の回路構成図である。
 実施例3では、液圧制御ユニットHUの配管系統をH配管系統とした点で実施例1と異なる。
 [ブレーキ液圧制御処理]
 実施例3のブレーキ液圧制御処理は、図4に示した実施例1とほぼ同じであるが、ステップS4における目標ホイルシリンダ圧の算出方法のうち、非回生輪(後輪)の目標ホイルシリンダ圧の算出方法のみ実施例1と相違する。
 図16,17は、実施例3における非回生輪(後輪)の目標ホイルシリンダ圧の設定例である。図16は実施例3におけるマスタシリンダ圧Pm0に応じた非回生輪(後輪)の目標ホイルシリンダ圧Pw0の設定マップであり、非回生輪の目標ホイルシリンダ圧Pw2は、マスタシリンダ圧Pm0に比例した線形特性とし、上限を設けるが、回生輪の目標ホイルシリンダ圧Pw0よりも小さな値(例えば、1/2程度)とする。図17は実施例3におけるブレーキペダルストロークSp0に応じた非回生輪(後輪)の目標ホイルシリンダ圧Pw0'の設定マップであり、非回生輪の目標ホイルシリンダ圧Pw2'は、ブレーキペダルストロークSp0が大きくなるほどブレーキペダルストロークSp0に対する増加の割合が小さくなる非線形特性とし、上限を設けるが、回生輪の目標ホイルシリンダ圧Pw0'よりも小さな値(例えば、1/2程度)とする。
 次に、作用を説明する。
 [ブレーキ液圧制御作用]
 図18は、実施例3において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持したときの非回生輪(後輪)のブレーキ液圧制御の動作を示すタイムチャートである。なお、回生輪(前輪)については図7に示した実施例1と同じであるため、説明を省略する。
 時点t10では、ドライバがブレーキペダルBPの踏み込みを開始したため、ブレーキ液圧制御を開始し、ゲートインバルブ29をONする。マスタシリンダ圧<目標ホイルシリンダ圧であり、ポンプ増圧が必要であるため、ゲートアウトバルブ13を中間開度とし、モータMをONしてポンプPを作動し、ストロークシミュレータ28の二次側の室28dから流出しリザーバ23に貯留されたブレーキ液を吸入、加圧してホイルシリンダを増圧する(ステップS8)。マスタシリンダM/Cから液圧制御ユニットHU内に流入したブレーキ液は、ストロークシミュレータ28の一次側の室28cに貯留され、ペダルストロークが確保される。また、コイルスプリング28eの付勢力によって良好なペダル反力特性が得られる。
 時点t11では、ドライバがブレーキペダルBPのストロークを一定に維持したため、ゲートアウトバルブ13をONして閉じ、モータMをOFFしてポンプPを非作動とすることでホイルシリンダ圧を保持する(ステップS9)。
 時点t12では、ドライバがブレーキペダルBPの踏み戻しを開始したため、ゲートアウトバルブ13を徐々に開く(ステップS10)。これにより、ホイルシリンダW/Cのブレーキ液はマスタシリンダM/Cへと戻されると共に、ストロークシミュレータ28の一次側の室28cに貯留されていたブレーキ液は、チェックバルブ24を経由してストロークシミュレータ28の二次側の室28dに戻される。
 時点t13では、ブレーキペダルBPの操作量がゼロとなったため、ゲートインバルブ29とゲートアウトバルブ13をOFFし、ブレーキ液圧制御を終了する。
 図19は、実施例3において、回生協調制御時にドライバがブレーキペダルを踏み込んで一定のストロークを維持し、その後ブレーキペダルを踏み増ししたときの非回生輪(後輪)のブレーキ液圧制御の動作を示すタイムチャートである。なお、回生輪(前輪)については図7に示した実施例1と同じであるため、説明を省略する。
 時点t20からt22までの期間は、図18のt10からt12までの期間と同じ動作を行うため、説明を省略する。
 時点t22では、ドライバがブレーキペダルBPの踏み増しを開始したため、ゲートアウトバルブ13を中間開度とし、モータMをONしてポンプPを作動し、ストロークシミュレータ28の二次側の室28dから流出しリザーバ23に貯留されたブレーキ液を吸入、加圧してホイルシリンダを増圧する(ステップS8)。
 時点t23では、ドライバがブレーキペダルBPのストロークを一定に維持したため、ゲートアウトバルブ13をONして閉じ、モータMをOFFしてポンプPを非作動とすることでホイルシリンダ圧を保持する(ステップS9)。
 時点t24からt25までの期間は、図18の時点t12からt13までの期間と同じ動作を行うため、説明を省略する。
 以上のように、実施例3のブレーキ制御装置にあっては、実施例1と同様の作用効果を奏する。
 さらに、実施例3では、マスタシリンダ圧またはブレーキペダルストロークに応じた非回生輪(後輪)の目標ホイルシリンダ圧を、回生輪(前輪)の目標ホイルシリンダ圧よりも小さく設定した。つまり、ドライバの要求する制動力に対し、非回生輪(後輪)の摩擦制動力を回生輪(前輪)の摩擦制動力よりも小さくすることで、回生輪側でより大きな回生制動力を発生させることができ、エネルギ回収効率を高めることができる。
 〔他の実施例〕
 以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
 以下に、実施例から把握される特許請求の範囲に記載した発明以外の技術的思想について説明する。
 (a) 請求項1に記載のブレーキ制御装置において、
 前記液圧調整部は、前記二次側の室から流出したブレーキ液を吸入し、吸入したブレーキ液を前記ホイルシリンダへ供給するポンプと、
 前記ポンプの吸入側と前記二次側の室との間に設けられ前記二次側の室から流出したブレーキ液を一時的に貯留するリザーバと、
 を備えたことを特徴とするブレーキ制御装置。
 よって、二次側の室から流出したブレーキ液を一時的にリザーバに貯留できるため、一次側の室内のブレーキ液量やマスタシリンダ圧に影響を及ぼすことなくホイルシリンダ圧を調整できる。
 (b) (a)に記載のブレーキ制御装置において、
 前記マスタシリンダと前記一次側の室とを接続するストロークシミュレータ接続回路と、
 前記ストロークシミュレータ接続回路に設けられ前記一次側の室と前記マスタシリンダとの接続状態を調整するゲートインバルブと、
 を備えたことを特徴とするブレーキ制御装置。
 よって、ゲートインバルブの開閉によってストロークシミュレータの作動と非作動を切り替えることができる。
 (c) (b)に記載のブレーキ制御装置において、
 前記ブレーキ制御装置は、前記ホイルシリンダを備えた車輪に対し電気的な制動力を発生させる回生制動装置を備えた車両用であって、
 前記ブレーキペダルの操作量を検出するブレーキ操作量検出部と、
 検出したブレーキ操作量に対応した制動力が発生するように前記ポンプと前記回生制動装置に発生させる制動力を算出するコントロールユニットと、
 を備え、
 前記一次側の室には前記算出された回生制動装置により発生する制動力に対応するブレーキ操作量に応じたブレーキ液が流入し、前記二次側の室から流出したブレーキ液は前記リザーバ内に貯留されていることを特徴とするブレーキ制御装置。
 よって、車両に必要な制動力を回生制動力と摩擦制動力とを合わせた制動力で車両に必要な制動力を確保する回生協調制御を実現でき、エネルギ回収効率を高めることができる。
 (d) (c)に記載のブレーキ制御装置において、
 前記ポンプは、前記コントロールユニットによって演算された回生制動装置による制動力が減少する場合に前記リザーバ内に貯留しているブレーキ液を吸入し、前記ホイルシリンダの液圧を調整することを特徴とするブレーキ制御装置。
 よって、回生制動力が減少する場合には、回生制動力から摩擦制動力へのすり替えにより車両に必要な制動力を確保できる。
 (e) マスタシリンダとホイルシリンダとを接続する回路中に設けられ、内部にブレーキ液が貯留されドライバのブレーキペダル操作によりマスタシリンダから流出したブレーキ液が流入可能な第1空間と、前記第1空間を前記ブレーキ液が流入する一次側の室と二次側の室とに区画し、前記流入したブレーキ液によって前記一次側の室の容積を拡大する一方、前記二次側の室の容積を縮小するピストンと、前記ピストンを前記一次側の室側へ付勢するコイルスプリングと、を有するストロークシミュレータと、
 前記二次側の室の容積が縮小することで前記二次側の室から流出したブレーキ液を一時的に貯留するリザーバと、
 前記リザーバと前記ホイルシリンダとの間に設けられ前記リザーバ内に貯留したブレーキ液を吸入し車輪に設けられたホイルシリンダに吐出するポンプと、
 を備えたことを特徴とするブレーキ制御装置。
 よって、一次側の室にブレーキ液が貯留された状態でホイルシリンダを増圧した場合であっても、ペダル反力を生成する一次側の室内のブレーキ液量は維持されるため、その後ドライバがブレーキペダルを踏み増ししたときのペダル踏力の変動を抑制でき、良好なペダルフィールを確保できる。また、リザーバに貯留されたブレーキ液をポンプ増圧してホイルシリンダに供給できるため、所望のホイルシリンダ圧が得られる。
 (f) (e)に記載のブレーキ制御装置において、
 前記回路上に設けられ、前記一次側の室と前記マスタシリンダとの接続状態を調整するゲートインバルブと、
 前記回路上の前記ゲートインバルブと前記マスタシリンダとの間から分岐し、前記リザーバに接続するリザーバ接続回路と、
 を備えたことを特徴とするブレーキ制御装置。
 よって、ゲートインバルブの開閉によってストロークシミュレータの作動と非作動を切り替えることができる。そして、ストロークシミュレータを非作動とする場合はマスタシリンダから流出したブレーキ液をポンプ増圧により所望の倍力比でホイルシリンダに供給できる。
 (g) (f)に記載のブレーキ制御装置において、
 前記マスタシリンダと前記リザーバ接続回路との接続位置と前記ポンプの吐出側とを接続する吐出回路と、
 前記吐出回路に設けられたゲートアウトバルブと、
 を備えたことを特徴とするブレーキ制御装置。
 よって、ゲートアウトバルブの開閉によりポンプから吐出されたブレーキ液の供給先をマスタシリンダ側とホイルシリンダ側とで切り替えることができる。
 (h) (g)に記載のブレーキ制御装置において、
 前記ブレーキ制御装置は、前記ホイルシリンダを備えた車輪に対し電気的な制動力を発生させる回生制動装置を備えた車両用であって、
 前記ブレーキペダルの操作量を検出するブレーキ操作量検出部と、
 検出したブレーキ操作量に対応した制動力が発生するように前記ポンプと前記回生制動装置に発生させる制動力を算出するコントロールユニットと、
 を備え、
 前記一次側の室には前記算出された回生制動装置により発生する制動力に対応するブレーキ操作量に応じたブレーキ液が流入し、前記二次側の室から流出したブレーキ液は前記リザーバ内に貯留されていることを特徴とするブレーキ制御装置。
 よって、車両に必要な制動力を回生制動力と摩擦制動力とを合わせた制動力で車両に必要な制動力を確保する回生協調制御を実現でき、エネルギ回収効率を高めることができる。
 (i) (h)に記載のブレーキ制御装置において、
 前記ポンプおよび前記ゲートアウトバルブは、前記コントロールユニットによって演算された回生制動装置による制動力が減少する場合に前記リザーバ内に貯留しているブレーキ液を吸入し、前記ホイルシリンダの液圧を調整することを特徴とするブレーキ制御装置。
 よって、回生制動力が減少する場合には、回生制動力から摩擦制動力へのすり替えにより車両に必要な制動力を確保できる。
 (j) (e)に記載のブレーキ制御装置において、
 車両の左前輪と右後輪とからなる第1の配管系と右前輪と左後輪とからなる第2の配管系のそれぞれが前記回路を備えていることを特徴とするブレーキ制御装置。
 よって、X配管の両系統において、ストロークシミュレータにブレーキ液が貯留された状態でホイルシリンダを増圧後、ドライバがブレーキを踏み増ししたときのペダル踏力の変動を抑制できる。
 (k) (e)に記載のブレーキ制御装置において、
 車両の左前輪と右前輪とからなる第1の配管系と右後輪と左後輪とからなる第2の配管系のそれぞれが前記回路を備えていることを特徴とするブレーキ制御装置。
 よって、H配管の両系統において、ストロークシミュレータにブレーキ液が貯留された状態でホイルシリンダを増圧後、ドライバがブレーキを踏み増ししたときのペダル踏力の変動を抑制できる。
 (l) 所望の車輪に対し電気的な制動力を発生させる回生制動装置を有する車両に用いられるブレーキ制御装置であって、
 ブレーキペダルの操作量を検出するブレーキ操作量検出部と、
 ブレーキ回路中に設けられたポンプと、
 ドライバのブレーキ操作によってブレーキ液圧を発生するマスタシリンダと前記ブレーキ液圧が作用するように構成されたホイルシリンダとを接続する第1ブレーキ回路と、
 前記第1ブレーキ回路と前記ポンプの吐出側とを接続する第2ブレーキ回路と、
 前記第1ブレーキ回路上であって前記第2ブレーキ回路との接続位置よりも前記マスタシリンダ側に設けられたゲートアウトバルブと、
 前記第1ブレーキ回路上であって前記ゲートアウトバルブよりも前記マスタシリンダ側の位置と前記ポンプの吸入側とを接続する第3ブレーキ回路と、
 前記第1ブレーキ回路上であって前記第2ブレーキ回路との接続位置よりも前記ホイルシリンダ側に設けられたインレットバルブと、
 前記第1ブレーキ回路上であって前記インレットバルブよりも前記ホイルシリンダ側の位置と前記ポンプの吸入側とを接続する第4ブレーキ回路と、
 前記第4ブレーキ回路上に設けられたアウトレットバルブと、
 前記第4ブレーキ回路と前記マスタシリンダとを接続する第5ブレーキ回路と、
 前記第4ブレーキ回路上であって前記アウトレットバルブよりも前記ポンプの吸入側に設けられると共に、前記第3ブレーキ回路に接続するリザーバと、
 前記第5ブレーキ回路上に設けられ、内部にブレーキ液が貯留されドライバのブレーキペダル操作によりマスタシリンダから流出したブレーキ液が流入可能な第1空間と、前記第1空間を前記ブレーキ液が流入する一次側の室と二次側の室とに区画し、前記流入したブレーキ液によって前記一次側の室の容積を拡大する一方、前記二次側の室の容積を縮小するピストンと、前記ピストンを前記一次側の室側へ付勢するコイルスプリングと、を有するストロークシミュレータと、
 前記ストロークシミュレータと前記マスタシリンダとの間に設けられたゲートインバルブと、
 検出したブレーキ操作量に対応した制動力が発生するように前記ポンプと前記回生制動装置に発生させる制動力を算出するコントロールユニットと、
 を備え、
 前記リザーバは、前記ブレーキ操作量に応じて前記二次側の室の容積が縮小することで前記二次側の室から流出したブレーキ液を一時的に貯留し、
 前記ポンプは、前記回生制動装置作動時に前記リザーバに貯留したブレーキ液を吸入し前記第1ブレーキ回路に吐出することを特徴とするブレーキ制御装置。
 よって、回生制動力を摩擦制動力にすり替えた後、ドライバがブレーキペダルを踏み増しした場合であっても、ペダル反力を生成する一次側の室内のブレーキ液量は維持されるため、ペダル踏力の変動を抑制でき、良好なペダルフィールを確保できる。
 (m) (l)に記載のブレーキ制御装置において、
 前記コイルスプリングのバネ力によってブレーキペダル反力を創生することを特徴とするブレーキ制御装置。
 よって、コイルスプリングを用いた簡素な構成で所望のペダル反力特性を実現できる。
 (n) (m)に記載のブレーキ制御装置において、
 前記ポンプは、前記コントロールユニットによって演算された回生制動装置による制動力が減少する場合に前記リザーバ内に貯留しているブレーキ液を吸入し、前記ホイルシリンダの液圧を調整することを特徴とするブレーキ制御装置。
 よって、回生制動力が減少する場合には、回生制動力から摩擦制動力へのすり替えにより車両に必要な制動力を確保できる。
 (o) (n)に記載のブレーキ制御装置において、
 前記コントロールユニットは、前記回生制動装置の回生状態に応じて前記ゲートアウトバルブ、前記インレットバルブ、前記アウトレットバルブおよび前記ポンプを作動させブレーキ液圧を制御する液圧制御部を備えたことを特徴とするブレーキ制御装置。
 よって、良好なペダルフィールを確保しつつ、ブレーキ操作量に対応した制動力が発生するよう、回生制動装置の回生状態に応じて摩擦制動力を制御できる。
BP ブレーキペダル
FL 左前輪
FR 右前輪
HU 液圧制御ユニット(液圧調整部)
M/C マスタシリンダ
RL 左後輪
RR 右後輪
W/C ホイルシリンダ
28 ストロークシミュレータ
28a 第1空間
28b ピストン(可動部材)
28c 一次側の室
28d 二次側の室
28e コイルスプリング(付勢手段)

Claims (20)

  1.  内部にブレーキ液が貯留され、ドライバのブレーキペダル操作によりマスタシリンダから流出したブレーキ液が流入可能な第1空間と、前記第1空間を前記ブレーキ液が流入する一次側の室と二次側の室とに区画し、前記流入したブレーキ液によって前記一次側の室の容積を拡大する一方、前記二次側の室の容積を縮小する可動部材と、前記可動部材に対して前記一次側の室への付勢力を付与する付勢手段と、を備えたストロークシミュレータと、
     前記二次側の室の容積が縮小することで前記二次側の室から流出したブレーキ液を用いて車輪に設けられたホイルシリンダの液圧を調整する液圧調整部と、を備えたことを特徴とするブレーキ制御装置。
  2.  請求項1に記載のブレーキ制御装置において、
     前記液圧調整部は、前記二次側の室から流出したブレーキ液を吸入し、吸入したブレーキ液を前記ホイルシリンダへ供給するポンプを備えていることを特徴とするブレーキ制御装置。
  3.  請求項1に記載のブレーキ制御装置において、
     前記マスタシリンダと前記一次側の室とを接続するストロークシミュレータ接続回路と、
     前記ストロークシミュレータ接続回路に設けられ前記一次側の室と前記マスタシリンダとの接続状態を調整するゲートインバルブと、を備えたことを特徴とするブレーキ制御装置。
  4.  請求項3に記載のブレーキ制御装置において、
     前記液圧調整部は、前記二次側の室から流出したブレーキ液を吸入し、吸入したブレーキ液を前記ホイルシリンダへ供給するポンプを備え、
     前記ポンプの吸入側と前記二次側の室とを接続するポンプ接続回路と、
     前記ポンプ接続回路に設けられたリザーバと、を設け、
     前記ポンプは、前記リザーバを介してブレーキ液を吸入することを特徴とするブレーキ制御装置。
  5.  請求項4に記載のブレーキ制御装置において、
     前記付勢手段は、コイルスプリングであって前記コイルスプリングのバネ力によってブレーキペダル反力を創生することを特徴とするブレーキ制御装置。
  6.  請求項1に記載のブレーキ制御装置において、
     前記液圧調整部は、前記二次側の室から流出したブレーキ液を吸入し、吸入したブレーキ液を前記ホイルシリンダへ供給するポンプと、
     前記ポンプの吸入側と前記二次側の室との間に設けられ前記二次側の室から流出したブレーキ液を一時的に貯留するリザーバと、を備えたことを特徴とするブレーキ制御装置。
  7.  請求項6に記載のブレーキ制御装置において、
     前記マスタシリンダと前記一次側の室とを接続するストロークシミュレータ接続回路と、
     前記ストロークシミュレータ接続回路に設けられ前記一次側の室と前記マスタシリンダとの接続状態を調整するゲートインバルブと、を備えたことを特徴とするブレーキ制御装置。
  8.  請求項7に記載のブレーキ制御装置において、
     前記ブレーキ制御装置は、前記ホイルシリンダを備えた車輪に対し電気的な制動力を発生させる回生制動装置を備えた車両用であって、
     前記ブレーキペダルの操作量を検出するブレーキ操作量検出部と、
     検出したブレーキ操作量に対応した制動力が発生するように前記ポンプと前記回生制動装置に発生させる制動力を算出するコントロールユニットと、を備え、
     前記一次側の室には前記算出された回生制動装置により発生する制動力に対応するブレーキ操作量に応じたブレーキ液が流入し、前記二次側の室から流出したブレーキ液は前記リザーバ内に貯留されていることを特徴とするブレーキ制御装置。
  9.  請求項8に記載のブレーキ制御装置において、
     前記ポンプは、前記コントロールユニットによって演算された回生制動装置による制動力が減少する場合に前記リザーバ内に貯留しているブレーキ液を吸入し、前記ホイルシリンダの液圧を調整することを特徴とするブレーキ制御装置。
  10.  マスタシリンダとホイルシリンダとを接続する回路中に設けられ、内部にブレーキ液が貯留されドライバのブレーキペダル操作によりマスタシリンダから流出したブレーキ液が流入可能な第1空間と、前記第1空間を前記ブレーキ液が流入する一次側の室と二次側の室とに区画し、前記流入したブレーキ液によって前記一次側の室の容積を拡大する一方、前記二次側の室の容積を縮小するピストンと、前記ピストンを前記一次側の室側へ付勢するコイルスプリングと、を有するストロークシミュレータと、前記二次側の室の容積が縮小することで前記二次側の室から流出したブレーキ液を一時的に貯留するリザーバと、
     前記リザーバと前記ホイルシリンダとの間に設けられ前記リザーバ内に貯留したブレーキ液を吸入し車輪に設けられたホイルシリンダに吐出するポンプと、を備えたことを特徴とするブレーキ制御装置。
  11.  請求項10に記載のブレーキ制御装置において、
     前記回路上に設けられ、前記一次側の室と前記マスタシリンダとの接続状態を調整するゲートインバルブと、
     前記回路上の前記ゲートインバルブと前記マスタシリンダとの間から分岐し、前記リザーバに接続するリザーバ接続回路と、を備えたことを特徴とするブレーキ制御装置。
  12.  請求項11に記載のブレーキ制御装置において、
     前記マスタシリンダと前記リザーバ接続回路との接続位置と前記ポンプの吐出側とを接続する吐出回路と、
     前記吐出回路に設けられたゲートアウトバルブと、を備えたことを特徴とするブレーキ制御装置。
  13.  請求項12に記載のブレーキ制御装置において、
     前記ブレーキ制御装置は、前記ホイルシリンダを備えた車輪に対し電気的な制動力を発生させる回生制動装置を備えた車両用であって、
     前記ブレーキペダルの操作量を検出するブレーキ操作量検出部と、
     検出したブレーキ操作量に対応した制動力が発生するように前記ポンプと前記回生制動装置に発生させる制動力を算出するコントロールユニットと、を備え、
     前記一次側の室には前記算出された回生制動装置により発生する制動力に対応するブレーキ操作量に応じたブレーキ液が流入し、前記二次側の室から流出したブレーキ液は前記リザーバ内に貯留されていることを特徴とするブレーキ制御装置。
  14.  請求項13に記載のブレーキ制御装置において、
     前記ポンプおよび前記ゲートアウトバルブは、前記コントロールユニットによって演算された回生制動装置による制動力が減少する場合に前記リザーバ内に貯留しているブレーキ液を吸入し、前記ホイルシリンダの液圧を調整することを特徴とするブレーキ制御装置。
  15.  請求項10に記載のブレーキ制御装置において、
     車両の左前輪と右後輪とからなる第1の配管系と右前輪と左後輪とからなる第2の配管系のそれぞれが前記回路を備えていることを特徴とするブレーキ制御装置。
  16.  請求項10に記載のブレーキ制御装置において、
     車両の左前輪と右前輪とからなる第1の配管系と右後輪と左後輪とからなる第2の配管系のそれぞれが前記回路を備えていることを特徴とするブレーキ制御装置。
  17.  所望の車輪に対し電気的な制動力を発生させる回生制動装置を有する車両に用いられるブレーキ制御装置であって、
     ブレーキペダルの操作量を検出するブレーキ操作量検出部と、
     ブレーキ回路中に設けられたポンプと、
     ドライバのブレーキ操作によってブレーキ液圧を発生するマスタシリンダと前記ブレーキ液圧が作用するように構成されたホイルシリンダとを接続する第1ブレーキ回路と、
     前記第1ブレーキ回路と前記ポンプの吐出側とを接続する第2ブレーキ回路と、
     前記第1ブレーキ回路上であって前記第2ブレーキ回路との接続位置よりも前記マスタシリンダ側に設けられたゲートアウトバルブと、
     前記第1ブレーキ回路上であって前記ゲートアウトバルブよりも前記マスタシリンダ側の位置と前記ポンプの吸入側とを接続する第3ブレーキ回路と、
     前記第1ブレーキ回路上であって前記第2ブレーキ回路との接続位置よりも前記ホイルシリンダ側に設けられたインレットバルブと、
     前記第1ブレーキ回路上であって前記インレットバルブよりも前記ホイルシリンダ側の位置と前記ポンプの吸入側とを接続する第4ブレーキ回路と、
     前記第4ブレーキ回路上に設けられたアウトレットバルブと、
     前記第4ブレーキ回路と前記マスタシリンダとを接続する第5ブレーキ回路と、
     前記第4ブレーキ回路上であって前記アウトレットバルブよりも前記ポンプの吸入側に設けられると共に、前記第3ブレーキ回路に接続するリザーバと、
     前記第5ブレーキ回路上に設けられ、内部にブレーキ液が貯留されドライバのブレーキペダル操作によりマスタシリンダから流出したブレーキ液が流入可能な第1空間と、前記第1空間を前記ブレーキ液が流入する一次側の室と二次側の室とに区画し、前記流入したブレーキ液によって前記一次側の室の容積を拡大する一方、前記二次側の室の容積を縮小するピストンと、前記ピストンを前記一次側の室側へ付勢するコイルスプリングと、を有するストロークシミュレータと、
     前記ストロークシミュレータと前記マスタシリンダとの間に設けられたゲートインバルブと、
     検出したブレーキ操作量に対応した制動力が発生するように前記ポンプと前記回生制動装置に発生させる制動力を算出するコントロールユニットと、を備え、
     前記リザーバは、前記ブレーキ操作量に応じて前記二次側の室の容積が縮小することで前記二次側の室から流出したブレーキ液を一時的に貯留し、
     前記ポンプは、前記回生制動装置作動時に前記リザーバに貯留したブレーキ液を吸入し前記第1ブレーキ回路に吐出することを特徴とするブレーキ制御装置。
  18.  請求項17に記載のブレーキ制御装置において、
     前記コイルスプリングのバネ力によってブレーキペダル反力を創生することを特徴とするブレーキ制御装置。
  19.  請求項18に記載のブレーキ制御装置において、
     前記ポンプは、前記コントロールユニットによって演算された回生制動装置による制動力が減少する場合に前記リザーバ内に貯留しているブレーキ液を吸入し、前記ホイルシリンダの液圧を調整することを特徴とするブレーキ制御装置。
  20.  請求項19に記載のブレーキ制御装置において、
     前記コントロールユニットは、前記回生制動装置の回生状態に応じて前記ゲートアウトバルブ、前記インレットバルブ、前記アウトレットバルブおよび前記ポンプを作動させブレーキ液圧を制御する液圧制御部を備えたことを特徴とするブレーキ制御装置。
PCT/JP2012/082763 2011-12-22 2012-12-18 ブレーキ制御装置 WO2013094592A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-281169 2011-12-22
JP2011281169A JP2013129362A (ja) 2011-12-22 2011-12-22 ブレーキ制御装置

Publications (1)

Publication Number Publication Date
WO2013094592A1 true WO2013094592A1 (ja) 2013-06-27

Family

ID=48668481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082763 WO2013094592A1 (ja) 2011-12-22 2012-12-18 ブレーキ制御装置

Country Status (2)

Country Link
JP (1) JP2013129362A (ja)
WO (1) WO2013094592A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135549A1 (en) * 2014-04-24 2017-03-01 Hitachi Automotive Systems, Ltd. Brake control device, braking system, and brake hydraulic pressure generation method
CN113392481A (zh) * 2021-06-30 2021-09-14 保定天威集团特变电气有限公司 单层层式调压线圈的轴向压紧力计算方法、装置及终端
US20210300312A1 (en) * 2018-07-24 2021-09-30 Robert Bosch Gmbh Method for operating a braking system, and braking system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213296A (ja) * 1999-11-24 2001-08-07 Sumitomo Denko Brake Systems Kk 車両用液圧ブレーキ装置
JP2001270431A (ja) * 2000-03-24 2001-10-02 Sumitomo Denko Brake Systems Kk 回生協調ブレーキシステムの制御方法
JP2002019592A (ja) * 2000-05-02 2002-01-23 Toyota Motor Corp ブレーキシステム
JP2003505294A (ja) * 1999-07-28 2003-02-12 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 液圧ブレーキ装置
JP2007210372A (ja) * 2006-02-07 2007-08-23 Toyota Motor Corp ブレーキ制御装置
JP2012158214A (ja) * 2011-01-31 2012-08-23 Honda Motor Co Ltd 車両用ブレーキ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505294A (ja) * 1999-07-28 2003-02-12 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 液圧ブレーキ装置
JP2001213296A (ja) * 1999-11-24 2001-08-07 Sumitomo Denko Brake Systems Kk 車両用液圧ブレーキ装置
JP2001270431A (ja) * 2000-03-24 2001-10-02 Sumitomo Denko Brake Systems Kk 回生協調ブレーキシステムの制御方法
JP2002019592A (ja) * 2000-05-02 2002-01-23 Toyota Motor Corp ブレーキシステム
JP2007210372A (ja) * 2006-02-07 2007-08-23 Toyota Motor Corp ブレーキ制御装置
JP2012158214A (ja) * 2011-01-31 2012-08-23 Honda Motor Co Ltd 車両用ブレーキ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135549A1 (en) * 2014-04-24 2017-03-01 Hitachi Automotive Systems, Ltd. Brake control device, braking system, and brake hydraulic pressure generation method
EP3135549A4 (en) * 2014-04-24 2017-05-03 Hitachi Automotive Systems, Ltd. Brake control device, braking system, and brake hydraulic pressure generation method
US10252707B2 (en) 2014-04-24 2019-04-09 Hitachi Automotive Systems, Ltd. Brake control system, brake system, and brake hydraulic pressure generating method
US20210300312A1 (en) * 2018-07-24 2021-09-30 Robert Bosch Gmbh Method for operating a braking system, and braking system
US11932215B2 (en) * 2018-07-24 2024-03-19 Robert Bosch Gmbh Method for operating a braking system, and braking system
CN113392481A (zh) * 2021-06-30 2021-09-14 保定天威集团特变电气有限公司 单层层式调压线圈的轴向压紧力计算方法、装置及终端

Also Published As

Publication number Publication date
JP2013129362A (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5318848B2 (ja) ブレーキ制御装置
JP5270654B2 (ja) ブレーキ制御装置
JP6663075B2 (ja) 車両のブレーキシステム及び車両のブレーキシステムの運転方法
JP5699041B2 (ja) ブレーキ制御装置
US9010880B2 (en) Vehicle brake system
JP5699044B2 (ja) ブレーキ制御装置
JP5626168B2 (ja) 車両用制動制御装置
JP2014061835A (ja) ブレーキ制御装置
JP5167954B2 (ja) 車両用ブレーキ制御装置
WO2015012204A1 (ja) ブレーキ制御装置
JP5768352B2 (ja) 電動車両のブレーキ制御装置
JP5814158B2 (ja) ブレーキ制御装置
WO2013094473A1 (ja) ブレーキ装置
JP2012051455A (ja) 液圧ブレーキ制御装置
JP5978943B2 (ja) 制動制御装置
JP4816208B2 (ja) 車両用ブレーキ制御装置
WO2013094592A1 (ja) ブレーキ制御装置
JP6237139B2 (ja) 車両用制動制御装置
WO2017061327A1 (ja) 車両のブレーキ制御装置
JP5683305B2 (ja) ブレーキ制御装置
JP5872412B2 (ja) ブレーキ制御装置
JP2012153204A (ja) ブレーキ制御装置
WO2019065984A1 (ja) 車両用制動装置
JP2011189785A (ja) 制動制御装置
JP6020008B2 (ja) 車両用ブレーキシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860392

Country of ref document: EP

Kind code of ref document: A1