[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013088935A1 - 核酸増幅方法 - Google Patents

核酸増幅方法 Download PDF

Info

Publication number
WO2013088935A1
WO2013088935A1 PCT/JP2012/080307 JP2012080307W WO2013088935A1 WO 2013088935 A1 WO2013088935 A1 WO 2013088935A1 JP 2012080307 W JP2012080307 W JP 2012080307W WO 2013088935 A1 WO2013088935 A1 WO 2013088935A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
sequence
adapter
strand
complementary
Prior art date
Application number
PCT/JP2012/080307
Other languages
English (en)
French (fr)
Inventor
矢澤 義昭
崇秀 横井
植松 千宗
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201280059861.6A priority Critical patent/CN103975062B/zh
Priority to US14/364,940 priority patent/US9714449B2/en
Priority to EP12856949.8A priority patent/EP2792743B1/en
Publication of WO2013088935A1 publication Critical patent/WO2013088935A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Definitions

  • the present invention relates to a method and a kit for amplifying a target DNA sequence to form a concatamer.
  • the present invention also relates to a method, kit and apparatus for determining a base sequence using the concatamer thus formed.
  • Non-patent Document 1 a rapid and highly sensitive base sequence determination method by massively parallel base sequence measurement has been developed (Non-patent Document 1), and the application of this method has become widespread, so that the whole genome of plants, fungi, animals, bacteria and viruses can be obtained. Can be analyzed within a week.
  • the nucleotide sequence information obtained in this way is now indispensable in the fields of drug discovery, medicine and agriculture. There is no doubt that the range of gene sequence information applications will expand further in the future. It is expected that further improvements in throughput and accuracy will be required in the future. In addition, fields that require accurate quantitativeness such as expression analysis are expected to grow greatly.
  • High-throughput base sequence measurement enables high throughput by arranging millions to billions of monoclonal DNA fragment clusters on the channel substrate and reading the nucleic acid fragment base sequences of each cluster in parallel. Is realized.
  • means for forming a large number of clusters and placing them on the flow path substrate (a) PCR with one end of the template DNA fixed on the flow path substrate, (b) solid of emulsion PCR (emPCR) product Techniques such as fixation to beads and (c) DNA nanoball formation by isothermal amplification on circular DNA are used.
  • Massively parallel base sequence measurement has greatly contributed to the improvement of analysis throughput and accuracy, but the time and effort required to place a large number of clusters on the flow path substrate are obstacles to improving throughput and accuracy. ing. Furthermore, there is a demand for technological development to improve quantitativeness.
  • massively parallel base sequence measurement a large number of clusters in which monoclonal DNA fragments are accumulated are arranged on a flow path substrate, and the sequence of each cluster is read in parallel.
  • the problem common to (a), (b), and (c) is that all three methods have an amplification process using an excessive amount of primer with respect to the template DNA.
  • the starting point of base extension in the amplification process is generally the primer 3 'end (for example, Patent Documents 1, 5 and 6).
  • unintended amplification products are generated due to partial and temporary binding of primers to each other, which causes a reduction in the quality of the DNA library to be measured.
  • the template amplification primer is designed to hybridize with a predetermined region of the amplification target DNA fragment or a predetermined region of an adapter of known sequence added to the amplification target DNA fragment (for example, Patent Document 6),
  • the base sequence of the amplification target region is generally unknown, and the sequence structure adjacent to the adapter is unpredictable. Since the thermal denaturation process of the DNA fragment to be amplified, which is the initial reaction of amplification, is affected by the thermal stability of the base sequence structure, the hybridization efficiency of the primer changes each time the DNA fragment to be amplified having a different sequence is included. Thus, the frequency distribution of the DNA fragment is different from that of the template. This is an undesirable characteristic especially in the scene of expression analysis where quantitativeness is important.
  • Patent Document 2 provides a continuous amplification method starting from a primer using circular DNA as a template.
  • the purpose of the nick introduced here is to stop the extension reaction initiated from the nick at other nick sites formed elsewhere in the circular DNA and to continuously amplify the target DNA sequence is not.
  • Patent Document 4 a nick is introduced into the circular DNA structure, but continuous amplification is not performed at the nick starting point.
  • An amplification method using nick start amplification is disclosed in Patent Document 3, but this also does not provide a continuous amplification method.
  • an object of the present invention is to reduce the labor and time required for template DNA amplification, as well as unintended amplification products resulting from the binding of primers in conventional amplification methods, and amplification due to variations in primer hybridization efficiency.
  • the present inventor ligated an adapter capable of forming a folded structure on the template DNA to form a circular DNA template, and the extension reaction was initiated from the nick without using a primer.
  • an adapter capable of forming a folded structure on the template DNA to form a circular DNA template
  • the extension reaction was initiated from the nick without using a primer.
  • the present invention includes the following.
  • the double-stranded adapter has an adapter DNA strand having a first DNA sequence, a second DNA sequence, and a third DNA sequence, and the first and third DNA sequences form a folded structure
  • the method according to [1] which is a possible sequence and forms a double strand by binding the adapter DNA strand and a complementary adapter DNA strand.
  • the double-stranded adapter has an adapter DNA strand constructed in the order of the first DNA sequence, the second DNA sequence and the third DNA sequence from the 5 ′ end to the 3 ′ end, It has an adapter DNA strand constructed in the order of the first DNA sequence, the third DNA sequence and the second DNA sequence, or is constructed in the order of the second DNA sequence, the first DNA sequence and the third DNA sequence [2]
  • the double-stranded adapter includes a first adapter DNA strand and a second adapter DNA strand complementary to the first adapter DNA strand, and the first adapter DNA strand and the second adapter DNA strand bind to each other.
  • Forming a double strand The first adapter DNA strand has a first DNA sequence, a second DNA sequence, and a third DNA sequence from the 5 ′ end to the 3 ′ end, and the first and third DNA sequences are folded.
  • the second adapter DNA strand From the 5 ′ end to the 3 ′ end, the second adapter DNA strand has a third complementary sequence complementary to the third DNA sequence, a second complementary sequence complementary to the second DNA sequence, and the second A first complementary sequence complementary to one DNA sequence, the first and third complementary sequences are sequences capable of forming a folded structure;
  • the method (B1) In the circular DNA template, the first nick is formed at the 5 ′ end of the first DNA sequence on the first adapter DNA strand, and the 5 ′ end of the third complementary sequence on the second adapter DNA strand A step in which a second nick is formed, (B2) An adapter DNA strand having the same sequence as the first adapter DNA strand, with the 3 ′ end extending from the first nick to the position of the second nick on the second adapter DNA strand by strand displacement DNA polymerase Is formed, the extension reaction is stopped, and the adapter DNA strand forms a folded structure, (B3) A DNA sequence complementary to the target DNA sequence is extended by the 3
  • a step in which the DNA strand forms a folded structure (B4) A 3 ′ end extension reaction of the adapter DNA strand extends the same DNA sequence as the target DNA sequence, and then generates an adapter DNA strand having the same sequence as the first adapter DNA strand. Forming a folded structure, (B5) By repeating steps (b3) and (b4), a target DNA sequence, a first adapter DNA strand, a DNA sequence complementary to the target DNA sequence and a plurality of second adapter DNA strands are connected in series.
  • the method according to [1] comprising a step of forming a concatemer having a linked shape.
  • the first adapter DNA strand has a first DNA sequence, a second DNA sequence, and a third DNA sequence, the first and third DNA sequences are sequences that can form a folded structure
  • the second adapter DNA strand comprises a third complementary sequence complementary to the third DNA sequence, a second complementary sequence complementary to the second DNA sequence, and a first complementary to the first DNA sequence. Having a complementary sequence, the first and third complementary sequences are sequences capable of forming a folded structure,
  • One or both of the first adapter DNA strand and the second adapter DNA strand have a sequence that includes or can form a nick, The kit above.
  • a nick is included at the 3 ′ end or 5 ′ end of the second DNA sequence of the first adapter DNA strand and / or the 3 ′ end or 5 ′ end of the second complementary sequence of the second adapter DNA strand.
  • a nick is included or formed at the 5 ′ end of the first DNA sequence of the first adapter DNA strand and / or the 5 ′ end of the third complementary sequence of the second adapter DNA strand, [6] The kit according to 1.
  • kit according to any one of [6] to [9], further comprising a primer that specifically binds to the second DNA sequence and / or a primer that specifically binds to the second complementary sequence.
  • the cross-sectional diameter of the periodically arranged columnar structures and the arrangement period of the columnar structures are in the range of 0.5 to 3 times the maximum outer dimensions when the concatemer is projected onto an arbitrary plane. The device described.
  • the present invention provides a nucleic acid amplification method and kit.
  • This nucleic acid amplification method and kit not only enables simple and efficient nucleic acid amplification, but also eliminates the generation of conventionally used primer-derived artifacts and maintains the abundance ratio of DNA molecules to be amplified. Amplification is possible. This saves effort and time and increases throughput and accuracy.
  • the present nucleic acid amplification method and kit form a concatamer having an optimal number of target DNA sequences and optimal shape for base sequencing, the present invention provides simple and high-throughput base sequencing. Useful to do.
  • nucleic acid amplification reaction It is a figure which shows an example of a nucleic acid amplification reaction. It is a figure which shows the structural example of the template of nucleic acid amplification reaction. It is a figure which shows the example of the formation method of the circular DNA template of a nucleic acid amplification reaction. It is a figure which shows the example of the formation method of the circular DNA template of a nucleic acid amplification reaction. It is a figure which shows another example of nucleic acid amplification reaction. It is a figure which shows the example of the arrangement
  • the present invention provides a method and means for amplifying a target DNA sequence.
  • an adapter capable of forming a nick and a folded structure is incorporated into a circular double-stranded template in order to obtain amplification products of the number and shape suitable for subsequent base sequencing.
  • a concatemer having a suitable shape including a number of target DNA sequences suitable for base sequence determination can be formed.
  • double-stranded DNA containing the target DNA sequence is prepared.
  • the double-stranded DNA containing the target DNA sequence is not particularly limited as long as it contains the sequence to be amplified or sequenced, and may be genomic DNA, complementary DNA (cDNA), synthesized DNA, etc. be able to.
  • the origin is not particularly limited, and double-stranded DNA derived from any source of living organisms (eg, cells, tissues, fluids, etc.) and synthesis (eg, DNA libraries such as cDNA libraries) can be used. .
  • the living body is not particularly limited, and vertebrates (eg, mammals, birds, reptiles, fishes, amphibians, etc.), invertebrates (eg, insects, nematodes, crustaceans, etc.), protists
  • vertebrates eg, mammals, birds, reptiles, fishes, amphibians, etc.
  • invertebrates eg, insects, nematodes, crustaceans, etc.
  • protists A source derived from any living body such as a plant, a fungus, a bacterium, or a virus can be used.
  • Double-stranded DNA can be prepared by methods known in the art. For example, when preparing double-stranded DNA from cells, proteolytic enzymes such as Proteinase K, chaotropic salts such as guanidine thiocyanate and guanidine hydrochloride, surfactants such as Tween and SDS, or commercially available cell lysis agents Reagents can be used to lyse cells and elute the nucleic acids contained therein, ie genomic DNA and RNA. Genomic DNA may be fragmented by physical cleavage or restriction enzyme cleavage.
  • proteolytic enzymes such as Proteinase K
  • chaotropic salts such as guanidine thiocyanate and guanidine hydrochloride
  • surfactants such as Tween and SDS
  • Genomic DNA may be fragmented by physical cleavage or restriction enzyme cleavage.
  • DNA is degraded by DNA-degrading enzyme (DNase) to obtain a sample containing only RNA as nucleic acid, and using a DNA probe containing poly-T sequence.
  • DNase DNA-degrading enzyme
  • cDNA can be synthesized from mRNA by performing reverse transcription using reverse transcriptase.
  • double-stranded DNA can also be prepared by performing an amplification reaction using the DNA or RNA prepared as described above or a DNA library as a template. In order to prepare DNA, kits are sold from many manufacturers, and the target double-stranded DNA can be easily purified.
  • the double-stranded DNA may contain a single kind of DNA or may contain a plurality of kinds of DNA. That is, the double-stranded DNA may contain the same target DNA sequence or may contain different sequences.
  • the double-stranded DNA can be a DNA pool, a cDNA library, or the like.
  • a plurality of types of cDNA contained in a cDNA library prepared from a plurality of types of mRNA can be uniformly amplified as double-stranded DNA.
  • double-stranded adapter refers to DNA that is ligated with double-stranded DNA containing a target DNA sequence in order to prepare a circular DNA template.
  • the double-stranded adapter includes an adapter DNA strand capable of forming a folded structure, the double-stranded adapter can have any sequence of any length.
  • the structure of the double-stranded adapter is a double strand formed by combining one adapter DNA strand and a complementary adapter DNA strand.
  • the “folded structure” means that a single sequence on the adapter DNA strand (single strand) and a complementary sequence are bound to each other, whereby the single-stranded amplification product is folded at the adapter DNA strand.
  • the adapter DNA strand capable of forming a folded structure includes a certain sequence and a sequence complementary thereto.
  • the adapter DNA strand forms a sequence and its complementary sequence (forming a stem portion) so that a folded structure is formed by forming a “hairpin” or “stem-loop” as known in the art. ) And another sequence that is not complementary to both sequences (forms a hairpin portion or a loop portion).
  • the first and third DNA sequences can form a folded structure. That is, the first DNA sequence and the third DNA sequence are complementary.
  • the folded structure is formed even if the two sequences forming it are not perfectly (100%) complementary. Therefore, the first DNA sequence and the third DNA sequence have such a degree of complementarity that both sequences can bind, for example, at least 80% of the bases are complementary, preferably at least 90%, more preferably At least 95%, most preferably at least 98%, 99% or 100% of the bases are complementary.
  • the sequence that can form a folded structure has a length suitable for forming the folded structure, for example, 10 to 100 bases, preferably 15 to 50 bases. is there.
  • the arrangement of the first to third DNA sequences in the adapter DNA strand is not particularly limited and can be appropriately arranged by those skilled in the art.
  • the adapter DNA strand may be configured from the 5 ′ end to the 3 ′ end in the order of the first DNA sequence, the second DNA sequence, and the third DNA sequence, or the first DNA sequence
  • the third DNA sequence and the second DNA sequence may be configured in this order, or the second DNA sequence, the first DNA sequence, and the third DNA sequence may be configured in this order (for example, (See Figure 2).
  • the adapter DNA strand is constructed from the 5 ′ end to the 3 ′ end in the order of the first DNA sequence, the second DNA sequence, and the third DNA sequence, and sandwiches the second DNA sequence.
  • the first and third DNA sequences form a folded structure, whereby a hairpin or stem-loop structure is formed.
  • the double-stranded adapter includes a first adapter DNA strand and a second adapter DNA strand complementary to the first adapter DNA strand, and the first adapter DNA strand and the second adapter DNA strand bind to each other.
  • the first adapter DNA strand has a first DNA sequence, a second DNA sequence, and a third DNA sequence from the 5 ′ end to the 3 ′ end, and the first and third DNA sequences are folded.
  • the second adapter DNA strand From the 5 ′ end to the 3 ′ end, the second adapter DNA strand has a third complementary sequence complementary to the third DNA sequence, a second complementary sequence complementary to the second DNA sequence, and the second It has a first complementary sequence complementary to one DNA sequence, and the first and third complementary sequences are sequences capable of forming a folded structure.
  • the specific sequence and length of the adapter DNA strand that can form a folded structure in the double-stranded adapter is the length and type of the target DNA sequence to be amplified, the use of the concatemer after amplification, etc. Depending on the design, it can be appropriately designed.
  • double-stranded adapters can be ligated.
  • the restriction enzyme recognition sequence may be included.
  • the double-stranded adapter can be prepared by a known DNA synthesis method or using a commercial DNA synthesis consignment organization.
  • the method for ligating the double-stranded adapter to the double-stranded DNA containing the target DNA sequence is not particularly limited.
  • a double-stranded adapter can be prepared as one cassette, which can be ligated with double-stranded DNA to form a circular DNA template (see, for example, FIG. 3).
  • a circular DNA template can be obtained by binding two sequences of the split double-stranded adapter to both ends of the double-stranded DNA, and then linking these two sequences (for example, figure 4).
  • Ligation can be performed by a method known in the art, for example, a method using a restriction enzyme or ligase.
  • the connecting portion between the double-stranded DNA and the double-stranded adapter may have a protruding end or a blunt end.
  • the circular DNA template thus obtained should contain a nick (cutting part).
  • “Nick” refers to a site where the bond between adjacent bases in one strand of double-stranded DNA is broken.
  • the nick can be set at any position on one or both strands of the circular DNA template.
  • the target DNA sequence or its complementary sequence is amplified by a 3 ′ end extension (amplification) reaction described later, and the target DNA sequence or its complementary sequence is serially connected. A plurality of concatemers linked to each other is formed.
  • both the target DNA sequence and its complementary sequence are amplified by the 3 ′ end extension (amplification) reaction described later.
  • the position of the nick on the double-stranded adapter is not particularly limited, and may be on the 5 ′ end or 3 ′ end of one strand of the double-stranded adapter or on the strand, or on the double-stranded adapter. It can be at the 5 ′ end, 3 ′ end of either strand or any position on the strand (see, eg, FIG. 2).
  • the method for setting the nick is not particularly limited, and can be performed by a method known in the art.
  • a method of ligating a nicked double-stranded adapter to double-stranded DNA (ii) a method of dephosphorylating the 5 ′ end of one adapter DNA strand of the double-stranded adapter, (iii) ) A method in which a nicking enzyme that recognizes a recognition sequence and cleaves one of the two strands (for example, N.BstNBI) recognizes the recognition sequence placed on the double-stranded adapter and generates a nick.
  • a nicking enzyme that recognizes a recognition sequence and cleaves one of the two strands
  • a nick is set in advance at an arbitrary position or 5 ′ end of the adapter DNA strand, or a base sequence recognized by a nicking enzyme is set.
  • the nick is included or formed at the 5 ′ end of the first DNA sequence of the first adapter DNA strand and / or the 5 ′ end of the third complementary sequence of the second adapter DNA strand.
  • a 3′-end extension reaction is performed with a strand displacement DNA polymerase starting from the nick. It is known in the art that a strand-displacing DNA polymerase synthesizes a new DNA strand in the form of repair from a nick location (nick translation).
  • a circular DNA template is amplified by conducting a 3 ′ end extension reaction starting from a nick by rolling circle amplification (RCA) using strand displacement DNA polymerase.
  • “Strand displacement type DNA polymerase” is a polymerase used for 3′-end extension reaction (complementary strand synthesis) and is a type of polymerase that peels off the double-stranded portion of the template DNA and performs the 3′-end extension reaction. .
  • the polymerase that can be used in the present invention is not particularly limited as long as it has such a strand displacement activity. For example, phi29 DNA polymerase, Bst DNA polymerase (large fragment), Bca (exo-) DNA polymerase, Klenow fragment of E.
  • the reaction conditions for the 3 ′ end extension reaction are set as appropriate. For example, when using phi29 DNA polymerase, it is desirable to perform the reaction at around 25 to 35 ° C (approximately 30 ° C), which is the optimal temperature, and when using Bst DNA polymerase, the reaction should be performed at around 60 to 65 ° C. .
  • Such a 3 ′ end extension reaction forms a concatamer having a shape in which a plurality of adapter DNA strands capable of forming a folded structure with a target DNA sequence are connected in series as a single-stranded DNA.
  • a nick is formed in one strand of a circular DNA template, for example, one adapter DNA strand of a double-stranded adapter, a plurality of target DNA sequences and adapter DNA strands are connected in series as single-stranded DNA.
  • Shaped concatamers are formed (see, eg, FIG. 1).
  • a nick is formed on both strands of a circular DNA template, for example, both adapter DNA strands of a double-stranded adapter, the target DNA sequence, one adapter DNA strand, a DNA sequence complementary to the target DNA sequence , And a concatemer having a shape in which a plurality of adapter DNA strands are connected in series is formed (see FIG. 5). Since such a concatamer contains a target DNA sequence and a complementary DNA sequence, the concatamers become strong as a cluster (group) composed of the same sequence when they are combined.
  • a first nick is formed at the 5 ′ end of the first DNA sequence on the first adapter DNA strand, and a third complementary sequence on the second adapter DNA strand is formed.
  • Step of forming a second nick at the 5 'end (2) Starting from the first nick, the 3' end is extended to the position of the second nick on the second adapter DNA strand by strand-displacing DNA polymerase An adapter DNA strand having the same sequence as the first adapter DNA strand is formed to stop the extension reaction, and the adapter DNA strand forms a folded structure, (3) by the 3 ′ end extension reaction of the adapter DNA strand A step in which a DNA sequence complementary to the target DNA sequence is extended, and then an adapter DNA strand having the same sequence as the second adapter DNA strand is generated, and the adapter DNA strand forms a folded structure, (4) It is the same as the target DNA sequence by the 3 'end extension reaction of the adapter DNA strand.
  • a step in which an adapter DNA strand having the same sequence as the first adapter DNA strand is generated and the adapter DNA strand forms a folded structure (5) steps (3) and (4) By iterating, a process is formed in which a concatemer is formed in which a target DNA sequence, a first adapter DNA strand, a DNA sequence complementary to the target DNA sequence and a plurality of second adapter DNA strands are connected in series. It can be carried out.
  • the concatamer formed as described above has a shape in which a target DNA sequence and a plurality of adapter DNA strands capable of forming a folded structure are connected in series, so that the folded structure is formed and folded. Will have. Since the concatamer is a cluster (group) containing a plurality of target DNA sequences, it can be used for base sequence determination, detection of the target DNA sequence, etc. described later.
  • the concatemer formed by the nucleic acid amplification method of the present invention includes a plurality of target DNA sequences, and has a folded shape (also referred to as a ball shape) in which the existing spatial region is limited to a certain range. Suitable for use in the method. Therefore, the nucleic acid amplification method of the present invention can be performed as a pretreatment for determining a base sequence.
  • one or a plurality of concatamers formed by the nucleic acid amplification method of the present invention are immobilized on a substrate, preferably a flow path substrate.
  • a substrate or a channel substrate is a substrate on which a base sequence determination reaction is performed, and is known in the art.
  • the solid substrate is not particularly limited as long as it is a solid substrate generally used for base sequence determination. Specifically, it is a solid substrate that is insoluble in water and does not melt during heat denaturation.
  • Examples of the material include gold, silver, copper, aluminum, tungsten, molybdenum, chromium, platinum, titanium, nickel, and the like; stainless steel , Hastelloy, Inconel, Monel, Duralumin and other alloys; Silicon; Glass materials such as glass, quartz glass, fused silica, synthetic quartz, alumina, sapphire, ceramics, forsterite and photosensitive glass; polyester resin, polystyrene, polyethylene resin, Plastics such as polypropylene resin, ABS resin (Acrylonitrile Butadiene Styrene resin), nylon, acrylic resin, fluorine resin, polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin, melamine resin, epoxy resin and vinyl chloride resin; Over scan, dextran, cellulose, polyvinyl alcohol, nitrocellulose, chitin, chitosan.
  • a solid substrate of a transparent material for example, glass, plastic, etc.
  • a flat plate for example, the sectioned plane (for example, titer plate), a film, a tube, particle
  • the method for immobilizing the concatamer on the flow path substrate is not particularly limited.
  • biological bond for example, binding between biotin and avidin or streptavidin, antigen and antibody binding
  • Examples of the immobilization method may be exemplified by bonding.
  • static charge is applied to the flow path substrate surface-treated with aminosilane molecules or cations (polylysine, polyallylamine, polyethyleneimine, etc.) using the charge of the concatemer DNA.
  • aminosilane molecules or cations polylysine, polyallylamine, polyethyleneimine, etc.
  • electrocoupling may be used.
  • Immobilization of concatamers to the flow path substrate through covalent bonds is performed, for example, by introducing a functional group into the concatamer and introducing a functional group reactive with the functional group into the flow path substrate and reacting both. it can.
  • a covalent bond can be formed by introducing an amino group into a concatemer and introducing an active ester group, an epoxy group, an aldehyde group, a carbodiimide group, an isothiocyanate group, or an isocyanate group onto the surface of the flow path substrate.
  • a mercapto group may be introduced into the concatemer, and an active ester group, a maleimide group or a disulfide group may be introduced into the surface of the flow path substrate.
  • Examples of the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimide group, 5-norbornene-2, and 3-dicarboximide group.
  • One method for introducing functional groups onto the surface of the flow path substrate is to treat the surface of the flow path substrate with a silane coupling agent having a desired functional group.
  • Examples of coupling agents include ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, Alternatively, ⁇ -glycidoxypropyltrimethoxysilane or the like can be used.
  • plasma treatment may be mentioned.
  • a primer is bound to each of the concatemers with a sequence other than the sequence capable of forming a folded structure in the adapter DNA strand.
  • the primer is bound to the second DNA sequence in the adapter DNA strand, or the sequence forming the hairpin portion or loop portion.
  • the primer can be designed based on the primer binding region in the adapter DNA strand, taking into account its length and melting temperature (Tm), using a primer design procedure or primer design program known in the art.
  • the length of the primer is, for example, 10 to 80 bases, preferably 12 to 30 bases, and can be appropriately selected by those skilled in the art. Since the concatemer contains a plurality of adapter DNA strands connected in series, a primer can be bound to each adapter DNA strand.
  • Probes containing a recognition site consisting of a plurality of bases and bound with a label corresponding to the type of base at the recognition site are sequentially ligated to the end of the bound primer.
  • the probe is the same as the probe used in the conventional base sequencing method, and consists of a plurality of arbitrary bases, for example, about 2, 3, 4, 5, 6, 7, 8 bases. . Such a plurality of bases can be any combination of bases. Prepare multiple types of probes containing recognition sites consisting of various combinations of multiple bases, and sequentially ligate these probes to the end of the primer. use.
  • the label to be bound to the probe is not particularly limited as long as it is a label conventionally used in the art.
  • fluorescent labels Cy3, Cy5, fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), etc.
  • Luminescent semiconductor labels such as zinc selenide (Zn-Se)
  • chemiluminescent labels such as luciferin
  • enzyme labels such as peroxidase, ⁇ -galactosidase, alkaline phosphatase
  • radioactive labels such as tritium, iodine 125
  • the label is preferably a fluorescent label.
  • the probe can be ligated to the end of the primer only when it contains a recognition site corresponding to the type of base of the target DNA sequence. Therefore, by detecting the label, the type of base at the recognition site of the ligated probe, that is, the type of base in the target DNA sequence can be detected.
  • the measurement of the label can be performed using methods and equipment known in the art depending on the type of label. For example, a fluorescent label, a luminescent semiconductor label, and a chemiluminescent label can be measured using an optical system, a fluorescence microscope, a plate reader, or the like that is excited using an appropriate optical laser and counts the emitted light.
  • the label can be measured by adding a substrate that develops color by degradation by enzymatic action and optically measuring the amount of degradation of the substrate.
  • the radiation dose emitted by the radioactive label is measured with a scintillation counter or the like.
  • the above-described method of the present invention can be carried out simply by using a kit with less labor.
  • the kit of the present invention comprises a first adapter DNA strand and a second adapter DNA strand complementary to the first adapter DNA strand, and the first adapter DNA strand and the second adapter DNA strand are bound to form a double strand. It includes a double-stranded adapter forming
  • the first adapter DNA strand has a first DNA sequence, a second DNA sequence, and a third DNA sequence
  • the first and third DNA sequences are sequences that can form a folded structure.
  • the second adapter DNA strand comprises a third complementary sequence complementary to the third DNA sequence, a second complementary sequence complementary to the second DNA sequence, and a first complementary to the first DNA sequence.
  • first and third complementary sequences can form a folded structure, and one or both of the first adapter DNA strand and the second adapter DNA strand contain a nick or It has a formable array.
  • sequences that can form nicks include recognition sequences for nicking enzymes.
  • the double stranded adapter may have a blunt end or an overhanging end.
  • the kit of the present invention may further comprise a primer that specifically binds to the second DNA sequence and / or a primer that specifically binds to the second complementary sequence. It can be performed simply.
  • the present invention also provides a base sequence determination apparatus.
  • the base sequence determination apparatus of the present invention is, for example, a flow path substrate on which one or more concatamers formed by the method of the present invention are fixed, Means for supplying a primer that binds to a sequence other than a sequence that can form a folded structure in the adapter DNA strand contained in the concatamer, and a label that includes a recognition site consisting of a plurality of bases and that corresponds to the type of base of the recognition site Means for supplying a coupled probe; Means for detecting the label.
  • the base sequence determination apparatus may further include means for forming one or a plurality of concatamers by performing the method of the present invention.
  • the channel substrate to which the concatemers are fixed may be one in which the concatemers are arranged one by one on the upper surface of the columnar structure in the channel substrate in which the columnar structures are periodically arranged.
  • the columnar structure is a structure provided perpendicular to the flow path substrate, and can be, for example, a fine pillar exemplified in Example 6.
  • the size of the columnar structure is appropriately set according to the size of the concatemer used, the size of the signal of the label used (fluorescence, etc.), and the like. In determining the base sequence, the concatamers are required to be fixed to the flow path substrate by a simple procedure with high surface density and without overlapping.
  • the diameter of the columnar structure between 100 nm and 10 ⁇ m and the height of the columnar structure between 100 nm and 10 ⁇ m.
  • the arrangement period of the columnar structures is preferably 1 to 10 times the columnar structure diameter.
  • the concatamers are composed of negatively charged DNA
  • the concatamers are fixed to the top surface of one columnar structure by overlapping each other by adjusting the range of the electric field due to the negative charge of the concatemer and the size of the columnar structure. Is done.
  • the cross-sectional diameter of the periodically arranged columnar structures and the arrangement period of the columnar structures are set to be in the range of 0.5 to 3 times the maximum outer dimension when the concatemer is projected onto an arbitrary plane.
  • the upper surface of the periodically arranged columnar structures is preferably hydrophilic, and specifically has a surface with a water contact angle of 90 degrees or less.
  • the side surface of the columnar structure and the surface of the flow path substrate that are periodically arranged are preferably hydrophobic, and specifically, preferably have a surface having a contact angle with water of 90 degrees or more.
  • hydrophilicity and hydrophobicity are controlled according to the conditions of oxygen plasma treatment, or the surface is subjected to water repellency treatment, or the flow path substrate is made of a water repellant material. Can be produced.
  • the label detection means includes, for example, a light irradiation means, a luminescence detection means and the like when measuring a fluorescent label, a luminescent semiconductor label or a chemiluminescent label.
  • the light irradiation means and the luminescence detection means can be selected and designed according to the type of label used and the excitation / emission wavelength.
  • the base sequence determination apparatus of the present invention can also include a temperature adjusting means, a means for supplying a cleaning liquid, a cleaning unit, a means for draining the cleaning liquid, a means for recording a label detection result, and the like.
  • Example 1 In this example, a method for synthesizing a concatemer molecule having a three-dimensional structure, that is, an example of the nucleic acid amplification reaction of the present invention will be described with reference to FIG.
  • a double-stranded adapter 20 having an internal structure 3, 4,6,7,8,9 is linked to a double-stranded DNA fragment to be analyzed consisting of a target DNA fragment 1 and a complementary DNA fragment 2 by a ligation enzyme ( Fig. 1 (a)).
  • the internal structures 3 and 6 and 7 and 9 of the double-stranded adapter 20 have complementary sequences, and can form a folded structure in a solution.
  • Sequence 4 is an arbitrary sequence that becomes a single strand when the synthesized concatamer molecule 29 forms a folded structure, and is suitable for setting a primer binding site in the base sequence analysis described later. ing.
  • Sequence 8 is a sequence complementary to sequence 4.
  • One nick 5 is formed between the double-stranded adapter internal structures 4 and 6 at an arbitrary position on one adapter DNA strand in the double-stranded adapter 20.
  • the nick 5 can be formed at any position including both ends of the double-stranded adapter as described later (FIG. 2).
  • a ligation enzyme is allowed to act on the double-stranded adapter 20 and the double-stranded DNA fragment 1 and 2 to be analyzed to form a circular double-stranded DNA that serves as a template for DNA amplification.
  • the 3 ′ end further uses the DNA fragment 2 constituting the double-stranded DNA fragment to be analyzed as a template, and dissociates the sequence 17 while dissociating the sequence of the target DNA fragment 1 bound to 2 before the reaction, , 16 is dissociated and the second folded structures 10, 11, 12 are elongated while being formed, respectively (FIGS. 1 (c) (d)).
  • the second extension product 18 of the target DNA fragment extends while dissociating 17 to form folded structures 13, 14, and 15. 18 is dissociated by the same extension reaction (FIG. 1 (e)), and the reaction is continued, and a shape (concatamer) 29 in which target DNA fragments sandwiched between folded structures are connected in series is formed ( Fig. 1 (f)).
  • the reaction continues, the molecule that has formed the concatemer sequentially forms a folded structure in its own base sequence, and the concatemer molecule forms a three-dimensional structure.
  • the nick position of one of the DNA strands in the template DNA that serves as the starting point for concatemer molecule synthesis can be set at any location on the double-stranded adapter molecule.
  • the folded structure in the adapter structure is also shown in Fig. 1.
  • FIG. 2 (a) shows a template structure using the adapter structure and the nick position shown in FIG. Fig. 2 (b) shows that DNA sequences 3 and 6 capable of forming a folded structure are directly adjacent, sequence 4 is arranged on the 3 'end side of sequence 6, and a nick is provided between sequence 3 and target DNA fragment 1.
  • DNA sequences 3 and 6 capable of forming a folded structure are directly adjacent to each other, sequence 4 is arranged on the 5 ′ end side of sequence 6, and nicks are arranged between sequence 3 and sequence 4. It is a structure provided between them.
  • Techniques for causing nicks to exist at these positions include (i) a method of synthesizing a double-stranded adapter that already has a nick, and (ii) dephosphorylating the 5 ′ end of one DNA strand of the double-stranded adapter. Any one of a method and (iii) a method of generating a nick by a nicking enzyme that recognizes a specific base sequence arranged on a double-stranded adapter can be used.
  • FIG. 3 is shown as a first example.
  • Analytical double-stranded DNA fragments 1, 2 prepared by physical cleavage or restriction enzyme cleavage of genomic DNA, or analytical double-stranded DNA fragments 1, 2 obtained by a DNA amplification method such as PCR (FIG. 3 (a )))
  • a double-stranded adapter 20 Fig. 3 (b)
  • a circular double-stranded DNA molecule is synthesized (FIG.
  • a structure having a complementary protruding terminal base is generally used for the connecting part of the double-stranded DNA fragment 1 or 2 to be analyzed and the double-stranded adapter 20, but it is a connection of a DNA molecule having a blunt end structure. Is applicable.
  • a second example is shown in FIG. After binding the double-stranded adapter sequence to each end of a double-stranded DNA fragment 1 or 2 ( Figure 4 (a)) of one molecule ( Figure 4 (a)), the two adapter sequences It is possible to synthesize a circular double-stranded DNA molecule (FIG. 4 (c)). In this synthesis method, at the time of ligation to the double-stranded DNA fragment to be analyzed (1, 2 in FIG.
  • Example 2 In this example, a method for synthesizing a concatemer molecule having a three-dimensional structure, that is, an example of the nucleic acid amplification reaction of the present invention will be described with reference to FIG.
  • a double-stranded adapter 21 having an internal structure 103, 104, 106, 107, 108, 109 is linked to a double-stranded DNA fragment 101, 102 to be analyzed consisting of a target DNA fragment 101 and a complementary DNA fragment 102 by a ligation enzyme (FIG. 5 (a)).
  • the internal structures 103 and 106 and 107 and 109 of the double-stranded adapter 21 have complementary sequences, and can form a folded structure in a solution.
  • the sequence 104 is an arbitrary sequence that takes a loop structure to become a single strand when the synthesized concatamer molecule 129 forms a folded structure, and can be used as a primer binding site in the base sequence analysis described later.
  • a primer binding site in any one of the internal structures 103, 104, or 106 of the adapter, or in a form extending over a plurality.
  • the sequence 108 is a sequence complementary to the sequence 104.
  • the first nick 105 is formed between the target DNA fragment 101 and the adapter internal structure 103
  • the second nick 155 is formed between the DNA fragment 102 complementary to the target DNA fragment 101 and the adapter internal structure 109.
  • the elongation reaction can occur starting from nick 105 or 155. In either case, the desired concatamer can be formed.
  • the concatamer is elongated from 105 will be described.
  • the 3 ′ end of the target DNA fragment 101 is the DNA sequence 107 and then the DNA sequence 108 as the template, as shown in FIG. 5 (b).
  • 110 and 111 are formed, and dissociation of the DNA sequences 103, 104, and 106 that were initially bound to 107, 108, and 109 proceeds, and the extension stops at the position of nick 155.
  • 110, 111, and 112 are dissociated from 107, 108, and 109 due to thermal fluctuation, 110, 111, and 112 form a folded structure due to the sequence complementarity of 110 and 112 (FIG. 5 (c)).
  • the 5 'end of 109 is dephosphorylated and separated from the 3' end of 102 due to the presence of nick 155 (Fig. 5 (c)).
  • the 3 ′ end of 112 in the folded structure is extended while dissociating 102 using 101 as a template to form a sequence 116 having a complementary sequence of the target DNA fragment 101, and subsequently 113 using 106, 104, 103 as a template. , 114, 115 are formed (FIG. 5 (d)).
  • 113, 114, and 115 dissociate from 106, 104, and 103 by thermal fluctuation to form a folded structure due to the sequence complementarity of 113 and 115, and the 3 ′ end of 113 extends while dissociating 101 using 116 as a template ( Figure 5 (e)).
  • the extension reaction forms 117 of the same sequence as the target DNA fragment 101, and 118, 119, and 120 are formed using 112, 111, and 110 as templates, and it is folded back by the sequence complementarity of 118 and 120 by thermal fluctuation as described above. Forming the structure, the 3 ′ end of 120 extends with 101 as a template (FIG. 5 (f)).
  • the 3 'end of 120 extends while forming 121 using 101 as a template, and then 122, 123, and 124 using 106, 104, and 103 as templates (FIG. 5 (g)). By repeating this, a concatemer 129 is formed in which a target DNA fragment and a complementary DNA fragment are alternately repeated (FIG. 5 (h)).
  • Example 3 a method of forming a concatamer molecule used for massively parallel base sequence measurement is illustrated with reference to FIG. 5, FIG. 6, and FIG.
  • the analysis target double-stranded DNA fragment is shown at 152 in FIG. 6 (b).
  • a partial fragment of pUC19 plasmid DNA amplified by PCR can be used as an example of the double-stranded DNA fragment to be analyzed.
  • Amplification of a partial fragment of pUC19 plasmid is performed by using a universal primer M13 forward primer sequence 130 and a restriction enzyme BsaI recognition sequence 134 (M13_f01_BsaI) 136 (SEQ ID NO: 1) and M13 reverse primer as shown in FIG. 6 (a).
  • a primer (M13_f02_BsaI) 137 (SEQ ID NO: 2) containing the sequence 131 and the restriction enzyme BsaI recognition sequence 135 can be used by PCR using pUC19 plasmid DNA as a template, and complementary sequences 138 and 139 (SEQ ID NOs: 3 and 4) ) Is also generated (Fig. 6 (b)).
  • the obtained amplified DNA product is cleaved with restriction enzyme BsaI (manufactured by NEB) at 150 and 151, so that two analysis targets having protruding ends 132 and 133, primer recognition sites 130 and 131, and complementary DNA sequences 140 and 141 are obtained.
  • a strand DNA fragment is synthesized (FIG. 6 (c)).
  • a double-stranded adapter 21 having a DNA sequence complementary to the protruding end structure of the double-stranded DNA fragment 152 to be analyzed and dephosphorylated at the 5 ′ end of each DNA strand was chemically synthesized and synthesized first.
  • the double-stranded DNA fragment 152 to be analyzed was mixed (FIG. 7 (a)), and a circular double-stranded DNA molecule was synthesized by a ligation reaction using T4DNA ligase (manufactured by Invitorogen) (FIG. 7 (b)).
  • the circular double-stranded DNA molecule obtained in this step has one nick on each DNA strand as shown in Fig.
  • FIG. 7 (b) shows the structure of FIG. 7 (a) corresponding to the structure of FIG. 5 (a).
  • the single-stranded DNA constituting the double-stranded DNA fragment 152 including the target DNA fragment 101 includes the target DNA fragment 101, a PCR forward primer, a reverse primer, and a protruding end-forming sequence, which are combined.
  • FIG. 7 (b) corresponds to the arrangement of FIG. 7 (b).
  • the DNA extension reaction using the complementary strand as a template stops at the nick 155 position at the end of the adapter sequence 109 of the complementary DNA molecule, but the sequence 110 can form a folded structure of the adapter sequence newly formed by the extension reaction.
  • the 3 'end sequence forms a folded structure with respect to its own DNA molecule (Fig. 5 (c)), and after folding, DNA is extended by using its own target DNA fragment 101 as a template sequence.
  • the reaction continues.
  • the target DNA sequence to be used as a template is interrupted, but the end by the folded structure of adapter sequences 113 and 115 present in the synthesized terminal sequence region.
  • a fold is formed in the arrangement part, and the DNA elongation reaction using the self DNA molecule as a template continues.
  • a concatemer molecule 129 that repeatedly contains the target DNA fragment is synthesized by continuously generating an extension reaction using its own DNA molecule as a template and end sequence folding at the terminal position (FIG. 5 (h)).
  • the presence of a folded structure repeated in the concatamer molecule 129 forms a three-dimensional structure composed of concatamer molecules.
  • Figure 8 shows the results of concatamer formation by the above procedure.
  • a circular double-stranded DNA molecule having the structure shown in FIG. 5 (a) and having the sequence shown in FIG. 6 (c) and an adapter was used as a template.
  • the reaction conditions were 0.2 fmol and 0.6 fmol for the template concentration, and 1 hour (1 hr) and 3 hours (3 hr) for the rolling circle amplification (RCA) time.
  • Observation was performed using PicoGreen® (Invitrogen) that detects double-stranded DNA.
  • the bright spot shown in FIG. 8 corresponds to one concatamer folded into a ball shape by the folded structure, that is, clustered. It can be seen that the number of concatemers increases as the template concentration increases and the reaction time increases (eg, sample (4) in FIG. 8).
  • the template DNA used in the formation of concatamers can be used for sequencing.
  • the template DNA can be collected from any cell, tissue or organism and prepared by any method utilized in the art.
  • FIG. 9 shows an example of this procedure.
  • genomic DNA ⁇ ⁇ ⁇ 201 (Fig. 9 (a)) is used as the measurement target, the collected genomic DNA 201 is fragmented 202 into several hundred bp (Fig. 9 (b)), then end repair, A base addition, and Ligation of the double-stranded adapter DNA ⁇ 204 is performed, and fragments with non-standard base length are removed to form a library of template DNA ⁇ 205 containing the target DNA sequence 203a-f and the adapter sequence 204 (Fig. 9 (c)) ).
  • Amplification is performed using 205 as a template to obtain three-dimensionally folded DNA nanoball-like concatemers 206a to f, and 206a to f are fixed on the flow path substrate 207 and used for sequence analysis.
  • Example 5 a method of immobilizing concatamer molecules 206 used for massively parallel base sequence measurement on a flow cell substrate 209 is illustrated in FIG.
  • the concatamer 206 made of DNA molecules is negatively charged, so that the surface of the glass flow cell substrate 209 is covered with aminosilane molecules.
  • the concatemer 206 is electrostatically bonded to the amino group 208 on the surface of the substrate 209 (FIGS. 10B and 10C). As a result, the concatamer can be fixed on the substrate.
  • Example 6 This example illustrates a method of immobilizing a concatamer molecule 206, which is formed by a procedure based on the present invention and used for measuring a massively parallel base sequence, on a flow cell substrate 270. This will be described below with reference to FIG.
  • a fine pillar 271 is formed on the inner surface of the flow cell of the glass flow cell substrate 270, and the concatemers 206a to 206c are fixed to the upper surface of the fine pillar 271.
  • the diameter of the fine pillar is set to 100 nm to 10 ⁇ m
  • the arrangement period of the fine pillar is set to 1 to 10 times the diameter of the fine pillar
  • the height of the fine pillar is set to a value between 100 nm and 10 ⁇ m. It is desirable to do.
  • concatamers are required to be fixed to the flow cell by a simple procedure with high areal density and without overlapping.
  • Concatemer 206 consists of negatively charged DNA fragments.As shown in FIG. Arranged without overlapping.
  • FIG. 12 shows the results of observing the target concatemer generated by the procedure shown in Example 3 with a fluorescent substance (PicoGreen, Invitrogen), fixing on a fine pillar, and observing with a fluorescence microscope.
  • the fine pillar diameter is 1.0 ⁇ m
  • the fine pillar height is 1.0 ⁇ m
  • the fine pillar arrangement period is 1.5 ⁇ m. It can be seen that the fluorescences 291 and 292 shown in FIG. 12 are limited to a region limited to the top surface of the fine pillar.
  • Example 7 This example illustrates another method relating to a method of immobilizing a concatamer molecule 206, which is formed by a procedure based on the present invention and used for massively parallel base sequence measurement, to a flow cell substrate 270.
  • a fine pillar 271 made of a resin material such as polystyrene is formed on the inner surface of the flow path of the glass flow cell substrate 270, and the fine pillar 271 is modified with aminosilane molecules. Since the concatamer 206 composed of DNA molecules is negatively charged, it can be electrostatically bound to the amino group (FIGS. 11 (a) and (b)).
  • the sequence analysis can be performed on the concatamers 281, 282, and 283 fixed to the upper surface of the fine pillar 274 by flowing the solution 280 including the reaction solution or the like through the flow paths 273 and 272.
  • the height of the pillar was set to 0.5 ⁇ m or more
  • the focal position of the fluorescence detection optical system was set to the top surface of the pillar, so that it was fixed to the top surface, the side surface, and the valley portion that had been DNA-immobilized as in 275, 276, 277. It is possible to suppress not only the fluorescence from the concatemer but also the fluorescence from the concatemer 284 fixed in the valleys of the fine pillars 274, such as 284, into the detection system.
  • a structure in which concatemer fixation in a pillar valley is suppressed by performing a concatemer immobilization treatment only on the upper surface of the fine pillar 274 in the substrate on which the fine pillar 274 is formed can be controlled by, for example, the conditions of the oxygen plasma treatment. By shortening the oxygen plasma treatment time, it is possible to achieve a state of strong hydrophobicity such that the contact angle with water is 90 ° or more.
  • poly-L-Lysine Poly-L-Lysine: SIGMA-ALDRICH
  • the poly-L-lysine solution contacts only the top surface of the pillar and does not contact the pillar valley or the side surface of the pillar.
  • poly-L-lysine adheres only to the upper surface as shown by 285, and poly-L-lysine does not adhere to the side surface 287 and the valley 286.
  • the solution 280 containing a probe or the like that flows in the flow path in the sequence analysis does not infiltrate because the side surface 287 and the valley portion 286 are hydrophobic.
  • the concatemers 281, 282, and 283, which serve as templates, and the probe do not reach. Therefore, there is no reaction other than the pillar upper surface, and the detection accuracy can be improved.
  • Example 8 In this example, an example of a procedure for measuring a massively parallel base sequence using concatamers formed by a procedure based on the present invention will be described with reference to FIG.
  • Sequence analysis by ligation is known as an example of massively parallel base sequence measurement (M. L. Metzker, “Sequencing technologies-the next generation”, Nature Reviews Genatics 11 2010 p31-46) 2)).
  • the concatamer molecule 206 has a concatamer sequence 212 in which an adapter sequence 210 and a target DNA sequence 211 are connected in series as shown in FIG. 13 (a).
  • the primer 213 binds to the primer recognition site in the adapter DNA sequence 216, and then the probe (first base) recognizes the sequence of 2 bases on the 5 ′ side of the primer 213. Recognize (recognition site) 214.
  • This probe is modified with a dye (first label) 215 corresponding to a two-base sequence, and by reading the fluorescence signal of this dye, the two-base sequence, that is, the target DNA sequence 217 can be known (see FIG. B-1) in 13 (b).
  • the probe (including the second base recognition site 224) modified with a dye (second label) 225 is used to read two bases at the 5 ′ end of the probe (FIG. 13 (b) B-2).
  • the following two bases are read out by the same reaction (b-3 in FIG. 13 (b)), and this is repeated in sequence to analyze the sequence from the primer end.
  • the probe has a base length of 6 bases added to the sequence recognition site for 2 bases in order to improve hybridization stability. Therefore, as shown in FIG. 13 (c), a plurality of primers 213, 223, 233, 243, and 253 are prepared so that they can be sequentially hybridized to different recognition sites for each base, and the start position of the ligation is shifted to shift the entire region of the target DNA sequence 217. Can be read.
  • the concatemer 212 has a number of primer recognition sites in the adapter DNA sequence 210 in series, and a plurality of similar ligation reactions proceed simultaneously in one concatemer. Strong signal intensity is obtained according to the number of adapters connected in series and the number of target DNA sequences.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • DNA sequence complementary to target DNA fragment 2 DNA sequence complementary to adapter 3: DNA sequence constituting adapter 4: DNA sequence constituting adapter 5: DNA sequence capable of forming folded structure with nick 6: 3 7: complementary to 3 Partial DNA sequence complementary to DNA sequence 8: 4 9: DNA sequence complementary to 6: 6Part of adapter extended using DNA sequence of 10: 7 11: Adapter of adapter extended using DNA sequence of 8: 4 Part: Adapter part extended with 12: 9 DNA sequence as template 13: Part of adapter extended with DNA sequence as template: 14: Part of adapter extended with DNA sequence as template 15: 9 Part of the adapter extended using the DNA sequence of 16: 9 Part of the adapter extended using the 16: 9 DNA sequence as a template Target DNA fragment extended using the 17: 2 DNA fragment as a template Using the 18: 2 DNA fragment as a template Extended target DNA fragment 20: Double-stranded adapter 21: Double-stranded adapter 29: Concatemer 101: DNA fragment complementary to 102: 101 103: DNA sequence constituting adapter 104: DNA sequence constituting
  • SEQ ID NOs: 1 to 8 Artificial sequence (synthetic DNA) All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 鋳型DNA増幅に必要とされる手間と時間を低減するとともに、従来の増幅方法における課題を解決した核酸増幅方法及び手段と、それを利用した塩基配列決定方法及び手段を提供すること。 標的DNA配列1を含む2本鎖DNA 1,2に、折り返し構造を形成可能なアダプターDNA鎖を含む2本鎖アダプター20をライゲートさせて、ニック5を含む2本鎖DNAで構成される環状DNA鋳型を調製する工程と、該ニック5を起点として鎖置換型DNAポリメラーゼによって3'末端伸長反応を行い、それにより該標的DNA配列1と該折り返し構造を形成可能なアダプターDNA鎖が一本鎖DNAとして直列的に複数個連結された形状のコンカテマー29が形成される工程とを含む核酸増幅方法であって、該コンカテマー29は、塩基配列解析に最適な複数の標的DNA配列1を含み、該折り返し構造によってボール状に折りたたまれた形状を有する。

Description

核酸増幅方法
 本発明は、標的のDNA配列を増幅してコンカテマーを形成するための方法及びキットに関する。また本発明は、そのように形成されたコンカテマーを用いて塩基配列を決定するための方法、キット及び装置に関する。
 近年、超並列塩基配列計測による迅速で高感度な塩基配列決定法が開発され(非特許文献1)、これを応用した装置が普及したことより、植物、真菌、動物、細菌及びウイルスの全ゲノムを1週間以内に分析することが可能になった。こうして得られる塩基配列情報は創薬、医療、農業の各分野において今や不可欠なものとなっている。今後さらに遺伝子配列情報応用の範囲は拡大していくことは疑いない。今後さらなるスループットと精度の向上が求められるようになると予想される。また、発現解析のように正確な定量性が求められる分野も大きく成長すると考えられる。
 超並列塩基配列計測においては、数百万から数十億個のモノクローナルのDNA断片クラスターを流路基板上に配置して、各クラスターの核酸断片の塩基配列を並列的に読み取ることで、高いスループットを実現している。ここで多数のクラスターを形成して流路基板上に配置する手段として、(a)流路基板上に鋳型DNAの一端を固定した状態でのPCR、(b)エマルジョンPCR(emPCR)産物の固体ビーズへの固定、(c)環状DNA上の等温増幅によるDNAナノボール形成などの手法が用いられている。
米国特許第7910354号 特表2011-509095号公報(WO 2009/089384) 米国特許第5712124号 米国特許第6235502号 米国特許出願公開第2009/0270273号 特開2011-58号公報
J. Shendure and H. Ji, "Next-generation DNA sequencing", Nature biotechnology 第26巻第1135-1145頁, 2008年 M. L. Metzker, "Sequencing technologies-the next generation", Nature Reviews Genatics第11巻第31-46頁, 2010年
 超並列塩基配列計測は、解析のスループットや精度の向上に大きく貢献したが、多数のクラスターを流路基板上に配置するために要する時間と手間がスループットと精度の向上を図る際の障害となっている。さらに定量性を向上するための技術開発が求められている。超並列塩基配列計測ではモノクローナルのDNA断片を集積した多数のクラスターを流路基板に配置して、各クラスターの配列を並列的に読み取っていく。流路基板上へのクラスター形成の方法に関連するいくつかの例は非特許文献2に示されている。従来提案されている代表的なクラスター形成法(a)~(c)について以下に検討する。
 (a)は、増幅を流路基板上で行い、モノクローナルの増幅産物はその場で基板上の狭い領域に固定されるために、モノクローナルクラスターの形成は比較的容易であるが、クラスター形成の元となるモノクローナルDNA断片の流路基板への固定はランダムであるためクラスターを高密度で配置することが困難である。(b)の方法は、エマルジョンPCR(emPCR)により固体ビーズ上にDNA断片を固定化しているが、エマルジョンの扱いやDNA断片固定化に失敗した磁気ビーズのふるい落としに手間と時間を要するのが難点である。(c)の手法は、RCA(Rolling Circle Amplification)によりDNAナノボール(DNA nanoball:DNB)を形成してこれを流路基板上に固定するもので比較的少ない手間で高密度のクラスターを得ることができる(例えば特許文献1及び5)。
 (a)、(b)、(c)に共通する課題は、3手法ともに鋳型DNAに対して過剰量のプライマーを用いた増幅過程が存在する点にある。PCRやRCAにおいて増幅過程での塩基伸長の起点はプライマー3’端とするのが一般的である(例えば特許文献1、5及び6)。超並列塩基配列計測においては多数のDNA断片を鋳型として増幅を行うために必要な十分量のプライマーを溶液中に導入する必要がある。これによってプライマー同士が部分的に一時的に結合することによって意図しない増幅産物が生じ、計測対象であるDNAライブラリーの品質低下の原因となる。また、鋳型増幅用プライマーは、増幅対象DNA断片の所定の領域又は増幅対象DNA断片に付加された配列既知のアダプターの所定の領域にハイブリダイズするように設計される(例えば特許文献6)が、増幅対象領域の塩基配列は一般的に配列未知でありアダプターに隣接する配列構造は予測不可能である。増幅の初期反応である増幅対象DNA断片の熱変性過程は塩基配列構造の熱安定性に影響を受けるため、異なる配列を有する増幅対象DNA断片を含むごとにプライマーのハイブリダイゼーション効率が変わり、増幅後のDNA断片の頻度分布は鋳型の頻度分布とは異なることになる。これは特に定量性が重要になる発現解析の場面では望ましくない特性である。
 従来の核酸増幅方法の一例として、特許文献2があり、環状DNAを鋳型として用いてプライマーを起点とした連続的な増幅法を提供している。ここで導入されているニックの目的は、ニックから開始した伸長反応を環状DNAの他の場所に形成されている他のニック部位において停止させるものであって連続的に標的DNA配列を増幅するものではない。特許文献4についても同様に環状DNA構造にニックが導入されているが、ニック起点で連続的な増幅が行われるものではない。ニック起点増幅を利用する増幅法は、特許文献3に開示されているが、これも連続的な増幅法を提供するものではない。
 上述のように、超並列塩基配列計測では、多数のクラスターからなる解析対象DNAライブラリーを流路基板上に配置するのに要する時間と手間がさらなるスループットと精度の向上を図る際の障害となっている。また、定量性を向上するために異なる鋳型間の増幅効率を一致させる技術開発が求められている。
 従って、本発明の課題は、鋳型DNA増幅に必要とされる手間と時間を低減するとともに、従来の増幅方法におけるプライマー同士の結合に起因する意図しない増幅産物と、プライマーハイブリダイゼーション効率のばらつきによる増幅対象DNAごとの頻度分布変動を排除して、未知又は既知の配列を有する鋳型DNAの増幅を簡便かつ迅速に行うための方法及び手段と、それを利用した塩基配列決定方法及び手段を提供することである。
 本発明者は、上記課題を解決するため鋭意検討を行った結果、鋳型DNAに折り返し構造を形成可能なアダプターをライゲートさせて環状DNA鋳型とし、プライマーを使用せずにニックを起点として伸長反応を行わせることにより、塩基配列解析に最適な複数のコンカテマーを形成することができ、また該コンカテマーが折り返し構造によって折りたたまれることにより塩基配列解析に最適なボール状の形状になるという知見を得、本発明を完成するに至った。
 すなわち本発明は以下を包含する。
[1](a)標的のDNA配列を含む2本鎖DNAに、折り返し構造を形成可能なアダプターDNA鎖を含む2本鎖アダプターをライゲートさせて、ニックを含む2本鎖DNAで構成される環状DNA鋳型を調製する工程、
(b)該ニックを起点として鎖置換型DNAポリメラーゼによって3'末端伸長反応を行い、それにより該標的のDNA配列と該折り返し構造を形成可能なアダプターDNA鎖が一本鎖DNAとして直列的に複数個連結された形状のコンカテマーが形成される工程
を含み、該コンカテマーは、該折り返し構造によって折りたたまれた形状を有することを特徴とする核酸増幅方法。
[2]前記2本鎖アダプターが、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有するアダプターDNA鎖を有し、該第1と第3のDNA配列が折り返し構造を形成可能な配列であり、該アダプターDNA鎖とそれに相補的なアダプターDNA鎖とが結合することによって2本鎖を形成するものである、[1]に記載の方法。
[3]前記2本鎖アダプターが、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列の順に構成されたアダプターDNA鎖を有するか、第1のDNA配列、第3のDNA配列及び第2のDNA配列の順に構成されたアダプターDNA鎖を有するか、又は第2のDNA配列、第1のDNA配列及び第3のDNA配列の順に構成されたアダプターDNA鎖を有するものである、[2]に記載の方法。
[4]前記2本鎖アダプターが、第1アダプターDNA鎖と該第1アダプターDNA鎖に相補的な第2アダプターDNA鎖とを含み、第1アダプターDNA鎖と第2アダプターDNA鎖とが結合して2本鎖を形成しており、
 第1アダプターDNA鎖は、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有し、該第1と第3のDNA配列が折り返し構造を形成可能な配列であり、
 第2アダプターDNA鎖は、5’末端から3’末端に向けて、第3のDNA配列に相補的な第3の相補配列、第2のDNA配列に相補的な第2の相補配列、及び第1のDNA配列に相補的な第1の相補配列を有し、該第1と第3の相補配列が折り返し構造を形成可能な配列であり、
 前記方法は、
(b1)前記環状DNA鋳型において、第1アダプターDNA鎖上の第1のDNA配列の5’末端に第1のニックが形成され、第2アダプターDNA鎖上の第3の相補配列の5’末端に第2のニックが形成される工程、
(b2)第1のニックを起点として鎖置換型DNAポリメラーゼによって3'末端が第2アダプターDNA鎖上の第2のニックの位置まで伸長して第1アダプターDNA鎖と同じ配列を有するアダプターDNA鎖が形成されて伸長反応が停止し、該アダプターDNA鎖が折り返し構造を形成する工程、
(b3)該アダプターDNA鎖の3'末端伸長反応によって標的のDNA配列と相補的なDNA配列が伸長し、次に第2のアダプターDNA鎖と同じ配列を有するアダプターDNA鎖が生成され、該アダプターDNA鎖が折り返し構造を形成する工程、
(b4)該アダプターDNA鎖の3'末端伸長反応によって標的のDNA配列と同じDNA配列が伸長し、次に第1のアダプターDNA鎖と同じ配列を有するアダプターDNA鎖が生成され、該アダプターDNA鎖が折り返し構造を形成する工程、
(b5)工程(b3)及び(b4)を反復することにより、標的のDNA配列、第1アダプターDNA鎖、標的のDNA配列に相補的なDNA配列及び第2アダプターDNA鎖が直列的に複数個連結された形状のコンカテマーが形成される工程
を含む、[1]に記載の方法。
[5][1]~[4]のいずれかに記載の方法により形成された1又は複数のコンカテマーを流路基板上に固定する工程、
 該コンカテマーのそれぞれに、アダプターDNA鎖における折り返し構造を形成可能な配列以外の配列にプライマーを結合させる工程、
 該プライマーの末端に、複数塩基からなる認識部位を含みかつ該認識部位の塩基の種類に応じた標識を結合したプローブを順次ライゲートさせる工程、
 ライゲートしたプローブを前記標識に基づいて検出することにより、標的のDNA配列の塩基配列を決定する工程
を含むことを特徴とする塩基配列決定方法。
[5-2][1]~[4]のいずれかに記載の方法により1又は複数のコンカテマーを形成する工程をさらに含む、[5]に記載の方法。
[5-3]折り返し構造を形成可能な配列以外の配列が第2の配列である、[5]に記載の方法。
[6]第1アダプターDNA鎖と該第1アダプターDNA鎖に相補的な第2アダプターDNA鎖とを含み、第1アダプターDNA鎖と第2アダプターDNA鎖とが結合して2本鎖を形成している2本鎖アダプターを含むことを特徴とする[1]~[5]のいずれかに記載の方法を実施するためのキットであって、
 第1アダプターDNA鎖は、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有し、該第1と第3のDNA配列が折り返し構造を形成可能な配列であり、
 第2アダプターDNA鎖は、第3のDNA配列に相補的な第3の相補配列、第2のDNA配列に相補的な第2の相補配列、及び第1のDNA配列に相補的な第1の相補配列を有し、該第1と第3の相補配列が折り返し構造を形成可能な配列であり、
 第1アダプターDNA鎖及び第2アダプターDNA鎖の一方又は両方が、ニックを含む又はニックを形成可能な配列を有する、
上記キット。
[7]ニックが、第1アダプターDNA鎖の第2のDNA配列の3'末端若しくは5'末端、及び/又は第2アダプターDNA鎖の第2の相補配列の3'末端若しくは5'末端に含まれる又は形成される、[6]に記載のキット。
[8]ニックが、第1アダプターDNA鎖の第1のDNA配列の5'末端及び/又は第2アダプターDNA鎖の第3の相補配列の5'末端に含まれる又は形成される、[6]に記載のキット。
[9]第1アダプターDNA鎖が、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有する、[6]~[8]のいずれかに記載のキット。
[9-2]2本鎖アダプターが、平滑末端又は突出末端を有する、[6]~[9]のいずれかに記載のキット。
[9-3]ニックを形成可能な配列がニッキング酵素の認識部位である、[6]~[9]のいずれかに記載のキット。
[10]第2のDNA配列に特異的に結合するプライマー、及び/又は第2の相補配列に特異的に結合するプライマーをさらに含む、[6]~[9]のいずれかに記載のキット。
[11][1]~[4]のいずれかに記載の方法により形成された1又は複数のコンカテマーが固定された流路基板と、
 前記コンカテマーに含まれるアダプターDNA鎖における折り返し構造を形成可能な配列以外の配列に結合するプライマーを供給する手段、及び複数塩基からなる認識部位を含みかつ該認識部位の塩基の種類に応じた標識を結合したプローブを供給する手段と、
 前記標識を検出する手段と
を備えることを特徴とする塩基配列決定装置。
[12]前記コンカテマーが、柱状構造が周期的に配置された流路基板において、該柱状構造の上面に1個ずつ配置されている、[11]に記載の装置。
[13]周期的に配置された柱状構造の断面径及び柱状構造の配置周期が、コンカテマーを任意平面に投影した時の最大の外形寸法の0.5倍から3倍の範囲にある、[12]に記載の装置。
[14]周期的に配置された柱状構造の側面及び流路基板の表面が、疎水性であり、水に対する接触角が90度以上である、[12]又は[13]に記載の装置。
[14-2][1]~[4]のいずれかに記載の方法を実施して1又は複数のコンカテマーを形成する手段をさらに備える、[11]~[14]のいずれかに記載の装置。
 本明細書は本願の優先権の基礎である日本国特許出願2011-272117号の明細書および/または図面に記載される内容を包含する。
 本発明により、核酸増幅方法及びキットが提供される。本核酸増幅方法及びキットは、簡便かつ効率的に核酸増幅を可能にするだけではなく、従来使用されていたプライマー由来のアーティファクトの生成を排除するとともに、増幅対象DNA分子の存在比を維持した核酸増幅を可能にするものである。それにより手間と時間を省き、スループットと精度が高まる。また、本核酸増幅方法及びキットにより、塩基配列決定を行うために最適な数の標的DNA配列を含みかつ最適な形状のコンカテマーが形成されるため、本発明は、簡便かつ高スループットで塩基配列決定を行うために有用である。
核酸増幅反応の一例を示す図である。 核酸増幅反応の鋳型の構成例を示す図である。 核酸増幅反応の環状DNA鋳型の形成方法の例を示す図である。 核酸増幅反応の環状DNA鋳型の形成方法の例を示す図である。 核酸増幅反応の別の例を示す図である。 核酸増幅反応の環状DNA鋳型の配列の例を示す図である。 核酸増幅反応の環状DNA鋳型の形成の例を示す図である。 核酸増幅反応の結果を示す図である。 核酸増幅反応を塩基配列決定に適用した例を示す図である。 核酸増幅反応の産物を塩基配列決定装置の基板に固定する方法の一例を示す図である。 核酸増幅反応の産物を塩基配列決定装置の基板に固定する方法の別の例を示す図である。 微細ピラーを形成した基板上へのコンカテマーの固定を示す図である。 核酸増幅反応の産物を用いて標的DNA配列の塩基配列を決定する方法の例を示す図である。
 以下、本発明を詳細に説明する。
 本発明は、標的DNA配列を増幅するための方法及び手段を提供する。本発明では、その後行う塩基配列決定に適した数及び形状の増幅産物を得るため、環状2本鎖鋳型にニックと折り返し構造を形成可能なアダプターを組み込む。これにより、塩基配列決定に適した数の標的DNA配列を含みかつ適した形状のコンカテマーを形成することができる。
 まず、標的DNA配列を含む2本鎖DNAを調製する。標的DNA配列を含む2本鎖DNAは、増幅又は配列決定しようとする配列を含むDNAであれば特に限定されるものではなく、ゲノムDNA、相補的DNA(cDNA)、合成されたDNAなどとすることができる。その由来も特に限定されるものではなく、生体(例えば細胞、組織、液体など)及び合成(例えばcDNAライブラリなどのDNAライブラリなど)の任意の供与源に由来する2本鎖DNAを用いることができる。生体供与源の場合、その生体も特に限定されるものではなく、脊椎動物(例えば哺乳類、鳥類、爬虫類、魚類、両生類など)、無脊椎動物(例えば昆虫、線虫、甲殻類など)、原生生物、植物、真菌、細菌、ウイルスなどの任意の生体に由来する供与源を用いることができる。
 2本鎖DNAは、当技術分野で公知の方法により調製することができる。例えば、細胞から2本鎖DNAを調製する場合には、Proteinase Kのようなタンパク質分解酵素、チオシアン酸グアニジン・グアニジン塩酸などのカオトロピック塩、Tween及びSDSなどの界面活性剤、あるいは市販の細胞溶解用試薬を用いて、細胞を溶解し、それに含まれる核酸、すなわちゲノムDNA及びRNAを溶出することができる。ゲノムDNAは、物理的切断又は制限酵素切断などにより断片化してもよい。cDNAを調製する場合には、細胞溶解により溶出された核酸のうち、DNAをDNA分解酵素(DNase)により分解し、核酸としてRNAのみを含む試料が得、ポリT配列を含むDNAプローブを用いてmRNAのみを捕捉した後、mRNAから逆転写酵素を用いる逆転写反応を行うことによってcDNAを合成することができる。あるいは、上述のように調製されたDNA若しくはRNAや、DNAライブラリを鋳型として増幅反応を行い、2本鎖DNAを調製することもできる。DNAの調製を行うために、多数のメーカーからキットが販売されており、目的とする2本鎖DNAを簡便に精製することが可能である。
 2本鎖DNAは、単一種のDNAを含むものであってもよいし、又は複数種のDNAを含むものであってもよい。すなわち、2本鎖DNAは、同じ標的DNA配列を含むものであってもよいし、異なる配列を含むものであってもよい。例えば、2本鎖DNAは、DNAプール、cDNAライブラリなどとすることができる。例えば本発明においては、複数種のmRNAから作製されたcDNAライブラリに含まれる複数種のcDNAを2本鎖DNAとして、均一に増幅することができる。
 次に、標的DNA配列を含む2本鎖DNAに2本鎖アダプターをライゲート(連結)させる。本発明において「2本鎖アダプター」とは、環状DNA鋳型を調製するために標的DNA配列を含む2本鎖DNAとライゲートさせるDNAを指す。2本鎖アダプターは、折り返し構造を形成可能なアダプターDNA鎖を含むものであれば、任意の長さの任意の配列を有するものとすることができる。2本鎖アダプターの構造は、1つのアダプターDNA鎖とそれに相補的なアダプターDNA鎖とが結合することによって形成された2本鎖である。
 本発明において「折り返し構造」とは、アダプターDNA鎖(1本鎖)上のある配列とそれに相補的な配列とが結合することによって、1本鎖の増幅産物がアダプターDNA鎖の部分で折り返される状態を意味する。従って、折り返し構造を形成可能なアダプターDNA鎖は、ある配列とそれに相補的な配列とを含む。好ましくは、当技術分野で公知の「ヘアピン」又は「ステム-ループ」を形成して折り返し構造が形成されるように、アダプターDNA鎖は、ある配列とそれに相補的な配列(ステム部分を形成する)と、さらに両配列に相補的ではない別の配列(ヘアピン部分又はループ部分を形成する)とを含むものである。
 例えば2本鎖アダプターにおける一方のアダプターDNA鎖が、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有する場合、第1と第3のDNA配列が折り返し構造を形成可能な配列である、すなわち第1のDNA配列と第3のDNA配列とは相補的である。ここで、折り返し構造は、これを形成する2つの配列が完全(100%)に相補的ではなくても形成されることが当技術分野で知られている。そのため、第1のDNA配列と第3のDNA配列とは、両配列が結合可能な程度の相補性を有する、例えば少なくとも80%の塩基が相補的であり、好ましくは少なくとも90%、より好ましくは少なくとも95%、最も好ましくは少なくとも98%、99%又は100%の塩基が相補的である。また、折り返し構造を形成可能な配列(例えば第1及び第3のDNA配列)は、折り返し構造を形成するのに適した長さ、例えば10~100塩基、好ましくは15~50塩基を有するものである。なお、アダプターDNA鎖における第1~第3のDNA配列の配置は特に限定されるものではなく、当業者であれば適宜配置することができる。例えば、アダプターDNA鎖は、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列の順に構成されていてもよいし、第1のDNA配列、第3のDNA配列及び第2のDNA配列の順に構成されていてもよいし、又は第2のDNA配列、第1のDNA配列及び第3のDNA配列の順に構成されていてもよい(例えば図2参照)。好ましくは、アダプターDNA鎖は、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列の順に構成されており、第2のDNA配列を挟んで第1と第3のDNA配列が折り返し構造を形成することによって、ヘアピン又はステム-ループ構造が形成される。
 好ましい実施形態において、2本鎖アダプターは、第1アダプターDNA鎖と該第1アダプターDNA鎖に相補的な第2アダプターDNA鎖とを含み、第1アダプターDNA鎖と第2アダプターDNA鎖とが結合して2本鎖を形成するものであり、
 第1アダプターDNA鎖は、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有し、該第1と第3のDNA配列が折り返し構造を形成可能な配列であり、
 第2アダプターDNA鎖は、5’末端から3’末端に向けて、第3のDNA配列に相補的な第3の相補配列、第2のDNA配列に相補的な第2の相補配列、及び第1のDNA配列に相補的な第1の相補配列を有し、該第1と第3の相補配列が折り返し構造を形成可能な配列である。
 2本鎖アダプターにおける折り返し構造を形成可能なアダプターDNA鎖の具体的な配列及び長さは、当業者であれば、増幅しようとする標的DNA配列の長さ及び種類、増幅後のコンカテマーの用途などに応じて、適宜設計することができる。2本鎖アダプターには、上述した折り返し構造を形成可能なアダプターDNA鎖、及び両配列に相補的ではない別の配列(ヘアピン部分又はループ部分)以外にも、例えば2本鎖DNAとライゲートするための制限酵素認識配列が含まれてもよい。2本鎖アダプターの調製は、公知のDNA合成方法により又は商業的なDNA合成委託機関を利用して行うことができる。
 2本鎖アダプターを標的DNA配列を含む2本鎖DNAにライゲートさせる方法も特に限定されるものではない。例えば、2本鎖アダプターを1つのカセットとして調製し、それを2本鎖DNAとライゲートし、環状DNA鋳型とすることができる(例えば図3参照)。別法では、2本鎖DNAの両末端に、分割した2本鎖アダプターの2つの配列を結合させた後、この2つの配列を連結することによって、環状DNA鋳型とすることができる(例えば図4参照)。ライゲーションは、当技術分野で公知の方法により、例えば制限酵素やリガーゼを用いる方法によって行うことができる。この際、2本鎖DNAと2本鎖アダプターとの連結部は、突出末端を有するものであっても又は平滑末端を有するものであってもよい。
 こうして得られる環状DNA鋳型には、ニック(切断部)が含まれるようにする。「ニック」とは、2本鎖DNAの一方の鎖における隣接した塩基間の結合が切断された箇所を指す。ニックは、環状DNA鋳型の一方の鎖又は両方の鎖の任意の位置に設定することができる。例えば、環状DNA鋳型の一方の鎖にニックを設定した場合には、後述する3'末端伸長(増幅)反応によって標的DNA配列又はその相補配列を増幅し、標的DNA配列又はその相補配列が直列的に複数連結されたコンカテマーが形成される。一方、環状DNA鋳型の両方の鎖にニックを設定した場合には、後述する3'末端伸長(増幅)反応によって標的DNA配列及びその相補配列の両方が増幅されることになる。
 ニックは2本鎖アダプターに設定することが好ましい。2本鎖アダプター上のニックの位置は、特に限定されるものではなく、2本鎖アダプターの一方の鎖の5'末端若しくは3'末端又は鎖上にあってもよいし、2本鎖アダプターの両方の鎖の5'末端、3'末端又は鎖上の任意の位置にあってもよい(例えば図2参照)。ニックを設定する方法も特に限定されるものではなく、当技術分野で公知の方法により行うことができる。例えば、(i)あらかじめニックを設定した2本鎖アダプターを2本鎖DNAにライゲートする方法、(ii)2本鎖アダプターの一方のアダプターDNA鎖の5’端を脱リン酸化する方法、(iii)ある認識配列を認識して2本鎖のうち1本鎖を切断するニッキング酵素(例えばN.BstNBIなど)が、2本鎖アダプター上に配置した該認識配列を認識してニックを生じさせる方法がある。例えば、2本鎖アダプターには、アダプターDNA鎖の任意の位置又は5'末端に予めニックを設定しておくか、あるいはニッキング酵素によって認識される塩基配列を設定しておく。好ましくは、ニックは、第1アダプターDNA鎖の第1のDNA配列の5'末端及び/又は第2アダプターDNA鎖の第3の相補配列の5'末端に含まれる又は形成される。
 ニックを含む2本鎖DNAで構成される環状DNA鋳型を調製した後、該ニックを起点として鎖置換型DNAポリメラーゼによって3'末端伸長反応を行う。当技術分野では、ニックの箇所から、鎖置換型DNAポリメラーゼが修復という形で新しいDNA鎖を合成することが知られている(ニックトランスレーション)。本発明では、鎖置換型DNAポリメラーゼを使用して、ローリングサークル増幅(RCA)によりニックを起点として3'末端伸長反応を行うことによって、環状DNA鋳型が増幅されることになる。
 「鎖置換型DNAポリメラーゼ」とは、3'末端伸長反応(相補鎖合成)に使用されるポリメラーゼであって、鋳型DNAの2本鎖部分をはがして3'末端伸長反応を行うタイプのポリメラーゼいう。本発明において使用可能なポリメラーゼは、このような鎖置換活性を有するものであれば特に限定されるものではなく、例えばphi29 DNAポリメラーゼ、Bst DNAポリメラーゼ(ラージフラグメント)、Bca(exo-)DNAポリメラーゼ、大腸菌DNAポリメラーゼIのクレノウフラグメント、Vent(Exo-)DNAポリメラーゼ(Vent DNAポリメラーゼからエクソヌクレアーゼ活性を除いたもの)、DeepVent(Exo-)DNAポリメラーゼ(DeepVent DNAポリメラーゼからエクソヌクレアーゼ活性を除いたもの)及びKOD DNAポリメラーゼ等が挙げられる。選択したポリメラーゼの種類に応じて、3'末端伸長反応の反応条件を適宜設定する。例えばphi29 DNAポリメラーゼを用いる場合は、その反応至適温度である25~35℃付近(約30℃)で反応を行い、Bst DNAポリメラーゼを用いる場合は60~65℃付近で反応を行うことが望ましい。
 このような3'末端伸長反応によって、標的のDNA配列と折り返し構造を形成可能なアダプターDNA鎖が一本鎖DNAとして直列的に複数個連結された形状のコンカテマーが形成される。環状DNA鋳型の一方の鎖、例えば2本鎖アダプターの一方のアダプターDNA鎖にニックが形成される場合には、標的DNA配列とアダプターDNA鎖が一本鎖DNAとして直列的に複数個連結された形状のコンカテマーが形成される(例えば図1参照)。一方、環状DNA鋳型の両方の鎖、例えば2本鎖アダプターの両方のアダプターDNA鎖にニックが形成される場合には、標的DNA配列、一方のアダプターDNA鎖、標的DNA配列に相補的なDNA配列、及び他方のアダプターDNA鎖が直列的に複数個連結された形状のコンカテマーが形成される(図5参照)。このようなコンカテマーは、標的DNA配列とそれに相補的なDNA配列とを含むため、それらが結合することによって、コンカテマーが同じ配列からなるクラスター(集団)として強固なものとなる。具体的な実施形態では、例えば、(1)第1アダプターDNA鎖上の第1のDNA配列の5’末端に第1のニックが形成され、第2アダプターDNA鎖上の第3の相補配列の5’末端に第2のニックが形成される工程、(2)第1のニックを起点として鎖置換型DNAポリメラーゼによって3'末端が第2アダプターDNA鎖上の第2のニックの位置まで伸長して第1アダプターDNA鎖と同じ配列を有するアダプターDNA鎖が形成されて伸長反応が停止し、該アダプターDNA鎖が折り返し構造を形成する工程、(3)該アダプターDNA鎖の3'末端伸長反応によって標的のDNA配列と相補的なDNA配列が伸長し、次に第2のアダプターDNA鎖と同じ配列を有するアダプターDNA鎖が生成され、該アダプターDNA鎖が折り返し構造を形成する工程、(4)該アダプターDNA鎖の3'末端伸長反応によって標的のDNA配列と同じDNA配列が伸長し、次に第1のアダプターDNA鎖と同じ配列を有するアダプターDNA鎖が生成され、該アダプターDNA鎖が折り返し構造を形成する工程、(5)工程(3)及び(4)を反復することにより、標的のDNA配列、第1アダプターDNA鎖、標的のDNA配列に相補的なDNA配列及び第2アダプターDNA鎖が直列的に複数個連結された形状のコンカテマーが形成される工程を行うことができる。
 以上の方法により、プライマーを必要とせず、均等な増幅効率で核酸増幅を行うことが可能となる。上述のように形成されたコンカテマーは、標的DNA配列と、折り返し構造を形成可能なアダプターDNA鎖とが直列的に複数連結された形状であるため、該折り返し構造が形成されて折りたたまれた形状を有することになる。コンカテマーは、標的DNA配列を複数含むクラスター(集団)であるため、後述する塩基配列決定や、標的DNA配列の検出などに用いることができる。
 本発明の核酸増幅方法により形成されたコンカテマーは、標的DNA配列を複数含み、また存在する空間領域が一定範囲に限定される折りたたまれた形状(ボール状ともいう)を有することから、塩基配列決定方法における使用に適している。従って、本発明の核酸増幅方法は、塩基配列決定の前処理として行うことができる。
 塩基配列決定方法では、本発明の核酸増幅方法により形成された1又は複数のコンカテマーを基板、好ましくは流路基板上に固定する。基板又は流路基板とは、その上で塩基配列決定反応を行う基板であり、当技術分野で公知である。例えば、塩基配列決定の操作に一般的に使用される固体基板であれば特に限定されるものではない。具体的には、水不溶性で、加熱変性時に溶融しない固体基板であり、その材料としては、例えば、金、銀、銅、アルミニウム、タングステン、モリブデン、クロム、白金、チタン、ニッケル等の金属;ステンレス、ハステロイ、インコネル、モネル、ジュラルミン等の合金;シリコン;ガラス、石英ガラス、溶融石英、合成石英、アルミナ、サファイア、セラミクス、フォルステライト及び感光性ガラス等のガラス材料;ポリエステル樹脂、ポリスチレン、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂(Acrylonitrile Butadiene Styrene 樹脂)、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂及び塩化ビニル樹脂等のプラスチック;アガロース、デキストラン、セルロース、ポリビニルアルコール、ニトロセルロース、キチン、キトサンが挙げられる。蛍光標識を利用して反応を検出するために、透過性材料(例えばガラス、プラスチックなど)の固体基板が好ましい。また、基板の形状についても、特に限定はなく、平板、区画化された平面(例えばタイタープレート)、フィルム、チューブ及び粒子等が挙げられる。
 コンカテマーを流路基板上に固定する方法は、特に限定されないが、例えば、物理吸着、共有結合、イオン結合、生物学的結合(例えば、ビオチンとアビジン又はストレプトアビジンとの結合、抗原と抗体との結合など)によって固定化する方法などを例示することができる。
 物理吸着によってコンカテマーを流路基板上に固定する方法としては、アミノシラン分子又は陽イオン(ポリリシン、ポリアリルアミン、ポリエチレンイミン等)で表面処理した流路基板に、コンカテマーのDNAの荷電を利用して静電結合させる方法などが挙げられる。
 共有結合を介したコンカテマーの流路基板への固定化は、例えば、コンカテマーに官能基を導入しかつ該官能基と反応性の官能基を流路基板に導入して両者を反応させることにより実施できる。例えば、コンカテマーにアミノ基を導入し、流路基板表面に活性エステル基、エポキシ基、アルデヒド基、カルボジイミド基、イソチオシアネート基又はイソシアネート基を導入することにより共有結合を形成できる。また、コンカテマーにメルカプト基を導入し、流路基板表面に活性エステル基、マレイミド基又はジスルフィド基を導入してもよい。活性エステル基としては、例えば、p-ニトロフェニル基、N-ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基、5-ノルボルネン-2、3-ジカルボキシイミド基等が挙げられる。官能基を流路基板表面に導入する方法の一つとしては、所望の官能基を有するシランカップリング剤によって流路基板表面を処理する方法が挙げられる。カップリング剤の例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-β-アミノプロピルメチルジメトキシシラン、あるいはγ-グリシドキシプロピルトリメトキシシラン等を用いることができる。結合部位となる官能基を流路基板表面に導入する別の方法としては、プラズマ処理が挙げられる。
 次に、コンカテマーのそれぞれに、アダプターDNA鎖における折り返し構造を形成可能な配列以外の配列にプライマーを結合させる。好ましくは、アダプターDNA鎖における第2のDNA配列、又はヘアピン部分若しくはループ部分を形成する配列にプライマーを結合させる。プライマーは、当技術分野で公知のプライマー設計手順又はプライマー設計用プログラムを用いて、その長さや融解温度(Tm)を考慮しながらアダプターDNA鎖中のプライマー結合領域に基づいて設計することができる。プライマーの長さは、例えば10~80塩基、好ましくは12~30塩基であるが、当業者であれば適宜選択することができる。コンカテマーには、アダプターDNA鎖が直列的に複数連結して含まれるため、それぞれのアダプターDNA鎖にプライマーを結合させることができる。
 結合したプライマーの末端に、複数塩基からなる認識部位を含みかつその認識部位の塩基の種類に応じた標識を結合したプローブを順次ライゲートさせる。該プローブは、慣用的な塩基配列決定方法において使用されるプローブと同様のものであり、任意の複数の塩基、例えば2、3、4、5、6、7、8塩基程度からなるものである。かかる複数の塩基は、任意の組合せの塩基とすることができ、様々な組合せの複数塩基からなる認識部位を含むプローブを複数種準備して、それらのプローブを順次にプライマーの末端へのライゲーションに使用する。プローブに結合させる標識は、当技術分野で慣用的な標識であれば特に限定されるものではなく、例えば蛍光標識(Cy3、Cy5、フルオレセインイソチオシアネート(FITC)、テトラメチルローダミンイソチオシアネート(TRITC)など)、発光性半導体標識(セレン化亜鉛(Zn-Se)など)、化学発光標識(ルシフェリンなど)、酵素標識(ペルオキシダーゼ、β-ガラクトシダーゼ、アルカリフォスファターゼなど)、放射性標識(トリチウム、ヨウ素125など)が挙げられる。標識の検出容易性を考慮して、標識は蛍光標識であることが好ましい。
 プローブは、標的DNA配列の塩基の種類に対応する認識部位を含む場合にのみプライマーの末端にライゲートすることができる。そのため、標識を検出することによって、ライゲートしたプローブの認識部位の塩基の種類、すなわち標的DNA配列の塩基の種類を検出することができる。標識の測定は、標識の種類に応じて、当技術分野で公知の方法及び機器を使用して行うことができる。例えば蛍光標識、発光性半導体標識及び化学発光標識は、適当な光レーザを用いて励起し、放出される光をカウントする光学系、蛍光顕微鏡、プレートリーダー等を用いて測定することができる。また酵素標識の場合には、酵素作用によって分解して発色する基質を加え、基質の分解量を光学的に測定することによって標識を測定することができる。放射性標識の場合には、放射性標識の発する放射線量をシンチレーションカウンター等により測定する。本発明においては、蛍光を利用して、得られる輝点をカウントすることにより、プライマーとプローブとのライゲーションを分析することが好ましい。
 上記の手順を繰り返すことによって、標的DNA配列の全体又は一部の塩基配列を決定することができる。
 上述した本発明の方法は、キットを用いることにより、より手間を省いて簡潔に行うことができる。本発明のキットは、第1アダプターDNA鎖と該第1アダプターDNA鎖に相補的な第2アダプターDNA鎖とを含み、第1アダプターDNA鎖と第2アダプターDNA鎖とが結合して2本鎖を形成している2本鎖アダプターを含むものである。ここで、第1アダプターDNA鎖は、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有し、該第1と第3のDNA配列が折り返し構造を形成可能な配列であり、第2アダプターDNA鎖は、第3のDNA配列に相補的な第3の相補配列、第2のDNA配列に相補的な第2の相補配列、及び第1のDNA配列に相補的な第1の相補配列を有し、該第1と第3の相補配列が折り返し構造を形成可能な配列であり、第1アダプターDNA鎖及び第2アダプターDNA鎖の一方又は両方が、ニックを含む又はニックを形成可能な配列を有する。ニックを形成可能な配列としては、例えばニッキング酵素の認識配列が挙げられる。2本鎖アダプターは、平滑末端を有するものであっても又は突出末端を有するものであってもよい。
 また本発明のキットは、第2のDNA配列に特異的に結合するプライマー、及び/又は第2の相補配列に特異的に結合するプライマーをさらに含んでもよく、その場合、塩基配列決定方法をさらに簡便に行うことができる。
 また本発明は、塩基配列決定装置を提供する。本発明の塩基配列決定装置は、例えば
 本発明の方法により形成された1又は複数のコンカテマーが固定された流路基板と、
 前記コンカテマーに含まれるアダプターDNA鎖における折り返し構造を形成可能な配列以外の配列に結合するプライマーを供給する手段、及び複数塩基からなる認識部位を含みかつ該認識部位の塩基の種類に応じた標識を結合したプローブを供給する手段と、
 前記標識を検出する手段と
を備えるものである。
 塩基配列決定装置は、本発明の方法を実施して1又は複数のコンカテマーを形成する手段をさらに備えるものであってもよい。
 コンカテマーが固定された流路基板は、柱状構造が周期的に配置された流路基板において、該柱状構造の上面に1個ずつコンカテマーが配置されているものとすることができる。ここで柱状構造は、流路基板に対して垂直に設けられる構造であり、例えば実施例6で例示する微細ピラーとすることができる。柱状構造の大きさは、使用するコンカテマーの大きさ、使用する標識(蛍光など)のシグナルの大きさなどに応じて適宜設定する。塩基配列決定では、コンカテマーは高い面密度で、かつ重なり合うことなく、簡便な手順によって流路基板に固定することが求められる。そのため、例えば、柱状構造の直径は100nmから10μm、柱状構造の高さは100nmから10μmの間で設定することが好ましい。また柱状構造の配置周期(柱状構造中心線の間隔)は、柱状構造直径の1倍から10倍とすることが好ましい。
 コンカテマーは負に帯電したDNAからなるため、コンカテマーの有する負電荷による電界が及ぶ範囲と柱状構造の大きさを調整することによって、コンカテマーは互いの斥力によってひとつの柱状構造上面に重複することなく固定される。例えば、周期的に配置された柱状構造の断面径及び柱状構造の配置周期が、コンカテマーを任意平面に投影した時の最大の外形寸法の0.5倍から3倍の範囲となるようにする。
 また、流路基板において、周期的に配置された柱状構造の上面は、親水性であることが好ましく、具体的には水に対する接触角が90度以下になる表面を有することが好ましい。一方、周期的に配置された柱状構造の側面及び流路基板の表面は、疎水性であることが好ましく、具体的には水に対する接触角が90度以上である表面を有することが好ましい。疎水性とするには、例えば、酸素プラズマ処理の条件により親水性及び疎水性(撥水性)の制御を行うか、又は表面に対し撥水処理を行うか、又は流路基板を撥水性の材質で作製することができる。例えば、酸素プラズマの表面処理時間を短縮することによって、水との接触角が90°以上になるような強い疎水性を示す状態にすることが可能である。これにより、柱状構造の上面以外の部分へコンカテマーが固定されることを回避することができる。
 標識検出手段には、例えば蛍光標識、発光性半導体標識又は化学発光標識を測定する場合には、光照射手段、発光検出手段などが含まれる。光照射手段及び発光検出手段は、使用する標識の種類と、励起・発光波長などに応じて、選択及び設計することができる。
 さらに本発明の塩基配列決定装置は、温度調節手段、洗浄液を供給する手段、洗浄ユニット、洗浄液を排液する手段、標識検出結果を記録する手段などを備えることも可能である。
 以下、図面を参照して本発明の実施形態の具体例について説明する。ただし、これらの実施例は本発明を実現するための一例に過ぎず、本発明を限定するものではないことに注意すべきである。
[実施例1]
 本実施例は、立体構造を有するコンカテマー分子の合成方法、すなわち本発明の核酸増幅反応の一例を図1を用いて説明する。
 標的DNA断片1とそれに相補的なDNA断片2からなる解析対象2本鎖DNA断片に、内部構造3, 4,6,7,8,9を有する2本鎖アダプター20をライゲーション酵素によって連結する(図1(a))。2本鎖アダプター20の内部構造3と6及び7と9は相補的な配列を有し、溶液中において折り返し構造の形成を可能にするものである。配列4は、合成されるコンカテマー分子29が折り返し構造を形成した際にループ構造を取って1本鎖となる任意の配列であり、後述する塩基配列解析においてプライマーの結合部位を設定するのに適している。配列8は配列4と相補的な配列である。該2本鎖アダプター20中の一方のアダプターDNA鎖上の任意の位置に1ヵ所のニック5を2本鎖アダプター内部構造4と6の間に形成している。ここでニック5は、後述するように2本鎖アダプターの両端を含む任意の位置に形成することができる(図2)。この2本鎖アダプター20と解析対象2本鎖DNA断片1,2に、ライゲーション酵素を作用させることによりDNA増幅の鋳型となる環状2本鎖DNAを形成する。
 図1(a)に示す位置にニック5が形成されている鋳型に鎖置換型のDNAポリメラーゼを作用させることにより、図1(b)に示すようにDNA配列4の3’末端がDNA配列9を鋳型としてDNA相補鎖合成が起こり、伸長する。このとき鎖置換型DNAポリメラーゼによる4の3’末端の伸長とともに9を鋳型として配列16が形成され、初めに9と結合していたDNA配列6の解離が進行する。該3’末端は、さらに解析対象2本鎖DNA断片を構成するDNA断片2を鋳型として、反応前に2に結合していた標的DNA断片1の配列を解離しながら配列17を、3,4,16を解離しながら2番目の折り返し構造10,11,12を、それぞれ形成しながら伸長する(図1(c)(d))。
 そして図1(d)のように標的DNA断片の2回目の伸長産物18が17を解離しながら伸長し、折り返し構造13,14,15が形成する。同様の伸長反応によって18が解離し(図1(e))、該反応が連続することによって折り返し構造に挟まれた標的DNA断片が直列的に連結された形状(コンカテマー)29が形成される(図1(f))。反応が継続することにより、コンカテマーを形成した分子はその自身の塩基配列中に順次折り返し構造を形成し、該コンカテマー分子は立体構造を形成する。
 コンカテマー分子合成の起点として働く鋳型DNA中の一方のDNA鎖のニック位置は、2本鎖アダプター分子の任意の場所に設定することが可能であり、アダプター構造における折り返し構造も図1に示した構造に限られず、たとえば図2に示すような構造を用いることができる。図2(a)は、図1に示したアダプター構造とニック位置を用いた鋳型構造である。図2(b)は、折り返し構造を形成可能なDNA配列3と6を直接隣接させ、配列4を配列6の3’末端側に配置し、ニックを配列3と標的DNA断片1の間に設けた構造であり、図2(c)は、折り返し構造を形成可能なDNA配列3と6を直接隣接させ、配列4を配列6の5’末端側に配置し、ニックを配列3と配列4の間に設けた構造である。
 これらの位置にニックを存在せしめる手法としては、(i)あらかじめニックが存在する2本鎖アダプターを合成する方法、(ii)2本鎖アダプターの一方のDNA鎖の5’端を脱リン酸化する方法、(iii)2本鎖アダプター上に配置した特異的塩基配列を認識するニッキング酵素によってニックを生じさせる方法、のいずれかを用いることができる。
 次に解析対象2本鎖DNA断片1,2と2本鎖アダプター20から環状の鋳型を形成する方法の2つの例について説明する。第1例として図3を示す。ゲノムDNAの物理的切断若しくは制限酵素切断により調製した解析対象2本鎖DNA断片1,2、又はPCR等のDNA増幅方法によって得られた解析対象2本鎖DNA断片1,2(図3(a))と、少なくとも一方のDNA鎖中に相補的なDNA配列を有することによって折り返し構造を形成可能な2本鎖アダプター20(図3(b))を材料とし、これら各1分子をライゲーション酵素によって連結することによって環状2本鎖DNA分子を合成する(図3(c))。解析対象2本鎖DNA断片1,2と2本鎖アダプター20との連結部には一般的に相補的な突出末端塩基を有する構造を利用するが、平滑末端構造を有するDNA分子の連結であっても適用可能である。第2例を図4に示す。1分子の解析対象2本鎖DNA断片1,2(図4(a))に対しその両末端それぞれに2本鎖アダプターの配列を結合させた後(図4(b))、2つのアダプター配列を結合することによって環状2本鎖DNA分子(図4(c))を合成することが可能である。本合成方法では、解析対象2本鎖DNA断片(図4における1,2)に連結する時点(図4(b))では、2本鎖アダプターの配列中(図4における3,4,6,7,8,9)に相補的なDNA配列による折り返し構造形成能が存在しない場合が想定されるが、環状2本鎖DNA分子を形成した段階においてアダプター領域には1分子内で相補的配列による折り返し構造の構築が想定可能な構造となる。
[実施例2]
 本実施例は、立体構造を有するコンカテマー分子の合成方法、すなわち本発明の核酸増幅反応の一例を図5を用いて説明する。
 標的DNA断片101とそれに相補的なDNA断片102からなる解析対象2本鎖DNA断片101,102に、内部構造103,104,106,107,108,109を有する2本鎖アダプター21をライゲーション酵素によって連結する(図5(a))。2本鎖アダプター21の内部構造103と106及び107と109は相補的な配列を有し、溶液中において折り返し構造の形成を可能にするものである。配列104は、合成されるコンカテマー分子129が折り返し構造を形成した際にループ構造を取って1本鎖となる任意の配列であり、後述する塩基配列解析においてプライマーの結合部位とすることができる。他の実施例として、アダプターの内部構造103、104又は106のいずれかに、あるいは複数にまたがる形でプライマー結合部位を設定することも可能である。配列108は配列104と相補的な配列である。ここで第1のニック105が標的DNA断片101とアダプター内部構造103の間、第2のニック155が標的DNA断片101に相補的なDNA断片102とアダプター内部構造109の間に形成される。伸長反応は、ニック105又は155を起点として起こり得る。どちらの場合でも目的とするコンカテマーを形成することができるが、ここでは105を起点として伸長する場合について説明する。
 図5(a)の鋳型に鎖置換型のDNAポリメラーゼを作用させることにより、図5(b)に示すように、標的DNA断片101の3’末端がDNA配列107、次にDNA配列108を鋳型として伸長して110、111が形成され、初めに107、108、109と結合していたDNA配列103、104、106の解離が進行し、ニック155の位置で伸長が止まる。熱揺らぎによって110、111、112が107、108、109から解離すると、110、111、112は、110と112の配列相補性によって折り返し構造を形成する(図5(c))。109の5’末端は脱リン酸化されてニック155が存在するため102の3’末端から分離する(図5(c))。該折り返し構造における112の3’末端は、101を鋳型とし102を解離しながら伸長して標的DNA断片101の相補的配列を有する配列116を形成し、続いて106、104、103を鋳型として113、114、115を形成する(図5(d))。熱揺らぎによって113、114、115が106、104、103から解離して113と115の配列相補性によって折り返し構造を形成し、113の3’末端は116を鋳型にして101を解離しながら伸長する(図5(e))。伸長反応によって標的DNA断片101と同じ配列の117が形成され、112、111、110を鋳型にして118、119、120が形成され、前記と同様に熱揺らぎによって118と120の配列相補性によって折り返し構造を形式し、120の3’末端は101を鋳型にして伸長する(図5(f))。120の3’末端は101を鋳型として121を形成しながら伸長し、続いて106、104、103を鋳型として122、123、124を形成する(図5(g))。これを繰り返すことにより標的DNA断片とこれに相補的なDNA断片が交互に繰り返されたコンカテマー129が形成される(図5(h))。
[実施例3]
 本実施例は、超並列塩基配列計測に供するコンカテマー分子を形成する方法を図5、図6及び図7を使って例示する。
 解析対象2本鎖DNA断片は図6(b)の152に示す。152は解析対象2本鎖DNA断片の一例としてPCRによって増幅したpUC19プラスミドDNAの部分断片を用いることができる。pUC19プラスミドの部分断片の増幅は、図6(a)に示すようなユニバーサルプライマーであるM13フォワードプライマー配列130と制限酵素BsaI認識配列134を含むプライマー(M13_f01_BsaI)136(配列番号1)とM13リバースプライマー配列131と制限酵素BsaI認識配列135を含むプライマー(M13_f02_BsaI)137(配列番号2)を用い、pUC19プラスミドDNAを鋳型としたPCR法によって行うことができ、相補的な配列138,139(配列番号3及び4)も生成される(図6 (b))。得られた増幅DNA産物を制限酵素BsaI(NEB製)によって150及び151で切断することにより、突出末端132,133と、プライマー認識部位130及び131と、それに相補的なDNA配列140,141を有する解析対象2本鎖DNA断片を合成する(図6(c))。
 解析対象2本鎖DNA断片152の突出末端構造に相補的なDNA配列を有し、且つそれぞれのDNA鎖の5’端を脱リン酸化した2本鎖アダプター21を化学合成し、先に合成した解析対象2本鎖DNA断片152と混合し(図7(a))、T4DNAライゲース(Invitorogen製)による連結反応によって環状2本鎖DNA分子を合成した(図7(b))。本工程で得られた環状2本鎖DNA分子は図7に示すようにそれぞれのDNA鎖上に1カ所のニックを有しており、ニックの存在する位置は2本鎖アダプターの5’端位置である。図7(a)の構造を図5(a)の構造に対応させて示したのが図7(b)である。標的DNA断片101を含む2本鎖DNA断片152を構成する一本鎖DNAには、標的DNA断片101、PCR用のフォワードプライマー、リバースプライマー、突出末端形成用配列が含まれ、これらを合わせた配列が図7(b)の配列に対応する。
 合成した環状2本鎖DNA分子を材料として、鎖置換型DNAポリメラーゼとしてphi29 DNA Polymerase(NEB製)、反応基質としてdNTP溶液を加え、図5の手順により核酸増幅反応を行う。本工程ではDNA伸長反応の開始点として寄与する3’末端構造は環状2本鎖DNA分子101,102中のニック105又は155にのみ存在し、環状2本鎖DNA分子を形成するDNA分子から伸長反応が開始する(図5(b))。相補鎖を鋳型とするDNA伸長反応は、相補鎖DNA分子のアダプター配列109末端部に存在するニック155位置で停止するが、伸長反応によって新たに形成したアダプター配列の折り返し構造を形成可能な配列110、112の存在によって3’末端配列が自己のDNA分子に対して折り返し構造を形成し(図5(c))、折り返した後は自己の標的DNA断片101を鋳型配列として利用することによってDNA伸長反応が継続される。自己の標的DNA断片の末端まで鋳型として利用した段階において(図5(d))、鋳型とすべき対象DNA配列が途切れるものの、合成された末端配列領域に存在するアダプター配列113,115の折り返し構造によって末端配列部において折り返しが形成され、自己のDNA分子を鋳型としたDNA伸長反応が継続する。本工程では自己のDNA分子を鋳型とした伸長反応と末端位置での末端配列折り返しが連続して発生することによって標的DNA断片を繰り返し含むコンカテマー分子129が合成される(図5(h))。コンカテマー分子129中に繰り返される折り返し構造の存在によってコンカテマー分子からなる立体構造が形成される。
 図8に上記の手順によるコンカテマーの形成結果を示す。図5(a)に示される構造を有し、図6(c)に示される配列とアダプターによる環状2本鎖DNA分子を鋳型として用いた。反応の条件は、鋳型濃度については0.2fmol及び0.6fmol、ローリングサークル増幅(RCA: Rolling Circle Amplification)時間については1時間(1hr)及び3時間(3hr)とした。2本鎖DNAを検出するPicoGreen (Invitrogen)を用いて観察した。図8に示される輝点は、折り返し構造によってボール状に折りたたまれた、すなわちクラスター化した1個のコンカテマーに対応する。鋳型濃度が高くなり、反応時間が長くなるとコンカテマーの数が増加することがわかる(例えば、図8のサンプル(4))。
[実施例4]
 本発明において、コンカテマーの形成において使用する鋳型DNAは、配列決定に供するものとすることができる。鋳型DNAは、任意の細胞、組織又は生物から採取され、当該技術分野で利用されている任意の方法により調製することができる。図9によってこの手順の一例を示す。
 例えばゲノムDNA 201(図9(a))を測定対象とする場合、採取されたゲノムDNA 201は数百bpに断片化202した後(図9(b))、末端修復、A塩基付加、及び2本鎖アダプターDNA 204のライゲーションを行い、規格外の塩基長の断片を除去して、標的DNA配列203a~f及びアダプター配列204を含む鋳型DNA 205のライブラリーを形成する(図9(c))。205を鋳型として増幅を行い、立体的に折りたたまれたDNAナノボール状のコンカテマー206a~fを得、206a~fを流路基板207上に固定して配列解析に供する。
[実施例5]
 本実施例は、超並列塩基配列計測に供するコンカテマー分子206をフローセル基板209に固定する方法を図10に例示する。
 米国特許出願公開第2009/0270273号(特許文献5)で明らかにされているように、DNA分子からなるコンカテマー206は負に帯電しているので、ガラス製のフローセル基板209の表面をアミノシラン分子によって修飾することにより、コンカテマー206は、基板209表面のアミノ基208に静電的に結合する(図10(b)及び(c))。これによりコンカテマーを基板上に固定することができる。
[実施例6]
 本実施例は、本発明に基づく手順によって形成された、超並列塩基配列計測に供するコンカテマー分子206をフローセル基板270に固定する方法を例示するものである。以下、図11を使って説明する。
 ガラス製のフローセル基板270のフローセルの内面に微細ピラー271を形成し、微細ピラー271の上面にコンカテマー206a~cを固定する。ここで微細ピラーの直径は100nmから10μm、微細ピラーの配置周期(微細ピラー中心線の間隔)は微細ピラー直径の1倍から10倍、微細ピラーの高さは100nmから10μmの間の値に設定することが望ましい。配列解析では、コンカテマーは高い面密度で、かつ重なり合うことなく、簡便な手順によってフローセルに固定することが求められる。コンカテマー206は負に帯電したDNA断片からなるので、図11の(b)に示すようにコンカテマーのもつ負電荷による電界が及ぶ範囲を208とすると、コンカテマーは互いの斥力によって1つの微細ピラー上面に重複されることなく配置される。
 実施例3で示した手順で生成された対象のコンカテマーを蛍光体(PicoGreen, Invitrogen)で標識し、微細ピラー上に固定して蛍光顕微鏡で観察した結果を図12に示す。図12において、微細ピラー直径は1.0μm、微細ピラー高さは1.0μm、微細ピラー配置周期は1. 5μmである。図12に示される蛍光291及び292は、微細ピラー上面に限定された領域に限定されていることがわかる。
[実施例7]
 本実施例は、本発明に基づく手順によって形成された、超並列塩基配列計測に供するコンカテマー分子206のフローセル基板270への固定法に関する他の方法を例示するものである。
 ガラス製のフローセル基板270の流路内面に例えばポリスチレンなどの樹脂材料による微細ピラー271を形成し、微細ピラー271をアミノシラン分子によって修飾する。DNA分子からなるコンカテマー206は負に帯電しているのでアミノ基に静電的に結合することができる(図11(a)及び(b))。
 図11(c)に示すように、反応溶液などを含む溶液280を流路273,272に流すことにより微細ピラー274上面に固定されたコンカテマー281,282,283上で配列解析を実行することができる。ここでピラーの高さを0.5μm以上に設定し、蛍光検出光学系の焦点位置をピラー上面に設定することで、275,276,277のようにDNA固定化処理された上面、側面、谷間部分に固定されたコンカテマーからの蛍光だけではなく、284のように微細ピラー274の谷間に固定されたコンカテマー284からの蛍光が検出系に混入することを抑制することができる。
 他の実施例として、微細ピラー274が形成された基板において微細ピラー274上面に限定してコンカテマー固定化処理を施すことでピラー谷間へのコンカテマー固定を抑制する構造が考えられる。上面、側面、谷間部分を含む微細ピラー基板の表面は例えば酸素プラズマ処理の条件によって親水性、疎水性(撥水性)の程度を制御することが可能である。上記酸素プラズマの処理時間を短縮することによって、水との接触角が90°以上になるような強い疎水性を示す状態にすることが可能である。この表面状態の微細ピラー基板にポリ-L-リシン(Poly-L-Lysine: SIGMA-ALDRICH)を滴下すると、ポリ-L-リシン液はピラー上面にのみ接触しピラー谷間やピラー側面には接触せず、図11(d)に示すように、285のように上面だけにポリ-L-リシンが付着し、側面287や谷間286の部分にはポリ-L-リシンが付着しない。また、配列解析において流路に流されるプローブなどを含む溶液280も側面287や谷間部286が疎水性であるために浸潤しない。これにより微細ピラー上面285を除いて、鋳型となるコンカテマー281、282、283やプローブが届かないためにピラー上面以外での反応がなく、検出精度を向上することができる。
[実施例8]
 本実施例は、本発明に基づく手順によって形成されたコンカテマーを用いた超並列塩基配列計測の手順の一例について図13を使って説明する。
 超並列塩基配列計測の一例としてライゲーションによる配列解析(sequencing by ligation)が知られている(M. L. Metzker, “Sequencing technologies-the next generation”, Nature Reviews Genatics 11 2010 p31-46(非特許文献2))。コンカテマー分子206は、図13(a)に示すようにアダプター配列210と標的DNA配列211が直列に連結されたコンカテマー配列212を有している。
 図13(b)に示すように、プライマー213はアダプターDNA配列216中のプライマー認識部位に結合し、続いてプライマー213の5’側にある2塩基分の配列を認識するプローブ(第1の塩基認識部位)214をライゲースする。このプローブには2塩基配列に対応する色素(第1の標識)215が修飾されており、この色素の蛍光信号を読み取ることにより該2塩基配列、すなわち標的DNA配列217を知ることができる(図13(b)におけるb-1)。次に215を除去した後、色素(第2の標識)225で修飾されたプローブ(第2の塩基認識部位224を含む)を使ってプローブ5’端の2塩基をよみとる(図13(b)におけるb-2)。234及び235を用いて同様の反応により次の2塩基をよみとり(図13(b)におけるb-3)、順次これを繰返してプライマー端からの配列を解析する。
 プローブはハイブリダイゼーションの安定性を向上するために2塩基分の配列認識部位に6塩基を加えた塩基長を有している。そこで図13(c)に示すように、複数のプライマー213,223,233,243,253を準備して1塩基ごとに異なる認識部位に順次ハイブリダイゼーションできるようにし、ライゲーションの開始位置をシフトすることで標的DNA配列217の全領域を読み取ることができる。
 コンカテマー212は直列的に多数のプライマー認識部位をアダプターDNA配列210中に持っており、複数の同様のライゲーション反応が一つのコンカテマーの中で同時に進行する。直列につながったアダプターと標的DNA配列の連結数に応じて強い信号強度が得られる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除又は置換を行うことが可能である。
 1: 標的DNA断片
 2: 1に相補的なDNA断片
 3: アダプターを構成するDNA配列
 4: アダプターを構成するDNA配列
 5: ニック
 6: 3と折り返し構造を形成可能なDNA配列
 7: 3と相補的なDNA配列
 8: 4と相補的なDNA配列
 9: 6と相補的なDNA配列
 10: 7のDNA配列を鋳型として伸長したアダプターの一部
 11: 8のDNA配列を鋳型として伸長したアダプターの一部
 12: 9のDNA配列を鋳型として伸長したアダプターの一部
 13: 7のDNA配列を鋳型として伸長したアダプターの一部
 14: 8のDNA配列を鋳型として伸長したアダプターの一部
 15: 9のDNA配列を鋳型として伸長したアダプターの一部
 16: 9のDNA配列を鋳型として伸長したアダプターの一部
 17: 2のDNA断片を鋳型として伸長した標的DNA断片
 18: 2のDNA断片を鋳型として伸長した標的DNA断片
 20: 2本鎖アダプター
 21: 2本鎖アダプター
 29: コンカテマー
 101: 標的DNA断片
 102: 101に相補的なDNA断片
 103: アダプターを構成するDNA配列
 104: アダプターを構成するDNA配列
 105: ニック
 106: 103と折り返し構造を形成可能なDNA配列
 107: 103と相補的なDNA配列
 108: 104と相補的なDNA配列
 109: 106と相補的なDNA配列
 110: 107のDNA配列を鋳型として伸長したアダプターの一部
 111: 108のDNA配列を鋳型として伸長したアダプターの一部
 112: 109のDNA配列を鋳型として伸長したアダプターの一部
 113: 106のDNA配列を鋳型として伸長したアダプターの一部
 114: 104のDNA配列を鋳型として伸長したアダプターの一部
 115: 103のDNA配列を鋳型として伸長したアダプターの一部
 116: 101のDNA断片を鋳型として伸長した標的DNA断片101に相補的なDNA配列の一部
 117: 116のDNA配列を鋳型として伸長した標的DNA断片と同じ配列を有するDNA配列
 118: 112のDNA配列を鋳型として伸長したアダプターの一部
 119: 111のDNA配列を鋳型として伸長したアダプターの一部
 120: 110のDNA配列を鋳型として伸長したアダプターの一部
 121: 101のDNA断片を鋳型として伸長した標的DNA断片101に相補的なDNA配列の一部
 122: 106のDNA配列を鋳型として伸長したアダプターの一部
 123: 104のDNA配列を鋳型として伸長したアダプターの一部
 124: 103のDNA配列を鋳型として伸長したアダプターの一部
 129: コンカテマー
 130: プライマーの認識部位を含むDNA配列
 131: プライマーの認識部位を含むDNA配列
 132: 突出末端を形成する配列
 133: 突出末端を形成する配列
 134: 制限酵素認識配列
 135: 制限酵素認識配列
 136: プライマーの認識部位を含むDNA配列、突出末端を形成する配列及び制限酵素認識配列からなるプライマー配列
 137: プライマーの認識部位を含むDNA配列、突出末端を形成する配列及び制限酵素認識配列からなるプライマー配列
 138: 136に相補的な配列
 139: 137に相補的な配列
 140: DNA配列130に相補的なDNA配列
 141: DNA配列131に相補的なDNA配列
 150: 制限酵素による切断部位
 151: 制限酵素による切断部位
 152: 解析対象の2本鎖DNA断片
 155: ニック
 201: ゲノムDNA
 202: 断片化されたゲノムDNA
 203, 203a, 203b, 203c, 203d, 203e, 203f: 鋳型DNA中の標的DNA配列
 204: 鋳型DNA中のアダプター配列
 205: 鋳型DNA
 206, 206a, 206b, 206c, 206d, 206e, 206f: DNAナノボール状のコンカテマー
 207: 流路基板
 208: コンカテマーの静電的な力が及ぶ範囲 / アミノ基
 209: フローセル基板
 210: アダプターDNA配列
 211: 標的DNA配列
 212: コンカテマー配列
 213: プライマー / 第1プライマーラウンドのプライマー
 214: 第1の塩基認識部位
 215: 第1の標識
 216: アダプターDNA配列
 217: 標的DNA配列
 223: 第2プライマーラウンドのプライマー
 224: 第2の塩基認識部位
 225: 第2の標識
 233: 第3プライマーラウンドのプライマー
 234: 第3の塩基認識部位
 235: 第3の標識
 243: 第4プライマーラウンドのプライマー
 253: 第5プライマーラウンドのプライマー
 270: フローセル基板(流路基板)
 271: 微細ピラー
 272: フローセル基板(流路基板)の下面を構成する構造
 273: フローセル基板(流路基板)の上面の構成する構造
 274: 微細ピラー
 275: DNA固定化処理された微細ピラーの上面
 276: DNA固定化処理されたフローセル基板(流路基板)の下面であってフローセルが無い部分(谷間)
 277: DNA固定化処理された微細ピラーの側面
 280: 反応溶液
 281: 微細ピラー上面に固定されたコンカテマー
 282: 微細ピラー上面に固定されたコンカテマー
 283: 微細ピラー上面に固定されたコンカテマー
 284: 微細ピラーのないフローセル基板(流路基板)の下面に固定されたコンカテマー
 285: DNA固定化処理された微細ピラーの上面
 286: DNA固定化処理されていないフローセル基板(流路基板)の下面であってフローセルが無い部分(谷間)
 287: DNA固定化処理されていない微細ピラー側面
 291: 微細ピラー上に固定されたコンカテマーの蛍光
 292: 微細ピラー上に固定されたコンカテマーの蛍光
 配列番号1~8:人工配列(合成DNA)
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (14)

  1. (a)標的のDNA配列を含む2本鎖DNAに、折り返し構造を形成可能なアダプターDNA鎖を含む2本鎖アダプターをライゲートさせて、ニックを含む2本鎖DNAで構成される環状DNA鋳型を調製する工程、
    (b)該ニックを起点として鎖置換型DNAポリメラーゼによって3'末端伸長反応を行い、それにより該標的のDNA配列と該折り返し構造を形成可能なアダプターDNA鎖が一本鎖DNAとして直列的に複数個連結された形状のコンカテマーが形成される工程
    を含み、該コンカテマーは、該折り返し構造によって折りたたまれた形状を有することを特徴とする核酸増幅方法。
  2.  前記2本鎖アダプターが、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有するアダプターDNA鎖を有し、該第1と第3のDNA配列が折り返し構造を形成可能な配列であり、該アダプターDNA鎖とそれに相補的なアダプターDNA鎖とが結合することによって2本鎖を形成するものである、請求項1に記載の方法。
  3.  前記2本鎖アダプターが、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列の順に構成されたアダプターDNA鎖を有するか、第1のDNA配列、第3のDNA配列及び第2のDNA配列の順に構成されたアダプターDNA鎖を有するか、又は第2のDNA配列、第1のDNA配列及び第3のDNA配列の順に構成されたアダプターDNA鎖を有するものである、請求項2に記載の方法。
  4.  前記2本鎖アダプターが、第1アダプターDNA鎖と該第1アダプターDNA鎖に相補的な第2アダプターDNA鎖とを含み、第1アダプターDNA鎖と第2アダプターDNA鎖とが結合して2本鎖を形成しており、
     第1アダプターDNA鎖は、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有し、該第1と第3のDNA配列が折り返し構造を形成可能な配列であり、
     第2アダプターDNA鎖は、5’末端から3’末端に向けて、第3のDNA配列に相補的な第3の相補配列、第2のDNA配列に相補的な第2の相補配列、及び第1のDNA配列に相補的な第1の相補配列を有し、該第1と第3の相補配列が折り返し構造を形成可能な配列であり、
     前記方法は、
    (b1)前記環状DNA鋳型において、第1アダプターDNA鎖上の第1のDNA配列の5’末端に第1のニックが形成され、第2アダプターDNA鎖上の第3の相補配列の5’末端に第2のニックが形成される工程、
    (b2)第1のニックを起点として鎖置換型DNAポリメラーゼによって3'末端が第2アダプターDNA鎖上の第2のニックの位置まで伸長して第1アダプターDNA鎖と同じ配列を有するアダプターDNA鎖が形成されて伸長反応が停止し、該アダプターDNA鎖が折り返し構造を形成する工程、
    (b3)該アダプターDNA鎖の3'末端伸長反応によって標的のDNA配列と相補的なDNA配列が伸長し、次に第2のアダプターDNA鎖と同じ配列を有するアダプターDNA鎖が生成され、該アダプターDNA鎖が折り返し構造を形成する工程、
    (b4)該アダプターDNA鎖の3'末端伸長反応によって標的のDNA配列と同じDNA配列が伸長し、次に第1のアダプターDNA鎖と同じ配列を有するアダプターDNA鎖が生成され、該アダプターDNA鎖が折り返し構造を形成する工程、
    (b5)工程(b3)及び(b4)を反復することにより、標的のDNA配列、第1アダプターDNA鎖、標的のDNA配列に相補的なDNA配列及び第2アダプターDNA鎖が直列的に複数個連結された形状のコンカテマーが形成される工程
    を含む、請求項1に記載の方法。
  5.  請求項1~4のいずれか1項に記載の方法により形成された1又は複数のコンカテマーを流路基板上に固定する工程、
     該コンカテマーのそれぞれに、アダプターDNA鎖における折り返し構造を形成可能な配列以外の配列にプライマーを結合させる工程、
     該プライマーの末端に、複数塩基からなる認識部位を含みかつ該認識部位の塩基の種類に応じた標識を結合したプローブを順次ライゲートさせる工程、
     ライゲートしたプローブを前記標識に基づいて検出することにより、標的のDNA配列の塩基配列を決定する工程
    を含むことを特徴とする塩基配列決定方法。
  6.  第1アダプターDNA鎖と該第1アダプターDNA鎖に相補的な第2アダプターDNA鎖とを含み、第1アダプターDNA鎖と第2アダプターDNA鎖とが結合して2本鎖を形成している2本鎖アダプターを含むことを特徴とする請求項1~5のいずれか1項に記載の方法を実施するためのキットであって、
     第1アダプターDNA鎖は、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有し、該第1と第3のDNA配列が折り返し構造を形成可能な配列であり、
     第2アダプターDNA鎖は、第3のDNA配列に相補的な第3の相補配列、第2のDNA配列に相補的な第2の相補配列、及び第1のDNA配列に相補的な第1の相補配列を有し、該第1と第3の相補配列が折り返し構造を形成可能な配列であり、
     第1アダプターDNA鎖及び第2アダプターDNA鎖の一方又は両方が、ニックを含む又はニックを形成可能な配列を有する、
    上記キット。
  7.  ニックが、第1アダプターDNA鎖の第2のDNA配列の3'末端若しくは5'末端、及び/又は第2アダプターDNA鎖の第2の相補配列の3'末端若しくは5'末端に含まれる又は形成される、請求項6に記載のキット。
  8.  ニックが、第1アダプターDNA鎖の第1のDNA配列の5'末端及び/又は第2アダプターDNA鎖の第3の相補配列の5'末端に含まれる又は形成される、請求項6に記載のキット。
  9.  第1アダプターDNA鎖が、5’末端から3’末端に向けて、第1のDNA配列、第2のDNA配列及び第3のDNA配列を有する、請求項6~8のいずれか1項に記載のキット。
  10.  第2のDNA配列に特異的に結合するプライマー、及び/又は第2の相補配列に特異的に結合するプライマーをさらに含む、請求項6~9のいずれか1項に記載のキット。
  11.  請求項1~4のいずれか1項に記載の方法により形成された1又は複数のコンカテマーが固定された流路基板と、
     前記コンカテマーに含まれるアダプターDNA鎖における折り返し構造を形成可能な配列以外の配列に結合するプライマーを供給する手段、及び複数塩基からなる認識部位を含みかつ該認識部位の塩基の種類に応じた標識を結合したプローブを供給する手段と、
     前記標識を検出する手段と
    を備えることを特徴とする塩基配列決定装置。
  12.  前記コンカテマーが、柱状構造が周期的に配置された流路基板において、該柱状構造の上面に1個ずつ配置されている、請求項11に記載の装置。
  13.  周期的に配置された柱状構造の断面径及び柱状構造の配置周期が、コンカテマーを任意平面に投影した時の最大の外形寸法の0.5倍から3倍の範囲にある、請求項12に記載の装置。
  14.  周期的に配置された柱状構造の側面及び流路基板の表面が、疎水性であり、水に対する接触角が90度以上である、請求項12又は13に記載の装置。
PCT/JP2012/080307 2011-12-13 2012-11-22 核酸増幅方法 WO2013088935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280059861.6A CN103975062B (zh) 2011-12-13 2012-11-22 核酸扩增方法
US14/364,940 US9714449B2 (en) 2011-12-13 2012-11-22 Nucleic acid amplification method
EP12856949.8A EP2792743B1 (en) 2011-12-13 2012-11-22 Nucleic acid amplification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011272117A JP6093498B2 (ja) 2011-12-13 2011-12-13 核酸増幅方法
JP2011-272117 2011-12-13

Publications (1)

Publication Number Publication Date
WO2013088935A1 true WO2013088935A1 (ja) 2013-06-20

Family

ID=48612390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080307 WO2013088935A1 (ja) 2011-12-13 2012-11-22 核酸増幅方法

Country Status (5)

Country Link
US (1) US9714449B2 (ja)
EP (1) EP2792743B1 (ja)
JP (1) JP6093498B2 (ja)
CN (1) CN103975062B (ja)
WO (1) WO2013088935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190241939A1 (en) * 2018-02-05 2019-08-08 Sudha Haran Systems and methods for multiplexed analyte detection using antibody-oligonucleotide conjugates

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685138B2 (ja) * 2016-01-27 2020-04-22 シスメックス株式会社 核酸増幅の精度管理方法、精度管理用試薬およびその試薬キット
US11078482B2 (en) 2017-06-15 2021-08-03 Genome Research Limited Duplex sequencing using direct repeat molecules
CN112236528A (zh) * 2018-04-04 2021-01-15 诺迪勒思生物科技公司 产生纳米阵列和微阵列的方法
CN112111560B (zh) * 2019-06-21 2023-07-25 深圳华大智造科技股份有限公司 Dna纳米球及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712124A (en) 1991-01-31 1998-01-27 Becton, Dickinson And Company Strand displacement amplification
US6235502B1 (en) 1998-09-18 2001-05-22 Molecular Staging Inc. Methods for selectively isolating DNA using rolling circle amplification
US20090080273A1 (en) * 2007-09-21 2009-03-26 Kyo-Min Sohn Semiconductor memory device having redundancy memory block and cell array structure thereof
WO2009089384A1 (en) 2008-01-09 2009-07-16 Life Technologies Method of making a paired tag library for nucleic acid sequencing
US20090270273A1 (en) 2008-04-21 2009-10-29 Complete Genomics, Inc. Array structures for nucleic acid detection
JP2011000058A (ja) 2009-06-18 2011-01-06 Nagoya Univ ターゲットdnaの増幅方法
US7910354B2 (en) 2006-10-27 2011-03-22 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
JP2011515102A (ja) * 2008-03-28 2011-05-19 パシフィック バイオサイエンシーズ オブ カリフォルニア, インコーポレイテッド 核酸シーケンシング用組成物及び方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3729393A (en) * 1992-02-20 1993-09-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University, The Boomerand DNA amplification
US6287824B1 (en) 1998-09-15 2001-09-11 Yale University Molecular cloning using rolling circle amplification
US7244559B2 (en) * 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US20060035344A1 (en) * 2002-10-18 2006-02-16 Pachuk Catherine J Double-stranded rna structures and constructs, and methods for generating and using the same
US20060147921A1 (en) * 2002-11-13 2006-07-06 Hitachi High-Technologies Corporation Method of amplifying nucleic acid and apparatus therefor
GB2398383B (en) 2003-02-12 2005-03-09 Global Genomics Ab Method and means for nucleic acid sequencing
WO2004072294A2 (en) * 2003-02-12 2004-08-26 Genizon Svenska Ab Methods and means for nucleic acid sequencing
EP2272983A1 (en) 2005-02-01 2011-01-12 AB Advanced Genetic Analysis Corporation Reagents, methods and libraries for bead-based sequencing
EP1871896B1 (en) * 2005-04-12 2015-06-03 Olink AB Circle probes and their use in the identification of biomolecules
US8080393B2 (en) * 2005-04-12 2011-12-20 Olink Ab Methods for production of oligonucleotides
US20090233291A1 (en) * 2005-06-06 2009-09-17 454 Life Sciences Corporation Paired end sequencing
CA2712426A1 (en) * 2008-02-05 2009-08-13 F. Hoffmann-La Roche Ag Paired end sequencing
US8236499B2 (en) 2008-03-28 2012-08-07 Pacific Biosciences Of California, Inc. Methods and compositions for nucleic acid sample preparation
AU2012304520B2 (en) * 2011-09-06 2016-06-16 Gen-Probe Incorporated Circularized templates for sequencing
WO2013049504A1 (en) * 2011-09-30 2013-04-04 Stc.Unm Dna sample preparation and sequencing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712124A (en) 1991-01-31 1998-01-27 Becton, Dickinson And Company Strand displacement amplification
US6235502B1 (en) 1998-09-18 2001-05-22 Molecular Staging Inc. Methods for selectively isolating DNA using rolling circle amplification
US7910354B2 (en) 2006-10-27 2011-03-22 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
US20090080273A1 (en) * 2007-09-21 2009-03-26 Kyo-Min Sohn Semiconductor memory device having redundancy memory block and cell array structure thereof
WO2009089384A1 (en) 2008-01-09 2009-07-16 Life Technologies Method of making a paired tag library for nucleic acid sequencing
JP2011509095A (ja) 2008-01-09 2011-03-24 ライフ テクノロジーズ コーポレーション 核酸配列決定のための対をなすタグのライブラリーを製造する方法
JP2011515102A (ja) * 2008-03-28 2011-05-19 パシフィック バイオサイエンシーズ オブ カリフォルニア, インコーポレイテッド 核酸シーケンシング用組成物及び方法
US20090270273A1 (en) 2008-04-21 2009-10-29 Complete Genomics, Inc. Array structures for nucleic acid detection
JP2011000058A (ja) 2009-06-18 2011-01-06 Nagoya Univ ターゲットdnaの増幅方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. SHENDURE; H. JI: "Next-generation DNA sequencing", NATURE BIOTECHNOLOGY, vol. 26, 2008, pages 1135 - 1145, XP002572506, DOI: doi:10.1038/nbt1486
M. L. METZKER: "Sequencing technologies-the next generation", NATURE REVIEWS GENETICS, vol. 11, 2010, pages 31 - 46
METZKER M.L.: "Sequencing technologies - the next generation", NAT. REV. GENET., vol. 11, 2010, pages 31 - 46, XP002659622 *
See also references of EP2792743A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190241939A1 (en) * 2018-02-05 2019-08-08 Sudha Haran Systems and methods for multiplexed analyte detection using antibody-oligonucleotide conjugates
US11739373B2 (en) * 2018-02-05 2023-08-29 G1 Sciences, Llc Systems and methods for multiplexed analyte detection using antibody-oligonucleotide conjugates

Also Published As

Publication number Publication date
EP2792743A1 (en) 2014-10-22
EP2792743A4 (en) 2015-06-24
CN103975062B (zh) 2020-07-17
CN103975062A (zh) 2014-08-06
US9714449B2 (en) 2017-07-25
JP6093498B2 (ja) 2017-03-08
JP2013123380A (ja) 2013-06-24
US20140342922A1 (en) 2014-11-20
EP2792743B1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
US11680286B2 (en) Tag-sequence-attached two-dimensional cDNA library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same
US11214796B2 (en) Gene expression analysis ME1HOD using two dimensional cDNA library
US20230032082A1 (en) Spatial barcoding
KR20190034164A (ko) 단일 세포 전체 게놈 라이브러리 및 이의 제조를 위한 조합 인덱싱 방법
US20150159202A1 (en) METHODS FOR QUANTITATIVE cDNA ANALYSIS IN SINGLE-CELL
JP6395925B2 (ja) 遺伝子解析システム
JP6093498B2 (ja) 核酸増幅方法
WO2016038670A1 (ja) 細胞解析装置およびそれを用いた細胞解析方法
KR20210023948A (ko) 고순도 뉴클레오타이드 획득 방법 및 장치
JP2023533418A (ja) シークエンシングライブラリーの収率を増加させるための方法
JP6105076B2 (ja) 遺伝子解析システム
JPWO2020096015A1 (ja) 1種以上の被検物質と共存した細胞のゲノム関連情報を検出する方法
JP5618497B2 (ja) 核酸分析方法及び核酸分析装置
KR20220121826A (ko) 시료 처리 바코딩된 비드 조성물, 방법, 제조, 및 시스템
JP5519304B2 (ja) 核酸の均一増幅方法および高感度検出方法
RU2803202C9 (ru) Панель и способ получения пространственной информации о нуклеиновых кислотах
RU2803202C2 (ru) Панель и способ получения пространственной информации о нуклеиновых кислотах
Zhou et al. Spatially and Single‐Cell Resolved Profiling of RNA Life Cycle and Epitranscriptomics
KR102013786B1 (ko) cDNA 또는 앰플리콘 및 이를 담지한 담체를 포함하는 구조체
WO2024141901A1 (en) Heat-based transfer of reaction products made in situ to a planar support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14364940

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE