WO2013054917A1 - Semiconductor element and manufacturing method thereof - Google Patents
Semiconductor element and manufacturing method thereof Download PDFInfo
- Publication number
- WO2013054917A1 WO2013054917A1 PCT/JP2012/076519 JP2012076519W WO2013054917A1 WO 2013054917 A1 WO2013054917 A1 WO 2013054917A1 JP 2012076519 W JP2012076519 W JP 2012076519W WO 2013054917 A1 WO2013054917 A1 WO 2013054917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- main surface
- wafer
- semiconductor
- dicing
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 125
- 238000003776 cleavage reaction Methods 0.000 claims abstract description 34
- 230000007017 scission Effects 0.000 claims abstract description 34
- 238000005520 cutting process Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 22
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 9
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 238000005336 cracking Methods 0.000 abstract description 11
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 abstract 4
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 66
- 239000006061 abrasive grain Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000005231 Edge Defined Film Fed Growth Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
Definitions
- the present invention relates to a semiconductor device using a substrate made of gallium oxide and a method for manufacturing the same.
- a sapphire substrate or a SiC substrate has been used as a base substrate of such a light emitting element.
- the sapphire substrate does not have conductivity, the sapphire substrate has a structural restriction that the electrode structure of the light emitting element is a horizontal type.
- the SiC substrate has poor crystallinity of the single crystal wafer and has so-called micropipe defects penetrating in the vertical direction of the single crystal, the n-type layer and the p-type layer are formed by cutting out the micropipe defects. There is a problem of having to.
- III-V group compound semiconductor has light transmittance in the entire wavelength range of the light emitting region, particularly in the ultraviolet region, has relatively small lattice mismatch with GaN, and can obtain a good quality bulk single crystal.
- a Ga 2 O 3 substrate as a light emitting element material in a blue or short wavelength region (see, for example, Patent Document 1).
- this Ga 2 O 3 substrate particularly the ⁇ -Ga 2 O 3 substrate, has an extremely high cleavage property on the (100) plane, and the device is diced from the wafer in the manufacturing process of the light emitting device. Since the substrate is peeled off in the cleavage direction when cutting out, there is a problem that it is difficult to make an element.
- Patent Document 2 a method for manufacturing a light-emitting element in which peeling due to cleavage of the substrate is prevented and the element is divided into element units has been proposed (see, for example, Patent Document 2).
- a semiconductor wafer in which a light emitting element is formed on a substrate made of gallium oxide (Ga 2 O 3 ) is formed, and grooving is performed with a dicing blade from the front side of the semiconductor wafer.
- the first method in which the light emitting elements are individually divided by grooving with a dicing blade and the dicing blade having the first thickness is grooved from the surface direction of the semiconductor wafer, and the first thickness is obtained.
- an object of the present invention is to provide a semiconductor device that can be easily positioned when the device is cut out from a wafer and can suppress damage such as peeling and cracking due to cleavage of the substrate, and a method for manufacturing the same.
- a substrate made of gallium oxide which is parallel to the first and second main surfaces located on opposite sides, and the first main surface and the cleavage surface.
- a substrate having a first side surface parallel to an arbitrary direction and a second side surface intersecting the first side surface; a semiconductor layer formed on the first main surface of the substrate;
- a semiconductor device provided with a recess formed at a corner portion between the first or second main surface and the second side surface and suppressing separation when the substrate is divided into device units.
- a substrate made of gallium oxide and having a first main surface and a second main surface positioned on opposite sides is prepared.
- a plurality of recesses along the second direction are formed in one main surface of the first and second main surfaces between the semiconductor elements, and the other main surface of the first and second main surfaces is formed.
- a method for manufacturing a semiconductor device is provided, wherein the substrate is cut along the plurality of recesses from a surface, and the substrate is cut along the first direction to divide the plurality of semiconductor devices into device units.
- FIG. 1A is a perspective view of a light emitting device according to a first embodiment of the present invention.
- 1B is a cross-sectional view taken along line AA in FIG. 1A.
- 1C is a view in the direction of arrow B in FIG. 1A.
- FIG. 2A is a perspective view of the semiconductor wafer according to the first embodiment of the present invention.
- 2B is a partial cross-sectional view showing a light emitting element portion of the semiconductor wafer of FIG. 2A.
- FIG. 3 is a perspective view of the semiconductor wafer showing a state where it is mounted on the dicing frame.
- FIG. 4 is a plan view of an essential part of the semiconductor wafer shown in FIG. FIG.
- FIG. 5A is a fragmentary cross-sectional view showing a dicing process according to the first embodiment.
- FIG. 5B is a plan view of FIG. 5A.
- FIG. 5C is a fragmentary cross-sectional view showing the dicing process according to the first embodiment.
- FIG. 5D is a plan view of FIG. 5C.
- FIG. 5E is a cross-sectional view illustrating the main parts in the dicing process according to the first embodiment.
- FIG. 5F is a plan view of FIG. 5E.
- FIG. 6A is a perspective view of a light emitting device according to a second embodiment of the present invention.
- 6B is a cross-sectional view taken along the line CC of FIG. 6A.
- 6C is a view in the direction of arrow D in FIG.
- FIG. 7A is a fragmentary cross-sectional view showing a dicing process according to the second embodiment.
- FIG. 7B is a plan view of FIG. 7A.
- FIG. 7C is a fragmentary cross-sectional view showing the dicing process according to the second embodiment.
- FIG. 7D is a plan view of FIG. 7C.
- FIG. 7E is a fragmentary cross-sectional view showing the dicing process according to the second embodiment.
- FIG. 7F is a plan view of FIG. 7E.
- FIG. 8A is a photograph of the example.
- FIG. 8B is a photograph of a comparative example.
- FIG. 1A is a perspective view of the light emitting device according to the first embodiment of the present invention
- FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A
- FIG. 1C is a view in the direction of arrow B in FIG. 1A.
- the light-emitting element 10 is an example of a semiconductor element, which is a substrate made of gallium oxide (Ga 2 O 3 ), and the first main surface 1a and the second main surface 1b located on opposite sides of each other, and Ga 2 O 3 substrate 11 having intersecting first side surface 1c and second side surface 1d, and GaN formed on first main surface 1a of Ga 2 O 3 substrate 11 via an AlN buffer layer (not shown).
- the first side surface 1c is a surface parallel to the first main surface 1a and the direction parallel to the cleavage plane of the Ga 2 O 3 substrate 11 (the direction of the planned division line 4x described later).
- the Ga 2 O 3 substrate 11 is damaged at the corners of the second main surface 1b and the second side surface 1d by peeling or cracking when the Ga 2 O 3 substrate 11 is divided into element units by a dicing blade.
- the recessed part to suppress is formed.
- the concave portion of the present embodiment is a step 15 constituted by a surface 111a intersecting with the second main surface 1b and a surface 111b intersecting with the second side surface 1d.
- the “cleavage plane” of the Ga 2 O 3 substrate 11 is a (100) plane and a (001) plane.
- the “concave portion” formed in the corner portion is used to include not only the concave portion formed in the corner between the main surface and the side surface but also the concave portion formed in the vicinity of the corner.
- the plane orientation of the first main surface 1a and the second main surface 1b of the Ga 2 O 3 substrate 11 is the (101) or ( ⁇ 201) plane, and the second side surface 1d is (010). It is a surface.
- the Ga 2 O 3 substrate 11 has a thickness of 100 to 200 ⁇ m, for example.
- the (101) or ( ⁇ 201) surface is the main surface 1a or 1b is as follows.
- a (100) surface is often used which provides a flat surface by cleavage and is easy to epitaxially grow a GaN-based semiconductor layer.
- the (100) plane is a cleavage plane, there is a problem that cracks occur in the row direction parallel to the main surfaces 1a and 1b during division.
- the principal surfaces 1a and 1b are (101) or ( ⁇ 201) planes that are non-cleavage surfaces and are surfaces on which the GaN-based semiconductor layer is likely to grow epitaxially.
- the Ga 2 O 3 substrate 11 is based on ⁇ -Ga 2 O 3 , but one or more selected from the group consisting of Cu, Ag, Zn, Cd, Al, In, Si, Ge, and Sn are added. You may comprise with the oxide which has Ga as a main component. More specifically, for example, a gallium oxide represented by (Al x In y Ga (1-xy) ) 2 O 3 (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) is used. Can be used.
- the Ga 2 O 3 substrate 11 has an n-type conductivity type by oxygen defects or by being doped with impurities such as Si and Sn.
- the Ga 2 O 3 substrate 11 is formed by cutting bulk Ga 2 O 3 produced by, for example, an EFG (Edge-defined Film-fed Growth) method or an FZ (Floating Zone) method into a desired dimension, A material that has been subjected to mechanical polishing or chemical polishing and further subjected to organic cleaning and acid cleaning can be used.
- EFG Edge-defined Film-fed Growth
- FZ Floating Zone
- the GaN-based semiconductor layer 12 includes an Si-doped n-type GaN layer formed on the AlN buffer layer and an MQW (Multiple as an active layer formed on the n-type GaN layer and having an InGaN / GaN multiple quantum well structure. -Quantum Well) layer and an Mg-doped p-type GaN layer formed on the MQW layer.
- the GaN system in the GaN-based semiconductor layer indicates that Ga and N are included in the constituent elements.
- FIGS. 2A is a perspective view of the semiconductor wafer according to the first embodiment
- FIG. 2B is a partial cross-sectional view showing a light emitting element portion of the semiconductor wafer of FIG. 2A.
- Ga 2 O 3 Wafer Substrate A substrate made of gallium oxide (Ga 2 O 3 ), which is located on opposite sides of each other and has a (101) or ( ⁇ 201) plane orientation.
- a disc-shaped Ga 2 O 3 wafer substrate 110 having two main surfaces 1a and 1b is prepared.
- a plurality of light-emitting elements 10 are formed in a matrix in the row direction x and the column direction y orthogonal to each other on the Ga 2 O 3 wafer substrate 110.
- the row direction x is a direction parallel to the first main surface 1 a and the cleavage plane of the Ga 2 O 3 substrate 11.
- the column direction y is a direction that is parallel to the first main surface 1 a but is not parallel to the cleavage plane of the Ga 2 O 3 substrate 11.
- an AlN buffer layer is formed on the first main surface 1a of the Ga 2 O 3 wafer substrate 110, and a GaN-based semiconductor layer 12 is epitaxially grown on the AlN buffer layer. Let it form. Then, the p-side electrode 13 is formed on the GaN-based semiconductor layer 12, and the n-side electrode 14 is formed on the second main surface 1 b of the Ga 2 O 3 wafer substrate 110.
- MOCVD Metal-Organic Vapor Phase Epitaxy
- FIG. 3 is a perspective view of the semiconductor wafer showing a state where it is mounted on the dicing frame.
- the dicing tape 3 is attached to the back surface of the annular dicing frame 2, and the first main surface 1 a of the semiconductor wafer 1 is attached to the dicing tape 3.
- FIG. 4 is a plan view of the main part of the semiconductor wafer 1.
- the division lines 4x and 4y are set between the light emitting elements 10 so as to be orthogonal to each other.
- the planned division line 4x is matched with the row direction x, and the planned division line 4y is matched with the column direction y.
- FIGS. 5A, 5C, and 5E are cross-sectional views showing main parts of the dicing step according to the first embodiment
- FIG. 5B is a plan view of FIG. 5A
- FIG. 5D is a plan view of FIG.
- FIG. 5F is a plan view of FIG. 5E.
- the first main surface 1 a of the semiconductor wafer 1 is stuck on the dicing tape 3.
- the width W 1 of the first dicing blade 5A is preferably, for example, 25 to 55 ⁇ m, and more preferably 35 to 45 ⁇ m. In the present embodiment, the width W 1 of the first dicing blade 5A is 40 ⁇ m.
- the depth d of the groove 111 is preferably 20 to 50 ⁇ m, for example, and more preferably 30 to 40 ⁇ m. In the present embodiment, the depth d of the groove 111 is 35 ⁇ m.
- the semiconductor wafer 1 is peeled off from the dicing tape 3, a new dicing tape 3 is attached to the dicing frame 2, the semiconductor wafer 1 is turned upside down, and the second main surface 1 b is placed on the new dicing tape 3. Adhere to.
- the first dicing blade 5B having a width W 2 narrower than the width W 1 of the first dicing blade 5A is used to form the first of the Ga 2 O 3 wafer substrate 110. All the remaining thickness of the Ga 2 O 3 wafer substrate 110 is cut along the planned division line 4y from the main surface 1a side.
- reference numeral 112 denotes a cut surface. The cutting is performed by aligning the center of the second dicing blade 5B with the center of the groove 111.
- the width W 2 of the second dicing blade 5B is preferably 10 to 30 ⁇ m, and more preferably 15 to 25 ⁇ m.
- the width W 2 of the second dicing blade 5B is 20 ⁇ m.
- the first and second dicing blades 5A and 5B have a thin disk shape, and for example, a diamond blade having diamond abrasive grains in an abrasive layer is used.
- the second dicing blade 5B is used to divide the Ga 2 O 3 wafer substrate 110 from the first main surface 1a side along the planned division line 4x parallel to the cleavage plane.
- the entire thickness of the Ga 2 O 3 wafer substrate 110 is cut and divided into element units.
- reference numeral 112 denotes a cut surface.
- a rectangular Ga 2 O 3 substrate 11 is formed by dividing the element unit, and the light emitting element 10 shown in FIG. 1 is formed.
- surfaces 111a and 111b are surfaces formed by the first dicing blade 5A.
- the first side surface 1c and the second side surface 1d are surfaces formed by the second dicing blade 5B.
- wax is applied to the surface of the plate glass on a hot plate set at 100 ° C., and the Ga 2 O 3 wafer substrate 110 is fixed on the plate glass.
- the integrated plate glass and the Ga 2 O 3 wafer substrate 110 are fixed to a dicing tape.
- the Ga 2 O 3 wafer substrate 110 is cut in the vertical direction from the planned dividing line 4x by the second dicing blade 5B.
- the abrasive grains of the second dicing blade 5B have a larger particle diameter.
- Table 1 shows the presence or absence of occurrence of oblique cracks when the Ga 2 O 3 wafer substrate 110 is cut for each median diameter of the diamond abrasive grains of the second dicing blade 5B.
- the median diameter is a particle diameter at a 50% cumulative height in the particle size distribution of the abrasive grains.
- Table 1 shows that oblique cracks along the cleavage direction of the Ga 2 O 3 wafer substrate 110 do not occur when the particle diameter of the abrasive grains of the second dicing blade 5B is large.
- the Ga 2 O 3 wafer substrate 110 and the Ga 2 O 3 based semiconductor layer 12 are cut at once with a dicing blade, cracks are likely to occur in parallel along the cleavage direction.
- the Ga 2 O 3 based semiconductor layer 12 is not diced, cracks and the like can be suppressed. Therefore, it is possible to divide into elements by suppressing damage such as peeling or cracking due to cleavage of the Ga 2 O 3 wafer substrate 110, and to provide a light emitting element 10 in which damage such as peeling or cracking due to cleavage of the substrate is suppressed. be able to.
- FIG. 6A is a perspective view of a light emitting device according to a second embodiment of the present invention
- FIG. 6B is a cross-sectional view taken along the line CC of FIG. 6A
- FIG. 6C is a view taken in the direction of arrow D in FIG.
- the stepped portion 15 is formed at the corner between the second main surface 1b and the second side surface 1d as a recess.
- the second main surface 1b is used as a recess.
- a groove 111 is formed at the corner with the second side surface 1d.
- Emitting element 10 of this embodiment like the first embodiment, the first main surface 1a, the second main surface 1b, Ga 2 O having a first side surface 1c and a second side 1d 3 substrate 11, GaN-based semiconductor layer 12 formed on first main surface 1 a of Ga 2 O 3 substrate 11 via an AlN buffer layer (not shown), and p-side electrode formed on GaN-based semiconductor layer 12 13 and an n-side electrode 14 formed on the second main surface 1b of the Ga 2 O 3 substrate 11.
- the groove 111 is formed about 5 to 20 ⁇ m away from the second side surface 1d.
- the groove 111 may have a distance from the second side surface 1d of less than 5 ⁇ m.
- one groove 111 is formed between the light emitting elements 10 on the second main surface 1b of the semiconductor wafer 1.
- the two grooves 111 are formed with an interval s. The formed point is different from the first embodiment.
- a Ga 2 O 3 wafer substrate 110 is prepared, and a plurality of light emitting elements 10 are matrixed in the row direction x and the column direction y on the Ga 2 O 3 wafer substrate 110.
- the dicing tape 3 is attached to the back surface of the annular dicing frame 2, and the first main surface 1 a of the semiconductor wafer 1 is attached to the dicing tape 3.
- FIG. 7A, 7C, and 7E are cross-sectional views showing the main part of the dicing process according to the second embodiment
- FIG. 7B is a plan view of FIG. 7A
- FIG. 7D is a plan view of FIG. 7C
- FIG. 7E is a plan view of FIG. 7E.
- the first main surface 1 a of the semiconductor wafer 1 is stuck on the dicing tape 3.
- Forming a Ga 2 O 3 wafer second centered on dividing lines 4y main surface 1b is provided a distance s 2 two grooves 111 of the substrate 110 using a second dicing blade 5B of a width W 2.
- the width W 2 of the second dicing blade 5B is preferably 10 to 30 ⁇ m, and more preferably 15 to 25 ⁇ m.
- the width W 2 of the second dicing blade 5B is 20 ⁇ m.
- the interval s is, for example, preferably 20 to 40 ⁇ m, and more preferably 25 to 35 ⁇ m.
- the interval s is set to 30 ⁇ m.
- the depth d of the groove 111 is preferably 20 to 50 ⁇ m, for example, and more preferably 30 to 40 ⁇ m. In the present embodiment, the depth d of the groove 111 is 35 ⁇ m.
- the semiconductor wafer 1 is peeled off from the dicing tape 3, a new dicing tape 3 is attached to the dicing frame 2, the semiconductor wafer 1 is turned upside down, and the second main surface 1 b is placed on the new dicing tape 3. Adhere to.
- the entire thickness of the Ga 2 O 3 wafer substrate 110 is cut along 4y.
- reference numeral 112 denotes a cut surface. The cutting is performed by aligning the center of the second dicing blade 5B with the center between the grooves 111. Different dicing blades for grooves and dicing blades for cutting may be used.
- FIG. 7E as shown in FIG. 7F, the 2 Ga 2 using a dicing blade 5B of the O 3 first 1 Ga 2 from the main surface 1a side along the dividing lines 4x of O 3 wafer wafer substrate 110
- the entire thickness of the substrate 110 is cut and divided into element units.
- reference numeral 112 denotes a cut surface.
- a rectangular Ga 2 O 3 substrate 11 is formed by dividing the element unit, and the light emitting element 10 shown in FIG. 6 is formed.
- the groove 111, the first side surface 1c, and the second side surface 1d are surfaces formed by the second dicing blade 5B.
- Ga 2 O 3 wafer substrate 110 after forming the groove 111 has been cut Ga 2 O 3 wafer substrate 110 using a dicing blade may be cut Ga 2 O 3 wafer substrate 110 using a laser. That is, a groove 111 is formed on the planned dividing line 4y with a dicing blade, and the entire remaining thickness of the Ga 2 O 3 wafer substrate 110 is cut by the laser along the planned dividing line 4y. Next, the entire thickness of the Ga 2 O 3 wafer substrate 110 is cut by a laser along the planned dividing line 4x and divided into element units.
- the Ga 2 O 3 wafer substrate 110 is cut using a dicing blade, but a part of the dicing scribe may be employed. That is, the groove 111 is formed on the planned division line 4y with a dicing blade, and all the remaining thickness of the Ga 2 O 3 wafer substrate 110 is cut along the planned division line 4y with the dicing blade. Next, a groove is formed by scribing on the planned dividing line 4x, stress is applied and breaking is performed, and the Ga 2 O 3 wafer substrate 110 is divided into element units.
- FIG. 8 shows a main part of the semiconductor wafer 1 viewed from the second main surface 1b side
- FIG. 8A is a photograph of the example
- FIG. 8B is a photograph of the comparative example.
- a region C shown in FIG. 8A is according to an example corresponding to the first embodiment. After forming the groove 111 in the Ga 2 O 3 wafer substrate 110 with a dicing blade having a width of 40 ⁇ m, the dicing blade having a width of 20 ⁇ m is formed. A case where the remaining thickness of the Ga 2 O 3 wafer substrate 110 is cut is shown. It can be seen from FIG. 8A that there is almost no peeling in the region C.
- a region D shown in FIG. 8B is according to a comparative example, and shows a case where the entire thickness of the Ga 2 O 3 wafer substrate 110 is cut once with a dicing blade having a width of 20 ⁇ m without forming a groove. From FIG. 8B, it can be seen that in the region D, the peeling 113 occurs on the main surface on the side from which the dicing blade comes out.
- this invention is not limited to the said embodiment, In the range which does not change the summary of invention, it can deform
- the vertical type is described as the light emitting element, but the present invention can also be applied to a horizontal type.
- the light-emitting element is described as a semiconductor element.
- the present invention can also be applied to a semiconductor element such as a laser or a transistor.
- the division lines are set to be orthogonal, but may be set to intersect in an oblique direction.
- a diamond-shaped semiconductor element is formed.
- the groove 111 is formed on the second main surface 1b on the side having a smaller electrode area.
- the groove 111 may be formed on the first main surface 1a on the side having a larger electrode area.
- the remaining thickness of the substrate is cut after forming a groove in the substrate, and the planned division line 4x parallel to the cleavage plane is cut.
- the entire thickness of the substrate was cut without forming a groove in the substrate.
- the groove was formed in the substrate and then the remaining thickness of the substrate was cut. You can do it.
- a semiconductor element that can be easily positioned when cutting out an element from a wafer and can suppress damage such as peeling and cracking due to cleavage of the substrate, and a method for manufacturing the same.
- SYMBOLS 1 Semiconductor wafer, 1a ... 1st main surface, 1b ... 2nd main surface, 1c ... 1st side surface, 1d ... 2nd side surface, 2 ... Dicing frame, 3 ... Dicing tape, 4x, 4y ... Divided Planned line, 5A ... first dicing blade, 5B ... second dicing blade, 10 ... light emitting element, 11 ... Ga 2 O 3 substrate, 12 ... GaN-based semiconductor layer, 13 ... p-side electrode, 14 ...
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Dicing (AREA)
- Led Devices (AREA)
Abstract
Provided are a semiconductor element and manufacturing method thereof in which positioning is simple when cutting elements from a wafer and in which damage such as peeling and cracking due to cleavage of the substrate can be suppressed. A light-emitting element (10) is provided with: first and second primary surfaces (1a, 1b) positioned opposite of each other, and a first lateral surface (1c) parallel to a direction parallel with the first primary surface (1a) and the cleaved surface; a Ga2O3 substrate (11) having a second lateral surface (1d) which intersects with the first lateral surface (1c); a GaN-based semiconductor layer (12) formed on the first primary surface (1a) of the Ga2O3 substrate (11); and a step portion (15) which is formed at the corner of the second lateral surface (1d) and the second primary surface (1b) of the Ga2O3 substrate (11) and which is a depression that suppresses peeling when the Ga2O3 wafer substrate (11) is split into element units with a dicing blade.
Description
本発明は、酸化ガリウムからなる基板を用いた半導体素子及びその製造方法に関する。
The present invention relates to a semiconductor device using a substrate made of gallium oxide and a method for manufacturing the same.
従来、GaN系半導体を用いた青色や短波長領域の発光素子が知られている。このような発光素子の下地基板として、例えばサファイア基板やSiC基板が用いられてきた。しかし、サファイア基板は、導電性を有しないため、発光素子の電極構造が水平型となる構造上の制約を有している。また、SiC基板は、単結晶ウエハの結晶性が悪く、単結晶の垂直方向に貫通するいわゆるマイクロパイプ欠陥が存在するため、マイクロパイプ欠陥を避けてn型層及びp型層を形成して切り出さなければならない等という問題がある。
Conventionally, light emitting elements of blue and short wavelength regions using GaN-based semiconductors are known. For example, a sapphire substrate or a SiC substrate has been used as a base substrate of such a light emitting element. However, since the sapphire substrate does not have conductivity, the sapphire substrate has a structural restriction that the electrode structure of the light emitting element is a horizontal type. In addition, since the SiC substrate has poor crystallinity of the single crystal wafer and has so-called micropipe defects penetrating in the vertical direction of the single crystal, the n-type layer and the p-type layer are formed by cutting out the micropipe defects. There is a problem of having to.
そこで、III-V族系化合物半導体の発光領域の全波長範囲、特に紫外領域で光透過性を有し、GaNに対する格子不整合が比較的小さく、また良質なバルク単結晶が得られるという特性から、青色や短波長領域の発光素子材料としてGa2O3基板を用いることが提案されている(例えば、特許文献1参照)。
Therefore, from the characteristics that III-V group compound semiconductor has light transmittance in the entire wavelength range of the light emitting region, particularly in the ultraviolet region, has relatively small lattice mismatch with GaN, and can obtain a good quality bulk single crystal. In addition, it has been proposed to use a Ga 2 O 3 substrate as a light emitting element material in a blue or short wavelength region (see, for example, Patent Document 1).
しかし、このGa2O3基板、特にβ-Ga2O3基板は、(100)面に劈開性の極めて大なる特性を有しており、発光素子の製造工程においてウエハから素子をダイシング等によって切り出す際に基板が劈開方向に剥離してしまうため、素子化が難しいという問題がある。
However, this Ga 2 O 3 substrate, particularly the β-Ga 2 O 3 substrate, has an extremely high cleavage property on the (100) plane, and the device is diced from the wafer in the manufacturing process of the light emitting device. Since the substrate is peeled off in the cleavage direction when cutting out, there is a problem that it is difficult to make an element.
このため、基板の劈開による剥離を防いで素子単位に分割する発光素子の製造方法が提案されている(例えば、特許文献2参照。)。この特許文献2には、酸化ガリウム(Ga2O3)からなる基板上に発光素子を作り込んだ半導体ウエハを形成し、半導体ウエハの表方向からダイシングブレードで溝入れを行い、半導体ウエハの表裏を反転してダイシングブレードで溝入れを行って発光素子を個々に分割する第1の方法と、第1の厚さを有するダイシングブレードで半導体ウエハの表方向から溝入れを行い、第1の厚さよりも薄い第2の厚さを有するダイシングブレードで半導体ウエハの表方向から残りの部分を切断する第2の方法とが開示されている。
For this reason, a method for manufacturing a light-emitting element in which peeling due to cleavage of the substrate is prevented and the element is divided into element units has been proposed (see, for example, Patent Document 2). In this patent document 2, a semiconductor wafer in which a light emitting element is formed on a substrate made of gallium oxide (Ga 2 O 3 ) is formed, and grooving is performed with a dicing blade from the front side of the semiconductor wafer. The first method in which the light emitting elements are individually divided by grooving with a dicing blade and the dicing blade having the first thickness is grooved from the surface direction of the semiconductor wafer, and the first thickness is obtained. And a second method of cutting the remaining portion of the semiconductor wafer from the front direction with a dicing blade having a second thickness smaller than the first thickness.
しかし、特許文献2に開示された第1の方法によると、表面に形成する溝と裏面に形成する溝との位置決めが難しいという問題がある。また、特許文献2に開示された第2の方法によると、ダイシングブレードが基板を抜け出るときに基板の劈開方向に沿って剥がれが生じやすいという問題がある。レーザで溝を形成した後、応力を加えて分割するダイシングスクライブでも同様の問題がある。
However, according to the first method disclosed in Patent Document 2, there is a problem that it is difficult to position the groove formed on the front surface and the groove formed on the back surface. Further, according to the second method disclosed in Patent Document 2, there is a problem that peeling is likely to occur along the cleavage direction of the substrate when the dicing blade exits the substrate. There is a similar problem in dicing scribe in which grooves are formed by laser and then divided by applying stress.
したがって、本発明の目的は、ウエハから素子を切り出す際の位置決めが容易で、基板の劈開による剥がれや割れ等の損傷を抑制することができる半導体素子及びその製造方法を提供することにある。
Therefore, an object of the present invention is to provide a semiconductor device that can be easily positioned when the device is cut out from a wafer and can suppress damage such as peeling and cracking due to cleavage of the substrate, and a method for manufacturing the same.
本発明の一態様は、上記目的を達成するため、酸化ガリウムからなる基板であって、互いに反対側に位置する第1及び第2の主面と、前記第1の主面及び劈開面に平行な方向に平行な第1の側面と、前記第1の側面と交差する第2の側面とを有する基板と、前記基板の前記第1の主面に形成された半導体層と、前記基板の前記第1又は第2の主面と前記第2の側面との角部に形成され、前記基板を素子単位に分割する際の剥離を抑制する凹部とを備えた半導体素子を提供する。
According to one embodiment of the present invention, in order to achieve the above object, a substrate made of gallium oxide, which is parallel to the first and second main surfaces located on opposite sides, and the first main surface and the cleavage surface. A substrate having a first side surface parallel to an arbitrary direction and a second side surface intersecting the first side surface; a semiconductor layer formed on the first main surface of the substrate; Provided is a semiconductor device provided with a recess formed at a corner portion between the first or second main surface and the second side surface and suppressing separation when the substrate is divided into device units.
また、本発明の一態様は、上記目的を達成するため、酸化ガリウムからなる基板であって、互いに反対側に位置する第1及び第2の主面を有する基板を準備し、前記基板に複数の半導体素子を前記第1の主面及び前記基板の劈開面に平行な第1の方向と、前記第1の方向に交差する第2の方向に沿ってマトリクス状に形成し、前記基板の前記半導体素子間であって前記第1及び第2の主面のうち一方の主面に前記第2の方向に沿う複数の凹部を形成し、前記第1及び第2の主面のうち他方の主面から前記複数の凹部に沿って前記基板を切断し、前記第1の方向に沿って前記基板を切断して前記複数の半導体素子を素子単位に分割する半導体素子の製造方法を提供する。
In one embodiment of the present invention, in order to achieve the above object, a substrate made of gallium oxide and having a first main surface and a second main surface positioned on opposite sides is prepared. Are formed in a matrix form along a first direction parallel to the first main surface and the cleavage plane of the substrate and a second direction intersecting the first direction, A plurality of recesses along the second direction are formed in one main surface of the first and second main surfaces between the semiconductor elements, and the other main surface of the first and second main surfaces is formed. A method for manufacturing a semiconductor device is provided, wherein the substrate is cut along the plurality of recesses from a surface, and the substrate is cut along the first direction to divide the plurality of semiconductor devices into device units.
本発明によれば、ウエハから素子を切り出す際の位置決めが容易で、基板の劈開による剥がれや割れ等の損傷を抑制することができる。
According to the present invention, positioning when cutting out an element from a wafer is easy, and damage such as peeling or cracking due to cleavage of the substrate can be suppressed.
以下、本発明の実施の形態について図面を参照して説明する。なお、各図中、実質的に同一の機能を有する構成要素については、同一の符号を付してその重複した説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, about the component which has the substantially same function, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
[第1の実施の形態]
(第1の実施の形態の構成)
図1Aは、本発明の第1の実施の形態に係る発光素子の斜視図、図1Bは、図1AのA-A線断面図、図1Cは、図1AのB方向矢視図である。 [First Embodiment]
(Configuration of the first embodiment)
1A is a perspective view of the light emitting device according to the first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A, and FIG. 1C is a view in the direction of arrow B in FIG. 1A.
(第1の実施の形態の構成)
図1Aは、本発明の第1の実施の形態に係る発光素子の斜視図、図1Bは、図1AのA-A線断面図、図1Cは、図1AのB方向矢視図である。 [First Embodiment]
(Configuration of the first embodiment)
1A is a perspective view of the light emitting device according to the first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A, and FIG. 1C is a view in the direction of arrow B in FIG. 1A.
この発光素子10は、半導体素子の一例であり、酸化ガリウム(Ga2O3)からなる基板であって、互いに反対側に位置する第1の主面1a及び第2の主面1bと、互いに交差する第1の側面1c及び第2の側面1dとを有するGa2O3基板11と、Ga2O3基板11の第1の主面1aに図示しないAlNバッファ層を介して形成されたGaN系半導体層12と、GaN系半導体層12上に形成されたAu等からなるp側電極13と、Ga2O3基板11の第2の主面1bに形成されたAu等からなるn側電極14とを有する。第1の側面1cは、第1の主面1a及びGa2O3基板11の劈開面に平行な方向(後述する分割予定ライン4xの方向)に平行な面である。
The light-emitting element 10 is an example of a semiconductor element, which is a substrate made of gallium oxide (Ga 2 O 3 ), and the first main surface 1a and the second main surface 1b located on opposite sides of each other, and Ga 2 O 3 substrate 11 having intersecting first side surface 1c and second side surface 1d, and GaN formed on first main surface 1a of Ga 2 O 3 substrate 11 via an AlN buffer layer (not shown). A p-side electrode 13 made of Au or the like formed on the GaN-based semiconductor layer 12, and an n-side electrode made of Au or the like formed on the second main surface 1 b of the Ga 2 O 3 substrate 11. 14. The first side surface 1c is a surface parallel to the first main surface 1a and the direction parallel to the cleavage plane of the Ga 2 O 3 substrate 11 (the direction of the planned division line 4x described later).
(Ga2O3基板)
Ga2O3基板11は、第2の主面1bと第2の側面1dとの角部に、ダイシングブレードでGa2O3基板11を素子単位に分割する際の剥がれや割れ等の損傷を抑制する凹部が形成されている。本実施の形態の凹部は、第2の主面1bと交差する面111a、及び第2の側面1dと交差する面111bから構成された段差部15である。 (Ga 2 O 3 substrate)
The Ga 2 O 3 substrate 11 is damaged at the corners of the secondmain surface 1b and the second side surface 1d by peeling or cracking when the Ga 2 O 3 substrate 11 is divided into element units by a dicing blade. The recessed part to suppress is formed. The concave portion of the present embodiment is a step 15 constituted by a surface 111a intersecting with the second main surface 1b and a surface 111b intersecting with the second side surface 1d.
Ga2O3基板11は、第2の主面1bと第2の側面1dとの角部に、ダイシングブレードでGa2O3基板11を素子単位に分割する際の剥がれや割れ等の損傷を抑制する凹部が形成されている。本実施の形態の凹部は、第2の主面1bと交差する面111a、及び第2の側面1dと交差する面111bから構成された段差部15である。 (Ga 2 O 3 substrate)
The Ga 2 O 3 substrate 11 is damaged at the corners of the second
本明細書において、Ga2O3基板11の「劈開面」は、(100)面及び(001)面である。また、本明細書において、角部に形成された「凹部」は、主面と側面との角そのものに形成された凹部だけでなく、角近傍に形成された凹部も含む意味で用いる。
In this specification, the “cleavage plane” of the Ga 2 O 3 substrate 11 is a (100) plane and a (001) plane. Further, in this specification, the “concave portion” formed in the corner portion is used to include not only the concave portion formed in the corner between the main surface and the side surface but also the concave portion formed in the vicinity of the corner.
本実施の形態では、Ga2O3基板11の第1の主面1a及び第2の主面1bの面方位を(101)又は(-201)面とし、第2の側面1dを(010)面としている。Ga2O3基板11は、例えば100~200μmの厚さを有する。
In the present embodiment, the plane orientation of the first main surface 1a and the second main surface 1b of the Ga 2 O 3 substrate 11 is the (101) or (−201) plane, and the second side surface 1d is (010). It is a surface. The Ga 2 O 3 substrate 11 has a thickness of 100 to 200 μm, for example.
(101)又は(-201)面を主面1a、1bとしたのは、以下の理由による。主面として劈開により平坦な表面が得られ、かつGaN系半導体層がエピタキシャル成長しやすい(100)面を用いることが多い。しかし、(100)面は劈開面のため、分割時に主面1a、1bと水平な行方向にクラックが入るという問題がある。このため、主面1a、1bは、非劈開面でかつGaN系半導体層がエピタキシャル成長しやすい面である(101)又は(-201)面を用いることにした。
The reason why the (101) or (−201) surface is the main surface 1a or 1b is as follows. As the main surface, a (100) surface is often used which provides a flat surface by cleavage and is easy to epitaxially grow a GaN-based semiconductor layer. However, since the (100) plane is a cleavage plane, there is a problem that cracks occur in the row direction parallel to the main surfaces 1a and 1b during division. For this reason, the principal surfaces 1a and 1b are (101) or (−201) planes that are non-cleavage surfaces and are surfaces on which the GaN-based semiconductor layer is likely to grow epitaxially.
このGa2O3基板11は、β-Ga2O3を基本とするが、Cu、Ag、Zn、Cd、Al、In、Si、Ge及びSnからなる群から選ばれる1種以上を添加したGaを主成分とした酸化物で構成してもよい。より具体的には、例えば(AlxInyGa(1-x-y))2O3(ただし、0≦x<1、0≦y<1、0≦x+y<1)で表わされるガリウム酸化物を用いることができる。
The Ga 2 O 3 substrate 11 is based on β-Ga 2 O 3 , but one or more selected from the group consisting of Cu, Ag, Zn, Cd, Al, In, Si, Ge, and Sn are added. You may comprise with the oxide which has Ga as a main component. More specifically, for example, a gallium oxide represented by (Al x In y Ga (1-xy) ) 2 O 3 (where 0 ≦ x <1, 0 ≦ y <1, 0 ≦ x + y <1) is used. Can be used.
また、Ga2O3基板11は、酸素欠陥により、又はSiやSn等の不純物がドーピングされることにより、n型の導電型を有する。
The Ga 2 O 3 substrate 11 has an n-type conductivity type by oxygen defects or by being doped with impurities such as Si and Sn.
上記のGa2O3基板11は、例えばEFG(Edge-defined Film-fed Growth)法又はFZ(Floating Zone)法によって製造されたバルク状のGa2O3を所望の寸法に切り出し、その表面に機械的研磨又は化学的研磨を施し、さらに有機洗浄及び酸洗浄を行ったものを用いることができる。
The Ga 2 O 3 substrate 11 is formed by cutting bulk Ga 2 O 3 produced by, for example, an EFG (Edge-defined Film-fed Growth) method or an FZ (Floating Zone) method into a desired dimension, A material that has been subjected to mechanical polishing or chemical polishing and further subjected to organic cleaning and acid cleaning can be used.
The Ga 2 O 3 substrate 11 is formed by cutting bulk Ga 2 O 3 produced by, for example, an EFG (Edge-defined Film-fed Growth) method or an FZ (Floating Zone) method into a desired dimension, A material that has been subjected to mechanical polishing or chemical polishing and further subjected to organic cleaning and acid cleaning can be used.
(GaN系半導体層)
GaN系半導体層12は、AlNバッファ層上に形成されたSiドープのn型GaN層と、n型GaN層上に形成され、InGaN/GaNの多重量子井戸構造を有する活性層としてのMQW(Multiple-Quantum Well)層と、MQW層上に形成されたMgドープのp型GaN層とを備えて構成されている。GaN系半導体層におけるGaN系は、GaとNを構成要素に含むことを示す。
(GaN-based semiconductor layer)
The GaN-basedsemiconductor layer 12 includes an Si-doped n-type GaN layer formed on the AlN buffer layer and an MQW (Multiple as an active layer formed on the n-type GaN layer and having an InGaN / GaN multiple quantum well structure. -Quantum Well) layer and an Mg-doped p-type GaN layer formed on the MQW layer. The GaN system in the GaN-based semiconductor layer indicates that Ga and N are included in the constituent elements.
GaN系半導体層12は、AlNバッファ層上に形成されたSiドープのn型GaN層と、n型GaN層上に形成され、InGaN/GaNの多重量子井戸構造を有する活性層としてのMQW(Multiple-Quantum Well)層と、MQW層上に形成されたMgドープのp型GaN層とを備えて構成されている。GaN系半導体層におけるGaN系は、GaとNを構成要素に含むことを示す。
(GaN-based semiconductor layer)
The GaN-based
(第1の実施の形態の製造方法)
次に、発光素子10の製造方法の一例について図2~図5を参照して説明する。図2Aは、第1の実施の形態に係る半導体ウエハの斜視図、図2Bは、図2Aの半導体ウエハの発光素子の部分を示す部分断面図である。 (Manufacturing method of the first embodiment)
Next, an example of a method for manufacturing thelight emitting element 10 will be described with reference to FIGS. 2A is a perspective view of the semiconductor wafer according to the first embodiment, and FIG. 2B is a partial cross-sectional view showing a light emitting element portion of the semiconductor wafer of FIG. 2A.
次に、発光素子10の製造方法の一例について図2~図5を参照して説明する。図2Aは、第1の実施の形態に係る半導体ウエハの斜視図、図2Bは、図2Aの半導体ウエハの発光素子の部分を示す部分断面図である。 (Manufacturing method of the first embodiment)
Next, an example of a method for manufacturing the
(1)Ga2O3ウエハ基板の準備
酸化ガリウム(Ga2O3)からなる基板であって、互いに反対側に位置し面方位を(101)又は(-201)面とする第1及び第2の主面1a、1bを有する円盤状のGa2O3ウエハ基板110を準備する。 (1) Preparation of Ga 2 O 3 Wafer Substrate A substrate made of gallium oxide (Ga 2 O 3 ), which is located on opposite sides of each other and has a (101) or (−201) plane orientation. A disc-shaped Ga 2 O 3 wafer substrate 110 having two main surfaces 1a and 1b is prepared.
酸化ガリウム(Ga2O3)からなる基板であって、互いに反対側に位置し面方位を(101)又は(-201)面とする第1及び第2の主面1a、1bを有する円盤状のGa2O3ウエハ基板110を準備する。 (1) Preparation of Ga 2 O 3 Wafer Substrate A substrate made of gallium oxide (Ga 2 O 3 ), which is located on opposite sides of each other and has a (101) or (−201) plane orientation. A disc-shaped Ga 2 O 3 wafer substrate 110 having two
(2)発光素子の形成
Ga2O3ウエハ基板110に複数の発光素子10を互いに直交する行方向x及び列方向yにマトリクス状に形成する。ここで、行方向xは、第1の主面1a及びGa2O3基板11の劈開面に平行な方向である。列方向yは、第1の主面1aに平行であるが、Ga2O3基板11の劈開面に平行でない方向である。MOCVD(Metal-Organic Vapor Phase Epitaxy)法等を用いて、Ga2O3ウエハ基板110の第1の主面1a上にAlNバッファ層を形成し、AlNバッファ層上にGaN系半導体層12をエピタキシャル成長させて形成する。そして、GaN系半導体層12上にp側電極13を形成し、Ga2O3ウエハ基板110の第2の主面1b上にn側電極14を形成する。
(2) Formation of Light-Emitting Elements A plurality of light-emittingelements 10 are formed in a matrix in the row direction x and the column direction y orthogonal to each other on the Ga 2 O 3 wafer substrate 110. Here, the row direction x is a direction parallel to the first main surface 1 a and the cleavage plane of the Ga 2 O 3 substrate 11. The column direction y is a direction that is parallel to the first main surface 1 a but is not parallel to the cleavage plane of the Ga 2 O 3 substrate 11. Using an MOCVD (Metal-Organic Vapor Phase Epitaxy) method or the like, an AlN buffer layer is formed on the first main surface 1a of the Ga 2 O 3 wafer substrate 110, and a GaN-based semiconductor layer 12 is epitaxially grown on the AlN buffer layer. Let it form. Then, the p-side electrode 13 is formed on the GaN-based semiconductor layer 12, and the n-side electrode 14 is formed on the second main surface 1 b of the Ga 2 O 3 wafer substrate 110.
Ga2O3ウエハ基板110に複数の発光素子10を互いに直交する行方向x及び列方向yにマトリクス状に形成する。ここで、行方向xは、第1の主面1a及びGa2O3基板11の劈開面に平行な方向である。列方向yは、第1の主面1aに平行であるが、Ga2O3基板11の劈開面に平行でない方向である。MOCVD(Metal-Organic Vapor Phase Epitaxy)法等を用いて、Ga2O3ウエハ基板110の第1の主面1a上にAlNバッファ層を形成し、AlNバッファ層上にGaN系半導体層12をエピタキシャル成長させて形成する。そして、GaN系半導体層12上にp側電極13を形成し、Ga2O3ウエハ基板110の第2の主面1b上にn側電極14を形成する。
(2) Formation of Light-Emitting Elements A plurality of light-emitting
(3)半導体ウエハのダイシングフレームへの装着
図3は、ダイシングフレームに装着された状態を示す半導体ウエハの斜視図である。環状のダイシングフレーム2の裏面にダイシングテープ3を貼着し、半導体ウエハ1の第1の主面1aをダイシングテープ3上に貼着する。 (3) Mounting of Semiconductor Wafer on Dicing Frame FIG. 3 is a perspective view of the semiconductor wafer showing a state where it is mounted on the dicing frame. The dicingtape 3 is attached to the back surface of the annular dicing frame 2, and the first main surface 1 a of the semiconductor wafer 1 is attached to the dicing tape 3.
図3は、ダイシングフレームに装着された状態を示す半導体ウエハの斜視図である。環状のダイシングフレーム2の裏面にダイシングテープ3を貼着し、半導体ウエハ1の第1の主面1aをダイシングテープ3上に貼着する。 (3) Mounting of Semiconductor Wafer on Dicing Frame FIG. 3 is a perspective view of the semiconductor wafer showing a state where it is mounted on the dicing frame. The dicing
図4は、半導体ウエハ1の要部平面図である。発光素子10間に分割予定ライン4x、4yが互いに直交するように設定されている。分割予定ライン4xを行方向xに一致させ、分割予定ライン4yを列方向yに一致させている。
FIG. 4 is a plan view of the main part of the semiconductor wafer 1. The division lines 4x and 4y are set between the light emitting elements 10 so as to be orthogonal to each other. The planned division line 4x is matched with the row direction x, and the planned division line 4y is matched with the column direction y.
(4)ダイシング工程
図5A、図5C、図5Eは、第1の実施の形態に係るダイシング工程を示す要部断面図、図5Bは、図5Aの平面図、図5Dは、図5Cの平面図、図5Fは、図5Eの平面図である。 (4) Dicing Step FIGS. 5A, 5C, and 5E are cross-sectional views showing main parts of the dicing step according to the first embodiment, FIG. 5B is a plan view of FIG. 5A, and FIG. 5D is a plan view of FIG. FIG. 5F is a plan view of FIG. 5E.
図5A、図5C、図5Eは、第1の実施の形態に係るダイシング工程を示す要部断面図、図5Bは、図5Aの平面図、図5Dは、図5Cの平面図、図5Fは、図5Eの平面図である。 (4) Dicing Step FIGS. 5A, 5C, and 5E are cross-sectional views showing main parts of the dicing step according to the first embodiment, FIG. 5B is a plan view of FIG. 5A, and FIG. 5D is a plan view of FIG. FIG. 5F is a plan view of FIG. 5E.
図5A、図5Bに示すように、半導体ウエハ1の第1の主面1aをダイシングテープ3上に貼着する。幅W1の第1のダイシングブレード5Aを用いてGa2O3ウエハ基板110の第2の主面1bの劈開面に平行でない分割予定ライン4y上に溝111を形成する。第1のダイシングブレード5Aの幅W1としては、例えば、25~55μmが好ましく、35~45μmがより好ましい。本実施の形態では、第1のダイシングブレード5Aの幅W1を40μmとする。溝111の深さdは、例えば、20~50μmが好ましく、30~40μmがより好ましい。本実施の形態では、溝111の深さdを35μmとする。
As shown in FIGS. 5A and 5B, the first main surface 1 a of the semiconductor wafer 1 is stuck on the dicing tape 3. Forming a Ga 2 O 3 wafer second principal surface 1b groove 111 on the dividing line 4y not parallel to the cleavage plane of the substrate 110 using the first dicing blade 5A of the width W 1. The width W 1 of the first dicing blade 5A is preferably, for example, 25 to 55 μm, and more preferably 35 to 45 μm. In the present embodiment, the width W 1 of the first dicing blade 5A is 40 μm. The depth d of the groove 111 is preferably 20 to 50 μm, for example, and more preferably 30 to 40 μm. In the present embodiment, the depth d of the groove 111 is 35 μm.
次に、半導体ウエハ1をダイシングテープ3から剥がして、新たなダイシングテープ3をダイシングフレーム2に貼着し、半導体ウエハ1を上下反転して第2の主面1bをその新たなダイシングテープ3上に貼着する。
Next, the semiconductor wafer 1 is peeled off from the dicing tape 3, a new dicing tape 3 is attached to the dicing frame 2, the semiconductor wafer 1 is turned upside down, and the second main surface 1 b is placed on the new dicing tape 3. Adhere to.
次に、図5C、図5Dに示すように、第1のダイシングブレード5Aの幅W1よりも狭い幅W2の第2のダイシングブレード5Bを用いてGa2O3ウエハ基板110の第1の主面1a側から分割予定ライン4yに沿ってGa2O3ウエハ基板110の残部の厚さ全てを切断する。図5C、図5D中、符号112は、切断面である。切断は、溝111の中心に第2のダイシングブレード5Bの中心を一致させて行う。第2のダイシングブレード5Bの幅W2としては、例えば、10~30μmが好ましく、15~25μmがより好ましい。本実施の形態では、第2のダイシングブレード5Bの幅W2を20μmとする。第1及び第2のダイシングブレード5A、5Bは、薄肉円盤状を有し、例えば、ダイヤモンド砥粒を砥粒層に有するダイヤモンドブレードを用いる。
Next, as shown in FIG. 5C and FIG. 5D, the first dicing blade 5B having a width W 2 narrower than the width W 1 of the first dicing blade 5A is used to form the first of the Ga 2 O 3 wafer substrate 110. All the remaining thickness of the Ga 2 O 3 wafer substrate 110 is cut along the planned division line 4y from the main surface 1a side. 5C and 5D, reference numeral 112 denotes a cut surface. The cutting is performed by aligning the center of the second dicing blade 5B with the center of the groove 111. For example, the width W 2 of the second dicing blade 5B is preferably 10 to 30 μm, and more preferably 15 to 25 μm. In the present embodiment, the width W 2 of the second dicing blade 5B is 20 μm. The first and second dicing blades 5A and 5B have a thin disk shape, and for example, a diamond blade having diamond abrasive grains in an abrasive layer is used.
次に、図5E、図5Fに示すように、第2のダイシングブレード5Bを用いてGa2O3ウエハ基板110の第1の主面1a側から劈開面に平行な分割予定ライン4xに沿ってGa2O3ウエハ基板110の厚さ全てを切断して素子単位に分割する。図5E、図5F中、符号112は、切断面である。素子単位の分割によって矩形のGa2O3基板11が形成され、図1に示す発光素子10が形成される。図1において、面111a、111bは、第1のダイシングブレード5Aによって形成された面である。第1の側面1c及び第2の側面1dは、第2のダイシングブレード5Bによって形成された面である。
Next, as shown in FIGS. 5E and 5F, the second dicing blade 5B is used to divide the Ga 2 O 3 wafer substrate 110 from the first main surface 1a side along the planned division line 4x parallel to the cleavage plane. The entire thickness of the Ga 2 O 3 wafer substrate 110 is cut and divided into element units. 5E and 5F, reference numeral 112 denotes a cut surface. A rectangular Ga 2 O 3 substrate 11 is formed by dividing the element unit, and the light emitting element 10 shown in FIG. 1 is formed. In FIG. 1, surfaces 111a and 111b are surfaces formed by the first dicing blade 5A. The first side surface 1c and the second side surface 1d are surfaces formed by the second dicing blade 5B.
なお、分割予定ライン4x上を垂直方向に切断する場合は、劈開方向に沿ったGa2O3ウエハ基板110の斜め割れに注意することが求められる。これらのGa2O3ウエハ基板110の斜め割れを防ぐために、次のような工程で切断を行うことが好ましい。
In the case of cutting the upper dividing line 4x vertically, it is necessary to note the diagonal cracking Ga 2 O 3 wafer substrate 110 along the cleavage direction. In order to prevent oblique cracking of these Ga 2 O 3 wafer substrates 110, it is preferable to perform cutting in the following steps.
まず、100℃に設定されたホットプレート上で板ガラスの表面にワックスを塗り、Ga2O3ウエハ基板110を板ガラスの上に固定する。次に、一体となった板ガラスとGa2O3ウエハ基板110をダイシングテープに固定する。次に、第2のダイシングブレード5BでGa2O3ウエハ基板110を分割予定ライン4xから垂直方向に切断する。
First, wax is applied to the surface of the plate glass on a hot plate set at 100 ° C., and the Ga 2 O 3 wafer substrate 110 is fixed on the plate glass. Next, the integrated plate glass and the Ga 2 O 3 wafer substrate 110 are fixed to a dicing tape. Next, the Ga 2 O 3 wafer substrate 110 is cut in the vertical direction from the planned dividing line 4x by the second dicing blade 5B.
また、Ga2O3ウエハ基板110の劈開方向に沿った斜め割れを防ぐためには、第2のダイシングブレード5Bの砥粒の粒子径が大きい方が好ましい。表1は、第2のダイシングブレード5Bのダイヤモンド砥粒のメディアン径ごとの、Ga2O3ウエハ基板110を切断したときの斜め割れの発生の有無を示す。ここで、メディアン径は、砥粒の粒度分布において累積高さ50%点の粒子径である。表1は、第2のダイシングブレード5Bの砥粒の粒子径が大きい場合にGa2O3ウエハ基板110の劈開方向に沿った斜め割れが発生しないことを示している。
Further, in order to prevent oblique cracks along the cleavage direction of the Ga 2 O 3 wafer substrate 110, it is preferable that the abrasive grains of the second dicing blade 5B have a larger particle diameter. Table 1 shows the presence or absence of occurrence of oblique cracks when the Ga 2 O 3 wafer substrate 110 is cut for each median diameter of the diamond abrasive grains of the second dicing blade 5B. Here, the median diameter is a particle diameter at a 50% cumulative height in the particle size distribution of the abrasive grains. Table 1 shows that oblique cracks along the cleavage direction of the Ga 2 O 3 wafer substrate 110 do not occur when the particle diameter of the abrasive grains of the second dicing blade 5B is large.
(第1の実施の形態の効果)
第1の実施の形態によれば、以下の効果を奏する。
(a)Ga2O3ウエハ基板110を劈開面に平行でない方向(分割予定ライン4yの方向)に沿ってダイシングブレードで切断する場合、ダイシングブレードが基板から抜け出るときに剥がれが起こりやすい。本実施の形態によれば、第2のダイシングブレード5BでGa2O3ウエハ基板110を切断する場合、第2のダイシングブレード5Bが抜け出る側の第2の主面1bに溝111が形成されているため、切断による剥がれが発生し難い。また、Ga2O3ウエハ基板110とGa2O3系半導体層12をダイシングブレードで一度に切断すると、劈開方向に沿って平行に割れが発生しやすい。本実施の形態によれば、Ga2O3系半導体層12をダイシングしないようにしているので、割れ等を抑制することができる。したがって、Ga2O3ウエハ基板110の劈開による剥がれや割れ等の損傷を抑制して素子単位に分割することができ、基板の劈開による剥がれや割れ等の損傷を抑制した発光素子10を提供することができる。
(b)電極の面積が比較的小さいn側電極14を形成した第2の主面1bに溝111を形成しているので、第1の主面1aに溝を形成する場合と比べて基板への発光素子の実装密度が向上する。
(c)第1のダイシングブレード5Aを第2のダイシングブレード5Bの幅よりも広い幅のものを用いているので、第2のダイシングブレード5Bの位置決めを容易に行うことができる。したがって、ウエハから素子をダイシングによって切り出す際の切断位置の位置決めが容易になる。 (Effects of the first embodiment)
According to the first embodiment, the following effects are obtained.
(A) When the Ga 2 O 3 wafer substrate 110 is cut with a dicing blade along a direction that is not parallel to the cleavage plane (the direction of the division plannedline 4y), peeling tends to occur when the dicing blade comes out of the substrate. According to the present embodiment, when the Ga 2 O 3 wafer substrate 110 is cut with the second dicing blade 5B, the groove 111 is formed on the second main surface 1b on the side from which the second dicing blade 5B comes out. Therefore, peeling due to cutting hardly occurs. Further, when the Ga 2 O 3 wafer substrate 110 and the Ga 2 O 3 based semiconductor layer 12 are cut at once with a dicing blade, cracks are likely to occur in parallel along the cleavage direction. According to this embodiment, since the Ga 2 O 3 based semiconductor layer 12 is not diced, cracks and the like can be suppressed. Therefore, it is possible to divide into elements by suppressing damage such as peeling or cracking due to cleavage of the Ga 2 O 3 wafer substrate 110, and to provide a light emitting element 10 in which damage such as peeling or cracking due to cleavage of the substrate is suppressed. be able to.
(B) Since thegroove 111 is formed in the second main surface 1b on which the n-side electrode 14 having a relatively small electrode area is formed, the substrate is compared with the case where the groove is formed in the first main surface 1a. The mounting density of the light emitting element is improved.
(C) Since thefirst dicing blade 5A having a width wider than that of the second dicing blade 5B is used, the second dicing blade 5B can be easily positioned. Therefore, it becomes easy to position the cutting position when the element is cut out from the wafer by dicing.
第1の実施の形態によれば、以下の効果を奏する。
(a)Ga2O3ウエハ基板110を劈開面に平行でない方向(分割予定ライン4yの方向)に沿ってダイシングブレードで切断する場合、ダイシングブレードが基板から抜け出るときに剥がれが起こりやすい。本実施の形態によれば、第2のダイシングブレード5BでGa2O3ウエハ基板110を切断する場合、第2のダイシングブレード5Bが抜け出る側の第2の主面1bに溝111が形成されているため、切断による剥がれが発生し難い。また、Ga2O3ウエハ基板110とGa2O3系半導体層12をダイシングブレードで一度に切断すると、劈開方向に沿って平行に割れが発生しやすい。本実施の形態によれば、Ga2O3系半導体層12をダイシングしないようにしているので、割れ等を抑制することができる。したがって、Ga2O3ウエハ基板110の劈開による剥がれや割れ等の損傷を抑制して素子単位に分割することができ、基板の劈開による剥がれや割れ等の損傷を抑制した発光素子10を提供することができる。
(b)電極の面積が比較的小さいn側電極14を形成した第2の主面1bに溝111を形成しているので、第1の主面1aに溝を形成する場合と比べて基板への発光素子の実装密度が向上する。
(c)第1のダイシングブレード5Aを第2のダイシングブレード5Bの幅よりも広い幅のものを用いているので、第2のダイシングブレード5Bの位置決めを容易に行うことができる。したがって、ウエハから素子をダイシングによって切り出す際の切断位置の位置決めが容易になる。 (Effects of the first embodiment)
According to the first embodiment, the following effects are obtained.
(A) When the Ga 2 O 3 wafer substrate 110 is cut with a dicing blade along a direction that is not parallel to the cleavage plane (the direction of the division planned
(B) Since the
(C) Since the
[第2の実施の形態]
(第2の実施の形態の構成)
図6Aは、本発明の第2の実施の形態に係る発光素子の斜視図、図6Bは、図6AのC-C線断面図、図6Cは、図6AのD方向矢視図である。 [Second Embodiment]
(Configuration of Second Embodiment)
6A is a perspective view of a light emitting device according to a second embodiment of the present invention, FIG. 6B is a cross-sectional view taken along the line CC of FIG. 6A, and FIG. 6C is a view taken in the direction of arrow D in FIG.
(第2の実施の形態の構成)
図6Aは、本発明の第2の実施の形態に係る発光素子の斜視図、図6Bは、図6AのC-C線断面図、図6Cは、図6AのD方向矢視図である。 [Second Embodiment]
(Configuration of Second Embodiment)
6A is a perspective view of a light emitting device according to a second embodiment of the present invention, FIG. 6B is a cross-sectional view taken along the line CC of FIG. 6A, and FIG. 6C is a view taken in the direction of arrow D in FIG.
第1の実施の形態では、凹部として第2の主面1bと第2の側面1dとの角部に段差部15を形成したが、本実施の形態は、凹部として第2の主面1bと第2の側面1dとの角部に溝111を形成したものである。本実施の形態の発光素子10は、第1の実施の形態と同様に、第1の主面1a、第2の主面1b、第1の側面1c及び第2の側面1dを有するGa2O3基板11と、Ga2O3基板11の第1の主面1aに図示しないAlNバッファ層を介して形成されたGaN系半導体層12と、GaN系半導体層12上に形成されたp側電極13と、Ga2O3基板11の第2の主面1bに形成されたn側電極14とを有する。
In the first embodiment, the stepped portion 15 is formed at the corner between the second main surface 1b and the second side surface 1d as a recess. However, in the present embodiment, the second main surface 1b is used as a recess. A groove 111 is formed at the corner with the second side surface 1d. Emitting element 10 of this embodiment, like the first embodiment, the first main surface 1a, the second main surface 1b, Ga 2 O having a first side surface 1c and a second side 1d 3 substrate 11, GaN-based semiconductor layer 12 formed on first main surface 1 a of Ga 2 O 3 substrate 11 via an AlN buffer layer (not shown), and p-side electrode formed on GaN-based semiconductor layer 12 13 and an n-side electrode 14 formed on the second main surface 1b of the Ga 2 O 3 substrate 11.
溝111は、第2の側面1dから5~20μm程度離れて形成されている。なお、溝111は、第2の側面1dからの距離が5μm未満でもよい。
The groove 111 is formed about 5 to 20 μm away from the second side surface 1d. The groove 111 may have a distance from the second side surface 1d of less than 5 μm.
(第2の実施の形態の製造方法)
第1の実施の形態では、半導体ウエハ1の第2の主面1b上の発光素子10間に1つの溝111を形成したが、本実施の形態では、間隔sを設けて2つの溝111を形成した点が第1の実施の形態と異なる。 (Manufacturing method of the second embodiment)
In the first embodiment, onegroove 111 is formed between the light emitting elements 10 on the second main surface 1b of the semiconductor wafer 1. However, in the present embodiment, the two grooves 111 are formed with an interval s. The formed point is different from the first embodiment.
第1の実施の形態では、半導体ウエハ1の第2の主面1b上の発光素子10間に1つの溝111を形成したが、本実施の形態では、間隔sを設けて2つの溝111を形成した点が第1の実施の形態と異なる。 (Manufacturing method of the second embodiment)
In the first embodiment, one
本実施の形態は、第1の実施の形態と同様に、Ga2O3ウエハ基板110を準備し、Ga2O3ウエハ基板110に複数の発光素子10を行方向x及び列方向yにマトリクス状に形成する。次に、第1の実施の形態と同様に、環状のダイシングフレーム2の裏面にダイシングテープ3を貼着し、半導体ウエハ1の第1の主面1aをダイシングテープ3上に貼着する。
In the present embodiment, similarly to the first embodiment, a Ga 2 O 3 wafer substrate 110 is prepared, and a plurality of light emitting elements 10 are matrixed in the row direction x and the column direction y on the Ga 2 O 3 wafer substrate 110. To form. Next, as in the first embodiment, the dicing tape 3 is attached to the back surface of the annular dicing frame 2, and the first main surface 1 a of the semiconductor wafer 1 is attached to the dicing tape 3.
図7A、図7C、図7Eは、第2の実施の形態に係るダイシング工程を示す要部断面図、図7Bは、図7Aの平面図、図7Dは、図7Cの平面図、図7Fは、図7Eの平面図である。
7A, 7C, and 7E are cross-sectional views showing the main part of the dicing process according to the second embodiment, FIG. 7B is a plan view of FIG. 7A, FIG. 7D is a plan view of FIG. 7C, and FIG. FIG. 7E is a plan view of FIG. 7E.
図7A、図7Bに示すように、半導体ウエハ1の第1の主面1aをダイシングテープ3上に貼着する。幅W2の第2のダイシングブレード5Bを用いてGa2O3ウエハ基板110の第2の主面1bの分割予定ライン4yを中心に間隔sを設けて2つの溝111を形成する。第2のダイシングブレード5Bの幅W2としては、例えば、10~30μmが好ましく、15~25μmがより好ましい。本実施の形態では、第2のダイシングブレード5Bの幅W2を20μmとする。間隔sは、例えば、20~40μmが好ましく、25~35μmがより好ましい。本実施の形態では、間隔sを30μmとする。溝111の深さdは、例えば、20~50μmが好ましく、30~40μmがより好ましい。本実施の形態では、溝111の深さdを35μmとする。
As shown in FIGS. 7A and 7B, the first main surface 1 a of the semiconductor wafer 1 is stuck on the dicing tape 3. Forming a Ga 2 O 3 wafer second centered on dividing lines 4y main surface 1b is provided a distance s 2 two grooves 111 of the substrate 110 using a second dicing blade 5B of a width W 2. For example, the width W 2 of the second dicing blade 5B is preferably 10 to 30 μm, and more preferably 15 to 25 μm. In the present embodiment, the width W 2 of the second dicing blade 5B is 20 μm. The interval s is, for example, preferably 20 to 40 μm, and more preferably 25 to 35 μm. In the present embodiment, the interval s is set to 30 μm. The depth d of the groove 111 is preferably 20 to 50 μm, for example, and more preferably 30 to 40 μm. In the present embodiment, the depth d of the groove 111 is 35 μm.
次に、半導体ウエハ1をダイシングテープ3から剥がして、新たなダイシングテープ3をダイシングフレーム2に貼着し、半導体ウエハ1を上下反転して第2の主面1bをその新たなダイシングテープ3上に貼着する。
Next, the semiconductor wafer 1 is peeled off from the dicing tape 3, a new dicing tape 3 is attached to the dicing frame 2, the semiconductor wafer 1 is turned upside down, and the second main surface 1 b is placed on the new dicing tape 3. Adhere to.
次に、図7C、図7Dに示すように、間隔sよりも狭い幅W2の第2のダイシングブレード5Bを用いてGa2O3ウエハ基板110の第1の主面1a側から分割予定ライン4yに沿ってGa2O3ウエハ基板110の厚さ全てを切断する。図7C、図7D中、符号112は、切断面である。切断は、溝111間の中心に第2のダイシングブレード5Bの中心を一致させて行う。なお、溝用のダイシングブレードと切断用のダイシングブレードで異なるものを用いてもよい。
Next, as shown in FIG. 7C and FIG. 7D, a line to be divided from the first main surface 1a side of the Ga 2 O 3 wafer substrate 110 using the second dicing blade 5B having a width W 2 narrower than the interval s. The entire thickness of the Ga 2 O 3 wafer substrate 110 is cut along 4y. 7C and 7D, reference numeral 112 denotes a cut surface. The cutting is performed by aligning the center of the second dicing blade 5B with the center between the grooves 111. Different dicing blades for grooves and dicing blades for cutting may be used.
次に、図7E、図7Fに示すように、第2のダイシングブレード5Bを用いてGa2O3ウエハ基板110の第1の主面1a側から分割予定ライン4xに沿ってGa2O3ウエハ基板110の厚さ全てを切断して素子単位に分割する。図7E、図7F中、符号112は、切断面である。素子単位の分割によって矩形のGa2O3基板11が形成され、図6に示す発光素子10が形成される。図6において、溝111、第1の側面1c及び第2の側面1dは、第2のダイシングブレード5Bによって形成された面である。
Next, FIG. 7E, as shown in FIG. 7F, the 2 Ga 2 using a dicing blade 5B of the O 3 first 1 Ga 2 from the main surface 1a side along the dividing lines 4x of O 3 wafer wafer substrate 110 The entire thickness of the substrate 110 is cut and divided into element units. 7E and 7F, reference numeral 112 denotes a cut surface. A rectangular Ga 2 O 3 substrate 11 is formed by dividing the element unit, and the light emitting element 10 shown in FIG. 6 is formed. In FIG. 6, the groove 111, the first side surface 1c, and the second side surface 1d are surfaces formed by the second dicing blade 5B.
(第2の実施の形態の効果)
第2の実施の形態によれば、第2のダイシングブレード5Bでウエハ基板110を切断する場合、ダイシングブレード5Bがウエハ基板110から抜け出る側の第2の主面1bに分割予定ラインを挟んで一対の溝111が形成されているため、基板の剥がれが溝111から内側に及ばない。また、GaN系半導体層12をダイシングしないようにしているので、割れ等を抑制することができる。したがって、Ga2O3ウエハ基板110の劈開による剥がれや割れ等の損傷を抑制して素子単位に分割することができ、基板の劈開による剥がれや割れ等の損傷を抑制した発光素子10を提供することができる。 (Effect of the second embodiment)
According to the second embodiment, when thewafer substrate 110 is cut by the second dicing blade 5B, a pair of the dicing blade 5B is sandwiched between the second main surface 1b on the side where the dicing blade 5B comes out of the wafer substrate 110, with the planned division line in between Since the groove 111 is formed, peeling of the substrate does not reach the inside from the groove 111. Moreover, since the GaN-based semiconductor layer 12 is not diced, cracks and the like can be suppressed. Therefore, it is possible to divide into elements by suppressing damage such as peeling or cracking due to cleavage of the Ga 2 O 3 wafer substrate 110, and to provide a light emitting element 10 in which damage such as peeling or cracking due to cleavage of the substrate is suppressed. be able to.
第2の実施の形態によれば、第2のダイシングブレード5Bでウエハ基板110を切断する場合、ダイシングブレード5Bがウエハ基板110から抜け出る側の第2の主面1bに分割予定ラインを挟んで一対の溝111が形成されているため、基板の剥がれが溝111から内側に及ばない。また、GaN系半導体層12をダイシングしないようにしているので、割れ等を抑制することができる。したがって、Ga2O3ウエハ基板110の劈開による剥がれや割れ等の損傷を抑制して素子単位に分割することができ、基板の劈開による剥がれや割れ等の損傷を抑制した発光素子10を提供することができる。 (Effect of the second embodiment)
According to the second embodiment, when the
[変形例1]
第1の実施の形態では、溝111を形成した後、ダイシングブレードを用いてGa2O3ウエハ基板110を切断したが、レーザを用いてGa2O3ウエハ基板110を切断してもよい。すなわち、分割予定ライン4y上にダイシングブレードで溝111を形成し、分割予定ライン4yに沿ってGa2O3ウエハ基板110の残部の厚さ全てをレーザで切断する。次に、分割予定ライン4xに沿ってGa2O3ウエハ基板110の厚さ全てをレーザで切断して素子単位に分割する。 [Modification 1]
In the first embodiment, after forming thegroove 111 has been cut Ga 2 O 3 wafer substrate 110 using a dicing blade may be cut Ga 2 O 3 wafer substrate 110 using a laser. That is, a groove 111 is formed on the planned dividing line 4y with a dicing blade, and the entire remaining thickness of the Ga 2 O 3 wafer substrate 110 is cut by the laser along the planned dividing line 4y. Next, the entire thickness of the Ga 2 O 3 wafer substrate 110 is cut by a laser along the planned dividing line 4x and divided into element units.
第1の実施の形態では、溝111を形成した後、ダイシングブレードを用いてGa2O3ウエハ基板110を切断したが、レーザを用いてGa2O3ウエハ基板110を切断してもよい。すなわち、分割予定ライン4y上にダイシングブレードで溝111を形成し、分割予定ライン4yに沿ってGa2O3ウエハ基板110の残部の厚さ全てをレーザで切断する。次に、分割予定ライン4xに沿ってGa2O3ウエハ基板110の厚さ全てをレーザで切断して素子単位に分割する。 [Modification 1]
In the first embodiment, after forming the
[変形例2]
第1の実施の形態では、溝111を形成した後、ダイシングブレードを用いてGa2O3ウエハ基板110を切断したが、一部のダイシングスクライブを採用してもよい。すなわち、分割予定ライン4y上にダイシングブレードで溝111を形成し、分割予定ライン4yに沿ってGa2O3ウエハ基板110の残部の厚さ全てをダイシングブレードで切断する。次に、分割予定ライン4x上にスクライブにより溝を形成し、応力を加えてブレイキングしGa2O3ウエハ基板110を素子単位に分割する。 [Modification 2]
In the first embodiment, after forming thegroove 111, the Ga 2 O 3 wafer substrate 110 is cut using a dicing blade, but a part of the dicing scribe may be employed. That is, the groove 111 is formed on the planned division line 4y with a dicing blade, and all the remaining thickness of the Ga 2 O 3 wafer substrate 110 is cut along the planned division line 4y with the dicing blade. Next, a groove is formed by scribing on the planned dividing line 4x, stress is applied and breaking is performed, and the Ga 2 O 3 wafer substrate 110 is divided into element units.
第1の実施の形態では、溝111を形成した後、ダイシングブレードを用いてGa2O3ウエハ基板110を切断したが、一部のダイシングスクライブを採用してもよい。すなわち、分割予定ライン4y上にダイシングブレードで溝111を形成し、分割予定ライン4yに沿ってGa2O3ウエハ基板110の残部の厚さ全てをダイシングブレードで切断する。次に、分割予定ライン4x上にスクライブにより溝を形成し、応力を加えてブレイキングしGa2O3ウエハ基板110を素子単位に分割する。 [Modification 2]
In the first embodiment, after forming the
図8は、第2の主面1b側から見た半導体ウエハ1の要部を示し、図8Aは、実施例の写真であり、図8Bは、比較例の写真である。図8Aに示す領域Cは、第1の実施の形態に対応する実施例によるものであり、幅40μmのダイシングブレードでGa2O3ウエハ基板110に溝111を形成した後、幅20μmのダイシングブレードでGa2O3ウエハ基板110の残りの厚さを切断した場合を示す。図8Aから領域Cには、ほとんど剥がれが生じていないことが分かる。
FIG. 8 shows a main part of the semiconductor wafer 1 viewed from the second main surface 1b side, FIG. 8A is a photograph of the example, and FIG. 8B is a photograph of the comparative example. A region C shown in FIG. 8A is according to an example corresponding to the first embodiment. After forming the groove 111 in the Ga 2 O 3 wafer substrate 110 with a dicing blade having a width of 40 μm, the dicing blade having a width of 20 μm is formed. A case where the remaining thickness of the Ga 2 O 3 wafer substrate 110 is cut is shown. It can be seen from FIG. 8A that there is almost no peeling in the region C.
図8Bに示す領域Dは、比較例によるものであり、溝を形成せずに幅20μmのダイシングブレードでGa2O3ウエハ基板110の全ての厚さを1回で切断した場合を示す。図8Bから領域Dには、ダイシングブレードが抜け出た側の主面に剥がれ113が生じていることが分かる。
A region D shown in FIG. 8B is according to a comparative example, and shows a case where the entire thickness of the Ga 2 O 3 wafer substrate 110 is cut once with a dicing blade having a width of 20 μm without forming a groove. From FIG. 8B, it can be seen that in the region D, the peeling 113 occurs on the main surface on the side from which the dicing blade comes out.
なお、本発明は、上記実施の形態に限定されず、発明の要旨を変更しない範囲内で種々に変形可能である。例えば、上記実施の形態で説明した製造方法のステップの入れ替え、追加、削除等は発明の要旨を変更しない範囲で可能である。
In addition, this invention is not limited to the said embodiment, In the range which does not change the summary of invention, it can deform | transform variously. For example, replacement, addition, deletion, etc. of the steps of the manufacturing method described in the above embodiment are possible without changing the gist of the invention.
また、上記実施の形態では、発光素子として垂直型について説明したが、本発明は水平型にも適用可能である。
In the above embodiment, the vertical type is described as the light emitting element, but the present invention can also be applied to a horizontal type.
また、上記実施の形態では、半導体素子として発光素子について説明したが、本発明は、レーザ、トランジスタ等の半導体素子にも適用可能である。
In the above embodiment, the light-emitting element is described as a semiconductor element. However, the present invention can also be applied to a semiconductor element such as a laser or a transistor.
また、上記実施の形態では、分割予定ラインを直交するように設定したが、斜め方向に交差するように設定してもよい。この場合、菱形状の半導体素子が形成される。
In the above embodiment, the division lines are set to be orthogonal, but may be set to intersect in an oblique direction. In this case, a diamond-shaped semiconductor element is formed.
また、上記実施の形態では、電極面積の小さい側の第2の主面1bに溝111を形成したが、電極面積の大きい側の第1の主面1aに溝111を形成してもよい。
In the above embodiment, the groove 111 is formed on the second main surface 1b on the side having a smaller electrode area. However, the groove 111 may be formed on the first main surface 1a on the side having a larger electrode area.
また、上記実施の形態では、劈開面に平行でない分割予定ライン4yに沿った切断においては基板に溝を形成してから基板の残りの厚さを切断し、劈開面に平行な分割予定ライン4xに沿った切断においては基板に溝を形成せずに基板の厚さ全てを切断したが、分割予定ライン4xに沿った切断においても基板に溝を形成してから基板の残りの厚さを切断してよい。
In the above embodiment, in the cutting along the planned division line 4y that is not parallel to the cleavage plane, the remaining thickness of the substrate is cut after forming a groove in the substrate, and the planned division line 4x parallel to the cleavage plane is cut. In the cutting along the substrate, the entire thickness of the substrate was cut without forming a groove in the substrate. However, in the cutting along the planned dividing line 4x, the groove was formed in the substrate and then the remaining thickness of the substrate was cut. You can do it.
ウエハから素子を切り出す際の位置決めが容易で、基板の劈開による剥がれや割れ等の損傷を抑制することができる半導体素子及びその製造方法を提供する。
Provided are a semiconductor element that can be easily positioned when cutting out an element from a wafer and can suppress damage such as peeling and cracking due to cleavage of the substrate, and a method for manufacturing the same.
1…半導体ウエハ、1a…第1の主面、1b…第2の主面、1c…第1の側面、1d…第2の側面、2…ダイシングフレーム、3…ダイシングテープ、4x,4y…分割予定ライン、5A…第1のダイシングブレード、5B…第2のダイシングブレード、10…発光素子、11…Ga2O3基板、12…GaN系半導体層、13…p側電極、14…n側電極、15…段差部、110…Ga2O3ウエハ基板、111…溝、111a,111b…面、112…切断面、113…剥がれ、d…深さ、s…間隔、W1,W2…幅、x…行方向、y…列方向
DESCRIPTION OF SYMBOLS 1 ... Semiconductor wafer, 1a ... 1st main surface, 1b ... 2nd main surface, 1c ... 1st side surface, 1d ... 2nd side surface, 2 ... Dicing frame, 3 ... Dicing tape, 4x, 4y ... Divided Planned line, 5A ... first dicing blade, 5B ... second dicing blade, 10 ... light emitting element, 11 ... Ga 2 O 3 substrate, 12 ... GaN-based semiconductor layer, 13 ... p-side electrode, 14 ... n-side electrode , 15, stepped portion, 110, Ga 2 O 3 wafer substrate, 111, groove, 111 a, 111 b, surface, 112, cut surface, 113, peeled, d, depth, s, spacing, W 1 , W 2, width. , X ... row direction, y ... column direction
Claims (10)
- 酸化ガリウムからなる基板であって、互いに反対側に位置する第1及び第2の主面と、前記第1の主面及び劈開面に平行な方向に平行な第1の側面と、前記第1の側面と交差する第2の側面とを有する基板と、
前記基板の前記第1の主面に形成された半導体層と、
前記基板の前記第1又は第2の主面と前記第2の側面との角部に形成され、前記基板を素子単位に分割する際の剥離を抑制する凹部とを備えた半導体素子。 A substrate made of gallium oxide, the first and second main surfaces located on opposite sides of each other, the first side surface parallel to the first main surface and the direction parallel to the cleavage plane, and the first A substrate having a second side surface intersecting the side surface of
A semiconductor layer formed on the first main surface of the substrate;
A semiconductor device comprising: a recess formed at a corner between the first or second main surface and the second side surface of the substrate and suppressing separation when the substrate is divided into device units. - 前記劈開面は、(100)面である請求項1に記載の半導体素子。 The semiconductor element according to claim 1, wherein the cleavage plane is a (100) plane.
- 前記凹部は、前記主面と交差する面、及び前記側面と交差する面からなる段差部によって構成された請求項1又は2に記載の半導体素子。 3. The semiconductor element according to claim 1, wherein the concave portion is constituted by a step portion including a surface intersecting with the main surface and a surface intersecting with the side surface.
- 前記凹部は、溝によって構成された請求項1又は2に記載の半導体素子。 3. The semiconductor element according to claim 1, wherein the recess is formed by a groove.
- 前記半導体層は、前記基板の前記第1の主面の一部に形成された請求項1又は2に記載の半導体素子。 The semiconductor element according to claim 1, wherein the semiconductor layer is formed on a part of the first main surface of the substrate.
- 前記第1及び第2の主面は、(101)又は(-201)面である請求項1又は2に記載の半導体素子。 3. The semiconductor element according to claim 1, wherein the first and second main surfaces are (101) or (−201) surfaces.
- 酸化ガリウムからなる基板であって、互いに反対側に位置する第1及び第2の主面を有する基板を準備し、
前記基板に複数の半導体素子を前記第1の主面及び前記基板の劈開面に平行な第1の方向と、前記第1の方向に交差する第2の方向に沿ってマトリクス状に形成し、
前記基板の前記半導体素子間であって前記第1及び第2の主面のうち一方の主面に前記第2の方向に沿う複数の凹部を形成し、
前記第1及び第2の主面のうち他方の主面から前記複数の凹部に沿って前記基板を切断し、
前記第1の方向に沿って前記基板を切断して前記複数の半導体素子を素子単位に分割する半導体素子の製造方法。 Preparing a substrate made of gallium oxide and having first and second main surfaces located on opposite sides of each other;
Forming a plurality of semiconductor elements on the substrate in a matrix along a first direction parallel to the first main surface and the cleavage plane of the substrate, and a second direction intersecting the first direction;
Forming a plurality of recesses along the second direction on one main surface of the first and second main surfaces between the semiconductor elements of the substrate;
Cutting the substrate along the plurality of recesses from the other main surface of the first and second main surfaces;
A method for manufacturing a semiconductor element, wherein the substrate is cut along the first direction to divide the plurality of semiconductor elements into element units. - 前記劈開面は、(100)面である請求項7に記載の半導体素子の製造方法。 The method of manufacturing a semiconductor element according to claim 7, wherein the cleavage plane is a (100) plane.
- 前記複数の凹部の形成は、第1の幅を有する第1のダイシングブレードを用いて複数の溝を形成し、
前記複数の凹部に沿う前記基板の切断は、前記第1の幅よりも小さい第2の幅を有する第2のダイシングブレードを用いて前記溝の箇所で前記基板を切断する請求項7又は8に記載の半導体素子の製造方法。 The plurality of recesses are formed by forming a plurality of grooves using a first dicing blade having a first width,
9. The cutting of the substrate along the plurality of recesses is performed by cutting the substrate at the groove using a second dicing blade having a second width smaller than the first width. The manufacturing method of the semiconductor element of description. - 前記複数の凹部の形成は、それぞれの前記半導体素子間に2本の溝を形成し、
前記複数の凹部に沿う前記基板の切断は、前記2本の溝間で前記基板を切断する請求項7に記載の半導体素子の製造方法。 The plurality of recesses are formed by forming two grooves between the semiconductor elements,
The method for manufacturing a semiconductor device according to claim 7, wherein the cutting of the substrate along the plurality of recesses is performed by cutting the substrate between the two grooves.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011226047 | 2011-10-13 | ||
JP2011-226047 | 2011-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013054917A1 true WO2013054917A1 (en) | 2013-04-18 |
Family
ID=48081962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076519 WO2013054917A1 (en) | 2011-10-13 | 2012-10-12 | Semiconductor element and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2013054917A1 (en) |
TW (1) | TW201332139A (en) |
WO (1) | WO2013054917A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017100231A (en) * | 2015-12-01 | 2017-06-08 | 株式会社ディスコ | Method for dividing work-piece |
JP2018170306A (en) * | 2017-03-29 | 2018-11-01 | Tdk株式会社 | Method for manufacturing gallium oxide semiconductor device |
JP2020141004A (en) * | 2019-02-27 | 2020-09-03 | トヨタ自動車株式会社 | Semiconductor device and manufacturing method thereof |
CN114012917A (en) * | 2021-11-05 | 2022-02-08 | 苏州燎塬半导体有限公司 | Preparation method of gallium oxide single crystal wafer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06275713A (en) * | 1993-03-19 | 1994-09-30 | Hitachi Ltd | Semiconductor wafer, semiconductor chip and dicing method therefor |
JP2001217210A (en) * | 2000-02-01 | 2001-08-10 | Seiko Epson Corp | Dicing method |
JP2001291683A (en) * | 2000-04-04 | 2001-10-19 | Disco Abrasive Syst Ltd | Method for manufacturing semiconductor chip |
JP2006237471A (en) * | 2005-02-28 | 2006-09-07 | Yamaha Corp | Semiconductor wafer, semiconductor element using the same, wafer level chip size package, and method for manufacturing semiconductor element |
US20070134833A1 (en) * | 2005-12-14 | 2007-06-14 | Toyoda Gosei Co., Ltd. | Semiconductor element and method of making same |
WO2007069456A1 (en) * | 2005-12-16 | 2007-06-21 | Olympus Corporation | Semiconductor device manufacturing method |
JP2011129612A (en) * | 2009-12-16 | 2011-06-30 | Renesas Electronics Corp | Method for manufacturing semiconductor device and semiconductor device |
-
2012
- 2012-10-12 JP JP2013538604A patent/JPWO2013054917A1/en active Pending
- 2012-10-12 WO PCT/JP2012/076519 patent/WO2013054917A1/en active Application Filing
- 2012-10-15 TW TW101137964A patent/TW201332139A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06275713A (en) * | 1993-03-19 | 1994-09-30 | Hitachi Ltd | Semiconductor wafer, semiconductor chip and dicing method therefor |
JP2001217210A (en) * | 2000-02-01 | 2001-08-10 | Seiko Epson Corp | Dicing method |
JP2001291683A (en) * | 2000-04-04 | 2001-10-19 | Disco Abrasive Syst Ltd | Method for manufacturing semiconductor chip |
JP2006237471A (en) * | 2005-02-28 | 2006-09-07 | Yamaha Corp | Semiconductor wafer, semiconductor element using the same, wafer level chip size package, and method for manufacturing semiconductor element |
US20070134833A1 (en) * | 2005-12-14 | 2007-06-14 | Toyoda Gosei Co., Ltd. | Semiconductor element and method of making same |
WO2007069456A1 (en) * | 2005-12-16 | 2007-06-21 | Olympus Corporation | Semiconductor device manufacturing method |
JP2011129612A (en) * | 2009-12-16 | 2011-06-30 | Renesas Electronics Corp | Method for manufacturing semiconductor device and semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017100231A (en) * | 2015-12-01 | 2017-06-08 | 株式会社ディスコ | Method for dividing work-piece |
JP2018170306A (en) * | 2017-03-29 | 2018-11-01 | Tdk株式会社 | Method for manufacturing gallium oxide semiconductor device |
JP2020141004A (en) * | 2019-02-27 | 2020-09-03 | トヨタ自動車株式会社 | Semiconductor device and manufacturing method thereof |
JP7093953B2 (en) | 2019-02-27 | 2022-07-01 | 株式会社デンソー | Semiconductor devices and their manufacturing methods |
CN114012917A (en) * | 2021-11-05 | 2022-02-08 | 苏州燎塬半导体有限公司 | Preparation method of gallium oxide single crystal wafer |
Also Published As
Publication number | Publication date |
---|---|
TW201332139A (en) | 2013-08-01 |
JPWO2013054917A1 (en) | 2015-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5179068B2 (en) | Method for manufacturing compound semiconductor device | |
CN111095483B (en) | Method for removing substrate by cutting technology | |
TW427037B (en) | GaN semiconductor device | |
JP2011129765A (en) | Manufacturing method for semiconductor light-emitting element | |
JP3763753B2 (en) | Group III nitride compound semiconductor device and method for manufacturing the same | |
US20080296626A1 (en) | Nitride substrates, thin films, heterostructures and devices for enhanced performance, and methods of making the same | |
JP2003218390A (en) | Semiconductor light emitting element and its manufacturing method | |
JP6405889B2 (en) | GaN substrate manufacturing method | |
JP2001168388A (en) | Gallium nitride compound semiconductor chip, its manufacturing method and gallium nitride compound semiconductor wafer | |
KR20140133944A (en) | Ⅲ nitride semiconductor vertical-type-structure led chip and process for production thereof | |
JP2001177146A (en) | Triangular shape semiconductor element and manufacturing method therefor | |
WO2013054917A1 (en) | Semiconductor element and manufacturing method thereof | |
EP2020691A2 (en) | III-Nitride semiconductor light emitting device | |
JP5346171B2 (en) | Manufacturing method of ZnO-based semiconductor device and ZnO-based semiconductor device | |
JP6456502B2 (en) | Group III nitride substrate and method of manufacturing the same | |
CN107305920B (en) | Substrate wafer and method for manufacturing group III nitride semiconductor device | |
JP2014203954A (en) | Semiconductor element manufacturing method | |
JP2004083319A (en) | Diboride single crystal substrate, semiconductor laser diode and semiconductor device using the same and their production method | |
US20150249184A1 (en) | Semiconductor Multilayer Structure And Semiconductor Element | |
JP5834952B2 (en) | Manufacturing method of nitride semiconductor substrate | |
US20020124794A1 (en) | Nitride semiconductor chip and method for manufacturing nitride semiconductor chip | |
KR101923673B1 (en) | Method of fabricating gallium nitrded based semiconductor device | |
JP2014203953A (en) | Semiconductor element and manufacturing method of the same | |
JP6547506B2 (en) | Method of manufacturing nitride semiconductor crystal | |
JP6327136B2 (en) | Method for producing seamed GaN crystal and method for producing GaN crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12840486 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013538604 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12840486 Country of ref document: EP Kind code of ref document: A1 |