[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013094396A1 - 充放電装置およびこれを用いた充放電システム - Google Patents

充放電装置およびこれを用いた充放電システム Download PDF

Info

Publication number
WO2013094396A1
WO2013094396A1 PCT/JP2012/081398 JP2012081398W WO2013094396A1 WO 2013094396 A1 WO2013094396 A1 WO 2013094396A1 JP 2012081398 W JP2012081398 W JP 2012081398W WO 2013094396 A1 WO2013094396 A1 WO 2013094396A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charge
unit
input
storage battery
Prior art date
Application number
PCT/JP2012/081398
Other languages
English (en)
French (fr)
Inventor
悟 田舎片
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12860867.6A priority Critical patent/EP2797198A4/en
Publication of WO2013094396A1 publication Critical patent/WO2013094396A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]

Definitions

  • the present invention relates to a charge / discharge device for controlling charge / discharge of a storage battery and a charge / discharge system using the same.
  • the converter used when charging the storage battery has a characteristic that the conversion efficiency representing the ratio of the output power to the input power changes with respect to the input power.
  • the objective of this invention is providing the charging / discharging apparatus which can perform charging / discharging of a storage battery efficiently, and the charging / discharging system using the same.
  • the charge / discharge device of the present invention includes a power conversion unit provided in a charge / discharge path of a storage battery and performing power conversion, and a control unit controlling charge / discharge of the storage battery using the power conversion unit, the control unit When it is determined that the conversion efficiency representing the ratio of the output power to the input power in the power conversion unit is low according to a predetermined condition, the power conversion unit is controlled so as not to charge and discharge the storage battery.
  • the charge / discharge device includes an input measurement unit that measures the input power input to the power conversion unit, and the control unit determines that the input power measured by the input measurement unit is equal to or less than a predetermined threshold. In some cases, it is preferable to determine that the conversion efficiency is low and to control the power conversion unit so as not to charge and discharge the storage battery.
  • the charge / discharge device includes an input measurement unit that measures the input power input to the power conversion unit, and an output measurement unit that measures the output power output from the power conversion unit, and the control unit
  • the conversion efficiency is determined from the input power measured by the input measurement unit and the output power measured by the output measurement unit, and the conversion efficiency is equal to or less than a predetermined reference value. It is preferable to control the power conversion unit so as not to charge and discharge the storage battery.
  • the charge / discharge device includes an input measurement unit configured to measure the input power input to the power conversion unit, and a storage unit configured to store a correspondence between the input power and the conversion efficiency.
  • the conversion efficiency corresponding to the input power measured by the input measurement unit is selected from the storage unit, and it is determined that the conversion efficiency is low when the conversion efficiency is equal to or less than a predetermined reference value, It is preferable to control the power converter so as not to charge and discharge the storage battery.
  • control unit controls the power conversion unit to charge / discharge the storage battery regardless of the conversion efficiency when there is no power supply from a commercial power system.
  • a charge and discharge system includes the charge and discharge device and a power supply device in which output power fluctuates.
  • a plurality of the power conversion units are provided in the charge / discharge device, and a total input acquisition unit that acquires a total power of the input power of each of the plurality of power conversion units; Selecting at least one power conversion unit performing power conversion from among the plurality of power conversion units according to the total power acquired by the unit, and the remaining power conversion units do not perform power conversion It is preferable to further include a management unit that instructs the control unit.
  • the power conversion unit converts the input power from alternating current power to direct current power for charging the storage battery, converts from direct current power to alternating current power for discharging from the storage battery, and outputs the output
  • the bi-directional DC / AC inverter which outputs as electric power
  • a plurality of bi-directional DC / DC converters which are provided between the storage battery and the bi-directional DC / AC inverter to convert power to predetermined DC power
  • the control unit selects at least one bi-directional DC / DC converter that performs power conversion according to the input power, and performs control so that the remaining bi-directional DC / DC converters do not perform power conversion.
  • the power supply device is a solar power generation device that performs maximum power point tracking control on a solar cell, and the solar power generation device includes the solar cell and DC power generated by the solar cell. And a solar cell-side power converter for converting the DC power output from the booster into AC power, the charge / discharge device includes the booster and the solar cell-side power converter
  • the battery pack is inserted between the contact point between the battery pack and the storage battery.
  • FIG. 1 is a schematic view showing a configuration of a charge and discharge system according to Embodiment 1.
  • FIG. 2 is a diagram showing the amount of power generation of the solar cell according to Embodiment 1.
  • FIG. 1 is a block diagram showing a configuration of a charge and discharge device according to Embodiment 1.
  • FIG. 6 is a diagram showing a relationship between input power of the power conversion unit according to Embodiment 1 and conversion efficiency.
  • FIG. 6 is a schematic view showing a configuration of a charge and discharge system according to a second embodiment.
  • FIG. 7 is a diagram showing the efficiency characteristics of each power conversion unit according to the second embodiment.
  • FIG. 7 is a schematic view showing a configuration of a charge and discharge system according to a third embodiment. It is a figure which shows the efficiency characteristic at the time of connecting several charge / discharge devices which concern on Embodiment 3 in parallel.
  • FIG. 16 is a diagram showing the efficiency characteristics of each power conversion unit according to the third embodiment.
  • FIG. 10 is a schematic view showing the configuration of a charge and discharge system according to a fourth embodiment.
  • FIG. 13 is a schematic view showing the configuration of a charge and discharge system according to a fifth embodiment.
  • FIG. 13 is a schematic view showing a circuit configuration of the charge and discharge device according to the fifth embodiment.
  • the charge / discharge system 1 As shown in FIG. 1, the charge / discharge system 1 according to the first embodiment includes a charge / discharge device 2, a storage battery unit 3, a solar cell 4, and a power conditioner (solar cell control unit) 5.
  • the charge and discharge system 1 further includes a cooperation board 6 and a reverse flow monitoring unit 7.
  • the charge / discharge device 2, the storage battery unit 3, and the reverse flow monitoring unit 7 have a function of communicating with each other.
  • the charge / discharge device 2 and the storage battery unit 3 constitute a power storage facility 10.
  • the solar battery 4 and the power conditioner 5 constitute a solar power generation device 11.
  • FIG. 1 the charge / discharge system 1 according to the first embodiment includes a charge / discharge device 2, a storage battery unit 3, a solar cell 4, and a power conditioner (solar cell control unit) 5.
  • the charge and discharge system 1 further includes a cooperation board 6 and a reverse flow monitoring unit 7.
  • the charge / discharge device 2, the storage battery unit 3, and the reverse flow monitoring unit 7 have a function of communicating with
  • the solid line 12 indicates an AC power path, specifically, the power path between the storage facility 10 and the cooperation board 6 or the power path between the solar power generation device 11 and the cooperation board 6, It is a power path between a commercial power system 8 and a cooperation board 6 which will be described later.
  • a broken line 13 indicates a power path of direct current power. Specifically, a power path between the solar cell 4 and a connection box 41 described later, a power path between the connection box 41 and the power conditioner 5, a charge / discharge device 2 And an electric power path between the storage battery unit 3 and the like.
  • the alternate long and short dash line 14 indicates a communication line, and specifically, the communication line between the storage facility 10 and the reverse flow monitoring unit 7, the communication line between the reverse flow monitoring unit 7 and the cooperation board 6, the charge / discharge device 2 It is a communication line between the storage battery units 3 and the like.
  • Such a charge / discharge system 1 charges / discharges the storage battery 31 (see FIG. 3) of the storage battery unit 3 only when the conversion efficiency of the power conversion unit 21 is high in the charge / discharge device 2.
  • each component of the charge / discharge system 1 will be described.
  • the storage battery unit 3 includes a storage battery 31 (see FIG. 3), and performs charge and discharge of the storage battery 31 by control of the charge and discharge device 2.
  • the storage battery 31 is, for example, a nickel hydrogen battery, a lithium ion battery, or a lead storage battery, and can store the generated power of the solar battery 4 and the commercial power of the commercial power grid 8.
  • the solar battery 4 is installed, for example, on the roof of a dwelling unit, and generates DC power by solar power generation that generates power using solar energy.
  • FIG. 2 shows an example of the amount of power generation (generated power) of the solar cell 4 in one day.
  • A) of FIG. 2 is a clear case, (b) a cloudy case, and (c) a rainy case.
  • a connection box 41 is provided between the solar cell 4 and the power conditioner 5.
  • the power conditioner 5 performs maximum power point tracking (MPPT) on the solar cell 4. Further, the power conditioner 5 boosts DC power, which is generated power (amount of power generation) of the solar cell 4, and converts it into AC power.
  • MPPT maximum power point tracking
  • the linkage board 6 includes a master breaker 61 and a plurality of branch breakers 62, 62,.
  • the master breaker 61 acquires AC power from the charge / discharge device 2, the power conditioner 5, and the commercial power grid 8, and outputs the AC power to each branch breaker 62.
  • the branch breaker 62 supplies power to a load (not shown) connected via an outlet.
  • the reverse flow monitoring unit 7 monitors the status of selling electricity to the commercial power grid 8.
  • the charge and discharge device 2 includes a power conversion unit 21, a controller 22, and gate circuits 23 and 23.
  • the charge / discharge device 2 includes a disconnection relay 24, an interconnection relay 25, a noise filter 26, a rush prevention unit 27, and a reactor 28.
  • Power conversion unit 21 converts input power from alternating current power to direct current power for charging storage battery 31, and converts from direct current power to alternating current power for discharging from storage battery 31 and outputs it as output power.
  • An AC inverter 211 and a bi-directional DC / DC converter 212 provided between the storage battery unit 3 and the bi-directional DC / AC inverter 211 for converting power to predetermined DC power for charging and discharging are included.
  • the bidirectional DC / AC inverter 211 is configured of four switching elements 213, 213,. Each switching element 213 switches on and off according to a signal from the gate circuit 23.
  • the bi-directional DC / DC converter 212 is configured of an inductor 214 and two switching units 215 and 215.
  • Each switching unit 215 includes a switching element 216 and a diode 217 connected in parallel to the switching element 216.
  • the switching element 216 switches on and off according to a signal from the gate circuit 23.
  • a capacitor 218 is provided between the bidirectional DC / AC inverter 211 and the bidirectional DC / DC converter 212.
  • Such a power conversion unit 21 is inserted into the charge and discharge path of the storage battery 31 to perform power conversion. Specifically, at the time of charging, the power conversion unit 21 converts input power from the solar cell 4 and outputs output power to the storage battery unit 3 (storage battery 31). On the other hand, at the time of discharge, power conversion unit 21 converts the input power from storage battery unit 3 (storage battery 31) and outputs the output power to linkage board 6.
  • FIG. 4 shows a conversion efficiency characteristic (efficiency curve) indicating the conversion efficiency with respect to the input power in the power conversion unit 21.
  • efficiency curve As the input power of the power conversion unit 21, that is, the generated power of the solar cell 4 is larger, the conversion efficiency of the power conversion unit 21 is larger.
  • the charge / discharge device 2 is a storage battery unit
  • the third storage battery 31 is to be charged.
  • the controller 22 shown in FIG. 3 controls the charge and discharge of the storage battery 31 using the power conversion unit 21 and an input measurement unit (not shown) that measures input power input to the power conversion unit 21 during charging. And a unit (not shown).
  • the control unit controls the power conversion unit 21 so as not to charge and discharge the storage battery 31 when it is determined that the conversion efficiency of the power conversion unit 21 is low due to a predetermined condition during charging and discharging.
  • the conversion efficiency represents the ratio of the output power to the input power in the power conversion unit 21.
  • the control unit determines that the conversion efficiency is low when the input power measured by the input measurement unit is equal to or less than a threshold, and performs charge and discharge of the storage battery 31.
  • the power converter 21 is controlled so as not to occur.
  • the threshold is a predetermined value. In particular, when the conversion efficiency gradually increases in the conversion efficiency characteristics, it is effective because the validity of the determination becomes high while being simple.
  • control unit controls the power conversion unit 21 to charge and discharge the storage battery 31 regardless of the conversion efficiency.
  • the threshold is 1500 W.
  • the power generation amount of the solar cell 4 that is, the input power of the power conversion unit 21 becomes 1500 W or less, from 6 o'clock to 7:30 and from 16:30 to 19 in the illustrated time zone alone. It is up to time.
  • it is cloudy it is less than 1500 W in the daytime.
  • the amount of power generation of the solar cell 4 is only 200 W or less.
  • the input power of the power conversion unit 21 exceeds 1500 W, the conversion efficiency of the power conversion unit 21 is good, so the charge / discharge device 2 controls the power conversion unit 21 to charge the storage battery 31.
  • the charge / discharge device 2 controls the power conversion unit 21 to stop charging the storage battery 31.
  • the power generated by the solar cell 4 can be sold or the power generated by the solar cell 4 can be supplied to a load (not shown) to reduce the power purchase amount, the economic effect can be enhanced. it can.
  • the charge / discharge system 1 of the present embodiment described above does not charge / discharge the storage battery 31 when the conversion efficiency representing the ratio of the output power to the input power of the power conversion unit 21 in the charge / discharge device 2 is low.
  • the conversion unit 21 is controlled. Thereby, in the charge and discharge system 1 of the present embodiment, since the storage battery 31 can be charged and discharged only when the conversion efficiency is high, the conversion loss can be suppressed.
  • the storage battery 31 is controlled not to charge when the conversion efficiency of the power conversion unit 21 is low. Since 31 can be charged, the storage battery 31 can be charged efficiently. On the other hand, when the conversion efficiency is low, the charge / discharge system 1 of the present embodiment can sell electricity to a power company or the like, or supply it to a load to reduce the amount of purchased electricity, so economic effects can be enhanced. .
  • the charge / discharge system 1 of this embodiment determines that the conversion efficiency of the power conversion unit 21 is low when the input power measured by the input measurement unit of the controller 22 in the charge / discharge device 2 is equal to or less than the threshold. .
  • the charge and discharge system 1 of the present embodiment it can be easily determined that the conversion efficiency of the power conversion unit 21 is low.
  • the power conditioner (solar cell control unit) 5 performs maximum power point tracking control on the solar cell 4 to achieve maximum efficiency, ie, in the vicinity of the maximum power point.
  • the solar cell 4 can be operated.
  • storage battery 31 can be charged in the state where solar cell 4 serves as the maximum efficiency.
  • the conversion efficiency gradually increases in the conversion efficiency characteristics of the charge / discharge device 2
  • the conversion efficiency improves as the input power in the charge / discharge device 2 increases, so the output power of the solar cell 4 is as large as possible by maximum power point tracking control.
  • the conversion efficiency of the charge / discharge device 2 is improved.
  • the charge / discharge device 2 may actually determine the conversion efficiency to determine whether it is low.
  • the controller 22 of the charge / discharge device 2 of the present modified example includes an output measurement unit (not shown) that measures the output power output from the power conversion unit 21.
  • the control unit of the controller 22 of the present modification determines the conversion efficiency from the input power measured by the input measurement unit of the controller 22 and the output power measured by the output measurement unit, and the conversion efficiency is determined in advance. If it is less than the reference value, it is determined that the conversion efficiency is low, and the power conversion unit 21 is controlled so as not to charge and discharge the storage battery 31.
  • the conversion efficiency obtained from the input power measured by the input measurement unit of the controller 22 and the output power measured by the output measurement unit is When it is below the threshold value, it is determined that the conversion efficiency of the power conversion unit 21 is low.
  • the charge / discharge device 2 of the present modification as in the present embodiment, it can be easily determined that the conversion efficiency of the power conversion unit 21 is low.
  • the charge / discharge device 2 may determine whether the conversion efficiency is low using the correspondence between the input power and the conversion efficiency as shown in FIG. 4.
  • the charge / discharge device 2 of the present modification further includes a storage unit (not shown) that stores the correspondence between input power and conversion efficiency.
  • the control unit of the controller 22 of this modification selects a conversion efficiency corresponding to the input power measured by the input measurement unit of the controller 22 from the storage unit, and the conversion efficiency is equal to or less than a predetermined reference value. If it is determined that the conversion efficiency is low, the power conversion unit 21 is controlled so as not to charge and discharge the storage battery 31.
  • the charge / discharge device 2 of the present modification described above selects the conversion efficiency corresponding to the input power measured by the input measurement unit of the controller 22 from the storage unit, and the conversion efficiency is equal to or less than the threshold It is determined that the conversion efficiency of the power conversion unit 21 is low.
  • the charge / discharge device 2 of the present modification as in the present embodiment, it can be easily determined that the conversion efficiency of the power conversion unit 21 is low.
  • the charge / discharge system 1 according to the second embodiment is, as shown in FIG. 5, in the charge / discharge device 2, a plurality (five in the illustrated example) of power conversion units 21, 21, ... and the plurality of power conversion units , 21 (one in the illustrated example, similarly, five storage battery units 3, 3,... (Storage batteries 31, 31,...)
  • symbol is attached
  • a solid line 12 indicates a power path of alternating current power
  • a broken line 13 indicates a power path of direct current power
  • the charge / discharge system 1 of the present embodiment includes a total input acquisition unit 71 and a management unit 72.
  • the total input acquisition unit 71 acquires the total power of the input power of each of the plurality of power conversion units 21, 21,.
  • the total input acquisition unit 71 may be provided with a unique power measurement unit that measures the input power of the plurality of power conversion units 21, 21,... It may be acquired and summed up.
  • the total input acquisition part 71 of this embodiment is provided separately from the charge / discharge device 2 as shown in FIG. 5, it may be provided in the charge / discharge device 2.
  • the management unit 72 selects at least one power conversion unit 21 that performs power conversion from among the plurality of power conversion units 21, 21,... According to the total power acquired by the total input acquisition unit 71, The controller 22 is instructed so that the remaining power converters 21 do not perform power conversion.
  • the management unit 72 of the present embodiment is provided separately from the charge / discharge device 2 to communicate with the charge / discharge device 2 as shown in FIG. It may be done.
  • the charge and discharge system 1 of the present embodiment includes the booster 51 and the solar battery side power converter 52.
  • the booster unit 51 is, for example, a DC / DC converter having a maximum power point tracking control (MPPT) function, and boosts the generated power of the solar cell 4.
  • the solar cell side power conversion unit 52 is, for example, a bi-directional DC / AC inverter, and converts DC power output from the boosting unit 51 into AC power.
  • the solar power generation device 11 is configured by the solar cell 4, the booster 51, and the solar cell side power converter 52. That is, each power conversion unit 21 of the present embodiment does not have to include the bidirectional DC / AC inverter 211 for performing the DC-AC conversion and the AC-DC conversion in the first embodiment.
  • the plurality of power conversion units 21, 21,... are between the contact point between the booster unit 51 and the solar cell side power conversion unit 52 and the storage battery unit 3 (storage battery 31). It is inserted and provided in.
  • FIG. 1 the charging / discharging apparatus 2 (refer FIG. 1) of Embodiment 1.
  • the charge and discharge system 1 of the present embodiment selects the power conversion unit 21 of the charge and discharge device 2 to charge and discharge the storage battery 31.
  • FIG. 6A shows the efficiency characteristic when five power conversion units 21, 21,... Are connected in parallel
  • FIG. 6B shows the efficiency characteristic of each power conversion unit 21 alone. For example, comparing the efficiency when the input power is 1 kW, the efficiency is 82% in FIG. 6A, but 94% in FIG. 6B. As a result, since the efficiency in the case of using one power conversion unit 21 is better, the remaining power conversion units 21, 21,... Are stopped so as to operate one power conversion unit 21 alone.
  • the charge / discharge system 1 of the present embodiment described above selects at least one of the plurality of power conversion units 21, 21, ..., and charges / discharges the storage battery 31 corresponding to the selected power conversion unit 21. Let me do it. As a result, it is possible to operate more efficiently than in the case of operating all of the plurality of power conversion units 21, 21,. That is, the operation with maximum efficiency is possible by the combination of the plurality of power conversion units 21, 21,.
  • each power conversion unit 21 of the present embodiment does not need to include the bidirectional DC / AC inverter 211 in the first embodiment, and does not perform DC-AC conversion and AC-DC conversion. Since the storage battery 31 can be charged and discharged using electric power, conversion loss can be reduced.
  • Each charge / discharge device 2 of the present embodiment includes a bi-directional DC / DC converter.
  • FIG. 8A shows the efficiency characteristic by operating the two power conversion units 21 in parallel
  • FIG. 8B shows the single efficiency characteristic of one of the power conversion units 21. For example, comparing the efficiency when the input power is 2 kW, the efficiency is 88% in FIG. 8A and 93% in FIG. 8B. Thus, the single operation of any one of the power conversion units 21 is more efficient.
  • the total input acquisition unit 71 and the management unit 72 of the present embodiment are incorporated in the controller 22.
  • the target to be charged and discharged is the storage battery 31 which is shared with the other power conversion unit 21 not selected.
  • the charge / discharge system 1 according to the fourth embodiment is different from the charge / discharge system 1 according to the second embodiment (see FIG. 5) in that the charge / discharge device 2 is connected to the cooperation board 6 as shown in FIG. .
  • symbol is attached
  • a solid line 12 indicates a power path of alternating current power
  • a broken line 13 indicates a power path of direct current power
  • a dashed dotted line 14 indicates a communication line.
  • the charge / discharge device 2 of the present embodiment includes a bidirectional DC / AC inverter instead of the bidirectional DC / DC converter of the second embodiment.
  • description is abbreviate
  • FIG. 5 illustrates a bidirectional DC / AC inverter instead of the bidirectional DC / DC converter of the second embodiment.
  • At least one of the plurality of power conversion units 21, 21, ... is selected and the selected power conversion unit 21 is selected.
  • Charge and discharge of the corresponding storage battery 31 are performed.
  • Embodiment 5 The charge / discharge system 1 according to the fifth embodiment is different from the charge / discharge system 1 according to the third embodiment (see FIG. 7) in that the charge / discharge device 2 as shown in FIG. 10 is connected to the cooperation board 6. .
  • symbol is attached
  • a solid line 12 indicates a power path of alternating current power
  • a broken line 13 indicates a power path of direct current power
  • a dashed dotted line 14 indicates a communication line.
  • the charge / discharge device 2 of the present embodiment includes a plurality of (two in the illustrated example) bidirectional DC / DC converters 212 and 212 in one power conversion unit 21. That is, one bidirectional DC / AC inverter 211 is shared by two bidirectional DC / DC converters 212 and 212.
  • description is abbreviate
  • the control unit of the controller 22 selects at least one of the plurality of bidirectional DC / DC converters 212 and 212 in one power conversion unit 21. , Control to charge and discharge the storage battery 31. Then, the control unit performs control such that the remaining bidirectional DC / DC converters do not perform power conversion. As a result, it is possible to operate more efficiently than in the case where all of the plurality of bi-directional DC / DC converters 212 and 212 are operated. That is, the combination of the plurality of bi-directional DC / DC converters 212 and 212 can operate at the maximum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 蓄電池の充放電を効率よく行うことができる充放電装置およびこれを用いた充放電システムを提供する。充放電システムは、充放電装置と、蓄電池を有する蓄電池ユニットとを備える。充放電装置は、蓄電池の充放電路に設けられ電力変換を行う電力変換部を備えるとともに、電力変換部を用いた蓄電池の充放電を制御する制御部を有するコントローラを備える。コントローラの制御部は、電力変換部における入力電力に対する出力電力の比率を表わす変換効率が所定条件によって低いと判断した場合、蓄電池の充放電を行わないように電力変換部を制御する。

Description

充放電装置およびこれを用いた充放電システム
 本発明は、蓄電池の充放電を制御する充放電装置およびこれを用いた充放電システムに関する。
 従来から、太陽電池などで発電された電力を用いて蓄電池を充電する充放電システムが知られている(例えば日本国特許公開2009-159691号公報参照)。
 ところで、蓄電池を充電する際に用いられるコンバータは、入力電力に対する出力電力の比率を表わす変換効率が入力電力に対して変化する特性を有している。
 しかしながら、従来の充放電システムでは、コンバータの変換効率とは無関係に蓄電池の充電を行うため、電力を効率よく管理しているとはいえなかった。
 そこで、本発明の目的は、蓄電池の充放電を効率よく行うことができる充放電装置およびこれを用いた充放電システムを提供することにある。
 本発明の充放電装置は、蓄電池の充放電路に設けられ電力変換を行う電力変換部と、前記電力変換部を用いた前記蓄電池の充放電を制御する制御部とを備え、前記制御部は、前記電力変換部における入力電力に対する出力電力の比率を表わす変換効率が所定条件によって低いと判断した場合、前記蓄電池の充放電を行わないように前記電力変換部を制御することを特徴とする。
 この充放電装置において、前記電力変換部に入力される前記入力電力を測定する入力測定部を備え、前記制御部は、前記入力測定部で測定された前記入力電力が予め決められた閾値以下である場合に前記変換効率が低いと判断し、前記蓄電池の充放電を行わないように前記電力変換部を制御することが好ましい。
 この充放電装置において、前記電力変換部に入力される前記入力電力を測定する入力測定部と、前記電力変換部から出力される前記出力電力を測定する出力測定部とを備え、前記制御部は、前記入力測定部で測定された前記入力電力と前記出力測定部で測定された前記出力電力とから前記変換効率を求め、当該変換効率が予め決められた基準値以下である場合に当該変換効率が低いと判断し、前記蓄電池の充放電を行わないように前記電力変換部を制御することが好ましい。
 この充放電装置において、前記電力変換部に入力される前記入力電力を測定する入力測定部と、前記入力電力と前記変換効率との対応関係を記憶する記憶部とを備え、前記制御部は、前記入力測定部で測定された前記入力電力に対応する前記変換効率を前記記憶部から選択し、当該変換効率が予め決められた基準値以下である場合に当該変換効率が低いと判断し、前記蓄電池の充放電を行わないように前記電力変換部を制御することが好ましい。
 この充放電装置において、前記制御部は、商用電力系統からの給電がない場合、前記変換効率にかかわらず前記蓄電池の充放電を行うように前記電力変換部を制御することが好ましい。
 本発明の充放電システムは、前記充放電装置と、出力電力が変動する電源装置とを備えることを特徴とする。
 この充放電システムにおいて、前記電力変換部が前記充放電装置に複数設けられており、複数の前記電力変換部の各々の前記入力電力の合計電力を取得する総入力取得部と、前記総入力取得部で取得された前記合計電力に応じて、複数の前記電力変換部の中から、電力変換を行う電力変換部を少なくとも1つ選択し、残りの電力変換部が電力変換を行わないように前記制御部に指示する管理部とをさらに備えることが好ましい。
 この充放電システムにおいて、前記電力変換部は、前記蓄電池への充電用に前記入力電力を交流電力から直流電力へ変換し、前記蓄電池からの放電用に直流電力から交流電力へ変換して前記出力電力として出力する双方向DC/ACインバータと、前記蓄電池と前記双方向DC/ACインバータとの間に設けられて所定の直流電力へ電力変換する複数の双方向DC/DCコンバータとを備え、前記制御部は、前記入力電力に応じて、電力変換を行う双方向DC/DCコンバータを少なくとも1つ選択し、残りの双方向DC/DCコンバータが電力変換を行わないように制御することが好ましい。
 この充放電システムにおいて、前記電源装置は、太陽電池に対して最大電力点追従制御を行う太陽光発電装置であり、前記太陽光発電装置は、前記太陽電池と、前記太陽電池が発電した直流電力を昇圧する昇圧部と、前記昇圧部から出力された前記直流電力を交流電力に変換する太陽電池側電力変換部とを備え、前記充放電装置は、前記昇圧部と前記太陽電池側電力変換部との間の接点と前記蓄電池との間に挿入されて設けられることが好ましい。
 本発明によれば、蓄電池の充放電を効率よく行うことができる。
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
実施形態1に係る充放電システムの構成を示す概略図である。 実施形態1に係る太陽電池の発電量を示す図である。 実施形態1に係る充放電装置の構成を示すブロック図である。 実施形態1に係る電力変換部の入力電力と変換効率との関係を示す図である。 実施形態2に係る充放電システムの構成を示す概略図である。 実施形態2に係る複数の充放電装置が並列に接続された場合の効率特性を示す図である。 実施形態2に係る各電力変換部の効率特性を示す図である。 実施形態3に係る充放電システムの構成を示す概略図である。 実施形態3に係る複数の充放電装置が並列に接続された場合の効率特性を示す図である。 実施形態3に係る各電力変換部の効率特性を示す図である。 実施形態4に係る充放電システムの構成を示す概略図である。 実施形態5に係る充放電システムの構成を示す概略図である。 実施形態5に係る充放電装置の回路構成を示す概略図である。
 (実施形態1)
 実施形態1に係る充放電システム1は、図1に示すように、充放電装置2と、蓄電池ユニット3と、太陽電池4と、パワーコンディショナ(太陽電池制御部)5とを備えている。また、充放電システム1は、連携盤6と、逆潮流監視ユニット7とを備えている。充放電装置2と蓄電池ユニット3と逆潮流監視ユニット7とは互いに通信する機能を有している。充放電装置2と蓄電池ユニット3とで蓄電設備10を構成する。太陽電池4とパワーコンディショナ5とで太陽光発電装置11を構成する。なお、図1において、実線12は交流電力の電力路を示し、具体的には、蓄電設備10と連携盤6間の電力路や、太陽光発電装置11と連携盤6と間の電力路、後述する商用電力系統8と連携盤6間の電力路などである。また、破線13は直流電力の電力路を示し、具体的には、太陽電池4と後述する接続箱41間の電力路や、接続箱41とパワーコンディショナ5間の電力路、充放電装置2と蓄電池ユニット3間の電力路などである。さらに、一点鎖線14は通信線を示し、具体的には、蓄電設備10と逆潮流監視ユニット7間の通信線や、逆潮流監視ユニット7と連携盤6間の通信線、充放電装置2と蓄電池ユニット3間の通信線などである。
 このような充放電システム1は、充放電装置2において、電力変換部21の変換効率がよいときのみ蓄電池ユニット3の蓄電池31(図3参照)の充放電を行う。以下、充放電システム1の各構成要素について説明する。
 蓄電池ユニット3は、蓄電池31(図3参照)を備えており、充放電装置2の制御によって蓄電池31の充放電を行う。蓄電池31は、例えばニッケル水素電池、リチウムイオン電池または鉛蓄電池などであり、太陽電池4の発電電力および商用電力系統8の商用電力を蓄電することができる。
 太陽電池4は、例えば住戸の屋根に設置され、太陽光エネルギーを利用して発電する太陽光発電によって直流電力を生成する。図2は、太陽電池4の1日における発電量(発電電力)の一例を示している。図2の(a)は晴れの場合、(b)は曇りの場合、(c)は雨の場合である。太陽電池4とパワーコンディショナ5との間には、図1に示すように、接続箱41が設けられている。パワーコンディショナ5は、太陽電池4に対して最大電力点追従制御(MPPT:Maximum Power Point Tracking)を行う。また、パワーコンディショナ5は、太陽電池4の発電電力(発電量)である直流電力を昇圧して交流電力に変換する。
 連携盤6は、主幹ブレーカ61と、複数の分岐ブレーカ62,62,……とを備えている。主幹ブレーカ61は、充放電装置2、パワーコンディショナ5および商用電力系統8から交流電力を取得し、各分岐ブレーカ62に出力する。分岐ブレーカ62は、コンセントを介して接続されている負荷(図示せず)へ電力を供給する。逆潮流監視ユニット7は、商用電力系統8への売電状況を監視する。
 充放電装置2は、図3に示すように、電力変換部21と、コントローラ22と、ゲート回路23,23とを備えている。また、充放電装置2は、解列リレー24と、連系リレー25と、ノイズフィルタ26と、突入防止部27と、リアクトル28とを備えている。
 電力変換部21は、蓄電池31への充電用に入力電力を交流電力から直流電力へ変換し、蓄電池31からの放電用に直流電力から交流電力へ変換して出力電力として出力する双方向DC/ACインバータ211と、蓄電池ユニット3と双方向DC/ACインバータ211との間に設けられて、充放電用に所定の直流電力へ電力変換する双方向DC/DCコンバータ212とで構成されている。双方向DC/ACインバータ211は、4つのスイッチング素子213,213,……とで構成されている。各スイッチング素子213は、ゲート回路23からの信号によりオンオフを切り替える。双方向DC/DCコンバータ212は、インダクタ214と、2つのスイッチング部215,215とで構成されている。各スイッチング部215は、スイッチング素子216と、スイッチング素子216に並列接続されたダイオード217とで構成されている。スイッチング素子216は、ゲート回路23からの信号によりオンオフを切り替える。双方向DC/ACインバータ211と双方向DC/DCコンバータ212との間にはコンデンサ218が設けられている。
 このような電力変換部21は、蓄電池31の充放電路に挿入されて設けられ電力変換を行う。具体的には、充電時において、電力変換部21は、太陽電池4からの入力電力を変換し、出力電力を蓄電池ユニット3(蓄電池31)に出力する。一方、放電時においては、電力変換部21は、蓄電池ユニット3(蓄電池31)からの入力電力を変換し、出力電力を連携盤6に出力する。
 図4は、電力変換部21での入力電力に対する変換効率を示す変換効率特性(効率カーブ)を示す。電力変換部21の入力電力すなわち太陽電池4の発電電力が大きくなるほど、電力変換部21の変換効率が大きくなっている。これにより、太陽電池4の発電電力が常に最大電力であるとき、すなわち、最大電力点追従制御により太陽電池4が常に最大電力点付近で動作しているときに、充放電装置2は、蓄電池ユニット3の蓄電池31の充電を行うことになる。
 図3に示すコントローラ22は、充電時において電力変換部21に入力される入力電力を測定する入力測定部(図示せず)と、電力変換部21を用いた蓄電池31の充放電を制御する制御部(図示せず)とを備えている。
 前記制御部は、充電時および放電時において、電力変換部21の変換効率が所定条件によって低いと判断した場合、蓄電池31の充電および放電を行わないように電力変換部21を制御する。変換効率は、電力変換部21における入力電力に対する出力電力の比率を表わす。
 具体的には、本実施形態のコントローラ22において、前記制御部は、前記入力測定部で測定された入力電力が閾値以下である場合に変換効率が低いと判断し、蓄電池31の充放電を行わないように電力変換部21を制御する。上記閾値は、予め決められた値である。特に変換効率特性において変換効率が漸増する場合、簡易でありながら判定の妥当性が高くなるので、効果的である。
 ところで、商用電力系統8からの給電がない場合(例えば停電時など)、前記制御部は、変換効率にかかわらず蓄電池31の充放電を行うように電力変換部21を制御する。
 次に、本実施形態に係る充放電システム1の動作について説明する。ここでは、図2の例を用いて説明する。閾値は1500Wとする。晴れのときでは、太陽電池4の発電量すなわち電力変換部21の入力電力が1500W以下になるのは、図示される時間帯だけで言えば、6時から7時半までと16時半から19時までである。曇りのときでは、昼間のところどころ1500W以下となっている。一方、雨天のときでは、太陽電池4の発電量が200W以下しかない。電力変換部21の入力電力が1500Wを超える場合、電力変換部21の変換効率が良好であるため、充放電装置2は、蓄電池31の充電を行うように電力変換部21を制御する。一方、電力変換部21の入力電力が1500W以下である場合、電力変換部21の変換効率が悪いため、充放電装置2は、蓄電池31の充電をやめるように電力変換部21を制御する。この場合、太陽電池4の発電電力を売電にまわしたり、太陽電池4の発電電力を負荷(図示せず)に供給して買電量を減らしたりすることができるので、経済効果を高めることができる。
 以上説明した本実施形態の充放電システム1は、充放電装置2において、電力変換部21の入力電力に対する出力電力の比率を表わす変換効率が低い場合に蓄電池31の充放電を行わないように電力変換部21を制御する。これにより、本実施形態の充放電システム1では、変換効率のよいときのみ蓄電池31を充放電させることができるので、変換ロスを抑えることができる。
 本実施形態の充放電システム1では、充放電装置2において、特に、電力変換部21の変換効率が低い場合に蓄電池31の充電を行わないように制御することによって、変換効率のよいときのみ蓄電池31を充電することができるので、蓄電池31の充電を効率よく行うことができる。一方、変換効率の低い場合、本実施形態の充放電システム1では、電力会社などに売電したり、負荷に供給して買電量を減らしたりすることができるので、経済効果を高めることができる。
 また、本実施形態の充放電システム1は、充放電装置2において、コントローラ22の前記入力測定部で測定された入力電力が閾値以下である場合に電力変換部21の変換効率が低いと判断する。これにより、本実施形態の充放電システム1では、電力変換部21の変換効率が低い状態であることを容易に判断することができる。
 さらに、本実施形態の充放電システム1では、パワーコンディショナ(太陽電池制御部)5が太陽電池4に対して最大電力点追従制御を行うことによって、最大効率となる状態すなわち最大電力点付近で太陽電池4を動作させることができる。これにより、本実施形態の充放電システム1では、太陽電池4が最大効率となる状態で、蓄電池31を充電することができる。特に充放電装置2の変換効率特性において変換効率が漸増する場合、充放電装置2において入力電力が大きくなるほど変換効率がよくなるので、最大電力点追従制御により太陽電池4の出力電力が可能な限り大きいほうが、充放電装置2の変換効率がよくなる。
 なお、本実施形態の変形例として、充放電装置2は、変換効率を実際に求めて低いか否かを判断してもよい。本変形例の充放電装置2のコントローラ22は、電力変換部21から出力される出力電力を測定する出力測定部(図示せず)を備えている。本変形例のコントローラ22の前記制御部は、コントローラ22の前記入力測定部で測定された入力電力と前記出力測定部で測定された出力電力とから変換効率を求め、上記変換効率が予め決められた基準値以下である場合に上記変換効率が低いと判断し、蓄電池31の充放電を行わないように電力変換部21を制御する。
 以上説明した本変形例の充放電装置2は、上述のように、コントローラ22の前記入力測定部で測定された入力電力と前記出力測定部で測定された出力電力とから求められた変換効率が閾値以下である場合に電力変換部21の変換効率が低いと判断する。これにより、本変形例の充放電装置2においても、本実施形態と同様に、電力変換部21の変換効率が低い状態であることを容易に判断することができる。
 また、本実施形態の他の変形例として、充放電装置2は、図4に示すような入力電力と変換効率との対応関係を用いて変換効率が低いか否かを判断してもよい。本変形例の充放電装置2は、入力電力と変換効率との対応関係を記憶する記憶部(図示せず)をさらに備えている。本変形例のコントローラ22の前記制御部は、コントローラ22の前記入力測定部で測定された入力電力に対応する変換効率を前記記憶部から選択し、上記変換効率が予め決められた基準値以下である場合に上記変換効率が低いと判断し、蓄電池31の充放電を行わないように電力変換部21を制御する。
 以上説明した本変形例の充放電装置2は、上述のように、コントローラ22の前記入力測定部で測定された入力電力に対応する変換効率を前記記憶部から選択し、上記変換効率が閾値以下である場合に電力変換部21の変換効率が低いと判断する。これにより、本変形例の充放電装置2においても、本実施形態と同様に、電力変換部21の変換効率が低い状態であることを容易に判断することができる。
 (実施形態2)
 実施形態2に係る充放電システム1は、図5に示すように、充放電装置2において、複数(図示例では5つ)の電力変換部21,21,……と、その複数の電力変換部21,21,……とそれぞれ1対1で対応する複数(図示例では同様に5つ)の蓄電池ユニット3,3,……(蓄電池31,31,……)を備えている点で、実施形態1に係る充放電システム1(図1参照)と相違する。なお、実施形態1の充放電システム1と同様の構成要素については、同一の符号を付して説明を省略する。図5において、実線12は交流電力の電力路を示し、破線13は直流電力の電力路を示し、一点鎖線14は通信線を示す。
 本実施形態の充放電システム1は、総入力取得部71と、管理部72とを備えている。
 総入力取得部71は、複数の電力変換部21,21,……の各々の入力電力の合計電力を取得する。なお、総入力取得部71は、複数の電力変換部21,21,……の入力電力を測定する独自の電力測定手段を備えていてもよいし、各電力変換部21から入力電力の情報を取得して合算してもよい。また、本実施形態の総入力取得部71は、図5に示すように、充放電装置2とは別体に設けられていているが、充放電装置2内に設けられていてもよい。
 管理部72は、総入力取得部71で取得された合計電力に応じて、複数の電力変換部21,21,……の中から、電力変換を行う電力変換部21を少なくとも1つ選択し、残りの電力変換部21が電力変換を行わないようにコントローラ22に指示する。なお、本実施形態の管理部72は、図5に示すように、充放電装置2とは別体に設けられて充放電装置2と通信するようにしているが、充放電装置2内に設けられていてもよい。
 また、本実施形態の充放電システム1は、昇圧部51と、太陽電池側電力変換部52とを備えている。昇圧部51は、例えば最大電力点追従制御(MPPT)機能を有するDC/DCコンバータであり、太陽電池4の発電電力を昇圧する。太陽電池側電力変換部52は、例えば双方向DC/ACインバータであり、昇圧部51から出力された直流電力を交流電力に変換する。本実施形態では、太陽電池4と昇圧部51と太陽電池側電力変換部52とで太陽光発電装置11を構成する。つまり、本実施形態の各電力変換部21は、実施形態1における直流-交流変換および交流-直流変換を行うための双方向DC/ACインバータ211を備える必要はない。
 本実施形態の充放電装置2において、複数の電力変換部21,21,……は、昇圧部51と太陽電池側電力変換部52との間の接点と蓄電池ユニット3(蓄電池31)との間に挿入されて設けられている。なお、実施形態1の充放電装置2(図1参照)と同様の機能については説明を省略する。
 次に、本実施形態に係る充放電システム1の動作について説明する。本実施形態の充放電システム1は、充放電装置2の電力変換部21を選択して蓄電池31の充放電を行う。
 図6Aは、5つの電力変換部21,21,……を並列に接続された場合の効率特性を示し、図6Bは、各電力変換部21単体の効率特性を示す。例えば入力電力が1kWである場合の効率を比較すると、図6Aでは82%であるのに対し、図6Bでは94%である。これにより、1つの電力変換部21を用いた場合の効率のほうかよいので、1つの電力変換部21を単独運転させるように残りの電力変換部21,21,……を停止させる。
 以上説明した本実施形態の充放電システム1は、複数の電力変換部21,21,……の中から少なくとも1つを選択して、選択された電力変換部21と対応する蓄電池31の充放電を行わせる。これにより、複数の電力変換部21,21,……のすべてを動作させる場合よりも、効率よく動作させることができる。すなわち、複数の電力変換部21,21,……の組み合わせによって最大効率での動作が可能である。
 また、本実施形態の充放電システム1では、昇圧部51と太陽電池側電力変換部52との間の接点と蓄電池ユニット3(蓄電池31)との間に充放電装置2が挿入されて設けられている。これにより、本実施形態の各電力変換部21は、実施形態1における双方向DC/ACインバータ211を備える必要はなく、直流-交流変換および交流-直流変換を行わずに、太陽電池4の発電電力を用いて蓄電池31を充放電することができるので、変換ロスを低減することができる。
 (実施形態3)
 実施形態3に係る充放電システム1は、図7に示すように、充放電装置2において、2つの電力変換部21,21と、その2つの電力変換部21,21と対応する1つの蓄電池ユニット3(蓄電池31)を備えている点で、実施形態2に係る充放電システム1(図5参照)と相違する。つまり、本実施形態の充放電システム1は、1つの蓄電池ユニット3に対して複数(図示例では2つ)の電力変換部21,21が設けられている。なお、実施形態2の充放電システム1と同様の構成要素については、同一の符号を付して説明を省略する。図7において、実線12は交流電力の電力路を示し、破線13は直流電力の電力路を示し、一点鎖線14は通信線を示す。
 本実施形態の充放電装置2は、2回路が並列接続されており、条件に応じて1回路をオフにして蓄電池ユニット3の蓄電池31の充電および放電を行う。本実施形態の各充放電装置2は、双方向DC/DCコンバータを備えている。
 図8Aは、2つの電力変換部21,21を並列に動作させたことによる効率特性を示し、図8Bは、いずれかの電力変換部21の単独の効率特性を示す。例えば入力電力が2kWである場合の効率を比較すると、図8Aでは88%であるのに対し、図8Bでは93%である。これにより、いずれかの電力変換部21の単独動作のほうが効率がよい。なお、本実施形態の総入力取得部71および管理部72は、コントローラ22に内蔵されている。
 以上説明した本実施形態の充放電システム1においても、実施形態2と同様に、複数の電力変換部21,21の中から少なくとも1つを選択して蓄電池31の充放電を行わせる。ただし、実施形態2とは異なり、充放電が行われる対象は、他の選択されなかった電力変換部21とで兼用する蓄電池31である。これにより、複数の電力変換部21,21のすべてを動作させる場合よりも、効率よく動作させることができる。すなわち、複数の電力変換部21,21の組み合わせによって最大効率での動作が可能である。
 (実施形態4)
 実施形態4に係る充放電システム1は、図9に示すように充放電装置2が連携盤6に接続されている点で、実施形態2に係る充放電システム1(図5参照)と相違する。なお、実施形態2の充放電システム1と同様の構成要素については、同一の符号を付して説明を省略する。図9において、実線12は交流電力の電力路を示し、破線13は直流電力の電力路を示し、一点鎖線14は通信線を示す。
 本実施形態の充放電装置2は、実施形態2の双方向DC/DCコンバータに代えて双方向DC/ACインバータを備えている。なお、実施形態2の充放電装置2(図5参照)と同様の機能については説明を省略する。
 以上説明した本実施形態の充放電システム1においても、実施形態2と同様に、複数の電力変換部21,21,……の中から少なくとも1つを選択して、選択された電力変換部21と対応する蓄電池31の充放電を行わせる。これにより、複数の電力変換部21,21,……のすべてを動作させる場合よりも、効率よく動作させることができる。すなわち、複数の電力変換部21,21,……の組み合わせによって最大効率での動作が可能である。
 (実施形態5)
 実施形態5に係る充放電システム1は、図10に示すような充放電装置2が連携盤6に接続されている点で、実施形態3に係る充放電システム1(図7参照)と相違する。なお、実施形態3の充放電システム1と同様の構成要素については、同一の符号を付して説明を省略する。図10において、実線12は交流電力の電力路を示し、破線13は直流電力の電力路を示し、一点鎖線14は通信線を示す。
 本実施形態の充放電装置2は、図11に示すように、1つの電力変換部21内に複数(図示例では2つ)の双方向DC/DCコンバータ212,212を備えている。つまり、1つの双方向DC/ACインバータ211は、2つの双方向DC/DCコンバータ212,212において兼用されている。なお、実施形態3の充放電装置2(図7参照)と同様の機能については説明を省略する。
 以上説明した本実施形態の充放電システム1において、コントローラ22の前記制御部は、1つの電力変換部21内の複数の双方向DC/DCコンバータ212,212の中から少なくとも1つを選択して、蓄電池31の充放電を行わせるように制御する。そして、前記制御部は、残りの双方向DC/DCコンバータが電力変換を行わないように制御する。これにより、複数の双方向DC/DCコンバータ212,212のすべてを動作させる場合よりも、効率よく動作させることができる。すなわち、複数の双方向DC/DCコンバータ212,212の組み合わせによって最大効率での動作が可能である。
 本発明を幾つかの好ましい実施形態について記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。

Claims (9)

  1.  蓄電池の充放電路に設けられ電力変換を行う電力変換部と、
     前記電力変換部を用いた前記蓄電池の充放電を制御する制御部とを備え、
     前記制御部は、前記電力変換部における入力電力に対する出力電力の比率を表わす変換効率が所定条件によって低いと判断した場合、前記蓄電池の充放電を行わないように前記電力変換部を制御する
     ことを特徴とする充放電装置。
  2.  前記電力変換部に入力される前記入力電力を測定する入力測定部を備え、
     前記制御部は、前記入力測定部で測定された前記入力電力が予め決められた閾値以下である場合に前記変換効率が低いと判断し、前記蓄電池の充放電を行わないように前記電力変換部を制御する
     ことを特徴とする請求項1記載の充放電装置。
  3.  前記電力変換部に入力される前記入力電力を測定する入力測定部と、
     前記電力変換部から出力される前記出力電力を測定する出力測定部とを備え、
     前記制御部は、前記入力測定部で測定された前記入力電力と前記出力測定部で測定された前記出力電力とから前記変換効率を求め、当該変換効率が予め決められた基準値以下である場合に当該変換効率が低いと判断し、前記蓄電池の充放電を行わないように前記電力変換部を制御する
     ことを特徴とする請求項1記載の充放電装置。
  4.  前記電力変換部に入力される前記入力電力を測定する入力測定部と、
     前記入力電力と前記変換効率との対応関係を記憶する記憶部とを備え、
     前記制御部は、前記入力測定部で測定された前記入力電力に対応する前記変換効率を前記記憶部から選択し、当該変換効率が予め決められた基準値以下である場合に当該変換効率が低いと判断し、前記蓄電池の充放電を行わないように前記電力変換部を制御する
     ことを特徴とする請求項1記載の充放電装置。
  5.  前記制御部は、商用電力系統からの給電がない場合、前記変換効率にかかわらず前記蓄電池の充放電を行うように前記電力変換部を制御することを特徴とする請求項1~4のいずれか1項に記載の充放電装置。
  6.  請求項1~5のいずれか1項に記載の充放電装置と、
     出力電力が変動する電源装置と
     を備えることを特徴とする充放電システム。
  7.  前記電力変換部が前記充放電装置に複数設けられており、
     複数の前記電力変換部の各々の前記入力電力の合計電力を取得する総入力取得部と、
     前記総入力取得部で取得された前記合計電力に応じて、複数の前記電力変換部の中から、電力変換を行う電力変換部を少なくとも1つ選択し、残りの電力変換部が電力変換を行わないように前記制御部に指示する管理部とをさらに備える
     ことを特徴とする請求項6記載の充放電システム。
  8.  前記電力変換部は、前記蓄電池への充電用に前記入力電力を交流電力から直流電力へ変換し、前記蓄電池からの放電用に直流電力から交流電力へ変換して前記出力電力として出力する双方向DC/ACインバータと、
     前記蓄電池と前記双方向DC/ACインバータとの間に設けられて所定の直流電力へ電力変換する複数の双方向DC/DCコンバータとを備え、
     前記制御部は、前記入力電力に応じて、電力変換を行う双方向DC/DCコンバータを少なくとも1つ選択し、残りの双方向DC/DCコンバータが電力変換を行わないように制御することを特徴とする請求項6記載の充放電システム。
  9.  前記電源装置は、太陽電池に対して最大電力点追従制御を行う太陽光発電装置であり、
     前記太陽光発電装置は、前記太陽電池と、前記太陽電池が発電した直流電力を昇圧する昇圧部と、前記昇圧部から出力された前記直流電力を交流電力に変換する太陽電池側電力変換部とを備え、
     前記充放電装置は、前記昇圧部と前記太陽電池側電力変換部との間の接点と前記蓄電池との間に挿入されて設けられる
     ことを特徴とする請求項6~8のいずれか1項に記載の充放電システム。
PCT/JP2012/081398 2011-12-19 2012-12-04 充放電装置およびこれを用いた充放電システム WO2013094396A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12860867.6A EP2797198A4 (en) 2011-12-19 2012-12-04 CHARGE AND DISCHARGE DEVICE AND CHARGE AND DISCHARGE SYSTEM USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-276988 2011-12-19
JP2011276988 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094396A1 true WO2013094396A1 (ja) 2013-06-27

Family

ID=48668295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081398 WO2013094396A1 (ja) 2011-12-19 2012-12-04 充放電装置およびこれを用いた充放電システム

Country Status (3)

Country Link
EP (1) EP2797198A4 (ja)
JP (1) JPWO2013094396A1 (ja)
WO (1) WO2013094396A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011901A (ja) * 2015-06-23 2017-01-12 株式会社Nttファシリティーズ 太陽光発電システムの制御装置、太陽光発電システム、及び制御プログラム
JPWO2016166836A1 (ja) * 2015-04-15 2017-09-07 三菱電機株式会社 機器管理装置、機器管理システム、機器管理方法及びプログラム
US10135248B2 (en) 2014-04-16 2018-11-20 Mitsubishi Electric Corporation Control apparatus, control system, control method, and recording medium for controlling devices to charge or discharge electricity storage apparatus
JP2019103197A (ja) * 2017-11-29 2019-06-24 オムロン株式会社 蓄電システム
WO2021038762A1 (ja) * 2019-08-28 2021-03-04 三菱電機株式会社 充放電制御装置、蓄電システムおよび充放電制御方法
KR20230100965A (ko) * 2021-12-29 2023-07-06 (주)엠피에스코리아 태양광 패널의 최대 전력점 추종 제어를 지원하는 계통연계 인버터

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165513A (ja) * 1992-11-18 1994-06-10 Toshiba F Ee Syst Eng Kk インバータの高効率運転装置
JPH1155858A (ja) * 1997-07-30 1999-02-26 Meidensha Corp 自家用受変電所
JP2008141918A (ja) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システム評価装置、方法、およびプログラム
JP2009159691A (ja) 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd 電源システム
JP2010267106A (ja) * 2009-05-15 2010-11-25 Ntt Facilities Inc 太陽光発電システム及び制御方法
JP2010273407A (ja) * 2009-05-19 2010-12-02 Osaka Gas Co Ltd エネルギー供給システム
JP2012130161A (ja) * 2010-12-15 2012-07-05 Panasonic Corp 電力制御装置及びそれを用いた電力供給システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336799B2 (ja) * 2005-03-28 2009-09-30 日本電気株式会社 携帯電子機器、携帯電子機器の電源の制御回路及び制御方法
JP2006333625A (ja) * 2005-05-26 2006-12-07 Daihen Corp 電源システムの運転方法
JP4563302B2 (ja) * 2005-11-25 2010-10-13 三菱重工業株式会社 電力配分制御装置およびハイブリッド建設機械
US8310094B2 (en) * 2006-01-27 2012-11-13 Sharp Kabushiki Kaisha Power supply system
JP5018448B2 (ja) * 2007-12-18 2012-09-05 パナソニック株式会社 蓄電装置
US9263895B2 (en) * 2007-12-21 2016-02-16 Sunpower Corporation Distributed energy conversion systems
JP5297836B2 (ja) * 2009-02-20 2013-09-25 シャープ株式会社 発電システム
JP5402289B2 (ja) * 2009-06-18 2014-01-29 日産自動車株式会社 電力供給装置
JP5371580B2 (ja) * 2009-06-29 2013-12-18 ヤンマー株式会社 発電システム
JP5546832B2 (ja) * 2009-11-16 2014-07-09 パナソニック株式会社 配電システム
KR101097260B1 (ko) * 2009-12-15 2011-12-22 삼성에스디아이 주식회사 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
US9502904B2 (en) * 2010-03-23 2016-11-22 Eaton Corporation Power conversion system and method providing maximum efficiency of power conversion for a photovoltaic system, and photovoltaic system employing a photovoltaic array and an energy storage device
JP5383902B2 (ja) * 2010-03-30 2014-01-08 三洋電機株式会社 電力供給システム、電力供給方法および電力供給システムの制御プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165513A (ja) * 1992-11-18 1994-06-10 Toshiba F Ee Syst Eng Kk インバータの高効率運転装置
JPH1155858A (ja) * 1997-07-30 1999-02-26 Meidensha Corp 自家用受変電所
JP2008141918A (ja) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システム評価装置、方法、およびプログラム
JP2009159691A (ja) 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd 電源システム
JP2010267106A (ja) * 2009-05-15 2010-11-25 Ntt Facilities Inc 太陽光発電システム及び制御方法
JP2010273407A (ja) * 2009-05-19 2010-12-02 Osaka Gas Co Ltd エネルギー供給システム
JP2012130161A (ja) * 2010-12-15 2012-07-05 Panasonic Corp 電力制御装置及びそれを用いた電力供給システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2797198A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135248B2 (en) 2014-04-16 2018-11-20 Mitsubishi Electric Corporation Control apparatus, control system, control method, and recording medium for controlling devices to charge or discharge electricity storage apparatus
JPWO2016166836A1 (ja) * 2015-04-15 2017-09-07 三菱電機株式会社 機器管理装置、機器管理システム、機器管理方法及びプログラム
JP2017011901A (ja) * 2015-06-23 2017-01-12 株式会社Nttファシリティーズ 太陽光発電システムの制御装置、太陽光発電システム、及び制御プログラム
JP2019103197A (ja) * 2017-11-29 2019-06-24 オムロン株式会社 蓄電システム
WO2021038762A1 (ja) * 2019-08-28 2021-03-04 三菱電機株式会社 充放電制御装置、蓄電システムおよび充放電制御方法
KR20230100965A (ko) * 2021-12-29 2023-07-06 (주)엠피에스코리아 태양광 패널의 최대 전력점 추종 제어를 지원하는 계통연계 인버터
KR102686954B1 (ko) * 2021-12-29 2024-07-22 (주)엠피에스코리아 태양광 패널의 최대 전력점 추종 제어를 지원하는 계통연계 인버터

Also Published As

Publication number Publication date
EP2797198A1 (en) 2014-10-29
EP2797198A4 (en) 2015-09-02
JPWO2013094396A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
KR101084214B1 (ko) 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
JP5800919B2 (ja) 電力変換装置
JP5155373B2 (ja) 系統連係型電力保存システム及びそれを制御する方法
JP5633478B2 (ja) 蓄電池
JP5485857B2 (ja) 電力管理システム
US20160214491A1 (en) Charging facility and energy management method for charging facility
WO2011065375A1 (ja) 電力変換装置、発電システム、及び充放電制御方法
JP5756903B2 (ja) 配電システム
WO2013094396A1 (ja) 充放電装置およびこれを用いた充放電システム
JP2012175864A (ja) 蓄電システム
JP5938679B2 (ja) 双方向コンバータ
JP7165953B2 (ja) 電力変換システム
WO2017134773A1 (ja) 電力供給システム
JP5661075B2 (ja) 充放電装置
JPH08331776A (ja) 直流電源システム
KR101920695B1 (ko) 동시 충방전 및 on-off 그리드 전환 사용이 가능한 에너지 저장 장치(ess)
WO2013151133A1 (ja) 配電装置および電力供給システム
JP2015122841A (ja) 蓄電システムおよび発電システム
JP6358376B2 (ja) 蓄電池用変換装置、電力供給システムおよび電力供給制御方法
JP6722295B2 (ja) 電力変換システム、電力供給システムおよび電力変換装置
JP7382287B2 (ja) パワーコンディショナ
WO2021044653A1 (ja) 電力変換装置、系統連系システム
JP7405704B2 (ja) 蓄電システム
JP2024006239A (ja) 電力システム
JP2024154613A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550204

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012860867

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860867

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE