[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013072998A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2013072998A1
WO2013072998A1 PCT/JP2011/076220 JP2011076220W WO2013072998A1 WO 2013072998 A1 WO2013072998 A1 WO 2013072998A1 JP 2011076220 W JP2011076220 W JP 2011076220W WO 2013072998 A1 WO2013072998 A1 WO 2013072998A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
operating point
torque
motor
electric motor
Prior art date
Application number
PCT/JP2011/076220
Other languages
English (en)
French (fr)
Inventor
田端 淳
達也 今村
松原 亨
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/076220 priority Critical patent/WO2013072998A1/ja
Priority to JP2013544014A priority patent/JP5765433B2/ja
Priority to US14/357,838 priority patent/US9604525B2/en
Priority to CN201180074789.XA priority patent/CN103917424B/zh
Publication of WO2013072998A1 publication Critical patent/WO2013072998A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1072Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/426Hydrodynamic couplings, e.g. torque converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for a vehicle drive device that includes an engine, an electric motor, and a fluid transmission device, and that can transmit engine power through a plurality of transmission paths.
  • a vehicle drive device including a fluid transmission device having an input side rotation element that receives power from an engine and an output side rotation element that outputs power to drive wheels is well known.
  • the vehicle drive device described in Patent Document 1 is that.
  • the engine rotation speed (corresponding to the rotation speed of the input side rotation element of the fluid transmission device) is the vehicle speed (corresponding to the rotation speed of the output side rotation element of the fluid transmission device) or the fluid transmission device. It is decided by the course of events according to the characteristics and engine output. Further, the power transmission efficiency in the mechanical path for fluid transmission of the engine output via the fluid transmission device is also determined accordingly.
  • the specific control in the fluid transmission or the automatic transmission is performed.
  • the specific control is not performed until the warm-up is completed when the hydraulic oil temperature becomes equal to or higher than a predetermined oil temperature.
  • the specific control is not performed until the warm-up is completed when the hydraulic oil temperature becomes equal to or higher than a predetermined oil temperature.
  • the fuel efficiency performance and the power performance are deteriorated. Therefore, it is desired to promote warm-up of the fluid transmission device and the automatic transmission.
  • warm-up of a fluid transmission device or an automatic transmission is mainly due to heat loss due to power transmission loss, but when an operating point is determined, a certain time corresponding to it is required.
  • Patent Document 1 when a stator impeller of a torque converter is equipped with an electric motor, and the hydraulic oil temperature is equal to or lower than a predetermined value, the stator impeller is driven to rotate by the electric motor to reduce the capacity coefficient of the torque converter, A technique for promoting warm-up by increasing the loss of the torque converter has been proposed.
  • the present invention has been made against the background of the above circumstances, and the object of the present invention is for a vehicle that can promote warm-up by controlling the engine operating point by adjusting the torque of the electric motor. It is to provide a control device for a driving device.
  • the gist of the first invention for achieving the above object is that: (a) a fluid transmission having an input side rotating element to which power from an engine is input and an output side rotating element that outputs power to a drive wheel; A vehicle drive device control device comprising: a device; a first motor directly or indirectly connected to the input-side rotating element; and a second motor directly or indirectly connected to drive wheels. (B) An electrical path through which power is transmitted electrically by power transfer between the first motor and the second motor, and a mechanical path through which power is mechanically transmitted via the fluid transmission device And the operating point of the engine can be controlled by adjusting the torque of the first electric motor. (C) When the temperature of the hydraulic oil for operating the fluid transmission device is low Compared with the high case, the first motor and the By adjusting the torque of the first electric motor while power exchange between the second electric motor is to reduce the speed ratio of the fluid transmission device.
  • the fluid transmission device can perform power transfer between the first electric motor and the second electric motor. Therefore, the transmission loss in the fluid transmission device is increased, and the heat generation amount is increased. Therefore, not only can the oil temperature rise of the hydraulic oil be promoted, but also the warm-up of the equipment operated by the hydraulic oil can be promoted by the temperature rise.
  • the loss of the fluid transmission device is increased regardless of the charge capacity of the battery (power storage device). Can be made. Therefore, warm-up can be promoted in a wide range without being limited by the charging capacity of the power storage device.
  • the second invention is the control device for a vehicle drive device according to the first invention, wherein the sum of the engine torque and the torque of the first electric motor depends on the speed ratio of the fluid transmission device.
  • the torque of the first electric motor is adjusted so as to be balanced with the input side load torque generated in the input side rotation element, and the input side load torque is obtained based on the engine rotation speed indicated by the target engine operating point.
  • the torque of the first electric motor is determined based on the input side load torque and the engine torque indicated by the target engine operating point. In this way, the torque of the first electric motor can be easily adjusted based on the characteristics of the fluid transmission device.
  • the power running of the first electric motor with respect to an engine operating point at which the engine torque and the input side load torque are balanced is balanced.
  • the target engine operating point is set so as to realize a target speed ratio set in advance so as to decrease as the temperature of the hydraulic oil decreases by increasing the torque and increasing the engine rotation speed. If it does in this way, the transmission loss in a fluid transmission device will be increased, the emitted-heat amount will be increased, and the warming-up of the apparatus operated with the said hydraulic oil can be accelerated
  • power since power is transferred between the first electric motor and the second electric motor, a power circulation state can be expected.
  • the control device for a vehicle drive device wherein the engine operating point is along a predetermined operating curve of the engine and the target value of the engine output.
  • the target speed ratio is set in advance so that the lower the temperature of the hydraulic oil, the lower the temperature of the hydraulic oil by lowering the regenerative torque of the first electric motor and increasing the engine rotational speed with respect to the engine operating point at which The target engine operating point is set so as to realize the above. If it does in this way, the transmission loss in a fluid transmission device will be increased, the emitted-heat amount will be increased, and the warming-up of the apparatus operated with the said hydraulic oil can be accelerated
  • the vehicle drive device includes the output-side rotation element and the drive.
  • An automatic transmission is provided between the wheels and the hydraulic oil is for operating the automatic transmission. If it does in this way, warm-up of an automatic transmission can be promoted with a fluid power transmission device.
  • the gear ratio of the automatic transmission is set to a gear ratio on the higher vehicle speed side as the temperature of the hydraulic oil is lower.
  • the range in which the speed ratio of the fluid transmission device can be reduced is expanded by setting the gear ratio of the automatic transmission to the gear ratio on the high vehicle speed side. Further, it is possible to promote further warm-up.
  • a seventh invention in the control device for a vehicle drive device according to the fifth invention or the sixth invention, when the speed ratio of the fluid transmission device is reduced, the first electric motor and the first motor When the operating point of at least one of the two motors deviates from the preset rated output of each of the first motor and the second motor, the shift of the automatic transmission is within the rated output. Is to execute. In this way, the torque of the first electric motor can be adjusted appropriately by transferring power between the first electric motor and the second electric motor, so that the fluid transmission can be performed regardless of the charging capacity of the power storage device. The loss of the apparatus can be increased appropriately.
  • the torque of the first electric motor when adjusted to reduce the speed ratio of the fluid transmission device.
  • the automatic transmission is upshifted to obtain the power of the second motor in power transfer between the first motor and the second motor. Therefore, when the torque of the second electric motor is out of the rated output, the downshift of the automatic transmission is executed. In this way, the torque adjustment of the first motor can be reliably executed by power transfer between the first motor and the second motor, so that the fluid transmission is performed regardless of the charge capacity of the power storage device. It is possible to reliably increase the loss of the apparatus.
  • the operating point of the engine is controlled by adjusting the torque of the first electric motor so that the operating point of the engine follows a predetermined operating curve of the engine and the target value of the engine output is achieved. There is to do.
  • the engine operating point where the engine efficiency is as high as possible that is, the engine operating point where the fuel consumption rate is as low as possible.
  • the engine can be operated.
  • a tenth aspect of the invention is the control device for a vehicle drive device according to the ninth aspect of the present invention, in which the power transmission efficiency when the power from the engine is transmitted in the electric path and the mechanical path and its The total efficiency represented by the product of the engine efficiency at the engine operating point is successively obtained while shifting the engine operating point, and the engine operating point is shifted to the side where the total efficiency is increased.
  • the overall efficiency of the vehicle drive device can be improved, and the fuel efficiency of the vehicle can be improved.
  • FIG. 1 is a skeleton diagram illustrating a configuration of a vehicle drive device according to an embodiment of the present invention.
  • FIG. 3 is an operation table of each hydraulic friction engagement device for establishing each gear stage in the automatic transmission shown in FIG. 1.
  • FIG. It is a figure for demonstrating the input signal input from each sensor etc. to the electronic controller for controlling the vehicle drive device of FIG. 1, and demonstrates the principal part of the control function with which the electronic controller was equipped. It is a functional block diagram for this purpose.
  • FIG. 2 is a diagram for explaining how the engine operating point is determined in a state where the first motor and the second motor are not operated in the vehicle drive device of FIG. 1.
  • FIG. 2 is a diagram for explaining that an engine operating point can be arbitrarily changed by controlling a first electric motor in the vehicle drive device of FIG. 1.
  • the ratio (transmission ratio) of the power transmitted in each of the electric path and the mechanical path when the engine operating point is changed under a certain target engine output will be described.
  • FIG. 1 In the vehicle drive device of FIG. 1, it is the figure which showed the relationship between the transmission efficiency of a torque converter single-piece
  • FIG. 6 is a diagram illustrating a first motor torque and a pump torque when an operating point on the engine minimum fuel consumption rate line is set as a target engine operating point under a certain turbine rotation speed in the same coordinate system as FIG. 5.
  • FIG. 4 is a flowchart for explaining a main part of a control operation of the electronic control device of FIG. 3, that is, a control operation for determining an engine operating point using a continuously variable transmission operation of a continuously variable transmission.
  • FIG. 10 is a diagram for explaining a target engine operating point set when the hydraulic oil temperature is relatively low on the same diagram as FIG. 9. In the same coordinate system as in FIG.
  • FIG. 9 is a diagram showing an upshift line between certain gear stages that is a part of a shift map and is changed according to hydraulic oil temperature. It is a figure which shows an example of the target speed ratio map calculated
  • FIG. 15 is a diagram illustrating an example of a target fluid path ratio map that is obtained and stored in advance so that the target fluid path ratio increases in order to promote warm-up as the hydraulic oil temperature is lower, and is used instead of FIG. 14.
  • FIG. 4 is a flowchart for explaining a main part of a control operation of the electronic control device of FIG. 3, that is, a control operation for promoting warm-up by controlling an engine operating point by adjusting a first motor torque.
  • FIG. 2 is a skeleton diagram illustrating a configuration of a vehicle drive device different from that of FIG. 1, and a skeleton diagram illustrating a configuration of a vehicle drive device that does not include an automatic transmission.
  • FIG. 11 is a diagram showing steps replaced from SA3 in FIG. 10 in order to explain a flowchart different from the flowchart in FIG. 10;
  • FIG. 19 is a diagram showing steps replaced from SA7 and SA8 in FIG. 10 in the flowchart described in FIG.
  • the fuel consumption is a travel distance per unit fuel consumption
  • the operating point of the rotating device is an operating point indicating the operating state of the rotating device indicated by the rotation speed, output torque, etc. of the rotating device.
  • the operating point of the engine is an operating point indicating the operating state of the engine indicated by the rotational speed and output torque of the engine. In other words, this is the operating state of the engine indicated by one point in the two-dimensional coordinates of the axis indicating the rotational speed of the engine and the axis indicating the output torque of the engine.
  • the fluid transmission device is a torque converter including a pump impeller that is the input side rotating element, a turbine impeller that is the output side rotating element, and a stator impeller.
  • the vehicle drive device includes a power storage device connected to each of the first electric motor and the second electric motor so as to be able to exchange electric power, for example, from the electric power generated by the first electric motor.
  • the remainder obtained by subtracting the electric power charged in the power storage device is supplied to the second electric motor to drive the second electric motor.
  • adjusting the torque of the first electric motor means adjusting the power (electric power) transmitted in the electric path, in other words, the power transmission ratio of the electric path or the mechanical path. Is to adjust. That is, the operating point of the engine is controlled by adjusting the power transmitted in the electric path.
  • the electrical path is a power transmission path in which power transmission is made electrically by supplying all or part of the power generated by the first motor to the second motor.
  • the lower the temperature of the hydraulic oil is, the power transmitted via the mechanical path and the power transmitted via the electrical path are transmitted via the mechanical path.
  • the purpose is to increase the power ratio.
  • the lower the temperature of the hydraulic oil the more the loss due to the mechanical path is increased, and the temperature of the hydraulic oil can be easily increased to improve the warm-up performance. That is, as the temperature of the hydraulic oil is lower, warm-up can be promoted by increasing power transmitted through the machine path and increasing loss.
  • FIG. 1 is a skeleton diagram illustrating a configuration of a vehicle drive device 10 according to an embodiment of the present invention.
  • a vehicle drive device 10 is preferably used in a FF (front engine / front drive) type vehicle, and is connected to an engine 12 that is an internal combustion engine and a crankshaft 14 of the engine 12.
  • a torque converter (fluid transmission device) 16 disposed between the torque converter 16 and the drive wheel 26 and connected to the output side of the torque converter 16, the engine 12, and the torque converter 16 Between the torque converter 16 and the automatic transmission 18 and connected to the input shaft 20 of the automatic transmission 18.
  • the torque converter 16 includes a pump impeller 16p that is an input-side rotating element to which power from the engine 12 is input, a turbine impeller 16t that is an output-side rotating element that outputs power to the drive wheels 26, and a stator impeller 16s. And a one-way clutch F1.
  • the pump impeller 16p that is, the pump impeller, is connected to the crankshaft 14 of the engine 12 and the first electric motor MG1, and is driven to rotate by the engine 12 so that the fluid flow caused by the flow of hydraulic oil in the torque converter 16 is achieved. Is generated.
  • the turbine impeller 16t that is, the turbine runner is connected to the input shaft 20 of the automatic transmission 18, and is rotated by receiving the fluid flow from the pump impeller 16p.
  • the stator impeller 16s is disposed in the fluid flow from the pump impeller 16p to the turbine impeller 16t, and the one-way clutch F1 causes the crankshaft 14 to rotate in the forward direction (the direction of rotation of the crankshaft 14 when the engine 12 is operated). ) And is supported so as not to rotate in the negative rotation direction.
  • the input shaft 20 of the automatic transmission 18 also functions as an output shaft of the torque converter 16, that is, a turbine shaft.
  • the engine 12, the first electric motor MG1, and the pump impeller 16p are connected in series, so that the rotational speed Np of the pump impeller 16p (hereinafter referred to as pump rotational speed Np).
  • the rotational speed Nmg1 of the first motor MG1 (hereinafter referred to as the first motor rotational speed Nmg1) and the rotational speed Ne of the engine 12 (hereinafter referred to as the engine rotational speed Ne). Since the turbine impeller 16t, the second motor MG2, and the input shaft 20 of the automatic transmission 18 are connected in series, the rotational speed Nt of the turbine impeller 16t (hereinafter referred to as the turbine rotational speed Nt) is the second.
  • the torque converter 16 includes a lockup clutch LC that selectively connects the pump impeller 16p and the turbine impeller 16t.
  • the lock-up clutch LC is operated by hydraulic oil from the hydraulic control circuit 90 (see FIG. 3), and is controlled to any one of a fully engaged state, a slip state, and a released state.
  • torque transmission between the crankshaft 14 and the input shaft 20 is performed via the hydraulic oil in the torque converter 16 as described above.
  • the lockup clutch LC When the lockup clutch LC is completely engaged, the lockup clutch LC mechanically directly connects the pump impeller 16p and the turbine impeller 16t.
  • the input shaft 20 of the machine 18 is integrally connected to each other, and torque transmission between the crankshaft 14 and the input shaft 20 is directly performed without the hydraulic oil in the torque converter 16.
  • the first electric motor MG1 is connected in series to the crankshaft 14 of the engine 12 via, for example, a damper that absorbs pulsation, and is directly connected to the pump impeller 16p of the torque converter 16. In short, the first electric motor MG1 is connected to a power transmission path between the engine 12 and the torque converter 16.
  • the second electric motor MG2 is connected to a power transmission path between the torque converter 16 and the drive wheels 26. Specifically, the second electric motor MG2 is indirectly connected to the drive wheels 26 via the automatic transmission 18 or the like. Yes.
  • the first electric motor MG1 and the second electric motor MG2 are rotary machines configured to selectively obtain a function as an electric motor that generates a drive torque and a function as a generator that generates a regenerative torque, For example, it is constituted by an AC synchronous motor generator. Further, a power storage device 36 that is a battery and an inverter 38 for controlling the electric motors MG1, MG2 are provided in the vehicle drive device 10 (see FIG. 3), and the power storage device 36, the first electric motor MG1, and the second The motor MG2 is connected so as to be able to exchange power with each other.
  • the first electric motor MG ⁇ b> 1 and the second electric motor MG ⁇ b> 2 can apply a driving torque in the normal rotation direction to the crankshaft 14 and the input shaft 20 by driving.
  • the first electric motor MG1 and the second electric motor MG2 respectively apply load torque in the negative rotation direction, that is, braking torque, to the crankshaft 14 and the input shaft 20 by power generation (regeneration), and the power storage device 36 provided in the vehicle. Can be charged via the inverter 38.
  • the positive rotation direction of the crankshaft 14 and the input shaft 20 is the rotation direction of the crankshaft 14 when the engine 12 is driven, and the negative rotation direction is a rotation direction opposite to the positive rotation direction. is there.
  • the automatic transmission 18 is a mechanical transmission that is interposed between the torque converter 16 and the drive wheels 26 and constitutes a part of a power transmission path between the second electric motor MG2 and the drive wheels 26.
  • the automatic transmission 18 includes a first planetary gear device 30, a second planetary gear device 32, a third planetary gear device 34, and a plurality of hydraulic friction engagements in a transmission case 24 that is a non-rotating member.
  • This is a known planetary gear type multi-stage transmission provided with devices C1, C2, B1, B2, and B3.
  • the automatic transmission 18 outputs the power of the engine 12 input to the input shaft 20 that is an input rotation member toward the drive wheels 26 from the output gear 22 that is an output rotation member.
  • the automatic transmission control of the automatic transmission 18 is executed according to a known relationship (shift diagram, shift map) having pre-stored upshift lines and downshift lines.
  • the vehicle drive device 10 configured as described above, there are an engine travel that causes the vehicle to travel with the power of the engine 12 and a motor travel that causes the vehicle to travel with the power of the second electric motor MG2 in accordance with the travel state of the vehicle. It can be switched and activated. The switching between the engine traveling and the motor traveling is performed based on whether the traveling state of the vehicle belongs to the engine traveling region or the motor traveling region set in the two-dimensional coordinates similar to the shift diagram.
  • the state of charge (charge capacity, remaining charge) SOC (state of charge) of the power storage device 36 is not more than a predetermined value.
  • engine running is performed. Further, when the vehicle is suddenly started or suddenly accelerated, the output of both the engine 12 and the second electric motor MG2 is used to appropriately control the vehicle to run.
  • FIG. 3 is a diagram for explaining an input signal input from each sensor or the like to the electronic control device 40 for controlling the vehicle drive device 10.
  • the control function provided in the electronic control device 40 is illustrated in FIG. It is a functional block diagram for demonstrating a part.
  • an electronic control device 40 functions as a control device for the vehicle drive device 10 and includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the CPU performs signal processing according to a program stored in advance in the ROM while using the temporary storage function of the RAM, so that the output control of the engine 12, the shift control of the automatic transmission 18, the output control of the electric motors MG1 and MG2, etc. Execute.
  • the electronic control device 40 includes sensors (for example, rotational speed sensors 42, 44, 46, 48, 50, an accelerator opening sensor 52, an oil temperature sensor 54, a battery sensor 56) provided in the vehicle. And the like, for example, an engine rotation speed Ne, a first motor rotation speed Nmg1, a turbine rotation speed Nt, a second motor rotation speed Nmg2, and a transmission that is the rotation speed of the output gear 22 corresponding to the vehicle speed V.
  • the output rotation speed Nout, the accelerator opening Acc, the hydraulic oil temperature THoil which is the temperature of the hydraulic oil for operating the torque converter 16 and the automatic transmission 18, the battery temperature THbat of the power storage device 36, the battery charge / discharge current Ibat and the battery Voltage Vbat, etc.).
  • the electronic control device 40 outputs various output signals (for example, an engine output control signal, a motor output control signal, a hydraulic control signal, etc.) to each device (for example, the engine 12, the inverter 38, the hydraulic control circuit 90, etc.) provided in the vehicle. ) Is supplied.
  • the electronic control device 40 sequentially calculates the charge capacity SOC of the power storage device 36 based on, for example, the battery temperature THbat, the battery charge / discharge current Ibat, the battery voltage Vbat, and the like.
  • FIG. 4 is a diagram for explaining how the operating point of the engine 12 (hereinafter referred to as the engine operating point) is determined when the first electric motor MG1 and the second electric motor MG2 are not operated.
  • Nt the speed ratio
  • Ne the engine rotational speed Ne as indicated by a broken line L01 is obtained.
  • the output torque Te of the engine 12 (hereinafter referred to as the engine torque Te) has a relationship with the engine rotational speed Ne under a certain throttle valve opening ⁇ TH of the electronic throttle valve of the engine 12, for example, a solid line L02.
  • the solid line L02 intersects the broken line L01.
  • An intersection P01 between the broken line L01 and the solid line L02 indicates a point where the engine torque Te and the pump torque Tp are balanced, and the intersection P01 is an engine operating point. That is, the engine operating point is that determined by the consequences on the basis of the turbine rotation speed Nt and the throttle valve opening theta TH.
  • the engine operating point can be arbitrarily changed without being restricted by the turbine rotational speed Nt. This can be explained with reference to FIG.
  • FIG. 5 is a diagram for explaining that the engine operating point can be arbitrarily changed by controlling the first electric motor MG1.
  • the same reference numerals as those in FIG. 4 denote the same components, and the same turbine rotational speed Nt as in FIG. 4 is assumed.
  • a solid line L03 in FIG. 5 sets the target engine output Pe *, which is the target value of the required engine power Pe *, that is, the engine output Pe (unit: kW, for example) as a certain constant value, and the engine output Pe converges to the target engine output Pe *.
  • 6 is an equal power curve showing the relationship between the engine rotation speed Ne and the engine torque Te when controlled in this manner.
  • FIG. 5 shows an example in which the engine operating point is arbitrarily set on the equal power curve (solid line L03).
  • the engine operating point becomes point P03, and if the absolute value of the first motor torque Tmg1 is further increased to generate the first motor torque Tmg1 by TG04 in the negative rotation direction, the engine operating point becomes point P04.
  • the electric power generated by the first electric motor MG1 may be charged in the power storage device 36, but is basically supplied to the second electric motor MG2 and supplied to the second electric motor MG2. 2
  • the electric motor MG2 is driven. That is, in the vehicle drive device 10, power (unit: kW, for example) is electrically transmitted between the engine 12 and the drive wheels 26 by power exchange between the first electric motor MG1 and the second electric motor MG2. Two power transmission paths that are parallel to each other, that is, an electrical path that is mechanically transmitted through the torque converter 16.
  • FIG. 6 illustrates the ratio (transmission ratio) of power transmitted in each of the electric path and the mechanical path when the engine operating point is changed under a certain target engine output Pe *.
  • electric transmission means that power from the engine 12 is electrically transmitted, and thus means power transmission in the above-described electric path
  • fluid transmission means that power from the engine 12 is a torque converter. Since it is transmitted by the fluid (hydraulic oil) in 16, the power transmission in the said mechanical path is meant.
  • the output control of the first electric motor MG1 is performed such that the lower the engine speed Ne, that is, the higher the speed ratio e of the torque converter 16, the larger the first electric motor torque Tmg1 becomes as an absolute value in the negative rotation direction. Therefore, as shown in FIG.
  • the power transmission efficiency ( output power / input power; simply the transmission efficiency throughout the specification) in the continuously variable transmission 60 composed of the first motor MG1, the second motor MG2, and the torque converter 16 Say).
  • the transmission efficiency eta MC of the torque converter 16 single transmission efficiency eta MC i.e. the machine path.
  • the transmission efficiency ⁇ MC of the torque converter 16 takes a maximum value at a predetermined speed ratio e, and when the speed ratio e is zero, the transmission efficiency ⁇ MC is also It becomes zero.
  • the transmission efficiency ⁇ MC increases as the speed ratio e increases. From the overall view of the torque converter region and the coupling region, the transmission efficiency ⁇ MC is equal to the speed ratio e. Is the highest when it is close to 1.
  • the transmission efficiency ⁇ EL of the electric path and the transmission ratios RTO PEL and RTO PMC shown in FIG. 6 are added to the transmission efficiency ⁇ MC of the torque converter 16, the electric path and the mechanical path from the engine 12 power can be obtained composite transfer efficiency eta CVT i.e. transmission efficiency eta CVT of the entire continuously variable transmission 60 when it is transmitted.
  • FIG. 8 is a diagram showing the relationship between the combined transmission efficiency ⁇ CVT and the speed ratio e of the torque converter 16 when the transmission efficiency ⁇ EL of the electrical path is assumed to be constant.
  • the alternate long and short dash line indicating the transmission efficiency ⁇ MC of the mechanical path (fluid transmission) is the same as that in FIG.
  • the transmission efficiency ⁇ EL of the electric path (electric transmission) is different from the transmission efficiency ⁇ MC of the mechanical path (fluid transmission), and the speed ratio e of the torque converter 16 is changed. Is almost unchanged.
  • the combined transmission efficiency ⁇ CVT changes with respect to the speed ratio e as indicated by a broken line.
  • the points P02, P03, and P04 in FIG. 8 represent the points P02, P03, and P04 in FIG. 5 in the coordinate system of FIG. 8, respectively. According to FIG. 8, the three points P02, P03, and P04 are synthesized.
  • the transmission efficiency ⁇ CVT becomes maximum at the speed ratio e indicated by the point P04.
  • the electric power transmission state between the first electric motor MG1 and the second electric motor MG2 is a power circulation state in which the first electric motor MG1 consumes electric power and the second electric motor MG2 generates electric power, in other words, from the second electric motor MG2 to the first electric motor MG2. This is because a power circulation state in which power is electrically transmitted to the electric motor MG1 is established.
  • the engine operating point can be continuously changed without being restricted by the turbine rotational speed Nt by adjusting the first motor torque Tmg 1.
  • the continuously variable transmission function of the stepped transmission 60 the engine 12 is efficiently operated, and further, control is performed so that efficient operation is performed by the entire vehicle drive device 10 including the engine 12. The main part of the control function will be described below.
  • the electronic control unit 40 includes an operation mode determination means, that is, an operation mode determination section 70, and an engine operation point control means, that is, an engine operation point control section 72.
  • the operation mode determination unit 70 determines whether or not a predetermined system optimum operation mode is selected. For example, when the operation mode switch that is switched on when the driver selects the system optimum operation mode is on, the operation mode determination unit 70 determines that the system optimum operation mode is selected.
  • the system optimum operation mode is an operation mode in which not only the engine 12 is operated efficiently but the efficiency of the engine 12 and the continuously variable transmission 60 is improved as a whole. Selected.
  • the system optimum operation mode may be automatically selected when the accelerator opening degree Acc hardly fluctuates, for example, instead of switching the operation mode switch.
  • the engine operating point control unit 72 executes engine operating point control for controlling the engine operating point by adjusting the first electric motor torque Tmg1 during the engine running.
  • the engine torque Te and the first motor torque Tmg1 are balanced with the pump torque Tp of the torque converter 16 as shown in FIG. 1 Adjust the motor torque Tmg1.
  • the engine operating point control unit 72 basically causes the first electric motor MG1 to generate electricity, and therefore the first electric motor torque Tmg1 is a negative value except for the power circulation state.
  • the engine operating point control will be described in detail. First, the engine operating point control unit 72 achieves the target engine output Pe * on a predetermined engine minimum fuel consumption rate line L FL as shown in FIG.
  • FIG. 9 shows the first motor torque when the operating point on the engine minimum fuel consumption rate line LFL is set as the target engine operating point in the same coordinate system as FIG. 5 under a certain turbine rotational speed Nt. It is a figure showing Tmg1 and pump torque Tp, and the broken line L01 and the solid line L03 in FIG. 9 are the same as those of FIG.
  • the engine minimum fuel consumption rate line L FL is an operation curve of the engine 12 that represents the relationship between the engine rotational speed Ne and the engine torque Te determined experimentally in advance so that the fuel consumption rate of the engine 12 is minimized.
  • the target engine output (necessary engine power) Pe * is an output requested by the driver to the vehicle, and the accelerator opening Acc is determined from a relationship experimentally determined in advance so as to be able to respond to the driver's output request.
  • the vehicle speed V are sequentially determined by the engine operating point control unit 72. For example, the target engine output Pe * is determined to be larger as the accelerator opening Acc is larger.
  • a charge request to be charged to the power storage device 36 is made, and the target engine output Pe * is the power based on the charge request (required charge).
  • Electric power is preferably added to a calculated value based on the accelerator opening Acc and the vehicle speed V.
  • Engine operating point control unit 72 when determining the target engine operating point on the engine minimum fuel consumption rate line L FL as described above (point P05), as shown in FIG. 9, the engine rotational speed Ne indicated by the point P05 Based on the pump torque Tp, the first motor torque Tmg1 is calculated based on the pump torque Tp and the engine torque Te indicated by the point P05. Then, the speed ratio e of the torque converter 16 is calculated from the engine speed Ne indicated by the point P05 and the turbine speed Nt.
  • Engine operating point control unit 72 calculating the said engine minimum fuel consumption rate line target engine operating point on the L FL pump torque Tp and the first electric motor torque Tmg1 based on (point P05), is transmitted to the machine path Since the mechanical path transmission ratio RTO PMC and the electrical path transmission ratio RTO PEL are obtained from the mechanical path output and the electrical path output transmitted to the electrical path, respectively, as shown in FIG. From the relationship between the speed ratio e obtained and set and the transmission efficiency ⁇ MC of the mechanical path, and the relationship between the speed ratio e obtained and set in advance experimentally and the transmission efficiency ⁇ EL of the electric path, Based on the ratio e and the transmission ratios RTO PEL and RTO PMC , the combined transmission efficiency ⁇ CVT can be calculated. That is, the engine operating point control unit 72 sequentially calculates the combined transmission efficiency ⁇ CVT .
  • the engine operating point control unit 72 is experimentally determined and determined in advance between the engine operating point indicated by the engine speed Ne and the engine torque Te and the engine efficiency ⁇ ENG . from the relationship (engine efficiency map), sequentially calculates the engine efficiency eta ENG based on said engine minimum fuel consumption rate line L FL on the target engine operating point (point P05) the engine rotational speed Ne and engine torque Te shown. Further, the engine operating point control unit 72 sequentially calculates a combined efficiency ⁇ TOTAL obtained as a product of the calculated combined transmission efficiency ⁇ CVT and the engine efficiency ⁇ ENG , that is, the total efficiency ⁇ TOTAL .
  • the engine efficiency ⁇ ENG is the ratio of the amount of heat converted to work in the lower heating value when the fuel supplied to the engine 12 is completely burned.
  • the engine operating point control unit 72 switches the control content according to the determination of the operation mode determining unit 70.
  • the engine operating point control unit 72 is the product of the combined transmission efficiency ⁇ CVT and the engine efficiency ⁇ ENG when the operation mode determining unit 70 determines that the system optimum operation mode is selected.
  • the engine operating point is shifted to the side where the total efficiency ⁇ TOTAL becomes larger.
  • an equal power curve indicating the target engine output Pe * (for example, a solid line L03 in FIG. 9).
  • the first motor torque Tmg1 and further the overall efficiency ⁇ TOTAL are sequentially calculated based on the target engine operating point each time the target engine operating point is shifted. Then, the target engine operating point at which the total efficiency ⁇ TOTAL is maximized (preferably maximum) is determined as the final target engine operating point.
  • the engine operation point control unit 72 sets the target engine operation point to the side where the overall efficiency ⁇ TOTAL becomes larger as described above. the not is that shifting from the engine minimum fuel consumption rate line on L FL, to determine the target engine operating point on the engine minimum fuel consumption rate line L FL (point in Fig. 9 P05) as the final target engine operating point .
  • the engine operating point control unit 72 determines whether the system optimum operation mode is selected or not when the operation mode judgment unit 70 determines that the system optimum operation mode is selected.
  • the engine rotational speed Ne and the engine torque Te indicated by the final target engine operating point are sequentially set as the target engine rotational speed Ne * and the target engine torque Te *, which are target values, respectively.
  • the target first motor rotation speed Nmg1 * are sequentially set.
  • the engine operating point control unit 72 controls the output of the engine 12 by adjusting the throttle valve opening ⁇ TH so that the actual engine torque Te follows the target engine torque Te *, for example, so as to follow.
  • the actual first motor torque Tmg1 matches (follows) the target first motor torque Tmg1 * and the actual first motor rotation speed Nmg1 matches the target first motor rotation speed Nmg1 * (following).
  • the first electric motor MG1 is controlled.
  • the engine operating point control unit 72 executes the engine operating point control.
  • the actual first motor rotation speed Nmg1 matches the target first motor rotation speed Nmg1 * means that the actual engine rotation speed Ne matches the target engine rotation speed Ne *. .
  • the engine operating point control unit 72 transmits the output torque Tmg2 of the second electric motor MG2 (hereinafter referred to as the second electric motor torque Tmg2) to the drive wheels 26 in the engine operating point control.
  • the engine operating point control unit 72 basically supplies the electric power generated by the first electric motor MG1 to the second electric motor MG2 as it is to drive the second electric motor MG2, but when the charging request is made Is calculated by largely calculating the target engine output Pe * by the required charging power charged in the power storage device 36 according to the charging request, and the remainder obtained by subtracting the power charged in the power storage device 36 from the power generated by the first motor MG1. Is supplied to the second electric motor MG2 to drive the second electric motor MG2.
  • adjusting the first electric motor torque Tmg1 means adjusting the power transmitted in the electric path, and adjusting the second electric motor torque Tmg2.
  • FIG. 10 is a flowchart for explaining the main part of the control operation of the electronic control unit 40, that is, the control operation for determining the engine operating point using the continuously variable transmission operation of the continuously variable transmission 60. It is repeatedly executed with a very short cycle time of about msec to several tens of msec. The control operation shown in FIG. 10 is executed alone or in parallel with other control operations. Note that steps (hereinafter, “step” is omitted) SA1 to SA3 and SA5 to SA11 correspond to the engine operating point control unit 72, and SA4 corresponds to the operation mode determination unit 70.
  • the target engine output (required engine power) Pe * is calculated based on the accelerator opening Acc and the vehicle speed V from a predetermined relationship.
  • the target engine output Pe * may be calculated to be larger by the charged power when the power storage device 36 is charged, or smaller by the discharge power when the power storage device 36 is discharged. May be.
  • the engine operating point (for example, point P05 in FIG. 9) at which the calculated target engine output Pe * is achieved on the engine minimum fuel consumption rate line L FL as shown in FIG. 9 is the target engine operating point. As determined. After SA1, the process proceeds to SA2.
  • the combined transmission efficiency ⁇ CVT based on the target engine operating point determined in SA1 is the speed and speed of each of the transmission efficiency ⁇ MC of the mechanical path and the transmission efficiency ⁇ EL of the electrical path as shown in FIG. From the relationship with the ratio e, the turbine rotational speed Nt detected by the turbine rotational speed sensor 52, the engine rotational speed Ne indicated by the target engine operating point, and the electrical path output and the mechanical path output calculated by SA2. Calculated based on At the same time, an engine efficiency ⁇ ENG based on the target engine operating point determined in SA1 is calculated. Then, the product of the combined transmission efficiency ⁇ CVT and the engine efficiency ⁇ ENG is calculated as a total efficiency (composite efficiency) ⁇ TOTAL . After SA3, the process proceeds to SA4.
  • SA4 it is determined whether or not the system optimum operation mode is selected. If the determination in SA4 is affirmative, that is, if the system optimum operation mode is selected, the process proceeds to SA5. On the other hand, if the determination at SA4 is negative, the operation goes to SA11.
  • the engine rotational speed Ne indicated by the target engine operating point is increased by a predetermined change amount ⁇ Ne to determine a new target engine operating point.
  • the stepwise change of the target engine operating point is performed so that the target engine output Pe * calculated as SA1 does not change. Accordingly, the engine torque Te indicated by the target engine operating point is also changed along with the change of the engine speed Ne indicated by the target engine operating point. Note that the target engine operating point before the change in SA5 is called the previous target engine operating point, and the target engine operating point after the change is called the current target engine operating point. After SA5, the process proceeds to SA6.
  • the first motor torque Tmg1 is calculated based on the current target engine operating point, and the electric path output and the mechanical path output corresponding to the current target engine operating point are calculated. Is done. After SA6, the process proceeds to SA7.
  • the combined transmission efficiency ⁇ CVT based on the current target engine operating point is calculated, and the engine efficiency ⁇ ENG based on the current target engine operating point is calculated.
  • the product of the combined transmission efficiency ⁇ CVT and the engine efficiency ⁇ ENG is calculated as a total efficiency (composite efficiency) ⁇ TOTAL (referred to as a combined efficiency this time).
  • the previous combined efficiency which is the overall efficiency (composite efficiency) ⁇ TOTAL based on the previous target engine operating point, is stored in advance for the determination in SA8. After SA7, the process proceeds to SA8.
  • SA8 it is determined whether or not the previous synthesis efficiency is greater than the current synthesis efficiency. If the determination of SA8 is affirmative, that is, if the previous combining efficiency is greater than the current combining efficiency, the process proceeds to SA9. On the other hand, if the determination at SA8 is negative, the operation goes to SA5.
  • the target engine operating point is returned to the previous target engine operating point. That is, the engine speed Ne indicated by the current target engine operating point determined in SA5 is decreased by the predetermined change amount ⁇ Ne, and a new target engine operating point is determined. At this time, similarly to SA5, the engine torque Te indicated by the target engine operating point is also changed, that is, returned to the previous one so that the target engine output Pe * does not change. After SA9, the process proceeds to SA10.
  • the first electric motor torque Tmg1 is calculated based on the target engine operating point newly determined in SA9, and the target engine operating point newly determined in SA9 is set. The corresponding electrical path output and the mechanical path output are calculated. After SA10, the process proceeds to SA11.
  • the actual operating point of the engine 12 indicated by the actual engine rotational speed Ne and the engine torque Te follows, for example, the engine 12 and the second engine so as to follow the target engine operating point finally determined.
  • Output control of 1 electric motor MG1 is performed.
  • the second electric motor torque Tmg2 is transmitted to the drive wheels 26.
  • the electric power generated by the first electric motor MG1 is supplied to the second electric motor MG2 as it is to drive the second electric motor MG2, but when the power storage device 36 is charged, the first electric motor MG1 generates electric power.
  • the remainder obtained by subtracting the electric power charged in the power storage device 36 from the electric power is supplied to the second electric motor MG2 to drive the second electric motor MG2.
  • the first electric motor MG1, the second electric motor MG2, and the torque converter 16 constitute the continuously variable transmission 60 as a whole, and the engine operating point control unit 72
  • the engine operating point control for controlling the engine operating point by adjusting the first electric motor torque Tmg1 is executed.
  • the second motor torque Tmg2 is transmitted to the drive wheels 26. Therefore, the continuously variable transmission operation of the continuously variable transmission 60 can be performed by adjusting the first motor torque Tmg1 (basically the regenerative torque), and the continuously variable transmission operation of the continuously variable transmission 60 causes the engine operation.
  • the engine 12 can be driven at an operating point (optimum fuel consumption point) that is optimal for improving the fuel efficiency, thereby improving the fuel efficiency of the vehicle. It is possible to plan.
  • the engine operating point control unit 72 is configured such that the sum of the engine torque Te and the first motor torque Tmg1 is the input side load torque of the torque converter 16, as shown in FIG.
  • the first motor torque Tmg1 is adjusted so as to balance with a certain pump torque Tp. Therefore, the first motor torque Tmg1 can be easily adjusted based on the characteristics of the torque converter 16.
  • the engine operating point control unit 72 determines that the combined transmission efficiency ⁇ CVT and the engine are determined when the operation mode determination unit 70 determines that the system optimum operation mode is selected.
  • the engine operating point is shifted to the side where the total efficiency ⁇ TOTAL, which is the product of the efficiency ⁇ ENG , increases. Therefore, compared with the case where the engine operating point is not changed according to the total efficiency ⁇ TOTAL , the efficiency of the vehicle drive device 10 as a whole can be improved, and the fuel efficiency of the vehicle can be improved.
  • the engine operating point control unit 72 determines that the engine operating point is the engine minimum fuel when the operating mode determining unit 70 determines that the system optimum operating mode is not selected. and along the consumption rate line L FL controls the engine operating point so that the target engine output Pe * is achieved. Accordingly, the continuously variable transmission operation of the continuously variable transmission 60 can suppress an increase in the fuel consumption rate of the engine 12.
  • the electric path and the mechanical path are used in combination as a transmission path for transmitting the power of the engine 12, and the engine operation is performed. Since point control is executed, the fuel efficiency of the vehicle can be improved.
  • a device such as the automatic transmission 18 is not warmed up, it may be necessary to prohibit or restrict specific control until warming up. There may be a case where priority is given to promoting warm-up of equipment such as the machine 18.
  • the engine operating point control can be executed by adjusting the first electric motor torque Tmg1, and this is used to warm up the equipment such as the automatic transmission 18 and the like. Suggest to promote.
  • the transmission efficiency ⁇ MC of the torque converter 16 sometimes takes a maximum value with respect to the speed ratio e, but when viewed as a whole, it tends to decrease as the speed ratio e decreases. . That is, the power transmission loss LSS MC of the torque converter 16 tends to increase as the speed ratio e decreases.
  • the speed ratio e of the torque converter 16 can be changed by adjusting the first motor torque Tmg1. Therefore, the speed ratio e is reduced to reduce the power transmission loss LSS MC of the torque converter 16. Can be increased.
  • the calorific value of the hydraulic oil in the torque converter 16 can be increased, the device that is operated with the same hydraulic oil as the hydraulic oil that operates the torque converter 16 by promoting the increase in the hydraulic oil temperature THoil. For example, warming up of the automatic transmission 18 can be promoted.
  • FIG. 11 is a view for explaining a target engine operating point set when the hydraulic oil temperature THoil is relatively low on the same diagram as FIG.
  • the engine operating point P07 at which the engine speed Ne is further increased from the engine operating point P06 is set as the target engine operating point.
  • the engine rotational speed Ne is higher than the engine operating point P02 where the engine torque Te and the pump torque Tp are balanced, and the engine operating point P07 is controlled by the engine operating point control.
  • the control requires the power running torque of the first motor MG1 at which the first motor torque Tmg1 is a positive value. That is, in order to decrease the speed ratio e of the torque converter 16 as compared with the engine operating point P02, as shown in the engine operating point P07, the power running torque of the first electric motor MG1 is increased with respect to the engine operating point P02.
  • the engine speed Ne may be increased. That is, when warm-up is required, the engine operating point P06 and the engine operating point P07 corresponding to the hydraulic oil temperature THoil may be set as the target engine operating point instead of the engine operating point P05.
  • the mode of reducing the speed ratio e of the torque converter 16 is roughly divided into two modes: a mode in which the target engine operating point is, for example, the engine operating point P06, and a mode in which, for example, the engine operating point P07 is used. can do.
  • a power circulation state is set in a mode in which the target engine operating point is set to, for example, the engine operating point P07.
  • FIG. 12 is the same coordinate system as in FIG. 9 under certain vehicle speed V, the first electric motor torque Tmg1 and pump torque when the operating point P05 on the engine minimum fuel consumption rate line L FL to the target engine operating point
  • FIG. 13 is a diagram showing Tp for each gear stage of the automatic transmission 18.
  • a solid line L03, an engine minimum fuel consumption rate line L FL , and a point P05 in FIG. 12 are the same as those in FIG. In FIG.
  • the broken line L04 and the alternate long and short dash line L05 are curves representing the relationship between the pump torque Tp and the engine rotational speed Ne, but the broken line L04 indicates that the gear stage of the automatic transmission 18 is higher than the alternate long and short dash line L05. This represents the case of the side gear.
  • the gear stage of the automatic transmission 18 is higher, the turbine rotational speed Nt becomes lower and the speed ratio e of the torque converter 16 becomes smaller. Therefore, when the target engine operating point is the operating point P05, it corresponds to the broken line L04.
  • the speed ratio e1 is smaller than the speed ratio e2 corresponding to the alternate long and short dash line L05.
  • the electronic control unit 40 may set the gear stage (gear ratio ⁇ at) of the automatic transmission 18 to be the gear stage (gear ratio) on the higher vehicle speed side as the hydraulic oil temperature THoil is lower.
  • FIG. 13 is a part of a shift map that is obtained and stored in advance, and is a diagram showing an upshift line between certain gear stages that is changed according to the hydraulic oil temperature THoil.
  • the upshift line is set to the lower vehicle speed side as the hydraulic oil temperature THoil is lower as shown by the solid line, and is set to the higher vehicle speed side as the hydraulic oil temperature THoil is higher as shown by the broken line. That is, this upshift line is changed to the low vehicle speed side so that the upshift of the automatic transmission 18 is accelerated as the hydraulic oil temperature THoil is lower.
  • the shift control means that is, the shift control unit 74 is based on the accelerator opening Acc and the vehicle speed V from the shift map in which the upshift line is changed according to the hydraulic oil temperature THoil as shown in FIG. 13, for example.
  • the automatic transmission 18 is shifted.
  • the warm-up necessity determination means determines whether or not the vehicle drive device 10 (for example, the automatic transmission 18) needs to be warmed up. It is determined based on whether or not it is lower.
  • the predetermined low oil temperature is, for example, a low value obtained and stored in advance for determining that the hydraulic oil temperature THoil is low enough to promote warm-up of the vehicle drive device 10 rather than improving fuel efficiency. This is the oil temperature judgment value.
  • Engine operating point control unit 72 for example, if it is determined to be unnecessary warm-up of the vehicle drive device 10 by the warm-up necessity determining unit 76, the target engine output Pe on the engine minimum fuel consumption rate line L FL The engine operating point at which * is achieved or the engine operating point at which the total efficiency ⁇ TOTAL is maximized is determined as the target engine operating point. Then, the engine operating point control unit 72 executes the engine operating point control so that the determined target engine operating point is realized.
  • the warm-up target operation point setting means that is, the warm-up target operation point setting unit 78, for example, if the warm-up necessity determination unit 76 determines that the vehicle drive device 10 needs to be warmed up,
  • the target engine operating point during warm-up which is the target engine operating point for promoting the machine, is set.
  • the warm-up target operation point setting unit 78 is obtained and stored in advance so that the target speed ratio e * of the torque converter 16 becomes smaller in order to promote warm-up as the hydraulic oil temperature THoil is lower.
  • the target speed ratio e * is determined based on the actual hydraulic oil temperature THoil from the relationship shown in FIG. 14 (target speed ratio map).
  • the warm-up target operating point setting unit 78 calculates a target engine torque Te * at which the target engine output Pe * is achieved at the target engine speed Ne *.
  • the engine operating point indicated by the target engine speed Ne * and the target engine torque Te * is the target engine operating point during warm-up.
  • the warm-up target operating point setting unit 78 sets the warm-up target engine operating point so as to realize the target speed ratio e *.
  • the warm-up target operating point setting unit 78 sets the target speed ratio e * according to the hydraulic oil temperature THoil when setting the warm-up target engine operating point.
  • the speed ratio e becomes smaller, the power transmission ratio RTO PEL by electric transmission becomes smaller, while the power transmission ratio RTO PMC by fluid transmission becomes larger. That is, there is a one-to-one relationship between the speed ratio e and the power transmission ratio RTO PMC by fluid transmission. Therefore, the warm-up time target operating point setting unit 78 sets the target value of the power transmission ratio RTO PMC (hereinafter referred to as the target fluid path ratio RTO PMC *) in order to promote warm-up as the hydraulic oil temperature THoil is lower.
  • the target fluid path ratio RTO PMC * the target fluid path ratio
  • the target fluid path ratio RTO PMC * is determined based on the actual hydraulic oil temperature THoil from the relationship (target fluid path ratio map) such as shown in FIG. Then, the warm-up target operating point setting unit 78 may set a target speed ratio e * that can realize the determined target fluid path ratio RTO PMC * from the relationship shown in FIG. 6, for example. .
  • the speed ratio change enable / disable determining unit that is, the speed ratio change enable / disable determining unit 80 is, for example, an operating point of the first electric motor MG1 for realizing the warm-up target engine operating point set by the warm-up target operating point setting unit 78
  • the operating point of the second motor MG2 based on the target first motor torque Tmg1 * and the target first motor rotation speed Nmg1 *) and the power transfer between the first motor MG1 and the second motor MG2 (second motor torque Tmg2 And whether or not the second motor rotation speed Nmg2) is within the respective rated output ranges of the first motor MG1 and the second motor MG2.
  • the rated output is, for example, the maximum output of each of the first motor MG1 and the second motor MG2 that is experimentally obtained and set in advance so as to be allowed in each usage environment of the first motor MG1 and the second motor MG2. (Maximum capacity).
  • the rated output of each motor is such that the lower the motor rotation speed Nmg, the larger the upper limit value of the allowable motor torque Tmg, and the smaller the motor torque Tmg, the allowable motor rotation.
  • the upper limit value of the speed Nmg is increased.
  • the speed change control unit 74 has at least one operating point of the first electric motor MG1 and the second electric motor MG2 as a rating of each electric motor.
  • the shift control of the automatic transmission 18 is executed so that the operating points of the first motor MG1 and the second motor MG2 are within the rated output range of each motor. To do.
  • the operating point of the electric motor MG1 tends to deviate from its rated output. That is, as shown in FIG. 12, for example, when the same first motor torque Tmg1A (or first motor torque Tmg1B) is required, the first motor rotation speed is increased as the automatic transmission 18 is set to the lower vehicle speed side gear stage. Since Nmg1 becomes high, the operating point of the first electric motor MG1 tends to deviate from its rated output.
  • the shift control unit 74 when realizing the warm-up target engine operating point, the second motor torque for obtaining the second motor power in the power transfer between the first motor MG1 and the second motor MG2.
  • Tmg2 is out of the rated output range of the second electric motor MG2
  • the automatic transmission 18 is downshifted.
  • the speed change control unit 74 determines that at least one of the operating points of the first electric motor MG1 and the second electric motor MG2 is out of the range of the rated output of each electric motor by the speed ratio change possibility determination unit 80. If this is the case, the gear position of the automatic transmission 18 for determining the operating point of each electric motor within the rated output range is determined, and the shift control of the automatic transmission 18 is executed so that the determined gear position is achieved. To do.
  • FIG. 16 is a flowchart for explaining a main part of the control operation of the electronic control unit 40, that is, a control operation for promoting warm-up by controlling the engine operating point by adjusting the first motor torque Tmg1. For example, it is repeatedly executed with an extremely short cycle time of about several milliseconds to several tens of milliseconds.
  • the control operation shown in FIG. 16 is executed alone or in parallel with other control operations.
  • step (hereinafter, “step” is omitted) SB1 corresponds to the warm-up necessity determination unit 76
  • SB2 corresponds to the warm-up target operating point setting unit 78 and the speed ratio change possibility determination unit 80
  • SB3 Corresponds to the shift control unit 74
  • SB 4 corresponds to the warm-up target operating point setting unit 78 and the engine operating point control unit 72
  • SB 5 corresponds to the engine operating point control unit 72.
  • SB1 for example, whether or not the automatic transmission 18 needs to be warmed is determined based on whether or not the hydraulic oil temperature THoil is lower than a predetermined low oil temperature.
  • the warm-up target engine operating point is set so as to realize the target speed ratio e * determined based on the actual hydraulic oil temperature THoil from the target speed ratio map as shown in FIG.
  • the operating point of the first electric motor MG1 and the operating point of the second electric motor MG2 for realizing the set warm-up target engine operating point are the respective rated outputs of the first electric motor MG1 and the second electric motor MG2. It is determined whether it is within the range. When the determination of SB2 is affirmed, that is, when the operating point of the first electric motor MG1 and the operating point of the second electric motor MG2 for realizing the target engine operating point during warm-up are within the respective rated output ranges. Moves to SB4.
  • the gear stage of the automatic transmission 18 is determined so that the operating points of the first motor MG1 and the second motor MG2 are within the rated output range of each motor, and the determined gear stage is obtained.
  • the shift control of the automatic transmission 18 is executed.
  • the target engine operating point for warm-up at the current gear stage is set, and the engine operating point is set such that the set target engine operating point for warm-up is realized by adjusting the first motor torque Tmg1. Control is executed.
  • the engine operating point at which the target engine output Pe * is achieved on the engine minimum fuel consumption rate line L FL or the engine operating point at which the total efficiency ⁇ TOTAL is maximized is determined (selected) as the target engine operating point. Is done. Then, the engine operating point control is executed so that the determined target engine operating point is realized. For example, the flowchart of FIG. 10 is executed.
  • the engine operating point can be controlled by adjusting the first electric motor torque Tmg1, and the first electric motor is lower when the hydraulic oil temperature THoil is lower than when it is high. Since the speed ratio e of the torque converter 16 is decreased by adjusting the first motor torque Tmg1 while performing power transfer between the MG1 and the second motor MG2, the transmission loss in the torque converter 16 is increased and heat is generated. The amount is increased. Therefore, it is possible to promote the warm-up of the device (for example, the automatic transmission 18) that is operated by the hydraulic oil by the rise in the hydraulic oil temperature THoil as well as the hydraulic oil temperature THoil can be promoted.
  • the device for example, the automatic transmission 18
  • the adjustment of the first motor torque Tmg1 is executed by power transfer between the first motor MG1 and the second motor MG2, the loss of the torque converter 16 is reduced regardless of the charge capacity SOC of the power storage device 36 and the like. Can be increased. Therefore, warm-up can be promoted in a wide range without being limited by the charge capacity SOC of the power storage device 36 or the like.
  • the hydraulic oil temperature is increased by increasing the engine running speed Ne by increasing the power running torque of the first electric motor MG1 with respect to the engine operating point where the engine torque Te and the pump torque Tp are balanced. Since the warm-up target engine operating point is set so as to achieve a preset target speed ratio e * so that the THoil is lower, the transmission loss in the torque converter 16 is increased and the heat generation amount is increased. Therefore, it is possible to appropriately promote the warm-up of the equipment that is operated with the hydraulic oil. Further, since power is transferred between the first electric motor MG1 and the second electric motor MG2, a power circulation state can be expected.
  • the engine operating point target engine output Pe * is achieved on the engine minimum fuel consumption rate line L FL, decreases the regenerative torque of the first electric motor MG1 engine rotational speed Ne Since the target engine operating point during warm-up is set so as to achieve a target speed ratio e * that is set in advance so that the hydraulic oil temperature THoil decreases as the hydraulic oil temperature THoil decreases, the transmission loss in the torque converter 16 is reduced. The amount of heat generated is increased and the warm-up of the equipment that is operated with hydraulic oil can be appropriately promoted.
  • the torque converter 16 can promote warm-up of the automatic transmission 18.
  • the speed ratio e of the torque converter 16 when the speed ratio e of the torque converter 16 is reduced, at least one of the operating points of the first motor MG1 and the second motor MG2 is within the range of the rated output of each motor. Since the automatic transmission 18 is shifted so that it falls within the range of the rated output, the electric power between the first electric motor MG1 and the second electric motor MG2 is adjusted to adjust the first electric motor torque Tmg1. Appropriate execution is possible by giving and receiving. Therefore, the loss of torque converter 16 can be increased appropriately regardless of the charging capacity SOC of power storage device 36 and the like.
  • the first motor rotational speed Nmg1 is out of the rated output range at the first motor torque Tmg1 when the speed ratio e of the torque converter 16 is adjusted to decrease
  • automatic shifting is performed.
  • the second motor torque Tmg2 for obtaining the second motor power in the power transmission / reception between the first motor MG1 and the second motor MG2 is out of the rated output range
  • the upshift of the machine 18 is executed. Since the downshift of the transmission 18 is executed, the adjustment of the first electric motor torque Tmg1 can be reliably executed by power exchange between the first electric motor MG1 and the second electric motor MG2. Therefore, the loss of torque converter 16 can be reliably increased regardless of the charging capacity SOC of power storage device 36 and the like.
  • the engine operating point at which the target engine output Pe * is achieved on the engine minimum fuel consumption rate line L FL or the engine operating point at which the total efficiency ⁇ TOTAL is maximized is set as the target engine operating point.
  • the engine operating point control is a basic control, and when the hydraulic oil temperature THoil is low, the engine operating point changed so as to decrease the speed ratio e of the torque converter 16 is set as the target engine operating point when compared with the high hydraulic oil temperature THoil.
  • the present invention can be applied even if the engine control point (the expected engine operation point) at which the engine torque Te and the pump torque Tp are balanced is the basic control.
  • the engine operating point control is executed as basic control, and the first motor MG1 consumes power and the second motor.
  • the present invention can be applied even if the basic control is to set the desired engine operating point in the power circulation state where MG2 generates power. In the engine operating point control, it is needless to say that the power circulation state may be allowed.
  • the automatic transmission 18 when the warm-up is promoted, the automatic transmission 18 is shift-controlled so that the operating points of the first motor MG1 and the second motor MG2 are within the rated output range of each motor.
  • the automatic transmission 18 may be subjected to shift control in combination with the above basic control switching (for example, two modes for reducing the speed ratio e of the torque converter 16 described with reference to FIG. 11).
  • the upshift line changed according to the hydraulic oil temperature THoil as shown in FIG. 13, the lower the hydraulic oil temperature THoil, the faster the upshift of the automatic transmission 18 is.
  • the upshift line changed to the low vehicle speed side is illustrated, it is not limited to this.
  • an upshift line that switches in two stages when the hydraulic oil temperature THoil is high and low an upshift line that switches in three stages when the hydraulic oil temperature THoil is high, medium, and low, etc.
  • Various aspects are possible.
  • the automatic transmission 18 is a stepped transmission, but may be a continuously variable transmission (CVT) capable of continuously changing the gear ratio ⁇ at.
  • CVT continuously variable transmission
  • the vehicle drive device 10 is provided with the automatic transmission 18 that performs the automatic shift control.
  • the vehicle drive device 10 is configured to perform the automatic shift like the vehicle drive device 110 shown in FIG. A configuration without the machine 18 is also conceivable.
  • the second electric motor MG2 is connected to the input shaft 20 of the automatic transmission 18, so that the second electric motor MG2 is connected to the drive wheels 26 via the automatic transmission 18. Although it is indirectly connected, it may be connected not to the input shaft 20 but to the output gear 22. If the second electric motor MG2 is connected to the output gear 22 as described above, the second electric motor MG2 and the drive wheel 26 rotate in a one-to-one relationship without being interrupted by the power transmission. It can be said that MG2 is directly connected to the drive wheel 26. Further, the second electric motor MG2 may be a wheel-in motor incorporated in the drive wheel 26. In that case, a total of two second electric motors MG2 including the left and right drive wheels 26 are provided.
  • the second electric motor MG2 is connected to the drive wheel 26 that is the front wheel to which the engine 12 is indirectly connected, but the engine 12 and the first electric motor MG1 are While being connected to the front wheel as shown in FIG. 1, the second electric motor MG2 may be directly or indirectly connected to the rear wheel instead of the front wheel. If the second electric motor MG2 is thus connected to the rear wheel, the rear wheel is also included in the drive wheel. In short, the drive wheels driven by the power from the engine 12 and the drive wheels driven by the power from the second electric motor MG2 may be separate wheels.
  • the first motor torque Tmg1 is adjusted, but the first motor torque Tmg1 is directly adjusted.
  • the second electric motor torque Tmg2 that is, adjusting the output of the second electric motor MG2, as a result, it may be adjusted indirectly.
  • power is transmitted electrically by power exchange between the first motor MG1 and the second motor MG2, but for example, power generated by the first motor MG1 May be supplied directly to the second electric motor MG2 without going through the electric storage device 36, or the electric power generated by the first electric motor MG1 is once charged in the electric storage device 36 and supplied from the electric storage device 36 to the second electric motor MG2.
  • the electric power generated by the first electric motor MG1 may be indirectly supplied to the second electric motor MG2. The same applies to the power circulation.
  • power transmission is electrically performed by power exchange between the first electric motor MG1 and the second electric motor MG2 in the electric path.
  • the two-motor MG2 may be driven by receiving power supply from the power storage device 36 or receiving power supplied from the power storage device 36 and power generated by the first motor MG1. The same applies to power supply to the first electric motor MG1 when the first electric motor MG1 is powered during the power circulation.
  • the first electric motor MG1 is directly connected to the pump impeller 16p of the torque converter 16, but the pump vane is connected via a transmission, a clutch, an electric belt or the like. It may be indirectly connected to the vehicle 16p.
  • the vehicle drive device 10 includes the power storage device 36.
  • the power storage device 36 may be omitted.
  • the process proceeds to SA4 after SA3.
  • the execution order of these steps may be any first.
  • the flowchart proceeds to SA4 after SA2. If the determination at SA4 is affirmative, the process proceeds to SA3, and then the process proceeds to SA5 after SA3.
  • the engine rotational speed Ne indicated by the target engine operating point is increased by a predetermined change amount ⁇ Ne to determine a new target engine operating point.
  • the rotational speed Ne may be decreased by a predetermined change amount ⁇ Ne to determine a new target engine operating point.
  • the engine speed Ne indicated by the current target engine operating point determined in SA5 is increased by the predetermined change amount ⁇ Ne, and a new target engine operating point is set. It is determined.
  • the target engine operating point is set on the engine minimum fuel consumption rate line L FL, deviates from the engine minimum fuel consumption rate line L FL It is also possible to set it.
  • the vehicle can perform the motor traveling, but the vehicle traveling may always be performed by the engine traveling.
  • the torque converter 16 includes the lockup clutch LC.
  • the lockup clutch LC is released in the continuously variable transmission operation of the continuously variable transmission 60, the lockup clutch LC is There is no problem even if it is not.
  • the automatic transmission 18 when the vehicle is moved backward, the automatic transmission 18 is shifted to R shown in FIG. 2 and the input shaft 20 of the automatic transmission 18 is rotated in the forward rotation direction. May be shifted to any of 1st to 6th shown in FIG. 2 and the second electric motor MG2 may be driven in the negative rotation direction to reverse the vehicle.
  • the vehicle drive devices 10 and 110 are provided with the torque converter 16 as a fluid transmission device.
  • a coupling may be provided.
  • the vehicle drive devices 10 and 110 are used for vehicles of various drive systems such as the FF system and the FR (front engine / rear drive) system.
  • the transmission ratios RTO PEL and RTO PMC of the electrical path and the mechanical path are not changed in stages as shown in FIG.
  • the transmission efficiency ⁇ EL of the electric path is higher than the transmission efficiency ⁇ MC of the mechanical path in the low speed ratio area with the speed ratio indicated by the intersection of the alternate long and short dash line and the solid line as a boundary.
  • the transmission efficiency ⁇ MC of the mechanical path is higher than the transmission efficiency ⁇ EL of the electric path.
  • the low speed ratio area power is transmitted only by the electric path, In the speed ratio range, power transmission may be performed only by the machine path.
  • the engine operating point control unit 72 determines that the engine operation point is increased to the side where the total efficiency ⁇ TOTAL is increased when the operation mode determination unit 70 determines that the system optimum operation mode is selected.
  • the power transmission loss LSS CVT and the power loss LSS ENG of the engine 12 when the power from the engine 12 is transmitted through the electrical path and the mechanical path (hereinafter referred to as the engine 12)
  • the engine operating point may be shifted based on the total loss LSS TOTAL , which is the sum of the loss LSS ENG ). Specifically, the engine operating point may be shifted to the side where the total loss LSS TOTAL becomes smaller.
  • the power transmission loss LSS CVT can be calculated based on the power input to the continuously variable transmission 60, that is, the engine output Pe and the combined transmission efficiency ⁇ CVT .
  • the engine loss LSS ENG is calculated based on the fuel supplied to the engine 12. It can be calculated based on the complete combustion engine output Pe CMP , which is the lower calorific value per unit time in the case of complete combustion, and the engine efficiency ⁇ ENG .
  • SA3 is replaced with SD3 in FIG. 18 in the flowchart of FIG. 10, and SA7 and SA8 are SD7 in FIG. It is replaced with SD8 respectively.
  • SD3, SD7, and SD8 correspond to the engine operating point control unit 72.
  • the process proceeds to SD7 in FIG.
  • the total loss LSS TOTAL based on the current target engine operating point (referred to as the current total loss) is calculated in the same manner as in SD3.
  • the previous total loss which is the total loss LSS TOTAL based on the previous target engine operating point, is stored in advance for the determination at SD8 in FIG. After SD7, the process proceeds to SD8.
  • Vehicle drive device 12 Engine 16: Torque converter (fluid transmission device) 16p: Pump impeller (input side rotating element) 16t: Turbine wheel (output side rotating element) 18: Automatic transmission 26: Drive wheel 40: Electronic control device (control device) MG1: First electric motor MG2: Second electric motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 電動機のトルクを調節することでエンジン動作点を制御することにより暖機を促進する。 作動油温THoilが低い場合は、高い場合と比較して、第1電動機MG1と第2電動機MG2との間での電力授受を行いながら第1電動機トルクTmg1を調節することによりトルクコンバータ16の速度比eを低下させるので、トルクコンバータ16における伝達損失が増加させられて発熱量が増加させられる。よって、作動油温THoilの上昇を促進できることはもちろんのこと、その作動油温THoilの上昇により作動油にて作動させられる機器(例えば自動変速機18)の暖機を促進することができる。

Description

車両用駆動装置の制御装置
 本発明は、エンジンと電動機と流体伝動装置とを備え、複数の伝達経路にてエンジンの動力を伝達することが可能な車両用駆動装置の制御装置に関するものである。
 エンジンからの動力が入力される入力側回転要素と駆動輪へ動力を出力する出力側回転要素とを有する流体伝動装置を備える車両用駆動装置が良く知られている。例えば、特許文献1に記載された車両用駆動装置がそれである。このような車両用駆動装置においては、エンジン回転速度(流体伝動装置の入力側回転要素の回転速度に相当)は、車速(流体伝動装置の出力側回転要素の回転速度に相当)や流体伝動装置の特性やエンジン出力に応じて成り行きで決められる。また、エンジン出力を流体伝動装置を介して流体伝達する機械経路における動力伝達効率も成り行きで決められる。
 ここで、流体伝動装置や流体伝動装置の後段側に配設される自動変速機を作動させる為の作動油の温度(作動油温)が低いと、流体伝動装置や自動変速機における特定の制御の制御性が低下する可能性がある。その為、例えば作動油温が所定油温以上となる暖機完了まで、特定の制御を実施しないことが考えられる。しかしながら、特定の制御を実施しないことで、燃費性能の低下や動力性能の低下を招く恐れがある。従って、流体伝動装置や自動変速機の暖機を促進することが望まれる。例えば、流体伝動装置や自動変速機の暖機は、主に動力伝達損失に起因する損失熱によるが、動作点が決まればそれに対応した一定の時間が必要となる。特許文献1には、トルクコンバータのステータ翼車に電動機を備え、作動油温が所定値以下である場合には、電動機によりステータ翼車を回転駆動することでトルクコンバータの容量係数を低下させ、トルクコンバータの損失を大きくさせることで暖機を促進する技術が提案されている。
特開2009-236132号公報
 ところで、特許文献1に記載された技術では、電動機を駆動する為には相応の電力が必要であるので、電動機に電力を供給するバッテリの充電容量等によっては実施できない領域が存在する。また、バッテリの充電容量を増加させたいような状況では実施することができない。尚、上述したような課題は未公知であり、バッテリの充電容量等に拘わらず流体伝動装置の損失を増大させて暖機を促進することについて未だ提案されていない。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、電動機のトルクを調節することでエンジン動作点を制御することにより暖機を促進することができる車両用駆動装置の制御装置を提供することにある。
 前記目的を達成する為の第1の発明の要旨とするところは、(a) エンジンからの動力が入力される入力側回転要素と駆動輪へ動力を出力する出力側回転要素とを有する流体伝動装置と、前記入力側回転要素に直接又は間接的に連結された第1電動機と、駆動輪に直接又は間接的に連結された第2電動機とを備えた車両用駆動装置の制御装置であって、(b) 前記第1電動機と前記第2電動機との間での電力授受により動力伝達が電気的になされる電気経路と、動力伝達が前記流体伝動装置を介して機械的になされる機械経路とを有し、前記第1電動機のトルクを調節することで前記エンジンの動作点を制御することが可能であり、(c) 前記流体伝動装置を作動させる為の作動油の温度が低い場合は、高い場合と比較して、前記第1電動機と前記第2電動機との間での電力授受を行いながら前記第1電動機のトルクを調節することによりその流体伝動装置の速度比を低下させることにある。
 このようにすれば、前記第1電動機のトルクを調節することで前記エンジンの動作点を前記出力側回転要素の回転速度に拘束されることなく制御することが可能であるので、例えば前記エンジンを燃費向上に最適な動作点で駆動することが可能であり、車両の燃費向上を図ることができる。加えて、前記第1電動機のトルクを調節することによる前記エンジンの動作点の制御が可能であることにより、前記第1電動機と前記第2電動機との間での電力授受を行いながら流体伝動装置の速度比を低下させることができるので、流体伝動装置における伝達損失が増加させられて発熱量が増加させられる。よって、前記作動油の油温上昇を促進できることはもちろんのこと、その温度上昇によりその作動油にて作動させられる機器の暖機を促進することができる。また、第1電動機のトルクの調節が第1電動機と第2電動機との間での電力授受にて実行されるので、バッテリ(蓄電装置)の充電容量等に拘わらず流体伝動装置の損失を増大させることができる。よって、蓄電装置の充電容量等に制限されることなく、幅広い領域で暖機を促進することができる。
 ここで、第2の発明は、前記第1の発明に記載の車両用駆動装置の制御装置において、エンジントルクと前記第1電動機のトルクとの和が、前記流体伝動装置の速度比に応じて前記入力側回転要素に生じる入力側負荷トルクと釣り合うように、前記第1電動機のトルクを調節するものであり、目標エンジン動作点が示すエンジン回転速度に基づいて前記入力側負荷トルクを求め、その入力側負荷トルクとその目標エンジン動作点が示すエンジントルクとに基づいて前記第1電動機のトルクを決定することにある。このようにすれば、前記流体伝動装置の特性に基づいて容易に第1電動機のトルクを調節することができる。
 また、第3の発明は、前記第2の発明に記載の車両用駆動装置の制御装置において、前記エンジントルクと前記入力側負荷トルクとが釣り合うエンジン動作点に対して、前記第1電動機の力行トルクを増加してエンジン回転速度を上昇させることで、前記作動油の温度が低い程小さくなるように予め設定された目標速度比を実現するように前記目標エンジン動作点を設定することにある。このようにすれば、流体伝動装置における伝達損失が増加させられて発熱量が増加させられ、前記作動油にて作動させられる機器の暖機を適切に促進することができる。また、前記第1電動機と前記第2電動機との間での電力授受においては動力循環状態となるので、これによる損失の増加も期待できる。
 また、第4の発明は、前記第2の発明に記載の車両用駆動装置の制御装置において、前記エンジンの動作点が予め定められたそのエンジンの動作曲線に沿うように且つエンジン出力の目標値が達成されるエンジン動作点に対して、前記第1電動機の回生トルクを低下してエンジン回転速度を上昇させることで、前記作動油の温度が低い程小さくなるように予め設定された目標速度比を実現するように前記目標エンジン動作点を設定することにある。このようにすれば、流体伝動装置における伝達損失が増加させられて発熱量が増加させられ、前記作動油にて作動させられる機器の暖機を適切に促進することができる。
 また、第5の発明は、前記第1の発明乃至第4の発明の何れか1つに記載の車両用駆動装置の制御装置において、前記車両用駆動装置は、前記出力側回転要素と前記駆動輪との間に介装された自動変速機を備えており、前記作動油は、前記自動変速機を作動させる為のものである。このようにすれば、流体伝動装置にて自動変速機の暖機を促進することができる。
 また、第6の発明は、前記第5の発明に記載の車両用駆動装置の制御装置において、前記作動油の温度が低い程、前記自動変速機の変速比を高車速側の変速比とすることにある。このようにすれば、前記自動変速機の変速比を高車速側の変速比とすることで、流体伝動装置の速度比を低下させられる範囲(例えばエンジン回転速度を上昇させられる範囲)が拡大し、一層の暖機促進を図ることができる。
 また、第7の発明は、前記第5の発明又は第6の発明に記載の車両用駆動装置の制御装置において、前記流体伝動装置の速度比を低下させる際に、前記第1電動機及び前記第2電動機のうちの少なくとも一方の動作点が、予め設定されたその第1電動機及びその第2電動機のそれぞれの定格出力を外れる場合には、その定格出力内となるように前記自動変速機の変速を実行することにある。このようにすれば、第1電動機のトルクの調節を第1電動機と第2電動機との間での電力授受にて適切に実行することができるので、蓄電装置の充電容量等に拘わらず流体伝動装置の損失を適切に増大させることができる。
 また、第8の発明は、前記第7の発明に記載の車両用駆動装置の制御装置において、前記流体伝動装置の速度比を低下させる為に調節されるときの前記第1電動機のトルクにおいてその第1電動機の回転速度が前記定格出力を外れるときには、前記自動変速機のアップシフトを実行し、前記第1電動機と前記第2電動機との間での電力授受におけるその第2電動機のパワーを得る為のその第2電動機のトルクが前記定格出力を外れるときには、前記自動変速機のダウンシフトを実行することにある。このようにすれば、第1電動機のトルクの調節を第1電動機と第2電動機との間での電力授受にて確実に実行することができるので、蓄電装置の充電容量等に拘わらず流体伝動装置の損失を確実に増大させることができる。
 また、第9の発明は、前記第1の発明乃至第8の発明の何れか1つに記載の車両用駆動装置の制御装置において、前記車両用駆動装置に対する暖機要求が無い場合には、前記エンジンの動作点が予め定められたそのエンジンの動作曲線に沿うように且つエンジン出力の目標値が達成されるように、前記第1電動機のトルクを調節することでそのエンジンの動作点を制御することにある。このようにすれば、前記車両用駆動装置に対する暖機要求が無い場合には、エンジン効率が可及的に高いエンジン動作点すなわち燃料消費率が可及的に低くなるようなエンジン動作点にてエンジンを作動させられる。
 また、第10の発明は、前記第9の発明に記載の車両用駆動装置の制御装置において、前記電気経路と前記機械経路とにおいて前記エンジンからの動力が伝達されるときの動力伝達効率とそのエンジンの動作点におけるエンジン効率との積で表される総合効率をそのエンジンの動作点をずらしつつ逐次求め、その総合効率が大きくなる側に、そのエンジンの動作点をずらすことにある。このようにすれば、エンジンの動作点が総合効率に応じて変更されない場合と比較して、車両用駆動装置全体として効率アップが図られ、車両の燃費を向上させることが可能である。
本発明の一実施例の車両用駆動装置の構成を説明する骨子図である。 図1に示す自動変速機において各変速段を成立させる為の各油圧式摩擦係合装置の作動表である。 図1の車両用駆動装置を制御する為の電子制御装置に各センサ等から入力される入力信号を説明する為の図であり、その電子制御装置に備えられた制御機能の要部を説明する為の機能ブロック線図である。 図1の車両用駆動装置において、第1電動機及び第2電動機が作動されない状態でエンジン動作点がどのように定まるかを説明する為の図である。 図1の車両用駆動装置において、第1電動機を制御することによりエンジン動作点が任意に変化させられることを説明する為の図である。 図1の車両用駆動装置において、ある一定の目標エンジン出力の下でエンジン動作点が変化させられる場合の、電気経路と機械経路とのそれぞれにおいて伝達される動力の割合(伝達比率)を説明する為の概念図である。 図1の車両用駆動装置において、トルクコンバータ単体の伝達効率すなわち機械経路の伝達効率とトルクコンバータの速度比との関係を示した図である。 図1の車両用駆動装置において、合成伝達効率とトルクコンバータの速度比との関係を示した図である。 図5と同じ座標系において、ある一定のタービン回転速度の下で、エンジン最少燃料消費率線上の動作点を目標エンジン動作点としたときの第1電動機トルク及びポンプトルクを表した図である。 図3の電子制御装置の制御作動の要部、すなわち、無段変速機の無段変速動作を利用してエンジン動作点を決定する制御作動を説明する為のフローチャートである。 図9と同じ図上において、作動油温が比較的低いときに設定される目標エンジン動作点を説明する為の図である。 図9と同じ座標系において、ある一定の車速の下で、エンジン最少燃料消費率線上の動作点を目標エンジン動作点としたときの第1電動機トルク及びポンプトルクを自動変速機のギヤ段毎に表した図である。 変速マップの一部であって、作動油温に応じて変更されるあるギヤ段間のアップシフト線を示す図である。 作動油温が低い程暖機を促進する為に目標速度比が小さくなるように予め求められて記憶された目標速度比マップの一例を示す図である。 作動油温が低い程暖機を促進する為に目標流体経路割合が大きくなるように予め求められて記憶された目標流体経路割合マップの一例を示す図であって、図14に替えて用いられるマップである。 図3の電子制御装置の制御作動の要部、すなわち、第1電動機トルクを調節することでエンジン動作点を制御することにより暖機を促進する制御作動を説明する為のフローチャートである。 図1のものとは別の車両用駆動装置の構成を説明する骨子図であって、自動変速機を備えない車両用駆動装置の構成を説明する骨子図である。 図10のフローチャートとは別のフローチャートを説明する為に、図10のSA3から置き換えられるステップを示した図である。 図18で説明されるフローチャートにおいて、図10のSA7,SA8から置き換えられるステップを示した図である。
 本発明において、好適には、燃費とは単位燃料消費量当たりの走行距離等であり、燃費の向上とはその単位燃料消費量当たりの走行距離が長くなることであり、或いは、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)が小さくなることである。
 また、好適には、回転機器の動作点とは、その回転機器の回転速度及び出力トルクなどで示されるその回転機器の動作状態を示す動作点である。例えば、前記エンジンの動作点とは、そのエンジンの回転速度及び出力トルクなどで示されるそのエンジンの動作状態を示す動作点である。言い換えれば、そのエンジンの回転速度を示す軸とそのエンジンの出力トルクを示す軸との2次元座標内における1点で示されるエンジンの動作状態である。
 また、好適には、前記流体伝動装置は、前記入力側回転要素であるポンプ翼車と前記出力側回転要素であるタービン翼車とステータ翼車とを備えたトルクコンバータである。
 また、好適には、前記車両用駆動装置は、前記第1電動機及び前記第2電動機の各々と電力授受可能に接続された蓄電装置を備えており、例えばその第1電動機が発電した電力からその蓄電装置に充電される電力を差し引いた残部をその第2電動機に供給してその第2電動機を駆動する。
 また、好適には、前記第1電動機のトルクを調節することとは、前記電気経路において伝達される動力(電力)を調節すること、言い換えれば、前記電気経路又は前記機械経路の動力伝達比率を調節することである。すなわち、その電気経路において伝達される動力を調節することで前記エンジンの動作点を制御する。
 また、好適には、前記電気経路は、前記第1電動機が発電した電力の全部又は一部が前記第2電動機に供給されることにより動力伝達が電気的になされる動力伝達経路である。
 また、好適には、前記作動油の温度が低い程、前記機械経路を介して伝達される動力と前記電気経路を介して伝達される動力とのうちで、前記機械経路を介して伝達される動力の割合を大きくすることにある。このようにすれば、前記作動油の温度が低い程、機械経路による損失を増大させ、前記作動油の温度を上昇し易くして暖機性能を向上させることができる。つまり、前記作動油の温度が低い程、機械経路を伝わる動力を増加させて損失を増大することにより、暖機を促進することができる。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明の一実施例の車両用駆動装置10の構成を説明する骨子図である。図1において、車両用駆動装置10は、FF(フロントエンジン・フロントドライブ)方式の車両に好適に採用されるものであり、内燃機関であるエンジン12と、そのエンジン12のクランク軸14に連結されたトルクコンバータ(流体伝動装置)16と、そのトルクコンバータ16と駆動輪26との間に配設されてトルクコンバータ16の出力側に連結された自動変速機18と、エンジン12とトルクコンバータ16との間に配設されてクランク軸14に連結された第1電動機MG1と、トルクコンバータ16と自動変速機18との間に配設されて自動変速機18の入力軸20に連結された第2電動機MG2とを備えている。
 トルクコンバータ16は、エンジン12からの動力が入力される入力側回転要素であるポンプ翼車16pと、駆動輪26へ動力を出力する出力側回転要素であるタービン翼車16tと、ステータ翼車16sと、一方向クラッチF1とを備えた流体伝動装置である。そのポンプ翼車16pすなわちポンプインペラは、エンジン12のクランク軸14と第1電動機MG1とに連結されており、そのエンジン12により回転駆動されることによってトルクコンバータ16内の作動油の流動による流体流を発生させる。タービン翼車16tすなわちタービンランナは、自動変速機18の入力軸20に連結されており、上記ポンプ翼車16pからの流体流を受けて回転させられる。ステータ翼車16sは、上記ポンプ翼車16pからタービン翼車16tへの流体流中に配設され、一方向クラッチF1によってクランク軸14の正回転方向(エンジン12作動時のクランク軸14の回転方向)に回転可能且つ負回転方向に回転不能に支持されている。上記自動変速機18の入力軸20は、トルクコンバータ16の出力軸すなわちタービン軸としても機能するものである。図1から判るように本実施例では、エンジン12と第1電動機MG1とポンプ翼車16pとは直列に連結されているので、ポンプ翼車16pの回転速度Np(以下、ポンプ回転速度Npという)は第1電動機MG1の回転速度Nmg1(以下、第1電動機回転速度Nmg1という)及びエンジン12の回転速度Ne(以下、エンジン回転速度Neという)と同じである。また、タービン翼車16tと第2電動機MG2と自動変速機18の入力軸20とは直列に連結されているので、タービン翼車16tの回転速度Nt(以下、タービン回転速度Ntという)は第2電動機MG2の回転速度Nmg2(以下、第2電動機回転速度Nmg2という)及び入力軸20の回転速度Natin(以下、変速機入力回転速度Natinという)と同じである。
 また、トルクコンバータ16は、上記ポンプ翼車16pとタービン翼車16tとの間を選択的に連結するロックアップクラッチLCを備えている。このロックアップクラッチLCは、油圧制御回路90(図3参照)からの作動油で作動し、完全係合状態、スリップ状態、及び解放状態の何れか1の状態に制御される。ロックアップクラッチLCが解放状態とされた場合には、上記のようにクランク軸14と入力軸20との間のトルク伝達がトルクコンバータ16内の作動油を介して行われる。そして、ロックアップクラッチLCが完全係合状態とされた場合には、ロックアップクラッチLCがポンプ翼車16pとタービン翼車16tとを機械的に直結するので、エンジン12のクランク軸14と自動変速機18の入力軸20とが相互に一体的に連結されて、それらクランク軸14と入力軸20との間のトルク伝達がトルクコンバータ16内の作動油を介さずに直接的に行われる。
 第1電動機MG1は、エンジン12のクランク軸14に例えば脈動を吸収するダンパ等を介して直列に連結されており、トルクコンバータ16のポンプ翼車16pに直接連結されている。要するに、第1電動機MG1はエンジン12とトルクコンバータ16との間の動力伝達経路に連結されている。また、第2電動機MG2は、トルクコンバータ16と駆動輪26との間の動力伝達経路に連結されており、詳細には、自動変速機18等を介して間接的に駆動輪26に連結されている。第1電動機MG1及び第2電動機MG2は、駆動トルクを発生させる電動モータとしての機能と回生トルクを発生させる発電機としての機能とが選択的に得られるように構成された回転機であって、例えば交流同期型のモータジェネレータにより構成される。また、バッテリである蓄電装置36と電動機MG1,MG2を制御する為のインバータ38とが車両用駆動装置10に設けられており(図3参照)、その蓄電装置36と第1電動機MG1と第2電動機MG2とは相互に電力授受可能に接続されている。上記第1電動機MG1及び第2電動機MG2はそれぞれ、その駆動によってクランク軸14及び入力軸20に正回転方向の駆動トルクを付与することができる。また、第1電動機MG1及び第2電動機MG2はそれぞれ、その発電(回生)によってクランク軸14及び入力軸20に負回転方向の負荷トルクすなわち制動トルクを付与すると共に、車両に設けられた蓄電装置36をインバータ38を介して充電することができる。尚、上記クランク軸14及び入力軸20の正回転方向とは、エンジン12の駆動時におけるクランク軸14の回転方向であり、上記負回転方向とはその正回転方向とは逆向きの回転方向である。
 自動変速機18は、トルクコンバータ16と駆動輪26との間に介装されており、第2電動機MG2と駆動輪26との間の動力伝達経路の一部を構成する機械式変速機である。具体的に、自動変速機18は、非回転部材であるトランスミッションケース24内に、第1遊星歯車装置30、第2遊星歯車装置32、第3遊星歯車装置34、及び複数の油圧式摩擦係合装置C1,C2,B1,B2,B3を備えた公知の遊星歯車式多段変速機である。自動変速機18は、入力回転部材である入力軸20に入力されたエンジン12の動力を、出力回転部材である出力歯車22から駆動輪26に向けて出力する。そして、この自動変速機18においては、公知の各油圧式摩擦係合装置(クラッチC1、C2、ブレーキB1、B2、B3)が図2に示す所定の作動表に従って油圧制御回路90(図3参照)からの作動油でそれぞれ係合又は解放されることにより、自動変速機18の変速比γat(=変速機入力回転速度Natin/出力歯車22の回転速度Nout)がそれぞれ異なる複数の変速段が択一的に成立させられる。図2において、「○」は係合状態を、空欄は解放状態をそれぞれ示している。また、この自動変速機18の自動変速制御は、予め記憶されたアップシフト線及びダウンシフト線を有する公知の関係(変速線図、変速マップ)に従って実行される。
 以上のように構成された車両用駆動装置10においては、車両の走行状態に応じて、エンジン12の動力により車両を走行させるエンジン走行と第2電動機MG2の動力により車両を走行させるモータ走行とが切り換えられて作動させられるようになっている。上記エンジン走行とモータ走行との切り換えは、車両の走行状態が前記変速線図と同様の二次元座標内において設定されたエンジン走行領域及びモータ走行領域のどちらに属するかに基づいて行われる。
 尚、車両用駆動装置10では、たとえば、車両の走行状態がモータ走行領域に属していても蓄電装置36の充電状態(充電容量、充電残量)SOC(state of charge)が所定値以下である場合にはエンジン走行が行われる。また、車両の急発進時や急加速時などにはエンジン12及び第2電動機MG2の両方の出力が用いられて車両が走行させられる等の制御が適宜行われる。
 図3は、車両用駆動装置10を制御する為の電子制御装置40に各センサ等から入力される入力信号を説明する為の図であり、その電子制御装置40に備えられた制御機能の要部を説明する為の機能ブロック線図である。図3において、電子制御装置40は、車両用駆動装置10の制御装置として機能を有するものであって、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUがRAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御、自動変速機18の変速制御、及び電動機MG1、MG2の出力制御などを実行する。また、電子制御装置40には、車両に設けられた図3に示す各センサ(例えば各回転速度センサ42,44,46,48,50、アクセル開度センサ52、油温センサ54、バッテリセンサ56など)により検出された各種入力信号(例えばエンジン回転速度Ne,第1電動機回転速度Nmg1,タービン回転速度Nt,第2電動機回転速度Nmg2,車速Vに対応する出力歯車22の回転速度である変速機出力回転速度Nout、アクセル開度Acc、トルクコンバータ16及び自動変速機18などを作動させる為の作動油の温度である作動油温THoil、蓄電装置36のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbatなど)が供給される。また、電子制御装置40からは、車両に設けられた各装置(例えばエンジン12、インバータ38、油圧制御回路90など)に各種出力信号(例えばエンジン出力制御信号、電動機出力制御信号、油圧制御信号など)が供給される。尚、電子制御装置40は、例えば上記バッテリ温度THbat、バッテリ充放電電流Ibat、及びバッテリ電圧Vbatなどに基づいて蓄電装置36の充電容量SOCを逐次算出する。
 図4は、第1電動機MG1及び第2電動機MG2が作動させられていない状態においてエンジン12の動作点(以下、エンジン動作点という)がどのように定まるかを説明する為の図である。図4に示すように、トルクコンバータ16の速度比e(=Nt/Np)に応じてポンプ翼車16pに生じる入力側負荷トルクであるポンプトルクTpは、ある一定のタービン回転速度Ntの下では、例えば破線L01で示すようなエンジン回転速度Neとの関係になる。その破線L01で示すポンプトルクTpとエンジン回転速度Ne(=Np)との関係は、上記速度比eの関数であるトルクコンバータ16の容量係数τを用いて表せば、「Tp=τ×Ne」という式が成立する関係である。従って、図4に示すように、エンジン回転速度Neが高いほどトルクコンバータ16の速度比eが小さくなり、ポンプトルクTpはエンジン回転速度Neが高いほど大きくなる。一方で、エンジン12の出力トルクTe(以下、エンジントルクTeという)は、エンジン12の電子スロットル弁のある一定のスロットル弁開度θTHの下では、エンジン回転速度Neとの関係が例えば実線L02で示すようになり、その実線L02は前記破線L01と交差する。そして、破線L01と実線L02との交点P01がエンジントルクTeとポンプトルクTpとが釣り合う点を示しており、その交点P01がエンジン動作点になる。すなわち、エンジン動作点はタービン回転速度Ntとスロットル弁開度θTHとに基づいて成り行きで決まるということである。これに対し、本実施例では、第1電動機MG1の出力制御を行うことにより、エンジン動作点をタービン回転速度Ntに拘束されることなく任意に変化させることが可能である。このことを図5を用いて説明することができる。
 図5は、第1電動機MG1を制御することによりエンジン動作点が任意に変化させられることを説明する為の図である。図5では図4と共通の符号は相互に同じものを示しており、図4と同じタービン回転速度Ntを前提としている。図5の実線L03は、必要エンジンパワーPe*すなわちエンジン出力Pe(単位は例えばkW)の目標値である目標エンジン出力Pe*をある一定値としエンジン出力Peがその目標エンジン出力Pe*に収束するように制御されたときのエンジン回転速度NeとエンジントルクTeとの関係を示す等パワー曲線である。図5にはエンジン動作点がその等パワー曲線(実線L03)上で任意に設定される例が示されている。図5において、ポンプトルクTpとエンジン回転速度Neとの関係が破線L01で示され且つエンジン出力Peが実線L03で示す目標エンジン出力Pe*にされる場合には、第1電動機MG1の出力トルクTmg1(以下、第1電動機トルクTmg1という)が発生させられないとすればエンジン動作点は点P02になり、第1電動機MG1を発電動作させ第1電動機トルクTmg1を負回転方向にTG03だけ発生させればエンジン動作点は点P03になり、更に第1電動機トルクTmg1の絶対値を引き上げて第1電動機トルクTmg1を負回転方向にTG04だけ発生させればエンジン動作点は点P04になる。要するに、本実施例の車両用駆動装置10では、エンジントルクTeと第1電動機トルクTmg1との和がポンプトルクTpと釣り合うように、すなわち「Tp=Te+Tmg1(図5のTmg1は負の値)」という関係が成立するように、第1電動機トルクTmg1が調節されることで、エンジン動作点をタービン回転速度Ntに拘束されることなく任意に変化させることが可能である。このように第1電動機MG1を発電動作させる場合には、その第1電動機MG1によって発電された電力は蓄電装置36に充電されてもよいが、基本的には第2電動機MG2に供給されて第2電動機MG2が駆動される。すなわち、車両用駆動装置10は、エンジン12と駆動輪26との間において、第1電動機MG1と第2電動機MG2との間での電力授受により電気的に動力(単位は例えばkW)が伝達される電気経路と、トルクコンバータ16を介して機械的に動力が伝達される機械経路という互いに並列である2つの動力伝達経路を備えている。そして、上述したように第1電動機トルクTmg1の調節によりエンジン動作点をタービン回転速度Ntに拘束されることなく連続的に変更できるので、第1電動機MG1と第2電動機MG2とトルクコンバータ16とは全体として、実質的に変速比(=Ne/Nt)を無段階に変化させる無段変速動作を行うことができ、無段変速機60を構成していると言える。
 図6は、ある一定の目標エンジン出力Pe*の下でエンジン動作点が変化させられる場合の、前記電気経路と前記機械経路とのそれぞれにおいて伝達される動力の割合(伝達比率)を説明する為の概念図である。図6において、電気伝達とは、エンジン12からの動力が電気的に伝達されることであるので上記電気経路における動力伝達を意味しており、流体伝達とは、エンジン12からの動力がトルクコンバータ16内の流体(作動油)により伝達されることであるので上記機械経路における動力伝達を意味している。前述の図5において、エンジン回転速度Neが低くなるほどすなわちトルクコンバータ16の速度比eが大きくなるほど第1電動機トルクTmg1が負回転方向に絶対値として大きくなるように第1電動機MG1の出力制御がなされるので、図6に示すように、速度比eが1に向けて大きくなるほど、前記電気伝達による動力の伝達比率RTOPELが大きくなる一方で前記流体伝達による動力の伝達比率RTOPMCが小さくなり、具体的には、速度比eが1に近付くほど前記電気伝達による動力の伝達比率RTOPELは100%に近付くことになる。この速度比eに対する上記伝達比率RTOPEL,RTOPMCの変化傾向は目標エンジン出力Pe*又はタービン回転速度Ntに拘らず同じである。
 次に、第1電動機MG1と第2電動機MG2とトルクコンバータ16とから構成された無段変速機60における動力伝達効率(=出力された動力/入力された動力;明細書全体を通して単に伝達効率ともいう)について説明する。先ず、トルクコンバータ16単体の伝達効率ηMCすなわち前記機械経路の伝達効率ηMCについて図7を用いて説明する。図7のように、速度比eが小さい側のトルクコンバータ領域では、トルクコンバータ16の伝達効率ηMCは所定の速度比eにて極大値をとり、速度比eが零では伝達効率ηMCも零となる。そして、速度比eが大きい側のカップリング領域では、上記伝達効率ηMCは速度比eが大きくなるほど高くなり、トルクコンバータ領域及びカップリング領域の全体で見れば、伝達効率ηMCは速度比eが1に近いところで最も高くなる。このトルクコンバータ16の伝達効率ηMCに前記電気経路の伝達効率ηELと図6に示した伝達比率RTOPEL,RTOPMCとを加味すれば、前記電気経路と前記機械経路とにおいてエンジン12からの動力が伝達されるときの合成伝達効率ηCVTすなわち無段変速機60全体の伝達効率ηCVTを求めることができる。
 図8は、前記電気経路の伝達効率ηELを一定と仮定した場合に、上記合成伝達効率ηCVTとトルクコンバータ16の速度比eとの関係を示した図である。図8において前記機械経路(流体伝達)の伝達効率ηMCを示す一点鎖線は図7のものと同じである。図8に実線で示すように、前記電気経路(電気伝達)の伝達効率ηELは上記機械経路(流体伝達)の伝達効率ηMCと比較して、トルクコンバータ16の速度比eが変化しても殆ど変化しない。そして、エンジン12からの動力が速度比eに応じて図6に示すような伝達比率RTOPEL,RTOPMCで前記機械経路と前記電気経路との各々にて伝達される場合には、合成伝達効率ηCVTは、速度比eに対して破線で示すように変化する。図8における点P02,P03,P04はそれぞれ図5の点P02,P03,P04を図8の座標系に表したものであり、図8によれば、3つの点P02,P03,P04のうち合成伝達効率ηCVTは、点P04が示す速度比eにて最高になる。尚、図8において、点P02が示す速度比eよりも低い速度比eの範囲では、破線で示す合成伝達効率ηCVTは機械経路の伝達効率ηMCを下回って著しく低下するが、それは、第1電動機MG1と第2電動機MG2との間の電気的な動力伝達状態が、第1電動機MG1が電力を消費すると共に第2電動機MG2が発電する動力循環状態、言い換えれば第2電動機MG2から第1電動機MG1へ動力が電気的に伝達される動力循環状態となるからである。
 上述したように、車両用駆動装置10では、第1電動機トルクTmg1の調節によりエンジン動作点をタービン回転速度Ntに拘束されることなく連続的に変更できるので、本実施例では、この機能すなわち無段変速機60の無段変速機能を利用して、効率良くエンジン12を作動させ、更には、エンジン12を含む車両用駆動装置10全体で効率の良い運転がなされる制御が実行される。その制御機能の要部について、以下に説明する。
 図3に戻り、その図3に示すように電子制御装置40は、動作モード判断手段すなわち動作モード判断部70と、エンジン動作点制御手段すなわちエンジン動作点制御部72とを備えている。
 動作モード判断部70は、所定のシステム最適動作モードが選択されているか否かを判断する。例えば、運転者がシステム最適動作モードを選択する際にオンに切り替えられる動作モードスイッチがオンである場合には、動作モード判断部70はシステム最適動作モードが選択されていると判断する。そのシステム最適動作モードとは、エンジン12だけを効率良く作動させるのではなく、エンジン12と無段変速機60との全体で効率向上を図る動作モードであり、例えば燃費向上を極めて優先させたい場合に選択される。そのシステム最適動作モードは、上記動作モードスイッチの切換ではなく、例えばアクセル開度Accが殆ど変動しないような場合に自動的に選択されても差し支えない。
 エンジン動作点制御部72は、前記エンジン走行中において、第1電動機トルクTmg1を調節することでエンジン動作点を制御するエンジン動作点制御を実行する。その第1電動機トルクTmg1を調節する際、詳細には前述した図5に示すように、エンジントルクTeと第1電動機トルクTmg1との和が、トルクコンバータ16のポンプトルクTpと釣り合うように、第1電動機トルクTmg1を調節する。エンジン動作点制御部72は、前記エンジン動作点制御では基本的に第1電動機MG1を発電作動させるので、前記動力循環状態を除き第1電動機トルクTmg1は負の値である。前記エンジン動作点制御について具体的に説明すれば、エンジン動作点制御部72は、先ず、図9に示すような予め定められたエンジン最少燃料消費率線LFL上で目標エンジン出力Pe*が達成されるエンジン動作点P05を目標エンジン動作点として逐次決定する。ここで、図9は、ある一定のタービン回転速度Ntの下で図5と同じ座標系において、エンジン最少燃料消費率線LFL上の動作点を目標エンジン動作点としたときの第1電動機トルクTmg1及びポンプトルクTpを表した図であり、図9における破線L01及び実線L03は図5のものと同じである。また、前記エンジン最少燃料消費率線LFLは、エンジン12の燃料消費率が最小となるように予め実験的に定められたエンジン回転速度NeとエンジントルクTeとの関係を表すエンジン12の動作曲線であり、言い換えれば、エンジン12の燃費向上に最適な動作点である燃費最適点の連なりである。また、目標エンジン出力(必要エンジンパワー)Pe*は、運転者が車両に対して要求する出力であり、運転者の出力要求に対応できるように予め実験的に定められた関係からアクセル開度Accと車速Vとに基づいてエンジン動作点制御部72により逐次決定されるものであり、例えばその目標エンジン出力Pe*はアクセル開度Accが大きいほど大きく決定される。更に、蓄電装置36の充電残量SOCが所定の下限値以下に低下した場合には蓄電装置36へ充電すべき充電要求がなされ、目標エンジン出力Pe*は、その充電要求に基づく電力(要求充電電力)が前記アクセル開度Accと車速Vとに基づく算出値に加算されるのが好ましい。
 エンジン動作点制御部72は、上述のようにエンジン最少燃料消費率線LFL上に目標エンジン動作点(点P05)を定めると、図9に示すように、その点P05が示すエンジン回転速度Neに基づいてポンプトルクTpを算出し、そのポンプトルクTpと点P05が示すエンジントルクTeとに基づいて第1電動機トルクTmg1を算出する。そして、点P05が示すエンジン回転速度Neとタービン回転速度Ntとからトルクコンバータ16の速度比eを算出する。
 エンジン動作点制御部72は、前記エンジン最少燃料消費率線LFL上の目標エンジン動作点(点P05)に基づくポンプトルクTpと第1電動機トルクTmg1とを算出すると、前記機械経路に伝達される機械経路出力及び前記電気経路に伝達される電気経路出力から前記機械経路の伝達比率RTOPMC及び前記電気経路の伝達比率RTOPELがそれぞれ求まるので、前述した図8に示すように、予め実験的に求められ設定された速度比eと前記機械経路の伝達効率ηMCとの関係、及び、予め実験的に求められ設定された速度比eと前記電気経路の伝達効率ηELとの関係から、速度比eと上記伝達比率RTOPEL,RTOPMCとに基づいて合成伝達効率ηCVTを算出できる。すなわち、エンジン動作点制御部72は合成伝達効率ηCVTを逐次算出する。
 そして、その合成伝達効率ηCVTの算出と共に、エンジン動作点制御部72は、エンジン回転速度Ne及びエンジントルクTeで示されるエンジン動作点とエンジン効率ηENGとの予め実験的に求められ定められた関係(エンジン効率マップ)から、前記エンジン最少燃料消費率線LFL上の目標エンジン動作点(点P05)が示すエンジン回転速度NeとエンジントルクTeとに基づいてエンジン効率ηENGを逐次算出する。更に、エンジン動作点制御部72は、その算出した合成伝達効率ηCVTとエンジン効率ηENGとの積として得られる合成効率ηTOTALすなわち総合効率ηTOTALを逐次算出する。エンジン効率ηENGとは、エンジン12への供給燃料が完全に燃焼した場合の低位発熱量のうち仕事に変換される熱量の割合である。
 ここで、エンジン動作点制御部72は、前記エンジン動作点制御では、動作モード判断部70の判断に応じて、その制御内容を切り替える。具体的に、エンジン動作点制御部72は、動作モード判断部70によってシステム最適動作モードが選択されていると判断された場合には、合成伝達効率ηCVTとエンジン効率ηENGとの積である総合効率ηTOTALが大きくなる側にエンジン動作点をずらす。
 例えばエンジン動作点制御部72は、上記のように総合効率ηTOTALが大きくなる側に目標エンジン動作点をずらす場合には、目標エンジン出力Pe*を示す等パワー曲線(例えば図9の実線L03)上で目標エンジン動作点を徐々にずらしつつ、その目標エンジン動作点をずらす毎にその目標エンジン動作点に基づき第1電動機トルクTmg1更には総合効率ηTOTALを逐次算出する。そして、その総合効率ηTOTALが極大(好ましくは、最大)となった目標エンジン動作点を最終的な目標エンジン動作点として決定する。
 一方、エンジン動作点制御部72は、動作モード判断部70によってシステム最適動作モードが選択されていないと判断された場合には、上述したように総合効率ηTOTALが大きくなる側に目標エンジン動作点をエンジン最少燃料消費率線LFL上からずらすということはせず、エンジン最少燃料消費率線LFL上の目標エンジン動作点(図9の点P05)を最終的な目標エンジン動作点として決定する。
 エンジン動作点制御部72は、動作モード判断部70によってシステム最適動作モードが選択されていると判断された場合にもシステム最適動作モードが選択されていないと判断された場合にも、前記最終的な目標エンジン動作点を決定すると、その最終的な目標エンジン動作点が示すエンジン回転速度NeとエンジントルクTeとをそれぞれ、目標値である目標エンジン回転速度Ne*と目標エンジントルクTe*として逐次設定し、それと共に、その最終的な目標エンジン動作点に対応する第1電動機トルクTmg1と第1電動機回転速度Nmg1(=エンジン回転速度Ne)とをそれぞれ、目標値である目標第1電動機トルクTmg1*と目標第1電動機回転速度Nmg1*として逐次設定する。そして、エンジン動作点制御部72は、実際のエンジントルクTeが目標エンジントルクTe*に一致するように例えば追従するように、スロットル弁開度θTHを調節してエンジン12の出力制御を行い、それと共に、実際の第1電動機トルクTmg1が目標第1電動機トルクTmg1*に一致する(追従する)ように且つ実際の第1電動機回転速度Nmg1が目標第1電動機回転速度Nmg1*に一致する(追従する)ように、第1電動機MG1を制御する。以上のようにして、エンジン動作点制御部72は前記エンジン動作点制御を実行する。
 尚、実際の第1電動機回転速度Nmg1が目標第1電動機回転速度Nmg1*に一致するようにすることは、実際のエンジン回転速度Neが目標エンジン回転速度Ne*に一致するようにすることである。
 また、エンジン動作点制御部72は、前記エンジン動作点制御では、第2電動機MG2の出力トルクTmg2(以下、第2電動機トルクTmg2という)を駆動輪26に伝達する。その際、エンジン動作点制御部72は、基本的には、第1電動機MG1が発電した電力をそのまま第2電動機MG2に供給して第2電動機MG2を駆動するが、前記充電要求がなされた場合には、その充電要求により蓄電装置36に充電される要求充電電力分だけ目標エンジン出力Pe*を大きく算出し、第1電動機MG1が発電した電力から蓄電装置36に充電される電力を差し引いた残部を第2電動機MG2に供給して第2電動機MG2を駆動する。このように前記エンジン動作点制御では、第1電動機MG1が発電した電力の全部又は一部が第2電動機MG2で消費されるので、第2電動機トルクTmg2は第1電動機トルクTmg1に応じたトルクであり、第2電動機MG2での消費電力が抑えられれば第1電動機トルクTmg1が間接的に抑えられる関係にある。従って、前記エンジン動作点制御では、第1電動機トルクTmg1を調節することとは、前記電気経路において伝達される動力を調節することであり、第2電動機トルクTmg2を調節することであるとも言える。
 図10は、電子制御装置40の制御作動の要部、すなわち、無段変速機60の無段変速動作を利用してエンジン動作点を決定する制御作動を説明する為のフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。この図10に示す制御作動は、単独で或いは他の制御作動と並列的に実行される。尚、ステップ(以下、「ステップ」を省略する)SA1~SA3及びSA5~SA11はエンジン動作点制御部72に対応しており、SA4は動作モード判断部70に対応する。
 先ず、SA1においては、目標エンジン出力(必要エンジンパワー)Pe*が、予め定められた関係からアクセル開度Accと車速Vとに基づいて算出される。この目標エンジン出力Pe*は、蓄電装置36へ充電される場合にはその充電電力分だけ大きく算出されても良いし、また、蓄電装置36から放電される場合にはその放電電力分だけ小さく算出されても良い。更にSA1では、図9に示すような前記エンジン最少燃料消費率線LFL上で上記算出された目標エンジン出力Pe*が達成されるエンジン動作点(例えば図9の点P05)が目標エンジン動作点として決定される。SA1の次はSA2に移る。
 SA2においては、図9に例示したようにして、SA1で決定された目標エンジン動作点(例えば点P05)に基づいて第1電動機トルクTmg1が算出され決定される。すなわち、その目標エンジン動作点に対応した前記電気経路に伝達される電気経路出力(単位は例えばkW)が、第1電動機トルクTmg1と第1電動機回転速度Nmg1(=エンジン回転速度Ne)とに基づいて算出される。そして、その目標エンジン動作点に対応した前記機械経路に伝達される機械経路出力(単位は例えばkW)が、ポンプトルクTpとポンプ回転速度Np(=エンジン回転速度Ne)とに基づいて算出される。SA2の次はSA3に移る。
 SA3においては、前記SA1で決定された目標エンジン動作点に基づく合成伝達効率ηCVTが、図8に示すような前記機械経路の伝達効率ηMC及び前記電気経路の伝達効率ηELの各々と速度比eとの関係から、タービン回転速度センサ52により検出されるタービン回転速度Ntと上記目標エンジン動作点が示すエンジン回転速度Neと前記SA2で算出された前記電気経路出力及び前記機械経路出力とに基づいて算出される。それと共に、前記SA1で決定された目標エンジン動作点に基づくエンジン効率ηENGが算出される。そして、その合成伝達効率ηCVTとそのエンジン効率ηENGとの積が総合効率(合成効率)ηTOTALとして算出される。SA3の次はSA4に移る。
 SA4においては、前記システム最適動作モードが選択されているか否かが判断される。このSA4の判断が肯定された場合、すなわち、前記システム最適動作モードが選択されている場合には、SA5に移る。一方、このSA4の判断が否定された場合には、SA11に移る。
 SA5においては、目標エンジン動作点が示すエンジン回転速度Neが所定の変化量ΔNeだけ増加されて新たな目標エンジン動作点が決定される。この目標エンジン動作点の段階的な変更は、前記SA1算出された目標エンジン出力Pe*が変化しないように行われる。従って、目標エンジン動作点が示すエンジン回転速度Neの変更と共に、目標エンジン動作点が示すエンジントルクTeも変更される。尚、SA5における変更前の目標エンジン動作点を前回の目標エンジン動作点と呼び、変更後の目標エンジン動作点を今回の目標エンジン動作点と呼ぶ。SA5の次はSA6に移る。
 SA6においては、前記SA2と同様にして、今回の目標エンジン動作点に基づいて第1電動機トルクTmg1が算出され、その今回の目標エンジン動作点に対応する前記電気経路出力及び前記機械経路出力が算出される。SA6の次はSA7に移る。
 SA7においては、前記SA3と同様にして、今回の目標エンジン動作点に基づく合成伝達効率ηCVTが算出されると共に、その今回の目標エンジン動作点に基づくエンジン効率ηENGが算出される。そして、その合成伝達効率ηCVTとそのエンジン効率ηENGとの積が総合効率(合成効率)ηTOTAL(今回合成効率という)として算出される。尚、前回の目標エンジン動作点に基づく総合効率(合成効率)ηTOTALである前回合成効率は、SA8での判断の為に予め記憶されている。SA7の次はSA8に移る。
 SA8においては、前回合成効率の方が今回合成効率よりも大きいか否かが判断される。このSA8の判断が肯定された場合、すなわち、前回合成効率の方が今回合成効率よりも大きい場合には、SA9に移る。一方、このSA8の判断が否定された場合には、SA5に移る。
 SA9においては、目標エンジン動作点が、前回の目標エンジン動作点に戻される。すなわち、前記SA5で決定された今回の目標エンジン動作点が示すエンジン回転速度Neが前記所定の変化量ΔNeだけ減少されて新たな目標エンジン動作点が決定される。このとき、SA5と同様に、目標エンジン出力Pe*が変化しないように、目標エンジン動作点が示すエンジントルクTeも変更される、すなわち前回のものに戻される。SA9の次はSA10に移る。
 SA10においては、前記SA2と同様にして、前記SA9にて新たに決定された目標エンジン動作点に基づいて第1電動機トルクTmg1が算出され、そのSA9にて新たに決定された目標エンジン動作点に対応する前記電気経路出力及び前記機械経路出力が算出される。SA10の次はSA11に移る。
 SA11においては、実際のエンジン回転速度Ne及びエンジントルクTeが示すエンジン12の実際の動作点が、最終的に決定された目標エンジン動作点に一致するように例えば追従するように、エンジン12及び第1電動機MG1の出力制御が行われる。そして、第2電動機トルクTmg2が駆動輪26に伝達される。このとき、第1電動機MG1が発電した電力はそのまま第2電動機MG2に供給されて第2電動機MG2が駆動されるが、蓄電装置36に充電される場合には、その第1電動機MG1が発電した電力から蓄電装置36に充電される電力を差し引いた残部が第2電動機MG2に供給されて第2電動機MG2が駆動される。
 本実施例では次のような効果(A1)乃至(A4)がある。(A1)本実施例によれば、第1電動機MG1と第2電動機MG2とトルクコンバータ16とが全体として無段変速機60を構成しており、エンジン動作点制御部72は、前記エンジン走行中において、第1電動機トルクTmg1を調節することでエンジン動作点を制御する前記エンジン動作点制御を実行する。そして、そのエンジン動作点制御では、第2電動機トルクTmg2を駆動輪26に伝達する。従って、第1電動機トルクTmg1(基本的に回生トルク)を調節することにより無段変速機60の無段変速動作を行うことができ、その無段変速機60の無段変速動作により、エンジン動作点をタービン回転速度Ntに拘束されずに制御することが可能であるので、例えばエンジン12を燃費向上に最適な動作点(燃費最適点)で駆動することが可能であり、車両の燃費向上を図ることが可能である。
 (A2)また、本実施例によれば、エンジン動作点制御部72は、図5に示すように、エンジントルクTeと第1電動機トルクTmg1との和が、トルクコンバータ16の入力側負荷トルクであるポンプトルクTpと釣り合うように、第1電動機トルクTmg1を調節する。従って、トルクコンバータ16の特性に基づいて容易に第1電動機トルクTmg1を調節することができる。
 (A3)また、本実施例によれば、エンジン動作点制御部72は、動作モード判断部70によってシステム最適動作モードが選択されていると判断された場合には、合成伝達効率ηCVTとエンジン効率ηENGとの積である総合効率ηTOTALが大きくなる側にエンジン動作点をずらす。従って、そのエンジン動作点が上記総合効率ηTOTALに応じて変更されない場合と比較して、車両用駆動装置10全体として効率アップが図られ、車両の燃費を向上させることが可能である。
 (A4)また、本実施例によれば、エンジン動作点制御部72は、動作モード判断部70によってシステム最適動作モードが選択されていないと判断された場合には、エンジン動作点がエンジン最少燃料消費率線LFLに沿うように且つ目標エンジン出力Pe*が達成されるようにエンジン動作点を制御する。従って、前記無段変速機60の無段変速動作により、エンジン12の燃料消費率上昇を抑えることが可能である。
 このように、本実施例の車両用駆動装置10では、第1電動機トルクTmg1を調節することにより、エンジン12の動力を伝達する伝達経路として前記電気経路と前記機械経路とを併用し、エンジン動作点制御を実行するので、車両の燃費向上を図ることができる。ところで、自動変速機18等の機器が暖機前であると、暖機するまで特定の制御を禁止乃至制限する必要が生じる可能性があることから、燃費向上を優先することよりも、自動変速機18等の機器の暖機を促進することを優先したい場合がある。
 本実施例の車両用駆動装置10では、第1電動機トルクTmg1を調節することにより前記エンジン動作点制御を実行することができるので、これを活用して自動変速機18等の機器の暖機を促進することを提案する。
 図7に示すように、トルクコンバータ16の伝達効率ηMCは、速度比eに対して極大値をとることはあるが、全体的に見れば、速度比eが低下する程低下する傾向がある。すなわち、トルクコンバータ16の動力伝達損失LSSMCは、速度比eが低下する程増大する傾向がある。また、車両用駆動装置10では、第1電動機トルクTmg1を調節することによりトルクコンバータ16の速度比eを変更することができるので、速度比eを低下させてトルクコンバータ16の動力伝達損失LSSMCを増大させることができる。これにより、トルクコンバータ16内の作動油の発熱量を増加させることができるので、作動油温THoilの上昇を促進して、トルクコンバータ16を作動させる作動油と同じ作動油にて作動させられる機器例えば自動変速機18の暖機を促進することができる。
 具体的には、電子制御装置40は、作動油温THoilが低い場合は、高い場合と比較して、第1電動機MG1と第2電動機MG2との間での電力授受を行いながら第1電動機トルクTmg1を調節することによりトルクコンバータ16の速度比eを低下させる。トルクコンバータ16の速度比eを低下させる態様としては、2つの態様に大別することができる。図11は、前記図9と同じ図上において、作動油温THoilが比較的低いときに設定される目標エンジン動作点を説明する為の図である。図11において、エンジン最少燃料消費率線LFL上で目標エンジン出力Pe*が達成されるエンジン動作点P05と比較してトルクコンバータ16の速度比eを低下させるには、エンジン動作点P06に示すように、エンジン動作点P05に対して、第1電動機MG1の回生トルクを低下させてエンジン回転速度Neを上昇させれば良い。また、トルクコンバータ16の速度比eを低下させる程、暖機を促進することができるので、作動油温THoilが低い程、トルクコンバータ16の速度比eを低下させる、すなわちエンジン回転速度Neを上昇させれば良いと考えられる。その為、エンジン動作点P06よりも更にエンジン回転速度Neを上昇させたエンジン動作点P07を目標エンジン動作点に設定する場合も考えられる。このエンジン動作点P07では、エンジントルクTeとポンプトルクTpとが釣り合うエンジン動作点P02に対して、エンジン回転速度Neが高回転側となっており、前記エンジン動作点制御によるエンジン動作点P07への制御は、第1電動機トルクTmg1が正値となる第1電動機MG1の力行トルクを必要とする。つまり、エンジン動作点P02と比較してトルクコンバータ16の速度比eを低下させるには、エンジン動作点P07に示すように、エンジン動作点P02に対して、第1電動機MG1の力行トルクを増加させてエンジン回転速度Neを上昇させれば良い。つまり、暖機が必要なときには、エンジン動作点P05に替えて、作動油温THoilに応じたエンジン動作点P06やエンジン動作点P07を目標エンジン動作点に設定すれば良い。このように、トルクコンバータ16の速度比eを低下させる態様としては、目標エンジン動作点を、例えばエンジン動作点P06とする態様と、例えばエンジン動作点P07とする態様との2つの態様に大別することができる。特に、目標エンジン動作点を例えばエンジン動作点P07とする態様では、動力循環状態となることから、これによる損失の増加により暖機が促進され易い。
 ここで、本実施例の車両用駆動装置10は、自動変速機18を備えているので、これを活用して自動変速機18等の機器の暖機を促進することが可能である。図12は、ある一定の車速Vの下で図9と同じ座標系において、エンジン最少燃料消費率線LFL上の動作点P05を目標エンジン動作点としたときの第1電動機トルクTmg1及びポンプトルクTpを自動変速機18のギヤ段毎に表した図であり、図12における実線L03、エンジン最少燃料消費率線LFL、及び点P05は図9のものと同じである。図12において、破線L04及び一点鎖線L05は何れもポンプトルクTpとエンジン回転速度Neとの関係を表す曲線であるが、破線L04は、一点鎖線L05よりも自動変速機18のギヤ段が高車速側のギヤ段である場合を表している。自動変速機18のギヤ段が高車速側であるほどタービン回転速度Ntが低くなってトルクコンバータ16の速度比eが小さくなるので、目標エンジン動作点を動作点P05とする場合、破線L04に対応する速度比e1の方が一点鎖線L05に対応する速度比e2よりも小さくされる。また、前記エンジン動作点制御によってエンジン回転速度Neを上昇させる際に例えば上記エンジン動作点P07とするような態様をとる場合に、破線L04の方が一点鎖線L05よりも、エンジン回転速度Neを上昇させられる領域例えば動力循環状態となるエンジン回転速度Neの領域が広いことから、暖機を一層促進させることが可能である。従って、電子制御装置40は、作動油温THoilが低い程、自動変速機18のギヤ段(変速比γat)を高車速側のギヤ段(変速比)としても良い。図13は、予め求められて記憶された変速マップの一部であって、作動油温THoilに応じて変更されるあるギヤ段間のアップシフト線を示す図である。図13において、アップシフト線は、実線に示すように作動油温THoilが低い程低車速側とされ、破線に示すように作動油温THoilが高い程高車速側とされる。すなわち、このアップシフト線は、作動油温THoilが低い程、自動変速機18のアップシフトが早められるように低車速側へ変更される。
 図3に戻り、変速制御手段すなわち変速制御部74は、例えば図13に示すような作動油温THoilに応じてアップシフト線が変更される変速マップから、アクセル開度Acc及び車速Vに基づいて自動変速機18の変速を実行する。
 暖機要否判定手段すなわち暖機要否判定部76は、例えば車両用駆動装置10(例えば自動変速機18)の暖機が必要であるか否かを、作動油温THoilが所定低油温よりも低いか否かに基づいて判定する。上記所定低油温は、例えば作動油温THoilが燃費向上よりも車両用駆動装置10の暖機を促進する必要がある程低くなっていることを判断する為の予め求められて記憶された低油温判定値である。
 エンジン動作点制御部72は、例えば暖機要否判定部76により車両用駆動装置10の暖機が必要でないと判定された場合には、エンジン最少燃料消費率線LFL上で目標エンジン出力Pe*が達成されるエンジン動作点或いは総合効率ηTOTALが極大となるエンジン動作点を、目標エンジン動作点として決定する。そして、エンジン動作点制御部72は、その決定した目標エンジン動作点が実現されるように前記エンジン動作点制御を実行する。
 暖機時目標動作点設定手段すなわち暖機時目標動作点設定部78は、例えば暖機要否判定部76により車両用駆動装置10の暖機が必要であると判定された場合には、暖機を促進する為の目標エンジン動作点である暖機時目標エンジン動作点を設定する。具体的には、暖機時目標動作点設定部78は、作動油温THoilが低い程暖機を促進する為にトルクコンバータ16の目標速度比e*が小さくなるように予め求められて記憶された例えば図14に示すような関係(目標速度比マップ)から、実際の作動油温THoilに基づいて目標速度比e*を決定する。暖機時目標動作点設定部78は、その決定した目標速度比e*から実際のタービン回転速度Ntに基づいて目標エンジン回転速度Ne*(=Nt/e*)を算出する。暖機時目標動作点設定部78は、その目標エンジン回転速度Ne*にて目標エンジン出力Pe*が達成される目標エンジントルクTe*を算出する。この目標エンジン回転速度Ne*と目標エンジントルクTe*とで示されるエンジン動作点が暖機時目標エンジン動作点となる。このように、暖機時目標動作点設定部78は、上記目標速度比e*を実現するように暖機時目標エンジン動作点を設定する。
 このように、暖機時目標動作点設定部78は、暖機時目標エンジン動作点を設定する際には、作動油温THoilに応じた目標速度比e*を設定する。ここで、図6に示すように、速度比eが小さくなる程、電気伝達による動力の伝達比率RTOPELが小さくなる一方で流体伝達による動力の伝達比率RTOPMCが大きくなる。つまり、速度比eと流体伝達による動力の伝達比率RTOPMCとは、1対1の関係にある。そこで、暖機時目標動作点設定部78は、作動油温THoilが低い程暖機を促進する為に流体伝達による動力の伝達比率RTOPMCの目標値(以下、目標流体経路割合RTOPMC*という)が大きくなるように予め求められて記憶された例えば図15に示すような関係(目標流体経路割合マップ)から、実際の作動油温THoilに基づいて目標流体経路割合RTOPMC*を決定する。そして、暖機時目標動作点設定部78は、例えば図6に示すような関係から、その決定した目標流体経路割合RTOPMC*を実現することができる目標速度比e*を設定しても良い。
 速度比変更可否判定手段すなわち速度比変更可否判定部80は、例えば暖機時目標動作点設定部78により設定された暖機時目標エンジン動作点を実現する為の第1電動機MG1の動作点(目標第1電動機トルクTmg1*及び目標第1電動機回転速度Nmg1*)、及び第1電動機MG1と第2電動機MG2との間での電力授受に基づく第2電動機MG2の動作点(第2電動機トルクTmg2及び第2電動機回転速度Nmg2)が、第1電動機MG1及び第2電動機MG2のそれぞれの定格出力の範囲内であるか否かを判定する。この定格出力は、例えば第1電動機MG1及び第2電動機MG2のそれぞれの使用環境に許容されるように予め実験的に求められて設定された第1電動機MG1及び第2電動機MG2のそれぞれの最大出力(最大能力)である。例えば、各電動機の定格出力は、良く知られているように、電動機回転速度Nmgが低い程、許容される電動機トルクTmgの上限値が大きくされ、電動機トルクTmgが小さい程、許容される電動機回転速度Nmgの上限値が高くされている。
 変速制御部74は、速度比変更可否判定部80により暖機時目標エンジン動作点を実現する際に第1電動機MG1及び第2電動機MG2のうちの少なくとも一方の動作点が各電動機のそれぞれの定格出力の範囲を外れると判定された場合には、第1電動機MG1及び第2電動機MG2の各動作点が各電動機のそれぞれの定格出力の範囲内となるように自動変速機18の変速制御を実行する。
 例えば、前記エンジン動作点制御においてエンジン動作点を移動する際に、ある第1電動機トルクTmg1が必要となる場合、第1電動機MG1の定格出力上、第1電動機回転速度Nmg1が高い程、第1電動機MG1の動作点はその定格出力を外れ易い。すなわち、図12に示すように、例えば同じ第1電動機トルクTmg1A(或いは第1電動機トルクTmg1B)が必要となる場合、自動変速機18が低車速側ギヤ段とされる程、第1電動機回転速度Nmg1が高くなる為、第1電動機MG1の動作点はその定格出力を外れ易い。そこで、変速制御部74は、暖機時目標エンジン動作点を実現する際の目標第1電動機トルクTmg1*において目標第1電動機回転速度Nmg1*が第1電動機MG1の定格出力の範囲を外れるときには、自動変速機18のアップシフトを実行する。一方、前記エンジン動作点制御においてエンジン動作点を移動する際に、第1電動機MG1と第2電動機MG2との間での電力授受に基づく第2電動機MG2の動作点における第2電動機MG2のパワー(第2電動機パワー)としてある第2電動機パワーが必要となる場合、第2電動機回転速度Nmg2が低い程、第2電動機トルクTmg2が大きくなる為、第2電動機MG2の定格出力上、第2電動機MG2の動作点はその定格出力を外れ易い。そこで、変速制御部74は、暖機時目標エンジン動作点を実現する際に、第1電動機MG1と第2電動機MG2との間での電力授受における第2電動機パワーを得る為の第2電動機トルクTmg2が第2電動機MG2の定格出力の範囲を外れるときには、自動変速機18のダウンシフトを実行する。このように、変速制御部74は、速度比変更可否判定部80により第1電動機MG1及び第2電動機MG2のうちの少なくとも一方の動作点が各電動機のそれぞれの定格出力の範囲を外れると判定された場合には、各電動機の動作点をそれぞれ定格出力の範囲内とする為の自動変速機18のギヤ段を判断し、その判断したギヤ段となるように自動変速機18の変速制御を実行する。
 図16は、電子制御装置40の制御作動の要部、すなわち、第1電動機トルクTmg1を調節することでエンジン動作点を制御することにより暖機を促進する制御作動を説明する為のフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。この図16に示す制御作動は、単独で或いは他の制御作動と並列的に実行される。尚、ステップ(以下、「ステップ」を省略する)SB1は暖機要否判定部76に対応し、SB2は暖機時目標動作点設定部78,速度比変更可否判定部80に対応し、SB3は変速制御部74に対応し、SB4は暖機時目標動作点設定部78,エンジン動作点制御部72に対応し、SB5はエンジン動作点制御部72に対応する。
 先ず、SB1においては、例えば自動変速機18の暖機が必要であるか否かが、作動油温THoilが所定低油温よりも低いか否かに基づいて判定される。このSB1の判断が肯定された場合、すなわち自動変速機18の暖機が必要である場合には、SB2に移る。一方で、このSB1の判断が否定された場合、すなわち自動変速機18の暖機が必要でない場合には、SB5に移る。
 SB2においては、例えば図14に示すような目標速度比マップから実際の作動油温THoilに基づいて決定した目標速度比e*を実現するように暖機時目標エンジン動作点が設定される。そして、その設定された暖機時目標エンジン動作点を実現する為の第1電動機MG1の動作点及び第2電動機MG2の動作点が、第1電動機MG1及び第2電動機MG2のそれぞれの定格出力の範囲内であるか否かが判定される。このSB2の判断が肯定された場合、すなわち暖機時目標エンジン動作点を実現する為の第1電動機MG1の動作点及び第2電動機MG2の動作点がそれぞれの定格出力の範囲内である場合には、SB4に移る。一方で、このSB2の判断が否定された場合、すなわち暖機時目標エンジン動作点を実現する為の第1電動機MG1の動作点及び第2電動機MG2の動作点のうちの少なくとも一方の動作点がそれぞれの定格出力の範囲を外れる場合には、SB3に移る。
 SB3においては、例えば第1電動機MG1及び第2電動機MG2の動作点を各電動機のそれぞれ定格出力の範囲内とする為の自動変速機18のギヤ段が判断され、その判断されたギヤ段となるように自動変速機18の変速制御が実行される。
 SB4においては、現ギヤ段における暖機時目標エンジン動作点が設定され、第1電動機トルクTmg1を調節することによりその設定された暖機時目標エンジン動作点が実現されるように前記エンジン動作点制御が実行される。
 SB5においては、例えばエンジン最少燃料消費率線LFL上で目標エンジン出力Pe*が達成されるエンジン動作点或いは総合効率ηTOTALが極大となるエンジン動作点が、目標エンジン動作点として決定(選択)される。そして、その決定された目標エンジン動作点が実現されるように前記エンジン動作点制御が実行される。例えば、図10のフローチャートが実行される。
 上述のように、本実施例によれば、第1電動機トルクTmg1を調節することによりエンジン動作点制御が可能であり、作動油温THoilが低い場合は、高い場合と比較して、第1電動機MG1と第2電動機MG2との間での電力授受を行いながら第1電動機トルクTmg1を調節することによりトルクコンバータ16の速度比eを低下させるので、トルクコンバータ16における伝達損失が増加させられて発熱量が増加させられる。よって、作動油温THoilの上昇を促進できることはもちろんのこと、その作動油温THoilの上昇により作動油にて作動させられる機器(例えば自動変速機18)の暖機を促進することができる。また、第1電動機トルクTmg1の調節が第1電動機MG1と第2電動機MG2との間での電力授受にて実行されるので、蓄電装置36の充電容量SOC等に拘わらずトルクコンバータ16の損失を増大させることができる。よって、蓄電装置36の充電容量SOC等に制限されることなく、幅広い領域で暖機を促進することができる。
 また、本実施例によれば、エンジントルクTeとポンプトルクTpとが釣り合うエンジン動作点に対して、第1電動機MG1の力行トルクを増加してエンジン回転速度Neを上昇させることで、作動油温THoilが低い程小さくなるように予め設定された目標速度比e*を実現するように暖機時目標エンジン動作点を設定するので、トルクコンバータ16における伝達損失が増加させられて発熱量が増加させられ、作動油にて作動させられる機器の暖機を適切に促進することができる。また、第1電動機MG1と第2電動機MG2との間での電力授受においては動力循環状態となるので、これによる損失の増加も期待できる。
 また、本実施例によれば、エンジン最少燃料消費率線LFL上で目標エンジン出力Pe*が達成されるエンジン動作点に対して、第1電動機MG1の回生トルクを低下してエンジン回転速度Neを上昇させることで、作動油温THoilが低い程小さくなるように予め設定された目標速度比e*を実現するように暖機時目標エンジン動作点を設定するので、トルクコンバータ16における伝達損失が増加させられて発熱量が増加させられ、作動油にて作動させられる機器の暖機を適切に促進することができる。
 また、本実施例によれば、前記作動油は、自動変速機18を作動させる為のものであるので、トルクコンバータ16にて自動変速機18の暖機を促進することができる。
 また、本実施例によれば、作動油温THoilが低い程、自動変速機18の変速比γatを高車速側の変速比とするので、トルクコンバータ16の速度比eを低下させられる範囲(例えばエンジン回転速度Neを上昇させられる範囲)が拡大し、一層の暖機促進を図ることができる。
 また、本実施例によれば、トルクコンバータ16の速度比eを低下させる際に、第1電動機MG1及び第2電動機MG2のうちの少なくとも一方の動作点が、各電動機のそれぞれの定格出力の範囲を外れる場合には、その定格出力の範囲内となるように自動変速機18の変速を実行するので、第1電動機トルクTmg1の調節を第1電動機MG1と第2電動機MG2との間での電力授受にて適切に実行することができる。よって、蓄電装置36の充電容量SOC等に拘わらずトルクコンバータ16の損失を適切に増大させることができる。
 また、本実施例によれば、トルクコンバータ16の速度比eを低下させる為に調節されるときの第1電動機トルクTmg1において第1電動機回転速度Nmg1が前記定格出力の範囲を外れるときには、自動変速機18のアップシフトを実行し、第1電動機MG1と第2電動機MG2との間での電力授受における第2電動機パワーを得る為の第2電動機トルクTmg2が前記定格出力の範囲を外れるときには、自動変速機18のダウンシフトを実行するので、第1電動機トルクTmg1の調節を第1電動機MG1と第2電動機MG2との間での電力授受にて確実に実行することができる。よって、蓄電装置36の充電容量SOC等に拘わらずトルクコンバータ16の損失を確実に増大させることができる。
 以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。
 例えば、前述の実施例では、エンジン最少燃料消費率線LFL上で目標エンジン出力Pe*が達成されるエンジン動作点或いは総合効率ηTOTALが極大となるエンジン動作点を目標エンジン動作点として設定するエンジン動作点制御を基本の制御として、作動油温THoilが低い場合は、高い場合と比較して、トルクコンバータ16の速度比eを低下させるように変更されたエンジン動作点を目標エンジン動作点として設定したが、これに限らない。例えば、エンジントルクTeとポンプトルクTpとが釣り合うエンジン動作点(成り行きのエンジン動作点)を基本の制御とするものであっても、本発明は適用され得る。或いは、第1電動機MG1が電力を発電すると共に第2電動機MG2が消費する動力分流状態ではそのエンジン動作点制御を基本の制御として実行すると共に、第1電動機MG1が電力を消費すると共に第2電動機MG2が発電する動力循環状態では成り行きのエンジン動作点とすることを基本の制御とするものであっても、本発明は適用され得る。尚、前記エンジン動作点制御では、上記動力循環状態が許容される場合があっても差し支えないことは言うまでもない。
 また、前述の実施例では、暖機を促進する際に、第1電動機MG1及び第2電動機MG2の動作点を各電動機のそれぞれ定格出力の範囲内とするように自動変速機18を変速制御したが、更に、上記基本の制御の切替え(例えば図11を用いて説明したトルクコンバータ16の速度比eを低下させる2つの態様の使い分け)と組み合わせて自動変速機18を変速制御しても良い。
 また、前述の実施例において、作動油温THoilに応じて変更されるアップシフト線の一例として、図13に示すような、作動油温THoilが低い程、自動変速機18のアップシフトが早められるように低車速側へ変更されるアップシフト線を例示したが、これに限らない。例えば、作動油温THoilが高い場合と低い場合との2段階で切り替わるアップシフト線、作動油温THoilが高い場合と、中程度の場合と、低い場合との3段階で切り替わるアップシフト線など、種々の態様が取り得る。
 また、前述の実施例において、自動変速機18は有段変速機であるが、変速比γatを連続的に変化させることが可能な無段変速機(CVT)であっても良い。
 また、前述の実施例において、車両用駆動装置10には、自動変速制御が実施される自動変速機18が備えられていたが、例えば、図17に示す車両用駆動装置110のように自動変速機18が無い構成も考え得る。
 また、前述の実施例において、図1に示すように第2電動機MG2は自動変速機18の入力軸20に連結されているので、第2電動機MG2は自動変速機18を介して駆動輪26に間接的に連結されていることになるが、その入力軸20ではなく出力歯車22に連結されていても差し支えない。そのように第2電動機MG2が出力歯車22に連結されているとすれば、第2電動機MG2と駆動輪26とは動力伝達が遮断されることなく一対一の関係で回転するので、第2電動機MG2は駆動輪26に直接連結されていると言える。また、第2電動機MG2は駆動輪26に組み込まれるホイールインモータであっても差し支えない。その場合には、左右の駆動輪26を合わせて合計2機の第2電動機MG2が設けられていることになる。
 また、前述の実施例において、図1に示すように第2電動機MG2は、エンジン12が間接的に連結された前輪である駆動輪26に連結されているが、エンジン12及び第1電動機MG1は図1の通り上記前輪に連結されている一方で、第2電動機MG2は上記前輪にではなく後輪に直接又は間接的に連結されていても差し支えない。そのように第2電動機MG2が後輪に連結されておればその後輪も駆動輪に含まれる。要するに、エンジン12からの動力で駆動される駆動輪と第2電動機MG2からの動力で駆動される駆動輪とは、別個の車輪であっても差し支えないということである。
 また、前述の実施例で説明した前記エンジン動作点制御すなわち無段変速機60の無段変速動作において、第1電動機トルクTmg1が調節されるが、その第1電動機トルクTmg1は、直接調節されてもよいし、第2電動機トルクTmg2の調節すなわち第2電動機MG2の出力の調節により、結果的に言い換えれば間接的に調節されてもよい。
 また、前述の実施例において、前記電気経路では、第1電動機MG1と第2電動機MG2との間での電力授受により動力伝達が電気的になされるが、例えば、第1電動機MG1が発電した電力が蓄電装置36を経由せずに第2電動機MG2に直接供給されても良いし、第1電動機MG1が発電した電力が蓄電装置36に一旦充電されその蓄電装置36から第2電動機MG2に供給される等して、その第1電動機MG1が発電した電力が第2電動機MG2に間接的に供給されても差し支えない。前記動力循環時でも同様である。
 また、前述の実施例において、前記エンジン動作点制御では、前記電気経路において、第1電動機MG1と第2電動機MG2との間での電力授受により動力伝達が電気的になされるが、例えば、第2電動機MG2は、蓄電装置36からの電力供給を受けて、或いは、その蓄電装置36からの電力供給と共に第1電動機MG1が発電した電力の供給を受けて、駆動されても差し支えない。尚、前記動力循環時に第1電動機MG1が力行する場合における第1電動機MG1への電力供給に関しても同様である。
 また、前述の実施例において、図1に示すように、第1電動機MG1はトルクコンバータ16のポンプ翼車16pに直接連結されているが、変速機、クラッチ、又は電動ベルト等を介してポンプ翼車16pに間接的に連結されていても差し支えない。
 また、前述の実施例において、車両用駆動装置10は蓄電装置36を備えているが、その蓄電装置36は無くても差し支えない。
 また、前述の実施例において、図10のフローチャートでは、SA3の次にSA4に移るが、それら両ステップの実行順序は何れが先でもよく、例えば、そのフローチャートは、SA2の次にSA4に移り、SA4の判断が肯定された場合にSA3に移り、そして、SA3の次にSA5に移るものであっても差し支えない。
 また、前述の実施例において、図10のフローチャートのSA5では、目標エンジン動作点が示すエンジン回転速度Neが所定の変化量ΔNeだけ増加されて新たな目標エンジン動作点が決定されるが、そのエンジン回転速度Neが所定の変化量ΔNeだけ減少されて新たな目標エンジン動作点が決定されても差し支えない。そのようにした場合には、図10のSA9では、そのSA5で決定された今回の目標エンジン動作点が示すエンジン回転速度Neが前記所定の変化量ΔNeだけ増加されて新たな目標エンジン動作点が決定される。
 また、前述の実施例の図10に示すフローチャートにおいて、SA3からSA10までのステップを備えず、SA2の次にSA11が実行されるフローチャートも考え得る。
 また、前述の実施例において、例えば、図9に点P05として示すように、目標エンジン動作点はエンジン最少燃料消費率線LFL上に設定されるが、エンジン最少燃料消費率線LFLから外れて設定されることも考え得る。
 また、前述の実施例において、車両は前記モータ走行を行うことが可能であるが、車両走行は常に前記エンジン走行でなされても差し支えない。
 また、前述の実施例において、トルクコンバータ16はロックアップクラッチLCを備えているが、無段変速機60の無段変速動作ではそのロックアップクラッチLCは解放されているので、ロックアップクラッチLCは無くても差し支えない。
 また、前述の実施例において、車両を後進させる場合には、自動変速機18を図2に示すRに変速し自動変速機18の入力軸20を正回転方向に回転させるが、自動変速機18を図2に示す1st~6thの何れかに変速し第2電動機MG2を負回転方向に駆動することで車両を後進させても差し支えない。
 また、前述の実施例において、車両用駆動装置10,110には流体伝動装置としてトルクコンバータ16が設けられているが、トルク増幅作用を利用する態様でなければ、トルクコンバータ16に替えて、フルードカップリングが設けられていても差し支えない。
 また、前述の実施例において、車両用駆動装置10,110は、FF方式やFR(フロントエンジン・リヤドライブ)方式などの種々の駆動方式の車両に用いられる。
 また、前述の実施例において、無段変速機60の無段変速動作では、図6に示すように前記電気経路及び前記機械経路の伝達比率RTOPEL,RTOPMCは段階的には変更されないが、図8に示すように一点鎖線と実線との交点が示す速度比を境として、低速度比域では前記電気経路の伝達効率ηELの方が前記機械経路の伝達効率ηMCよりも高い一方で、高速度比域では前記機械経路の伝達効率ηMCの方が前記電気経路の伝達効率ηELよりも高いので、例えば、上記低速度比域では前記電気経路のみで動力伝達を行い、上記高速度比域では前記機械経路のみで動力伝達を行うようにしても差し支えない。
 また、前述の実施例において、エンジン動作点制御部72は、動作モード判断部70によってシステム最適動作モードが選択されていると判断された場合には、総合効率ηTOTALが大きくなる側にエンジン動作点をずらすが、その総合効率ηTOTALに替えて、前記電気経路と前記機械経路とにおいてエンジン12からの動力が伝達されるときの動力伝達損失LSSCVTとエンジン12の損失LSSENG(以下、エンジン損失LSSENGという)とを合計した合計損失LSSTOTALに基づいて、エンジン動作点をずらすものであっても差し支えない。具体的には、その合計損失LSSTOTALが小さくなる側に、エンジン動作点をずらすものであっても差し支えないということである。そのようにしたとすれば、エンジン動作点が上記合計損失LSSTOTALに応じて変更されない場合と比較して、車両用駆動装置10全体として効率アップすなわちその合計損失LSSTOTALの低減が図られ、車両の燃費を向上させることが可能である。上記動力伝達損失LSSCVTは、無段変速機60に入力される動力すなわちエンジン出力Peと前記合成伝達効率ηCVTとに基づいて算出でき、上記エンジン損失LSSENGは、エンジン12への供給燃料が完全に燃焼した場合の単位時間当たりの低位発熱量である完全燃焼時エンジン出力PeCMPと前記エンジン効率ηENGとに基づいて算出できる。
 上記のようにエンジン動作点が、合計損失LSSTOTALが小さくなる側にずらされるのであれば、図10のフローチャートにおいて、SA3は図18のSD3に置き換えられ、SA7とSA8とは図19のSD7とSD8とにそれぞれ置き換えられる。そのSD3、SD7、及びSD8はエンジン動作点制御部72に対応する。
 その図10のSA3、SA7、SA8をSD3、SD7、SD8にそれぞれ置き換えたフローチャートを具体的に説明すれば、そのフローチャートでは、図10のSA2の次は図18のSD3に移り、そのSD3の次は図10のSA4に移る。そのSD3においては、前記SA3と同様にして、合成伝達効率ηCVTとエンジン効率ηENGとが算出される。更に、エンジン12における燃料消費量が時間経過に従って逐次検出されており、前記完全燃焼時エンジン出力PeCMPが単位時間当たりの上記燃料消費量に基づいて算出される。その完全燃焼時エンジン出力PeCMPとその単位時間当たりの燃料消費量との関係は、例えば予め実験的に求められている。そして、前記合計損失LSSTOTALが、その算出された合成伝達効率ηCVTとエンジン効率ηENGと完全燃焼時エンジン出力PeCMPとに基づいて算出される。
 また、図10のSA6の次は図19のSD7に移る。そのSD7においては、前記SD3と同様にして、今回の目標エンジン動作点に基づく合計損失LSSTOTAL(今回合計損失という)が算出される。尚、前回の目標エンジン動作点に基づく合計損失LSSTOTALである前回合計損失は、図19のSD8での判断の為に予め記憶されている。SD7の次はSD8に移る。
 SD8においては、前回合計損失の方が今回合計損失よりも小さいか否かが判断される。このSD8の判断が肯定された場合、すなわち、前回合計損失の方が今回合計損失よりも小さい場合には、図10のSA9に移る。一方、このSD8の判断が否定された場合には、図10のSA5に移る。図10におけるフローチャートにおいてSA3、SA7、SA8をSD3、SD7、SD8にそれぞれ置き換えたことにより、以上の点が異なるが、その他の点においては図10のフローチャートと同じである。
 尚、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。
10,110:車両用駆動装置
12:エンジン
16:トルクコンバータ(流体伝動装置)
16p:ポンプ翼車(入力側回転要素)
16t:タービン翼車(出力側回転要素)
18:自動変速機
26:駆動輪
40:電子制御装置(制御装置)
MG1:第1電動機
MG2:第2電動機

Claims (10)

  1.  エンジンからの動力が入力される入力側回転要素と駆動輪へ動力を出力する出力側回転要素とを有する流体伝動装置と、前記入力側回転要素に直接又は間接的に連結された第1電動機と、駆動輪に直接又は間接的に連結された第2電動機とを備えた車両用駆動装置の制御装置であって、
     前記第1電動機と前記第2電動機との間での電力授受により動力伝達が電気的になされる電気経路と、動力伝達が前記流体伝動装置を介して機械的になされる機械経路とを有し、前記第1電動機のトルクを調節することで前記エンジンの動作点を制御することが可能であり、
     前記流体伝動装置を作動させる為の作動油の温度が低い場合は、高い場合と比較して、前記第1電動機と前記第2電動機との間での電力授受を行いながら前記第1電動機のトルクを調節することにより該流体伝動装置の速度比を低下させることを特徴とする車両用駆動装置の制御装置。
  2.  エンジントルクと前記第1電動機のトルクとの和が、前記流体伝動装置の速度比に応じて前記入力側回転要素に生じる入力側負荷トルクと釣り合うように、前記第1電動機のトルクを調節するものであり、
     目標エンジン動作点が示すエンジン回転速度に基づいて前記入力側負荷トルクを求め、該入力側負荷トルクと該目標エンジン動作点が示すエンジントルクとに基づいて前記第1電動機のトルクを決定することを特徴とする請求項1に記載の車両用駆動装置の制御装置。
  3.  前記エンジントルクと前記入力側負荷トルクとが釣り合うエンジン動作点に対して、前記第1電動機の力行トルクを増加してエンジン回転速度を上昇させることで、前記作動油の温度が低い程小さくなるように予め設定された目標速度比を実現するように前記目標エンジン動作点を設定することを特徴とする請求項2に記載の車両用駆動装置の制御装置。
  4.  前記エンジンの動作点が予め定められた該エンジンの動作曲線に沿うように且つエンジン出力の目標値が達成されるエンジン動作点に対して、前記第1電動機の回生トルクを低下してエンジン回転速度を上昇させることで、前記作動油の温度が低い程小さくなるように予め設定された目標速度比を実現するように前記目標エンジン動作点を設定することを特徴とする請求項2に記載の車両用駆動装置の制御装置。
  5.  前記車両用駆動装置は、前記出力側回転要素と前記駆動輪との間に介装された自動変速機を備えており、
     前記作動油は、前記自動変速機を作動させる為のものであることを特徴とする請求項1乃至4の何れか1項に記載の車両用駆動装置の制御装置。
  6.  前記作動油の温度が低い程、前記自動変速機の変速比を高車速側の変速比とすることを特徴とする請求項5に記載の車両用駆動装置の制御装置。
  7.  前記流体伝動装置の速度比を低下させる際に、前記第1電動機及び前記第2電動機のうちの少なくとも一方の動作点が、予め設定された該第1電動機及び該第2電動機のそれぞれの定格出力を外れる場合には、該定格出力内となるように前記自動変速機の変速を実行することを特徴とする請求項5又は6に記載の車両用駆動装置の制御装置。
  8.  前記流体伝動装置の速度比を低下させる為に調節されるときの前記第1電動機のトルクにおいて該第1電動機の回転速度が前記定格出力を外れるときには、前記自動変速機のアップシフトを実行し、
     前記第1電動機と前記第2電動機との間での電力授受における該第2電動機のパワーを得る為の該第2電動機のトルクが前記定格出力を外れるときには、前記自動変速機のダウンシフトを実行することを特徴とする請求項7に記載の車両用駆動装置の制御装置。
  9.  前記車両用駆動装置に対する暖機要求が無い場合には、前記エンジンの動作点が予め定められた該エンジンの動作曲線に沿うように且つエンジン出力の目標値が達成されるように、前記第1電動機のトルクを調節することで該エンジンの動作点を制御することを特徴とする請求項1乃至8の何れか1項に記載の車両用駆動装置の制御装置。
  10.  前記電気経路と前記機械経路とにおいて前記エンジンからの動力が伝達されるときの動力伝達効率と該エンジンの動作点におけるエンジン効率との積で表される総合効率を該エンジンの動作点をずらしつつ逐次求め、該総合効率が大きくなる側に、該エンジンの動作点をずらすことを特徴とする請求項9に記載の車両用駆動装置の制御装置。
PCT/JP2011/076220 2011-11-14 2011-11-14 車両用駆動装置の制御装置 WO2013072998A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/076220 WO2013072998A1 (ja) 2011-11-14 2011-11-14 車両用駆動装置の制御装置
JP2013544014A JP5765433B2 (ja) 2011-11-14 2011-11-14 車両用駆動装置の制御装置
US14/357,838 US9604525B2 (en) 2011-11-14 2011-11-14 Control device for vehicle drive device
CN201180074789.XA CN103917424B (zh) 2011-11-14 2011-11-14 车辆用驱动装置的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076220 WO2013072998A1 (ja) 2011-11-14 2011-11-14 車両用駆動装置の制御装置

Publications (1)

Publication Number Publication Date
WO2013072998A1 true WO2013072998A1 (ja) 2013-05-23

Family

ID=48429112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076220 WO2013072998A1 (ja) 2011-11-14 2011-11-14 車両用駆動装置の制御装置

Country Status (4)

Country Link
US (1) US9604525B2 (ja)
JP (1) JP5765433B2 (ja)
CN (1) CN103917424B (ja)
WO (1) WO2013072998A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120458A (ja) * 2013-12-24 2015-07-02 株式会社デンソー ハイブリッド車の駆動制御装置
JP2016037105A (ja) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 ハイブリッド車両の内燃機関始動制御装置
US10668801B2 (en) 2014-11-17 2020-06-02 Alpraaz Ab Powertrain for a vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013208320A1 (de) * 2013-05-07 2014-11-13 Deere & Company Verfahren zur Bestimmung eines Kontrollparameters eines Leistungs- oder Drehmomentverteilungsreglers für einen Hybridantrieb einer Arbeitsmaschine
TWI539100B (zh) * 2014-12-22 2016-06-21 財團法人工業技術研究院 一種複合動力傳動裝置
KR101836693B1 (ko) * 2016-09-05 2018-04-20 현대자동차주식회사 하이브리드 차량의 구동 토크 인터벤션 제어 장치 및 그 제어방법
CN107867165A (zh) * 2016-09-28 2018-04-03 比亚迪股份有限公司 用于车辆的动力驱动系统以及车辆
KR101865742B1 (ko) * 2016-10-18 2018-06-08 현대자동차 주식회사 자동 변속기의 제어방법
US11161406B2 (en) * 2018-08-07 2021-11-02 Exedy Corporation Power transmission device for vehicle
JP7393872B2 (ja) * 2019-03-20 2023-12-07 株式会社Subaru 駆動システム
JP7439796B2 (ja) * 2021-06-16 2024-02-28 トヨタ自動車株式会社 車両用駆動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842660A (ja) * 1994-08-04 1996-02-16 Nissan Motor Co Ltd トルクコンバータの過熱検出および過熱対策装置
JP2010000815A (ja) * 2008-06-18 2010-01-07 Mazda Motor Corp 車両の駆動制御装置及び制御方法
JP2010215190A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 車両用動力伝達装置の制御装置
WO2011070673A1 (ja) * 2009-12-11 2011-06-16 トヨタ自動車株式会社 車両およびその制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3585798B2 (ja) * 1999-12-24 2004-11-04 本田技研工業株式会社 四輪駆動車両の駆動力制御装置
JP4438574B2 (ja) * 2004-09-01 2010-03-24 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4655723B2 (ja) * 2005-03-31 2011-03-23 トヨタ自動車株式会社 車両およびその制御方法
US7918763B2 (en) * 2007-04-12 2011-04-05 Ford Global Technologies, Llc Control strategy for multi-mode vehicle propulsion system
JP4807370B2 (ja) 2008-03-25 2011-11-02 トヨタ自動車株式会社 トルクコンバータの制御装置
US8224513B2 (en) 2008-06-27 2012-07-17 Ford Global Technologies, Llc Torque modulation control of a hybrid electric vehicle
JP2010111317A (ja) * 2008-11-07 2010-05-20 Denso Corp ハイブリッド駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842660A (ja) * 1994-08-04 1996-02-16 Nissan Motor Co Ltd トルクコンバータの過熱検出および過熱対策装置
JP2010000815A (ja) * 2008-06-18 2010-01-07 Mazda Motor Corp 車両の駆動制御装置及び制御方法
JP2010215190A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 車両用動力伝達装置の制御装置
WO2011070673A1 (ja) * 2009-12-11 2011-06-16 トヨタ自動車株式会社 車両およびその制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015120458A (ja) * 2013-12-24 2015-07-02 株式会社デンソー ハイブリッド車の駆動制御装置
JP2016037105A (ja) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 ハイブリッド車両の内燃機関始動制御装置
US10668801B2 (en) 2014-11-17 2020-06-02 Alpraaz Ab Powertrain for a vehicle
US11046168B2 (en) 2014-11-17 2021-06-29 Alpraaz Ab Powertrain for a vehicle

Also Published As

Publication number Publication date
JPWO2013072998A1 (ja) 2015-04-02
CN103917424B (zh) 2016-08-17
US9604525B2 (en) 2017-03-28
JP5765433B2 (ja) 2015-08-19
US20140309079A1 (en) 2014-10-16
CN103917424A (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5765433B2 (ja) 車両用駆動装置の制御装置
JP5700124B2 (ja) 車両用駆動装置の制御装置
JP5700123B2 (ja) 車両用駆動装置の制御装置
JP5522266B2 (ja) 車両用駆動装置の制御装置
JP4554702B2 (ja) 動力伝達装置の制御装置
JP2009023398A (ja) ハイブリッド車両用動力伝達装置の制御装置
JP5696729B2 (ja) 車両の制御装置
JP5842643B2 (ja) 車両用駆動装置の制御装置
JP5673815B2 (ja) 車両用駆動装置の制御装置
JP5831277B2 (ja) 車両用駆動装置の制御装置
JP5092953B2 (ja) 車両用動力伝達装置の制御装置
JP5987323B2 (ja) 車両の制御装置
JP5783058B2 (ja) 車両用駆動装置の制御装置
JP2013159326A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875977

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013544014

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14357838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875977

Country of ref document: EP

Kind code of ref document: A1