[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013084385A1 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
WO2013084385A1
WO2013084385A1 PCT/JP2012/005632 JP2012005632W WO2013084385A1 WO 2013084385 A1 WO2013084385 A1 WO 2013084385A1 JP 2012005632 W JP2012005632 W JP 2012005632W WO 2013084385 A1 WO2013084385 A1 WO 2013084385A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
memory cell
mos transistor
type mos
memory device
Prior art date
Application number
PCT/JP2012/005632
Other languages
English (en)
French (fr)
Inventor
山上 由展
小島 誠
里見 勝治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013548056A priority Critical patent/JP5980229B2/ja
Priority to CN201280030947.6A priority patent/CN103620687B/zh
Publication of WO2013084385A1 publication Critical patent/WO2013084385A1/ja
Priority to US14/172,636 priority patent/US9183923B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits

Definitions

  • the present invention relates to a memory cell power supply voltage control technique in a semiconductor memory device such as a static random access memory (SRAM).
  • a semiconductor memory device such as a static random access memory (SRAM).
  • the power supply voltage of the memory cell is lowered for each row so as to reduce the leakage current of the memory cell.
  • the high power supply voltage of the memory cell in the non-selected row is controlled to a voltage value lower than the VDD level (see Patent Document 1).
  • the power supply voltage of the memory cell is lowered for each column so as to increase the write margin of the memory cell while ensuring a sufficient static noise margin. That is, the high power supply voltage of the memory cell in the column selected at the time of data writing is controlled to a voltage value lower than the VDD level (see Patent Documents 2 and 3).
  • the low power supply voltage of the memory cell in the column selected at the time of data writing is controlled to a voltage value higher than the VSS level (see Patent Document 4).
  • Patent Document 2 since there is no means for supplying electric charge to the memory cell power supply after the memory cell power supply is lowered during the write operation, the memory cell power supply voltage gradually decreases due to the leakage current. For this reason, the memory cell power supply becomes lower than the retention voltage of the memory cell during the write operation, and the data stored in the memory cell other than the write target connected to the memory cell power supply is destroyed. Occurs.
  • the present invention suppresses current consumption in the memory cell power supply generation part when the memory cell power supply is lowered to improve the write characteristics of the memory cell during the write operation, and the memory cell power supply
  • An object of the present invention is to provide a semiconductor memory device that does not drop below the retention voltage and does not cause data destruction of memory cells.
  • the first semiconductor memory device of the present invention is the same as a plurality of word lines, a plurality of bit lines, and a plurality of memory cells arranged at intersections of the word lines and the bit lines.
  • a semiconductor memory device having a plurality of memory cell power supply circuits for supplying the same memory cell power supply to a plurality of memory cells connected on a bit line, wherein the memory cell power supply circuit includes a first power supply and a second power supply circuit.
  • a first P-type MOS transistor and a second P-type MOS transistor connected in series with a power supply, and a contact point between the first P-type MOS transistor and the second P-type MOS transistor is provided.
  • the value is set higher than the absolute value of the threshold voltage of the load transistor and drive transistor of the memory cell.
  • a second semiconductor memory device of the present invention includes a plurality of word lines, a plurality of bit lines, a plurality of memory cells arranged at intersections of the word lines and the bit lines, and a plurality connected on the same bit line. And a plurality of memory cell power supply circuits for supplying the same memory cell power supply to the memory cells, wherein the memory cell power supply circuit is connected in series between a first power supply and a second power supply.
  • the first P-type MOS transistor, the second P-type MOS transistor, and the first N-type MOS transistor connected to the first P-type MOS transistor, and the first P-type MOS transistor and the second P-type MOS transistor.
  • a contact is output as the memory cell power supply, and a column selection signal and a write signal are applied to the gate terminal of the first P-type MOS transistor and the gate terminal of the first N-type MOS transistor.
  • a control signal based on the control signal is input, and the drain terminal of the first N-type MOS transistor is connected to the gate terminal of the second P-type MOS transistor. .
  • a third semiconductor memory device of the present invention a plurality of word lines, a plurality of bit lines, a plurality of memory cells arranged at intersections of the word lines and the bit lines, and a plurality connected on the same bit line And a plurality of memory cell power supply circuits for supplying the same memory cell power supply to the memory cells, wherein the memory cell power supply circuit is connected in series between a first power supply and a second power supply.
  • a first P-type MOS transistor and a second P-type MOS transistor connected to each other, and a contact point between the first P-type MOS transistor and the second P-type MOS transistor is output as the memory cell power source.
  • a control signal based on a write control signal is input to the gate terminal of the first P-type MOS transistor regardless of a column selection signal, and the second P-type MOS transistor
  • the gate terminal is characterized in that the control signal based the column selection signal and to said write control signal is input.
  • a fourth semiconductor memory device of the present invention a plurality of word lines, a plurality of bit lines, a plurality of memory cells arranged at intersections of the word lines and the bit lines, and a plurality connected on the same bit line
  • a plurality of memory cell power supply circuits for supplying the same memory cell power supply to the memory cells, wherein the memory cell power supply circuit uses the memory cell power supply more than the first power supply during a write operation. It has a function of controlling to a low potential, and is composed of a MOS transistor connected between the first power source and the memory cell power source, and the memory cell power source is controlled to a potential lower than that of the first power source.
  • a leakage current compensation circuit for compensating for a leakage current of the memory cell power supply during the period.
  • a fifth semiconductor memory device includes a plurality of word lines, a plurality of bit lines, a plurality of memory cells arranged at intersections of the word lines and the bit lines, and a plurality connected on the same bit line.
  • a plurality of memory cell power supply circuits for supplying the same memory cell power supply to the memory cells, wherein the memory cell power supply circuit uses the memory cell power supply more than the first power supply during a write operation.
  • the number of logic stages required to control the memory cell power supply to the same potential as the first power supply from the first stage input of the clock signal input to the semiconductor memory device has a function of controlling to a low potential.
  • the number of logic stages is less than that required for controlling the word line to the inactive state from the first stage input of the clock signal input to the semiconductor memory device.
  • the semiconductor memory device of the present invention it is possible to improve the write characteristics of the memory cell during the write operation with low power consumption. Furthermore, since the memory cell power supply does not drop below the retention voltage of the memory cell as compared with the conventional case, the memory cell data can be reliably stored without causing data destruction of the memory cell. It is.
  • FIG. 1 is a circuit diagram showing a configuration of a semiconductor memory device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating a detailed configuration example of a bit line precharge circuit in FIG. 1.
  • FIG. 2 is a circuit diagram illustrating a detailed configuration example of a leakage current compensation circuit in FIG. 1.
  • 3 is a timing chart for explaining the operation of the semiconductor memory device of FIG. 1.
  • FIG. 2 is a circuit diagram showing an example of a method for generating a write control signal in the semiconductor memory device of FIG. 1.
  • 6 is a timing chart for explaining another operation of the semiconductor memory device of FIG. 1.
  • 6 is a timing chart for explaining still another operation of the semiconductor memory device of FIG. 1.
  • FIG. 1 is a circuit diagram showing a configuration of a semiconductor memory device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating a detailed configuration example of a bit line precharge circuit in FIG. 1.
  • FIG. 2 is a circuit
  • FIG. 2 is a circuit diagram showing an example of a specific configuration of a control circuit for generating word lines and memory cell power supplies in the semiconductor memory device of FIG. 1. It is a circuit diagram which shows the structure of the semiconductor memory device of Embodiment 2 of this invention. It is a circuit diagram which shows the structure of the semiconductor memory device of Embodiment 3 of this invention.
  • FIG. 1 is a configuration diagram of a semiconductor memory device according to Embodiment 1 of the present invention.
  • the semiconductor memory device shown in FIG. 1 includes a memory cell 10 including access transistors A1 and A2, drive transistors D1 and D2, and load transistors L1 and L2 so as to have two storage nodes N1 and N2, and a bit line pre- A charge circuit 15, a memory cell power supply circuit 20 composed of P-type MOS transistors MP1 and MP2, a leakage current compensation circuit 25, a power supply voltage detection circuit 30, an inverter circuit INV1, and a NAND circuit NAND1 are provided.
  • a memory cell 10 including access transistors A1 and A2, drive transistors D1 and D2, and load transistors L1 and L2 so as to have two storage nodes N1 and N2, and a bit line pre- A charge circuit 15, a memory cell power supply circuit 20 composed of P-type MOS transistors MP1 and MP2, a leakage current compensation circuit 25, a power supply voltage detection circuit 30, an inverter circuit INV1,
  • WL0 to x are word lines
  • BL0 to 1 and / BL0 to 1 are bit lines
  • PCG is a precharge control signal
  • VDDM0 to 1 are memory cell power supplies
  • AD0 to 1 are column address signals
  • WEN is a write control signal
  • VDD is A power supply (first power supply) is shown.
  • x is an integer of 1 or more, and in FIG. 1, it indicates that there are a plurality of memory cells 10 connected to the plurality of word lines WL0 to x.
  • the word lines WL0 to x are connected to the gate terminals of the access transistors A1 and A2 constituting each memory cell 10, respectively.
  • the bit lines BL 0 to 1 and / BL 0 to 1 are connected to the drain terminals of the access transistors A 1 and A 2 constituting each memory cell 10, respectively.
  • the same memory cell power supply VDDM0 (or VDDM1) is connected to the source terminals of the load transistors L1, L2 of each memory cell 10 connected to BL0, / BL0 (or BL1, / BL1) on the same bit line.
  • an inverter is constituted by the load transistor L1 and the drive transistor D1
  • an inverter is constituted by the load transistor L2 and the drive transistor D2
  • an input / output terminal of each inverter is connected to constitute a flip-flop.
  • This flip-flop stores and holds data.
  • the gate terminals of access transistors A1 and A2 are connected to word lines WL0 to x, and their drain terminals are connected to bit lines BL0 to 1 and / BL0 to 1, respectively.
  • the source terminals of the access transistors A1 and A2 are connected to the input / output terminals of the inverter, respectively.
  • the memory cell power supply circuit 20 includes P-type MOS transistors MP1 and MP2 connected in series between a power supply VDD and a ground power supply, and outputs the contacts of the P-type MOS transistors MP1 and MP2 as memory cell power supplies VDDM0 to VDDM1. ing.
  • the output of the NAND circuit NAND1 that receives the column address signal AD0 (or AD1), the write control signal WEN, and the output of the power supply voltage detection circuit 30 is input to the gate terminal of the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20. The signal is connected.
  • the output signal of the inverter circuit INV1 which receives the output signal of the NAND circuit NAND1, is connected to the gate terminal of the P-type MOS transistor MP1.
  • FIG. 2 is a circuit diagram showing a detailed configuration example of the bit line precharge circuit 15 in FIG.
  • the bit line precharge circuit 15 is composed of three P-type MOS transistors MP3, MP4 and MP5 each receiving a precharge control signal PCG at its gate terminal, and between the power supply VDD and each bit line BL, / BL. It is inserted between both bit lines BL, / BL.
  • FIG. 3 is a circuit diagram showing a detailed configuration example of the leakage current compensation circuit 25 in FIG.
  • MP6 indicates a P-type MOS transistor
  • MN1 indicates an N-type MOS transistor.
  • the power supply VDD is connected to the source terminal and gate terminal of the P-type MOS transistor MP6, and the drain terminal is connected to the memory cell power supply VDDM.
  • the power supply VDD is connected to the source terminal of the N-type MOS transistor MN1, the ground power supply is connected to the gate terminal, and the drain terminal is connected to the memory cell power supply VDDM.
  • Both the P-type MOS transistor MP6 and the N-type MOS transistor MN1 in FIG. 3 are in the off state.
  • a write circuit for transferring write data to the bit line connected to the write target memory cell 10 and data from the memory cell 10 are read.
  • the lead circuit for this purpose is omitted for the sake of simplicity.
  • the write circuit is controlled by signals based on the column address signal AD0 and the write control signal WEN when transferring write data to the bit lines BL0 and / BL0, and when transferring write data to the bit lines BL1 and / BL1, It is assumed that the signal is controlled by a signal based on the column address signal AD1 and the write control signal WEN.
  • the potential of one of the bit lines BL and / BL precharged to H level by the bit line precharge circuit 15 is changed from H level to L level in advance. This is realized by changing the word line from L level to H level (active state). Data is read from the memory cell 10 by previously activating the word line from the state of the bit lines BL and / BL precharged to the H level by the bit line precharge circuit 15. This is realized by changing any one of the bit lines from the H level to the L level based on the state held in the flip-flop. Further, when the word line is at L level (inactive state), both access transistors A1 and A2 are turned off. Therefore, as long as the memory cell power supply VDDM0 to 1 is continuously supplied, the data stored in the flip-flop is not stored. The same data is stored and held without being affected by the outside.
  • all word lines are at L level (inactive state), and all bit lines are precharged to H level.
  • one of the bit lines BL0 and / BL0 connected to the memory cell 10 to be written is changed from H level to L level.
  • the BL0 side is changed from H level to L level.
  • the word line WLx is changed from the L level to the H level (active state).
  • bit line BL0 (/ BL0) is transmitted to memory cell 10 via access transistor A1 (A2).
  • the potential state of the bit line BL0 is L level
  • the potential on the source terminal side of the access transistor A1 of the memory cell 10 changes from H level to L level.
  • the source terminal of the access transistor A1 is an input of an inverter composed of a load transistor L2 and a drive transistor D2. Therefore, when the potential of the source terminal of the access transistor A1 exceeds the switching voltage of the inverter, the data in the memory cell 10 is inverted and the data rewriting is completed.
  • the load transistor L1 When the source terminal side of the access transistor A1 is at H level, the load transistor L1 is on and the drive transistor D1 is off.
  • the actual potential of the source terminal of the access transistor A1 is determined by the current capability ratio between the access transistor A1 and the load transistor L1.
  • the memory cell 10 is designed so that “current capability of access transistor> current capability of load transistor”. Therefore, if the bit line BL0 side becomes L level, the source terminal side of the access transistor A1 can change from H level to L level side, and the switching voltage of the inverter constituted by the load transistor L2 and the drive transistor D2 can be exceeded. Data in the memory cell 10 can be rewritten.
  • the load transistor source potential (memory cell power supply) is lowered to bring the load transistor capability into the normal state (the power supply to the source terminal of the load transistor). What is necessary is just to make it lower than the state where the VDD level is applied.
  • the source potential (memory cell power supply) of the load transistor L1 decreases, the capacity of the load transistor L1 decreases. Therefore, when the word line WLx is in the active state and the bit line BL0 side is at the L level, the source terminal side of the access transistor A1 is likely to change from the H level to the L level side, and an inverter composed of the load transistor L2 and the drive transistor D2 Therefore, the data in the memory cell 10 can be rewritten.
  • the source potential (memory cell power supply) of the load transistor is lowered during the write operation, the write characteristics to the memory cell 10 are improved.
  • the memory cell power supply circuit 20 that generates the memory cell power supplies VDDM0 and VDDM1 is controlled by signals based on the column address signals AD0 and AD1 and the write control signal WEN.
  • the write control signal WEN is L level (inactive state) except during the write operation. Therefore, regardless of the state of the column address signals AD0 and AD1, the NAND circuit NAND1 outputs an H level, and the inverter circuit INV1 that receives the output of the NAND circuit NAND1 outputs an L level. Accordingly, since the P-type MOS transistor MP1 constituting the memory cell power supply circuit 20 is turned on and the P-type MOS transistor MP2 is turned off, all the memory cell power supplies VDDM0 and VDDM1 output the power supply VDD level.
  • the write control signal WEN becomes H level (active state).
  • one of the column address signals AD0 and AD1 is at the H level.
  • the column address signal AD0 is at H level and AD1 is at L level. It is.
  • the NAND circuit NAND1 that receives the column address signal AD0 outputs an L level, and the inverter circuit INV1 in the next stage outputs an H level. Since the P-type MOS transistor MP1 of the memory cell power supply circuit 20 is turned off and the P-type MOS transistor MP2 is turned on, the potential of the memory cell power supply VDDM0 is the absolute value of the threshold voltage of the P-type MOS transistor MP2 from the power supply VDD level. It drops to a certain
  • the memory cell power supply VDDM1 of the memory cell 10 connected on the bit lines BL1, / BL1 to which writing is not performed outputs the power supply VDD level because the column address signal AD1 is at the L level.
  • the memory cell power supply of the memory cell 10 connected on the bit line where writing is not performed need not be lowered from the power supply VDD level.
  • the memory cell power supply should be controlled to be fixed at the power supply VDD level by a signal based on the column address signal.
  • the memory cell power supply circuit 20 that generates the memory cell power supply has a configuration in which no through current is generated from the power supply VDD to the ground power supply.
  • the potential of the memory cell power supply VDDM0 of the memory cell 10 connected on the bit lines BL0 and / BL0 on which writing is performed decreases to the absolute value
  • the memory cell power supply VDDM0 of the memory cell (memory cell connected to an inactive word line other than the word line WLx) connected to the bit lines BL0 and / BL0 to which writing is performed is connected to the memory cell 10
  • the data stored in the memory cell 10 is destroyed because the voltage becomes lower than the retention voltage.
  • a voltage higher than that of the memory cell power supply is applied to the substrate terminal of the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20.
  • the power supply VDD may be applied, or a potential higher than the power supply VDD may be applied. Due to the substrate bias effect of the P-type MOS transistor MP2, the absolute value of the threshold voltage becomes larger than the absolute value
  • Another method for solving the above problem is to make the channel length of the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20 larger than the channel length of the load transistor and drive transistor constituting the memory cell 10. .
  • the retention voltage is determined by the absolute value of the threshold voltage of the load transistor or drive transistor.
  • the threshold voltage of the transistor depends on the channel length of the transistor. The smaller the channel length, the lower the absolute value of the threshold voltage. Therefore, if the channel length of the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20 is made larger than the channel length of the load transistor or drive transistor constituting the memory cell 10, the P-type constituting the memory cell power supply circuit 20 will be described.
  • the absolute value of the threshold voltage of the MOS transistor MP2 becomes larger than
  • Still another method for solving the above problem is that the impurity concentration injected into the diffusion region of the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20 is injected into the diffusion region of the load transistor constituting the memory cell 10. Is to be higher.
  • the threshold voltage of the transistor depends on the impurity concentration injected into the diffusion region of the transistor. The higher the impurity concentration, the higher the absolute value of the threshold voltage.
  • the memory cell power supply circuit 20 if the impurity concentration injected into the diffusion region of the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20 is higher than the impurity concentration injected into the diffusion region of the load transistor constituting the memory cell 10, the memory cell power supply circuit
  • the absolute value of the threshold voltage of the P-type MOS transistor MP2 constituting 20 is larger than
  • the leakage current compensation circuit 25 will be described.
  • the potential of the memory cell power supply VDDM0 of the memory cell 10 connected to the same bit line as the write target memory cell 10 (for example, the bit lines BL0 and / BL0) is the power supply VDD level.
  • which is the absolute value of the threshold voltage of the P-type MOS transistor MP2.
  • the leak current compensation circuit 25 shown in FIG. 3 is an example of a circuit for supplying a current corresponding to this minute leak current.
  • an inverter is constituted by the load transistor L1 and the drive transistor D1, and the load transistor L2 and the drive transistor D2, and an input / output terminal of each inverter is connected to constitute a flip-flop.
  • the leak current flowing through the memory cell 10 is the sum of the leak current flowing through the off-state load transistor L2 and the leak current flowing through the off-state drive transistor D1.
  • the load transistor is a P-type MOS transistor
  • the drive transistor is an N-type MOS transistor. Therefore, for example, as in the configuration of FIG. 3, a configuration imitating an off-state load transistor (P-type MOS transistor) and an off-state drive transistor (N-type MOS transistor) of the memory cell 10 is connected to the memory cell power supply. To do. Furthermore, by adjusting the channel width and channel length of the MOS transistors constituting the leak current compensation circuit 25 or the number of MOS transistors, it is possible to supply a current corresponding to the leak current flowing through the memory cell 10. .
  • the impurity concentration injected into the diffusion region of the P-type MOS transistor MP6 constituting the leak current compensation circuit 25 is preferably equal to the impurity concentration of the load transistor of the memory cell 10, and the N-type MOS transistor MN1. It is desirable that the impurity concentration implanted into the diffusion region is equal to the impurity concentration of the drive transistor of the memory cell 10. If the impurity concentration is the same, it is possible to configure the leakage current compensation circuit 25 having good followability to changes in leakage current with changes in temperature and power supply voltage.
  • the channel length of the P-type MOS transistor MP6 constituting the leakage current compensation circuit 25 is preferably equal to the channel length of the load transistor of the memory cell 10, and the channel length of the N-type MOS transistor MN1 is It is desirable to be equal to the channel length of the drive transistor of the memory cell 10. If the channel lengths of the transistors are the same, it is possible to configure the leakage current compensation circuit 25 that has good followability to changes in leakage current with changes in temperature and power supply voltage.
  • the leakage current compensation circuit 25 may be configured only by the P-type MOS transistor, and the leakage current is reduced by the drive transistor of the memory cell 10. In such a case, the leakage current compensation circuit 25 may be composed of only an N-type MOS transistor.
  • the leakage current compensation circuit 25 may be constituted by a P-type MOS transistor. If the P-type MOS transistor inserted between the power supply and the memory cell power supply is configured to be diode-connected to the gate (the memory cell power supply is connected to the gate terminal), the change in leakage current with respect to changes in temperature and power supply voltage can be reduced. On the other hand, it is possible to configure the leak current compensation circuit 25 with good followability.
  • the leak current compensation circuit 25 having a better followability with respect to the change of the leak current with respect to the change of the temperature and the power supply voltage is formed. It becomes possible to do.
  • the MOS transistor constituting the leakage current compensation circuit 25 is composed of one P-type MOS transistor and one N-type MOS transistor, but a plurality of them are connected in parallel or in series. It may be a configuration.
  • MOS transistor constituting the leakage current compensation circuit 25 of FIG. 3 is shown as an example in the off state, it may be constituted in the on state. Specifically, a ground power source or a memory cell power source is connected to the gate terminal of the P-type MOS transistor MP6, or a power source VDD or a memory cell power source is connected to the gate terminal of the N-type MOS transistor MN1.
  • the leakage current compensation circuit 25 only needs to be able to supply a current corresponding to the leakage current of the memory cell 10 to the memory cell power supply. Therefore, by adjusting the channel length and channel width of the MOS transistor connected between the VDD power source and the memory cell power source, or by increasing or decreasing the number of MOS transistors connected between the VDD power source and the memory cell power source, What is necessary is just to adjust the electric current supplied to a cell power supply. Then, the MOS transistor in the leakage current compensation circuit 25 may be configured so that a current corresponding to the leakage current of the memory cell 10 is finally supplied to the memory cell power supply.
  • a bit line precharge circuit 15 for precharging a bit line to an H level (power supply VDD level) adjacent to a memory cell array region formed of a plurality of memory cells 10 is laid out.
  • the semiconductor memory device can be reduced in area. Layout is possible.
  • the power supply voltage detection circuit 30 is a circuit that determines the state of the power supply voltage applied to the semiconductor memory device and the semiconductor integrated circuit including the semiconductor memory device. For example, when the power supply voltage applied to the semiconductor memory device or the semiconductor integrated circuit including the semiconductor memory device is higher than 1V, the L level is output, and when the power supply voltage is lower than 1V, the H level is output.
  • the NAND circuit NAND1 When the power supply voltage detection circuit 30 outputs L level, the NAND circuit NAND1 outputs H level regardless of the state of the column address signals AD0 to AD1 and the write control signal WEN, and the inverter circuit INV1 has L level. Output. Accordingly, the P-type MOS transistor MP1 constituting the memory cell power supply circuit 20 is turned on and the P-type MOS transistor MP2 is turned off, so that the memory cell power supplies VDDM0 to VDDM1 always output the power supply VDD level.
  • the write characteristics of the memory cell 10 become worse as the power supply voltage of the semiconductor memory device is lower.
  • the operation of reducing the memory cell power supply to improve the write characteristics of the memory cell 10 is performed when the power supply voltage of the semiconductor memory device is low (for example, the power supply voltage applied to the semiconductor memory device is lower than 1V). Only when).
  • the power supply voltage of the semiconductor memory device is high (for example, when the power supply voltage applied to the semiconductor memory device is higher than 1 V), there is a problem even if the memory cell power supply is lowered during the write operation to improve the write characteristics of the memory cell 10
  • the memory cell power supply fluctuates during the write operation, an unnecessary charge / discharge current flows through the memory cell power supply.
  • the memory cell power supply constituting the memory cell power supply circuit 20 is fixed at the power supply VDD level ( If the control can be made such that the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20 is always turned off), the power consumption of the semiconductor memory device can be suppressed.
  • the case where the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20 is configured to be always turned off by a signal based on the output signal of the power supply voltage detection circuit 30 is shown as an example.
  • the NAND circuit NAND1 shown in FIG. 1 is changed to a two-input NAND circuit, and an N-type MOS transistor is further inserted between the P-type MOS transistor MP2 constituting the memory cell power supply circuit 20 and the ground power supply. Even if the gate terminal of the transistor is controlled by a signal based on the output signal of the power supply voltage detection circuit 30, the same operation and effect as in this embodiment can be obtained.
  • the power supply voltage detection circuit 30 does not have to be arranged in the semiconductor memory device as shown in FIG.
  • one power supply voltage detection circuit 30 is arranged in the semiconductor integrated circuit, and the output signal is connected to each semiconductor memory device. If one power supply voltage detection circuit 30 is configured to control all semiconductor memory devices, the semiconductor integrated circuit can be configured in a smaller area.
  • FIG. 4 is a timing chart for explaining the operation of the semiconductor memory device of FIG.
  • CLK is a clock signal input to the semiconductor memory device
  • WLx is a word line
  • AD0 is a column address signal
  • WEN is a write control signal
  • VDDM0 is a memory cell power supply.
  • Each signal name corresponds to the signal name described in FIG.
  • the timing chart shown in FIG. 4 shows an operation when writing is performed on the memory cell 10 (the upper left memory cell in FIG. 1) connected to the word line WLx and the bit lines BL0 and / BL0.
  • the semiconductor memory device is controlled to activate any one of the word lines WL0 to WLx in synchronization with the clock signal CLK. Therefore, the word line WLx is in an active state (H level) for a time substantially equal to the H level period of the clock signal CLK.
  • the word line WLx becomes H level (active state) at time T1, and at the same time, the write control signal WEN also becomes H level (active state).
  • the column address signal AD0 is configured such that the potential does not change during the H level period of the clock signal CLK. In this case, the column address signal AD0 is in the H level state (selected state) during the H level period of the clock signal CLK. Although not shown in FIG. 4, the column address signal AD1 is in an L level state (non-selected state).
  • the memory cell power supply VDDM0 changes from the voltage VDD (time T1) to the voltage V1 (time T2). .
  • the voltage V1 is a potential slightly higher than the absolute value
  • the memory cell power supply VDDM0 is set to the voltage at time T3.
  • the potential is lower than V2.
  • the voltage V ⁇ b> 2 is a retention voltage of the memory cell 10. Therefore, when the write control signal WEN is activated during the period from the time T1 to the time T3, the potential of the memory cell power supply VDDM0 becomes lower than the retention voltage V2 of the memory cell 10, and as a result, the memory cell 10 data Destruction occurs.
  • the timing of the write control signal WEN is set so that the write control signal WEN is activated during the period from time T1 to time T4.
  • the potential of the memory cell power supply VDDM0 does not become lower than the retention voltage V2. Therefore, a semiconductor memory device in which data destruction of the memory cell 10 does not occur is possible.
  • the timing of the write control signal WEN is set so that the memory cell power supply does not become lower than the retention voltage of the memory cell 10 due to the leakage current of the memory cell 10 by giving an upper limit to the active state period of the write control signal WEN. It may be set.
  • FIG. 5 is a circuit diagram showing an example of a method for generating the write control signal WEN.
  • the circuit diagram shown in FIG. 5 includes a buffer circuit BUF1, an inverter circuit INV2, and an AND circuit AND1.
  • WRITE indicates a write determination signal.
  • the write determination signal WRITE is a signal synchronized with the clock signal CLK input to the semiconductor memory device, and is an active state (H level) during a write operation for a time equivalent to the H period of the clock signal CLK.
  • the buffer circuit BUF1 is a circuit configured by connecting an even number of inverter circuits, and is a circuit that outputs a signal input to the buffer circuit BUF1 with a certain delay.
  • the write control signal WEN is a signal generated by a logical product of the write determination signal WRITE and an inverted signal of a signal obtained by delaying the write determination signal WRITE for a certain time. Therefore, when the write determination signal WRITE becomes H level, the write control signal WEN becomes H level (active state), and after the delay time determined by the plurality of buffer circuits BUF1 and the inverter circuit INV2, the write control signal WEN becomes L level (non-level). (Active state). Therefore, the write control signal WEN generated with the circuit configuration shown in FIG. 5 is a signal equivalent to the write control signal WEN in the timing chart shown in FIG.
  • the timing of the active period of the write control signal WEN is set so that an upper limit is given to the period of the active state of the write control signal WEN so that the memory cell power supply does not become lower than the retention voltage of the memory cell 10 due to the leakage current of the memory cell 10.
  • the circuit configuration shown in FIG. 5 may be used as a means for setting.
  • FIG. 6 is a timing chart for explaining another operation of the semiconductor memory device of FIG.
  • the timing chart shown in FIG. 6 also shows an operation when writing is performed on the memory cell 10 (the upper left memory cell in FIG. 1) connected to the word line WLx and the bit lines BL0 and / BL0.
  • the semiconductor memory device is controlled to activate any one of the word lines WL0 to WLx in synchronization with the clock signal CLK, and the write control signal WEN is also synchronized with the clock signal CLK during the write operation.
  • the active state is controlled. Therefore, the word line WLx is in an active state (H level) for a time substantially equal to the H level period of the clock signal CLK.
  • the write operation is performed for a time substantially equal to the H level period of the clock signal CLK.
  • the control signal WEN is also activated (H level).
  • the word line WLx becomes H level (active state) at time T1, and at the same time, the write control signal WEN also becomes H level (active state).
  • the column address signal AD0 is configured such that the potential does not change during the H level period of the clock signal CLK. In this case, the column address signal AD0 is in the H level state (selected state) during the H level period of the clock signal CLK. Although not shown, the column address signal AD1 is in an L level state (non-selected state).
  • the memory cell power supply VDDM0 changes from the voltage VDD (time T1) to the voltage V1 (time T2). .
  • the voltage V1 is a potential slightly higher than the absolute value
  • the word line WLx changes from H level (active state) to L level (inactive state) at time T3, and at the same time, the write control signal WEN changes from H level (active state). It changes to L level (inactive state).
  • the memory cell power supply VDDM0 is at a potential lower than the voltage V2 at time T3.
  • the voltage V ⁇ b> 2 is a retention voltage of the memory cell 10. Therefore, when the write control signal WEN is activated during the period from the time T1 to the time T3, the potential of the memory cell power supply VDDM0 becomes lower than the retention voltage V2 of the memory cell 10, and as a result, the memory cell data Destruction occurs.
  • the timing of the write control signal WEN is set so that the write control signal WEN is activated during the period from time T1 to time T4.
  • the period of the active state of the write control signal WEN is set in synchronization with the clock signal CLK, the activation of the write control signal WEN is shortened by shortening the H level period of the clock signal CLK. It is possible to change the duration of the state.
  • the clock is supplied so that the memory cell power supply does not become lower than the retention voltage of the memory cell 10 due to the leakage current of the memory cell 10. It is necessary to set the timing of the write control signal WEN synchronized with the signal CLK.
  • the word line is activated when the clock signal CLK input to the semiconductor memory device is at the H level.
  • the clock signal CLK input to the semiconductor memory device is at the L level
  • the word line is activated.
  • an upper limit may be given to the L level period of the clock signal CLK input to the semiconductor memory device.
  • FIG. 7 is a timing chart for explaining still another operation of the semiconductor memory device of FIG.
  • memory cell storage nodes N ⁇ b> 1 and N ⁇ b> 2 specifically indicate the states of the source terminals of access transistors A ⁇ b> 1 and A ⁇ b> 2 constituting memory cell 10.
  • the timing chart shown in FIG. 7 also shows an operation when writing is performed on the memory cell 10 (the upper left memory cell in FIG. 1) connected to the word line WLx and the bit lines BL0 and / BL0.
  • the word line WLx becomes H level (active state) at time T1, and at the same time, the write control signal WEN also becomes H level (active state).
  • the column address signal AD0 is in the H level state (selected state)
  • the column address signal AD1 is in the L level state (non-selected state).
  • the memory cell power supply VDDM0 changes from the voltage VDD (time T1) to the voltage V1 (time T2). .
  • the voltage V1 is a potential slightly higher than the absolute value
  • the H level is stored on the source terminal side of the access transistor A1 and the L level is stored on the source terminal side of the access transistor A2 of the memory cell 10 to be written, and the bit line BL0 side is at the H level during the write operation. Suppose that it becomes L level from.
  • Rewriting of the memory cell 10 occurs near time T2.
  • the bit line BL0 side is at the L level
  • the potential on the source terminal side of the access transistor A1 of the memory cell 10 to be written changes from the H level to the L level side.
  • the source terminal of the access transistor A1 is an input of an inverter composed of a load transistor L2 and a drive transistor D2. Therefore, when the potential of the source terminal of the access transistor A1 exceeds the switching voltage of the inverter, the data in the memory cell 10 is inverted and the data rewriting is completed.
  • the source terminal side of the access transistor A1 of the memory cell 10 to be written is 0V
  • the source terminal side of the access transistor A2 is the voltage V1.
  • the memory cell power supply VDDM0 drops from the voltage V1 due to the minute leak current of the memory cell 10, but it is assumed that the leak current of the memory cell 10 does not flow in order to simplify the explanation.
  • the write control signal WEN becomes L level (inactive state), and the potential of the memory cell power supply VDDM0 returns from the voltage V1 to the power supply VDD level (time T4).
  • the potential on the source terminal side of the access transistor A2, which is the memory cell storage nodes N1 and N2 also returns from the voltage V1 to the power supply VDD level (time T4).
  • the word line WLx becomes L level (inactive state), and the write operation is completed.
  • the word line WLx is changed from the active state to the inactive state before the timing when the write control signal WEN changes from the active state to the inactive state, the word line WLx is at the L level. Since the memory cell power supply VDDM0 is at the voltage V1 and at a potential in the vicinity of
  • the word line WLx is in the active state.
  • the write control signal WEN is configured to change from the active state to the inactive state.
  • the memory cell power supply is configured to be at the power supply VDD level before the timing when the word line WLx changes from the active state to the inactive state.
  • FIG. 8 is a circuit diagram showing an example of a specific configuration of a control circuit that generates a word line control signal and controls a memory cell power supply in the semiconductor memory device of this embodiment.
  • the control circuit of FIG. 8 includes inverter circuits INV3 to INV5, NAND circuits NAND2 and NAND3, NOR circuit NOR1, and buffer circuit BUF2.
  • ADx is a row address signal
  • WLx is a word line
  • CLK is a clock signal input to the semiconductor memory device
  • WRITE is a write determination signal
  • WEN is a write control signal.
  • the clock signal CLK is input to the NOR circuit NOR1 and the NAND circuit NAND2.
  • the clock signal CLK and the write determination signal WRITE are input to the NAND circuit NAND2, and the outputs thereof are input to the inverter circuit INV3.
  • the output of the inverter circuit INV3 becomes the write control signal WEN.
  • the clock signal CLK and the write control signal WEN are input to the NOR circuit NOR1, and the output thereof is input to the inverter circuit INV4.
  • the output of the inverter circuit INV4 is input to the buffer circuit BUF2, and the output signal of the buffer circuit BUF2 and the row address signal ADx are input to the NAND circuit NAND3.
  • the output of the NAND circuit NAND3 is input to the inverter circuit INV5, and the output of the inverter circuit INV5 is output as the word line WLx.
  • the write determination signal WRITE is a signal synchronized with the clock signal CLK input to the semiconductor memory device, and is a signal that becomes active (H level) for a time equivalent to the H period of the clock signal CLK during the write operation.
  • the row address signal ADx is configured such that the potential does not change during the H level period of the clock signal CLK. In this case, the row address signal ADx is in the H level state (selected state) during the H level period of the clock signal CLK. It is.
  • the buffer circuit BUF2 is a circuit configured by connecting an even number of inverter circuits, and is a circuit that outputs a signal input to the buffer circuit BUF2 with a certain delay.
  • the NAND circuit NAND2 when the clock signal CLK is L level, the NAND circuit NAND2 outputs an H level regardless of the state of the write determination signal WRITE. Therefore, the write control signal WEN that is the output of the inverter circuit INV3 is at the L level (inactive state). Since the clock signal CLK is L level and the write control signal WEN is also L level, the output of the NOR circuit NOR1 is H level, the output of the inverter circuit INV4 is L level, and the output of BUF2 is also L level. Therefore, the NAND circuit NAND3 outputs an H level regardless of the state of the row address signal ADx. Therefore, the word line WLx that is the output of the inverter circuit INV5 is at the L level (inactive state). Referring to FIG.
  • the NAND circuit NAND1 since the write control signal WEN is at L level, the NAND circuit NAND1 outputs H level regardless of the state of the column address signal AD0, and the inverter circuit INV1 outputs L level. Therefore, the P-type MOS transistor MP1 constituting the memory cell power supply circuit 20 is turned on, the P-type MOS transistor MP2 is turned off, and the memory cell power supply VDDM0 outputs the power supply VDD level.
  • the output of the NOR circuit NOR1 becomes L level regardless of the input of the write control signal WEN. Therefore, the output of the inverter circuit INV4 becomes H level and the output of the buffer circuit BUF2 becomes H level. Since the row address signal ADx is at the H level, the output of the NAND circuit NAND3 is at the L level. Therefore, the word line WLx that is the output of the inverter circuit INV5 is at the H level (active state). Further, during the write operation, when the clock signal CLK becomes H level, the write determination signal WRITE is at H level, so that the output to the NAND circuit NAND2 becomes L level, and accordingly, the write control signal that is the output of the inverter circuit INV3.
  • the NAND circuit NAND2 changes to H level regardless of the state of the write determination signal WRITE. Therefore, the write control signal WEN that is the output of the inverter circuit INV3 changes to the L level (inactive state). Since the clock signal CLK is at L level and the write control signal WEN is also at L level, the output of the NOR circuit NOR1 changes to H level, the output of the inverter circuit INV4 changes to L level, and the output of the buffer circuit BUF2 changes to L level.
  • the NAND circuit NAND3 outputs the H level regardless of the state of the row address signal ADx, and the word line WLx that is the output of the inverter circuit INV5 changes to the L level (inactive state).
  • the NAND circuit NAND1 changes to H level regardless of the state of the column address signal AD0, and the output of the inverter circuit INV1 changes to L level. . Therefore, the P-type MOS transistor MP1 constituting the memory cell power supply circuit 20 is turned on and the P-type MOS transistor MP2 is turned off, so that the memory cell power supply VDDM0 returns from the
  • the memory cell power supply controlled by the write control signal before the timing when the word line changes from the active state to the inactive state Is restored to the power supply VDD level the number of logic stages required to change the memory cell power supply VDDM0 from the first stage input of the clock signal CLK to the power supply VDD level is changed to the L level ( It is only necessary that the number of logic stages is less than that required for control to the inactive state.
  • the number of logic stages required to change the memory cell power supply VDDM0 from the first stage input of the clock signal CLK to the power supply VDD level is five, and a specific path from the clock signal CLK is a NAND circuit.
  • They are NAND2, inverter circuit INV3, NAND circuit NAND1, inverter circuit INV1, and P-type MOS transistor MP1.
  • the number of logic stages required to control the word line WLx to L level (inactive state) from the first stage input of the clock signal CLK is eight, and a specific path from the clock signal CLK is a NAND circuit.
  • They are NAND2, inverter circuit INV3, NOR circuit NOR1, inverter circuit INV4, buffer circuit BUF2, NAND circuit NAND3, and inverter circuit INV5.
  • the buffer circuit BUF2 is calculated by two inverter circuits.
  • the word line is changed from the active state to the inactive state. Since the memory cell power supply can be configured to be at the power supply VDD level before the timing of changing to, normal write operation can be performed.
  • the case where the memory cell 10 is a single port has been described as an example. However, even a memory cell having a plurality of ports has the same operation and effect.
  • a bit line precharge circuit 15 for precharging a bit line to an H level (power supply VDD level) at a position adjacent to a memory cell array region having a plurality of memory cells 10.
  • H level power supply VDD level
  • the P-type MOS transistors MP3 to MP5 inserted between the power supply VDD and each bit line are used. Composed.
  • the P-type MOS transistors MP1 and MP2 constituting the memory cell power supply circuit 20 are also constituted by P-type MOS transistors.
  • both P-type MOS transistors MP1 and MP2 constituting the memory cell power supply circuit 20 are laid out in the same substrate region as the substrate region (N well region) for laying out the bit line precharge circuit 15, Compared with the case where the P-type MOS transistors MP3 to MP5 constituting the bit line precharge circuit 15 and the P-type MOS transistors MP1 and MP2 constituting the memory cell power supply circuit 20 are laid out in different substrate regions, the semiconductor The storage device can be laid out in a small area.
  • FIG. 9 is a configuration diagram of a semiconductor memory device according to Embodiment 2 of the present invention.
  • the semiconductor memory device shown in FIG. 9 differs from the configuration of FIG. 1 of the first embodiment only in the configuration of the MOS transistors that constitute the memory cell power supply circuit 21.
  • an N-type MOS transistor MN2 is added between the P-type MOS transistor MP2 and the ground power supply.
  • the gate terminal of the P-type MOS transistor MP2 is connected to the drain terminal of the N-type MOS transistor MN2, and the gate terminal of the N-type MOS transistor MN2 receives the same signal as the signal input to the gate terminal of the P-type MOS transistor MP1. Have been entered.
  • the write control signal WEN is L level (inactive state) except during the write operation. Therefore, regardless of the state of the column address signals AD0 and AD1, the NAND circuit NAND1 outputs an H level, and the inverter circuit INV1 that receives the output of the NAND circuit NAND1 outputs an L level. Therefore, since the P-type MOS transistor MP1 constituting the memory cell power supply circuit 21 is turned on and the N-type MOS transistor MN2 is turned off, all the memory cell power supplies VDDM0 and VDDM1 output the power supply VDD level.
  • the write control signal WEN becomes H level (active state).
  • one of the column address signals AD0 and AD1 is at the H level.
  • the column address signal AD0 is at H level and AD1 is at L level. It is.
  • the NAND circuit NAND1 that receives the column address signal AD0 outputs an L level, and the inverter circuit INV1 in the next stage outputs an H level. Since the P-type MOS transistor MP1 and the N-type MOS transistor MN2 of the memory cell power supply circuit 21 are turned off, the potential of the memory cell power supply VDDM0 is the absolute value of the threshold voltage of the P-type MOS transistor MP2 from the power supply VDD level. It drops to a certain
  • the memory cell power supply VDDM1 of the memory cell 10 connected on the bit lines BL1, / BL1 to which writing is not performed outputs the power supply VDD level because the column address signal AD1 is at the L level.
  • the memory cell power supply of the memory cell 10 connected on the bit line where writing is not performed need not be lowered from the power supply VDD level. There is no problem even if the memory cell power supply of the memory cell 10 connected on the bit line not to be written is lowered from the power supply VDD level. In this case, however, an unnecessary charge / discharge current is generated in the memory cell power supply. Therefore, as in the above configuration, the memory cell power supply should be controlled to be fixed at the power supply VDD level by a signal based on the column address signal.
  • the semiconductor memory device of FIG. 9 of this embodiment performs the same operation as that of FIG. 1 of the first embodiment. Therefore, it has the same effect as Embodiment 1.
  • the memory cell power supply circuit 21 of this embodiment can be controlled with only one signal (logical product of the column address signal and the write control signal). Therefore, the number of signal wirings can be reduced when the semiconductor memory device is laid out, and the degree of freedom in layout design is increased, so that the area of the semiconductor memory device can be reduced.
  • the drain terminal of the N-type MOS transistor MN2 is connected to the gate terminal of the P-type MOS transistor MP2 constituting the memory cell power supply circuit 21, but the gate terminal of the P-type MOS transistor MP2 is connected to the gate terminal of the P-type MOS transistor MP2. Even a configuration in which a ground power supply is connected has equivalent operations and effects.
  • FIG. 10 is a configuration diagram of a semiconductor memory device according to Embodiment 3 of the present invention.
  • the semiconductor memory device shown in FIG. 10 differs from the configuration of FIG. 1 of the first embodiment only in the control of the memory cell power supply circuit 20.
  • the write control signal WEN is connected to the gate terminals of the P-type MOS transistors MP1 of all the memory cell power supply circuits 20.
  • the write control signal WEN is L level (inactive state) except during the write operation. Therefore, the NAND circuit NAND1 outputs an H level regardless of the state of the column address signals AD0 and AD1. Accordingly, since the P-type MOS transistor MP1 constituting the memory cell power supply circuit 20 is turned on and the P-type MOS transistor MP2 is turned off, all the memory cell power supplies VDDM0 and VDDM1 output the power supply VDD level.
  • the write control signal WEN becomes H level (active state).
  • one of the column address signals AD0 and AD1 is at the H level.
  • the column address signal AD0 is H level and AD1 is L level. It is.
  • the NAND circuit NAND1 that receives the column address signal AD0 outputs the L level. Since the P-type MOS transistor MP1 of the memory cell power supply circuit 20 is turned off and the P-type MOS transistor MP2 is turned on, the potential of the memory cell power supply VDDM0 is the absolute value of the threshold voltage of the P-type MOS transistor MP2 from the power supply VDD level. It drops to a certain
  • the memory cell power supply VDDM1 of the memory cell 10 connected on the bit lines BL1 and / BL1 to which writing is not performed has a potential immediately before the write control signal WEN becomes H level and the P-type MOS transistor MP1 is turned off. It is in a high impedance state at a certain power supply VDD level.
  • the memory cell power supply VDDM1 is at the power supply VDD level in the low impedance state, but is operationally equivalent to the first embodiment.
  • the memory cell power supply of the memory cell 10 connected on the bit line where writing is not performed need not be lowered from the power supply VDD level.
  • the memory cell power supply of the memory cell 10 connected on the bit line not to be written is lowered from the power supply VDD level. In this case, however, an unnecessary charge / discharge current is generated in the memory cell power supply. Therefore, the memory cell power supply should be controlled to be equal to the power supply VDD level as in the above configuration.
  • the semiconductor memory device of FIG. 10 of this embodiment performs the same operation as that of FIG. 1 of the first embodiment. Therefore, it has the same effect as Embodiment 1.
  • the memory cell power supply VDDM1 of the memory cell 10 connected on the bit lines BL1, / BL1 to which writing is not performed during the write operation is in a high impedance state. That is, in the case of the present embodiment, since the memory cell power supply of the memory cell 10 connected on the bit line to which writing is not performed is in a state of being cut off (high impedance state), unnecessary power consumption is eliminated, and Compared with a semiconductor memory device, the power consumption is low.
  • the inverter circuit INV1 in FIG. 1 of the first embodiment is not necessary, so that the layout can be made smaller than the semiconductor memory device of the first embodiment.
  • Embodiments 2 and 3 operations and modifications similar to those described in Embodiment 1 are possible.
  • the semiconductor memory device of the present invention suppresses the current consumption in the memory cell power supply generation unit when the memory cell power supply is lowered to improve the write characteristics of the memory cell during the write operation, Furthermore, since the memory cell power supply does not drop below the retention voltage of the memory cell, the memory cell data can be reliably stored and held without causing destruction of the memory cell data. This is useful as a circuit for improving the write characteristics of the memory cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Abstract

 カラム毎のメモリセル電源回路(20)を、第1の電源と第2の電源との間に直列に接続した第1のP型MOSトランジスタ(MP1)と第2のP型MOSトランジスタ(MP2)とで構成し、第1のP型MOSトランジスタ(MP1)と第2のP型MOSトランジスタ(MP2)との接点をメモリセル電源として出力する。第1のP型MOSトランジスタ(MP1)のゲート端子には、カラム選択信号とライト制御信号とに基づいた制御信号を入力し、第2のP型MOSトランジスタ(MP2)のゲート端子には、第1のP型MOSトランジスタ(MP1)のゲート端子に入力される信号の反転レベルの信号を入力する。

Description

半導体記憶装置
 本発明は、スタティックランダムアクセスメモリ(SRAM)等の半導体記憶装置におけるメモリセル電源電圧の制御技術に関するものである。
 近年、半導体プロセスの微細化が進み、半導体記憶装置を構成するトランジスタの特性ばらつきが増加している。また、半導体記憶装置の電源電圧の低電圧化が進んでいる。
 ある従来技術によれば、メモリセルのリーク電流を低減するように、ロウ毎にメモリセルの電源電圧を下げる。具体的には、非選択ロウのメモリセルの高電源電圧をVDDレベルより低い電圧値に制御する(特許文献1参照)。
 他の従来技術によれば、十分なスタティックノイズマージンを確保しつつメモリセルの書き込みマージンを大きくするように、カラム毎に、メモリセルの電源電圧を下げる。すなわち、データの書き込み時に選択されるカラムのメモリセルの高電源電圧をVDDレベルより低い電圧値に制御する(特許文献2、3参照)。
 更に他の従来技術によれば、データの書き込み時に選択されるカラムのメモリセルの低電源電圧をVSSレベルより高い電圧値に制御する(特許文献4参照)。
特開2006-73165号公報 特開2006-85786号公報 特開2007-12214号公報 特開2007-234126号公報
 特許文献2の技術では、ライト動作時にメモリセル電源が低下した後は、メモリセル電源に対して電荷を供給する手段が存在しないため、メモリセル電源電圧がリーク電流によって徐々に低下してしまう。このため、ライト動作時に、メモリセル電源がメモリセルのリテンション電圧より低くなってしまい、メモリセル電源に接続している書き込み対象以外のメモリセルに記憶保持していたデータが破壊されてしまうといった問題が生じる。
 特許文献3の技術では、電源と接地との間に直列に接続した2個のP型MOSトランジスタの分圧で、電源電圧よりも低い電圧の生成を行っている。しかし、ライト動作時に、両P型MOSトランジスタがいずれもオン状態になるため、メモリセル電源の生成部分で、電源から接地にかけて貫通電流が流れる。したがって、消費電力が大きくなってしまう。
 したがって、本発明は、ライト動作時に、メモリセル電源を低下させてメモリセルの書き込み特性を改善する際に、メモリセル電源の生成部での消費電流を抑制し、更に、メモリセル電源がメモリセルのリテンション電圧よりも低下することがなく、メモリセルのデータ破壊を生じさせない半導体記憶装置を提供することを目的とする。
 上記の点に鑑み、本発明の第1の半導体記憶装置は、複数のワード線と、複数のビット線と、前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、前記メモリセル電源回路は、第1の電源と第2の電源との間に直列に接続した第1のP型MOSトランジスタと第2のP型MOSトランジスタとで構成され、前記第1のP型MOSトランジスタと前記第2のP型MOSトランジスタとの接点を前記メモリセル電源として出力し、前記第1のP型MOSトランジスタのゲート端子には、カラム選択信号とライト制御信号とに基づいた制御信号が入力され、前記第2のP型MOSトランジスタのゲート端子には、前記第1のP型MOSトランジスタのゲート端子に入力される信号の論理反転となる信号が入力されており、前記第2のP型MOSトランジスタのしきい値電圧の絶対値は、前記メモリセルのロードトランジスタ及びドライブトランジスタのしきい値電圧の絶対値よりも高く設定されていることを特徴とするものである。
 本発明の第2の半導体記憶装置は、複数のワード線と、複数のビット線と、前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、前記メモリセル電源回路は、第1の電源と第2の電源との間に直列に接続した第1のP型MOSトランジスタと第2のP型MOSトランジスタと第1のN型MOSトランジスタとで構成され、前記第1のP型MOSトランジスタと前記第2のP型MOSトランジスタとの接点を前記メモリセル電源として出力し、前記第1のP型MOSトランジスタのゲート端子と前記第1のN型MOSトランジスタのゲート端子には、カラム選択信号とライト制御信号とに基づいた制御信号が入力され、前記第2のP型MOSトランジスタのゲート端子には、前記第1のN型MOSトランジスタのドレイン端子が接続されていることを特徴とするものである。
 本発明の第3の半導体記憶装置は、複数のワード線と、複数のビット線と、前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、前記メモリセル電源回路は、第1の電源と第2の電源との間に直列に接続した第1のP型MOSトランジスタと第2のP型MOSトランジスタとで構成され、前記第1のP型MOSトランジスタと前記第2のP型MOSトランジスタとの接点を前記メモリセル電源として出力し、前記第1のP型MOSトランジスタのゲート端子には、カラム選択信号によらずライト制御信号に基づいた制御信号が入力され、前記第2のP型MOSトランジスタのゲート端子には、前記カラム選択信号と前記ライト制御信号とに基づいた制御信号が入力されていることを特徴とするものである。
 本発明の第4の半導体記憶装置は、複数のワード線と、複数のビット線と、前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、前記メモリセル電源回路は、ライト動作時に前記メモリセル電源を第1の電源よりも低い電位に制御する機能を有し、前記第1の電源と前記メモリセル電源との間に接続したMOSトランジスタで構成されて、前記メモリセル電源が前記第1の電源よりも低い電位に制御されている期間中に前記メモリセル電源のリーク電流を補償するリーク電流補償回路を更に有することを特徴とするものである。
 本発明の第5の半導体記憶装置は、複数のワード線と、複数のビット線と、前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、前記メモリセル電源回路は、ライト動作時に前記メモリセル電源を第1の電源よりも低い電位に制御する機能を有し、前記半導体記憶装置に入力されるクロック信号の初段入力から前記メモリセル電源を前記第1の電源と同等の電位に制御するために必要な論理段数は、前記半導体記憶装置に入力されるクロック信号の初段入力からワード線を非活性状態に制御するために必要な論理段数よりも少ないことを特徴とするものである。
 以上説明したように、本発明の半導体記憶装置によれば、ライト動作時におけるメモリセルの書き込み特性の改善を低消費電力で実現することが可能である。更に、従来と比較し、メモリセル電源がメモリセルのリテンション電圧よりも低下することがないため、メモリセルのデータ破壊を生じさせることがなく、メモリセルのデータを確実に記憶保持することが可能である。
本発明の実施形態1の半導体記憶装置の構成を示す回路図である。 図1中のビット線プリチャージ回路の詳細構成例を示す回路図である。 図1中のリーク電流補償回路の詳細構成例を示す回路図である。 図1の半導体記憶装置の動作を説明するためのタイミングチャートである。 図1の半導体記憶装置におけるライト制御信号の生成方法の一例を示す回路図である。 図1の半導体記憶装置の他の動作を説明するためのタイミングチャートである。 図1の半導体記憶装置の更に他の動作を説明するためのタイミングチャートである。 図1の半導体記憶装置におけるワード線とメモリセル電源を生成する制御回路の具体的な構成の一例を示す回路図である。 本発明の実施形態2の半導体記憶装置の構成を示す回路図である。 本発明の実施形態3の半導体記憶装置の構成を示す回路図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の各実施形態において、他の実施形態と同様の機能を有する構成要素については同一の符号を付して説明を省略する。
 《実施形態1》
 図1は、本発明の実施形態1に係る半導体記憶装置の構成図である。図1に示す半導体記憶装置は、2つの記憶ノードN1~2を有するようにアクセストランジスタA1~2、ドライブトランジスタD1~D2、及びロードトランジスタL1~2で構成されたメモリセル10と、ビット線プリチャージ回路15と、P型MOSトランジスタMP1~2で構成されたメモリセル電源回路20と、リーク電流補償回路25と、電源電圧検知回路30と、インバータ回路INV1と、NAND回路NAND1とを備える。WL0~xはワード線、BL0~1及び/BL0~1はビット線、PCGはプリチャージ制御信号、VDDM0~1はメモリセル電源、AD0~1はカラムアドレス信号、WENはライト制御信号、VDDは電源(第1の電源)を示す。xは1以上の整数であり、図1において、複数のワード線WL0~xに接続するメモリセル10が複数個存在することを表している。
 各ワード線WL0~xは、各メモリセル10を構成するアクセストランジスタA1,A2のゲート端子に各々接続されている。また、各ビット線BL0~1,/BL0~1は、各メモリセル10を構成するアクセストランジスタA1,A2のドレイン端子に各々接続されている。同一のビット線上BL0,/BL0(或いはBL1,/BL1)に接続した各メモリセル10のロードトランジスタL1,L2のソース端子には、同一のメモリセル電源VDDM0(或いはVDDM1)が接続されている。
 メモリセル10は、ロードトランジスタL1とドライブトランジスタD1とにより、また、ロードトランジスタL2とドライブトランジスタD2とにより各々インバータを構成し、各々のインバータの入出力端子を接続してフリップフロップを構成している。このフリップフロップによりデータの記憶保持を行う。また、アクセストランジスタA1,A2のゲート端子はワード線WL0~xに接続され、そのドレイン端子はビット線BL0~1,/BL0~1に各々接続される。また、アクセストランジスタA1,A2のソース端子は、前記インバータの入出力端子に各々接続されている。
 メモリセル電源回路20は、電源VDDと接地電源との間に直列に接続したP型MOSトランジスタMP1,MP2で構成され、P型MOSトランジスタMP1,MP2の接点をメモリセル電源VDDM0~1として出力している。メモリセル電源回路20を構成するP型MOSトランジスタMP2のゲート端子には、カラムアドレス信号AD0(或いはAD1)とライト制御信号WENと電源電圧検知回路30の出力とを入力とするNAND回路NAND1の出力信号が接続されている。また、P型MOSトランジスタMP1のゲート端子には、NAND回路NAND1の出力信号を入力とする、インバータ回路INV1の出力信号が接続されている。
 図2は、図1中のビット線プリチャージ回路15の詳細構成例を示す回路図である。ビット線プリチャージ回路15は、各々プリチャージ制御信号PCGをゲート端子に受け取る3個のP型MOSトランジスタMP3,MP4,MP5で構成され、電源VDDと各ビット線BL,/BLとの間と、両ビット線BL,/BLの間とに挿入されている。
 図3は、図1中のリーク電流補償回路25の詳細構成例を示す回路図である。図3において、MP6はP型MOSトランジスタ、MN1はN型MOSトランジスタを示す。P型MOSトランジスタMP6のソース端子とゲート端子には電源VDDが接続され、ドレイン端子がメモリセル電源VDDMに接続される。N型MOSトランジスタMN1のソース端子には電源VDDが接続され、ゲート端子には接地電源が接続され、ドレイン端子がメモリセル電源VDDMに接続される。図3のP型MOSトランジスタMP6とN型MOSトランジスタMN1とは、いずれもオフ状態である。
 なお、図1では、カラムアドレス信号とライト制御信号とに基づいて、書き込み対象のメモリセル10に接続したビット線に書き込みデータを転送するためのライト回路、また、メモリセル10からのデータを読み出すためのリード回路は、説明を簡単にするため省略してある。ライト回路は、ビット線BL0,/BL0に書き込みデータを転送する場合、カラムアドレス信号AD0及びライト制御信号WENに基づく信号で制御され、また、ビット線BL1,/BL1に書き込みデータを転送する場合、カラムアドレス信号AD1及びライト制御信号WENに基づく信号で制御されているものとする。
 以下、以上のように構成された本実施形態に係る半導体記憶装置の動作を説明する。
 メモリセル10へのデータの書き込みは、予め、ビット線プリチャージ回路15によりHレベルにプリチャージされたビット線BL,/BLのうちの一方のビット線の電位を、HレベルからLレベルにし、ワード線をLレベルからHレベルの状態(活性状態)にすることで実現される。メモリセル10からのデータの読み出しは、予め、ビット線プリチャージ回路15によりHレベルにプリチャージされたビット線BL,/BLの状態から、ワード線を活性状態にすることにより、メモリセル10中のフリップフロップが記憶保持していた状態に基づいて、いずれか一方のビット線をHレベルからLレベルにすることで実現される。また、ワード線がLレベル(非活性状態)の場合には、アクセストランジスタA1,A2が共にオフするため、メモリセル電源VDDM0~1が供給され続けている限り、フリップフロップに記憶されたデータは、外部からの影響を受けることなく、同一のデータを記憶保持し続ける。
 次に、データ書き込み動作について詳細に説明する。ここでは、ワード線WLxとビット線BL0,/BL0とに接続したメモリセル10(図1の左上のメモリセル)に対して書き込みを行う場合を例にして説明する。また、メモリセル10のアクセストランジスタA1のソース端子側がHレベル(アクセストランジスタA2のソース端子側はLレベル)となるデータを記憶しているとする。また、電源電圧検知回路30の出力がHレベルであるものとする。
 まず、全てのワード線はLレベル(非活性状態)で、全てのビット線はHレベルにプリチャージされている。
 次に、書き込み対象のメモリセル10に接続したビット線BL0,/BL0のうちの一方のビット線をHレベルからLレベルにする。例えば、BL0側をHレベルからLレベルにする。この状態で、ワード線WLxをLレベルからHレベルの状態(活性状態)にする。
 ワード線WLxがHレベルになると、アクセストランジスタA1(A2)がオンする。よって、ビット線BL0(/BL0)の電位状態が、アクセストランジスタA1(A2)を介してメモリセル10に伝達される。
 ビット線BL0の電位状態がLレベルであるため、メモリセル10のアクセストランジスタA1のソース端子側は、HレベルからLレベル側に電位が変化する。アクセストランジスタA1のソース端子は、ロードトランジスタL2とドライブトランジスタD2とで構成したインバータの入力である。よって、アクセストランジスタA1のソース端子の電位が、このインバータのスイッチング電圧を越えると、メモリセル10のデータが反転してデータの書き換えが完了する。
 アクセストランジスタA1のソース端子側がHレベルの時は、ロードトランジスタL1がオン、ドライブトランジスタD1がオフしている状態である。実際のアクセストランジスタA1のソース端子の電位は、アクセストランジスタA1とロードトランジスタL1との電流能力比で決定している。
 メモリセル10は、「アクセストランジスタの電流能力>ロードトランジスタの電流能力」となるように設計される。よって、ビット線BL0側がLレベルになれば、アクセストランジスタA1のソース端子側はHレベルからLレベル側に変化でき、ロードトランジスタL2とドライブトランジスタD2とで構成したインバータのスイッチング電圧を超えられるため、メモリセル10のデータの書き換えが可能である。
 しかし、低い電源電圧が通常の電圧として供給される半導体記憶装置では、アクセストランジスタA1の電流能力が低下し、アクセストランジスタA1のソース端子側がLレベルになりにくくなる。よって、ロードトランジスタL2とドライブトランジスタD2とで構成したインバータのスイッチング電圧を超えることができなくなり、メモリセル10のデータの書き換えができなくなる。
 上記の問題を改善するためには、メモリセル10のデータの書き換え時に、ロードトランジスタのソース電位(メモリセル電源)を低下させて、ロードトランジスタの能力を、通常状態(ロードトランジスタのソース端子に電源VDDレベルが印加されている状態)よりも低下させればよい。
 ロードトランジスタL1のソース電位(メモリセル電源)が低下すれば、ロードトランジスタL1の能力が低下する。よって、ワード線WLxが活性状態でビット線BL0側がLレベルの時、アクセストランジスタA1のソース端子側はHレベルからLレベル側に変化しやすくなり、ロードトランジスタL2とドライブトランジスタD2とで構成したインバータのスイッチング電圧を越えやすくなるため、メモリセル10のデータの書き換えが可能となる。
 以上のとおり、書き込み動作時に、ロードトランジスタのソース電位(メモリセル電源)を低下させれば、メモリセル10への書き込み特性が改善する。
 メモリセル電源VDDM0,VDDM1を生成するメモリセル電源回路20は、カラムアドレス信号AD0,AD1とライト制御信号WENとに基づいた信号で制御されている。
 ライト動作時以外は、ライト制御信号WENはLレベル(非活性状態)である。よって、カラムアドレス信号AD0,AD1の状態によらず、NAND回路NAND1はHレベルを出力し、NAND回路NAND1の出力を入力とするインバータ回路INV1はLレベルを出力する。よって、メモリセル電源回路20を構成するP型MOSトランジスタMP1がオン、P型MOSトランジスタMP2がオフするので、全てのメモリセル電源VDDM0,VDDM1は電源VDDレベルを出力する。
 ライト動作時、ワード線が活性状態になる時に、ライト制御信号WENはHレベル(活性状態)になる。このとき、カラムアドレス信号AD0,AD1は、いずれかがHレベルとなっている。ワード線WLxとビット線BL0,/BL0とに接続したメモリセル10(図1の左上のメモリセル)に対して書き込みを行う場合を例にすると、カラムアドレス信号AD0がHレベル、AD1がLレベルである。
 よって、カラムアドレス信号AD0を入力とするNAND回路NAND1はLレベルを出力し、次段のインバータ回路INV1はHレベルを出力する。メモリセル電源回路20のP型MOSトランジスタMP1がオフ、P型MOSトランジスタMP2がオンするので、メモリセル電源VDDM0の電位は、電源VDDレベルからP型MOSトランジスタMP2のしきい値電圧の絶対値である|Vtp|に低下していく。メモリセル電源VDDM0の電位が|Vtp|になると、P型MOSトランジスタMP2はオフする。P型MOSトランジスタMP1がオフ、更に、P型MOSトランジスタMP2もオフするので、メモリセル電源回路20を流れる電流はなくなる。
 これに対して、書き込みを行わないビット線BL1,/BL1上に接続したメモリセル10のメモリセル電源VDDM1は、カラムアドレス信号AD1がLレベルであるため、電源VDDレベルを出力している。書き込みを行わないビット線上に接続したメモリセル10のメモリセル電源は、電源VDDレベルから低下させる必要はない。書き込みを行わないビット線上に接続したメモリセル10のメモリセル電源を電源VDDレベルから低下させても問題はないけれども、メモリセル電源に不要な充放電電流が発生する。よって、上記構成のように、カラムアドレス信号に基づく信号によって、メモリセル電源を電源VDDレベルに固定するように制御しておくべきである。
 以上のとおり、ライト動作時に、書き込み対象のメモリセル10のメモリセル電源が電源VDDレベルから低下するように構成されているため、メモリセル10への書き込み特性が改善される。また、メモリセル電源を生成するメモリセル電源回路20において、電源VDDから接地電源にかけて貫通電流が発生しない構成である。
 しかし、上記構成の場合、書き込みを行うビット線BL0,/BL0上に接続したメモリセル10のメモリセル電源VDDM0の電位は、P型MOSトランジスタMP2のしきい値電圧の絶対値|Vtp|まで低下する。このため、書き込みを行うビット線BL0,/BL0上に接続した書き込みを行わないメモリセル(ワード線WLx以外の非活性なワード線に接続したメモリセル)のメモリセル電源VDDM0が、メモリセル10のリテンション電圧より低くなってしまい、メモリセル10に記憶保持していたデータが破壊されてしまうといった問題が生じる。
 上記問題を解決するために、メモリセル電源回路20を構成するP型MOSトランジスタMP2の基板端子にメモリセル電源より高い電圧を印加する。例えば、電源VDDを印加してもよいし、或いは、電源VDD以上の電位を印加してもよい。P型MOSトランジスタMP2の基板バイアス効果によって、しきい値電圧の絶対値がロードトランジスタのしきい値電圧の絶対値|Vtp|より大きくなり、メモリセル電源がメモリセル10のリテンション電圧よりも低下することがなく、メモリセル10のデータ破壊を生じさせない半導体記憶装置が可能となる。
 上記問題を解決する別の方法は、メモリセル電源回路20を構成するP型MOSトランジスタMP2のトランジスタのチャネル長を、メモリセル10を構成するロードトランジスタ及びドライブトランジスタのチャネル長より大きくすることである。リテンション電圧は、ロードトランジスタ又はドライブトランジスタのしきい値電圧の絶対値で決定している。トランジスタのしきい値電圧は、トランジスタのチャネル長に依存し、チャネル長が小さいほど、しきい値電圧の絶対値は低くなる。よって、メモリセル電源回路20を構成するP型MOSトランジスタMP2のトランジスタのチャネル長を、メモリセル10を構成するロードトランジスタ又はドライブトランジスタのチャネル長より大きくすると、メモリセル電源回路20を構成するP型MOSトランジスタMP2のしきい値電圧の絶対値が|Vtp|より大きくなる。よって、メモリセル電源がメモリセル10のリテンション電圧よりも低下することがなく、メモリセル10のデータ破壊を生じさせない半導体記憶装置が可能となる。
 上記問題を解決する更に別の方法は、メモリセル電源回路20を構成するP型MOSトランジスタMP2の拡散領域に注入する不純物濃度を、メモリセル10を構成するロードトランジスタの拡散領域に注入する不純物濃度よりも高くすることである。トランジスタのしきい値電圧は、トランジスタの拡散領域に注入する不純物濃度に依存し、不純物濃度が高いほど、しきい値電圧の絶対値は高くなる。よって、メモリセル電源回路20を構成するP型MOSトランジスタMP2の拡散領域に注入する不純物濃度を、メモリセル10を構成するロードトランジスタの拡散領域に注入する不純物濃度よりも高くすると、メモリセル電源回路20を構成するP型MOSトランジスタMP2のしきい値電圧の絶対値が|Vtp|より大きくなる。よって、メモリセル電源がメモリセル10のリテンション電圧よりも低下することがなく、メモリセル10のデータ破壊を生じさせない半導体記憶装置が可能となる。
 〈リーク電流補償回路〉
 ここでは、リーク電流補償回路25について説明する。図1の半導体記憶装置では、ライト動作時、書き込み対象のメモリセル10と同一ビット線上(例えば、ビット線BL0,/BL0)に接続したメモリセル10のメモリセル電源VDDM0の電位は、電源VDDレベルからP型MOSトランジスタMP2のしきい値電圧の絶対値である|Vtp|に低下していく。メモリセル電源VDDM0の電位が|Vtp|になると、メモリセル電源回路を構成するP型MOSトランジスタMP2はオフする。このとき、P型MOSトランジスタMP1もオフしているため、メモリセル電源VDDM0はハイインピーダンス状態となり、メモリセル電源VDDM0に対して電荷を供給する手段がなくなる。
 メモリセル10には微小なリーク電流が流れており、また、メモリセル電源回路20を構成するP型MOSトランジスタMP2自体にもリーク電流が流れている。このため、メモリセル電源VDDM0の電位は、時間の経過とともに|Vtp|から低下していく。よって、これらのリーク電流に相当する電流を供給すれば、メモリセル電源VDDM0のレベル低下が起きない。図3に示したリーク電流補償回路25は、この微小なリーク電流に相当する電流を供給するための回路の一例である。
 メモリセル10は、ロードトランジスタL1とドライブトランジスタD1、また、ロードトランジスタL2とドライブトランジスタD2とにより各々インバータを構成し、各々のインバータの入出力端子を接続してフリップフロップを構成している。例えば、ロードトランジスタL1がオンでドライブトランジスタD1がオフの時は、ロードトランジスタL2がオフでドライブトランジスタD2がオンの状態となる。よって、メモリセル10を流れるリーク電流は、オフ状態のロードトランジスタL2を流れるリーク電流とオフ状態のドライブトランジスタD1を流れるリーク電流の合計となる。
 ロードトランジスタはP型MOSトランジスタで、ドライブトランジスタはN型MOSトランジスタである。よって、例えば、図3の構成のように、メモリセル10のオフ状態のロードトランジスタ(P型MOSトランジスタ)とオフ状態のドライブトランジスタ(N型MOSトランジスタ)とを模倣した構成をメモリセル電源に接続する。更に、リーク電流補償回路25を構成するMOSトランジスタのチャネル幅やチャネル長、或いは、MOSトランジスタの数を調整することで、メモリセル10が流すリーク電流に相当する電流を供給することが可能である。
 このとき、リーク電流補償回路25を構成するP型MOSトランジスタMP6の拡散領域に注入する不純物濃度は、メモリセル10のロードトランジスタの不純物濃度と同等であることが望ましく、また、N型MOSトランジスタMN1の拡散領域に注入する不純物濃度は、メモリセル10のドライブトランジスタの不純物濃度と同等であることが望ましい。不純物濃度が同等であれば、温度や電源電圧の変化に対するリーク電流の変化に対して、追随性のよいリーク電流補償回路25を構成することが可能となる。
 同様に、リーク電流補償回路25を構成するP型MOSトランジスタMP6のチャネル長は、メモリセル10のロードトランジスタのチャネル長と同等であることが望ましく、また、N型MOSトランジスタMN1のチャネル長は、メモリセル10のドライブトランジスタのチャネル長と同等であることが望ましい。トランジスタのチャネル長が同等であれば、温度や電源電圧の変化に対するリーク電流の変化に対して、追随性のよいリーク電流補償回路25を構成することが可能となる。
 以上のとおり、リーク電流を補償する回路をメモリセル電源に接続すれば、メモリセル電源がメモリセル10のリテンション電圧よりも低下することがなく、メモリセル10のデータ破壊を生じさせない半導体記憶装置が可能となる。
 リーク電流が、メモリセル10のロードトランジスタのリーク電流でほぼ決定するような場合には、リーク電流補償回路25をP型MOSトランジスタのみで構成すればよく、リーク電流が、メモリセル10のドライブトランジスタのリーク電流でほぼ決定するような場合には、リーク電流補償回路25をN型MOSトランジスタのみで構成すればよい。
 また、リーク電流が、メモリセル電源回路20を構成するP型MOSトランジスタMP2でほぼ決定するような場合には、リーク電流補償回路25をP型MOSトランジスタで構成すればよく、このときには、電源VDDとメモリセル電源との間に挿入するP型MOSトランジスタをダイオード型にゲート接続する(ゲート端子にメモリセル電源を接続する)ように構成すれば、温度や電源電圧の変化に対するリーク電流の変化に対して、追随性のよいリーク電流補償回路25を構成することが可能となる。このとき、更に、P型MOSトランジスタMP2と同一のトランジスタ幅とトランジスタ長で構成すれば、温度や電源電圧の変化に対するリーク電流の変化に対して、更に追随性のよいリーク電流補償回路25を構成することが可能となる。
 図3のリーク電流補償回路25を構成するMOSトランジスタは、P型MOSトランジスタとN型MOSトランジスタをそれぞれ1個ずつで構成した場合を例として示したが、各々を複数個並列或いは直列に接続した構成であってもよい。
 また、図3のリーク電流補償回路25を構成するMOSトランジスタは、オフ状態で構成した場合を例として示したが、オン状態で構成してあってもよい。具体的には、P型MOSトランジスタMP6のゲート端子に接地電源やメモリセル電源を接続した構成、或いは、N型MOSトランジスタMN1のゲート端子に電源VDDやメモリセル電源を接続した構成である。
 結局、リーク電流補償回路25は、メモリセル10のリーク電流に相当する電流分をメモリセル電源に供給できればよい。よって、VDD電源とメモリセル電源との間に接続したMOSトランジスタのチャネル長やチャネル幅を調節したり、VDD電源とメモリセル電源との間に接続するMOSトランジスタの数を増減させることで、メモリセル電源に供給する電流を調節すればよい。そして、最終的にメモリセル10のリーク電流に相当する電流がメモリセル電源に供給されるように、リーク電流補償回路25中のMOSトランジスタを構成すればよい。
 一般的な半導体記憶装置では、複数のメモリセル10で構成されるメモリセルアレイ領域に隣接してビット線をHレベル(電源VDDレベル)にプリチャージするためのビット線プリチャージ回路15がレイアウト配置される。ビット線プリチャージ回路15はビット線をHレベル(電源VDDレベル)にプリチャージする動作を実施する必要があるため、電源VDDと各ビット線との間に挿入したP型MOSトランジスタMP3~5で構成される。よって、ビット線プリチャージ回路15をレイアウトするための基板領域(Nウェル領域)と同一の基板領域内に、リーク電流補償回路25を構成するP型MOSトランジスタをレイアウト配置すれば、ビット線プリチャージ回路15を構成するP型MOSトランジスタP3~5とリーク電流補償回路25を構成するP型MOSトランジスタP1,P2とを別々の基板領域にレイアウトする場合と比較して、半導体記憶装置を小面積にレイアウトすることが可能である。
 〈電源電圧検知回路〉
 電源電圧検知回路30は、半導体記憶装置や当該半導体記憶装置を含む半導体集積回路に印加される電源電圧の状態を判断する回路である。例えば、半導体記憶装置や当該半導体記憶装置を含む半導体集積回路に印加される電源電圧が1Vより高ければLレベルを、電源電圧が1Vより低ければHレベルを出力するように構成されている。
 電源電圧検知回路30がLレベルを出力する場合は、NAND回路NAND1は、カラムアドレス信号AD0~1とライト制御信号WENとの状態によらず、Hレベルを出力し、インバータ回路INV1はLレベルを出力する。よって、メモリセル電源回路20を構成するP型MOSトランジスタMP1がオン、P型MOSトランジスタMP2がオフするため、メモリセル電源VDDM0~1は、常に電源VDDレベルを出力する。
 メモリセル10の書き込み特性は、半導体記憶装置の電源電圧が低いほど悪化する。つまり、ライト動作時に、メモリセル電源を低下させてメモリセル10の書き込み特性を改善させる動作は、半導体記憶装置の電源電圧が低いとき(例えば、半導体記憶装置に印加される電源電圧が1Vより低いとき)だけ実施すればよい。
 半導体記憶装置の電源電圧が高いとき(例えば、半導体記憶装置に印加される電源電圧が1Vより高いとき)、ライト動作時にメモリセル電源を低下させてメモリセル10の書き込み特性を改善させても問題はないけれども、ライト動作時にメモリセル電源が変動するため、メモリセル電源に不必要な充放電電流が流れてしまう。
 よって、本実施形態のように電源電圧検知回路30を配置し、半導体記憶装置の電源電圧が特定の電圧より高くなると、メモリセル電源回路20を構成するメモリセル電源を電源VDDレベルに固定する(メモリセル電源回路20を構成するP型MOSトランジスタMP2を常時オフする)ように制御できれば、半導体記憶装置の消費電力が抑制できる。
 本実施形態では、メモリセル電源回路20を構成するP型MOSトランジスタMP2を、電源電圧検知回路30の出力信号に基づいた信号で、常時オフするように構成した場合を例に示したが、図1に示したNAND回路NAND1を2入力NAND回路に変更し、メモリセル電源回路20を構成するP型MOSトランジスタMP2と接地電源との間に、更にN型MOSトランジスタを挿入し、このN型MOSトランジスタのゲート端子を電源電圧検知回路30の出力信号に基づいた信号で制御しても、本実施形態と同等の動作及び効果が得られる。
 なお、電源電圧検知回路30は、図1のように半導体記憶装置の中に各々配置する必要はない。半導体集積回路中に複数個の半導体記憶装置が配置される場合には、半導体集積回路中に電源電圧検知回路30を1個配置して、その出力信号を各半導体記憶装置にそれぞれ接続する。1つの電源電圧検知回路30で、全ての半導体記憶装置を制御するように構成すれば、半導体集積回路をより小面積に構成することが可能となる。
 〈第1のタイミングチャート〉
 図4は、図1の半導体記憶装置の動作を説明するためのタイミングチャートである。図4において、CLKは半導体記憶装置に入力されるクロック信号、WLxはワード線、AD0はカラムアドレス信号、WENはライト制御信号、VDDM0はメモリセル電源を示す。各信号名は、図1中に記載されている信号名にそれぞれ対応する。
 図4に示すタイミングチャートは、ワード線WLxとビット線BL0,/BL0とに接続したメモリセル10(図1中の左上のメモリセル)に対して書き込みを行う場合の動作を示している。
 半導体記憶装置は、クロック信号CLKに同期してワード線WL0~WLxのいずれか1つのワード線を活性化するように制御される。よって、クロック信号CLKのHレベルの期間とほぼ同等の時間、ワード線WLxは活性状態(Hレベル)となる。
 クロック信号CLKがLレベルからHレベルになると、時刻T1でワード線WLxがHレベル(活性状態)になり、同時に、ライト制御信号WENもHレベル(活性状態)になる。カラムアドレス信号AD0はクロック信号CLKのHレベルの期間、電位が変化しないように構成され、この場合、クロック信号CLKのHレベルの期間、カラムアドレス信号AD0はHレベル状態(選択状態)になる。図4には図示していないが、カラムアドレス信号AD1はLレベルの状態(非選択状態)である。
 カラムアドレス信号AD0がHレベル(選択状態)でライト制御信号WENがHレベル(活性状態)になると、メモリセル電源VDDM0は電圧VDD(時刻T1)から、電圧V1(時刻T2)に変化していく。電圧V1は、図1におけるP型MOSトランジスタMP2のしきい値電圧の絶対値|Vtp|より少し高い電位である。図1の構成の場合、メモリセル電源VDDM0の電位は、メモリセル10に流れる微小なリーク電流によって、時間の経過とともに電圧V1から低下していく。
 時刻T3でライト制御信号WENがHレベル(活性状態)からLレベル(非活性状態)に変化するようにライト制御信号WENのタイミングが設定されている場合、メモリセル電源VDDM0は、時刻T3で電圧V2より低い電位になっている。ここで、電圧V2はメモリセル10のリテンション電圧である。よって、時刻T1から時刻T3の期間でライト制御信号WENが活性状態となる場合には、メモリセル電源VDDM0の電位がメモリセル10のリテンション電圧V2より低くなってしまい、その結果、メモリセル10データの破壊が発生する。
 そこで、図4に示すように、時刻T1から時刻T4の期間でライト制御信号WENが活性状態となるようにライト制御信号WENのタイミングを設定する。この場合、メモリセル電源VDDM0の電位はリテンション電圧V2以下にならない。よって、メモリセル10のデータ破壊が発生しない半導体記憶装置が可能となる。
 以上のとおり、ライト制御信号WENの活性状態の期間に上限を持たせて、メモリセル電源がメモリセル10のリーク電流によってメモリセル10のリテンション電圧以下にならないように、ライト制御信号WENのタイミングを設定してもよい。
 図5は、ライト制御信号WENの生成方法の一例を示した回路図である。図5に示す回路図は、バッファ回路BUF1、インバータ回路INV2、AND回路AND1を備える。WRITEはライト判定信号を示す。
 ライト判定信号WRITEは、半導体記憶装置に入力されるクロック信号CLKに同期した信号で、ライト動作時にクロック信号CLKのH期間と同等の時間だけ活性状態(Hレベル)となる信号である。また、バッファ回路BUF1は、インバータ回路を偶数段接続して構成した回路で、バッファ回路BUF1に入力した信号を一定時間遅延させて出力する回路である。
 ライト制御信号WENは、ライト判定信号WRITEと、ライト判定信号WRITEを一定時間遅延させた信号の反転信号との論理積で生成される信号である。よって、ライト制御信号WENは、ライト判定信号WRITEがHレベルになるとライト制御信号WENがHレベル(活性状態)となり、複数のバッファ回路BUF1とインバータ回路INV2とで決定する遅延時間後にLレベル(非活性状態)となる信号である。よって、図5に示した回路構成で生成したライト制御信号WENは、図4に示したタイミングチャートのライト制御信号WENと同等な信号である。
 図5に示した回路構成において、例えば、バッファ回路BUF1の接続段数を増減させれば、ライト制御信号WENの活性期間を容易に変更させることが可能である。
 以上のとおり、図5に示した回路構成でライト制御信号WENを生成すれば、ライト制御信号WENの活性期間の調節が容易に実現可能である。よって、ライト制御信号WENの活性状態の期間に上限を持たせて、メモリセル電源がメモリセル10のリーク電流によってメモリセル10のリテンション電圧以下にならないように、ライト制御信号WENの活性期間のタイミングを設定するための手段として、図5に示した回路構成を用いればよい。
 〈第2のタイミングチャート〉
 図6は、図1の半導体記憶装置の他の動作を説明するためのタイミングチャートである。図6に示すタイミングチャートも、ワード線WLxとビット線BL0、/BL0とに接続したメモリセル10(図1中の左上のメモリセル)に対して書き込みを行う場合の動作を示している。
 半導体記憶装置は、クロック信号CLKに同期してワード線WL0~WLxのいずれか1つのワード線を活性化するように制御され、更に、ライト制御信号WENも、ライト動作時に、クロック信号CLKに同期して活性状態となるように制御される。よって、クロック信号CLKのHレベルの期間とほぼ同等の時間、ワード線WLxは活性状態(Hレベル)となり、同様に、ライト動作時、クロック信号CLKのHレベルの期間とほぼ同等の時間、ライト制御信号WENも活性状態(Hレベル)となる。
 クロック信号CLKがLレベルからHレベルになると、時刻T1でワード線WLxがHレベル(活性状態)になり、同時に、ライト制御信号WENもHレベル(活性状態)になる。カラムアドレス信号AD0はクロック信号CLKのHレベルの期間、電位が変化しないように構成され、この場合、クロック信号CLKのHレベルの期間、カラムアドレス信号AD0はHレベル状態(選択状態)になる。図示していないが、カラムアドレス信号AD1はLレベルの状態(非選択状態)である。
 カラムアドレス信号AD0がHレベル(選択状態)でライト制御信号WENがHレベル(活性状態)になると、メモリセル電源VDDM0は電圧VDD(時刻T1)から、電圧V1(時刻T2)に変化していく。電圧V1は、図1におけるP型MOSトランジスタMP2のしきい値電圧の絶対値|Vtp|より少し高い電位である。図1の構成の場合、メモリセル電源VDDM0の電位は、メモリセル10に流れる微小なリーク電流によって、時間の経過とともに電圧V1から低下していく。
 クロック信号CLKがHレベルからLレベルになると、時刻T3でワード線WLxがHレベル(活性状態)からLレベル(非活性状態)になり、同時に、ライト制御信号WENがHレベル(活性状態)からLレベル(非活性状態)に変化する。このとき、メモリセル電源VDDM0は、時刻T3で電圧V2より低い電位になっている。ここで、電圧V2はメモリセル10のリテンション電圧である。よって、時刻T1から時刻T3の期間でライト制御信号WENが活性状態となる場合には、メモリセル電源VDDM0の電位がメモリセル10のリテンション電圧V2より低くなってしまい、その結果、メモリセルデータの破壊が発生する。
 そこで、図6に示すように、時刻T1から時刻T4の期間でライト制御信号WENが活性状態となるようにライト制御信号WENのタイミングを設定する。本実施形態の半導体記憶装置の場合、クロック信号CLKに同期してライト制御信号WENの活性状態の期間が設定されるため、クロック信号CLKのHレベル期間を短くすることでライト制御信号WENの活性状態の期間を変更することが可能である。
 時刻T1から時刻T4の期間でライト制御信号WENが活性状態となるよう、クロック信号CLKのHレベル期間を設定すると、メモリセル電源VDDM0の電位はリテンション電圧V2以下にならない。よって、メモリセル10のデータ破壊が発生しない半導体記憶装置が可能となる。
 以上のとおり、半導体記憶装置に入力されるクロック信号CLKのHレベル期間に上限を持たせることで、メモリセル電源がメモリセル10のリーク電流によってメモリセル10のリテンション電圧以下にならないように、クロック信号CLKに同期したライト制御信号WENのタイミングを設定する必要がある。
 本実施形態では、半導体記憶装置に入力されるクロック信号CLKがHレベルの時にワード線が活性化する場合を例に説明したが、半導体記憶装置に入力されるクロック信号CLKがLレベルの時にワード線が活性化するような半導体記憶装置の場合には、半導体記憶装置に入力されるクロック信号CLKのLレベル期間に上限を持たせればよい。
 〈第3のタイミングチャート〉
 図7は、図1の半導体記憶装置の更に他の動作を説明するためのタイミングチャートである。図7において、メモリセル記憶ノードN1,N2は、具体的には、メモリセル10を構成するアクセストランジスタA1,A2のそれぞれのソース端子の状態を示す。
 図7に示すタイミングチャートも、ワード線WLxとビット線BL0,/BL0とに接続したメモリセル10(図1中の左上のメモリセル)に対して書き込みを行う場合の動作を示している。
 半導体記憶装置は、時刻T1でワード線WLxがHレベル(活性状態)になり、同時に、ライト制御信号WENもHレベル(活性状態)になる。図7に図示していないが、カラムアドレス信号AD0はHレベル状態(選択状態)、カラムアドレス信号AD1はLレベルの状態(非選択状態)である。
 カラムアドレス信号AD0がHレベル(選択状態)でライト制御信号WENがHレベル(活性状態)になると、メモリセル電源VDDM0は電圧VDD(時刻T1)から、電圧V1(時刻T2)に変化していく。電圧V1は、図1におけるP型MOSトランジスタMP2のしきい値電圧の絶対値|Vtp|より少し高い電位である。
 ライト動作前に、書き込み対象のメモリセル10のアクセストランジスタA1のソース端子側にHレベル、アクセストランジスタA2のソース端子側にLレベルが記憶保持されていたとし、ライト動作時にビット線BL0側がHレベルからLレベルになるとする。
 時刻T2付近で、メモリセル10の書き換えが発生する。この場合、ビット線BL0側がLレベルであるため、書き込み対象のメモリセル10のアクセストランジスタA1のソース端子側は、HレベルからLレベル側に電位が変化する。アクセストランジスタA1のソース端子は、ロードトランジスタL2とドライブトランジスタD2とで構成したインバータの入力である。よって、アクセストランジスタA1のソース端子の電位が、このインバータのスイッチング電圧を越えると、メモリセル10のデータが反転してデータの書き換えが完了する。このとき、書き込み対象のメモリセル10のアクセストランジスタA1のソース端子側が0V、アクセストランジスタA2のソース端子側が電圧V1になっている。
 実際には、メモリセル10の微小なリーク電流によってメモリセル電源VDDM0は電圧V1から低下するが、説明を簡単にするため、メモリセル10のリーク電流は流れないとする。
 時刻T3で、ライト制御信号WENはLレベル(非活性状態)になり、メモリセル電源VDDM0の電位は、電圧V1から電源VDDレベルに復帰する(時刻T4)。これに合わせて、メモリセル記憶ノードN1,N2である、アクセストランジスタA2のソース端子側の電位も、電圧V1から電源VDDレベルに復帰する(時刻T4)。その後、時刻T5でワード線WLxがLレベル(非活性状態)となり、ライト動作は完了する。
 以上のとおり、図7に示したワード線WLxとライト制御信号WENのタイミングで、図1の半導体記憶装置を動作させれば、正常なライト動作が実施できる。
 これに対し、ライト制御信号WENが活性状態から非活性状態に変化するタイミングの前に、ワード線WLxが活性状態から非活性状態に変化するように構成されていると、ワード線WLxがLレベル(非活性状態)になった時点で、メモリセル電源VDDM0は電圧V1であり、|Vtp|近傍の電位であるため、メモリセル10を構成するフリップフロップ(2つのインバータ)の電源(ロードトランジスタのソース端子とドライブトランジスタのソース端子間の電位差)が極めて低く、フリップフロップ(メモリセル)のノイズ耐性(ノイズマージン)が悪化する。このため、ワード線WLxがHレベルからLレベルに変化した際のカップリングノイズ(具体的には、アクセストランジスタのゲート端子とソース端子間の容量で生じるノイズや、ワード線とメモリセル記憶ノードN1,N2間の配線容量で生じるノイズ等)の影響により、フリップフロップ(メモリセル)の記憶データは簡単に反転してしまう。
 ところが、図7のタイミングチャートによれば、ライト動作時に、メモリセル電源を電源VDDよりも低い電位に制御してメモリセル10の書き込み特性を改善する半導体記憶装置において、ワード線WLxが活性状態から非活性状態に変化するタイミングの前に、ライト制御信号WENが活性状態から非活性状態に変化するように構成されている。言い換えれば、ワード線WLxが活性状態から非活性状態に変化するタイミングの前に、メモリセル電源が電源VDDレベルになるように構成されている。これにより、ライト動作時にメモリセル電源を低下させる構成の半導体記憶装置において、正常なライト動作を実現することが可能である。
 図8は、本実施形態の半導体記憶装置における、ワード線制御信号を生成し、かつメモリセル電源を制御する制御回路の具体的な構成の一例を示した回路図である。図8の制御回路は、インバータ回路INV3~5と、NAND回路NAND2,3と、NOR回路NOR1と、バッファ回路BUF2とを備える。ADxはロウアドレス信号、WLxはワード線、CLKは半導体記憶装置に入力されるクロック信号、WRITEはライト判定信号、WENはライト制御信号を示す。
 クロック信号CLKは、NOR回路NOR1とNAND回路NAND2にそれぞれ入力されている。NAND回路NAND2にはクロック信号CLKとライト判定信号WRITEとが入力され、その出力がインバータ回路INV3に入力される。インバータ回路INV3の出力がライト制御信号WENとなる。
 一方、クロック信号CLKとライト制御信号WENとがNOR回路NOR1に入力され、その出力がインバータ回路INV4に入力される。インバータ回路INV4の出力がバッファ回路BUF2に入力され、バッファ回路BUF2の出力信号とロウアドレス信号ADxとがNAND回路NAND3に入力される。NAND回路NAND3の出力はインバータ回路INV5に入力され、インバータ回路INV5の出力をワード線WLxとして出力する。
 ここで、ライト判定信号WRITEは、半導体記憶装置に入力されるクロック信号CLKに同期した信号で、ライト動作時にクロック信号CLKのH期間と同等の時間だけ活性状態(Hレベル)となる信号である。また、ロウアドレス信号ADxは、クロック信号CLKのHレベルの期間、電位が変化しないように構成され、この場合、クロック信号CLKのHレベルの期間、ロウアドレス信号ADxはHレベル状態(選択状態)である。また、バッファ回路BUF2は、インバータ回路を偶数段接続して構成した回路で、バッファ回路BUF2に入力した信号を一定時間遅延させて出力する回路である。
 まず、クロック信号CLKがLベルの時、NAND回路NAND2はライト判定信号WRITEの状態によらずHレベルを出力する。よって、インバータ回路INV3の出力であるライト制御信号WENはLレベル(非活性状態)となる。クロック信号CLKがLレベル、ライト制御信号WENもLレベルであるので、NOR回路NOR1の出力はHレベル、インバータ回路INV4の出力がLレベル、更に、BUF2の出力もLレベルである。よって、NAND回路NAND3はロウアドレス信号ADxの状態によらずHレベルを出力する。よって、インバータ回路INV5の出力であるワード線WLxはLレベル(非活性状態)である。また、図1を参照すると、ライト制御信号WENがLレベルであるので、NAND回路NAND1はカラムアドレス信号AD0の状態によらずHレベルを出力し、インバータ回路INV1はLレベルを出力する。よって、メモリセル電源回路20を構成するP型MOSトランジスタMP1がオン、P型MOSトランジスタMP2がオフとなり、メモリセル電源VDDM0は電源VDDレベルを出力する。
 次に、クロック信号CLKがHレベルになると、NOR回路NOR1は、ライト制御信号WENの入力によらず出力がLレベルになる。よって、インバータ回路INV4の出力がHレベルに、更に、バッファ回路BUF2の出力がHレベルになる。ロウアドレス信号ADxはHレベルとなっているので、NAND回路NAND3の出力がLレベルになる、よって、インバータ回路INV5の出力であるワード線WLxがHレベル(活性状態)となる。また、ライト動作時、クロック信号CLKがHレベルになると、ライト判定信号WRITEはHレベルになっているので、NAND回路NAND2に出力はLレベルに、よって、インバータ回路INV3の出力であるライト制御信号WENはHレベル(活性状態)になる。再び図1を参照すると、カラムアドレス信号AD0がHレベルとなっているので、NAND回路NAND1の出力がLレベルに、インバータ回路INV1の出力がHレベルになる。よって、メモリセル電源回路20を構成するP型MOSトランジスタMP1がオフ、P型MOSトランジスタMP2がオンし、メモリセル電源VDDM0は電源VDDレベルから低下していく。一定時間経過後、メモリセル電源回路20を構成するP型MOSトランジスタMP2のしきい値電圧の絶対値|Vtp|に電位が変化する。
 次に、クロック信号CLKがHからLレベルに変化すると、NAND回路NAND2はライト判定信号WRITEの状態によらずHレベルに変化する。よって、インバータ回路INV3の出力であるライト制御信号WENはLレベル(非活性状態)に変化する。クロック信号CLKがLレベル、ライト制御信号WENもLレベルであるので、NOR回路NOR1の出力はHレベル、インバータ回路INV4の出力がLレベル、更に、バッファ回路BUF2の出力がLレベルに変化する。よって、NAND回路NAND3はロウアドレス信号ADxの状態によらずHレベルを出力し、インバータ回路INV5の出力であるワード線WLxはLレベル(非活性状態)に変化する。また、再び図1を参照すると、ライト制御信号WENがLレベルに変化したため、NAND回路NAND1はカラムアドレス信号AD0の状態によらずHレベルに変化し、インバータ回路INV1の出力はLレベルに変化する。よって、メモリセル電源回路20を構成するP型MOSトランジスタMP1がオン、P型MOSトランジスタMP2がオフに変化し、メモリセル電源VDDM0は|Vtp|レベルから電源VDDレベルに復帰する。
 ワード線とメモリセル電源を生成する制御回路の具体的な構成の一例の動作は、以上のとおりである。
 ライト動作時にメモリセル電源を低下させる構成の半導体記憶装置において正常なライト動作を実現するためには、ワード線が活性状態から非活性状態に変化するタイミングの前に、ライト制御信号で制御されるメモリセル電源が電源VDDレベルに復帰していればよいことは、図7で説明したとおりである。
 図1及び図8の構成では、クロック信号CLKがHからLレベルになると、ワード線がH(活性状態)からLレベル(非活性状態)に変化し、同時に、メモリセル電源が|Vtp|レベルから電源VDDレベルに復帰する。
 論理回路を1段通過する遅延時間はほぼ等しいので、図1及び図8の構成において、ワード線が活性状態から非活性状態に変化するタイミングの前に、ライト制御信号で制御されるメモリセル電源を電源VDDレベルに復帰させるには、クロック信号CLKの初段入力からメモリセル電源VDDM0を電源VDDレベルに変化させるために必要な論理段数が、クロック信号CLKの初段入力からワード線WLxをLレベル(非活性状態)に制御するために必要な論理段数より少なく構成されていればよい。
 図1及び図8の場合、クロック信号CLKの初段入力からメモリセル電源VDDM0を電源VDDレベルに変化させるために必要な論理段数は5段で、クロック信号CLKからの具体的な経路は、NAND回路NAND2、インバータ回路INV3、NAND回路NAND1、インバータ回路INV1、P型MOSトランジスタMP1である。
 これに対して、クロック信号CLKの初段入力からワード線WLxをLレベル(非活性状態)に制御するために必要な論理段数は8段で、クロック信号CLKからの具体的な経路は、NAND回路NAND2、インバータ回路INV3、NOR回路NOR1、インバータ回路INV4、バッファ回路BUF2、NAND回路NAND3、インバータ回路INV5である。バッファ回路BUF2はインバータ回路2個で計算している。
 以上に説明した構成であれば、ライト動作時に、メモリセル電源を電源VDDよりも低い電位に制御してメモリセル10の書き込み特性を改善する半導体記憶装置において、ワード線が活性状態から非活性状態に変化するタイミングの前に、メモリセル電源が電源VDDレベルになるように構成できるため、正常なライト動作を実施することが可能となる。
 なお、本実施形態では、メモリセル10がシングルポートの場合を例として説明したが、複数ポートのメモリセルであっても、同等の動作や効果を有する。
 一般的な半導体記憶装置では、複数のメモリセル10を有して構成されるメモリセルアレイ領域と隣り合う位置にビット線をHレベル(電源VDDレベル)にプリチャージするためのビット線プリチャージ回路15がレイアウト配置される。ビット線プリチャージ回路15はビット線をHレベル(電源VDDレベル)にプリチャージする動作を実施する必要があるため、電源VDDと各ビット線との間に挿入したP型MOSトランジスタMP3~5で構成される。メモリセル電源回路20を構成するP型MOSトランジスタMP1,MP2もそれぞれP型MOSトランジスタで構成されている。よって、ビット線プリチャージ回路15をレイアウトするための基板領域(Nウェル領域)と同一の基板領域内に、メモリセル電源回路20を構成する両P型MOSトランジスタMP1,MP2をレイアウト配置すれば、ビット線プリチャージ回路15を構成するP型MOSトランジスタMP3~5と、メモリセル電源回路20を構成するP型MOSトランジスタMP1,MP2とを別々の基板領域にレイアウト配置する場合と比較して、半導体記憶装置を小面積にレイアウトすることが可能である。
 《実施形態2》
 図9は、本発明の実施形態2に係る半導体記憶装置の構成図である。図9に示す半導体記憶装置は、実施形態1の図1の構成に対して、メモリセル電源回路21を構成するMOSトランジスタの構成が異なるだけである。具体的には、P型MOSトランジスタMP2と接地電源との間に、N型MOSトランジスタMN2が追加されている。更に、P型MOSトランジスタMP2のゲート端子がN型MOSトランジスタMN2のドレイン端子に接続され、N型MOSトランジスタMN2のゲート端子には、P型MOSトランジスタMP1のゲート端子に入力する信号と同じ信号が入力されている。
 ライト動作時以外は、ライト制御信号WENはLレベル(非活性状態)である。よって、カラムアドレス信号AD0,AD1の状態によらず、NAND回路NAND1はHレベルを出力し、NAND回路NAND1の出力を入力とするインバータ回路INV1はLレベルを出力する。よって、メモリセル電源回路21を構成するP型MOSトランジスタMP1がオン、N型MOSトランジスタMN2がオフするので、全てのメモリセル電源VDDM0,VDDM1は電源VDDレベルを出力する。
 ライト動作時、ワード線が活性状態になる時に、ライト制御信号WENはHレベル(活性状態)になる。このとき、カラムアドレス信号AD0,AD1は、いずれかがHレベルとなっている。ワード線WLxとビット線BL0,/BL0とに接続したメモリセル10(図9の左上のメモリセル)に対して書き込みを行う場合を例にすると、カラムアドレス信号AD0がHレベル、AD1がLレベルである。
 よって、カラムアドレス信号AD0を入力とするNAND回路NAND1はLレベルを出力し、次段のインバータ回路INV1はHレベルを出力する。メモリセル電源回路21のP型MOSトランジスタMP1がオフ、N型MOSトランジスタMN2がオンするので、メモリセル電源VDDM0の電位は、電源VDDレベルからP型MOSトランジスタMP2のしきい値電圧の絶対値である|Vtp|に低下していく。メモリセル電源VDDM0の電位が|Vtp|になると、P型MOSトランジスタMP2はオフする。P型MOSトランジスタMP1がオフ、更に、P型MOSトランジスタMP2もオフするので、メモリセル電源回路21を流れる電流はなくなる。
 これに対して、書き込みを行わないビット線BL1,/BL1上に接続したメモリセル10のメモリセル電源VDDM1は、カラムアドレス信号AD1がLレベルであるため、電源VDDレベルを出力している。書き込みを行わないビット線上に接続したメモリセル10のメモリセル電源は、電源VDDレベルから低下させる必要はない。書き込みを行わないビット線上に接続したメモリセル10のメモリセル電源を電源VDDレベルから低下させても問題はない。しかし、この場合、メモリセル電源に不要な充放電電流が発生する。よって、上記構成のように、カラムアドレス信号に基づく信号によって、メモリセル電源を電源VDDレベルに固定するように制御しておくべきである。
 以上に説明したとおり、本実施形態の図9の半導体記憶装置は、実施形態1の図1と同等の動作を行う。よって、実施形態1と同等の効果を有する。しかも、本実施形態のメモリセル電源回路21は、1つの信号(カラムアドレス信号とライト制御信号の論理積)だけで制御できる。よって、半導体記憶装置をレイアウトする時に信号配線本数が削減でき、レイアウト設計の自由度が上がるため、半導体記憶装置の小面積化が可能である。
 なお、本実施形態では、メモリセル電源回路21を構成するP型MOSトランジスタMP2のゲート端子にN型MOSトランジスタMN2のドレイン端子を接続した構成であったが、P型MOSトランジスタMP2のゲート端子に接地電源を接続した構成であっても、同等の動作や効果を有する。
 《実施形態3》
 図10は、本発明の実施形態3に係る半導体記憶装置の構成図である。図10に示す半導体記憶装置は、実施形態1の図1の構成に対して、メモリセル電源回路20の制御が異なるだけである。具体的には、全てのメモリセル電源回路20のP型MOSトランジスタMP1のゲート端子にライト制御信号WENが接続されている点である。
 ライト動作時以外は、ライト制御信号WENはLレベル(非活性状態)である。よって、カラムアドレス信号AD0,AD1の状態によらず、NAND回路NAND1はHレベルを出力する。よって、メモリセル電源回路20を構成するP型MOSトランジスタMP1がオン、P型MOSトランジスタMP2がオフするので、全てのメモリセル電源VDDM0,VDDM1は電源VDDレベルを出力する。
 ライト動作時、ワード線が活性状態になる時に、ライト制御信号WENはHレベル(活性状態)になる。このとき、カラムアドレス信号AD0,AD1は、いずれかがHレベルとなっている。ワード線WLxとビット線BL0,/BL0とに接続したメモリセル10(図10の左上のメモリセル)に対して書き込みを行う場合を例にすると、カラムアドレス信号AD0がHレベル、AD1がLレベルである。
 よって、カラムアドレス信号AD0を入力とするNAND回路NAND1はLレベルを出力する。メモリセル電源回路20のP型MOSトランジスタMP1がオフ、P型MOSトランジスタMP2がオンするので、メモリセル電源VDDM0の電位は、電源VDDレベルからP型MOSトランジスタMP2のしきい値電圧の絶対値である|Vtp|に低下していく。メモリセル電源VDDM0の電位が|Vtp|になると、P型MOSトランジスタMP2はオフする。P型MOSトランジスタMP1がオフ、更に、P型MOSトランジスタMP2もオフするので、メモリセル電源回路20を流れる電流はなくなる。
 これに対して、書き込みを行わないビット線BL1,/BL1上に接続したメモリセル10のメモリセル電源VDDM1は、ライト制御信号WENがHレベルとなり、P型MOSトランジスタMP1がオフする直前の電位である電源VDDレベルで、ハイインピーダンス状態である。実施形態1では、メモリセル電源VDDM1は、ローインピーダンス状態の電源VDDレベルであるが、動作的には実施形態1と同等である。書き込みを行わないビット線上に接続したメモリセル10のメモリセル電源は、電源VDDレベルから低下させる必要はない。書き込みを行わないビット線上に接続したメモリセル10のメモリセル電源を電源VDDレベルから低下させても問題はない。しかし、この場合、メモリセル電源に不要な充放電電流が発生する。よって、上記構成のように、メモリセル電源を電源VDDレベルと同等になるように制御しておくべきである。
 以上に説明したとおり、本実施形態の図10の半導体記憶装置は、実施形態1の図1と同等の動作を行う。よって、実施形態1と同等の効果を有する。
 また、本実施形態の場合、ライト動作時に、書き込みを行わないビット線BL1,/BL1上に接続したメモリセル10のメモリセル電源VDDM1はハイインピーダンス状態である。つまり、本実施形態の場合、書き込みを行わないビット線上に接続したメモリセル10のメモリセル電源が遮断されている状態(ハイインピーダンス状態)であるため、不要な電力消費がなくなり、実施形態1の半導体記憶装置と比較して、低消費電力である。
 更に、本実施形態の場合、実施形態1の図1におけるインバータ回路INV1が不要となるため、実施形態1の半導体記憶装置よりも小面積にレイアウトが可能である。
 なお、実施形態2及び3においても、実施形態1における説明と同様の動作及び変形が可能であることは言うまでもない。
 以上説明したように、本発明の半導体記憶装置は、ライト動作時に、メモリセル電源を低下させてメモリセルの書き込み特性を改善する際に、メモリセル電源の生成部での消費電流を抑制し、更に、メモリセル電源がメモリセルのリテンション電圧よりも低下しないため、メモリセルデータの破壊を生じさせることなく、メモリセルのデータを確実に記憶保持することができるという効果を有し、半導体記憶装置のメモリセルの書き込み特性を改善する回路として有用である。
10 メモリセル
15 ビット線プリチャージ回路
20,21 メモリセル電源回路
25 リーク電流補償回路
30 電源電圧検知回路
A1,A2 アクセストランジスタ
AD0,AD1 カラムアドレス信号
ADx ロウアドレス信号
BL0~1,/BL0~1 ビット線
BUF1~2 バッファ回路
CLK クロック信号
D1,D2 ドライブトランジスタ
INV1~5 インバータ回路
L1,L2 ロードトランジスタ
MN1~2 N型MOSトランジスタ
MP1~6 P型MOSトランジスタ
N1,N2 メモリセル記憶ノード
NAND1~3 NAND回路
NOR1 NOR回路
VDD 電源(第1の電源)
VDDM0~1 メモリセル電源
WEN ライト制御信号
WL0,WLx ワード線
WRITE ライト判定信号

Claims (20)

  1.  複数のワード線と、
     複数のビット線と、
     前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、
     同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、
     前記メモリセル電源回路は、第1の電源と第2の電源との間に直列に接続した第1のP型MOSトランジスタと第2のP型MOSトランジスタと第1のN型MOSトランジスタとで構成され、
     前記第1のP型MOSトランジスタと前記第2のP型MOSトランジスタとの接点を前記メモリセル電源として出力し、
     前記第1のP型MOSトランジスタのゲート端子と前記第1のN型MOSトランジスタのゲート端子には、カラム選択信号とライト制御信号とに基づいた制御信号が入力され、
     前記第2のP型MOSトランジスタのゲート端子には、前記第1のN型MOSトランジスタのドレイン端子が接続されていることを特徴とする半導体記憶装置。
  2.  請求項1記載の半導体記憶装置において、
     前記第2のP型MOSトランジスタのしきい値電圧の絶対値は、前記メモリセルのロードトランジスタ及びドライブトランジスタのしきい値電圧の絶対値よりも高く設定されていることを特徴とする半導体記憶装置。
  3.  請求項1記載の半導体記憶装置において、
     前記第2のP型MOSトランジスタの基板端子に、前記第1の電源の電位以上の電位が接続されていることを特徴とする半導体記憶装置。
  4.  請求項1記載の半導体記憶装置において、
     前記第2のP型MOSトランジスタのチャネル長は、前記メモリセルのロードトランジスタ及びドライブトランジスタのチャネル長よりも大きいことを特徴とする半導体記憶装置。
  5.  請求項1記載の半導体記憶装置において、
     前記第2のP型MOSトランジスタの拡散領域に注入される不純物濃度は、前記メモリセルのロードトランジスタの拡散領域に注入される不純物濃度よりも高いことを特徴とする半導体記憶装置。
  6.  請求項1記載の半導体記憶装置において、
     前記複数のビット線に接続した複数のビット線プリチャージ回路を更に有し、
     前記複数のビット線プリチャージ回路は、前記複数のメモリセルを有して構成されたメモリセルアレイ領域と隣り合う位置に配置されており、
     前記メモリセル電源回路を構成する前記第1のP型MOSトランジスタと前記第2のP型MOSトランジスタとは、前記ビット線プリチャージ回路の基板領域と同一基板領域内に配置されていることを特徴とする半導体記憶装置。
  7.  請求項1記載の半導体記憶装置において、
     前記ライト制御信号は、ライト判定信号と前記ライト判定信号を遅延させた信号の反転信号との論理積で生成されることを特徴とする半導体記憶装置。
  8.  請求項1記載の半導体記憶装置において、
     前記半導体記憶装置に入力されるクロック信号の初段入力から前記メモリセル電源を前記第1の電源と同等の電位に制御するために必要な論理段数は、前記半導体記憶装置に入力されるクロック信号の初段入力からワード線を非活性状態に制御するために必要な論理段数よりも少ないことを特徴とする半導体記憶装置。
  9.  請求項1記載の半導体記憶装置において、
     前記第1のN型MOSトランジスタを常時オフに制御するための第1の制御信号を更に有することを特徴とする半導体記憶装置。
  10.  複数のワード線と、
     複数のビット線と、
     前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、
     同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、
     前記メモリセル電源回路は、第1の電源と第2の電源との間に直列に接続した第1のP型MOSトランジスタと第2のP型MOSトランジスタとで構成され、
     前記第1のP型MOSトランジスタと前記第2のP型MOSトランジスタとの接点を前記メモリセル電源として出力し、
     前記第1のP型MOSトランジスタのゲート端子には、カラム選択信号によらずライト制御信号に基づいた制御信号が入力され、
     前記第2のP型MOSトランジスタのゲート端子には、前記カラム選択信号と前記ライト制御信号とに基づいた制御信号が入力されていることを特徴とする半導体記憶装置。
  11.  請求項10記載の半導体記憶装置において、
     前記第2のP型MOSトランジスタの基板端子に、前記第1の電源の電位以上の電位が接続されていることを特徴とする半導体記憶装置。
  12.  請求項10記載の半導体記憶装置において、
     前記第2のP型MOSトランジスタのチャネル長は、前記メモリセルのロードトランジスタ及びドライブトランジスタのチャネル長よりも大きいことを特徴とする半導体記憶装置。
  13.  請求項10記載の半導体記憶装置において、
     前記ライト制御信号は、ライト判定信号と前記ライト判定信号を遅延させた信号の反転信号との論理積で生成されることを特徴とする半導体記憶装置。
  14.  請求項10記載の半導体記憶装置において、
     前記半導体記憶装置に入力されるクロック信号の初段入力から前記メモリセル電源を前記第1の電源と同等の電位に制御するために必要な論理段数は、前記半導体記憶装置に入力されるクロック信号の初段入力からワード線を非活性状態に制御するために必要な論理段数よりも少ないことを特徴とする半導体記憶装置。
  15.  請求項10記載の半導体記憶装置において、
     前記第2のP型MOSトランジスタを常時オフに制御するための第1の制御信号を更に有することを特徴とする半導体記憶装置。
  16.  複数のワード線と、
     複数のビット線と、
     前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、
     同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、
     前記メモリセル電源回路は、第1の電源と第2の電源との間に直列に接続した第1のP型MOSトランジスタと第2のP型MOSトランジスタとで構成され、
     前記第1のP型MOSトランジスタと前記第2のP型MOSトランジスタとの接点を前記メモリセル電源として出力し、
     前記第1のP型MOSトランジスタのゲート端子には、カラム選択信号とライト制御信号とに基づいた制御信号が入力され、
     前記第2のP型MOSトランジスタのゲート端子には、前記第1のP型MOSトランジスタのゲート端子に入力される信号の論理反転となる信号が入力されており、
     前記第2のP型MOSトランジスタのしきい値電圧の絶対値は、前記メモリセルのロードトランジスタ及びドライブトランジスタのしきい値電圧の絶対値よりも高く設定されていることを特徴とする半導体記憶装置。
  17.  複数のワード線と、
     複数のビット線と、
     前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、
     同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、
     前記メモリセル電源回路は、ライト動作時に前記メモリセル電源を第1の電源よりも低い電位に制御する機能を有し、
     前記第1の電源と前記メモリセル電源との間に接続したMOSトランジスタで構成されて、前記メモリセル電源が前記第1の電源よりも低い電位に制御されている期間中に前記メモリセル電源のリーク電流を補償するリーク電流補償回路を更に有することを特徴とする半導体記憶装置。
  18.  請求項17記載の半導体記憶装置において、
     前記リーク電流補償回路を構成するMOSトランジスタのチャネル長は、前記メモリセルを構成するトランジスタのチャネル長と同等の大きさであることを特徴とする半導体記憶装置。
  19.  請求項17記載の半導体記憶装置において、
     前記複数のビット線に接続した複数のビット線プリチャージ回路を更に有し、
     前記複数のビット線プリチャージ回路は、前記複数のメモリセルを有して構成されたメモリセルアレイ領域と隣り合う位置に配置されており、
     前記リーク電流補償回路を構成するMOSトランジスタは、前記ビット線プリチャージ回路の基板領域と同一基板領域内に配置されていることを特徴とする半導体記憶装置。
  20.  複数のワード線と、
     複数のビット線と、
     前記ワード線と前記ビット線との交点に配置された複数のメモリセルと、
     同一ビット線上に接続した複数のメモリセルに、同一のメモリセル電源を供給する複数のメモリセル電源回路とを有する半導体記憶装置であって、
     前記メモリセル電源回路は、ライト動作時に前記メモリセル電源を第1の電源よりも低い電位に制御する機能を有し、
     前記半導体記憶装置に入力されるクロック信号の初段入力から前記メモリセル電源を前記第1の電源と同等の電位に制御するために必要な論理段数は、前記半導体記憶装置に入力されるクロック信号の初段入力からワード線を非活性状態に制御するために必要な論理段数よりも少ないことを特徴とする半導体記憶装置。
PCT/JP2012/005632 2011-12-08 2012-09-05 半導体記憶装置 WO2013084385A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013548056A JP5980229B2 (ja) 2011-12-08 2012-09-05 半導体記憶装置
CN201280030947.6A CN103620687B (zh) 2011-12-08 2012-09-05 半导体存储装置
US14/172,636 US9183923B2 (en) 2011-12-08 2014-02-04 Semiconductor storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011269305 2011-12-08
JP2011-269305 2011-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/172,636 Continuation US9183923B2 (en) 2011-12-08 2014-02-04 Semiconductor storage device

Publications (1)

Publication Number Publication Date
WO2013084385A1 true WO2013084385A1 (ja) 2013-06-13

Family

ID=48573780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005632 WO2013084385A1 (ja) 2011-12-08 2012-09-05 半導体記憶装置

Country Status (4)

Country Link
US (1) US9183923B2 (ja)
JP (1) JP5980229B2 (ja)
CN (1) CN103620687B (ja)
WO (1) WO2013084385A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935343B (zh) * 2015-07-07 2017-10-24 中国电子科技集团公司第二十四研究所 针对运算放大器nmos输入管的电容补偿电路及模数转换器
JP6682367B2 (ja) * 2016-06-08 2020-04-15 ルネサスエレクトロニクス株式会社 マルチポートメモリ、メモリマクロおよび半導体装置
US10269414B2 (en) * 2017-05-09 2019-04-23 Arm Ltd. Bit-line sensing for correlated electron switch elements
CN110706731A (zh) * 2019-09-30 2020-01-17 杭州嘉楠耘智信息科技有限公司 漏电补偿动态寄存器、数据运算单元、芯片、算力板及计算设备
JP7453135B2 (ja) * 2020-12-22 2024-03-19 ルネサスエレクトロニクス株式会社 半導体装置
US11842769B2 (en) * 2022-04-14 2023-12-12 Macronix International Co., Ltd. Memory circuit with leakage current blocking mechanism and memory device having the memory circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234126A (ja) * 2006-03-01 2007-09-13 Matsushita Electric Ind Co Ltd 半導体記憶装置
JP2009134779A (ja) * 2007-11-28 2009-06-18 Fujitsu Microelectronics Ltd メモリ装置
WO2010013449A1 (ja) * 2008-08-01 2010-02-04 パナソニック株式会社 半導体記憶装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330516B2 (ja) * 2004-08-04 2009-09-16 パナソニック株式会社 半導体記憶装置
JP4553185B2 (ja) 2004-09-15 2010-09-29 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP4917767B2 (ja) * 2005-07-01 2012-04-18 パナソニック株式会社 半導体記憶装置
JP2009141393A (ja) * 2007-12-03 2009-06-25 Nec Electronics Corp 電圧電流変換回路、及び電圧制御発振回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234126A (ja) * 2006-03-01 2007-09-13 Matsushita Electric Ind Co Ltd 半導体記憶装置
JP2009134779A (ja) * 2007-11-28 2009-06-18 Fujitsu Microelectronics Ltd メモリ装置
WO2010013449A1 (ja) * 2008-08-01 2010-02-04 パナソニック株式会社 半導体記憶装置

Also Published As

Publication number Publication date
US20140153320A1 (en) 2014-06-05
US9183923B2 (en) 2015-11-10
JPWO2013084385A1 (ja) 2015-04-27
CN103620687B (zh) 2017-02-15
CN103620687A (zh) 2014-03-05
JP5980229B2 (ja) 2016-08-31

Similar Documents

Publication Publication Date Title
JP4873182B2 (ja) 半導体記憶装置及びその駆動方法
JP4865360B2 (ja) 半導体記憶装置
JP5220303B2 (ja) スタティック・ランダム・アクセス・メモリ(sram)およびsramに供給される電圧レベルを制御する方法
JP5068088B2 (ja) 半導体記憶装置
US7586780B2 (en) Semiconductor memory device
JP2009505315A (ja) 独立の読み書き回路を有するsramセル
JP5980229B2 (ja) 半導体記憶装置
JP2006196167A (ja) 半導体メモリ装置におけるビットライン電圧供給回路とそれによるビットライン電圧印加方法
JP2002197867A (ja) 半導体装置
JP2007172715A (ja) 半導体記憶装置およびその制御方法
US7170805B2 (en) Memory devices having bit line precharge circuits with off current precharge control and associated bit line precharge methods
JP4960419B2 (ja) 半導体記憶装置及び半導体装置
JP4917767B2 (ja) 半導体記憶装置
JP5119489B2 (ja) 半導体記憶装置
US7280384B2 (en) Semiconductor memory device
JP4907117B2 (ja) 半導体装置
JP2016115376A (ja) ビット線プリチャージ回路、スタティックram、電子デバイスおよびスタティックramのビット線プリチャージ方法
JP2006164399A (ja) 半導体記憶装置
US7675804B2 (en) Semiconductor integrated circuit device and semiconductor device including plurality of semiconductor circuits
JP2008176907A (ja) 半導体記憶装置
KR100386620B1 (ko) 에스램(sram)의 전원 전압 제어 회로
JP2000195276A (ja) 半導体記憶装置
JP2011146121A (ja) 半導体記憶装置およびその制御方法
JP2005222620A (ja) 半導体記憶装置
JP2013033564A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856412

Country of ref document: EP

Kind code of ref document: A1