WO2013051621A1 - Device for supplying granular material - Google Patents
Device for supplying granular material Download PDFInfo
- Publication number
- WO2013051621A1 WO2013051621A1 PCT/JP2012/075686 JP2012075686W WO2013051621A1 WO 2013051621 A1 WO2013051621 A1 WO 2013051621A1 JP 2012075686 W JP2012075686 W JP 2012075686W WO 2013051621 A1 WO2013051621 A1 WO 2013051621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- granular material
- nitrogen
- guide tube
- rotating shaft
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D83/00—Containers or packages with special means for dispensing contents
- B65D83/06—Containers or packages with special means for dispensing contents for dispensing powdered or granular material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B39/00—Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
- B65B39/04—Nozzles, funnels or guides for introducing articles or materials into containers or wrappers having air-escape, or air-withdrawal, passages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B1/00—Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B1/04—Methods of, or means for, filling the material into the containers or receptacles
- B65B1/10—Methods of, or means for, filling the material into the containers or receptacles by rotary feeders
- B65B1/12—Methods of, or means for, filling the material into the containers or receptacles by rotary feeders of screw type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B1/00—Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B1/04—Methods of, or means for, filling the material into the containers or receptacles
- B65B1/16—Methods of, or means for, filling the material into the containers or receptacles by pneumatic means, e.g. by suction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B31/00—Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
- B65B31/04—Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
- B65B31/041—Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzles acting from above on containers or wrappers open at their top
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B31/00—Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
- B65B31/04—Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
- B65B31/044—Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzles being combined with a filling device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B37/00—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged
- B65B37/08—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged by rotary feeders
- B65B37/10—Supplying or feeding fluent-solid, plastic, or liquid material, or loose masses of small articles, to be packaged by rotary feeders of screw type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B39/00—Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
- B65B39/007—Guides or funnels for introducing articles into containers or wrappers
Definitions
- This invention relates to the granular material supply apparatus which supplies a granular material.
- a powder supply device for supplying powder, granules, etc. to a storage bag.
- the granular material is often stored in a storage bag together with air and sealed.
- the granular material if it is sealed in a storage bag for a long time, it may be oxidized and deteriorated or hardened by air.
- Examples of such powders include wheat flour, skim milk powder, and toner containing a magnetic material for a copying machine.
- Patent Document 1 there is a powder supply device that removes air (degass) and stores the powder in a storage bag.
- Patent Document 1 JP 2011-84311 A
- the conventional granular material supply device has a limit in increasing the deaeration rate, and has a limit in extending the quality assurance period of the granular material.
- the present invention provides a granular material supply device that bleeds air between granular particles, ejects an inert gas toward the outside from the granular material, and includes the inert gas in the granular material. It is to provide.
- the granular material supply apparatus includes a guide tube that guides the granular material, in which a plurality of through holes for guiding an internal gas to the outside are formed, and a portion in which the through hole of the guide tube is formed.
- a filter that allows the gas in the guide tube to flow to the outside through the through hole, and prevents the granular material in the guide tube from leaking to the outside from the through hole;
- a gas supply unit that supplies an inert gas, a rotating shaft that is positioned and rotated in the guide tube, and is rotated on the rotating shaft and rotated in the guide tube by rotation of the rotating shaft.
- the rotating shaft has a gas guide path for guiding the inert gas supplied by the gas supply unit, and the inert gas guided by the gas guide path is ejected to form a granular material.
- the granular material supply device of the present invention is not in contact with the granular material from the gas supply port of the gas guide path toward the outside while conveying the granular material by the auger in the guide tube. Since the active gas is contained and the gas in the guide cylinder is sucked outside through the through hole and the filter by the suction device, the inert gas can be filled in the granular material, and oxidation of the granular material, Solidification and the like can be prevented, and the quality of the powder can be kept constant for a long period of time.
- the rotating shaft has a plurality of the gas supply ports along an axial direction of the rotating shaft, and the guide tube has a plurality of the through holes facing the plurality of gas supply ports in the axial direction. It is preferable to form along.
- the granular material supply device can efficiently perform the air venting of the granular material and the filling of the inert gas at the same time.
- the rotating shaft has a plurality of gas supply ports over the entire length of the rotating shaft in the axial direction, and the guide tube forms the plurality of through holes over the entire length of the guide tube. Is preferred.
- the guide tube is formed with a gas non-leakage portion facing the gas supply port, in which the through-hole is not formed, and a plurality of the through-holes on the upstream side in the axial direction with respect to the gas non-leakage portion. It is preferable to include an upper suction portion that is formed and a lower suction portion in which a plurality of the through holes are formed on the downstream side in the axial direction with respect to the gas non-leakage portion.
- the granular material supply device removes the air contained in the granular material at the upper suction part while conveying the granular material by the auger in the guide tube, and the powder from the gas supply port at the gas non-leakage part.
- Inert gas is included in the granule, and the residual air and inert gas contained in the granule are sucked in the lower suction part.
- the quality of the granules can be kept constant for a long time.
- the guide tube is provided with a gas outlet for injecting an inert gas at the tip.
- the air in the storage bag for supplying the granular material can be reduced, and instead, the inert gas can be filled into the storage bag, and the granular material when stored in the storage bag can be used.
- the quality assurance period of the granular material can be lengthened.
- the inert gas is preferably nitrogen gas.
- the oxidation of the powder can be prevented by the nitrogen gas, and the quality assurance period of the powder can be extended.
- the said granular material is grain flour, for example.
- the powder particles are, for example, image forming toner.
- FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
- FIG. 6 is a cross-sectional view taken along the line BB in FIG. 1.
- FIG. 4 is a cross-sectional view taken along the line CC of FIGS. 2 and 3, (A) is an overall view, and (B) is a cross-sectional view of a negative pressure chamber portion.
- FIG. 4 is a cross-sectional view taken along the line DD in FIGS. 2 and 3.
- FIG. 4 is a cross-sectional view taken along the line EE in FIGS. 2 and 3.
- FIG. 4 is a state diagram of the granular material supply device before supplying the granular material to the storage bag, and is a cross-sectional view taken along the line DD in FIGS. 2 and 3.
- FIG. 4 is a state diagram of the granular material supply device that is supplying the granular material to the storage bag, and is a cross-sectional view taken along the line CC in FIGS. 2 and 3.
- It is a state figure of the granular material supply apparatus immediately after completion
- FIG. 11 is a cross-sectional view taken along line JJ in FIG. 10.
- 11 and 12 are cross-sectional views taken along the line KK in FIG. 11, (A) is an overall view, and (B) is a partial cross-sectional view of the negative pressure chamber.
- 11 and 12 are cross-sectional views taken along line LL in FIG. 11 and FIG. 12, (A) is an overall view, and (B) is a partial cross-sectional view of a negative pressure chamber.
- FIG. 13 is a cross-sectional view taken along the line MM in FIGS. 11 and 12.
- FIG. 13 is a cross-sectional view taken along line NN in FIGS. 11 and 12.
- the powder supply device 11 is a device that supplies or fills the storage bag S with powder.
- the powder particles include cereal powders such as wheat flour and nonfat dry milk, and image forming toner containing a magnetic material for a copying machine.
- the granular material supply device 11 is erected on the fixing member 12.
- an elevating shaft 14 is provided so as to be movable up and down. When the handle 15 is rotated, the elevating shaft 14 elevates the column 13 by an elevating mechanism (not shown).
- the elevating shaft 14 is provided with a hopper 17 and a cylindrical guide tube 18 through a bracket 16.
- the hopper 17 stores powder particles.
- a motor (not shown) that rotates an auger (also called a screw) 19 and a cover 20 that houses the motor are provided at the upper end portion of the elevating shaft 14.
- the auger 19 is positioned in the guide cylinder 18 and rotates.
- the auger 19 rotates in the guide cylinder 18 by the rotation of the rotation shaft 21 provided on the rotation shaft 21.
- the blades 22 for conveying.
- the blades 22 are formed in a circular shape when viewed from the end of the rotating shaft 21 as shown in FIG.
- the rotating shaft 21 is rotatably supported by the hopper 17 and the cover 20.
- the rotating shaft 21 extends through the cover 20 and the hopper 17 to the vicinity of the powder outlet 18a of the guide cylinder 18.
- a nitrogen supply path (gas) for guiding nitrogen gas (inert gas) N 2 supplied by a nitrogen gas supply device (gas supply unit) 27 from the upper end to the substantially lower end of the rotary shaft 21 is provided at the axis of the rotary shaft 21.
- Guideway) 23 is formed.
- nitrogen outlets (gas supply ports) 26 are formed radially around the nitrogen supply path 23 as shown in FIG. 3, and the axial direction of the rotary shaft 21 as shown in FIG. A plurality are formed along.
- the nitrogen jet port 26 is configured so that nitrogen gas guided by the nitrogen supply path 23 is jetted and nitrogen particles are contained in the powder.
- the head of the rotating shaft 21 is connected to a nitrogen gas supply device 27 that supplies nitrogen gas via a rotatable elbow 25 and a nitrogen supply pipe 24.
- the guide cylinder 18 is formed in a cylindrical shape, and guides the granular material conveyed by the auger 19 from the hopper 17 to the storage bag S.
- the guide tube 18 is formed with a plurality of air / gas vent holes (through holes) 28 for guiding the internal gas to the outside.
- a plurality of air / gas vent holes 28 are formed from the portion below the hopper 17 of the guide cylinder 18 to the vicinity of the powder outlet 18a at the tip (lower end in FIG. 4).
- the gas includes air contained in the granular material, nitrogen gas ejected from the nitrogen ejection port 26, and the like.
- a cylindrical filter 29 is provided on the outer periphery of the portion of the guide tube 18 where the air / gas vent hole 28 is formed.
- the filter 29 allows the gas in the guide cylinder 18 to flow to the outside through the air / gas vent hole 28, and prevents the powder particles in the guide cylinder 18 from leaking to the outside through the air / gas vent hole 28. It comes to stop.
- the portion of the guide tube 18 where the air / gas vent hole 28 is formed is weak in strength. Further, it is necessary to protect the outer peripheral portion of the cylindrical filter 29. Therefore, a reinforcing cylinder 71 that reinforces the guide cylinder 18 and protects the outer periphery of the filter 29 is provided outside the filter 29 with the guide cylinder 18 sandwiching the filter 29 therebetween.
- the reinforcing cylinder 71 has a length that covers the filter 29.
- the reinforcing cylinder 71 also has a plurality of air / gas vent holes 72 facing the air / gas vent holes 28 formed in the guide cylinder 18.
- the air / gas vent hole 72 also guides the gas inside the guide tube 18 to the outside.
- a negative pressure chamber 73 is provided on the outer periphery of the reinforcing cylinder 71.
- the negative pressure chamber 73 is formed by an outer peripheral cylinder 74, an upper lid 75, and a lower lid 76.
- the outer peripheral cylinder 74 is separated from the reinforcing cylinder 71, and the upper part is attached to the guide cylinder 18 by a ring-shaped upper lid 75, and the lower part is provided to the granular material discharge port 18 a of the guide cylinder 18 by a ring-shaped lower lid 76.
- the negative pressure chamber 73 is formed in a region wider than a region where the air / gas vent holes 28 and 72 are formed. FIG.
- FIG. 4B is a diagram showing the positional relationship among the guide cylinder 18, the filter 29, the reinforcing cylinder 71, and the outer peripheral cylinder 74.
- the reinforcement cylinder 71 is not necessarily required.
- the gas passage hole 77 formed in the upper lid 75 of the negative pressure chamber 73 is provided with a negative pressure elbow 78 that connects the negative pressure chamber 73 and an air / gas suction device (suction device) 79. As shown in FIGS. 2 and 3, the negative pressure elbows 78 are provided at intervals of 90 degrees.
- the negative pressure chamber 73 on the outer periphery of the guide cylinder 18 has a nitrogen lower supply pipe 51 used when supplying nitrogen gas to the bottom of the storage bag S, and a nitrogen gas at the top of the storage bag S.
- Nitrogen upper supply pipe 61 used when supplying nitrogen.
- the nitrogen lower supply pipe 51 is formed straight and supported by the upper lid 75 and the lower lid 76.
- the nitrogen upper supply pipe 61 is formed in an L shape with the tip portion facing outward, and is supported by the upper lid 75 and the outer peripheral cylinder 74.
- the lower nitrogen supply pipe 51 is connected to the nitrogen gas supply device 27 by an elbow 52 provided on the upper part of the lower nitrogen supply pipe 51.
- the nitrogen upper supply pipe 61 is also connected to the nitrogen gas supply device 27 via an elbow 62 provided on the upper part of the nitrogen upper supply pipe 61 and a nitrogen supply pipe (not shown).
- two nitrogen lower supply pipes 51 and two nitrogen upper supply pipes 61 are alternately arranged at intervals of 90 degrees. Therefore, in FIG. 2, eight elbows 52, 78, 62, 78, 52, 78, 62, 78 are provided at equal intervals on the upper lid 75 of the negative pressure chamber 73.
- the powder supply device 11 and the storage bag S can be moved up and down relatively, and when at least one of them is moved up and down, the powder discharge port 18 a of the guide tube 18 stores the powder. Enter. Then, a motor (not shown) for rotating the nitrogen gas supply device 27, the air / gas suction device 79, and the auger 19 is started.
- the nitrogen gas supply device 27 injects nitrogen gas into the guide cylinder 18 from the nitrogen outlet 26 through the nitrogen supply pipe 24, the elbow 25, and the nitrogen supply path 23. Further, the air / gas suction device 79 sucks air in the guide cylinder through the negative pressure elbow 78 by setting the inside of the negative pressure chamber 73 to a pressure lower than the atmospheric pressure (negative pressure).
- the auger 19 is rotated by a motor (not shown), and the blades 22 convey the powder particles from the hopper 17 to the particle discharge port 18a.
- the nitrogen gas supply device 27 ejects nitrogen gas from the nitrogen ejection port 26 and includes it in the granular material.
- the nitrogen outlet 26 is formed in the rotating shaft 21 of the auger 19, the nitrogen gas is ejected outward from the center of the granular material conveyed in the guide cylinder 18.
- the negative pressure chamber 73 since the negative pressure chamber 73 is at a negative pressure, the powder and particles are sucked. However, the powder is prevented from being sucked by the filter 29. For this reason, the negative pressure chamber 73 sucks the air contained in the granular material through the air / gas vent hole 28, the filter 29, and the air / gas vent hole 72. At this time, since the air / gas suction device 79 sucks the powder particles from the periphery of the guide tube 18, the nitrogen gas spouted from the nitrogen outlet 26 to the center of the powder particles is sucked near the inner periphery of the guide tube 18. And nitrogen gas can be spread over the powder. At this time, nitrogen gas is somewhat extracted together with air.
- the amount of nitrogen gas ejected from the nitrogen ejection port 26 is larger than the amount of air contained in the granular material. For this reason, nitrogen gas spreads over a granular material so that air may be extruded from a granular material.
- the reason why the air / gas suction device 79 sucks the nitrogen gas together with the air contained in the powder is to help the nitrogen gas spread over the entire powder and suck all the nitrogen gas. It is not for extracting. Note that the filter 29 is not easily clogged with powder particles.
- the powder supply device 11 conveys the powder through the auger 19 in the guide tube, and the powder is supplied from the nitrogen outlet 26 of the gas guide path 23 toward the outside from the powder.
- Inert gas is contained in the granule, and the gas in the guide tube is sucked out through the air / gas vent hole 28 and the filter 29 by the air / gas suction device 79, so that the granule is filled with nitrogen gas. Therefore, it is possible to prevent oxidation and solidification of the granular material, and to maintain the quality of the granular material constant for a long period of time.
- the rotating shaft 21 of the auger 19 has a plurality of nitrogen outlets 26 along the axial direction of the rotating shaft 21, and the guide cylinder 18 has a plurality of air / gas vent holes 28 in the plurality of nitrogen outlets 26. Oppositely along the axial direction. For this reason, the granular material supply apparatus 11 can efficiently perform the air venting of the granular material and the filling of the nitrogen gas at the same time.
- the rotating shaft 21 of the auger 19 has a plurality of nitrogen jets 26 over the entire length of the rotating shaft 21 in the axial direction, and the guide tube 18 extends the plurality of air / gas vent holes 28 through the entire length of the guide tube 18. Has over. For this reason, even if it makes the conveyance speed of a granular material high, the granular material supply apparatus 11 can perform the air bleeding and filling of nitrogen gas efficiently simultaneously.
- At least one of the powder supply device 11 and the storage bag S moves up and down, and the powder discharge port 18a of the guide tube 18 enters the storage bag S for storing the powder. Then, nitrogen gas is ejected into the storage bag S from the gas ejection port 51 a of the nitrogen lower supply pipe 51. The granular material in which the nitrogen gas has spread is supplied from the granular material discharge port 18a of the guide cylinder 18 to the storage bag S filled with the nitrogen gas.
- the nitrogen gas N 2 is supplied from the gas outlet 61 a located in the portion where the granular material discharge port 18 a of the guide cylinder 18 is formed. Erupts.
- the gas outlet 61 a is a lower end portion of the upper nitrogen supply pipe 61 and is bent in an L shape in a direction away from the guide tube 18.
- the gas outlet 61a is bent in an L shape because the nitrogen gas supplied from the nitrogen gas supply device 27 through the nitrogen upper supply elbow 62 and the nitrogen upper supply pipe 61 hits the powder and the powder does not rise. It is for doing so.
- the inside of the storage bag is in a state in which air is reduced and the storage bag is filled with inert gas instead.
- the granular material supply apparatus 11 supplies the granular material which spread
- the storage bag is closed.
- the granular material supply device 11 reduces the air in the storage bag and instead fills the storage bag with an inert gas, the granular material is filled with nitrogen gas.
- the quality of the granular material can be kept constant for a long period of time by preventing alteration, solidification, oxidation, etc. of the packed granular material.
- nitrogen gas is ejected from the two lower nitrogen supply pipes 51 into the storage bag S.
- one nitrogen lower supply pipe 51 is connected to the air / gas suction device 79, and the other nitrogen lower supply pipe 51 is sucked after sucking or sucking air in the storage bag by the nitrogen lower supply pipe 51.
- Nitrogen gas may be supplied to the storage bag.
- At least one of the lower nitrogen supply pipe 51 can be selectively connected to the nitrogen gas supply device and the air / gas suction device 79, and the air in the storage bag is first sucked by the air / gas suction device.
- the nitrogen gas may be supplied to the storage bag from the middle by the nitrogen gas supply device.
- the other nitrogen lower supply pipe is connected by the nitrogen gas supply device 27. Nitrogen is supplied.
- the granular material supply device 111 is also a device for supplying or filling the granular material into the storage bag K.
- the granular material supply apparatus 111 of the second embodiment is partially the same in structure as the granular material supply apparatus 11 of the first embodiment. For this reason, description is mainly given of a different part from the granular material supply apparatus 11 of 1st Embodiment, the same code
- the guide cylinder 118 is formed in a cylindrical shape, and guides the granular material conveyed by the auger 119 from the hopper 17 to the storage bag S.
- the auger 119 includes a rotating shaft 121 that rotates while being positioned in the guide tube 118, and a blade 122 that is provided on the rotating shaft 121 and rotates in the guide tube 118 by the rotation of the rotating shaft 121 to convey the granular material. Is formed.
- the rotating shaft 121 is rotatably supported by the hopper 17 and the cover 20. The rotating shaft 121 passes through the cover 20 and the hopper 17 and extends to the vicinity of the powder outlet 118a of the guide tube 118.
- a nitrogen supply path (gas guide path) for guiding the nitrogen gas (inert gas) supplied by the nitrogen gas supply device (gas supply unit) 27 from the upper end of the rotary shaft 121 to the vicinity of the lower end of the rotary shaft 121. ) 123 is formed.
- nitrogen outlets (gas supply ports) 126 are formed radially with the nitrogen supply path 123 as the center, as shown in FIG.
- the nitrogen outlet 126 is configured so that nitrogen gas guided by the nitrogen supply path 123 is ejected and nitrogen gas is included in the powder.
- the head of the rotating shaft 121 is connected to a nitrogen gas supply device (supply unit) 27 that supplies nitrogen gas via a rotatable elbow 25 and a nitrogen supply pipe 24.
- an intermediate portion in the axial direction of the guide cylinder 118 has a non-hole portion 118 b in which no through hole is formed in the guide cylinder 118, facing the nitrogen outlet 126 of the nitrogen supply path 123.
- the non-hole portion 118b is a cylindrical non-leakage cylindrical portion (gas non-leakage portion) 131.
- the non-leakage cylindrical portion 131 is formed so as not to have a gap in order to prevent nitrogen gas from leaking to the outside.
- a protective cylinder 139 is provided on the outer periphery of the non-leakage cylindrical portion 131 to protect each pipe, which will be described later, disposed along the outer periphery of the non-leakage cylindrical portion 131.
- a plurality of nitrogen outlets 126 may be formed in the region of the non-leakage cylindrical portion 131 along the axial direction of the rotating shaft 121.
- the guide cylinder 118 bleeds the granular material conveyed by the auger 119 upstream of the non-leaky cylindrical portion 131 in the axial direction (the granular material conveying direction).
- Upper suction part) 132 The air vent 132 is separated from the upper porous portion 118c of the guide tube 118 in which a number of air vent holes (through holes) 135 are formed, a cylindrical filter 133 provided on the outer periphery of the upper porous portion 118c, and the filter.
- the cylindrical upper peripheral cylinder 134 provided on the guide cylinder 118 so as to cover the filter 133 is formed.
- the upper outer cylinder 134 is provided on the guide cylinder 118 by a ring-shaped upper lid 175 and a bottom lid 180.
- the air vent hole 135 guides the air contained in the granular material in the guide cylinder 118 to the outside.
- the filter 133 allows air contained in the granular material in the guide tube to flow to the outside through the air vent hole 135, and the granular material in the guide tube leaks to the outside from the air vent hole 135. It is designed to prevent this.
- the upper outer cylinder 134 is composed of a ring-shaped upper lid 175 provided at the upper end and a ring-shaped bottom lid 180 provided at the lower end to form an upper negative pressure chamber 136 for extracting air from the guide cylinder 118. ing.
- the upper porous portion 118c in which the air vent hole 135 of the guide cylinder 118 is formed is weak in strength. For this reason, the upper outer cylinder 134 also serves to reinforce the guide cylinder 118.
- FIG. 13B is a diagram showing the positional relationship between the guide tube 118, the filter 133, and the upper outer peripheral tube 134.
- a reinforcing cylinder having a plurality of holes is provided on the outer periphery of the filter 133, similar to the reinforcement cylinder 71 shown in FIG. 4 of the first embodiment. Also good.
- An air vent elbow 137 that connects the upper negative pressure chamber 136 and the air / gas suction device 79 is provided in the air passage hole 138 formed in the upper lid 175 of the upper negative pressure chamber 136. As shown in FIGS. 11 and 12, two air vent elbows 137 are provided at intervals of 180 degrees.
- the guide cylinder 118 is arranged on the downstream side in the granular material transport direction from the non-leakage cylindrical portion 131 and the residual air remaining in the granular material without being sucked by the air vent 132.
- 131 has a nitrogen suction part (lower suction part) 140 for sucking the nitrogen gas filled in the granular material.
- the nitrogen suction part 140 includes a lower porous portion 118d of the guide cylinder 118 in which a large number of nitrogen suction holes (through holes) 145 are formed, and a cylindrical filter 143 provided on the outer periphery of the lower porous portion 118d.
- the lower outer peripheral tube 144 is formed of a cylindrical lower outer peripheral tube 144 or the like provided on the guide tube 118 so as to cover the filter 143 away from the filter.
- the lower outer peripheral tube 144 is provided on the guide tube 118 by a ring-shaped head cover 185 and a lower cover 176.
- the nitrogen suction hole 145 guides the residual air and nitrogen gas contained in the powder body in the guide cylinder 118 to the outside.
- the filter 143 allows residual air and nitrogen gas to flow to the outside through the nitrogen suction hole 145, and prevents the granular material in the guide tube from leaking to the outside from the nitrogen suction hole 145. ing.
- the lower outer cylinder 144 is composed of a ring-shaped head lid 185 provided at the upper end and a ring-shaped lower lid 176 provided at the lower end.
- the lower outer cylinder 144 is used to remove the residual air and nitrogen gas from the guide cylinder 118.
- a pressure chamber 146 is formed.
- the lower porous portion 118d in which the nitrogen suction hole 145 of the guide cylinder 118 is formed is weak in strength. For this reason, the lower outer peripheral tube 144 also serves to reinforce the guide tube 118.
- FIG. 14B is a diagram showing the positional relationship between the guide cylinder 118, the filter 143, and the lower outer peripheral cylinder 144.
- a reinforcing cylinder having a plurality of holes is provided on the outer periphery of the filter 133, similar to the reinforcing cylinder 71 shown in FIG. 4 of the first embodiment. Also good.
- a lower end of a nitrogen suction pipe 141 that connects the lower negative pressure chamber 146 and the air / gas suction device 79 is provided in the air passage hole 148 formed in the head cover 185 of the lower negative pressure chamber 146.
- the upper end of the nitrogen suction pipe 141 passes through the upper lid 175 and is connected to the air / gas suction device 79 by a nitrogen suction elbow 142.
- the air vent elbows 137 are also provided at intervals of 180 degrees as shown in FIGS.
- the granular material supply apparatus 111 of the second embodiment also has a nitrogen lower supply pipe 51 and a nitrogen upper supply pipe 61, as shown in FIGS. And two are provided. Description of this part is omitted.
- elbows 52, 137, 62, 142, 52, 137, 62, 142 are provided at equal intervals on the upper lid 175 in the circular direction.
- the upper outer peripheral cylinder 134, the protective cylinder 139, and the lower outer peripheral cylinder 144 described above may be a single integrated cylindrical member.
- the granular material supply device 111 and the storage bag K are relatively movable, and when at least one of them is moved up and down, the granular material discharge port 118 a of the guide tube 118 stores the granular material. Enter bag K. Then, the nitrogen gas supply device 27, the air / gas suction device 79, and a motor (not shown) for rotating the auger are started.
- the nitrogen gas N 2 is ejected.
- the gas outlet 51a is the lower end of the nitrogen lower supply pipe 51, and nitrogen gas supplied from the nitrogen gas supply device through the nitrogen lower supply elbow 52 and the nitrogen lower supply pipe 51 is ejected.
- the inside of the upper negative pressure chamber 136 of the air vent 132 is at a pressure lower than the atmospheric pressure (negative pressure) by the start of the air / gas suction device 79.
- the air contained in the powder that has reached the air vent portion 132 passes through the air vent hole 135 and the filter 133 and is sucked into the negative pressure chamber 136.
- the air passes through the passage hole 138 and the air vent elbow 137 and is sucked into the air / gas suction device 79.
- the powder passing through the air vent 132 is subjected to air venting (deaeration) of the air contained in the powder.
- the filter 133 is not easily clogged with powder particles.
- non-leakage cylindrical portion 131 nitrogen gas supplied by the nitrogen gas supply device 27 passes through the nitrogen supply pipe 24 (FIG. 10), the elbow 25, and the nitrogen supply path 123 (FIG. 14), and the nitrogen outlet 126. Has been ejected from. For this reason, nitrogen gas spreads over the granular material that has reached the inside of the non-leaky cylindrical portion 131.
- the non-leakage cylindrical portion 131 is in a slightly negative pressure state due to air bleeding. For this reason, it is easy for the nitrogen gas to reach the granular material. Further, since the nitrogen gas is ejected radially from the nitrogen outlet 126 of the rotating shaft 121 at the center of the granular material, it is spread over the granular material. Furthermore, since the non-leakage cylindrical portion 131 is formed so as not to have a gap, the nitrogen gas is filled (filled) so as to be pushed into the granular material.
- the nitrogen jet outlet 126 is located in the center of the axial direction (powder particle conveyance direction) of the non-leakage cylindrical part 131, multiple pieces may be formed in the thrust direction of the rotating shaft 121.
- the nitrogen outlet 126 is formed too close to the air vent 132 and the nitrogen suction portion 140, the nitrogen gas is sucked and discharged from the air vent 132 and the nitrogen suction portion 140. Cannot be used effectively. Therefore, by using the suction of the nitrogen gas to the air vent 132 and the nitrogen suction part 140, the nitrogen outlet 126 is provided at a position where the nitrogen gas reaches the granular material located in the non-leakage cylindrical part 131. Preferably formed.
- the granular material filled with nitrogen gas in the non-leakage cylindrical portion 131 is sent to the nitrogen suction portion 140.
- the powder sent to the nitrogen suction part 140 is sucked with nitrogen gas to ensure that the nitrogen gas filled in the non-leakage cylindrical part 131 is spread over the powder by the air / gas suction device 79.
- the Nitrogen gas passes through the nitrogen suction hole 145 and the filter 143 and is sucked into the negative pressure chamber 146, passes through the nitrogen suction pipe 141 and the nitrogen suction elbow 142, and is sucked into the air / gas suction device 79. The At this time, air remaining in the granular material is also sucked.
- the nitrogen suction part 140 does not extract the nitrogen gas contained in the granular material, but the nitrogen gas filled from the center of the granular material in the non-leakage cylindrical part 131 is removed from the outer periphery of the granular material (guide cylinder). 118 is provided to suck nitrogen gas from the inner periphery) and spread the nitrogen gas to the granular material. For this reason, nitrogen gas has spread throughout the granular material passing through the nitrogen suction part 140. Note that the filter 143 is not easily clogged with powder particles.
- the powder particles in which the nitrogen gas has spread are supplied from the powder particle discharge port 118a of the guide tube 118 to the storage bag K filled with nitrogen gas.
- the granular material P when the granular material P is substantially filled in the storage bag, it is located at the portion where the granular material discharge port 118a of the guide cylinder 118 is formed.
- nitrogen gas N 2 is ejected from the gas ejection port 61a.
- the gas outlet 61a is bent in an L shape. For this reason, it is rare that nitrogen gas hits a granular material and the granular material soars.
- the powder supply device 111 draws air contained in the powder, fills the powder with nitrogen gas, spreads the nitrogen gas into the powder, and then is filled with nitrogen gas.
- the granular material is supplied to the storage bag, and the upper portion of the storage bag is filled with nitrogen gas to close the storage bag.
- the granular material supply apparatus 111 can fill the granular material with an inert gas, prevent the granular material from being altered and solidified, and improve the quality of the packed granular material for a long period of time. Can be kept constant.
- the granular material supply apparatus 111 of 2nd Embodiment is also the same as the granular material supply apparatus 11 of 1st Embodiment by the at least one nitrogen lower supply pipe 51 in the two nitrogen lower supply pipes 51.
- the air in the storage bag may be sucked.
- the granular material supply device 111 is configured to extract air from the granular material by the air vent 132 while conveying the granular material by the auger 119 in the guide tube, thereby preventing the non-leaky cylindrical portion. 131.
- Nitrogen gas is contained in the granular material from the nitrogen outlet 126, and the residual air and nitrogen gas contained in the granular material are sucked in by the air vent 132, so the granular material is filled with an inert gas. It is possible to extend the quality assurance period of the granular material.
- the granular material supply apparatus is capable of supplying the granular material, and in particular, oxidized, denatured, solidified, such as wheat flour, skim milk powder, and toner containing a magnetic material for a copying machine. It is ideal for use in supplying easy-to-use powders.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Supply Of Fluid Materials To The Packaging Location (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
- Basic Packing Technique (AREA)
Abstract
A device for supplying granular material (11) has: a guide cylinder (18) in which a plurality of gas-suction holes (28) for guiding inside gas to the outside are formed, and which guides a granular material; a filter (29) provided on the portion in which the gas-suction holes of the guide cylinder are formed, and adapted for allowing the flow of gas inside the guide cylinder to the outside through the gas-suction holes and adapted for preventing leakage to the outside; a nitrogen-gas-supplying device (27); a rotating shaft (21) for rotating inside the guide cylinder; and a blade (22) provided on the rotating shaft, the blade rotating in the guide cylinder by rotation from the rotating shaft and transporting the granular material. The rotating shaft is provided with: an auger (19) in which are formed a nitrogen-gas-supplying channel (23) for guiding inert gas provided by the nitrogen-gas-supplying device, and a gas-supply port (26) through which inert gas guided by the nitrogen-gas-supplying channel is discharged and then included in the granular material; and an air and gas suction device (79) for suctioning gas inside the guide cylinder to the outside of the guide cylinder.
Description
本発明は、粉粒体を供給する粉粒体供給装置に関する。
This invention relates to the granular material supply apparatus which supplies a granular material.
従来、粉、顆粒等の粉粒体を収納袋に供給する粉粒体供給装置がある。この場合、粉粒体は、エアーと共に収納袋に収納されて密閉されることが多い。ところが、粉粒体によっては、長期間、収納袋に密閉されていると、エアーによって、酸化して、変質したり、固まったりするものがある。このような粉粒体には、小麦粉、脱脂粉乳、コピー機用の磁性体を含んだトナー等がある。
Conventionally, there is a powder supply device for supplying powder, granules, etc. to a storage bag. In this case, the granular material is often stored in a storage bag together with air and sealed. However, depending on the granular material, if it is sealed in a storage bag for a long time, it may be oxidized and deteriorated or hardened by air. Examples of such powders include wheat flour, skim milk powder, and toner containing a magnetic material for a copying machine.
そこで、エアー抜き(脱気)して、粉粒体を収納袋に収納する粉粒体供給装置がある(特許文献1)。
Therefore, there is a powder supply device that removes air (degass) and stores the powder in a storage bag (Patent Document 1).
特許文献1:特開2011-84311号公報
Patent Document 1: JP 2011-84311 A
しかし、従来の粉粒体供給装置は、脱気率を高めるのに限界があり、粉粒体の品質保証期間を長くするのに限界があった。
However, the conventional granular material supply device has a limit in increasing the deaeration rate, and has a limit in extending the quality assurance period of the granular material.
そこで、本発明は、粉粒体間のエアー抜きをし、粉粒体の中から外側に向けて不活性ガスを噴出して、粉粒体に不活性ガスを含ませる粉粒体供給装置を提供することにある。
Therefore, the present invention provides a granular material supply device that bleeds air between granular particles, ejects an inert gas toward the outside from the granular material, and includes the inert gas in the granular material. It is to provide.
本発明に係る粉粒体供給装置は、内部の気体を外部に案内する複数の貫通孔が形成されて、粉粒体を案内する案内筒と、前記案内筒の前記貫通孔が形成された部分に設けられて、前記案内筒内の気体が前記貫通孔を介して外部に流れるのを許容し、かつ前記案内筒内の粉粒体が前記貫通孔から外部に漏れるのを阻止するフィルタと、不活性ガスを供給するガス供給部と、前記案内筒内に位置して回転する回転軸と、前記回転軸に設けられて前記回転軸の回転によって前記案内筒内で回転して粉粒体を搬送する羽根とを有し、前記回転軸は、前記ガス供給部によって供給された不活性ガスを案内するガス案内路と、前記ガス案内路によって案内された不活性ガスが噴出して粉粒体に不活性ガスを含ませるガス供給口とが形成されたオーガと、前記貫通孔と前記フィルタとを介して前記案内筒内の気体を前記案内筒の外部に吸引する吸引装置と、を備えた、ことを特徴としている。
The granular material supply apparatus according to the present invention includes a guide tube that guides the granular material, in which a plurality of through holes for guiding an internal gas to the outside are formed, and a portion in which the through hole of the guide tube is formed. A filter that allows the gas in the guide tube to flow to the outside through the through hole, and prevents the granular material in the guide tube from leaking to the outside from the through hole; A gas supply unit that supplies an inert gas, a rotating shaft that is positioned and rotated in the guide tube, and is rotated on the rotating shaft and rotated in the guide tube by rotation of the rotating shaft. The rotating shaft has a gas guide path for guiding the inert gas supplied by the gas supply unit, and the inert gas guided by the gas guide path is ejected to form a granular material. An auger formed with a gas supply port for containing an inert gas therein, The gas in the guide cylinder through a serial through-hole and said filter and a suction device for sucking the external of the guide tube, is characterized by.
これにより、本発明の粉粒体供給装置は、案内筒内をオーガによって粉粒体を搬送しながら、ガス案内路のガス供給口から粉粒体の中から外側に向けて粉粒体に不活性ガスを含ませ、吸引装置によって案内筒内の気体を貫通孔とフィルタとを介して外部に吸引するので、粉粒体内に不活性ガスを充満させることができて、粉粒体の酸化、固化等を防止して、粉粒体の品質を長期間一定に保持することができる。
As a result, the granular material supply device of the present invention is not in contact with the granular material from the gas supply port of the gas guide path toward the outside while conveying the granular material by the auger in the guide tube. Since the active gas is contained and the gas in the guide cylinder is sucked outside through the through hole and the filter by the suction device, the inert gas can be filled in the granular material, and oxidation of the granular material, Solidification and the like can be prevented, and the quality of the powder can be kept constant for a long period of time.
また、前記回転軸は、前記回転軸の軸方向に沿って複数の前記ガス供給口を有し、前記案内筒は、複数の前記貫通孔を複数の前記ガス供給口に対向して軸方向に沿って形成することが好ましい。
The rotating shaft has a plurality of the gas supply ports along an axial direction of the rotating shaft, and the guide tube has a plurality of the through holes facing the plurality of gas supply ports in the axial direction. It is preferable to form along.
これにより、粉粒体供給装置は、粉粒体のエアー抜きと不活性ガスの充填とを、同時に、効率良く行うことができる。
Thereby, the granular material supply device can efficiently perform the air venting of the granular material and the filling of the inert gas at the same time.
また、前記回転軸は、前記回転軸の軸方向の全長に渡って複数の前記ガス供給口を有し、前記案内筒は、複数の前記貫通孔を前記案内筒の全長に渡って形成することが好ましい。
The rotating shaft has a plurality of gas supply ports over the entire length of the rotating shaft in the axial direction, and the guide tube forms the plurality of through holes over the entire length of the guide tube. Is preferred.
これにより、粉粒体の搬送速度を速くしても、粉粒体のエアー抜きと不活性ガスの充填とを、同時に、効率良く行うことができる。
Thereby, even if the conveying speed of the granular material is increased, air removal of the granular material and filling of the inert gas can be performed efficiently at the same time.
また、前記案内筒は、前記貫通孔が形成されていない、前記ガス供給口に対向するガス非漏洩部と、前記ガス非漏洩部に対して軸方向の上流側に複数の前記貫通孔が形成された上側吸引部と、前記ガス非漏洩部に対して軸方向の下流側に複数の前記貫通孔が形成された下側吸引部と、を備えることが好ましい。
In addition, the guide tube is formed with a gas non-leakage portion facing the gas supply port, in which the through-hole is not formed, and a plurality of the through-holes on the upstream side in the axial direction with respect to the gas non-leakage portion. It is preferable to include an upper suction portion that is formed and a lower suction portion in which a plurality of the through holes are formed on the downstream side in the axial direction with respect to the gas non-leakage portion.
これにより、粉粒体供給装置は、案内筒内をオーガによって粉粒体を搬送しながら、上側吸引部で粉粒体に含まれているエアーを抜き、ガス非漏洩部でガス供給口から粉粒体に不活性ガスを含ませて、下側吸引部で粉粒体に含まれている残留エアーと不活性ガスとを吸引するので、粉粒体の酸化、固化等を防止して、粉粒体の品質を長期間一定に保持することができる。
As a result, the granular material supply device removes the air contained in the granular material at the upper suction part while conveying the granular material by the auger in the guide tube, and the powder from the gas supply port at the gas non-leakage part. Inert gas is included in the granule, and the residual air and inert gas contained in the granule are sucked in the lower suction part. The quality of the granules can be kept constant for a long time.
また、前記案内筒は、先端に不活性ガスを噴出するガス噴出口を備えていることが好ましい。
Further, it is preferable that the guide tube is provided with a gas outlet for injecting an inert gas at the tip.
これにより、例えば、粉粒体を供給する収納袋内のエアーを少なくし、その代りに、不活性ガスを収納袋に充填することができて、収納袋に収納されるときの粉粒体にエアーが含まれるのを防止して、粉粒体の品質保証期間を長くすることができる。
Thereby, for example, the air in the storage bag for supplying the granular material can be reduced, and instead, the inert gas can be filled into the storage bag, and the granular material when stored in the storage bag can be used. By preventing air from being included, the quality assurance period of the granular material can be lengthened.
また、前記不活性ガスは、窒素ガスであることが好ましい。
Further, the inert gas is preferably nitrogen gas.
これにより、窒素ガスによって、粉粒体の酸化を防止することができて、粉粒体の品質保証期間を長くすることができる。
Thereby, the oxidation of the powder can be prevented by the nitrogen gas, and the quality assurance period of the powder can be extended.
また、前記粉粒体は、例えば、穀物粉である。
Moreover, the said granular material is grain flour, for example.
これにより、粉粒体が、固化し易い穀物粉であっても、穀物粉の固化を防止して、穀物粉の品質保証期間を長くすることができる。
This makes it possible to prevent the solidification of the cereal powder and prolong the quality assurance period of the cereal powder even if the powder is a cereal powder that is easily solidified.
また、前記粉粒体は、例えば、画像形成用トナーである。
Further, the powder particles are, for example, image forming toner.
これにより、粉粒体が酸化し易い画像形成用トナーであっても、酸化を防止して、画像形成用トナーの品質保証期間を長くすることができる。
Thereby, even if the toner for image formation is easily oxidized, the oxidation can be prevented and the quality assurance period of the image formation toner can be extended.
以下、本発明の第1実施形態の粉粒体供給装置を図1乃至図9に基づいて説明をし、第2実施形態の粉粒体装置を図10乃至図16に基づいて説明をする。
Hereinafter, the granular material supply device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 9, and the granular material device according to the second embodiment will be described with reference to FIGS. 10 to 16.
(第1実施形態の粉粒体供給装置)
第1実施形態の粉粒体供給装置の構成を説明する。 (Powder supply device of the first embodiment)
The structure of the granular material supply apparatus of 1st Embodiment is demonstrated.
第1実施形態の粉粒体供給装置の構成を説明する。 (Powder supply device of the first embodiment)
The structure of the granular material supply apparatus of 1st Embodiment is demonstrated.
図1に示すように、粉粒体供給装置11は、収納袋Sに粉粒体を供給或いは充填する装置である。粉粒体には、小麦粉、脱脂粉乳等の穀物粉、コピー機用の磁性体を含んだ画像形成用トナー等がある。
As shown in FIG. 1, the powder supply device 11 is a device that supplies or fills the storage bag S with powder. Examples of the powder particles include cereal powders such as wheat flour and nonfat dry milk, and image forming toner containing a magnetic material for a copying machine.
粉粒体供給装置11は、固定部材12に立設されている。固定部材12に立設された支柱13には、昇降軸14が昇降自在に設けられている。昇降軸14は、ハンドル15を回転させると不図示の昇降機構によって支柱13を昇降するようになっている。
The granular material supply device 11 is erected on the fixing member 12. On a support column 13 erected on the fixed member 12, an elevating shaft 14 is provided so as to be movable up and down. When the handle 15 is rotated, the elevating shaft 14 elevates the column 13 by an elevating mechanism (not shown).
昇降軸14には、ブラケット16を介してホッパ17と円筒状の案内筒18等が設けられている。ホッパ17は、粉粒体が収納されている。昇降軸14の上端部分には、オーガ(別名、スクリュー)19を回転させる不図示のモータと、モータを収納したカバー20とが設けられている。
The elevating shaft 14 is provided with a hopper 17 and a cylindrical guide tube 18 through a bracket 16. The hopper 17 stores powder particles. A motor (not shown) that rotates an auger (also called a screw) 19 and a cover 20 that houses the motor are provided at the upper end portion of the elevating shaft 14.
図4に示すように、オーガ19は、案内筒18内に位置して回転する回転軸21と、回転軸21に設けられて回転軸21の回転によって案内筒18内で回転して粉粒体を搬送する羽根22とで形成されている。羽根22は、図2に示すように回転軸21の端部から見ると円形に形成されている。回転軸21は、ホッパ17やカバー20に回転自在に支持されている。回転軸21は、カバー20と、ホッパ17とを貫通して、案内筒18の粉粒体排出口18aの近くまで延びている。
As shown in FIG. 4, the auger 19 is positioned in the guide cylinder 18 and rotates. The auger 19 rotates in the guide cylinder 18 by the rotation of the rotation shaft 21 provided on the rotation shaft 21. And the blades 22 for conveying. The blades 22 are formed in a circular shape when viewed from the end of the rotating shaft 21 as shown in FIG. The rotating shaft 21 is rotatably supported by the hopper 17 and the cover 20. The rotating shaft 21 extends through the cover 20 and the hopper 17 to the vicinity of the powder outlet 18a of the guide cylinder 18.
回転軸21の軸心には、回転軸21の上端から略下端まで、窒素ガス供給装置(ガス供給部)27によって供給された窒素ガス(不活性ガス)N2を案内する窒素供給路(ガス案内路)23が形成されている。窒素供給路23には、窒素噴出口(ガス供給口)26が、図3に示すように窒素供給路23を中心にして放射状に形成され、かつ図4に示すように回転軸21の軸方向に沿って、複数形成されている。窒素噴出口26は、窒素供給路23によって案内された窒素ガスが噴出されて粉粒体に窒素ガスを含ませるようになっている。図1に示すように回転軸21の頭部は、回転自在なエルボ25と、窒素供給パイプ24とを介して、窒素ガスを供給する窒素ガス供給装置27に接続されている。
A nitrogen supply path (gas) for guiding nitrogen gas (inert gas) N 2 supplied by a nitrogen gas supply device (gas supply unit) 27 from the upper end to the substantially lower end of the rotary shaft 21 is provided at the axis of the rotary shaft 21. Guideway) 23 is formed. In the nitrogen supply path 23, nitrogen outlets (gas supply ports) 26 are formed radially around the nitrogen supply path 23 as shown in FIG. 3, and the axial direction of the rotary shaft 21 as shown in FIG. A plurality are formed along. The nitrogen jet port 26 is configured so that nitrogen gas guided by the nitrogen supply path 23 is jetted and nitrogen particles are contained in the powder. As shown in FIG. 1, the head of the rotating shaft 21 is connected to a nitrogen gas supply device 27 that supplies nitrogen gas via a rotatable elbow 25 and a nitrogen supply pipe 24.
図4において、案内筒18は、円筒状に形成されて、オーガ19が搬送する粉粒体をホッパ17から、収納袋Sに案内するようになっている。案内筒18には、内部の気体を外部に案内する複数のエアー・ガス抜き孔(貫通孔)28が形成されている。エアー・ガス抜き孔28は、案内筒18のホッパ17より下方の部分から先端(図4の下端)の粉粒体排出口18aの近くまで複数形成されている。なお、気体には、粉粒体に含まれているエアー、窒素噴出口26から噴出した窒素ガス等がある。
In FIG. 4, the guide cylinder 18 is formed in a cylindrical shape, and guides the granular material conveyed by the auger 19 from the hopper 17 to the storage bag S. The guide tube 18 is formed with a plurality of air / gas vent holes (through holes) 28 for guiding the internal gas to the outside. A plurality of air / gas vent holes 28 are formed from the portion below the hopper 17 of the guide cylinder 18 to the vicinity of the powder outlet 18a at the tip (lower end in FIG. 4). The gas includes air contained in the granular material, nitrogen gas ejected from the nitrogen ejection port 26, and the like.
案内筒18のエアー・ガス抜き孔28が形成された部分の外周には、円筒状に形成されたフィルタ29が設けられている。フィルタ29は、案内筒18内の気体がエアー・ガス抜き孔28を介して外部に流れるのを許容し、かつ案内筒18内の粉粒体がエアー・ガス抜き孔28から外部に漏れるのを阻止するようになっている。
A cylindrical filter 29 is provided on the outer periphery of the portion of the guide tube 18 where the air / gas vent hole 28 is formed. The filter 29 allows the gas in the guide cylinder 18 to flow to the outside through the air / gas vent hole 28, and prevents the powder particles in the guide cylinder 18 from leaking to the outside through the air / gas vent hole 28. It comes to stop.
案内筒18のエアー・ガス抜き孔28が形成された部分は、強度的に弱くなっている。また、円筒状のフィルタ29の外周の部分を保護する必要がある。このため、案内筒18を補強し、かつフィルタ29の外周を保護する補強筒71が、案内筒18とでフィルタ29を挟んでフィルタ29の外側に設けられている。補強筒71は、フィルタ29を覆う長さを有している。また、補強筒71にも、案内筒18に形成されたエアー・ガス抜き孔28に対向して複数のエアー・ガス抜き孔72が形成されている。このエアー・ガス抜き孔72も、案内筒18の内部の気体を外部に案内するようになっている。
The portion of the guide tube 18 where the air / gas vent hole 28 is formed is weak in strength. Further, it is necessary to protect the outer peripheral portion of the cylindrical filter 29. Therefore, a reinforcing cylinder 71 that reinforces the guide cylinder 18 and protects the outer periphery of the filter 29 is provided outside the filter 29 with the guide cylinder 18 sandwiching the filter 29 therebetween. The reinforcing cylinder 71 has a length that covers the filter 29. The reinforcing cylinder 71 also has a plurality of air / gas vent holes 72 facing the air / gas vent holes 28 formed in the guide cylinder 18. The air / gas vent hole 72 also guides the gas inside the guide tube 18 to the outside.
補強筒71の外周には、負圧室73が設けられている。負圧室73は、外周筒74と、上蓋75と、下蓋76とで形成されている。外周筒74は、補強筒71から離間して、上部をリング状の上蓋75によって案内筒18に取り付けられ、下部をリング状の下蓋76によって案内筒18の粉粒体排出口18aに設けられている。負圧室73は、エアー・ガス抜き孔28,72が形成されている領域より広い領域に形成されている。図4(B)は、案内筒18、フィルタ29、補強筒71、外周筒74の位置関係を示した図である。なお、案内筒18が外周筒74によって補強されるのであれば、補強筒71は、必ずしも必要としない。
A negative pressure chamber 73 is provided on the outer periphery of the reinforcing cylinder 71. The negative pressure chamber 73 is formed by an outer peripheral cylinder 74, an upper lid 75, and a lower lid 76. The outer peripheral cylinder 74 is separated from the reinforcing cylinder 71, and the upper part is attached to the guide cylinder 18 by a ring-shaped upper lid 75, and the lower part is provided to the granular material discharge port 18 a of the guide cylinder 18 by a ring-shaped lower lid 76. ing. The negative pressure chamber 73 is formed in a region wider than a region where the air / gas vent holes 28 and 72 are formed. FIG. 4B is a diagram showing the positional relationship among the guide cylinder 18, the filter 29, the reinforcing cylinder 71, and the outer peripheral cylinder 74. In addition, if the guide cylinder 18 is reinforced by the outer peripheral cylinder 74, the reinforcement cylinder 71 is not necessarily required.
負圧室73の上蓋75に形成された気体通過孔77には、負圧室73とエアー・ガス吸引装置(吸引装置)79とを接続する負圧エルボ78が設けられている。負圧エルボ78は、図2、図3に示すように、4つ、90度間隔で設けられている。
The gas passage hole 77 formed in the upper lid 75 of the negative pressure chamber 73 is provided with a negative pressure elbow 78 that connects the negative pressure chamber 73 and an air / gas suction device (suction device) 79. As shown in FIGS. 2 and 3, the negative pressure elbows 78 are provided at intervals of 90 degrees.
図5、図6において、案内筒18の外周の負圧室73には、収納袋Sの底に窒素ガスを供給するときに使用する窒素下部供給パイプ51と、収納袋Sの上部に窒素ガスを供給するときに使用する窒素上部供給パイプ61とが貫通している。
5 and 6, the negative pressure chamber 73 on the outer periphery of the guide cylinder 18 has a nitrogen lower supply pipe 51 used when supplying nitrogen gas to the bottom of the storage bag S, and a nitrogen gas at the top of the storage bag S. Nitrogen upper supply pipe 61 used when supplying nitrogen.
窒素下部供給パイプ51は、真っ直ぐに形成されて、上蓋75と下蓋76とに支持されている。
The nitrogen lower supply pipe 51 is formed straight and supported by the upper lid 75 and the lower lid 76.
窒素上部供給パイプ61は、先端部分が外側に向いてL字状に形成され、上蓋75と外周筒74とに支持されている。窒素下部供給パイプ51は、窒素下部供給パイプ51の上部に設けられたエルボ52によって、窒素ガス供給装置27に接続されている。窒素上部供給パイプ61も、窒素上部供給パイプ61の上部に設けられたエルボ62と、不図示の窒素供給パイプとを介して窒素ガス供給装置27に接続されている。図3に示すように、窒素下部供給パイプ51と、窒素上部供給パイプ61は、2本ずつ、交互に90度間隔で配置されている。したがって、図2において、負圧室73の上蓋75には、円方向に8つのエルボ52,78,62,78,52,78,62,78が等間隔に設けられている。
The nitrogen upper supply pipe 61 is formed in an L shape with the tip portion facing outward, and is supported by the upper lid 75 and the outer peripheral cylinder 74. The lower nitrogen supply pipe 51 is connected to the nitrogen gas supply device 27 by an elbow 52 provided on the upper part of the lower nitrogen supply pipe 51. The nitrogen upper supply pipe 61 is also connected to the nitrogen gas supply device 27 via an elbow 62 provided on the upper part of the nitrogen upper supply pipe 61 and a nitrogen supply pipe (not shown). As shown in FIG. 3, two nitrogen lower supply pipes 51 and two nitrogen upper supply pipes 61 are alternately arranged at intervals of 90 degrees. Therefore, in FIG. 2, eight elbows 52, 78, 62, 78, 52, 78, 62, 78 are provided at equal intervals on the upper lid 75 of the negative pressure chamber 73.
第1実施形態の粉粒体供給装置11の動作を説明する。
The operation of the granular material supply device 11 of the first embodiment will be described.
図7において、粉粒体供給装置11と収納袋Sとは相対的に昇降可能であり、少なくとも一方が昇降すると、案内筒18の粉粒体排出口18aが粉粒体を収納する収納袋Sに進入する。そして、窒素ガス供給装置27、エアー・ガス吸引装置79、オーガ19を回転させる不図示のモータが始動する。
In FIG. 7, the powder supply device 11 and the storage bag S can be moved up and down relatively, and when at least one of them is moved up and down, the powder discharge port 18 a of the guide tube 18 stores the powder. Enter. Then, a motor (not shown) for rotating the nitrogen gas supply device 27, the air / gas suction device 79, and the auger 19 is started.
窒素ガス供給装置27は、窒素ガスを、窒素供給パイプ24、エルボ25、窒素供給路23を通じて窒素噴出口26から、案内筒18内に噴出する。また、エアー・ガス吸引装置79は、負圧エルボ78を通じて、負圧室73内を大気圧より低圧(負圧)にして、案内筒内のエアーを吸引する。
The nitrogen gas supply device 27 injects nitrogen gas into the guide cylinder 18 from the nitrogen outlet 26 through the nitrogen supply pipe 24, the elbow 25, and the nitrogen supply path 23. Further, the air / gas suction device 79 sucks air in the guide cylinder through the negative pressure elbow 78 by setting the inside of the negative pressure chamber 73 to a pressure lower than the atmospheric pressure (negative pressure).
そして、不図示のモータによってオーガ19が回転して、羽根22によって、粉粒体をホッパ17から粉粒体排出口18aまで案内筒18内を搬送する。この間、窒素ガス供給装置27は、窒素噴出口26から窒素ガスを噴出して、粉粒体内に含ませる。この場合、窒素噴出口26は、オーガ19の回転軸21に形成されているため、案内筒18内を搬送される粉粒体の中央から外方に向かって窒素ガスを噴出する。
Then, the auger 19 is rotated by a motor (not shown), and the blades 22 convey the powder particles from the hopper 17 to the particle discharge port 18a. During this time, the nitrogen gas supply device 27 ejects nitrogen gas from the nitrogen ejection port 26 and includes it in the granular material. In this case, since the nitrogen outlet 26 is formed in the rotating shaft 21 of the auger 19, the nitrogen gas is ejected outward from the center of the granular material conveyed in the guide cylinder 18.
また、負圧室73は、負圧になっているので、粉粒体を吸引する。しかし、粉粒体は、フィルタ29によって吸引されるのを阻止される。このため、負圧室73は、粉粒体に含まれているエアーをエアー・ガス抜き孔28、フィルタ29、エアー・ガス抜き孔72を介して吸引する。このとき、エアー・ガス吸引装置79は、案内筒18の周囲から粉粒体を吸引するため、窒素噴出口26から粉粒体の中央に噴出した窒素ガスを案内筒18の内周近くに吸引することができて、粉粒体に窒素ガスを行き渡らせることができる。このとき、エアーとともに窒素ガスが、多少抜き取られる。窒素噴出口26から噴出される窒素ガスの量は、粉粒体に含まれているエアーの量よりも多い。このため、窒素ガスは、エアーを粉粒体から押し出すようにして、粉粒体に行き渡る。
Also, since the negative pressure chamber 73 is at a negative pressure, the powder and particles are sucked. However, the powder is prevented from being sucked by the filter 29. For this reason, the negative pressure chamber 73 sucks the air contained in the granular material through the air / gas vent hole 28, the filter 29, and the air / gas vent hole 72. At this time, since the air / gas suction device 79 sucks the powder particles from the periphery of the guide tube 18, the nitrogen gas spouted from the nitrogen outlet 26 to the center of the powder particles is sucked near the inner periphery of the guide tube 18. And nitrogen gas can be spread over the powder. At this time, nitrogen gas is somewhat extracted together with air. The amount of nitrogen gas ejected from the nitrogen ejection port 26 is larger than the amount of air contained in the granular material. For this reason, nitrogen gas spreads over a granular material so that air may be extruded from a granular material.
なお、エアー・ガス吸引装置79が粉粒体に含まれているエアーと共に窒素ガスを多少吸引するのは、窒素ガスが粉粒体全体に行き渡るのを助けるためであって、窒素ガスを全部吸引して抜き取るためではない。なお、フィルタ29は、粉粒体によって目詰まりしにくいものが使用されている。
The reason why the air / gas suction device 79 sucks the nitrogen gas together with the air contained in the powder is to help the nitrogen gas spread over the entire powder and suck all the nitrogen gas. It is not for extracting. Note that the filter 29 is not easily clogged with powder particles.
以上のようにして、粉粒体供給装置11は、案内筒内をオーガ19によって粉粒体を搬送しながら、ガス案内路23の窒素噴出口26から粉粒体の中から外側に向けて粉粒体に不活性ガスを含ませ、エアー・ガス吸引装置79によって案内筒内の気体をエアー・ガス抜き孔28とフィルタ29とを介して外部に吸引するので、粉粒体内に窒素ガスを充満させることができて、粉粒体の酸化、固化等を防止して、粉粒体の品質を長期間一定に保持することができる。
As described above, the powder supply device 11 conveys the powder through the auger 19 in the guide tube, and the powder is supplied from the nitrogen outlet 26 of the gas guide path 23 toward the outside from the powder. Inert gas is contained in the granule, and the gas in the guide tube is sucked out through the air / gas vent hole 28 and the filter 29 by the air / gas suction device 79, so that the granule is filled with nitrogen gas. Therefore, it is possible to prevent oxidation and solidification of the granular material, and to maintain the quality of the granular material constant for a long period of time.
しかも、オーガ19の回転軸21が、回転軸21の軸方向に沿って複数の窒素噴出口26を有し、案内筒18が、複数のエアー・ガス抜き孔28を複数の窒素噴出口26に対向して軸方向に沿って有している。このため、粉粒体供給装置11は、粉粒体のエアー抜きと窒素ガスの充填とを、同時に、効率良く行うことができる。
In addition, the rotating shaft 21 of the auger 19 has a plurality of nitrogen outlets 26 along the axial direction of the rotating shaft 21, and the guide cylinder 18 has a plurality of air / gas vent holes 28 in the plurality of nitrogen outlets 26. Oppositely along the axial direction. For this reason, the granular material supply apparatus 11 can efficiently perform the air venting of the granular material and the filling of the nitrogen gas at the same time.
さらに、オーガ19の回転軸21が、回転軸21の軸方向の全長に渡って複数の窒素噴出口26を有し、案内筒18が、複数のエアー・ガス抜き孔28を案内筒18の全長に渡って有している。このため、粉粒体供給装置11は、粉粒体の搬送速度を速くしても、粉粒体のエアー抜きと窒素ガスの充填とを、同時に、効率良く行うことができる。
Further, the rotating shaft 21 of the auger 19 has a plurality of nitrogen jets 26 over the entire length of the rotating shaft 21 in the axial direction, and the guide tube 18 extends the plurality of air / gas vent holes 28 through the entire length of the guide tube 18. Has over. For this reason, even if it makes the conveyance speed of a granular material high, the granular material supply apparatus 11 can perform the air bleeding and filling of nitrogen gas efficiently simultaneously.
図7において、粉粒体供給装置11と収納袋Sとの少なくとも一方が昇降して、案内筒18の粉粒体排出口18aが粉粒体を収納する収納袋Sに進入する。すると、窒素ガスが、窒素下部供給パイプ51のガス噴出口51aから収納袋S内に噴出する。案内筒18の粉粒体排出口18aから窒素ガスが充満している収納袋Sに、窒素ガスが行き渡った粉粒体が供給される。
7, at least one of the powder supply device 11 and the storage bag S moves up and down, and the powder discharge port 18a of the guide tube 18 enters the storage bag S for storing the powder. Then, nitrogen gas is ejected into the storage bag S from the gas ejection port 51 a of the nitrogen lower supply pipe 51. The granular material in which the nitrogen gas has spread is supplied from the granular material discharge port 18a of the guide cylinder 18 to the storage bag S filled with the nitrogen gas.
そして、図8に示すように、粉粒体Pが収納袋Sに供給されるのにしたがって、粉粒体供給装置11と収納袋Sとの少なくとも一方が昇降して、案内筒18の粉粒体排出口18aが収納袋Sから抜け出る方向に移動する。この間に、ガス噴出口51aからの窒素ガスN2の噴出が停止されるが、噴出を継続されていてもよい。
And as shown in FIG. 8, as the granular material P is supplied to the storage bag S, at least one of the granular material supply device 11 and the storage bag S moves up and down, and the granular material of the guide tube 18 The body discharge port 18a moves in the direction of coming out of the storage bag S. During this time, the ejection of the nitrogen gas N 2 from the gas ejection port 51a is stopped, but the ejection may be continued.
図9に示すように、粉粒体Pが収納袋に略充填されると、案内筒18の粉粒体排出口18aが形成された部分に位置しているガス噴出口61aから窒素ガスN2が噴出する。ガス噴出口61aは、窒素上部供給パイプ61の下端部分であり、案内筒18から離れる方向にL字状に屈曲している。ガス噴出口61aがL字状に屈曲しているのは、窒素ガス供給装置27から窒素上部供給エルボ62、窒素上部供給パイプ61を通じて供給される窒素ガスが粉粒体に当たって粉粒体が舞い上がらないようにするためである。
As shown in FIG. 9, when the granular material P is substantially filled in the storage bag, the nitrogen gas N 2 is supplied from the gas outlet 61 a located in the portion where the granular material discharge port 18 a of the guide cylinder 18 is formed. Erupts. The gas outlet 61 a is a lower end portion of the upper nitrogen supply pipe 61 and is bent in an L shape in a direction away from the guide tube 18. The gas outlet 61a is bent in an L shape because the nitrogen gas supplied from the nitrogen gas supply device 27 through the nitrogen upper supply elbow 62 and the nitrogen upper supply pipe 61 hits the powder and the powder does not rise. It is for doing so.
最後、収納袋Sの上部が不図示の密閉装置によって閉じられて、収納袋Sが密閉される。
Finally, the upper part of the storage bag S is closed by a sealing device (not shown), and the storage bag S is sealed.
このように、収納袋内は、エアーを少なくし、その代りに、不活性ガスを収納袋に充填した状態になっている。このため、粉粒体供給装置11は、エアー抜きをしながら、窒素ガスを行き渡らせた粉粒体を、窒素ガスが充満している収納袋に供給し、収納袋の上部に窒素ガスを充満させて収納袋を閉じるようになっている。
Thus, the inside of the storage bag is in a state in which air is reduced and the storage bag is filled with inert gas instead. For this reason, the granular material supply apparatus 11 supplies the granular material which spread | circulated nitrogen gas to the storage bag filled with nitrogen gas, venting air, and fills the upper part of a storage bag with nitrogen gas. The storage bag is closed.
このため、粉粒体供給装置11は、収納袋内のエアーを少なくし、その代りに、不活性ガスを収納袋に充填するようになっているので、粉粒体内に窒素ガスを充満させることができて、袋詰めされた粉粒体の変質、固化、酸化等を防止して、粉粒体の品質を長期間一定に保つことができる。
For this reason, since the granular material supply device 11 reduces the air in the storage bag and instead fills the storage bag with an inert gas, the granular material is filled with nitrogen gas. The quality of the granular material can be kept constant for a long period of time by preventing alteration, solidification, oxidation, etc. of the packed granular material.
なお、以上の説明では、2本の窒素下部供給パイプ51から窒素ガスを収納袋Sに噴出するようになっている。しかし、一方の窒素下部供給パイプ51をエアー・ガス吸引装置79に接続し、その窒素下部供給パイプ51で収納袋内のエアーを吸引してから、あるいは吸引しながら、他方の窒素下部供給パイプ51から窒素ガスを収納袋に供給してもよい。
In the above description, nitrogen gas is ejected from the two lower nitrogen supply pipes 51 into the storage bag S. However, one nitrogen lower supply pipe 51 is connected to the air / gas suction device 79, and the other nitrogen lower supply pipe 51 is sucked after sucking or sucking air in the storage bag by the nitrogen lower supply pipe 51. Nitrogen gas may be supplied to the storage bag.
また、少なくとも一方の窒素下部供給パイプ51を窒素ガス供給装置とエアー・ガス吸引装置79とに選択的に接続できるようにして、最初、エアー・ガス吸引装置で、収納袋内のエアーを吸引し、途中から窒素ガス供給装置で収納袋に窒素ガスを供給してもよい。この場合、一方の窒素下部供給パイプ51だけを窒素ガス供給装置27とエアー・ガス吸引装置79とに選択的に接続できるようにした場合、他方の窒素下部供給パイプは、窒素ガス供給装置27によって窒素を供給するようになっている。
Further, at least one of the lower nitrogen supply pipe 51 can be selectively connected to the nitrogen gas supply device and the air / gas suction device 79, and the air in the storage bag is first sucked by the air / gas suction device. The nitrogen gas may be supplied to the storage bag from the middle by the nitrogen gas supply device. In this case, when only one nitrogen lower supply pipe 51 can be selectively connected to the nitrogen gas supply device 27 and the air / gas suction device 79, the other nitrogen lower supply pipe is connected by the nitrogen gas supply device 27. Nitrogen is supplied.
(第2実施形態の粉粒体供給装置)
図10乃至図16において、第2実施形態の粉粒体供給装置111も、収納袋Kに粉粒体を供給或いは充填する装置である。第2実施形態の粉粒体供給装置111は、第1実施形態の粉粒体供給装置11と一部分、構造が同一である。このため、第1実施形態の粉粒体供給装置11と異なる部分の説明を主に行い、同一部分については同一符号を付して説明を省略する。 (Powder supply device of the second embodiment)
10 to 16, the granularmaterial supply device 111 according to the second embodiment is also a device for supplying or filling the granular material into the storage bag K. The granular material supply apparatus 111 of the second embodiment is partially the same in structure as the granular material supply apparatus 11 of the first embodiment. For this reason, description is mainly given of a different part from the granular material supply apparatus 11 of 1st Embodiment, the same code | symbol is attached | subjected about the same part and description is abbreviate | omitted.
図10乃至図16において、第2実施形態の粉粒体供給装置111も、収納袋Kに粉粒体を供給或いは充填する装置である。第2実施形態の粉粒体供給装置111は、第1実施形態の粉粒体供給装置11と一部分、構造が同一である。このため、第1実施形態の粉粒体供給装置11と異なる部分の説明を主に行い、同一部分については同一符号を付して説明を省略する。 (Powder supply device of the second embodiment)
10 to 16, the granular
図10に示すように、案内筒118は、円筒状に形成されて、オーガ119が搬送する粉粒体をホッパ17から、収納袋Sに案内するようになっている。オーガ119は、案内筒118内に位置して回転する回転軸121と、回転軸121に設けられて回転軸121の回転によって案内筒118内で回転して粉粒体を搬送する羽根122とで形成されている。回転軸121は、ホッパ17やカバー20に回転自在に支持されている。回転軸121は、カバー20と、ホッパ17とを貫通して、案内筒118の粉粒体排出口118aの近くまで延びている。
As shown in FIG. 10, the guide cylinder 118 is formed in a cylindrical shape, and guides the granular material conveyed by the auger 119 from the hopper 17 to the storage bag S. The auger 119 includes a rotating shaft 121 that rotates while being positioned in the guide tube 118, and a blade 122 that is provided on the rotating shaft 121 and rotates in the guide tube 118 by the rotation of the rotating shaft 121 to convey the granular material. Is formed. The rotating shaft 121 is rotatably supported by the hopper 17 and the cover 20. The rotating shaft 121 passes through the cover 20 and the hopper 17 and extends to the vicinity of the powder outlet 118a of the guide tube 118.
回転軸121の軸心には、回転軸121の上端から下端近くまで、窒素ガス供給装置(ガス供給部)27によって供給された窒素ガス(不活性ガス)を案内する窒素供給路(ガス案内路)123が形成されている。窒素供給路123には、窒素噴出口(ガス供給口)126が、図12に示すように窒素供給路123を中心にして放射状に形成されている。窒素噴出口126は、窒素供給路123によって案内された窒素ガスが噴出して粉粒体に窒素ガスを含ませるようになっている。図10に示すように回転軸121の頭部は、回転自在なエルボ25と窒素供給パイプ24とを介して、窒素ガスを供給する窒素ガス供給装置(供給部)27に接続されている。
A nitrogen supply path (gas guide path) for guiding the nitrogen gas (inert gas) supplied by the nitrogen gas supply device (gas supply unit) 27 from the upper end of the rotary shaft 121 to the vicinity of the lower end of the rotary shaft 121. ) 123 is formed. In the nitrogen supply path 123, nitrogen outlets (gas supply ports) 126 are formed radially with the nitrogen supply path 123 as the center, as shown in FIG. The nitrogen outlet 126 is configured so that nitrogen gas guided by the nitrogen supply path 123 is ejected and nitrogen gas is included in the powder. As shown in FIG. 10, the head of the rotating shaft 121 is connected to a nitrogen gas supply device (supply unit) 27 that supplies nitrogen gas via a rotatable elbow 25 and a nitrogen supply pipe 24.
図13において、案内筒118の軸方向の中間部分には、窒素供給路123の窒素噴出口126に対向して、案内筒118に貫通孔が形成されていない無孔部分118bがある。この無孔部分118bは、円筒状の非漏洩筒状部(ガス非漏洩部)131である。この非漏洩筒状部131は、窒素ガスが外部に漏れないようにするため、隙間が無いように形成されている。非漏洩筒状部131の外周には、非漏洩筒状部131の外周に沿って配設された後述する各パイプを保護する保護筒139が設けられている。なお、窒素噴出口126は、非漏洩筒状部131の領域内に、回転軸121の軸方向に沿っても、複数形成されていてもよい。
In FIG. 13, an intermediate portion in the axial direction of the guide cylinder 118 has a non-hole portion 118 b in which no through hole is formed in the guide cylinder 118, facing the nitrogen outlet 126 of the nitrogen supply path 123. The non-hole portion 118b is a cylindrical non-leakage cylindrical portion (gas non-leakage portion) 131. The non-leakage cylindrical portion 131 is formed so as not to have a gap in order to prevent nitrogen gas from leaking to the outside. A protective cylinder 139 is provided on the outer periphery of the non-leakage cylindrical portion 131 to protect each pipe, which will be described later, disposed along the outer periphery of the non-leakage cylindrical portion 131. A plurality of nitrogen outlets 126 may be formed in the region of the non-leakage cylindrical portion 131 along the axial direction of the rotating shaft 121.
図13において、案内筒118は、非漏洩筒状部131より軸方向(粉粒体搬送方向)の上流側に、オーガ119によって搬送される粉粒体のエアー抜きをするため、エアー抜き部(上側吸引部)132を有している。エアー抜き部132は、多数のエアー抜き孔(貫通孔)135が形成された案内筒118の上側多孔部分118cと、上側多孔部分118cの外周に設けられた円筒状のフィルタ133と、フィルタから離れてフィルタ133を覆って案内筒118に設けられた円筒状の上部外周筒134等で形成されている。上部外周筒134は、リング状の上蓋175と底蓋180とによって、案内筒118に設けられている。エアー抜き孔135は、案内筒118内の粉粒体に含まれているエアーを外部に案内するようになっている。フィルタ133は、案内筒内の粉粒体に含まれているエアーがエアー抜き孔135を介して外部に流れるのを許容し、かつ案内筒内の粉粒体がエアー抜き孔135から外部に漏れるのを阻止するようになっている。
In FIG. 13, the guide cylinder 118 bleeds the granular material conveyed by the auger 119 upstream of the non-leaky cylindrical portion 131 in the axial direction (the granular material conveying direction). Upper suction part) 132. The air vent 132 is separated from the upper porous portion 118c of the guide tube 118 in which a number of air vent holes (through holes) 135 are formed, a cylindrical filter 133 provided on the outer periphery of the upper porous portion 118c, and the filter. The cylindrical upper peripheral cylinder 134 provided on the guide cylinder 118 so as to cover the filter 133 is formed. The upper outer cylinder 134 is provided on the guide cylinder 118 by a ring-shaped upper lid 175 and a bottom lid 180. The air vent hole 135 guides the air contained in the granular material in the guide cylinder 118 to the outside. The filter 133 allows air contained in the granular material in the guide tube to flow to the outside through the air vent hole 135, and the granular material in the guide tube leaks to the outside from the air vent hole 135. It is designed to prevent this.
上部外周筒134は、上端に設けられたリング状の上蓋175と、下端に設けられたリング状の底蓋180とで、案内筒118内のエアーを抜くための上部負圧室136を形成している。なお、案内筒118のエアー抜き孔135が形成された上側多孔部分118cは強度的に弱くなっている。このため、上部外周筒134は、案内筒118を補強する役目もしている。図13(B)は、案内筒118、フィルタ133、上部外周筒134の位置関係を示した図である。なお、案内筒118が上部外周筒134によって補強されにくい場合には、第1実施形態の図4に示す補強筒71と同様な、孔が複数形成された補強筒をフィルタ133の外周に設けてもよい。
The upper outer cylinder 134 is composed of a ring-shaped upper lid 175 provided at the upper end and a ring-shaped bottom lid 180 provided at the lower end to form an upper negative pressure chamber 136 for extracting air from the guide cylinder 118. ing. The upper porous portion 118c in which the air vent hole 135 of the guide cylinder 118 is formed is weak in strength. For this reason, the upper outer cylinder 134 also serves to reinforce the guide cylinder 118. FIG. 13B is a diagram showing the positional relationship between the guide tube 118, the filter 133, and the upper outer peripheral tube 134. When the guide cylinder 118 is difficult to be reinforced by the upper outer cylinder 134, a reinforcing cylinder having a plurality of holes is provided on the outer periphery of the filter 133, similar to the reinforcement cylinder 71 shown in FIG. 4 of the first embodiment. Also good.
上部負圧室136の上蓋175に形成されたエアー通過孔138には、上部負圧室136とエアー・ガス吸引装置79とを接続するエアー抜きエルボ137が設けられている。エアー抜きエルボ137は、図11、図12に示すように、2つ、180度間隔で設けられている。
An air vent elbow 137 that connects the upper negative pressure chamber 136 and the air / gas suction device 79 is provided in the air passage hole 138 formed in the upper lid 175 of the upper negative pressure chamber 136. As shown in FIGS. 11 and 12, two air vent elbows 137 are provided at intervals of 180 degrees.
図14において、案内筒118は、非漏洩筒状部131より粉粒体搬送方向の下流側に、エアー抜き部132で吸引されないで粉粒体に残っている残留エアーと、非漏洩筒状部131で粉粒体に充填された窒素ガスとを吸引する窒素吸引部(下側吸引部)140を有している。窒素吸引部140は、多数の窒素吸引孔(貫通孔)145が形成された案内筒118の下側多孔部分118dと、この下側多孔部分118dの外周に設けられた円筒状のフィルタ143と、フィルタから離れてフィルタ143を覆って案内筒118に設けられた円筒状の下部外周筒144等で形成されている。下部外周筒144は、リング状の頭部蓋185と下蓋176とによって、案内筒118に設けられている。窒素吸引孔145は、案内筒118内の粉粒体に含まれている残留エアーと窒素ガスとを外部に案内するようになっている。フィルタ143は、残留エアーと窒素ガスとが窒素吸引孔145を介して外部に流れるのを許容し、かつ案内筒内の粉粒体が窒素吸引孔145から外部に漏れるのを阻止するようになっている。
In FIG. 14, the guide cylinder 118 is arranged on the downstream side in the granular material transport direction from the non-leakage cylindrical portion 131 and the residual air remaining in the granular material without being sucked by the air vent 132. 131 has a nitrogen suction part (lower suction part) 140 for sucking the nitrogen gas filled in the granular material. The nitrogen suction part 140 includes a lower porous portion 118d of the guide cylinder 118 in which a large number of nitrogen suction holes (through holes) 145 are formed, and a cylindrical filter 143 provided on the outer periphery of the lower porous portion 118d. It is formed of a cylindrical lower outer peripheral tube 144 or the like provided on the guide tube 118 so as to cover the filter 143 away from the filter. The lower outer peripheral tube 144 is provided on the guide tube 118 by a ring-shaped head cover 185 and a lower cover 176. The nitrogen suction hole 145 guides the residual air and nitrogen gas contained in the powder body in the guide cylinder 118 to the outside. The filter 143 allows residual air and nitrogen gas to flow to the outside through the nitrogen suction hole 145, and prevents the granular material in the guide tube from leaking to the outside from the nitrogen suction hole 145. ing.
下部外周筒144は、上端に設けられたリング状の頭部蓋185と、下端に設けられたリング状の下蓋176とで、案内筒118内の残留エアーと窒素ガスを抜くための下部負圧室146を形成している。なお、案内筒118の窒素吸引孔145が形成された下側多孔部分118dは強度的に弱くなっている。このため、下部外周筒144は、案内筒118を補強する役目もしている。図14(B)は、案内筒118、フィルタ143、下部外周筒144の位置関係を示した図である。なお、案内筒118が下部外周筒144によって補強されにくい場合には、第1実施形態の図4に示す補強筒71と同様な、孔が複数形成された補強筒をフィルタ133の外周に設けてもよい。
The lower outer cylinder 144 is composed of a ring-shaped head lid 185 provided at the upper end and a ring-shaped lower lid 176 provided at the lower end. The lower outer cylinder 144 is used to remove the residual air and nitrogen gas from the guide cylinder 118. A pressure chamber 146 is formed. The lower porous portion 118d in which the nitrogen suction hole 145 of the guide cylinder 118 is formed is weak in strength. For this reason, the lower outer peripheral tube 144 also serves to reinforce the guide tube 118. FIG. 14B is a diagram showing the positional relationship between the guide cylinder 118, the filter 143, and the lower outer peripheral cylinder 144. If the guide cylinder 118 is difficult to be reinforced by the lower outer peripheral cylinder 144, a reinforcing cylinder having a plurality of holes is provided on the outer periphery of the filter 133, similar to the reinforcing cylinder 71 shown in FIG. 4 of the first embodiment. Also good.
下部負圧室146の頭部蓋185に形成されたエアー通過孔148には、下部負圧室146とエアー・ガス吸引装置79とを接続する窒素吸引パイプ141の下端が設けられている。窒素吸引パイプ141の上端は、上蓋175を貫通して、窒素吸引エルボ142によってエアー・ガス吸引装置79に接続されている。エアー抜きエルボ137も、図11、図12に示すように、2つ、180度間隔で設けられている。
A lower end of a nitrogen suction pipe 141 that connects the lower negative pressure chamber 146 and the air / gas suction device 79 is provided in the air passage hole 148 formed in the head cover 185 of the lower negative pressure chamber 146. The upper end of the nitrogen suction pipe 141 passes through the upper lid 175 and is connected to the air / gas suction device 79 by a nitrogen suction elbow 142. The air vent elbows 137 are also provided at intervals of 180 degrees as shown in FIGS.
第2実施形態の粉粒体供給装置111も、第1実施形態の粉粒体供給装置11と同様に、図15、図16に示すように、窒素下部供給パイプ51と、窒素上部供給パイプ61とが2本ずつ設けられている。この部分の説明は、省略する。
Similarly to the granular material supply apparatus 11 of the first embodiment, the granular material supply apparatus 111 of the second embodiment also has a nitrogen lower supply pipe 51 and a nitrogen upper supply pipe 61, as shown in FIGS. And two are provided. Description of this part is omitted.
図11において、上蓋175には、円方向に8つのエルボ52,137,62,142,52,137,62,142が等間隔に設けられている。
11, eight elbows 52, 137, 62, 142, 52, 137, 62, 142 are provided at equal intervals on the upper lid 175 in the circular direction.
なお、以上説明した上部外周筒134、保護筒139、下部外周筒144は、一体化された1つの筒状の部材であってもよい。
Note that the upper outer peripheral cylinder 134, the protective cylinder 139, and the lower outer peripheral cylinder 144 described above may be a single integrated cylindrical member.
第2粉粒体供給装置111の動作を説明する。
The operation of the second granular material supply device 111 will be described.
図7と同様に、粉粒体供給装置111と収納袋Kとは相対的に移動可能であり、少なくとも一方が昇降すると、案内筒118の粉粒体排出口118aが粉粒体を収納する収納袋Kに進入する。そして、窒素ガス供給装置27、エアー・ガス吸引装置79、オーガを回転させる不図示のモータが始動する。
Similarly to FIG. 7, the granular material supply device 111 and the storage bag K are relatively movable, and when at least one of them is moved up and down, the granular material discharge port 118 a of the guide tube 118 stores the granular material. Enter bag K. Then, the nitrogen gas supply device 27, the air / gas suction device 79, and a motor (not shown) for rotating the auger are started.
すると、案内筒118の粉粒体排出口118aが形成された部分に位置しているガス噴出口51aから、窒素ガスN2が噴出する。ガス噴出口51aは、窒素下部供給パイプ51の下端であり、窒素ガス供給装置から窒素下部供給エルボ52、窒素下部供給パイプ51を通じて供給される窒素ガスが噴出される。
Then, from the gas ejection port 51a which is located at a portion where the powder or granular material discharge port 118a of the guide cylinder 118 is formed, the nitrogen gas N 2 is ejected. The gas outlet 51a is the lower end of the nitrogen lower supply pipe 51, and nitrogen gas supplied from the nitrogen gas supply device through the nitrogen lower supply elbow 52 and the nitrogen lower supply pipe 51 is ejected.
ガス噴出口51aから窒素ガスが噴出されると、収納袋K内に溜まっているエアーが窒素ガスに置き換えられる。不図示のモータが回転してオーガ119が回転すると、粉粒体がオーガ119の羽根122によって案内筒118内を搬送される。
When nitrogen gas is ejected from the gas ejection port 51a, air accumulated in the storage bag K is replaced with nitrogen gas. When the motor (not shown) rotates and the auger 119 rotates, the granular material is conveyed through the guide tube 118 by the blades 122 of the auger 119.
エアー抜き部132の上部負圧室136内は、エアー・ガス吸引装置79の始動によって、大気圧より低圧(負圧)になっている。この状態で、図13において、エアー抜き部132に到達した粉粒体に含まれているエアーは、エアー抜き孔135とフィルタ133とを通過して負圧室136内に吸引され、さらに、エアー通過孔138とエアー抜きエルボ137とを通過してエアー・ガス吸引装置79に吸引される。この結果、エアー抜き部132を通過する粉粒体は、粉粒体に含まれているエアーのエアー抜き(脱気)がされる。なお、フィルタ133は、粉粒体によって目詰まりしにくいものが使用されている。
The inside of the upper negative pressure chamber 136 of the air vent 132 is at a pressure lower than the atmospheric pressure (negative pressure) by the start of the air / gas suction device 79. In this state, in FIG. 13, the air contained in the powder that has reached the air vent portion 132 passes through the air vent hole 135 and the filter 133 and is sucked into the negative pressure chamber 136. The air passes through the passage hole 138 and the air vent elbow 137 and is sucked into the air / gas suction device 79. As a result, the powder passing through the air vent 132 is subjected to air venting (deaeration) of the air contained in the powder. Note that the filter 133 is not easily clogged with powder particles.
非漏洩筒状部131内には、窒素ガス供給装置27によって供給される窒素ガスが、窒素供給パイプ24(図10)、エルボ25及び窒素供給路123(図14)を経て、窒素噴出口126から噴出されている。このため、非漏洩筒状部131内に到達した粉粒体には、窒素ガスが行き渡るようになっている。しかも、粉粒体は、非漏洩筒状部131において、エアー抜きをされてやや負圧状態になっている。このため、窒素ガスが粉粒体に行き渡り易くなっている。また、窒素ガスが、粉粒体の中央にある回転軸121の窒素噴出口126から放射状に噴出しているので、粉粒体に行き渡るようになっている。さらに、非漏洩筒状部131は、隙間が無いように形成されているため、窒素ガスは粉粒体に押し込まれるようにして充満(充填)される。
In the non-leakage cylindrical portion 131, nitrogen gas supplied by the nitrogen gas supply device 27 passes through the nitrogen supply pipe 24 (FIG. 10), the elbow 25, and the nitrogen supply path 123 (FIG. 14), and the nitrogen outlet 126. Has been ejected from. For this reason, nitrogen gas spreads over the granular material that has reached the inside of the non-leaky cylindrical portion 131. In addition, the non-leakage cylindrical portion 131 is in a slightly negative pressure state due to air bleeding. For this reason, it is easy for the nitrogen gas to reach the granular material. Further, since the nitrogen gas is ejected radially from the nitrogen outlet 126 of the rotating shaft 121 at the center of the granular material, it is spread over the granular material. Furthermore, since the non-leakage cylindrical portion 131 is formed so as not to have a gap, the nitrogen gas is filled (filled) so as to be pushed into the granular material.
なお、窒素噴出口126は、非漏洩筒状部131の軸方向(粉粒体搬送方向)の中央に位置しているが、回転軸121のスラスト方向に複数形成されていてもよい。しかし、窒素噴出口126を、エアー抜き部132と窒素吸引部140とに近過ぎて形成すると、エアー抜き部132と窒素吸引部140とから、窒素ガスが吸引されて排出されるため、窒素ガスを有効に使用することができない。そこで、窒素ガスが、エアー抜き部132と窒素吸引部140に吸引されるのを利用して、非漏洩筒状部131内に位置する粉粒体に窒素ガスが行き渡る位置に窒素噴出口126を形成するのが好ましい。
In addition, although the nitrogen jet outlet 126 is located in the center of the axial direction (powder particle conveyance direction) of the non-leakage cylindrical part 131, multiple pieces may be formed in the thrust direction of the rotating shaft 121. However, if the nitrogen outlet 126 is formed too close to the air vent 132 and the nitrogen suction portion 140, the nitrogen gas is sucked and discharged from the air vent 132 and the nitrogen suction portion 140. Cannot be used effectively. Therefore, by using the suction of the nitrogen gas to the air vent 132 and the nitrogen suction part 140, the nitrogen outlet 126 is provided at a position where the nitrogen gas reaches the granular material located in the non-leakage cylindrical part 131. Preferably formed.
図14において、非漏洩筒状部131で窒素ガスを充填された粉粒体は、窒素吸引部140に送られる。窒素吸引部140に送られた粉粒体は、エアー・ガス吸引装置79によって非漏洩筒状部131で充填された窒素ガスが粉粒体に確実に行き渡るようにするため、窒素ガスを吸引される。窒素ガスは、窒素吸引孔145とフィルタ143とを通過して負圧室146内に吸引され、さらに、窒素吸引パイプ141と窒素吸引エルボ142とを通過してエアー・ガス吸引装置79に吸引される。このとき、粉粒体に残留しているエアーも吸引される。
In FIG. 14, the granular material filled with nitrogen gas in the non-leakage cylindrical portion 131 is sent to the nitrogen suction portion 140. The powder sent to the nitrogen suction part 140 is sucked with nitrogen gas to ensure that the nitrogen gas filled in the non-leakage cylindrical part 131 is spread over the powder by the air / gas suction device 79. The Nitrogen gas passes through the nitrogen suction hole 145 and the filter 143 and is sucked into the negative pressure chamber 146, passes through the nitrogen suction pipe 141 and the nitrogen suction elbow 142, and is sucked into the air / gas suction device 79. The At this time, air remaining in the granular material is also sucked.
なお、窒素吸引部140は、粉粒体に含まれた窒素ガスを抜き取るのではなく、非漏洩筒状部131で粉粒体の中央から充填された窒素ガスを粉粒体の外周(案内筒118の内周)から吸引して、粉粒体に窒素ガスが行き渡るようにするために設けられている。このため、窒素吸引部140を通過する粉粒体は、窒素ガスが行き渡っていることになる。なお、フィルタ143は、粉粒体によって目詰まりしにくいものが使用されている。
The nitrogen suction part 140 does not extract the nitrogen gas contained in the granular material, but the nitrogen gas filled from the center of the granular material in the non-leakage cylindrical part 131 is removed from the outer periphery of the granular material (guide cylinder). 118 is provided to suck nitrogen gas from the inner periphery) and spread the nitrogen gas to the granular material. For this reason, nitrogen gas has spread throughout the granular material passing through the nitrogen suction part 140. Note that the filter 143 is not easily clogged with powder particles.
窒素ガスが行き渡った粉粒体は、案内筒118の粉粒体排出口118aから窒素ガスが充満している収納袋Kに供給される。
The powder particles in which the nitrogen gas has spread are supplied from the powder particle discharge port 118a of the guide tube 118 to the storage bag K filled with nitrogen gas.
そして、第1実施形態の図8に示すのと同様に、粉粒体Pが収納袋に供給されるのにしたがって、粉粒体供給装置111と収納袋Kとの少なくとも一方が昇降して、案内筒118の粉粒体排出口118aが収納袋Kから抜け出る方向に移動する。この間に、ガス噴出口51aからの窒素ガスN2の噴出が停止される。
And as shown in FIG. 8 of 1st Embodiment, as the granular material P is supplied to a storage bag, at least one of the granular material supply apparatus 111 and the storage bag K raises / lowers, The granular material discharge port 118a of the guide tube 118 moves in the direction of coming out of the storage bag K. During this time, the ejection of nitrogen gas N 2 from the gas ejection port 51a is stopped.
その後、第1実施形態の図9に示すのと同様に、粉粒体Pが収納袋に略充填されると、案内筒118の粉粒体排出口118aが形成された部分に位置しているガス噴出口61aから窒素ガスN2が噴出する。ガス噴出口61aは、L字状に屈曲している。このため、窒素ガスが粉粒体に当たって粉粒体が舞い上がることが少ない。
After that, as shown in FIG. 9 of the first embodiment, when the granular material P is substantially filled in the storage bag, it is located at the portion where the granular material discharge port 118a of the guide cylinder 118 is formed. nitrogen gas N 2 is ejected from the gas ejection port 61a. The gas outlet 61a is bent in an L shape. For this reason, it is rare that nitrogen gas hits a granular material and the granular material soars.
最後、収納袋Kの上部が不図示の密閉装置によって閉じられて、収納袋Kが密閉される。
Finally, the upper part of the storage bag K is closed by a sealing device (not shown), and the storage bag K is sealed.
このように、粉粒体供給装置111は、粉粒体に含まれたエアーを抜き、粉粒体内に窒素ガスを充填し、窒素ガスを粉粒体内に行き渡らせてから、窒素ガスが充満している収納袋に粉粒体を、供給し、収納袋の上部に窒素ガスを充満させて収納袋を閉じるようになっている。
As described above, the powder supply device 111 draws air contained in the powder, fills the powder with nitrogen gas, spreads the nitrogen gas into the powder, and then is filled with nitrogen gas. The granular material is supplied to the storage bag, and the upper portion of the storage bag is filled with nitrogen gas to close the storage bag.
このため、粉粒体供給装置111は、粉粒体内に不活性ガスを充満させることができて、粉粒体の変質、固化を防止して、袋詰めされた粉粒体の品質を長期間一定に保つことができる。
For this reason, the granular material supply apparatus 111 can fill the granular material with an inert gas, prevent the granular material from being altered and solidified, and improve the quality of the packed granular material for a long period of time. Can be kept constant.
なお、第2実施形態の粉粒体供給装置111も、第1実施形態の粉粒体供給装置11と同様に、2本の窒素下部供給パイプ51の内、少なくとも一方の窒素下部供給パイプ51で収納袋内のエアーを吸引できるようにしてもよい。
In addition, the granular material supply apparatus 111 of 2nd Embodiment is also the same as the granular material supply apparatus 11 of 1st Embodiment by the at least one nitrogen lower supply pipe 51 in the two nitrogen lower supply pipes 51. The air in the storage bag may be sucked.
以上、説明した第2実施形態の粉粒体供給装置111は、案内筒内をオーガ119によって粉粒体を搬送しながら、エアー抜き部132で粉粒体のエアーを抜き、非漏洩筒状部131で窒素噴出口126から粉粒体に窒素ガスを含ませ、エアー抜き部132で粉粒体に含まれている残留エアーと窒素ガスとを吸引するので、粉粒体に不活性ガスを充満させることができて、粉粒体の品質保証期間を長くすることができる。
As described above, the granular material supply device 111 according to the second embodiment is configured to extract air from the granular material by the air vent 132 while conveying the granular material by the auger 119 in the guide tube, thereby preventing the non-leaky cylindrical portion. 131. Nitrogen gas is contained in the granular material from the nitrogen outlet 126, and the residual air and nitrogen gas contained in the granular material are sucked in by the air vent 132, so the granular material is filled with an inert gas. It is possible to extend the quality assurance period of the granular material.
本発明に係る粉粒体供給装置は、粉粒体を供給することが可能であり、特に、小麦粉、脱脂粉乳、コピー機用の磁性体を含んだトナー等のように、酸化、変質、固化しやすい粉粒体の供給に使用されるのに最適である。
The granular material supply apparatus according to the present invention is capable of supplying the granular material, and in particular, oxidized, denatured, solidified, such as wheat flour, skim milk powder, and toner containing a magnetic material for a copying machine. It is ideal for use in supplying easy-to-use powders.
P:粉粒体、S:収納袋、N2:窒素ガス(不活性ガス)、11:粉粒体供給装置、17:ホッパ、18:案内筒、18a:粉粒体排出口、19:オーガ、21:回転軸、22:羽根、23:窒素供給路(ガス案内路)、26:窒素噴出口(ガス供給口)、27:窒素ガス供給装置(ガス供給部)、28:エアー・ガス抜き孔(貫通孔)、29:フィルタ、79:エアー・ガス吸引装置(吸引装置)、51a:ガス噴出口、61a:ガス噴出口、111:粉粒体供給装置、118:案内筒、118a:粉粒体排出口、119:オーガ、121:回転軸、122:羽根、123:窒素供給路(ガス案内路)、126:窒素噴出口(ガス供給口)、131:非漏洩筒状部(ガス非漏洩部)、132:エアー抜き部(上側吸引部)、133:フィルタ、135:エアー抜き孔(貫通孔)、140:窒素吸引部(下側吸引部)、143:フィルタ、145:窒素吸引孔(貫通孔)。
P: granular material, S: storage bag, N 2 : nitrogen gas (inert gas), 11: granular material supply device, 17: hopper, 18: guide tube, 18a: granular material discharge port, 19: auger , 21: rotating shaft, 22: blade, 23: nitrogen supply path (gas guide path), 26: nitrogen outlet (gas supply port), 27: nitrogen gas supply device (gas supply unit), 28: air / gas vent Hole (through hole), 29: filter, 79: air / gas suction device (suction device), 51a: gas ejection port, 61a: gas ejection port, 111: granular material supply device, 118: guide tube, 118a: powder Granule outlet, 119: auger, 121: rotating shaft, 122: blade, 123: nitrogen supply path (gas guide path), 126: nitrogen outlet (gas supply port), 131: non-leakage cylindrical part (gas non-gas Leakage part), 132: Air vent part (upper suction part), 133: Fi Motor, 135: air vent hole (through hole), 140: nitrogen sucking portion (the lower suction portion), 143: filter, 145: nitrogen suction holes (through holes).
P: granular material, S: storage bag, N 2 : nitrogen gas (inert gas), 11: granular material supply device, 17: hopper, 18: guide tube, 18a: granular material discharge port, 19: auger , 21: rotating shaft, 22: blade, 23: nitrogen supply path (gas guide path), 26: nitrogen outlet (gas supply port), 27: nitrogen gas supply device (gas supply unit), 28: air / gas vent Hole (through hole), 29: filter, 79: air / gas suction device (suction device), 51a: gas ejection port, 61a: gas ejection port, 111: granular material supply device, 118: guide tube, 118a: powder Granule outlet, 119: auger, 121: rotating shaft, 122: blade, 123: nitrogen supply path (gas guide path), 126: nitrogen outlet (gas supply port), 131: non-leakage cylindrical part (gas non-gas Leakage part), 132: Air vent part (upper suction part), 133: Fi Motor, 135: air vent hole (through hole), 140: nitrogen sucking portion (the lower suction portion), 143: filter, 145: nitrogen suction holes (through holes).
Claims (8)
- 内部の気体を外部に案内する複数の貫通孔が形成されて、粉粒体を案内する案内筒と、
前記案内筒の前記貫通孔が形成された部分に設けられて、前記案内筒内の気体が前記貫通孔を介して外部に流れるのを許容し、かつ前記案内筒内の粉粒体が前記貫通孔から外部に漏れるのを阻止するフィルタと、
不活性ガスを供給するガス供給部と、
前記案内筒内に位置して回転する回転軸と、前記回転軸に設けられて前記回転軸の回転によって前記案内筒内で回転して粉粒体を搬送する羽根とを有し、前記回転軸は、前記ガス供給部によって供給された不活性ガスを案内するガス案内路と、前記ガス案内路によって案内された不活性ガスが噴出して粉粒体に不活性ガスを含ませるガス供給口とが形成されたオーガと、
前記貫通孔と前記フィルタとを介して前記案内筒内の気体を前記案内筒の外部に吸引する吸引装置と、を備えた、
ことを特徴とする粉粒体供給装置。 A plurality of through-holes for guiding the internal gas to the outside are formed, and a guide cylinder for guiding the granular material,
The guide tube is provided in a portion where the through hole is formed, and allows the gas in the guide tube to flow to the outside through the through hole, and the granular material in the guide tube passes through the through tube. A filter that prevents leakage from the hole to the outside;
A gas supply unit for supplying an inert gas;
A rotating shaft that is positioned and rotated in the guide tube; and a blade that is provided on the rotating shaft and rotates in the guide tube by the rotation of the rotating shaft to convey the granular material. A gas guide path for guiding the inert gas supplied by the gas supply unit, and a gas supply port for injecting the inert gas into the granular material by injecting the inert gas guided by the gas guide path; With an auger formed,
A suction device for sucking the gas in the guide tube to the outside of the guide tube through the through hole and the filter;
The granular material supply apparatus characterized by the above-mentioned. - 前記回転軸は、前記回転軸の軸方向に沿って複数の前記ガス供給口を有し、
前記案内筒は、複数の前記貫通孔を複数の前記ガス供給口に対向して軸方向に沿って形成した、
ことを特徴とする請求項1に記載の粉粒体供給装置。 The rotating shaft has a plurality of the gas supply ports along the axial direction of the rotating shaft,
The guide cylinder is formed along the axial direction with a plurality of the through holes facing the plurality of gas supply ports.
The granular material supply apparatus according to claim 1. - 前記回転軸は、前記回転軸の軸方向の全長に渡って複数の前記ガス供給口を有し、
前記案内筒は、複数の前記貫通孔を前記案内筒の全長に渡って形成した、
ことを特徴とする請求項2に記載の粉粒体供給装置。 The rotating shaft has a plurality of the gas supply ports over the entire axial length of the rotating shaft,
The guide tube has a plurality of through holes formed over the entire length of the guide tube.
The granular material supply apparatus according to claim 2. - 前記案内筒は、
前記貫通孔が形成されていない、前記ガス供給口に対向するガス非漏洩部と、
前記ガス非漏洩部に対して軸方向の上流側に複数の前記貫通孔が形成された上側吸引部と、
前記ガス非漏洩部に対して軸方向の下流側に複数の前記貫通孔が形成された下側吸引部と、を備えた、
ことを特徴とする請求項1又は2に記載の粉粒体供給装置。 The guide tube is
A gas non-leakage portion facing the gas supply port, in which the through hole is not formed,
An upper suction part in which a plurality of the through holes are formed on the upstream side in the axial direction with respect to the gas non-leakage part;
A lower suction part in which a plurality of the through holes are formed on the downstream side in the axial direction with respect to the gas non-leakage part,
The granular material supply apparatus according to claim 1 or 2, characterized in that. - 前記案内筒は、先端に不活性ガスを噴出するガス噴出口を備えている、
ことを特徴とする請求項1乃至4のいずれか1項に記載の粉粒体供給装置。 The guide tube is provided with a gas outlet for injecting an inert gas at the tip.
The granular material supply apparatus according to any one of claims 1 to 4, wherein: - 前記不活性ガスは、窒素ガスである、
ことを特徴とする請求項1乃至5のいずれか1項に記載の粉粒体供給装置。 The inert gas is nitrogen gas.
The granular material supply apparatus according to any one of claims 1 to 5. - 前記粉粒体は、穀物粉である、
ことを特徴とする請求項1乃至5のいずれか1項に記載の粉粒体供給装置。 The powder is a cereal powder,
The granular material supply apparatus according to any one of claims 1 to 5. - 前記粉粒体は、画像形成用トナーである、
ことを特徴とする請求項1乃至5のいずれか1項に記載の粉粒体供給装置。
The powder is a toner for image formation.
The granular material supply apparatus according to any one of claims 1 to 5.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12838439.3A EP2765099A4 (en) | 2011-10-03 | 2012-10-03 | Device for supplying granular material |
US14/349,158 US20140238536A1 (en) | 2011-10-03 | 2012-10-03 | Powder or granular material feeding apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011219305 | 2011-10-03 | ||
JP2011-219305 | 2011-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051621A1 true WO2013051621A1 (en) | 2013-04-11 |
Family
ID=48043775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075686 WO2013051621A1 (en) | 2011-10-03 | 2012-10-03 | Device for supplying granular material |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140238536A1 (en) |
EP (1) | EP2765099A4 (en) |
JP (1) | JP6021570B2 (en) |
WO (1) | WO2013051621A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2853964A1 (en) * | 2011-11-01 | 2013-05-10 | Altria Client Services Inc. | Apparatus and method for packaging loose product |
JP6258731B2 (en) * | 2014-03-14 | 2018-01-10 | 津田 博之 | Powder transport device and powder feed device |
JP6258732B2 (en) * | 2014-03-14 | 2018-01-10 | 津田 博之 | Powder and particle feeder |
JP2016077948A (en) * | 2014-10-14 | 2016-05-16 | 熊倉 勝 | Minimal substance recovery device and powder and grain supply system |
CN104843207A (en) * | 2015-05-15 | 2015-08-19 | 中山伙伴自动化机械有限公司 | Multi-column powder metering device |
ES2738328T3 (en) * | 2015-09-29 | 2020-01-22 | Handtmann Albert Maschf | Filling machine and procedure for filling level measurement with radar sensor, in particular in sausage production |
FI11671U1 (en) * | 2016-04-13 | 2017-05-24 | Prometec Tools Oy | Sampling device |
US9845167B1 (en) * | 2016-09-01 | 2017-12-19 | Multiply Labs Inc. | Dispensing system |
EP3509951B1 (en) * | 2016-09-08 | 2020-08-05 | ICA S.p.A. | System and method for packaging powders |
IT201600091025A1 (en) * | 2016-09-08 | 2018-03-08 | Ica Spa | SYSTEM AND METHOD FOR PACKAGING POWDERS |
IT201600122873A1 (en) | 2016-12-02 | 2018-06-02 | Ica Spa | DOSING AND CUTTING SYSTEM FOR COMPACT POWDERS |
CN108423209A (en) * | 2017-02-14 | 2018-08-21 | 利乐拉瓦尔集团及财务有限公司 | Fill pipe |
CN107310802A (en) * | 2017-07-25 | 2017-11-03 | 天津翔盛新材料有限公司 | A kind of auger type powdery paints cooling device |
JP7441480B2 (en) * | 2018-04-27 | 2024-03-01 | 有限会社鎌倉エンジニアリング | Inert gas mixing device and powder supply device |
US11091283B2 (en) * | 2018-05-01 | 2021-08-17 | David Nowaczyk | Apparatus and method for flushing a residual gas from a flow of granular product |
CN109051039A (en) * | 2018-08-31 | 2018-12-21 | 上海和创船舶工程有限公司 | A kind of boat-carrying powder-granule material is packaged Nitrogen filling system and its is packaged nitrogen filling method |
JP6831143B1 (en) * | 2020-06-08 | 2021-02-17 | テクニカエンジニアリング株式会社 | Inert gas mixing device |
JP6750919B1 (en) * | 2020-06-08 | 2020-09-02 | テクニカエンジニアリング株式会社 | Inert gas supply device and powder supply device |
CN111661373A (en) * | 2020-07-27 | 2020-09-15 | 河津市炬华铝业有限公司 | Powder packing is with packagine machine |
CN113232917A (en) * | 2021-05-26 | 2021-08-10 | 湖南盛东生物科技有限公司 | Filling device and filling method for feed enzyme preparation powder |
CN114789821B (en) * | 2022-04-15 | 2023-10-27 | 中盐安徽红四方股份有限公司 | Paste resin packaging machine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5842507A (en) * | 1981-09-02 | 1983-03-12 | Ishikawajima Harima Heavy Ind Co Ltd | Coal silo |
JPH05127527A (en) * | 1991-11-08 | 1993-05-25 | Fujitsu Ltd | Toner storing method, toner cartridge, its manufacture and developing device |
JPH09110135A (en) * | 1995-10-13 | 1997-04-28 | Takeda Chem Ind Ltd | Spiral conveying device for solid matter |
JPH1095405A (en) * | 1996-09-20 | 1998-04-14 | Koichi Tosaka | Compression feeding displacement sealing process |
JP2006341449A (en) * | 2005-06-08 | 2006-12-21 | Mitsubishi Engineering Plastics Corp | Method and apparatus for supplying powdered raw material |
JP2007290735A (en) * | 2006-04-24 | 2007-11-08 | Orihiro Engineering Co Ltd | Method for manufacturing packaging bag performing gas substitution and vertical packaging machine |
JP2011073715A (en) * | 2009-09-30 | 2011-04-14 | Daiki Shoji Kk | Inert gas flush filling and packaging machine |
JP2011084311A (en) | 2009-10-16 | 2011-04-28 | Kamacho Scale Co Ltd | Powder deaerating-filling machine |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3456422A (en) * | 1967-07-19 | 1969-07-22 | Packaging Frontiers Inc | Packaging apparatus |
US3580419A (en) * | 1968-04-02 | 1971-05-25 | Carter Eng Co | Method and apparatus for feeding and compacting finely divided particulate material |
US3984320A (en) * | 1975-02-24 | 1976-10-05 | Barefoot Bernard B | Vacuum filter leg for clarifying vessel |
JPS56142113A (en) * | 1980-03-25 | 1981-11-06 | Kuniai Takasaki | Method and apparatus for filling gas into packing bag in packer |
DE3444515A1 (en) * | 1984-12-06 | 1986-06-19 | Hans Dipl.-Chem. 8953 Obergünzburg Gabler | METHOD FOR FILLING STIFF CONTAINERS |
JP3814090B2 (en) * | 1999-02-23 | 2006-08-23 | 株式会社テクニカ | Granule discharge control device and powder filling device |
DE10221567B4 (en) * | 2002-05-15 | 2007-06-21 | Bmh Chronos Richardson Gmbh | Method and device for filling a bag with air extraction |
US6904737B2 (en) * | 2002-08-01 | 2005-06-14 | General Mills, Inc. | Dispensing apparatus and method of dispensing |
JP4150555B2 (en) * | 2002-09-02 | 2008-09-17 | 株式会社東京自働機械製作所 | Vertical deaerator filling equipment |
JP4531743B2 (en) * | 2006-12-26 | 2010-08-25 | 三菱化学エンジニアリング株式会社 | Powder deaerator |
DE102008006558A1 (en) * | 2008-01-29 | 2009-07-30 | Linde Ag | Inert gas lock for filling a container with bulk material |
WO2010131063A1 (en) * | 2009-05-15 | 2010-11-18 | Aroma System Srl | Device for equispaced conveying of objects into a packaging machine |
NL2003319C2 (en) * | 2009-07-31 | 2011-02-02 | Bag Treat Holland B V | DEVICE FOR PACKAGING DIP. |
-
2012
- 2012-10-03 US US14/349,158 patent/US20140238536A1/en not_active Abandoned
- 2012-10-03 WO PCT/JP2012/075686 patent/WO2013051621A1/en active Application Filing
- 2012-10-03 JP JP2012221614A patent/JP6021570B2/en not_active Expired - Fee Related
- 2012-10-03 EP EP12838439.3A patent/EP2765099A4/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5842507A (en) * | 1981-09-02 | 1983-03-12 | Ishikawajima Harima Heavy Ind Co Ltd | Coal silo |
JPH05127527A (en) * | 1991-11-08 | 1993-05-25 | Fujitsu Ltd | Toner storing method, toner cartridge, its manufacture and developing device |
JPH09110135A (en) * | 1995-10-13 | 1997-04-28 | Takeda Chem Ind Ltd | Spiral conveying device for solid matter |
JPH1095405A (en) * | 1996-09-20 | 1998-04-14 | Koichi Tosaka | Compression feeding displacement sealing process |
JP2006341449A (en) * | 2005-06-08 | 2006-12-21 | Mitsubishi Engineering Plastics Corp | Method and apparatus for supplying powdered raw material |
JP2007290735A (en) * | 2006-04-24 | 2007-11-08 | Orihiro Engineering Co Ltd | Method for manufacturing packaging bag performing gas substitution and vertical packaging machine |
JP2011073715A (en) * | 2009-09-30 | 2011-04-14 | Daiki Shoji Kk | Inert gas flush filling and packaging machine |
JP2011084311A (en) | 2009-10-16 | 2011-04-28 | Kamacho Scale Co Ltd | Powder deaerating-filling machine |
Non-Patent Citations (1)
Title |
---|
See also references of EP2765099A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2765099A1 (en) | 2014-08-13 |
EP2765099A4 (en) | 2015-03-04 |
US20140238536A1 (en) | 2014-08-28 |
JP6021570B2 (en) | 2016-11-09 |
JP2013252898A (en) | 2013-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013051621A1 (en) | Device for supplying granular material | |
CN113039150B (en) | Filling element, filling system and method for filling a container | |
WO2013108427A1 (en) | Shot peening device | |
CN104118049A (en) | Clay mixing apparatus | |
JP5250862B2 (en) | Rotary steel ball cutting device | |
JP2008528801A (en) | Method for filling a container with at least one powder material and apparatus for carrying out the method | |
JPH10180152A (en) | Powder coating feeder for powder coating | |
JP6258731B2 (en) | Powder transport device and powder feed device | |
CN114130102B (en) | Vacuum rotary drum filtration system | |
JP7582725B1 (en) | Packaging Systems | |
JP6258732B2 (en) | Powder and particle feeder | |
KR100583771B1 (en) | Powder good supply device | |
JP4781525B2 (en) | Powder solidifying material mixing system | |
KR101126433B1 (en) | Shotball providing apparatus for shot blast | |
CN116750523B (en) | Negative pressure dust suppression system and dust suppression method for bulk cement truck loader | |
JP2000317983A (en) | Injection device | |
JPH06329253A (en) | Pneumatic force-feed type conveying device | |
CN214690387U (en) | Improved device of feeding system of full-automatic vacuum packaging machine | |
KR101276781B1 (en) | Automatic feeder preventing flux outlet from clogging for aluminum flux | |
JP2003200901A (en) | Bagging tube for powdered material | |
KR200388416Y1 (en) | Nozzle apparatus discharging the quantity of powered milk | |
JP2013230639A (en) | Injection molding machine and supplying method of molding material | |
JP2618310B2 (en) | How to transport powder | |
JP4816857B2 (en) | Method and apparatus for reducing residual oxygen in container | |
JP2698807B2 (en) | Feeding equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12838439 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14349158 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012838439 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012838439 Country of ref document: EP |