[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013061726A1 - ガスバリア性フィルム - Google Patents

ガスバリア性フィルム Download PDF

Info

Publication number
WO2013061726A1
WO2013061726A1 PCT/JP2012/075077 JP2012075077W WO2013061726A1 WO 2013061726 A1 WO2013061726 A1 WO 2013061726A1 JP 2012075077 W JP2012075077 W JP 2012075077W WO 2013061726 A1 WO2013061726 A1 WO 2013061726A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
macromonomer
barrier film
acrylic resin
Prior art date
Application number
PCT/JP2012/075077
Other languages
English (en)
French (fr)
Inventor
塚村裕介
上林浩行
吉田実
鈴木基之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012548157A priority Critical patent/JP6070194B2/ja
Priority to US14/354,022 priority patent/US20150291753A1/en
Priority to EP12843442.0A priority patent/EP2772353A4/en
Publication of WO2013061726A1 publication Critical patent/WO2013061726A1/ja
Priority to US15/403,799 priority patent/US10844186B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08J2433/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2443/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Derivatives of such polymers
    • C08J2443/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/066Copolymers with monomers not covered by C08L33/06 containing -OH groups

Definitions

  • the present invention relates to a gas barrier film used for food and pharmaceutical packaging that requires high gas barrier properties and for electronic member applications such as solar cells, electronic paper, and organic EL.
  • PVD Physical vapor deposition
  • inorganic materials including inorganic oxides
  • CVD chemical vapor deposition
  • plasma enhanced chemical vapor deposition thermal chemical vapor deposition
  • photochemical vapor deposition etc.
  • the resulting gas barrier film is used as a packaging material for foods, pharmaceuticals, and the like that require blocking of various gases such as water vapor and oxygen, and as an electronic device member such as a thin-screen TV and a solar battery.
  • a gas containing an organic silicon compound vapor and oxygen is used to form a silicon oxide as a main component on a substrate by a plasma CVD method, and at least one kind of carbon, hydrogen, silicon and oxygen.
  • a method of improving gas barrier properties while maintaining transparency by using a compound that has been contained is used (Patent Document 1).
  • the purpose is a smooth base material or a surface smoothing with reduced protrusions and irregularities that cause generation of pinholes and cracks that deteriorate the gas barrier property.
  • a base material provided with an undercoat is used (Patent Document 2).
  • the surface of the substrate is affected by plasma emission heat, ion, radical collision, etc.
  • the film quality of the formed gas barrier layer is different, and there is a problem that a stable gas barrier property cannot be obtained.
  • the method that uses a smooth substrate or a substrate with an undercoat for surface smoothing as the substrate that forms the gas barrier layer improves the reproducibility of gas barrier properties by preventing the occurrence of pinholes and cracks.
  • the film quality of the formed gas barrier layer is not improved, the performance has not been dramatically improved.
  • the present invention is intended to provide a gas barrier film that can dramatically improve gas barrier properties and develop stable gas barrier properties without using a special base material. .
  • an inorganic layer on at least one side of the polymer substrate Are gas barrier films arranged in contact with each other in this order.
  • a side chain having an acrylic polymer skeleton II
  • III A side chain having a skeleton containing a fluorine atom
  • the side chain is at least the above (II) and / or ( It is preferable to include III).
  • the acrylic resin is An acrylic resin having a structure obtained by copolymerizing an acrylic monomer and at least one macromonomer selected from the group consisting of the following (i) to (iii) is preferable.
  • iii) Polymer having a fluorine atom
  • the macromonomer includes at least the above (ii) or the above (iii).
  • the undercoat layer preferably has a surface free energy of 10 to 45 mN / m, more preferably 10 to 25 mN / m.
  • the acrylic resin is preferably a copolymer obtained by adding 3 to 8 parts by mass of a macromonomer to 100 parts by mass of the acrylic monomer having the following composition.
  • the inorganic layer preferably has a thickness of 10 to 1000 nm and is composed of a composition containing a zinc compound and a silicon oxide.
  • the inorganic layer is preferably the following [B1] layer or [B2] layer.
  • [B1] layer a layer composed of a coexisting phase of zinc oxide-silicon dioxide-aluminum oxide
  • [B2] layer a layer composed of a coexisting phase of zinc sulfide and silicon dioxide
  • B1] layer has a zinc (Zn) atom concentration of 20 to 40 atom%, a silicon (Si) atom concentration of 5 to 20 atom%, and an aluminum (Al) atom concentration of 0.5 to 5 atom as measured by ICP emission spectroscopy. %
  • the oxygen (O) atom concentration is preferably 35 to 70 atom%.
  • the inorganic layer is a [B2] layer
  • the [B2] layer is composed of zinc sulfide and It is preferable that the zinc sulfide is composed of a composition having a mole fraction of 0.7 to 0.9 with respect to the total amount of silicon dioxide.
  • the surface roughness Ra of the inorganic layer is preferably 2 nm or less.
  • the manufacturing method of the gas barrier film of the present invention is provided on at least one side of the polymer substrate, Forming an undercoat layer mainly composed of an acrylic resin obtained by copolymerizing an acrylic monomer and at least one macromonomer selected from the group consisting of the following (i) to (iii):
  • an inorganic layer is formed on the undercoat layer.
  • Macromonomer having a radical polymerizable group at one end of an acrylic polymer ii) Macromonomer having a radical polymerizable group at one end of a polymer having a dimethylsiloxane skeleton
  • the inventors of the present invention have made extensive studies for the purpose of obtaining a gas barrier film having a good gas barrier property without selecting the type of polymer substrate, and at least one side of the polymer substrate has a specific skeleton side.
  • an undercoat layer mainly composed of an acrylic resin having a chain and an inorganic layer are arranged in contact in this order, it has been found that the above problems can be solved at once.
  • the inorganic layer is a layer that plays a central role in the development of gas barrier properties, but it is dramatically improved in gas barrier properties by being formed on and in contact with a specific undercoat layer. This is what we can do.
  • the undercoat layer mainly composed of an acrylic resin means that the acrylic resin is contained in an amount of 65% by mass or more in the undercoat layer, and more preferably 80% by mass or more.
  • the remaining components constituting the undercoat layer (hereinafter referred to as subcomponents of the undercoat layer) will be described later.
  • FIG. 1 is a cross-sectional view showing an example of the gas barrier film of the present invention.
  • a specific undercoat layer 2 and an inorganic layer 3 are in contact with one side of a polymer substrate 1 in this order. It is laminated in a state.
  • the polymer base material 1 and undercoat Another layer may be disposed between the layers 2 for the purpose of improving the adhesion under high temperature and high humidity (moisture heat adhesion).
  • the polymer base material used in the present invention is not particularly limited as long as it has a film form. However, since the polymer base material has flexibility necessary for a gas barrier film, it is a polymer base material made of an organic polymer. Preferably there is.
  • the organic polymer that can be preferably used in the present invention include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyamide, ABS resin, polycarbonate, polystyrene, and polyvinyl. Examples thereof include various polymers such as alcohol, saponified ethylene vinyl acetate copolymer, polyacrylonitrile, and polyacetal. Among these, it is preferable to contain polyethylene terephthalate.
  • the organic polymer may be either a homopolymer or a copolymer, and any one kind of organic polymer or a blend of plural kinds of organic polymers can be used.
  • the organic polymer that can be suitably used for the polymer substrate in the present invention is an organic polymer whose basic skeleton is linear as listed above (here, linear is branched).
  • the organic polymer having a basic skeleton is abbreviated as a linear organic polymer).
  • a cross-linking agent having two or more functional groups in the molecule is added for reaction or irradiation to form a partial cross-link, the number average molecular weight is 5000 to 20000. It is defined as an organic polymer.
  • the form of the polymer substrate may be a single layer film or a film having two or more layers, for example, a film formed by a coextrusion method.
  • a film stretched in a uniaxial direction or a biaxial direction may be used.
  • the surface of the polymer substrate on the side where the undercoat layer and the inorganic layer are formed is subjected to prior treatment such as corona treatment, ion bombardment treatment, solvent treatment, or roughening treatment. Processing may be performed.
  • a coating layer of an organic material, an inorganic material, or a mixture thereof may be applied to the opposite surface on the side on which the undercoat layer and the inorganic layer are formed for the purpose of improving the slipping property at the time of winding the film.
  • the thickness of the polymer substrate used in the present invention is not particularly limited, but is preferably 500 ⁇ m or less from the viewpoint of ensuring flexibility, and preferably 5 ⁇ m or more from the viewpoint of ensuring strength against tension or impact. Furthermore, the lower limit is more preferably 10 ⁇ m or more and the upper limit is more preferably 200 ⁇ m or less because of the ease of film processing and handling.
  • the acrylic resin used in the present invention is mainly composed of an acrylic resin having at least one side chain selected from the group consisting of the following (I) to (III).
  • (III) A side chain having a skeleton containing a fluorine atom and the acrylic resin used in the present invention is an acrylic monomer
  • Macromonomer having a radical polymerizable group at one end of an acrylic polymer (ii) Macromonomer having a radical polymerizable group at one end of a polymer having a dimethylsiloxane skeleton (iii) Polymer having a fluorine atom
  • the macromonomer having a radically polymerizable group at one end of (i) A macromonomer having a radically polymerizable group at one end of an acrylic polymer is referred to as “macromonomer (A)”, and (ii) has a dimethylsiloxane skeleton.
  • a macromonomer having a radically polymerizable group at one end of the polymer is referred to as “macromonomer (Si)”, and (iii) a macromonomer having a radically polymerizable group at one end of a polymer having a skeleton containing a fluorine atom as “ Macro monomer (F) "may also be described.
  • Macromonomer means a mixture of at least one or two or more macromonomers selected from the group consisting of (i) to (iii). To do.
  • an acrylic resin having a structure obtained by copolymerizing with at least one selected macromonomer has not been clarified, It is estimated that. That is, by using the specific acrylic resin described above, the surface free energy of the undercoat layer can be kept relatively low as will be described in detail later, so that in the initial growth process when forming the inorganic layer, the film It is considered that the film quality in the vicinity of the undercoat layer is densified because the atoms and particles that are the growth nuclei of the film easily move and diffuse.
  • the side chain contains at least the (II) and / or the (III) in that the effect of suppressing the surface free energy of the undercoat layer is low. More preferably, it is an acrylic resin having a structure containing at least (ii) or (iii). Further, the side chain contains (a) the (I) and (b) the (II) and / or the (III) in that fine adjustment of the denseness of the inorganic layer is easy.
  • the macromonomer is particularly preferably an acrylic resin having a structure including (a) (i) and (b) (ii) or (iii).
  • the acrylic resin used in the present invention includes (1) 1 to 8% by mass of methacrylic acid, (2) 5 to 16% by mass of 2-hydroxyethyl methacrylate, and (3) methyl methacrylate and / or dimethacrylate. It has a structure obtained by copolymerizing a total of 100% by mass of an acrylic monomer comprising 76 to 94% by mass of cyclopentanyl and 3 to 8 parts by mass of a macromonomer with respect to 100 parts by mass of the acrylic monomer. It is preferable.
  • the dicyclopentanyl methacrylate “Fancryl FA-513M” (product of Hitachi Chemical Co., Ltd.) can be used.
  • the proportion of (1) methacrylic acid in the acrylic monomer used for copolymerization of the acrylic resin is less than 1% by mass, the cohesive force of the acrylic resin is insufficient, and adhesion to the polymer substrate (1)
  • the proportion of (1) methacrylic acid exceeds 8% by mass, the acrylic resin may have insufficient chemical resistance such as water resistance and alkali resistance.
  • the proportion of (1) methacrylic acid is more preferably 1 to 7% by mass, and further preferably 1 to 5% by mass.
  • the proportion of (2) 2-hydroxyethyl methacrylate in the acrylic monomer used for copolymerization of the acrylic resin is less than 5% by mass, PET, PEN, polyamide, ABS resin, etc. In some cases, the adhesion to the polymer substrate may be insufficient.
  • the proportion of 2-hydroxyethyl methacrylate exceeds 16% by mass, for example, when a crosslinking agent is blended, an acrylic resin The pot life of the coating liquid is shortened, and the coating workability may be insufficient. From this viewpoint, the ratio of (2) 2-hydroxyethyl methacrylate is more preferably 5 to 12% by mass, and further preferably 8 to 12% by mass.
  • the proportion of (3) methyl methacrylate and / or dicyclopentanyl methacrylate in the acrylic monomer used for copolymerization of the acrylic resin is less than 76% by mass, the compatibility with the macromonomer is It may fall and the adhesiveness to a polymer base material may fall.
  • the ratio of (3) methyl methacrylate and / or dicyclopentanyl methacrylate is preferably 76 to 94% by mass, more preferably 81 to 94% by mass, and still more preferably 83 to 91% by mass.
  • the mixing ratio of the main chain derived from the acrylic monomer and the side chain derived from the macromonomer is changed, or the ratio of the side chain derived from the macromonomer described later ((a) having an acrylic polymer skeleton)
  • the compatibility between the main chain and the side chain in the molecule varies depending on the side chain and the ratio of (b) the side chain having a dimethylsiloxane skeleton and / or the side chain having a skeleton containing a fluorine atom.
  • the compatibility of main and side chains in the molecule changes, and characteristics such as free energy of the entire molecule Changes. Further, it is known that such a change in the characteristics of the macromonomer affects the change in the micro-layer separation structure (lamella, gyroid, cylinder, BCC, etc.).
  • the acrylic resin used in the present invention preferably has a structure obtained by copolymerizing 3 to 8 parts by mass of a macromonomer as a raw material with respect to 100 parts by mass of the acrylic monomer.
  • the proportion of the macromonomer used as the raw material for the acrylic resin hereinafter, sometimes referred to as the proportion of the macromonomer in the acrylic resin
  • the proportion of the macromonomer in the acrylic resin is less than 3 parts by mass, even if an undercoat layer is formed, it is high.
  • the unevenness on the surface of the molecular substrate cannot be sufficiently miniaturized, and the smoothness of the surface of the undercoat layer may be insufficient.
  • the proportion of the macromonomer in the acrylic resin exceeds 8 parts by mass, a structure obtained by copolymerizing methacrylic acid / 2-hydroxyethyl methacrylate / methyl methacrylate and / or dicyclopentanyl methacrylate There is a tendency that the compatibility between the main structure of the acrylic resin having a polymer and the side chain derived from the macromonomer tends to be low, and the undercoat layer formed from such an acrylic resin has an adhesive property to the polymer substrate. And transparency may be insufficient. From this viewpoint, the proportion of the macromonomer in the acrylic resin is preferably 3 to 8 parts by mass, more preferably 3 to 7 parts by mass, and further preferably 3 to 5 parts by mass.
  • the proportion of the macromonomer in the acrylic resin used in the present invention is 3 to 8 parts by mass, the balance of adhesion, transparency and smoothness with the polymer substrate of the undercoat layer to be formed is good. It is preferable because it exhibits excellent performance.
  • the number average molecular weight of the macromonomer used in the present invention is preferably 2000 to 50000, more preferably 3000 to 30000, and further preferably 5000 to 10000.
  • the number average molecular weight of the macromonomer is smaller than 2000, the main structure derived from an acrylic monomer consisting of methacrylic acid / 2-hydroxyethyl methacrylate / methyl methacrylate and / or dicyclopentanyl methacrylate, Since the side chain becomes relatively short, it is buried in the main structure, and it may be difficult to reduce the surface free energy of the coating film.
  • the number average molecular weight of the macromonomer exceeds 50,000, the viscosity at the time of polymerization is increased and the polymerization rate may be decreased.
  • the macromonomer (A) used in the present invention is preferably a polymethyl methacrylate macromonomer having a methacryloyl group at the terminal of polymethyl methacrylate.
  • the compatibility between the main chain derived from the acrylic monomer and the side chain derived from the macromonomer (A) is increased. Transparency of the undercoat layer is improved.
  • Examples of the commercially available polymethyl methacrylate macromonomer include “macromonomer AA-6” and “macromonomer 45% AA-6” (product of Toagosei Co., Ltd.).
  • a polydimethylsiloxane macromonomer having a radical polymerizable group at one end of a polymer having a polydimethylsiloxane skeleton is preferable.
  • the use of a polydimethylsiloxane macromonomer is preferable because it is easy to adjust the surface free energy described later to a low level.
  • the commercially available polydimethylsiloxane macromonomer includes “AK-5”, “AK-30” and “AK-32” (above, products of Toagosei Co., Ltd.), “X-22-174DK”, “ X-24-8201 "and” X-22-2426 "(product of Shin-Etsu Chemical Co., Ltd.) are exemplified.
  • the macromonomer (Si) such a commercial product may be used, or a polymer obtained by polymerization according to a method described in a literature (for example, JP 2009-197042 A) may be used.
  • the macromonomer (F) used in the present invention one having a radical polymerizable group at one end of a polymer having a fluorine atom is preferable.
  • a macromonomer (F) a commercially available product or a polymer which has been newly polymerized by the method described in the literature (for example, JP-A-10-120738) may be used.
  • JP-A-10-120738 a commercially available product or a polymer which has been newly polymerized by the method described in the literature (for example, JP-A-10-120738
  • 2,2,2-trifluoroethyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl are used as precursors.
  • acrylic acid esters such as acrylate, 1H, 1H, 5H-octafluoropentyl acrylate, 1H, 1H, 5H-octafluoropentyl acrylate, tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, And fluoroolefins such as vinyl fluoride and hexafluoropropylene. These may be used alone, or both may be mixed and used at an arbitrary ratio.
  • the acrylic monomer and macromonomer used in the present invention are preferably composed only of those having a methacryloyl group (CH 2 ⁇ C (CH 3 ) —C ( ⁇ O) O—) as radical polymerization reactive groups.
  • a methacryloyl group CH 2 ⁇ C (CH 3 ) —C ( ⁇ O) O—
  • the cohesive strength of the acrylic resin is further increased, the adhesion to the polymer substrate is improved, and the solvent resistance, heat resistance, etc. are improved. Therefore, it is preferable.
  • the contribution of the surface free energy of the undercoat layer to the effect of dramatically improving the gas barrier property is that the initial growth during the formation of the inorganic layer is achieved by setting the surface free energy to 45 mN / m or less.
  • the surface free energy of the undercoat layer is more preferably 30 mN / m or less, and further preferably 25 mN / m or less.
  • the surface free energy is preferably 10 mN / m or more.
  • the surface free energy of the undercoat layer is preferably 10 to 45 mN / m, more preferably 10 to 30 mN / m, and even more preferably 10 to 25 mN / m.
  • a method of adjusting the surface free energy of any one of the acrylic monomer, macromonomer and subcomponent of the undercoat layer can be employed. Because of the large degree of freedom that can be adjusted without affecting other characteristics, it is preferable to adjust the blending ratio, type, and combination of macromonomers.
  • the surface free energy of the macromonomer (A) is relatively high. For example, it can be adjusted within a range of about 30 to 45 mN / m by using 3 to 8 parts by mass with respect to 100 parts by mass of the acrylic monomer. become.
  • the macromonomer (Si) and / or the macromonomer (F) has a relatively low surface free energy.
  • the surface free energy can be adjusted by using (a) the macromonomer (A) and (b) the macromonomer (Si) and / or the macromonomer (F) and the content ratio thereof.
  • the compounding ratio of the macromonomer is not particularly limited, but from the viewpoint of adjusting the surface free energy within an appropriate range, the amount of (a) the macromonomer (A) used is 10 to 70 with respect to the total amount of macromonomer used.
  • the mass is preferably 20% by mass, and more preferably 20 to 50% by mass.
  • the macromonomer (Si) and / or the macromonomer (F) may be either a macromonomer (Si) or a macromonomer (F), or both You may mix and use it in a ratio.
  • macromonomers other than the above.
  • a mixture of two or more kinds of macromonomers having different molecular weight distributions may be used.
  • the surface free energy of the undercoat layer in the present invention is determined using each of four types of measurement liquids (water, formamide, ethylene glycol, methylene iodide) having known components (dispersion force, polar force, hydrogen bonding force).
  • the contact angle of the measurement liquid is measured, and each component can be calculated using the following formulas introduced from the extended Fowkes formula and Young formula.
  • the glass transition temperature (hereinafter also referred to as Tg) of the acrylic resin used in the present invention is preferably 50 to 180 ° C.
  • Tg of the acrylic resin used in the present invention is less than 50 ° C.
  • the cohesive force of the acrylic resin is weak and the adhesiveness with the inorganic layer may be insufficient.
  • the Tg of the acrylic resin exceeds 180 ° C., the acrylic resin becomes brittle and may not be able to follow processing such as bending and molding of the polymer substrate.
  • the Tg of the acrylic resin is more preferably 55 to 175 ° C., further preferably 60 to 170 ° C., and particularly preferably 80 to 160 ° C.
  • the Tg of the acrylic resin used in the present invention is 55 to 175 ° C., there is a balance in adhesion to a polymer substrate such as PET film, PEN film, nylon, ABS resin, flexibility, chemical resistance, etc. If the Tg is 80 to 160 ° C., the smoothness of the surface of the formed undercoat layer and the surface density of the undercoat layer based on the cohesive force are improved. In addition, the uniformity of the inorganic layer formed thereon and the smoothness of the surface of the inorganic layer are further improved, which is preferable.
  • the number average molecular weight of the acrylic resin used in the present invention is preferably 5000 to 30000, more preferably 8000 to 28000, and further preferably 8000 to 25000. If the acrylic resin used in the present invention has a number average molecular weight of 5,000 to 30,000, it is preferable because the surface roughness of the undercoat layer is further miniaturized because of appropriate leveling properties.
  • the acrylic resin used in the present invention is preferably obtained by copolymerizing an acrylic monomer and at least one macromonomer selected from the group consisting of the following (i) to (iii).
  • Polymer having a fluorine atom In such copolymerization, the acrylic resin is used in an organic solvent such as ethyl acetate, butyl acetate, toluene, xylene, an organic peroxide such as benzoyl peroxide, or azobis.
  • an azo polymerization initiator such as isobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile
  • a chain transfer agent such as n-dodecyl mercaptan and t-dodecyl mercaptan
  • a polymerization temperature 50 to It is desirable to produce by solution polymerization at 120 ° C.
  • the solution polymerization will be described in more detail. After the organic solvent and the macromonomer are charged into a polymerization vessel and heated to a predetermined polymerization temperature, a mixture of the acrylic monomer, the polymerization initiator, and the chain transfer agent is added. The method is preferred.
  • the copolymerization of the macromonomer and the acrylic monomer is improved by adding the acrylic monomer / polymerization initiator / chain transfer agent to the macromonomer / organic solvent charged in advance.
  • the adhesion to the polymer substrate and the smoothness of the surface of the undercoat layer are further improved, which is preferable.
  • the polymerization reaction for preparing the acrylic resin used in the present invention is preferably carried out in an inert gas atmosphere such as nitrogen gas. From the time of introduction of each monomer into the polymerization vessel, the polymerization vessel is replaced with an inert gas. It is preferable to add an acrylic monomer and a macromonomer (and an organic solvent if necessary) while blowing an inert gas. By performing the polymerization reaction under an inert gas atmosphere, it is possible to suppress the reaction of the radical species derived from the acrylic monomer and macromonomer generated in the reaction process with an active gas (oxygen gas or the like).
  • an active gas oxygen gas or the like
  • the method for producing the acrylic resin used in the present invention is specifically shown below. After introducing an organic solvent (for example, toluene, ethyl acetate) and polymethyl methacrylate macromonomer while blowing nitrogen gas into a polymerization apparatus equipped with a stirrer, nitrogen gas blowing port, condenser, and monomer dropping device, The temperature is raised to the polymerization temperature.
  • an organic solvent for example, toluene, ethyl acetate
  • polymethyl methacrylate macromonomer for example, toluene, ethyl acetate
  • an acrylic monomer for example, a polymerization initiator (for example, azobisisobutyronitrile, tertiary butylperoxy-2-ethylhexanoate, etc.)
  • a polymerization initiator for example, azobisisobutyronitrile, tertiary butylperoxy-2-ethylhexanoate, etc.
  • a mixture with n-dodecyl mercaptan, t-dodecyl mercaptan, etc. is dropped into the polymerization vessel at a predetermined rate.
  • a polymerization initiator is added to increase the polymerization rate, and stirring is continued for a predetermined period of time while maintaining the temperature, followed by cooling.
  • the undercoat layer mainly composed of the acrylic resin thus obtained is formed on at least one side of the polymer substrate, and it is also preferable that the undercoat layer contains the following subcomponent.
  • the undercoat layer used in the present invention preferably contains a crosslinking agent, a modifying polymer, and the like as subcomponents.
  • the crosslinking agent preferably used as a subcomponent of the undercoat layer include polyisocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, metaxylene diisocyanate, and isophorone diisocyanate that react with an acrylic resin to form a necessary crosslinked structure.
  • the modifying polymer that is preferably used as a subcomponent of the undercoat layer include polyester diols and polyurethane diols compatible with acrylic resins.
  • these subcomponents of the undercoat layer are added to the acrylic resin that is the main component of the undercoat layer, it is preferable to add these subcomponents to the acrylic resin solution after the solution polymerization described above.
  • organic solvent used for this purpose examples include alcohols such as ethyl alcohol, isopropyl alcohol, ethanol, isopropanol, n-propanol and butyl alcohol, esters such as ethyl acetate, butyl acetate and triethyl orthoacetate, cyclohexanone, Use ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkylene glycol ethers such as propylene glycol monopropyl ether, propylene glycol monobutyl ether, ethylene glycol monoethyl ether and ethylene glycol monobutyl ether, and aromatics such as toluene and xylene. be able to.
  • alcohols such as ethyl alcohol, isopropyl alcohol, ethanol, isopropanol, n-propanol and butyl alcohol
  • esters such as ethyl acetate, butyl acetate
  • the toughness of the undercoat layer can be improved, and PET, PEN, polyamide, ABS resin Adhesion to the surface on which the undercoat layer is formed (such as the surface of the polymer substrate or the surface of another layer if there is another layer between the polymer substrate and the undercoat layer) Can be improved.
  • a modifying polymer such as polyester diol
  • a polymer substrate such as PET, PEN, polyamide, ABS resin and the like
  • examples of commercially available polymers that can be used as such modifying polymers include “FLEXOREZ 148”, “FLEXOREZ 188”, “FLEXOREZ XP-171-90”, “FLEXOREZ UD-320” (above, KING INDUSTRIES). , INC.).
  • polyester diol is preferable.
  • the undercoat layer and the surface on which the undercoat layer is formed (the surface of the polymer substrate, or the surface of another layer if there is another layer between the polymer substrate and the undercoat layer) This is because the adhesion and the smoothness of the surface of the formed undercoat layer (surface on which the inorganic layer is formed) are further improved.
  • the acrylic resin coating liquid is a mixture of an acrylic resin, which is the main component of the undercoat layer, and a cross-linking agent, a modifying polymer, etc., which are subcomponents of the undercoat layer, and an appropriate organic solvent. Point to. Further, the main component and subcomponent of the undercoat layer contained in the acrylic resin coating liquid are collectively referred to as an undercoat layer forming component.
  • the proportion of the polyester polyol in the undercoat layer forming component in the acrylic resin coating solution used in the present invention is preferably 5 to 35% by mass.
  • the storage stability of the acrylic resin coating liquid is improved.
  • a pot life when a polyisocyanate compound such as isophorone diisocyanate, xylene diisocyanate, hexamethylene diisocyanate is mixed.
  • the flexibility, impact resistance, and scratch resistance (hardness) of the undercoat layer are improved.
  • the proportion of the polyester polyol is less than 5% by mass, the formed undercoat layer becomes brittle, and the flexibility and impact resistance may be insufficient.
  • the hydroxyl group equivalent of the polyester polyol used when the polyester polyol is included in the acrylic resin coating liquid used in the present invention is preferably 200 to 500, more preferably 220 to 500, and further preferably 230 to 480. If the hydroxyl group equivalent of the polyester polyol in this case is 200 to 500, the pot life when a polyisocyanate compound such as isophorone diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, etc. is mixed in order to urethane-crosslink the acrylic resin. It is preferable because the undercoat layer has good flexibility, flexibility and hardness, and the surface roughness of the undercoat layer can be further reduced.
  • acrylic resin coating liquid used in the present invention in addition to the undercoat layer forming component and the organic solvent, stabilizers such as antioxidants, light stabilizers, ultraviolet absorbers, antifoaming agents, leveling agents, and slipping agents Paint additives such as ⁇ -glycidoxypropyltrimethoxysilane, silane coupling agents such as 3-aminopropyltriethoxysilane, metal salts of methacrylic acid and acrylic acid such as zinc methacrylate, etc. You may make it contain the raw material mix
  • a silicone-based surfactant or silicone which is a compound having a silicon (Si) atom within a range in which the adhesion between the undercoat layer and the inorganic layer and the gas barrier property are not lowered.
  • a resin or the like may be contained.
  • Compounds that can be used for such purposes include amino-modified silicone, epoxy-modified silicone, carboxyl-modified silicone, carbinol-modified silicone, alkoxy-modified silicone, polyether-modified silicone, alkyl-modified silicone, fluorine-modified silicone, polyether-modified polydimethylsiloxane, polyester Modified polydimethylsiloxane, aralkyl-modified polymethylalkylsiloxane, polyether-modified siloxane, polyether-modified acrylic-containing polydimethylsiloxane, silicone-modified polyacrylic, isocyanate-containing polysiloxane, vinyl silane, methacryl silane, epoxy silane, mercapto silane, amino silane, ureido Silane, isocyanate silane, etc. can be mentioned. Further, compounds having a fluorine (F) atom such as perfluoroalkyl can also be used for the same purpose.
  • F fluorine
  • Organic solvents that can be used in preparing the acrylic resin coating liquid used in the present invention include hydrocarbons such as petroleum naphtha, methylcyclohexane, toluene, xylene, turpentine oil, methanol, ethanol, n-propanol, isopropanol, n -Alcohols such as butanol, isobutanol, sec-butanol, tert-butanol, ethers such as isopropyl ether, n-butyl ether, diisoamyl ether, acetal, acetone, methyl acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n -Ketones such as butyl ketone, methyl isobutyl ketone, methyl-n-amyl ketone cyclohexanone, methyl acetate, eth
  • the acrylic resin coating liquid used in the present invention preferably contains at least one organic solvent selected from ester organic solvents and ketone organic solvents.
  • the organic solvent of the acrylic resin coating solution used in the present invention includes at least one organic solvent selected from an ester organic solvent and a ketone organic solvent. And coating workability due to low viscosity is preferable.
  • a ketone organic solvent particularly methyl ethyl ketone and methyl isobutyl ketone are desirable, and the surface roughness of the undercoat layer is reduced, which is preferable.
  • Examples of the coating means for the acrylic resin coating liquid applied when forming the undercoat layer used in the present invention include a bar coating method, a reverse coating method, a gravure coating method, a rod coating method, a die coating method, a spray coating method, and a coil coating.
  • Examples of the coating method generally used include a coating method that uses electric force such as electrostatic coating.
  • a gravure coating method is more preferably used as a coating means.
  • the thickness of the undercoat layer used in the present invention is preferably 0.2 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the layer is less than 0.2 ⁇ m, the film quality of the inorganic layer is not uniform due to the unevenness of the polymer base material, so that the gas barrier property may be lowered.
  • the thickness of the layer is greater than 10 ⁇ m, the residual stress in the undercoat layer increases, causing the polymer base material to warp and cracks in the inorganic layer, which may reduce the gas barrier properties. Therefore, the thickness of the undercoat layer is preferably 0.2 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 5 ⁇ m or less from the viewpoint of ensuring flexibility.
  • the thickness of the undercoat layer can be measured from a cross-sectional observation image using a transmission electron microscope (TEM).
  • the drying temperature is preferably 80 to 150 ° C., more preferably 100 to 130 ° C.
  • the drying time is preferably 0.1 to 3 minutes, more preferably 0.2 to 2 minutes.
  • an undercoat layer forming component containing a crosslinking agent When an undercoat layer forming component containing a crosslinking agent is used, after volatilizing the organic solvent, it is preferable to cure in an isothermal layer in order to advance the crosslinking reaction between the acrylic resin and the crosslinking agent. .
  • the temperature at which the crosslinking reaction proceeds is preferably 30 to 60 ° C, more preferably 40 to 50 ° C.
  • the surface of the undercoat layer used in the present invention is preferably smooth. In order to enhance the function as a gas barrier film, it is required that the surface of the undercoat layer has few foreign matters such as particles and protrusions. For this reason, it is preferable that the acrylic resin is applied to the polymer substrate in a clean room.
  • the degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
  • an inorganic layer has a function as a layer which plays a central role with respect to expression of gas barrier property.
  • the material suitably used for the inorganic layer of the present invention preferably contains silicon dioxide which can be formed densely and has excellent gas barrier properties.
  • the thickness of the inorganic layer used in the present invention is preferably 10 nm or more.
  • the thickness of the inorganic layer is less than 10 nm, there may be a portion where the gas barrier property cannot be sufficiently ensured, resulting in a problem that the gas barrier property varies.
  • the thickness of the inorganic layer is more preferably 100 nm or more.
  • the thickness of the inorganic layer is greater than 1000 nm, the residual stress in the layer increases, so that cracking is likely to occur in the inorganic layer due to bending or external impact, and the gas barrier property may decrease with use. is there.
  • the thickness of the inorganic layer is preferably 1000 nm or less, and more preferably 500 nm or less from the viewpoint of ensuring flexibility.
  • the thickness of the inorganic layer can be measured by cross-sectional observation with a transmission electron microscope (TEM).
  • the surface roughness Ra of the inorganic layer used in the present invention is preferably 2 nm or less.
  • the inorganic layer is a layer that plays a central role in the development of gas barrier properties, and exhibits high gas barrier properties when the film quality of the inorganic layer is densely formed as described above.
  • the surface of the inorganic layer also takes a denser structure. That is, the surface smoothness of the inorganic layer is increased, and the surface roughness Ra is further decreased.
  • the material suitably used for the inorganic layer of the present invention is preferably composed of a composition containing a zinc compound and a silicon compound, and has a film quality that is amorphous and dense, and exhibits excellent gas barrier properties. It is more preferable that the composition includes a zinc compound and a silicon oxide, and silicon dioxide is more preferable as the silicon oxide used here. “Silicon dioxide” may be abbreviated as “SiO 2 ”. In addition, silicon dioxide (SiO 2 ) may be generated (SiO to SiO 2 ) that slightly deviates from the composition ratio of silicon and oxygen in the composition formula on the left depending on the conditions at the time of generation. It will be expressed as silicon dioxide or SiO 2 .
  • the reason why the effect of the present invention can be obtained by placing the inorganic layer in contact with the above-described undercoat layer is considered as follows. That is, by forming a silicon dioxide layer on the undercoat layer, compared to forming a silicon dioxide layer directly on the polymer substrate, the plasma in forming the silicon dioxide layer is reduced. Since damage to the polymer substrate due to ions and radicals can be prevented, a stable and dense silicon dioxide layer can be formed. Furthermore, if the surface free energy of the undercoat layer is in the range of 45 mN / m or less, the sputtered particles of the silicon dioxide layer on the surface of the polymer substrate are more likely to diffuse, and the film quality near the surface of the polymer substrate is higher than before. Is supposed to be able to improve the gas barrier property because it becomes finer and denser.
  • the inorganic layer used in the present invention contains silicon oxide, oxides, nitrides, sulfides, or elements of elements such as Zn, Al, Ti, Zr, Sn, In, Nb, Mo, and Ta, or A mixture thereof may be included.
  • [B1] a layer composed of a zinc oxide-silicon dioxide-aluminum oxide coexisting phase (hereinafter abbreviated as [B1] layer) or [B2] a layer composed of a coexisting phase of zinc sulfide and silicon dioxide
  • [B2] layer a layer composed of a coexisting phase of zinc sulfide and silicon dioxide
  • the gas barrier film of the present invention can be arbitrarily combined with functional members formed from other resin films, paper base materials, metal materials, synthetic paper, cellophane, and other materials and laminated to form various laminates. May be. These laminates can be made multifunctional by imparting heat resistance, high transparency, weather resistance, electrical conductivity, decorativeness, etc. in addition to the high gas barrier properties that are the characteristics of the present invention. It can be used as packaging for pharmaceuticals, electronic components, etc., thin displays such as liquid crystal displays, organic EL displays, and electronic paper, and electronic device members such as solar cells.
  • the method for forming the inorganic layer used in the present invention is not particularly limited.
  • the inorganic layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a CVD method, or the like.
  • the sputtering method is preferable as a method capable of forming the inorganic layer easily and inexpensively.
  • a layer composed of a coexisting phase of zinc oxide-silicon dioxide-aluminum oxide will be described in detail.
  • the “coexisting phase of zinc oxide-silicon dioxide-aluminum oxide” may be abbreviated as “ZnO—SiO 2 —Al 2 O 3 ”.
  • silicon dioxide (SiO 2 ) may be generated (SiO to SiO 2 ) that slightly deviates from the composition ratio of silicon and oxygen in the composition formula on the left depending on the conditions at the time of generation. It will be expressed as silicon dioxide or SiO 2 .
  • zinc oxide and aluminum oxide In this specification, zinc oxide or ZnO is used regardless of the deviation of the composition ratio depending on the conditions at the time of production. In this case, it is expressed as aluminum oxide or Al 2 O 3 .
  • the reason why the gas barrier property is improved by applying the [B1] layer in the gas barrier film of the present invention is that, in the coexisting phase of zinc oxide-silicon dioxide-aluminum oxide, the crystalline component contained in zinc oxide and the silicon dioxide Presuming that by coexisting with the amorphous component, crystal growth of zinc oxide, which tends to generate microcrystals, is suppressed and the particle size is reduced, so that the layer is densified and the permeation of oxygen and water vapor is suppressed. Yes.
  • the coexistence of aluminum oxide can suppress the crystal growth more than the coexistence of zinc oxide and silicon dioxide, so it is considered that the gas barrier property deterioration due to the generation of cracks can be suppressed. It is done.
  • the composition of the [B1] layer can be measured by ICP emission spectroscopy as described later.
  • the Zn atom concentration measured by ICP emission spectroscopic analysis is 20 to 40 atom%, the Si atom concentration is 5 to 20 atom%, the Al atom concentration is 0.5 to 5 atom%, and the O atom concentration is 35 to 70 atom%. preferable.
  • the Zn atom concentration is higher than 40 atom% or the Si atom concentration is lower than 5 atom%, the oxide that suppresses the crystal growth of zinc oxide is insufficient, so that voids and defects are increased, and sufficient gas barrier properties are obtained. It may not be obtained.
  • the amorphous component of silicon dioxide inside the layer may increase and the flexibility of the layer may be lowered.
  • the affinity between zinc oxide and silicon dioxide becomes excessively high, so that the hardness of the film increases, and cracks are likely to occur due to heat and external stress.
  • the Al atom concentration is less than 0.5 atom%, the affinity between zinc oxide and silicon dioxide becomes insufficient, and the bonding force between the particles forming the layer cannot be improved, so the flexibility may decrease.
  • the O atom concentration when the O atom concentration is higher than 70 atom%, the amount of defects in the [B1] layer increases, so that a predetermined gas barrier property may not be obtained. If the O atom concentration is less than 35 atom%, the oxidized state of zinc, silicon, and aluminum becomes insufficient, crystal growth cannot be suppressed, and the particle diameter becomes large, so that the gas barrier property may be insufficient. From this viewpoint, it is more preferable that the Zn atom concentration is 25 to 35 atom%, the Si atom concentration is 10 to 15 atom%, the Al atom concentration is 1 to 3 atom%, and the O atom concentration is 50 to 64 atom%.
  • the component contained in the [B1] layer is not particularly limited as long as zinc oxide, silicon dioxide and aluminum oxide are in the above composition and are the main components.
  • Al, Ti, Zr, Sn, In, Nb, Mo, A metal oxide formed of Ta, Pd, or the like may be included.
  • the main component means 60% by mass or more of the composition of the [B1] layer, and preferably 80% by mass or more.
  • composition of the [B1] layer is formed with the same composition as the mixed sintered material used at the time of forming the layer. Therefore, by using a mixed sintered material having a composition that matches the composition of the target layer [B1 It is possible to adjust the composition of the layer.
  • the composition analysis of the [B1] layer uses ICP emission spectroscopy to quantitatively analyze each element of zinc, silicon, and aluminum, and determine the composition ratio of zinc oxide, silicon dioxide, aluminum oxide, and the inorganic oxide contained. I can know.
  • the oxygen atoms are calculated on the assumption that zinc atoms, silicon atoms, and aluminum atoms exist as zinc oxide (ZnO), silicon dioxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ), respectively.
  • the ICP emission spectroscopic analysis is an analysis method capable of simultaneously measuring multiple elements from an emission spectrum generated when a sample is introduced into a plasma light source unit together with argon gas, and can be applied to composition analysis. When a different layer is further laminated on the [B1] layer, ICP emission spectroscopic analysis can be performed after removing the layer by ion etching or chemical treatment as necessary.
  • the method for forming the [B1] layer on the polymer substrate is not particularly limited, and a vacuum deposition method, a sputtering method, an ion plating method, etc. using a mixed sintered material of zinc oxide, silicon dioxide and aluminum oxide, etc. Can be formed.
  • a vacuum deposition method, a sputtering method, an ion plating method, etc. using a mixed sintered material of zinc oxide, silicon dioxide and aluminum oxide, etc. can be formed.
  • a single material of zinc oxide, silicon dioxide, and aluminum oxide form a film of zinc oxide, silicon dioxide, and aluminum oxide simultaneously from separate vapor deposition sources or sputter electrodes, and mix them to the desired composition.
  • the [B1] layer forming method used in the present invention is more preferably a sputtering method using a mixed sintered material from the viewpoint of gas barrier properties and composition reproducibility of the formed layer.
  • the details of the layer made of a coexisting phase of zinc sulfide and silicon dioxide will be described as the [B2] layer.
  • the “zinc sulfide-silicon dioxide coexisting phase” is sometimes abbreviated as “ZnS—SiO 2 ”.
  • silicon dioxide (SiO 2 ) is described as silicon dioxide or SiO 2 regardless of slight deviation from the composition ratio of silicon and oxygen in the composition formula on the left as in the [B1] layer.
  • the reason why the gas barrier property is improved by applying the [B2] layer in the gas barrier film of the present invention is that the crystalline component contained in zinc sulfide and the amorphous component of silicon dioxide in the zinc sulfide-silicon dioxide coexisting phase It is presumed that the crystal growth of zinc sulfide, which tends to generate microcrystals, is suppressed and the particle size is reduced, so that the layer is densified and the permeation of oxygen and water vapor is suppressed.
  • the zinc sulfide-silicon dioxide coexisting phase containing zinc sulfide with suppressed crystal growth is more flexible than a layer formed only of inorganic oxides or metal oxides, and is resistant to heat and external stress. Since cracks are unlikely to occur, it is considered that application of the [B2] layer can suppress a decrease in gas barrier properties due to generation of cracks.
  • the composition of the [B2] layer is preferably such that the molar fraction of zinc sulfide relative to the total of zinc sulfide and silicon dioxide is 0.7 to 0.9. If the molar fraction of zinc sulfide with respect to the total of zinc sulfide and silicon dioxide is greater than 0.9, there will be insufficient oxide that suppresses crystal growth of zinc sulfide, resulting in an increase in voids and defects, resulting in a predetermined gas barrier property. May not be obtained.
  • the molar fraction of zinc sulfide with respect to the total of zinc sulfide and silicon dioxide is less than 0.7, the amorphous component of silicon dioxide inside the [B2] layer increases and the flexibility of the layer decreases, The flexibility of the gas barrier film with respect to mechanical bending may be reduced. More preferably, it is in the range of 0.75 to 0.85.
  • the components contained in the [B2] layer are not particularly limited as long as zinc sulfide and silicon dioxide are in the above composition and are the main components.
  • the main component means 60% by mass or more of the composition of the [B2] layer, and preferably 80% by mass or more.
  • composition of the [B2] layer is formed with the same composition as the mixed sintered material used at the time of forming the layer, the composition of the [B2] layer can be changed by using a mixed sintered material having a composition suitable for the purpose. It is possible to adjust.
  • the composition ratio of zinc and silicon is obtained by ICP emission spectroscopic analysis. Based on this value, each element is quantitatively analyzed by using Rutherford backscattering method, and zinc sulfide, silicon dioxide and The composition ratio of other inorganic oxides contained can be known.
  • the ICP emission spectroscopic analysis is an analysis method capable of simultaneously measuring multiple elements from an emission spectrum generated when a sample is introduced into a plasma light source unit together with argon gas, and can be applied to composition analysis.
  • the method for forming the [B2] layer on the polymer substrate is not particularly limited, and it is formed by using a mixed sintered material of zinc sulfide and silicon dioxide by a vacuum deposition method, a sputtering method, an ion plating method, or the like. be able to.
  • a single material of zinc sulfide and silicon dioxide it can be formed by simultaneously forming films of zinc sulfide and silicon dioxide from different vapor deposition sources or sputtering electrodes, and mixing them to obtain a desired composition.
  • the [B2] layer forming method used in the present invention is more preferably a sputtering method using a mixed sintered material from the viewpoint of gas barrier properties and composition reproducibility of the formed layer.
  • the gas barrier film of the present invention is excellent in gas barrier properties against oxygen gas, water vapor and the like, it can be used as a sealing member for devices such as liquid crystal displays, organic EL displays, electronic paper, and solar cells.
  • the gas barrier film of the present invention for a device that requires higher gas barrier properties, it is possible to provide higher performance displays, illumination, solar cells, and the like.
  • the display in which the gas barrier film of the present invention is used include an organic EL display and a liquid crystal display.
  • examples of illumination in which the gas barrier film of the present invention is used include organic EL illumination.
  • a solar cell in which the gas barrier film of this invention is used a thin film silicon solar cell, a thin film compound solar cell, an organic thin film solar cell etc. can be mentioned, for example.
  • the gas barrier film of the present invention can also be used as a packaging material for foods, pharmaceuticals and the like.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • d molecular weight distribution
  • Glass transition temperature (Tg) (° C) The glass transition temperature (abbreviated as the glass transition temperature of the acrylic resin) (Tg) (° C.) of the structural portion derived from the acrylic monomer of the acrylic resin was calculated by the following formula based on the charged composition.
  • Water vapor transmission rate measurement device (model name: “DELTAPERRM” (registered trademark) manufactured by Technolox, UK under conditions of a temperature of 40 ° C., a humidity of 90% RH, and a measurement area of 50 cm 2. ) was used to evaluate the gas barrier film. The number of samples was 2 samples per level, the number of measurements was 5 for each sample, and the average value of the 10 points obtained was the water vapor transmission rate.
  • composition analysis of the [B1] layer was performed by ICP emission spectroscopic analysis (manufactured by SII Nanotechnology Inc., SPS4000). The contents of zinc atom, silicon atom, and aluminum atom in the sample were measured and converted to the atomic ratio. The oxygen atoms were calculated values assuming that zinc atoms, silicon atoms, and aluminum atoms exist as zinc oxide (ZnO), silicon dioxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ), respectively.
  • Example 1 Manufacture of acrylic resin
  • a 500 mL flask equipped with a stirrer, condenser, nitrogen gas inlet, heating / cooling device, and thermometer 95.0 g of toluene, 45.0 g of methyl isobutyl ketone, polymethyl methacrylate macromonomer (“macro” as macromonomer (A))
  • Monomer AA-6 (manufactured by Toagosei Co., Ltd., number average molecular weight: 6,000) was charged in.
  • the temperature was raised to 85 ° C while blowing nitrogen gas.
  • polymerization was carried out for 1 hour, and then a polymerization initiator (c) solution (5.0 g of toluene, 0.05 g of 2,2′-azobisisobutyronitrile) was added. After another 30 minutes, a polymerization initiator (d) solution (toluene 5.0 g, 2,2'-azobisisobutyronitrile 0.05 g) was added.
  • the acrylic resin A A -1 has a heating residue of 40.2% by mass, an acid value of 6.5 mgKOH, a hydroxyl value of 34.5 mgKOH, a mass average molecular weight of 23900, a number average molecular weight of 14500, a molecular weight distribution of 1.65, a glass transition temperature of 82. ° C.
  • Table 1 shows details of composition, manufacturing method, characteristic values, and the like.
  • a micro gravure coater gravure wire number 200UR, gravure rotation ratio 100 %
  • Table 2 shows details about laminate forming the undercoat layer on the polymer substrate (J A -1).
  • the specific operation is as follows. First, in a winding chamber 6 of a winding type sputtering apparatus 5 in which a sputtering target sintered with a composition ratio of zinc oxide / silicon dioxide / aluminum oxide of 77/20/3 is installed on the sputtering electrode 12, The laminate 4 in which an undercoat layer is formed on the polymer base material is set on the take-out roll 7 so that the surface on which the [B1] layer is provided faces the sputter electrode 12, and is unwound. It passed through the cooling drum 11 through the rolls 8, 9 and 10.
  • Argon gas and oxygen gas are introduced at a partial pressure of oxygen gas of 10% so that the degree of vacuum is 2 ⁇ 10 ⁇ 1 Pa, and an argon / oxygen gas plasma is generated by applying an input power of 4000 W from a DC power source, and sputtering is performed.
  • the [B1] layer was formed on the surface of the laminate 4 in which the undercoat layer was formed on the polymer base material. The thickness was adjusted by the film transport speed. Then, the gas barrier film (F A -1) was obtained by winding on the winding roll 16 via the winding-side guide rolls 13, 14, and 15.
  • Table 3 shows details of the gas barrier film.
  • Table 4 shows the composition analysis results of the [B1] layer of Example 1.
  • Examples 2 to 9 Acrylic resins (A A -2 to 9) were produced in the same manner as in Example 1 except that the formulation shown in Table 1 was changed, and an undercoat layer was formed on the polymer substrate (polymer)
  • a gas barrier film (F A -2 to 9) was obtained by forming a laminate J A -2 to 9) of a base material and an undercoat layer and forming an inorganic layer on the undercoat layer.
  • the inorganic layer was formed in the [B1] layer except for Example 4, and in Example 4, the [B2] layer was formed by the following method instead of forming the [B1] layer.
  • [B2] layer A sputter target which is a mixed sintered material formed of zinc sulfide and silicon dioxide on the surface of the undercoat layer laminate 4 provided with the undercoat layer using the winding type sputtering apparatus having the structure shown in FIG. was placed on the sputter electrode 12, and sputtering with argon gas plasma was performed to provide the [B2] layer.
  • the specific operation is as follows. First, in the take-up roll 6 of the take-up type sputtering apparatus 5 in which the sputter target 12 having the zinc sulfide / silicon dioxide molar composition ratio sintered at 80/20 is installed on the sputter electrode 12, The laminate 4 in which the undercoat layer was formed on the polymer substrate was set and unwound and passed through the cooling drum 11 through the unwinding side guide rolls 8, 9 and 10. Argon gas was introduced so that the degree of vacuum was 2 ⁇ 10 ⁇ 1 Pa, and an argon gas plasma was generated by applying an input power of 500 W from a high frequency power source, and an undercoat layer was formed on the polymer substrate by sputtering.
  • a [B2] layer was formed on the surface of the laminated body 4 on which was formed. The thickness was adjusted by the film transport speed. Then, the gas barrier film (F A -4) was obtained by winding on the winding roll 16 via the winding-side guide rolls 13, 14, and 15.
  • Acrylic resins (A Si -1 to 4, A F -5, A Si -6 to 9, A Si-F -10) were prepared in the same manner as in Example 1 except that the formulation shown in Table 5 was changed. ) was manufactured.
  • Example 11 to 14 and Examples 16 to 19 the macromonomer (Si) (“Macromonomer AK-32” manufactured by Toagosei Co., Ltd., number average molecular weight: 6,000) was used as the macromonomer.
  • the macromonomer (F) used in Example 15 uses V-8FM (manufactured by Osaka Organic Chemical Industry Co., Ltd., number average molecular weight: 6,000) as a raw material, and is described in JP-A-10-120738. What was synthesize
  • Example 20 the one prepared by charging the macromonomer (Si) and the macromonomer (F) at the blending ratio shown in Table 5 by the method described in JP-A No. 10-12038 was used. It was. Table 5 shows details of composition, manufacturing method, characteristic values, and the like.
  • Example 14 instead of forming the [B1] layer, a gas barrier film (F Si -4) was obtained by providing the [B2] layer using the same method as in Example 4.
  • Table 7 shows details of the gas barrier film.
  • Table 8 shows the composition analysis results of the [B1] layer of Example 11.
  • Example 21 to 26 Acrylic resins (A A-Si -1 to 3, A A-F -4, A A-Si-F -5, and the like were used in the same manner as in Example 1 except that the formulation shown in Table 9 was changed. A A-Si -6) was produced.
  • the macromonomer (F) used in Examples 24 and 25 uses V-8FM (manufactured by Osaka Organic Chemical Co., Ltd., number average molecular weight: 6,000) as its raw material. What was synthesize
  • gas barrier films F A-Si -1 to 3, F AF -4, F A-Si-F -5) were obtained.
  • a gas barrier film FA -Si- 6 was obtained by providing the [B2] layer using the same method as in Example 4 instead of forming the [B1] layer.
  • Table 11 shows details of the gas barrier film.
  • Table 12 shows the composition analysis result of the [B1] layer of Example 21.
  • Example 1 acrylic resin in the same manner as in (a-1, a St -2 , a A -3) was prepared.
  • macromonomer (St) (“Macromonomer AS-6” manufactured by Toagosei Co., Ltd., number average molecular weight: 6,000) was charged as a macromonomer.
  • Table 13 shows details such as composition, manufacturing method, and characteristic values.
  • Forse Seed No. is an ultraviolet curable clear hard coat that does not contain a macromonomer so that the dry thickness is 3 ⁇ m on the laminate 4 in which the undercoat layer is formed on the polymer substrate.
  • 300C manufactured by China Paint Co., Ltd.
  • a micro gravure coater gravure wire number 200UR, gravure rotation ratio 100%
  • the layer cured at 80 ° C. for 30 seconds and cured by UV irradiation at 300 mJ / cm 2.
  • a [B1] layer was provided as an inorganic layer to obtain a gas barrier film (f A -3). Table 15 shows the details of the gas barrier film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】 本発明は、高いガスバリア性、かつガスバリア性の繰り返し再現性に優れたガスバリア性フィルムを提供することを目的とする。 【解決手段】 高分子基材の少なくとも片側に、以下の(I)~(III)からなる群より選択される少なくとも1種の側鎖を有するアクリル系樹脂を主成分とするアンダーコート層と無機層とがこの順で接して配された、ガスバリア性フィルム。 (I)アクリル系重合体骨格を有する側鎖 (II)ジメチルシロキサン骨格を有する側鎖 (III)フッ素原子を含有する骨格を有する側鎖

Description

ガスバリア性フィルム
 本発明は、高いガスバリア性が必要とされる食品、医薬品の包装用途や太陽電池、電子ペーパー、有機ELなどの電子部材用途に使用されるガスバリア性フィルムに関する。
 高分子基材の表面に、酸化アルミニウム、酸化ケイ素、酸化マグネシウム等の無機物(無機酸化物を含む)を使用し、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理気相成長法(PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(CVD法)等を利用して、その無機物の蒸着膜を形成してなるガスバリア性フィルムは、水蒸気や酸素などの各種ガスの遮断を必要とする食品や医薬品などの包装材および薄型テレビ、太陽電池などの電子デバイス部材として用いられている。
 ガスバリア性向上技術としては、例えば、有機ケイ素化合物の蒸気と酸素を含有するガスを用いてプラズマCVD法により基材上に、ケイ素酸化物を主体とし、炭素、水素、ケイ素及び酸素を少なくとも1種類含有した化合物とすることによって、透明性を維持しつつガスバリア性を向上させる方法が用いられている(特許文献1)。また、プラズマCVD法などの成膜方法以外のガスバリア性向上技術としては、ガスバリア性を悪化させるピンホールやクラックの発生原因となる突起や凹凸を減少させた平滑基材や表面平滑化を目的としたアンダーコートを設けた基材が用いられている(特許文献2)。
特開平8-142252号公報(特許請求の範囲) 特開2002-113826号公報(特許請求の範囲)
 しかしながら、プラズマCVD法によりケイ素酸化物を主成分としたガスバリア性の層を形成する方法では、基材表面がプラズマの発光熱やイオン、ラジカルの衝突などの影響を受けるため、基材の種類によって、形成されるガスバリア層の膜質は異なり、安定したガスバリア性が得られないなどの問題があった。
 一方、ガスバリア層を形成する基材に平滑基材や表面平滑化を目的としたアンダーコート付き基材を用いた方法は、ピンホールやクラックの発生を防止することでガスバリア性の再現性は向上するものの、形成されるガスバリア層の膜質は改善されないため、飛躍的な性能の向上はできていなかった。
 本発明は、かかる従来技術の背景に鑑み、特殊な基材を用いることなく、飛躍的なガスバリア性の向上並びに安定したガスバリア性の発現を可能にしたガスバリア性フィルムを提供せんとするものである。
 本発明は、かかる課題を解決するために、次のような手段を採用する。すなわち、高分子基材の少なくとも片側に、以下の(I)~(III)からなる群より選択される少なくとも1種の側鎖を有するアクリル系樹脂を主成分とするアンダーコート層と無機層とがこの順で接して配された、ガスバリア性フィルムである。
(I)アクリル系重合体骨格を有する側鎖
(II)ジメチルシロキサン骨格を有する側鎖
(III)フッ素原子を含有する骨格を有する側鎖
 前記側鎖が、少なくとも前記(II)および/または前記(III)を含むことが好ましい。
 また、前記アクリル系樹脂が、
アクリル系モノマーと
以下の(i)~(iii)からなる群より選択される少なくとも1種のマクロモノマーとを
共重合して得られる構造を有するアクリル系樹脂であることが好ましい。
(i)アクリル系重合体の片末端にラジカル重合性基を有するマクロモノマー
(ii)ジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
(iii)フッ素原子を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
 前記マクロモノマーが、少なくとも前記(ii)または前記(iii)を含むことが好ましい。
 前記アンダーコート層は表面自由エネルギーが10~45mN/mであることが好ましく、10~25mN/mであればより好ましい。
 前記アクリル系樹脂が、以下の配合組成である前記アクリル系モノマー100質量部に対して3~8質量部のマクロモノマーを加えて共重合したものであると好ましい。
メタクリル酸1~8質量%
メタクリル酸2-ヒドロキシエチル5~16質量%
メタクリル酸メチルおよび/またはメタクリル酸ジシクロペンタニル76~94質量%
 前記無機層の厚みが10~1000nmであり、亜鉛化合物とケイ素酸化物とを含む組成により構成されたものであることが好ましい。
 前記無機層が、以下の[B1]層または[B2]層であることが好ましい。
[B1]層:酸化亜鉛-二酸化ケイ素-酸化アルミニウムの共存相からなる層
[B2]層:硫化亜鉛と二酸化ケイ素の共存相からなる層
 また、前記無機層が[B1]層の場合、該[B1]層が、ICP発光分光分析法により測定される亜鉛(Zn)原子濃度が20~40atom%、ケイ素(Si)原子濃度が5~20atom%、アルミニウム(Al)原子濃度が0.5~5atom%、酸素(O)原子濃度が35~70atom%である組成により構成されたものであることが好ましく、前記無機層が[B2]層である場合は、該[B2]層が、硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.7~0.9である組成により構成されたものであることが好ましい。
 前記無機層の表面粗さRaが2nm以下であることが好ましい。
 そして、本発明のガスバリア性フィルムの製造方法は、高分子基材の少なくとも片側に、
アクリル系モノマーと
以下の(i)~(iii)からなる群より選択される少なくとも1種のマクロモノマーとを
共重合して得られるアクリル系樹脂を主成分とするアンダーコート層を形成し、
該アンダーコート層上に無機層を形成する製造方法である。
(i)アクリル系重合体の片末端にラジカル重合性基を有するマクロモノマー
(ii)ジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
(iii)フッ素原子を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
 特殊な基材を用いることなく、飛躍的なガスバリア性の向上並びに安定したガスバリア性の発現を可能にしたガスバリア性フィルムを提供することができる。
本発明のガスバリア性フィルムの一例を示した断面図である。 本発明のガスバリア性フィルムを製造するための巻き取り式スパッタリング装置を模式的に示す断面概略図である。
 本発明者らは、高分子基材の種類を選ぶことなく、ガスバリア性が良好なガスバリア性フィルムを得ることを目的として鋭意検討を重ね、高分子基材の少なくとも片側に、特定の骨格の側鎖を有するアクリル系樹脂を主成分とするアンダーコート層と、無機層とをこの順で接して配したところ、前記課題を一挙に解決することを究明したものである。なお、本発明において無機層はガスバリア性の発現に対して中心的な働きを担う層であるが、特定のアンダーコート層上に形成し接して配されることにより、飛躍的にガスバリア性を向上できることを見出したものである。ここで、アクリル系樹脂を主成分とするアンダーコート層とは、前記アクリル系樹脂をアンダーコート層中に65質量%以上含有することをいい、80質量%以上含まれていればより好ましい。アンダーコート層を構成する残りの成分(以降、アンダーコート層の副成分と記す)については、後述する。
 図1は、本発明のガスバリア性フィルムの一例を示す断面図である。本発明のガスバリア性フィルムは、図1に示すように、高分子基材1の片側に、特定のアンダーコート層2と無機層3をこの順で、アンダーコート層2と無機層3とが接する状態で積層されたものである。なお、図1では、高分子基材1にアンダーコート層2が接する状態の態様を表しているが、ガスバリアフィルムに必要な柔軟性が損なわれない範囲であれば高分子基材1とアンダーコート層2の間に高温高湿下での密着性(耐湿熱密着性)を向上させることを目的として、他の層を配置してもかまわない。
 [高分子基材]
 本発明に用いられる高分子基材は、フィルム形態を有していれば素材は特に限定されないが、ガスバリアフィルムに必要な柔軟性を有することから、有機高分子を素材とする高分子基材であることが好ましい。本発明に好適に用いることができる有機高分子としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリアミド、ABS樹脂、ポリカーボネート、ポリスチレン、ポリビニルアルコール、エチレン酢酸ビニル共重合体のケン化物、ポリアクリロニトリル、ポリアセタール等の各種ポリマーなどを挙げることができる。これらの中でも、ポリエチレンテレフタレートを含むことが好ましい。また、前記有機高分子は、単独重合体、共重合体のいずれでもよく、1種類の有機高分子、複数種類の有機高分子のブレンドの何れも用いることができる。
 また、本発明において高分子基材に好適に用いることができる有機高分子は、上記に列挙したごとく、基本となる骨格が線状の有機高分子である(ここで線状とは分岐を有していたとしても、網状構造を有していないことを示す。以降、基本となる骨格が線状の有機高分子を線状有機高分子と略記する)。なお、分子内に2以上の官能基を有する架橋剤を添加し反応させたり、放射線照射したりすることにより、部分的に架橋を形成したとしても、数平均分子量が5000~20000であれば線状有機高分子であると定義する。
 高分子基材の形態としては、単層フィルム、あるいは、2層以上の、例えば、共押し出し法で製膜したフィルムであってもよい。フィルムの種類としては、一軸方向あるいは二軸方向に延伸されたフィルム等を使用してもよい。アンダーコート層及び無機層を形成する側の高分子基材表面には、アンダーコート層との接着性を良くするために、コロナ処理、イオンボンバード処理、溶剤処理、または、粗面化処理といった前処理が施されていても構わない。また、アンダーコート層及び無機層を形成する側の反対面には、フィルムの巻き取り時の滑り性の向上を目的として、有機物や無機物あるいはこれらの混合物のコーティング層が施されていても構わない。
 本発明に使用する高分子基材の厚さは特に限定されないが、柔軟性を確保する観点から500μm以下が好ましく、引張りや衝撃に対する強度を確保する観点から5μm以上が好ましい。さらに、フィルムの加工やハンドリングの容易性から下限は10μm以上が、上限は200μm以下がより好ましい。
 [アクリル系樹脂]
 本発明に用いられるアクリル系樹脂は、以下の(I)~(III)からなる群より選択される少なくとも1種の側鎖を有するアクリル系樹脂を主成分とするものである。
(I)アクリル系重合体骨格を有する側鎖
(II)ジメチルシロキサン骨格を有する側鎖
(III)フッ素原子を含有する骨格を有する側鎖
そして、本発明に用いられるアクリル系樹脂は、アクリル系モノマーと以下の(i)~(iii)からなる群より選択される少なくとも1種のマクロモノマーとを共重合して得られる構造を有するアクリル系樹脂であることが好ましい。
(i)アクリル系重合体の片末端にラジカル重合性基を有するマクロモノマー
(ii)ジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
(iii)フッ素原子を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
 以降、(i)アクリル系重合体の片末端にラジカル重合性基を有するマクロモノマーを「マクロモノマー(A)」、(ii)ジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマーを「マクロモノマー(Si)」、(iii)フッ素原子を含有する骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマーを「マクロモノマー(F)」と記すこともある。また本明細書中で、単に「マクロモノマー」と記した場合には、(i)~(iii)からなる群より選択される少なくとも1種または2種以上のマクロモノマーの混合物を意味するものとする。
 このように上記の(I)~(III)からなる群より選択される少なくとも1種の側鎖を有するアクリル系樹脂、好ましくはアクリル系モノマーと上記の(i)~(iii)からなる群より選択される少なくとも1種のマクロモノマーとを共重合して得られる構造を有するアクリル系樹脂を用いることにより飛躍的にガスバリア性が良好となるメカニズムについては、明らかとはなっていないが、次のように推定している。すなわち、前述した特定のアクリル系樹脂を用いることにより詳細については後述するようにアンダーコート層の表面自由エネルギーを比較的低く抑えることができることから、無機層を形成する際の初期成長過程において、膜の成長核となる原子や粒子が表面移動、拡散し易くなるため、アンダーコート層付近の膜質が緻密化するためと考えている。かかる観点から、よりアンダーコート層の表面自由エネルギーを低く抑える効果が高い点で、前記側鎖が、少なくとも前記(II)および/または前記(III)を含むことが好ましく、また前記マクロモノマーが、少なくとも前記(ii)または前記(iii)を含む構造を有するアクリル系樹脂であることがより好ましい。また、無機層の緻密性の微調整が容易である点で、前記側鎖が、(a)前記(I)と(b)前記(II)および/または前記(III)とを含むことがさらに好ましく、前記マクロモノマーが、(a)前記(i)と(b)前記(ii)または前記(iii)とを含む構造を有するアクリル系樹脂であることが特に好ましい。
 また、本発明に用いられるアクリル系樹脂は、(1)メタクリル酸1~8質量%、(2)メタクリル酸2-ヒドロキシエチル5~16質量%、(3)メタクリル酸メチルおよび/またはメタクリル酸ジシクロペンタニル76~94質量%からなる合計で100質量%のアクリル系モノマーと、前記アクリル系モノマー100質量部に対して3~8質量部のマクロモノマーとを共重合して得られる構造を有するものであることが好ましい。なお、前記メタクリル酸ジシクロペンタニルとして、「ファンクリルFA-513M」(日立化成工業(株)の製品)などが使用できる。
 前記アクリル系樹脂の共重合に用いられる前記アクリル系モノマー中の(1)メタクリル酸の割合が1質量%未満の場合には、アクリル系樹脂の凝集力が不足し、高分子基材との接着性が不十分となる場合があり、(1)メタクリル酸の割合が8質量%を超える場合には、アクリル系樹脂の耐水性や耐アルカリ性などの耐薬品性が不十分となる場合がある。かかる観点から、(1)メタクリル酸の割合は、1~7質量%がより好ましく、1~5質量%がさらに好ましい。
 前記アクリル系樹脂の共重合に用いられる前記アクリル系モノマー中の(2)メタクリル酸2-ヒドロキシエチルの割合が5質量%未満の場合には、PET、PEN、ポリアミド、ABS樹脂などをはじめとする高分子基材との接着性が不十分となる場合があり、(2)メタクリル酸2-ヒドロキシエチルの割合が16質量%を超える場合には、例えば、架橋剤を配合した場合にアクリル系樹脂塗液のポットライフが短くなり、塗装作業性が不十分となる場合がある。かかる観点から、(2)メタクリル酸2-ヒドロキシエチルの割合は、5~12質量%がより好ましく、8~12質量%がさらに好ましい。
 前記アクリル系樹脂の共重合に用いられる前記アクリル系モノマー中の(3)メタクリル酸メチルおよび/またはメタクリル酸ジシクロペンタニルの割合が76質量%未満の場合には、マクロモノマーとの相溶性が低下して、高分子基材への密着性が低下する場合がある。(3)メタクリル酸メチルおよび/またはメタクリル酸ジシクロペンタニルの割合が94質量%を超える場合には、マクロモノマーとの適度な非相溶性が失われ、アンダーコートの表面粗さをより微小化する機能が失われる場合がある。かかる観点から、(3)メタクリル酸メチルおよび/またはメタクリル酸ジシクロペンタニルの割合は、76~94質量%が好ましく、81~94質量%がより好ましく、83~91質量%がさらに好ましい。
 アクリル系樹脂において、アクリル系モノマー由来の主鎖とマクロモノマー由来の側鎖との配合比を変化させることや、後述するマクロモノマー由来の側鎖の比率((a)アクリル系重合体骨格を有する側鎖と、(b)ジメチルシロキサン骨格を有する側鎖および/またはフッ素原子を含有する骨格を有する側鎖との割合)で分子内の主鎖と側鎖の相溶性が変化する。アクリル系モノマーの種類や配合比を変化させることによって、またマクロモノマーの種類や配合比を変化させることによって分子内の主鎖と側鎖の相溶性が変化し、分子全体の自由エネルギーなどの特性に変化が見られる。また、このようなマクロモノマーの特性の変化は、ミクロ層分離構造の変化(ラメラ、ジャイロイド、シリンダー、BCCなど)に影響することが知られている。
 本発明に用いられるアクリル系樹脂は、前記アクリル系モノマー100質量部に対して3~8質量部のマクロモノマーを原料として共重合して得られる構造を有することが好ましい。前記アクリル系樹脂の原料として用いられるマクロモノマーの割合(以降、アクリル系樹脂中のマクロモノマーの割合と記す場合もある)が3質量部未満の場合には、アンダーコート層を形成しても高分子基材表面の凹凸を十分に微小化できず、アンダーコート層の表面の平滑性が不十分となる場合がある。前記アクリル系樹脂中のマクロモノマーの割合が8質量部を超える場合には、メタクリル酸/メタクリル酸2-ヒドロキシエチル/メタクリル酸メチルおよび/またはメタクリル酸ジシクロペンタニルを共重合して得られる構造を有するアクリル系樹脂の主たる構造とマクロモノマーに由来の側鎖との相溶性が低くなる傾向があり、そのようなアクリル系樹脂から形成されるアンダーコート層は、高分子基材との接着性や透明性が不十分なものとなる場合がある。かかる観点から前記アクリル系樹脂中のマクロモノマーの割合は、3~8質量部が好ましく、3~7質量部がより好ましく、3~5質量部がさらに好ましい。本発明に用いられるアクリル系樹脂中のマクロモノマーの割合が3~8質量部であれば、形成されるアンダーコート層の高分子基材との接着性、透明性、平滑性のバランスがとれ良好な性能を発揮するため好ましい。
 本発明に用いられるマクロモノマーの数平均分子量は、2000~50000が好ましく、3000~30000がより好ましく、5000~10000であることがさらに好ましい。前記マクロモノマーの数平均分子量が2000より小さい場合には、メタクリル酸/メタクリル酸2-ヒドロキシエチル/メタクリル酸メチルおよび/またはメタクリル酸ジシクロペンタニルからなるアクリル系モノマーに由来の主たる構造に対し、相対的に側鎖が短くなるため主たる構造に埋もれ、塗膜の表面自由エネルギーを低下させることが難しくなる場合がある。一方で、前記マクロモノマーの数平均分子量が50000を超えると重合時の粘度上昇を招き、重合率の低下を引き起こす場合がある。
 本発明において、マクロモノマーとしては以下の(i)~(iii)からなる群より選択される少なくとも1種のマクロモノマーを用いることが好ましい。
(i)アクリル系重合体の片末端にラジカル重合性基を有するマクロモノマー:マクロモノマー(A)
(ii)ジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマー:マクロモノマー(Si)
(iii)フッ素原子を有する重合体の片末端にラジカル重合性基を有するマクロモノマー:マクロモノマー(F)
 本発明に用いられるマクロモノマー(A)としては、ポリメタクリル酸メチルの末端にメタクリロイル基を有するポリメタクリル酸メチルマクロモノマーが好ましい。ポリメタクリル酸メチルマクロモノマーを用いた場合、アクリル系モノマー由来の主鎖とマクロモノマー(A)由来の側鎖との相溶性が高くなるので、アンダーコート層の高分子基材との接着性、アンダーコート層の透明性が向上する。上市されているポリメタクリル酸メチルマクロモノマーとしては、「マクロモノマー AA-6」、「マクロモノマー45%AA-6」(以上、東亞合成(株)社の製品)などが例示される。
 本発明に用いられるマクロモノマー(Si)としては、ポリジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するポリジメチルシロキサンマクロモノマーが好ましい。ポリジメチルシロキサンマクロモノマーを用いた場合、後述する表面自由エネルギーを低めに調節することが容易となるため好ましい。上市されているポリジメチルシロキサンマクロモノマーとしては、「AK-5」、「AK-30」および「AK-32」(以上、東亞合成(株)の製品)、「X-22-174DK」、「X-24-8201」および「X-22-2426」(以上、信越化学工業(株)の製品)などが例示される。また、マクロモノマー(Si)としては、このような市販品でもよいし、文献(例えば特開2009-197042号公報)に記載の方法等によって重合したものを用いてもよい。
 本発明に用いられるマクロモノマー(F)としては、フッ素原子を有する重合体の片末端にラジカル重合性基を有するものが好ましい。かかるマクロモノマー(F)としては、市販品でも文献(例えば特開平10-120738号公報)に記載の方法等によって新規に重合したものを用いてもよい。マクロモノマー(F)を重合する場合には、前駆体として、2,2,2-トリフルオロエチルアクリレート、2,2,2-トリフルオロエチルメタアクリレート、2,2,3,3-テトラフルオロプロピルアクリレート、1H,1H,5H-オクタフルオロペンチルアクリレート、1H,1H,5H-オクタフルオロペンチルアクリレートなどの(メタ)アクリル酸エステルや、テトラフルオロエチレン、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、フッ化ビニルおよびヘキサフルオロプロピレンなどのフルオロオレフィン等が挙げられる。これらは単独で使用してもよいし、両者を任意の割合で混合して使用してもよい。
 本発明に用いられるアクリル系モノマーおよびマクロモノマーはラジカル重合反応基として、メタクリロイル基(CH=C(CH)-C(=O)O-)を有するものだけで構成されることが好ましい。ラジカル重合反応基としてメタクリロイル基を有するものだけで構成されると、アクリル系樹脂の凝集力がさらに高くなり、高分子基材との接着性が向上し、耐溶剤性、耐熱性などが向上するので好ましい。
 また、本発明において、飛躍的にガスバリア性が良好となる効果に対するアンダーコート層の表面自由エネルギーの寄与は、表面自由エネルギーを45mN/m以下とすることによって、無機層を形成する際の初期成長過程において、膜の成長核となる原子や粒子は表面移動、拡散し易くなるため、アンダーコート層付近の膜質が緻密化し、結果として、層全体が緻密な構造に改善され、気体の透過が抑制されることにあると推測している。かかる観点からアンダーコート層の表面自由エネルギーは、30mN/m以下であることがより好ましく、さらに好ましくは25mN/m以下である。また、表面自由エネルギーが10mN/m以上であることが好ましい。表面自由エネルギーが10mN/m未満であると、アンダーコート層と無機層の密着性が低下し、無機層の緻密な構造が形成されない場合がある。これらのことよりアンダーコート層の表面自由エネルギーは、10~45mN/mが好ましく、10~30mN/mがより好ましく、10~25mN/mがさらに好ましい。
 本発明に用いられるアンダーコート層の表面自由エネルギーを調整するためには、アクリル系モノマー、マクロモノマーおよびアンダーコート層の副成分のいずれかの表面自由エネルギーを調整するといった方法をとることができるが、他の特性への影響なく調整できる自由度が大きいことから、マクロモノマーの配合比や種類、組み合わせにて調整することが好ましい。(a)マクロモノマー(A)の表面自由エネルギーは比較的高く、例えばアクリル系モノマー100質量部に対し3~8質量部使用することで30~45mN/m程度の範囲で調整することができるようになる。(b)マクロモノマー(Si)および/またはマクロモノマー(F)は表面自由エネルギーは比較的低く、例えばアクリル系モノマー100質量部に対し3~8質量部使用することで10~25mN/m程度の範囲で調整することができるようになる。以上のことから、(a)マクロモノマー(A)と、(b)マクロモノマー(Si)および/またはマクロモノマー(F)とを用い、これらの含有比率により表面自由エネルギーを調整することができる。マクロモノマーの配合比に特に制限は無いが、適度な範囲内で表面自由エネルギーを調整する観点から、(a)マクロモノマー(A)の使用量は、使用するマクロモノマー全量に対し、10~70質量%であることが好ましく、20~50質量%であることがより好ましい。
 本発明において、(b)マクロモノマー(Si)および/またはマクロモノマー(F)は、マクロモノマー(Si)およびマクロモノマー(F)のいずれかを単独で使用してもよいし、両者を任意の割合で混合して使用してもよい。
 また、前記以外のマクロモノマーを含有してもよい。分子量分布の異なる2種類以上のマクロモノマーの混合物を使用してもよい。
 本発明におけるアンダーコート層の表面自由エネルギーは、各成分(分散力、極性力、水素結合力)が既知の4種類の測定液(水、ホルムアミド、エチレングリコール、ヨウ化メチレン)を用いて、各測定液の接触角を測定し、拡張Fowkes式とYoungの式より導入される下記式を用いて各成分を計算できる。
Figure JPOXMLDOC01-appb-M000001
 [アクリル系樹脂の特性]
 本発明に用いられるアクリル系樹脂のガラス転移温度(以下、Tgとも言う)は50~180℃であることが好ましい。本発明に用いられるアクリル系樹脂のTgが50℃未満では、アクリル系樹脂の凝集力が弱く、無機層との接着性が不十分となる場合がある。アクリル系樹脂のTgが180℃を超える場合には、アクリル系樹脂が脆くなり、高分子基材の曲げ、成形などの加工に追随できなくなる場合がある。かかる観点からアクリル系樹脂のTgは、55~175℃がより好ましく、60~170℃がさらに好ましく、80~160℃が特に好ましい。本発明に用いられるアクリル系樹脂のTgが55~175℃であれば、PETフィルム、PENフィルム、ナイロン、ABS樹脂などの高分子基材との接着性、屈曲性、耐薬品性などにバランスがとれ、良好な性能を発揮する傾向が見られ、Tgが80~160℃であれば、形成されるアンダーコート層の表面の平滑性および凝集力に基づくアンダーコート層の表面の緻密さが向上して、その上に形成される無機層の均一性や無機層の表面の平滑性がさらに改善されるため好ましい。
 本発明に用いられるアクリル系樹脂の数平均分子量は、5000~30000が好ましく、8000~28000がより好ましく、8000~25000であるのがさらに好ましい。本発明に用いられるアクリル系樹脂の数平均分子量が5000~30000であれば、適度なレベリング性を有するため、アンダーコート層の表面粗さがより微小化されるため好ましい。
 [アクリル系樹脂の製造方法]
 本発明に用いられるアクリル系樹脂はアクリル系モノマーと以下の(i)~(iii)からなる群より選択される少なくとも1種のマクロモノマーとを共重合して得られるものであることが好ましい。
(i)アクリル系重合体の片末端にラジカル重合性基を有するマクロモノマー
(ii)ジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
(iii)フッ素原子を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
 かかる共重合においては、アクリル系樹脂は酢酸エチル、酢酸ブチル、トルエン、キシレンなどの有機溶剤中で、過酸化ベンゾイルなどの有機過酸化物、アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)などのアゾ系重合開始剤、n-ドデシルメルカプタン、t-ドデシルメルカプタンなどの連鎖移動剤を使用し、重合温度50~120℃で、溶液重合にて製造されるのが望ましい。かかる溶液重合についてより詳細に説明すると、重合容器中に前記有機溶剤と前記マクロモノマーを仕込み、所定重合温度に昇温した後、前記アクリル系モノマー、重合開始剤、連鎖移動剤の混合物を添加する方法が好ましい。このように、あらかじめ仕込まれたマクロモノマー/有機溶剤中に、アクリル系モノマー/重合開始剤/連鎖移動剤を添加することで、マクロモノマーとアクリル系モノマーとの共重合性が良くなるものと考えられ、それにより高分子基材との接着性、アンダーコート層の表面の平滑性がよりいっそう改善されるため好ましい。
 本発明に用いられるアクリル系樹脂を調製する重合反応は窒素ガスなどの不活性ガス雰囲気下で行うことが好ましく、重合容器への各モノマーの投入時から、重合容器を不活性ガスで置換しておき不活性ガスを吹き込みながら、アクリル系モノマー、マクロモノマー(及び必要に応じて有機溶剤)を投入することが好ましい。前記重合反応を不活性ガス雰囲気下で行うことにより、反応過程で生成するアクリル系モノマーおよびマクロモノマー由来のラジカル種が、活性ガス(酸素ガスなど)と反応することを抑制できる。
 本発明に用いられるアクリル系樹脂の製造方法を具体的に次に示す。撹拌機、窒素ガス吹き込み口、コンデンサー、モノマー滴下装置を備えた重合装置に窒素ガスを吹き込みながら、有機溶剤(例えば、トルエン、酢酸エチル)とポリメタクリル酸メチルマクロモノマーとを投入した後、所定の重合温度に昇温する。次に、あらかじめ計量し混合して均一な溶液としたアクリル系モノマー、重合開始剤(例えば、アゾビスイソブチロニトリル、ターシャリーブチルパーオキシ-2-エチルヘキサノエートなど)、連鎖移動剤(例えばn-ドデシルメルカプタン、t-ドデシルメルカプタンなど)との混合物を、重合容器内に所定の速度で滴下する。滴下終了後、重合率を上げるために重合開始剤を追添加し、所定時間保温下攪拌を継続した後、冷却する。
 本発明においてはこの様にして得られたアクリル系樹脂を主成分とするアンダーコート層を高分子基材の少なくとも片側に形成するが、アンダーコート層には次項の副成分を含むことも好ましい。
 [アンダーコート層の副成分]
 本発明に用いられるアンダーコート層は、副成分として、架橋剤、改質用ポリマーなどを含むことが好ましい。アンダーコート層の副成分に好ましく用いられる架橋剤としては、アクリル系樹脂と反応し必要な架橋構造を形成するトリレンジイソシアネート、ヘキサメチレンジイソシアネート、メタキシレンジイソシアネート、イソホロンジイソシアネートなどのポリイソシアネート化合物が挙げられる。アンダーコート層の副成分に好ましく用いられる改質用ポリマーとしては、アクリル系樹脂と相溶するポリエステルジオール、ポリウレタンジオールなどが挙げられる。これらのアンダーコート層の副成分を、アンダーコート層の主成分であるアクリル系樹脂に添加する場合、上述した溶液重合後のアクリル系樹脂溶液にこれらの副成分を添加することが好ましい。また、アクリル系樹脂塗液を調製するためのかかる副成分の添加に際して、あるいはかかる副成分の添加の前後に、固形分濃度を低下させることにより粘度を下げ、塗工性を向上させるために、有機溶剤を添加することも好ましい。かかる目的のために使用される有機溶剤としては、エチルアルコール、イソプロピルアルコール、エタノール、イソプロパノール、n-プロパノール、ブチルアルコールなどのアルコール類、酢酸エチル、酢酸ブチル、オルト酢酸トリエチルなどのエステル類、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテルなどのアルキレングリコールエーテル類、トルエン、キシレンなどの芳香族類などを使用することができる。
 本発明に用いられるアンダーコート層の副成分として、ヘキサメチレンジイソシアネートなどのポリイソシアネート化合物を架橋剤として用いることにより、アンダーコート層の強靱性を改善することができ、PET、PEN、ポリアミド、ABS樹脂などをはじめとするアンダーコート層を形成する面(高分子基材の表面、または高分子基材とアンダーコート層の間に他の層がある場合には他の層の表面)との接着性を向上することができるので好ましい。
 本発明に用いられるアンダーコート層の副成分として、ポリエステルジオールなどの改質用ポリマーを用いることにより、アンダーコート層の硬度、耐傷付き性、強靱性、屈曲性などの機械的性質を改善、向上させることができ、また、PET、PEN、ポリアミド、ABS樹脂などをはじめとする高分子基材との接着性を向上できると共に、アンダーコート層の表面の平滑性を一層向上することができることから好ましい。このような改質用ポリマーとして使用することのできる市販のポリマーの例として、「FLEXOREZ 148」、「FLEXOREZ 188」、「FLEXOREZ XP-171-90」、「FLEXOREZ UD-320」(以上、KING INDUSTRIES, INC製)などが挙げられる。
 本発明に用いられるアンダーコート層に含有させることのできるポリエステルポリオールやポリエステルジオールなどの改質用ポリマーのなかでは、ポリエステルジオールが好ましい。その理由は、アンダーコート層とアンダーコート層を形成する面(高分子基材の表面、または高分子基材とアンダーコート層の間に他の層がある場合には他の層の表面)との接着性、形成されたアンダーコート層の表面(無機層を形成する面)の平滑性が一層向上するためである。また、ポリエステルポリオールを使用すると、アクリル系樹脂塗液の貯蔵安定性が良くなるため好ましい。
 本明細書においてアクリル系樹脂塗液とは、アンダーコート層の主成分であるアクリル系樹脂とアンダーコート層の副成分である架橋剤や改質用ポリマーなどに適宜有機溶剤を加えた混合物のことを指す。また、アクリル系樹脂塗液に含まれるアンダーコート層の主成分と副成分とを合わせて、アンダーコート層形成成分と記すこととする。
 本発明に用いられるアクリル系樹脂塗液中のアンダーコート層形成成分に占めるポリエステルポリオールの割合は、5~35質量%であることが好ましい。ポリエステルポリオールの割合が5~35質量%であるとき、アクリル系樹脂塗液の貯蔵安定性が良好となり、例えば、イソホロンジイソシアネート、キシレンジイソシアネート、ヘキサメチレンジイソシアネートなどのポリイソシアネート化合物を混合したときのポットライフが良好となり、作業性が向上する。また、アンダーコート層の屈曲性、耐衝撃性、及び、耐傷付き性(硬度)が良好となる。ポリエステルポリオールの割合が5質量%未満の場合には、形成されるアンダーコート層が脆くなり、屈曲性、耐衝撃性が不十分となる場合があり、ポリエステルポリオールの割合が35質量%を超える場合には、アンダーコート層を形成する面(高分子基材の表面、または高分子基材とアンダーコート層の間に他の層がある場合には他の層の表面)との接着性が不十分となる場合がある。
 本発明に用いられるアクリル系樹脂塗液にポリエステルポリオールを含有せしめる場合に使用するポリエステルポリオールの水酸基当量は、200~500が好ましく、220~500がより好ましく、230~480がさらに好ましい。かかる場合におけるポリエステルポリオールの水酸基当量が200~500であれば、アクリル系樹脂をウレタン架橋するために、例えば、イソホロンジイソシアネート、キシレンジイソシアネート、ヘキサメチレンジイソシアネートなどのポリイソシアネート化合物を混合したときのポットライフが良好となると共に、アンダーコート層の屈曲性、柔軟性、硬度も良好となり、またアンダーコート層の表面粗さをより微小とすることができるため好ましい。
 本発明に用いられるアクリル系樹脂塗液中には、アンダーコート層形成成分と有機溶剤以外に、酸化防止剤、光安定剤、紫外線吸収剤などの安定剤、消泡剤、レベリング剤、ヌレ剤などの塗料添加剤、γ-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシランなどのシランカップリング剤、メタクリル酸亜鉛などのメタクリル酸やアクリル酸の金属塩、その他、塗料に一般的に配合される原材料を含有せしめてもよい。
 また、アンダーコート層の表面自由エネルギーを低減させるために、アンダーコート層と無機層との密着性やガスバリア性が低下しない範囲でケイ素(Si)原子を有する化合物であるシリコーン系界面活性剤やシリコーン樹脂などを含有せしめてもよい。かかる目的に適用できる化合物として、アミノ変性シリコーン、エポキシ変性シリコーン、カルボキシル変性シリコーン、カルビノール変性シリコーン、アルコキシ変性シリコーン、ポリエーテル変性シリコーン、アルキル変性シリコーン、フッ素変性シリコーン、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、アラルキル変性ポリメチルアルキルシロキサン、ポリエーテル変性シロキサン、ポリエーテル変性アクリル含有ポリジメチルシロキサン、シリコーン変性ポリアクリル、イソシアネート含有ポリシロキサン、ビニルシラン、メタクリルシラン、エポキシシラン、メルカプトシラン、アミノシラン、ウレイドシラン、イソシアネートシラン等を挙げることができる。また、パーフルオロアルキルを初めとするフッ素(F)原子を有する化合物も同目的で使用することができる。
 [塗液に使用する有機溶剤]
 本発明に用いられるアクリル系樹脂塗液を調製する際に使用可能な有機溶剤として、石油ナフサ、メチルシクロヘキサン、トルエン、キシレン、テレピン油などの炭化水素、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、第二ブタノール、第三ブタノールなどのアルコール、イソプロピルエーテル、n-ブチルエーテル、ジイソアミルエーテルなどのエーテル、アセタール、アセトン、メチルアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-アミルケトンシクロヘキサノンなどのケトン、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-n-アミルなどのエステル、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテートなどの多価アルコールとその誘導体、などが例示される。本発明に用いられるアクリル系樹脂を調製する際の有機溶剤は単独で使用しても、2種類以上の混合物で使用してもよい。
 本発明に用いられるアクリル系樹脂塗液は、好ましくはエステル系有機溶剤、ケトン系有機溶剤から選択される少なくとも1種の有機溶剤を含むことが望ましい。
 本発明に用いられるアクリル系樹脂塗液の有機溶剤としては、エステル系有機溶剤、ケトン系有機溶剤から選択される少なくとも1種の有機溶剤が含まれることにより、アクリル系樹脂の貯蔵安定性、乾燥性および低粘度化による塗工作業性が良好となるため好ましい。本発明に用いるアクリル系樹脂塗液の有機溶剤としては、特に、ケトン系有機溶剤、特に、メチルエチルケトン、メチルイソブチルケトンが望ましく、アンダーコート層の表面粗さが微小化されるため好ましい。
 [アクリル系樹脂塗液の塗工]
 本発明に用いられるアンダーコート層形成時に適用するアクリル系樹脂塗液の塗工手段としては、例えばバーコート法、リバースコート法、グラビアコート法、ロッドコート法、ダイコート法、スプレーコート法、コイルコーティング法など一般に実施されている塗装方法、あるいは、静電塗装など電気的な力を利用した塗装方法を挙げることができる。本発明においては塗工手段としてグラビアコート法がより好ましく用いられる。
 本発明に用いるアンダーコート層の厚みは、0.2μm以上、10μm以下が好ましい。層の厚みが0.2μmより薄くなると、高分子基材の凹凸の影響を受けて、無機層の膜質が均一にならないため、ガスバリア性が低下する場合がある。層の厚みが10μmより厚くなると、アンダーコート層の層内に残留する応力が大きくなることによって高分子基材が反り、無機層にクラックが発生するため、ガスバリア性が低下する場合がある。従って、アンダーコート層の厚みは0.2μm以上、10μm以下が好ましく、フレキシブル性を確保する観点から0.5μm以上、5μm以下がより好ましい。アンダーコート層の厚みは、透過型電子顕微鏡(TEM)による断面観察画像から測定することが可能である。
 高分子基材へアクリル系樹脂塗液を塗工した後、有機溶剤を揮発させて除去するために乾燥機へ投入することが好ましい。乾燥温度が低い場合には、有機溶剤がアンダーコート層中に残存し、アンダーコート層が脆くなり、乾燥温度が高い場合には高分子フィルムの熱寸法変化が生じ、アンダーコート層の表面粗さの増大を引き起こす場合がある。このため、乾燥温度は80~150℃が好ましく、100~130℃がより好ましい。
 高分子基材へアクリル系樹脂塗液を塗工した後の有機溶剤を揮発させるために要する時間が短い場合には、アクリル系樹脂塗液の塗工面のレベリングが十分に進行せず、アンダーコート層の表面粗さの増大を引き起こす場合がある。一方、有機溶剤を揮発させるために要する時間が長い場合には、高分子フィルムの熱寸法変化が生じ、アンダーコート層の表面粗さの増大を引き起こす。このため、乾燥時間は0.1~3分間が好ましく、0.2~2分間がより好ましい。
 架橋剤を含有するアンダーコート層形成成分を用いた場合には、有機溶剤を揮発させた後は、アクリル系樹脂と架橋剤との架橋反応を進行させるために恒温層にて養生することが好ましい。架橋反応を進行させる温度としては30~60℃が好ましく、40~50℃がさらに好ましい。また、架橋反応の反応率を向上させるためには前記温度にて0.5日以上養生することが好ましいが、長期間となっても反応率を向上させる効果は頭打ちとなり、また高分子フィルムの熱寸法変化が生じるため7日以下であることが好ましい。生産性も考慮すると、1~3日養生することがさらに好ましい。
 本発明に用いられるアンダーコート層の表面は平滑であることが好ましい。ガスバリア性フィルムとしての機能を高めるためにはアンダーコート層の表面にパーティクル等の異物や突起が少ないことが要求される。このため、高分子基材へのアクリル系樹脂の塗工はクリーンルーム内で行われることが好ましい。クリーン度はクラス10000以下が好ましく、クラス1000以下がより好ましい。
 [無機層]
 次に、無機層について詳細を説明する。本発明において無機層はガスバリア性の発現に対して中心的な働きを担う層としての機能を有する。本発明の無機層に好適に用いられる材料としては、膜質が非晶質かつ緻密に形成でき、優れたガスバリア性を有する二酸化ケイ素が含まれていることが好ましい。
 本発明に用いられる無機層の厚みは10nm以上が好ましい。無機層の厚みが10nmより薄くなると、十分にガスバリア性が確保できない箇所が発生し、ガスバリア性がばらつくなどの問題が生じる場合がある。かかる観点から無機層の厚みが100nm以上がより好ましい。また、無機層の厚みが1000nmより厚くなると、層内に残留する応力が大きくなるため、曲げや外部からの衝撃によって無機層にクラックが発生しやすくなり、使用に伴いガスバリア性が低下する場合がある。従って、無機層の厚みは1000nm以下が好ましく、柔軟性を確保する観点から500nm以下がより好ましい。無機層の厚みは、透過型電子顕微鏡(TEM)による断面観察により測定することが可能である。
 本発明に用いられる無機層の表面粗さRaは2nm以下であることが好ましい。本発明において無機層はガスバリア性の発現に対して中心的な働きを担う層であり、前述のように無機層の膜質が緻密に形成されることによって高いガスバリア性を発現する。より緻密な無機層が形成される場合には、無機層の表面もより緻密な構造をとることとなる。すなわち、無機層の表面の平滑性が高くなり、表面粗さRaがより小さくなる。
 発明者らの検討の結果、本発明のアンダーコート層の上に無機層を積層することにより、飛躍的にガスバリア性を向上させることが可能であることを見出した。
 本発明の無機層に好適に用いられる材料としては、亜鉛化合物とケイ素化合物とを含む組成により構成されることが好ましく、膜質が非晶質かつ緻密に形成でき、優れたガスバリア性を発現する観点から亜鉛化合物とケイ素酸化物とを含む組成により構成されることがより好ましく、ここで用いるケイ素酸化物としては、二酸化ケイ素がより好ましい。なお、「二酸化ケイ素」を「SiO」と略記することもある。また、二酸化ケイ素(SiO)は、生成時の条件によって、左記組成式のケイ素と酸素の組成比率から若干ずれたもの(SiO~SiO)が生成することがあるが、本明細書においては二酸化ケイ素あるいはSiOと表記することとする。
 本発明においては前述したアンダーコート層の上に無機層を接して配することにより、本発明の効果が得られる理由としては次のように考えている。すなわち、アンダーコート層の上に二酸化ケイ素の層を形成することにより、高分子基材の上に直接二酸化ケイ素の層を形成するのに比較して、二酸化ケイ素の層を形成する際のプラズマのイオンおよびラジカルによる高分子基材の損傷を防止できるので、安定して緻密な二酸化ケイ素層を形成できる。さらに、アンダーコート層の表面自由エネルギーを45mN/m以下の範囲とすれば、高分子基材表面における二酸化ケイ素層のスパッタ粒子が表面拡散し易くなり、従来よりも高分子基材表面付近の膜質は微細化し緻密になるため、ガスバリア性を向上できるものと推測している。
 本発明に用いられる無機層は、ケイ素酸化物を含んでいれば、Zn、Al、Ti、Zr、Sn、In、Nb、Mo、Ta等の元素の酸化物、窒化物、硫化物、または、それらの混合物を含んでいてもよい。
 発明者らの検討の結果、[B1]酸化亜鉛-二酸化ケイ素-酸化アルミニウムの共存相からなる層(以降[B1]層と略記する)または[B2]硫化亜鉛と二酸化ケイ素の共存相からなる層(以降[B2]層と略記する)を無機層として用いることでより高いガスバリア性が得られることを発見した。(なお、[B1]層と[B2]層のそれぞれの詳細な説明は後述する。)
 また、本発明に用いられる無機層の上には、ガスバリア性を損なわない範囲で耐擦傷性の向上を目的とし、ハードコート層をはじめとする層を形成してもよい。あるいは、本発明のガスバリア性フィルムは、他の樹脂フィルム、紙基材、金属素材、合成紙、セロハンなどの素材から形成された機能性部材と任意に組み合わせ、ラミネートして種々の積層体を形成してもよい。これらの積層体は、本発明の特徴である高ガスバリア性に加え、耐熱性、高透明性、耐候性、導電性、装飾性などを付与して多機能化することができるため、例えば、食品、医薬品、電子部品等の包装や、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー等の薄型ディスプレイ、太陽電池などの電子デバイス部材として使用することができる。
 本発明に用いられる無機層を形成する方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、CVD法等によって形成することができる。これらの方法の中でも、簡便かつ安価に無機層を形成可能な方法として、スパッタリング法が好ましい。
 [酸化亜鉛-二酸化ケイ素-酸化アルミニウムの共存相からなる層]
 次に、本発明の含ケイ素無機層として好適に用いられる[B1]層として、酸化亜鉛-二酸化ケイ素-酸化アルミニウムの共存相からなる層について詳細を説明する。なお、「酸化亜鉛-二酸化ケイ素-酸化アルミニウムの共存相」を「ZnO-SiO-Al」と略記することもある。また、二酸化ケイ素(SiO)は、生成時の条件によって、左記組成式のケイ素と酸素の組成比率から若干ずれたもの(SiO~SiO)が生成することがあるが、本明細書においては二酸化ケイ素あるいはSiOと表記することとする。かかる組成比の化学式からのずれに関しては、酸化亜鉛、酸化アルミニウムについても同様の扱いとし、それぞれ、本明細書においては、生成時の条件に依存する組成比のずれに関わらず、酸化亜鉛またはZnO、酸化アルミニウムまたはAlと表記することとする。
 本発明のガスバリア性フィルムにおいて[B1]層を適用することによりガスバリア性が良好となる理由は、酸化亜鉛-二酸化ケイ素-酸化アルミニウムの共存相においては酸化亜鉛に含まれる結晶質成分と二酸化ケイ素の非晶質成分とを共存させることによって、微結晶を生成しやすい酸化亜鉛の結晶成長が抑制され粒子径が小さくなるため層が緻密化し、酸素および水蒸気の透過が抑制されるためと推測している。
 また、酸化アルミニウムを共存させることによって、酸化亜鉛と二酸化ケイ素を共存させる場合に比べて、より結晶成長を抑制することができるため、クラックの生成に起因するガスバリア性低下が抑制できたものと考えられる。
 [B1]層の組成は、後述するようにICP発光分光分析法により測定することができる。ICP発光分光分析法により測定されるZn原子濃度は20~40atom%、Si原子濃度は5~20atom%、Al原子濃度は0.5~5atom%、O原子濃度は35~70atom%であることが好ましい。Zn原子濃度が40atom%より大きくなる、またはSi原子濃度が5atom%より小さくなると、酸化亜鉛の結晶成長を抑制する酸化物が不足するため、空隙部分や欠陥部分が増加し、十分なガスバリア性が得られない場合がある。Zn原子濃度が20atom%より小さくなる、またはSi原子濃度が20atom%より大きくなると、層内部の二酸化ケイ素の非晶質成分が増加して層の柔軟性が低下する場合がある。また、Al原子濃度が5atom%より大きくなると、酸化亜鉛と二酸化ケイ素の親和性が過剰に高くなるため膜の硬度が上昇し、熱や外部からの応力に対してクラックが生じやすくなる場合がある。Al原子濃度が0.5atom%より小さくなると、酸化亜鉛と二酸化ケイ素の親和性が不十分となり、層を形成する粒子間の結合力が向上できないため、柔軟性が低下する場合がある。また、O原子濃度が70atom%より大きくなると、[B1]層内の欠陥量が増加するため、所定のガスバリア性が得られない場合がある。O原子濃度が35atom%より小さくなると、亜鉛、ケイ素、アルミニウムの酸化状態が不十分となり、結晶成長が抑制できず粒子径が大きくなるため、ガスバリア性が不十分となる場合がある。かかる観点から、Zn原子濃度が25~35atom%、Si原子濃度が10~15atom%、Al原子濃度が1~3atom%、O原子濃度が50~64atom%であることがより好ましい。
 [B1]層に含まれる成分は酸化亜鉛および二酸化ケイ素および酸化アルミニウムが上記組成の範囲でかつ主成分であれば特に限定されず、例えば、Al、Ti、Zr、Sn、In、Nb、Mo、Ta、Pd等から形成された金属酸化物を含んでも構わない。ここで主成分とは、[B1]層の組成の60質量%以上であることを意味し、80質量%以上であれば好ましい。
 [B1]層の組成は、層の形成時に使用した混合焼結材料と同等の組成で形成されるため、目的とする層の組成に合わせた組成の混合焼結材料を使用することで[B1]層の組成を調整することが可能である。
 [B1]層の組成分析は、ICP発光分光分析法を使用して、亜鉛、ケイ素、アルミニウムの各元素を定量分析し、酸化亜鉛と二酸化ケイ素、酸化アルミニウムおよび含有する無機酸化物の組成比を知ることができる。なお、酸素原子は亜鉛原子、ケイ素原子、アルミニウム原子が、それぞれ酸化亜鉛(ZnO)、二酸化ケイ素(SiO)、酸化アルミニウム(Al)として存在すると仮定して算出する。ICP発光分光分析は、試料をアルゴンガスとともにプラズマ光源部に導入した際に発生する発光スペクトルから、多元素の同時計測が可能な分析手法であり、組成分析に適用することができる。[B1]層上にさらに異なる層が積層されている場合、必要に応じてイオンエッチングや薬液処理により層を除去した後、ICP発光分光分析をすることができる。
 高分子基材上に[B1]層を形成する方法は特に限定されず、酸化亜鉛と二酸化ケイ素と酸化アルミニウムの混合焼結材料を使用して、真空蒸着法、スパッタリング法、イオンプレーティング法等によって形成することができる。酸化亜鉛と二酸化ケイ素と酸化アルミニウムの単体材料を使用する場合は、酸化亜鉛と二酸化ケイ素と酸化アルミニウムをそれぞれ別の蒸着源またはスパッタ電極から同時に成膜し、所望の組成となるように混合させて形成することができる。これらの方法の中でも、本発明に使用する[B1]層の形成方法は、ガスバリア性と形成した層の組成再現性の観点から、混合焼結材料を使用したスパッタリング法がより好ましい。
 [硫化亜鉛と二酸化ケイ素の共存相からなる層]
 次に、[B2]層として、硫化亜鉛と二酸化ケイ素の共存相からなる層について詳細を説明する。なお、「硫化亜鉛-二酸化ケイ素共存相」を、「ZnS-SiO」と略記することもある。また、二酸化ケイ素(SiO)について、左記組成式のケイ素と酸素の組成比率からの若干のずれにかかわらず二酸化ケイ素あるいはSiOと記すことは[B1]層と同様である。
 本発明のガスバリア性フィルムにおいて[B2]層を適用することによりガスバリア性が良好となる理由は、硫化亜鉛-二酸化ケイ素共存相においては硫化亜鉛に含まれる結晶質成分と二酸化ケイ素の非晶質成分とを共存させることによって、微結晶を生成しやすい硫化亜鉛の結晶成長が抑制され粒子径が小さくなるため層が緻密化し、酸素および水蒸気の透過が抑制されるためと推測している。また、結晶成長が抑制された硫化亜鉛を含む硫化亜鉛-二酸化ケイ素共存相は、無機酸化物または金属酸化物だけで形成された層よりも柔軟性が優れ、熱や外部からの応力に対してクラックが生じにくいため、かかる[B2]層を適用することによりクラックの生成に起因するガスバリア性低下が抑制できたものと考えられる。
 [B2]層の組成は、硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.7~0.9であることが好ましい。硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.9より大きくなると、硫化亜鉛の結晶成長を抑制する酸化物が不足するため、空隙部分や欠陥部分が増加し、所定のガスバリア性が得られない場合がある。また、硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.7より小さくなると、[B2]層内部の二酸化ケイ素の非晶質成分が増加して層の柔軟性が低下するため、機械的な曲げに対するガスバリア性フィルムの柔軟性が低下する場合がある。さらに好ましくは0.75~0.85の範囲である。
 [B2]層に含まれる成分は硫化亜鉛および二酸化ケイ素が上記組成の範囲でかつ主成分であれば特に限定されず、例えば、Al、Ti、Zr、Sn、In、Nb、Mo、Ta、Pd等の金属酸化物を含んでも構わない。ここで主成分とは、[B2]層の組成の60質量%以上であることを意味し、80質量%以上であれば好ましい。
 [B2]層の組成は、層の形成時に使用した混合焼結材料と同等の組成で形成されるため、目的に合わせた組成の混合焼結材料を使用することで[B2]層の組成を調整することが可能である。
 [B2]層の組成分析は、ICP発光分光分析によりまず亜鉛及びケイ素の組成比を求め、この値を基にラザフォード後方散乱法を使用して、各元素を定量分析し硫化亜鉛と二酸化ケイ素および含有する他の無機酸化物の組成比を知ることができる。ICP発光分光分析は、試料をアルゴンガスとともにプラズマ光源部に導入した際に発生する発光スペクトルから、多元素の同時計測が可能な分析手法であり、組成分析に適用することができる。また、ラザフォード後方散乱法は高電圧で加速させた荷電粒子を試料に照射し、そこから跳ね返る荷電粒子の数、エネルギーから元素の特定、定量を行い、各元素の組成比を知ることができる。なお、[B2]層は硫化物と酸化物の複合層であるため、硫黄と酸素の組成比分析が可能なラザフォード後方散乱法による分析を実施する必要がある。[B2]層上にさらに異なる層が積層されている場合、必要に応じてイオンエッチングや薬液処理により層を除去した後、ICP発光分光分析及び、ラザフォード後方散乱法にて分析することができる。
 高分子基材上に[B2]層を形成する方法は特に限定されず、硫化亜鉛と二酸化ケイ素の混合焼結材料を使用して、真空蒸着法、スパッタリング法、イオンプレーティング法等によって形成することができる。硫化亜鉛と二酸化ケイ素の単体材料を使用する場合は、硫化亜鉛と二酸化ケイ素をそれぞれ別の蒸着源またはスパッタ電極から同時に成膜し、所望の組成となるように混合させて形成することができる。これらの方法の中でも、本発明に使用する[B2]層の形成方法は、ガスバリア性と形成した層の組成再現性の観点から、混合焼結材料を使用したスパッタリング法がより好ましい。
 本発明のガスバリア性フィルムは、酸素ガス、水蒸気等に対するガスバリア性に優れているので、例えば、液晶ディスプレイや有機ELディスプレイ、電子ペーパー、太陽電池などのデバイスの封止部材として使用できる。より高いガスバリア性が必要とされるデバイスに本発明のガスバリア性フィルムが用いられることにより、より高性能なディスプレイ、照明、及び太陽電池などを提供することができる。本発明のガスバリア性フィルムが用いられるディスプレイとしては、例えば、有機ELディスプレイ、液晶ディスプレイ等を挙げることができる。また、本発明のガスバリア性フィルムが用いられる照明としては、例えば、有機EL照明等を挙げることができる。そして、本発明のガスバリア性フィルムが用いられる太陽電池としては、例えば、薄膜シリコン太陽電池、薄膜化合物太陽電池、有機薄膜太陽電池等を挙げることができる。また、本発明のガスバリア性フィルムは、食品、医薬品などの包装材としても用いることができる。
 以下、本発明を実施例に基づき、具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。
 [評価方法]
 [1]アクリル系樹脂の評価
 (1)加熱残分(単位:質量%)
 アクリル系樹脂の加熱残分は、JIS K 5407:1997にしたがって140℃で60分間加熱し測定した。また、サンプル数は水準当たり2検体とし、それらの平均値を測定値とした。
 (2)酸価(単位:mgKOH)
 アクリル系樹脂の酸価は、JIS K 5407:1997にしたがって測定した。また、サンプル数は水準当たり2検体とし、それらの平均値を測定値とした。
 (3)水酸基価(単位:mgKOH)
 アクリル系樹脂のアクリル系モノマー由来の構造部分についての水酸基価(アクリル系樹脂の水酸基価と略記する)は、仕込み組成を基に下式により算出した。
アクリル系樹脂の水酸基価=アクリル系モノマー中のメタクリル酸2-ヒドロキシエチルの割合(質量%)/130×561。
 (4)分子量
 アクリル系樹脂の質量平均分子量(以下、Mwとも言う)、数平均分子量(以下、Mnとも言う)、分子量分布(以下、dとも言う)=Mw/Mnは、東ソー(株)の「HLC-8220 GPC」システムにおいて分取カラムとして東ソー(株)製カラムTSKgel G1000HXLあるいはG2000HXLを用い測定した。キャリアにはテトラヒドロフラン(THF)、分子量標準にはポリスチレン・スタンダードを使用した。またサンプルは、重合後の溶液から少量を抜き取り、THFで希釈して測定に供した。
 (5)ガラス転移温度(Tg)(℃)
 アクリル系樹脂のアクリル系モノマー由来の構造部分についてのガラス転移温度(アクリル系樹脂のガラス転移温度と略記する)(Tg)(℃)は、仕込み組成を基に下式により算出した。 
 アクリル系樹脂のTg(℃)=1/{(アクリル系モノマー中のメタクリル酸割合(質量分率)/ポリメタクリル酸のTg(=403°K))+(アクリル系モノマー中のメタクリル酸2-ヒドロキシエチル割合(質量分率)/ポリメタクリル酸2-ヒドロキシエチルのTg(=328°K))+(アクリル系モノマー中のメタクリル酸メチルの割合(質量分率)/ポリメタクリル酸メチルのTg(=378°K))+(アクリル系モノマー中のメタクリル酸ジシクロペンタニルの割合(質量分率)/ポリメタクリル酸ジシクロペンタニルのTg(=448°K))}-273。
 [2]高分子基材とアンダーコート層との積層体の評価
 (6)高分子基材とアンダーコート層との接着性
 高分子基材上へアンダーコート層を形成した積層構成においてJIS K 5400:1997にしたがって試験することで、高分子基材とアンダーコート層との接着性を評価した。100マス中100マスとも剥がれが無い場合を接着性が良好であると判断し、(A)とした。また、1マスでも剥がれが見られる場合を(B)とした。
 (7)全光線透過率およびヘイズ
 JIS K 7361:1997に従って、日本電色工業(株)製の濁度計NDH2000を用いて高分子基材側が入射側とし、評価した。全光線透過率については87%以上の場合を良好(A)とし、それ未満を(B)とした。ヘイズについては1%未満を良好(A)とし、それ以上を、(B)とした。
 (8)表面自由エネルギー
 アンダーコート層表面について、表面自由エネルギーおよびその各成分(分散力、極性力、水素結合力)が既知の4種類の測定液(水、ホルムアミド、エチレングリコール、ヨウ化メチレン)を用い、23℃の温度、相対湿度65%の条件下で接触角計CA-D型(協和界面科学(株)製)にて、各測定液の積層膜上での接触角を測定した。測定は各5回ずつ行い、その平均値を用いた。この値を、拡張Fowkes式とYoungの式より導入される下記式を用いて各成分を計算した。 
Figure JPOXMLDOC01-appb-M000002
 [3]ガスバリア性フィルムの評価
 (9)アンダーコート層と無機層との接着性
 ガスバリア性フィルムの無機層の表面においてJIS K 5400:1997にしたがって試験することで、接着性を評価した。100マス中100マスとも剥がれが無い場合を接着性が良好であると判断し、(A)とした。また、1マスでも剥がれが見られる場合を(B)とした。
 (10)水蒸気透過率
 温度40℃、湿度90%RH、測定面積50cmの条件で、英国、テクノロックス(Technolox)製の水蒸気透過率透過率測定装置(機種名:“DELTAPERM”(登録商標))を使用してガスバリア性フィルムの評価を行った。サンプル数は水準当たり2検体とし、測定回数は各検体について5回とし、得られた10点の平均値を水蒸気透過率とした。
 (11)層の厚み
 断面観察用サンプルをマイクロサンプリングシステム(日立製作所(株)製FB-2000A)を使用してFIB法により(具体的には「高分子表面加工学」(岩森暁著)p.118~119に記載の方法に基づいて)作製した。透過型電子顕微鏡(日立製作所(株)製H-9000UHRII)により、加速電圧300kVとして、観察用サンプルの断面を観察し、無機層の厚みを測定した。基材および無機層、アンダーコート層および無機層の界面は、透過型電子顕微鏡による断面観察写真によって判断した。
 (12)[B1]層の組成
 [B1]層の組成分析はICP発光分光分析(エスアイアイ・ナノテクノロジー社(株)製、SPS4000)により行った。試料中の亜鉛原子、ケイ素原子、アルミニウム原子の含有量を測定し、原子数比に換算した。なお、酸素原子は亜鉛原子、ケイ素原子、アルミニウム原子が、それぞれ酸化亜鉛(ZnO)、二酸化ケイ素(SiO)、酸化アルミニウム(Al)として存在すると仮定して求めた計算値とした。
 (13)無機層の表面粗さRa
 無機層の表面粗さRaは、原子間力顕微鏡を使用して、以下の条件で測定を3回行い、その平均値が2nm以下である場合には良好(A)とし、それを超える場合を(B)とした。
システム:NanoScopeIII/MMAFM(デジタルインスツルメンツ社製)
スキャナ:AS-130(J-Scanner)
プローブ:NCH-W型、単結晶シリコン(ナノワールド社製)
走査モード:タッピングモード
走査範囲:1μm×1μm
走査速度:0.5Hz
測定環境:温度23℃、相対湿度65%、大気中。
 (実施例1)
[アクリル系樹脂の製造]
 撹拌機、コンデンサー、窒素ガス吹き込み口、加熱冷却装置、温度計のついた500mLフラスコに、トルエン95.0g、メチルイソブチルケトン45.0g、マクロモノマー(A)としてポリメタクリル酸メチルマクロモノマー(「マクロモノマーAA-6」(東亞合成(株)製、数平均分子量:6,000)5gを仕込んだ。窒素ガスを吹き込みながら85℃に昇温した。
 あらかじめ計量、混合しておいたメタクリル酸1.0g、メタクリル酸2-ヒドロキシエチル8.0g、メタクリル酸メチル91.0g、2,2’-アゾビスイソブチロニトリル1.5g、n-ドデシルメルカプタン0.5gのアクリル単量体/重合開始剤(a)/連鎖移動剤(b)混合物をフラスコ内に3時間で等速滴下した。
 滴下終了後、1時間重合を行った後、重合開始剤(c)溶液(トルエン5.0g、2,2’-アゾビスイソブチロニトリル0.05g)を添加した。さらに30分後、重合開始剤(d)溶液(トルエン5.0g、2,2’-アゾビスイソブチロニトリル0.05g)を添加した。
 添加終了後、1時間保温下で攪拌した後、室温まで冷却しアクリル系樹脂(A-1)の溶液を得た。
 アクリル系樹脂A-1は、加熱残分40.2質量%、酸価6.5mgKOH、水酸基価34.5mgKOH、質量平均分子量23900、数平均分子量14500、分子量分布1.65、ガラス転移温度82℃であった。
 表1に、組成、製造方法、特性値などの詳細を示した。
Figure JPOXMLDOC01-appb-T000003
 [アンダーコート層の形成]
 アクリル系樹脂(A-1)溶液100gと、改質用ポリマーとしてポリエステルジオールであるFLEXOREZ XP-171-90(KING INDUSTRIES, INC製)を19gと、キシレンジイソシアネートをNCOインデックスが1.0になる配合量とを混合し、メチルエチルケトン75.2g、酢酸エチル75.2g、シクロヘキサノン16.6g、オルト酢酸トリエチル1.2g、エタノール1.2gで希釈し、アクリル系樹脂塗液を調製した。高分子基材として厚み100μmのポリエチレンテレフタレートフィルム(東レ株式会社製“ルミラー”(登録商標)U48)を使用し、アクリル系樹脂塗液を片面にマイクログラビアコーター(グラビア線番200UR、グラビア回転比100%)で塗工、120℃で2分間乾燥した後、40℃で1週間養生し、厚み3μmのアンダーコート層を設けることでアンダーコート層積層体(高分子基材上へアクリル系樹脂を設けた構成)を得た。
 表2に、高分子基材の上にアンダーコート層を形成した積層体(J-1)について詳細を示した。
Figure JPOXMLDOC01-appb-T000004
 [無機層([B1]層)の形成]
 図2に示す構造の巻き取り式のスパッタリング装置を使用し、高分子基材の上にアンダーコート層を形成した積層体4のアンダーコート層を設けた面上に酸化亜鉛と二酸化ケイ素と酸化アルミニウムで形成された混合焼結材であるスパッタターゲットをスパッタ電極12に設置し、アルゴンガスおよび酸素ガスによるスパッタリングを実施し無機層として[B1]層を設けた。
 具体的な操作は以下の通りである。まず、スパッタ電極12に酸化亜鉛/二酸化ケイ素/酸化アルミニウムの組成質量比が77/20/3で焼結されたスパッタターゲットを設置した巻き取り式スパッタ装置5の巻き取り室6の中で、巻き出しロール7に前記高分子基材の上にアンダーコート層を形成した積層体4を[B1]層を設ける側の面がスパッタ電極12に対向するようにセットして巻き出し、巻き出し側ガイドロール8,9,10を介して、クーリングドラム11に通した。真空度2×10-1Paとなるように酸素ガス分圧10%としてアルゴンガスおよび酸素ガスを導入し、直流電源により投入電力4000Wを印加することにより、アルゴン・酸素ガスプラズマを発生させ、スパッタリングにより前記高分子基材の上にアンダーコート層を形成した積層体4の表面上に[B1]層を形成した。厚みは、フィルム搬送速度により調整した。その後、巻き取り側ガイドロール13,14,15を介して巻き取りロール16に巻き取ることでガスバリア性フィルム(F-1)を得た。
 表3に、ガスバリア性フィルムについて詳細を示した。
Figure JPOXMLDOC01-appb-T000005
 表4に実施例1の[B1]層の組成分析結果を示した。
Figure JPOXMLDOC01-appb-T000006
 (実施例2~9)
 表1に示した各配合に変更する以外は、実施例1と同様の方法でアクリル系樹脂(A-2~9)の製造、高分子基材上へのアンダーコート層の形成(高分子基材とアンダーコート層の積層体J-2~9)およびアンダーコート層上への無機層の形成を行うことで、ガスバリアフィルム(F-2~9)を得た。なお、無機層は実施例4以外は[B1]層を、実施例4は[B1]層を形成する代わりに次の方法で[B2]層を形成した。
[[B2]層の形成]
 図2に示す構造の巻き取り式のスパッタリング装置を使用し、アンダーコート層積層体4のアンダーコート層を設けた面上に、硫化亜鉛および二酸化ケイ素で形成された混合焼結材であるスパッタターゲットをスパッタ電極12に設置し、アルゴンガスプラズマによるスパッタリングを実施し[B2]層を設けた。
 具体的な操作は以下のとおりである。まず、スパッタ電極12に硫化亜鉛/二酸化ケイ素のモル組成比が80/20で焼結されたスパッタターゲットを設置した巻き取り式スパッタ装置5の巻き取り室6の中で、巻き出しロール7に前記高分子基材の上にアンダーコート層を形成した積層体4をセットして巻き出し、巻き出し側ガイドロール8,9,10を介して、クーリングドラム11に通した。真空度2×10-1Paとなるようにアルゴンガスを導入し、高周波電源により投入電力500Wを印加することにより、アルゴンガスプラズマを発生させ、スパッタリングにより前記高分子基材の上にアンダーコート層を形成した積層体4の表面上に[B2]層を形成した。厚みは、フィルム搬送速度により調整した。その後、巻き取り側ガイドロール13,14,15を介して巻き取りロール16に巻き取ることでガスバリア性フィルム(F-4)を得た。
(実施例11~20)
 表5に示した各配合に変更する以外は、実施例1と同様の方法でアクリル系樹脂(ASi-1~4,A-5,ASi-6~9,ASi-F-10)を製造した。ここで、実施例11~14および実施例16~19ではマクロモノマーとして、マクロモノマー(Si)(「マクロモノマーAK-32」東亞合成(株)製、数平均分子量:6,000)を、実施例15にて使用するマクロモノマー(F)には、その原料としてV-8FM(大阪有機化学工業(株)製、数平均分子量:6,000)を用い、特開平10-120738号公報に記載の方法にて合成したものを用いた。また、実施例20では、特開平10-120738号公報に記載の方法にて前記マクロモノマー(Si)と前記マクロモノマー(F)とを表5に記載の配合比率で仕込んで合成したものを用いた。表5に、組成、製造方法、特性値などの詳細を示した。
Figure JPOXMLDOC01-appb-T000007
 その後、高分子基材の上にアンダーコート層を形成した積層体(JSi-1~4,J-5,JSi-6~9,JSi-F-10)を得た。表6にその詳細を示した。
Figure JPOXMLDOC01-appb-T000008
 続いて、高分子基材の上にアンダーコート層を形成した積層体4のアンダーコート層を設けた面上にスパッタリングを実施し無機層として実施例1と同様の方法を用いて[B1]層を設けることでガスバリア性フィルム(FSi-1~3,F-5,FSi-6~9,FSi-F-10)を得た。実施例14においては[B1]層を形成する代わりに実施例4と同様の方法を用いて[B2]層を設けることでガスバリア性フィルム(FSi-4)を得た。
 表7に、ガスバリア性フィルムについて詳細を示した。
Figure JPOXMLDOC01-appb-T000009
 また、表8に実施例11の[B1]層の組成分析結果を示した。
Figure JPOXMLDOC01-appb-T000010
(実施例21~26)
 表9に示した各配合に変更する以外は、実施例1と同様の方法でアクリル系樹脂(AA-Si-1~3,AA-F-4,AA―Si―F-5,AA-Si-6)を製造した。また、実施例24および25にて使用するマクロモノマー(F)には、その原料としてV-8FM(大阪有機化学工業(株)製、数平均分子量:6,000)を用い、特開平10-120738号公報に記載の方法にて合成したものを用いた。表9に、組成、製造方法、特性値などの詳細を示した。
Figure JPOXMLDOC01-appb-T000011
 その後、高分子基材の上にアンダーコート層を形成した積層体(JA-Si-1~3,JA-F-4,JA―Si―F-5,JA-Si-6)を得た。表10にその詳細を示した。
Figure JPOXMLDOC01-appb-T000012
 続いて、高分子基材の上にアンダーコート層を形成した積層体4のアンダーコート層を設けた面上にスパッタリングを実施し無機層として実施例1と同様の方法を用いて[B1]層を設けることでガスバリア性フィルム(FA-Si-1~3,FA-F-4,FA―Si―F-5)を得た。実施例26においては[B1]層を形成する代わりに実施例4と同様の方法を用いて[B2]層を設けることでガスバリア性フィルム(FA-Si-6)を得た。
 表11に、ガスバリア性フィルムについて詳細を示した。
Figure JPOXMLDOC01-appb-T000013
また、表12に実施例21の[B1]層の組成分析結果を示した。
Figure JPOXMLDOC01-appb-T000014
(比較例1~3)
 表13に示した各配合に変更する以外は、実施例1と同様の方法でアクリル系樹脂(a-1,aSt-2,a-3)を製造した。ただし、比較例2ではマクロモノマーとして、マクロモノマー(St)(「マクロモノマーAS-6」東亞合成(株)製、数平均分子量:6,000)を仕込んだ。表13に、組成、製造方法、特性値などの詳細を示した。
Figure JPOXMLDOC01-appb-T000015
 その後、高分子基材の上にアンダーコート層を形成した積層体(j-1,jSt-2,j-3)を得た。表14にその詳細を示した。
Figure JPOXMLDOC01-appb-T000016
 続いて、高分子基材の上にアンダーコート層を形成した積層体4のアンダーコート層を設けた面上にスパッタリングを実施し無機層として[B1]層を設けることでガスバリア性フィルム(f-1,fSt-2)を得た。
 比較例3においては、高分子基材の上にアンダーコート層を形成した積層体4の上に、dry厚みが3μmとなるようにマクロモノマーを含まない紫外線硬化型クリアハードコートであるフォルシードNo.300C(中国塗料(株)製)をマイクログラビアコーター(グラビア線番200UR、グラビア回転比100%)で塗工後、80℃で30秒間乾燥、300mJ/cmの紫外線照射より硬化させた層を設けた後に、無機層として[B1]層を設けることでガスバリア性フィルム(f-3)を得た。表15に、ガスバリア性フィルムについて詳細を示した。
1 高分子基材
2 アンダーコート層
3 無機層
4 高分子基材の上にアンダーコート層を形成した積層体
5 巻き取り式スパッタリング装置
6 巻き取り室
7 巻き出しロール
8、9、10 巻き出し側ガイドロール
11 クーリングドラム
12 スパッタ電極
13、14、15 巻き取り側ガイドロール
16 巻き取りロール

Claims (13)

  1. 高分子基材の少なくとも片側に、以下の(I)~(III)からなる群より選択される少なくとも1種の側鎖を有するアクリル系樹脂を主成分とするアンダーコート層と無機層とがこの順で接して配された、ガスバリア性フィルム。
    (I)アクリル系重合体骨格を有する側鎖
    (II)ジメチルシロキサン骨格を有する側鎖
    (III)フッ素原子を含有する骨格を有する側鎖
  2. 前記側鎖が、少なくとも前記(II)および/または前記(III)を含む請求項1に記載のガスバリア性フィルム。
  3. 前記アクリル系樹脂が、
    アクリル系モノマーと
    以下の(i)~(iii)からなる群より選択される少なくとも1種のマクロモノマーとを
    共重合して得られる構造を有するアクリル系樹脂である請求項1に記載の
    ガスバリア性フィルム。
    (i)アクリル系重合体の片末端にラジカル重合性基を有するマクロモノマー
    (ii)ジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
    (iii)フッ素原子を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
  4. 前記マクロモノマーが、少なくとも前記(ii)または前記(iii)を含む請求項3に記載のガスバリア性フィルム。
  5. 前記アンダーコート層の表面自由エネルギーが10~45mN/mである請求項1~4のいずれかに記載のガスバリア性フィルム。
  6. 前記アンダーコート層の表面自由エネルギーが10~25mN/mである請求項1~5のいずれかに記載のガスバリア性フィルム。
  7. 前記アクリル系樹脂が、以下の配合組成である前記アクリル系モノマー100質量部に対して3~8質量部のマクロモノマーを加えて共重合したものである請求項3~6のいずれかに記載のガスバリア性フィルム。
    メタクリル酸1~8質量%
    メタクリル酸2-ヒドロキシエチル5~16質量%
    メタクリル酸メチルおよび/またはメタクリル酸ジシクロペンタニル76~94質量%
  8. 前記無機層の厚みが10~1000nmであり、亜鉛化合物とケイ素酸化物とを含む組成により構成されたものである請求項1~7のいずれかに記載のガスバリア性フィルム。
  9. 前記無機層が、以下の[B1]層または[B2]層である請求項8に記載のガスバリア性フィルム。
    [B1]層:酸化亜鉛-二酸化ケイ素-酸化アルミニウムの共存相からなる層
    [B2]層:硫化亜鉛と二酸化ケイ素の共存相からなる層
  10. 前記無機層が[B1]層であり、該[B1]層が、ICP発光分光分析法により測定される亜鉛(Zn)原子濃度が20~40atom%、ケイ素(Si)原子濃度が5~20atom%、アルミニウム(Al)原子濃度が0.5~5atom%、酸素(O)原子濃度が35~70atom%である組成により構成されたものである請求項9に記載のガスバリア性フィルム。
  11. 前記無機層が[B2]層であり、該[B2]層が、硫化亜鉛と二酸化ケイ素の合計に対する硫化亜鉛のモル分率が0.7~0.9である組成により構成されたものである請求項9に記載のガスバリア性フィルム。
  12. 前記無機層の表面粗さRaが2nm以下である請求項1~11のいずれかに記載のガスバリア性フィルム。
  13. 高分子基材の少なくとも片側に、
    アクリル系モノマーと
    以下の(i)~(iii)からなる群より選択される少なくとも1種のマクロモノマーとを
    共重合して得られるアクリル系樹脂を主成分とするアンダーコート層を形成し、
    該アンダーコート層上に無機層を形成するガスバリア性フィルムの製造方法。
    (i)アクリル系重合体の片末端にラジカル重合性基を有するマクロモノマー
    (ii)ジメチルシロキサン骨格を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
    (iii)フッ素原子を有する重合体の片末端にラジカル重合性基を有するマクロモノマー
PCT/JP2012/075077 2011-10-28 2012-09-28 ガスバリア性フィルム WO2013061726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012548157A JP6070194B2 (ja) 2011-10-28 2012-09-28 ガスバリア性フィルム
US14/354,022 US20150291753A1 (en) 2011-10-28 2012-09-28 Gas barrier film
EP12843442.0A EP2772353A4 (en) 2011-10-28 2012-09-28 GAS BARRIER FILM
US15/403,799 US10844186B2 (en) 2011-10-28 2017-01-11 Gas barrier film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-236951 2011-10-28
JP2011236951 2011-10-28
JP2012-175608 2012-08-08
JP2012175608 2012-08-08
JP2012-205385 2012-09-19
JP2012205385 2012-09-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/354,022 A-371-Of-International US20150291753A1 (en) 2011-10-28 2012-09-28 Gas barrier film
US15/403,799 Division US10844186B2 (en) 2011-10-28 2017-01-11 Gas barrier film

Publications (1)

Publication Number Publication Date
WO2013061726A1 true WO2013061726A1 (ja) 2013-05-02

Family

ID=48167561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075077 WO2013061726A1 (ja) 2011-10-28 2012-09-28 ガスバリア性フィルム

Country Status (5)

Country Link
US (2) US20150291753A1 (ja)
EP (1) EP2772353A4 (ja)
JP (1) JP6070194B2 (ja)
TW (1) TW201321184A (ja)
WO (1) WO2013061726A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109231A1 (ja) 2013-01-11 2014-07-17 東レ株式会社 ガスバリア性フィルム
WO2014136590A1 (ja) * 2013-03-07 2014-09-12 富士フイルム株式会社 バリア性積層体およびガスバリアフィルム
JP2016172328A (ja) * 2015-03-16 2016-09-29 凸版印刷株式会社 ガスバリア性フィルム
KR20160114038A (ko) 2014-01-29 2016-10-04 도레이 카부시키가이샤 가스 배리어성 필름
JP2017132224A (ja) * 2016-01-29 2017-08-03 日東電工株式会社 積層フィルム
CN118124227A (zh) * 2024-03-07 2024-06-04 上海乐纯生物技术股份有限公司 一种适合运输生物粉末的柔性膜材及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716270A (zh) * 2015-03-16 2015-06-17 上海和辉光电有限公司 一种薄膜封装结构和具有该结构的有机发光装置
KR102311060B1 (ko) * 2015-07-06 2021-10-12 삼성디스플레이 주식회사 플라스틱 기판 및 이를 포함하는 표시장치
US10707536B2 (en) * 2016-05-10 2020-07-07 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
WO2020116397A1 (ja) * 2018-12-07 2020-06-11 日産化学株式会社 インプリント用レプリカモールド及びその作製方法
US20240149568A1 (en) * 2021-03-17 2024-05-09 Toyobo Co., Ltd. Laser-printed laminate display body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142252A (ja) 1994-11-22 1996-06-04 Dainippon Printing Co Ltd バリアー性フィルムおよびその製造方法
JP2002113826A (ja) 2000-10-06 2002-04-16 Toppan Printing Co Ltd プラスチック基材及びそれを用いたガスバリアフィルム
JP2006342250A (ja) * 2005-06-09 2006-12-21 Arakawa Chem Ind Co Ltd メタライジング用アンカーコート剤および積層体
JP2008150539A (ja) * 2006-12-20 2008-07-03 Dainippon Printing Co Ltd 樹脂組成物、バリア性シーラントフィルム及びバリア性シーラントフィルムの製造方法
JP2009197042A (ja) 2008-02-19 2009-09-03 Toagosei Co Ltd シリコーン系グラフト共重合体およびその製造方法
JP2011214134A (ja) * 2010-03-15 2011-10-27 Mitsubishi Materials Corp 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート
JP2011212857A (ja) * 2010-03-31 2011-10-27 Toray Ind Inc 蒸着用二軸配向ポリエステルフィルムおよびガスバリアフィルム
JP2011214136A (ja) * 2010-03-15 2011-10-27 Mitsubishi Materials Corp 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8617535D0 (en) * 1986-07-17 1986-08-28 Du Pont Canada Gas barrier structures
JP3636914B2 (ja) * 1998-02-16 2005-04-06 株式会社日鉱マテリアルズ 高抵抗透明導電膜及び高抵抗透明導電膜の製造方法並びに高抵抗透明導電膜形成用スパッタリングターゲット
JP2003053881A (ja) * 2001-08-10 2003-02-26 Sumitomo Bakelite Co Ltd 水蒸気バリア性プラスチックフィルム
CN101189358B (zh) * 2005-05-30 2010-05-19 日矿金属株式会社 溅射靶及其制造方法
US7790634B2 (en) 2006-05-30 2010-09-07 Applied Materials, Inc Method for depositing and curing low-k films for gapfill and conformal film applications
JP4816946B2 (ja) * 2006-09-28 2011-11-16 凸版印刷株式会社 ガスバリア性積層フィルム及びその製造方法
US20090169904A1 (en) * 2007-12-27 2009-07-02 Makoto Yamada Barrier laminate, gas-barrier film, device and optical component
JP5544109B2 (ja) * 2009-03-31 2014-07-09 リンテック株式会社 ガスバリア性フィルムおよび電子デバイス
US9213194B2 (en) * 2009-12-10 2015-12-15 Mitsubishi Plastics, Inc. Surface protection panel and liquid crystal image display device
EP2529926A4 (en) * 2010-01-27 2013-07-24 Daicel Corp GAS BARRIER FILM, METHOD FOR PRODUCING THE SAME, AND DEVICE USING THE SAME
KR20140004143A (ko) * 2011-02-25 2014-01-10 미쓰비시 마테리알 가부시키가이샤 투명 산화물막 및 그 제조 방법
WO2012137662A1 (ja) 2011-04-05 2012-10-11 東レ株式会社 ガスバリア性フィルム
JP5760857B2 (ja) 2011-08-29 2015-08-12 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
KR102051328B1 (ko) 2011-09-07 2019-12-03 도레이 카부시키가이샤 가스 배리어성 필름

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08142252A (ja) 1994-11-22 1996-06-04 Dainippon Printing Co Ltd バリアー性フィルムおよびその製造方法
JP2002113826A (ja) 2000-10-06 2002-04-16 Toppan Printing Co Ltd プラスチック基材及びそれを用いたガスバリアフィルム
JP2006342250A (ja) * 2005-06-09 2006-12-21 Arakawa Chem Ind Co Ltd メタライジング用アンカーコート剤および積層体
JP2008150539A (ja) * 2006-12-20 2008-07-03 Dainippon Printing Co Ltd 樹脂組成物、バリア性シーラントフィルム及びバリア性シーラントフィルムの製造方法
JP2009197042A (ja) 2008-02-19 2009-09-03 Toagosei Co Ltd シリコーン系グラフト共重合体およびその製造方法
JP2011214134A (ja) * 2010-03-15 2011-10-27 Mitsubishi Materials Corp 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート
JP2011214136A (ja) * 2010-03-15 2011-10-27 Mitsubishi Materials Corp 薄膜形成用の蒸着材及び該薄膜を備える薄膜シート並びに積層シート
JP2011212857A (ja) * 2010-03-31 2011-10-27 Toray Ind Inc 蒸着用二軸配向ポリエステルフィルムおよびガスバリアフィルム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATORU IWAMORI, KOBUNSHI HYOMEN KAKO'' (POLYMER SURFACE PROCESSING, pages 118 - 119
See also references of EP2772353A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109231A1 (ja) 2013-01-11 2014-07-17 東レ株式会社 ガスバリア性フィルム
KR20150104582A (ko) 2013-01-11 2015-09-15 도레이 카부시키가이샤 가스 배리어성 필름
US10829643B2 (en) 2013-01-11 2020-11-10 Toray Industries, Inc. Gas barrier film
WO2014136590A1 (ja) * 2013-03-07 2014-09-12 富士フイルム株式会社 バリア性積層体およびガスバリアフィルム
KR20160114038A (ko) 2014-01-29 2016-10-04 도레이 카부시키가이샤 가스 배리어성 필름
JP2016172328A (ja) * 2015-03-16 2016-09-29 凸版印刷株式会社 ガスバリア性フィルム
JP2017132224A (ja) * 2016-01-29 2017-08-03 日東電工株式会社 積層フィルム
CN118124227A (zh) * 2024-03-07 2024-06-04 上海乐纯生物技术股份有限公司 一种适合运输生物粉末的柔性膜材及其制备方法

Also Published As

Publication number Publication date
EP2772353A4 (en) 2015-06-24
US20170190858A1 (en) 2017-07-06
US20150291753A1 (en) 2015-10-15
US10844186B2 (en) 2020-11-24
JPWO2013061726A1 (ja) 2015-04-02
TW201321184A (zh) 2013-06-01
JP6070194B2 (ja) 2017-02-01
EP2772353A1 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP6070194B2 (ja) ガスバリア性フィルム
JP6391025B2 (ja) ガスバリア性フィルム
JP5245094B2 (ja) ガスバリアフィルム
JP5439717B2 (ja) 透明導電性フィルム
WO2014109231A1 (ja) ガスバリア性フィルム
TWI643739B (zh) Gas barrier film
JP6340843B2 (ja) ガスバリア性フィルム
JP2022172161A (ja) 積層体
JP2014087931A (ja) ガスバリア性フィルム
JP2016064650A (ja) ガスバリア性フィルム
JP2014088016A (ja) ガスバリア性フィルム
JP7052205B2 (ja) ガスバリア性積層フィルム
WO2018043127A1 (ja) 積層体
JP2013237264A (ja) ガスバリア性フィルム
JP2018001521A (ja) ガスバリア性フィルム
JP7334624B2 (ja) 積層体
WO2015115314A1 (ja) ガスバリア性フィルム
JP7017041B2 (ja) 積層体
JP7543690B2 (ja) 積層体、積層体の製造方法、および有機素子
JP7456178B2 (ja) ガスバリア性積層体およびその製造方法
TWI750949B (zh) 透明導電性膜、圖案形成透明導電性膜、光學構件及電子設備
JP2024123911A (ja) 積層体、積層体の製造方法、フレキシブルデバイス、太陽電池、および光学センサ
JP2023043359A (ja) 積層体
JP2016120460A (ja) ガスバリア性フィルムの製造方法
JP2018083383A (ja) 積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012548157

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843442

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012843442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012843442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14354022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE