WO2013042300A1 - 触媒付パティキュレートフィルタ - Google Patents
触媒付パティキュレートフィルタ Download PDFInfo
- Publication number
- WO2013042300A1 WO2013042300A1 PCT/JP2012/004877 JP2012004877W WO2013042300A1 WO 2013042300 A1 WO2013042300 A1 WO 2013042300A1 JP 2012004877 W JP2012004877 W JP 2012004877W WO 2013042300 A1 WO2013042300 A1 WO 2013042300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite oxide
- particles
- catalyst
- doped
- containing composite
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 88
- 239000002131 composite material Substances 0.000 claims abstract description 160
- 239000000463 material Substances 0.000 claims abstract description 133
- 239000002245 particle Substances 0.000 claims abstract description 115
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000011246 composite particle Substances 0.000 claims abstract description 54
- 238000010587 phase diagram Methods 0.000 claims description 10
- 229910052697 platinum Inorganic materials 0.000 claims description 9
- 229910052703 rhodium Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 abstract description 85
- 238000002156 mixing Methods 0.000 abstract description 5
- 230000004931 aggregating effect Effects 0.000 abstract 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 60
- 239000007789 gas Substances 0.000 description 52
- 239000010948 rhodium Substances 0.000 description 39
- 229910052799 carbon Inorganic materials 0.000 description 36
- 239000004071 soot Substances 0.000 description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 32
- 229910052760 oxygen Inorganic materials 0.000 description 27
- 239000001301 oxygen Substances 0.000 description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 22
- 238000012360 testing method Methods 0.000 description 21
- 239000000203 mixture Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 229910052779 Neodymium Inorganic materials 0.000 description 6
- 229910052777 Praseodymium Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 239000011491 glass wool Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000013618 particulate matter Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VQVDTKCSDUNYBO-UHFFFAOYSA-N neodymium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VQVDTKCSDUNYBO-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- UYXRCZUOJAYSQR-UHFFFAOYSA-N nitric acid;platinum Chemical compound [Pt].O[N+]([O-])=O UYXRCZUOJAYSQR-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- -1 oxygen ion Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000006069 physical mixture Substances 0.000 description 1
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 1
- YWECOPREQNXXBZ-UHFFFAOYSA-N praseodymium(3+);trinitrate Chemical compound [Pr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YWECOPREQNXXBZ-UHFFFAOYSA-N 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005173 quadrupole mass spectroscopy Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2066—Praseodymium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2068—Neodymium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
Definitions
- the present invention relates to a particulate filter with catalyst, which collects particulates discharged from a lean combustion engine and carries a catalyst for burning and removing the collected particulates on an exhaust gas passage wall.
- a filter for collecting particulates (particulate matter: Particulate matter) in the exhaust gas is provided, and a catalyst may be provided in this filter. This catalyst promotes the combustion when the particulates are burned and removed to regenerate the filter when the amount of particulates accumulated in the filter increases.
- Patent Document 1 employs a catalyst obtained by mixing an active alumina particle material supporting Pt, a CeZr-based composite oxide particle material, and a ZrNd-based composite oxide particle material.
- a catalyst metal is supported on a support material in which primary particles of activated alumina, primary particles of a Ce-based composite oxide, and primary particles of a Zr-based composite oxide are mixed with each other to form secondary particles.
- the Rh and Pt are provided between the crystal lattices or atoms of the complex oxide particles containing Ce and Zr, and a part of the Pt is exposed to the particle surface, thereby lowering the combustion temperature of the particulates.
- the combustion start temperature is lowered and the sintering of the catalyst noble metal is prevented.
- the graph of FIG. 1 schematically shows the temporal change of the soot remaining ratio when soot (particulates) deposited on the catalyst layer burns.
- soot combustion proceeds rapidly, but after the rapid combustion zone (for example, the first stage of combustion until the soot remaining ratio becomes 100% to 50%), the soot combustion slows down (soot remaining) It shifts to the combustion late stage until the ratio becomes 50% to 0%. This point will be described in detail below.
- soot is in contact with the catalyst layer thinly supported on the surface of the filter substrate.
- the catalyst layer includes Ce-based composite oxide particles
- the Ce-based composite oxide particles cause an oxygen exchange reaction in which surrounding oxygen is taken into the particles and active oxygen is released from the inside.
- internal oxygen is supplied in a highly active state to the soot that is in contact with the particle surface. As a result, soot on the particle surface burns rapidly.
- the soot on the surface of the catalyst particles is burned and removed, resulting in a gap between the catalyst layer and the soot deposit layer as shown in the photograph of FIG. Therefore, as schematically shown in FIG. 5, the active oxygen released from the inside of the particle by the oxygen exchange reaction maintains the activity for a very short time, but the activity decreases while passing through the gap, for example, It becomes the same normal oxygen as oxygen in the gas phase. As a result, the burning of soot is slow.
- the oxygen in the exhaust gas also contributes to the combustion of soot, but the combustion is slow compared with the combustion by the active oxygen described above.
- the present invention allows the combustion to proceed efficiently in both the rapid combustion region and the slow combustion region of the particulates deposited on the catalyst layer.
- the present invention provides a Pt-supported composite particle material in which Pt is supported on a composite particle of a Zr-containing composite oxide and activated alumina, and an Rh-doped Ce-containing composite oxide particle supporting Pt. Depending on the material, the combustion of the particulates was promoted.
- the particulate filter with a catalyst presented here has a Ce-containing composite oxide, a Zr-containing composite oxide not containing Ce, activated alumina, and a catalytic metal on the exhaust gas passage wall of the filter that collects particulates in the exhaust gas. And a catalyst layer containing Containing Rh and Pt as the catalyst metal,
- the Ce-containing composite oxide is present in the catalyst layer as Rh-doped Ce-containing composite oxide particles doped with Rh, and the Pt is supported on the Rh-doped Ce-containing composite oxide particles,
- the Zr-containing composite oxide and the active alumina are present in the catalyst layer as composite particles in which Zr-containing composite oxide particles and active alumina particles are mixed and aggregated, and the composite particles carry the Pt.
- the Rh-doped Ce-containing composite oxide particle material and the composite particle material include the Zr-containing composite oxide, the activated alumina, and the Rh-doped Ce-containing composite oxide (Zr-containing composite oxide, activated alumina, Rh).
- the points A (18 + 3/4, 6 + 1/4, 75), B (6 + 1/4, 18 + 3/4, 75), C (22 + 2/9, 66 + 6 / 9, 11 + 1/9) point and D (66 + 6/9, 22 + 2/9, 11 + 1/9) point.
- the Ce-containing composite oxide has an oxygen storage / release capability of storing oxygen in an oxygen-excess atmosphere and releasing the stored oxygen when the oxygen concentration in the atmosphere decreases, and performs the oxygen exchange reaction described above. It has the property of causing and releases active oxygen that works effectively for burning particulates.
- the Ce-containing composite oxide is doped with Rh, thereby promoting the oxygen storage / release and the oxygen exchange reaction.
- the Zr-containing composite oxide has high oxygen ion conductivity, and similarly causes an oxygen exchange reaction to release highly active oxygen.
- Pt is mainly supported on the composite particles of Zr-containing composite oxide and activated alumina under the condition that the particulate is in contact with the catalyst layer. It is considered that the Pt-supported composite particle material thus produced acts on the combustion of the particulates, and the Rh-doped Ce-containing composite oxide helps the combustion. In the non-contact condition after the combustion of the particulate in contact with the catalyst layer proceeds and a gap is formed between the catalyst layer and the particulate deposition layer, the Rh-doped Ce-containing composite oxide supporting Pt is formed. It is thought to promote the burning of particulates.
- the composite particles are mixed with the Zr-containing particles regardless of which part of the composite particles contacts the composite particles.
- the oxidation effect of the composite oxide promotes its combustion, which is advantageous for early removal of particulates from the filter.
- it can be said that it is better not to have activated alumina particles with low combustion activity, but CO generated by incomplete combustion at the time of combustion is oxidized to CO2, or HC that could not be oxidized by an oxidation catalyst,
- activated alumina particles are essential as a function of oxidizing the gas component of CO.
- the Zr-containing composite oxide and the activated alumina particles are uniformly mixed. It is also preferable that the average particle diameter of each of the Zr-containing composite oxide particles and the active alumina particles constituting the composite particles is 20 to 100 nm. As a result, the Zr-containing composite oxide particles and the activated alumina particles in the composite particles can be highly dispersed, and the contact probability between the particulates and both the Zr-containing composite oxide particles and the activated alumina particles is increased. This is advantageous for early combustion removal.
- the particulate matter may contact any part of the catalyst layer.
- the Pt-supported composite particle material can promote the combustion of particulates, and the Pt-supported Rh-doped Ce-containing composite oxide particle material helps the combustion. Further, when the catalyst layer and the particulate deposition layer are in a non-contact state, the Pt-supported Rh-doped Ce-containing composite oxide efficiently contributes to the combustion of the particulates at the non-contact portion.
- the Zr-containing composite oxide, activated alumina, and Rh-doped Ce-containing composite oxide are represented by A (18 + 3) in the three-component phase diagram of (Zr-containing composite oxide, activated alumina, Rh-doped Ce-containing composite oxide). / 4, 6 + 1/4, 75) point, B (6 + 1/4, 18 + 3/4, 75) point, C (22 + 2/9, 66 + 6/9, 11 + 1/9) point and D (66 + 6/9, 22 + 2/9) , 11 + 1/9)
- the Rh-doped Ce-containing composite oxide particle material and the composite particle material are mixed so that the mass ratio is within the range surrounded by the points, through the contact condition and the non-contact condition. In addition, the burning speed of the particulates increases.
- the Zr-containing composite oxide, the activated alumina and the Rh-doped Ce-containing composite oxide are represented by points A (18 + 3/4, 6 + 1/4, 75), B (6 + 1/4, 18 + 3 /) in the ternary phase diagram. 4, 75) point, E (16 + 2/3, 50, 33 + 1/3) point, and F (50, 16 + 2/3, 33 + 1/3) point.
- the burning rate of the particulate increases.
- the mass ratio Rh / Pt between Rh and Pt is 1/1000 or more and 1/4 or less. This facilitates the combustion of the particulates under non-contact conditions.
- the mass ratio Rh / Pt is more preferably 1/500 or more and 1/10 or less.
- the mass ratio of Rh doped in the Ce-containing composite oxide and Pt supported on the Ce-containing composite oxide When Rh / Pt is 1/150 or more and 1/2 or less, the combustion of the particulates under the non-contact condition is particularly easy to proceed.
- the amount of Pt supported in the entire filter is preferably 1 g or less per 1 L of filter.
- the Rh-doped Ce-containing composite oxide particle material supporting Pt and the composite particle material supporting Pt are mixed in the catalyst layer on the exhaust gas passage wall of the filter, and the composite particles do not contain Ce.
- Zr-containing composite oxide particles and activated alumina particles are mixed and aggregated, and the mass ratio of the Zr-containing composite oxide, active alumina, and Rh-doped Ce-containing composite oxide is (Zr-containing composite oxide, In the ternary phase diagram of activated alumina, Rh-doped Ce-containing composite oxide), points A (18 + 3/4, 6 + 1/4, 75), B (6 + 1/4, 18 + 3/4, 75), C (22 + 2 / 9 and 66 + 6/9, 11 + 1/9) and D (66 + 6/9, 22 + 2/9, 11 + 1/9) are within the range surrounded by the point, so that the contact condition where the particulate is in contact with the catalyst layer And burning of particulates in a non-contact condition after a gap between the catalyst layer and the particulate
- FIG. 5 is a graph showing the amount of carbon burned by test materials A to F.
- FIG. 6 shows a particulate filter (hereinafter simply referred to as “filter”) 1 arranged in the exhaust gas passage 11 of the diesel engine.
- filter a particulate filter
- an oxidation catalyst (not shown) in which a catalytic metal typified by Pt, Pd or the like is supported on a support material such as activated alumina can be disposed.
- a catalytic metal typified by Pt, Pd or the like
- a support material such as activated alumina
- the filter 1 has a honeycomb structure and includes a large number of exhaust gas passages 2 and 3 extending in parallel with each other. That is, in the filter 1, the exhaust gas inflow passage 2 whose downstream end is closed by the plug 4 and the exhaust gas outflow passage 3 whose upstream end is closed by the plug 4 are alternately provided. Is separated by a thin partition wall 5. In FIG. 7, hatched portions indicate the plugs 4 at the upstream end of the exhaust gas outflow passage 3.
- the filter body including the partition wall 5 is formed of an inorganic porous material such as cordierite, SiC, Si 3 N 4 , sialon, and the exhaust gas flowing into the exhaust gas inflow passage 2 is indicated by an arrow in FIG.
- the gas flows out through the surrounding partition wall 5 into the adjacent exhaust gas outflow passage 3.
- the partition wall 5 has minute pores (exhaust gas passages) 6 that connect the exhaust gas inflow passage 2 and the exhaust gas outflow passage 3, and the exhaust gas passes through the pores 6.
- the particulates are trapped and deposited mainly on the exhaust gas inflow path 2 and the walls of the pores 6.
- a catalyst layer 7 is formed on the wall surface forming the exhaust gas passage (exhaust gas inflow passage 2, exhaust gas outflow passage 3 and pores 6) of the filter body as a carrier substrate. It is not always necessary to form a catalyst layer on the wall surface on the exhaust gas outflow passage 3 side.
- the catalyst layer 7 contains a Ph-supported Rh-doped Ce-containing composite oxide particle material and a Pt-supported composite particle material as a catalyst material for burning and removing particulates deposited on the filter 1.
- the composite particles are composite particles of a Zr-containing composite oxide not containing Ce and activated alumina.
- Rh-doped Ce-containing composite oxide particles As the Rh-doped Ce-containing composite oxide particle material in which Rh is doped into the Ce-containing composite oxide, composite oxidation of Ce, Zr, and a rare earth metal other than Ce (for example, Nd, Pr, etc.) is preferable. This is an Rh-doped CeZr-based composite oxide particle material obtained by doping a product with Rh.
- the Rh-doped CeZrNd composite oxide particle material can be prepared by the following method. Hereinafter, this Rh-doped CeZrNd composite oxide particle material is appropriately represented by the symbol “Rh-doped CZN”.
- Rh-doped CeZrNd composite oxide particles cerium nitrate hexahydrate, zirconyl oxynitrate solution, neodymium nitrate hexahydrate, and rhodium nitrate solution are dissolved in ion-exchanged water.
- a coprecipitate is obtained by mixing and neutralizing this nitrate solution with an 8-fold diluted solution of 28% by mass ammonia water.
- the solution containing this coprecipitate is centrifuged to remove the supernatant (dehydration), and ion-exchanged water is further added and stirred (water washing). Remove basic solution.
- the co-precipitate after the final dehydration is dried in the air at a temperature of 150 ° C. for a whole day and night, pulverized, and then fired in the air at a temperature of 500 ° C. for 2 hours. Thereby, a Rh-doped CeZrNd composite oxide particle material can be obtained.
- the average particle diameter of the Rh-doped CeZrNd composite oxide particle material (“number average particle diameter”, hereinafter the same) is about 10 nm, secondary.
- the average particle size of particles was 50 to 100 nm, and the average particle size of tertiary particles (particles pulverized by a ball mill in a slurry state to form a catalyst layer on a filter) was 300 to 400 nm.
- the composite particle material is preferably composed of composite particles in which Zr-containing composite oxide particles having an average particle size of 20 to 100 nm and active alumina particles having an average particle size of 20 to 100 nm are mixed and aggregated.
- a Zr-containing composite oxide in this case is preferably a composite oxide of Zr and a rare earth metal other than Ce (for example, at least one selected from La, Nd, Y, and Pr), such as a ZrNdPr composite oxide. It is a thing.
- ZrNdPrOx ⁇ Al 2 O 3 ZrNdPrOx
- active alumina Al 2 O 3 .
- FIG. 10 shows a TEM image of a ZrNdPr composite oxide / active alumina composite particle material and a physical mixture (mechanical mixture) of ZrNdPr composite oxide powder and active alumina powder using a transmission electron microscope, and Al, The relative concentration distribution of each atom of Zr, Nd, and Pr is shown.
- Each of the composite particle material and the physical mixed material was made into a slurry state and pulverized by a ball mill, and then the slurry was vacuum-dried and further subjected to atmospheric aging that was maintained at a temperature of 800 ° C. for 24 hours as a test material. .
- the ZrNdPr composite oxide and activated alumina constituting the composite particle material both have an average primary particle diameter of about 10 nm and an average secondary particle diameter of 20 nm.
- the average particle diameter of tertiary particles was 300 to 400 nm.
- the composite particle material can be prepared by the following method.
- neodymium nitrate hexahydrate and praseodymium nitrate are dissolved in ion exchange water.
- the nitrate solution is mixed with an 8-fold diluted solution of 28% by mass ammonia water to neutralize, thereby obtaining a precursor (coprecipitate) of the ZrNdPr composite oxide.
- a precursor (precipitate) of activated alumina is obtained from a solution obtained by dissolving aluminum nitrate in ion-exchanged water by the same neutralization treatment.
- the precursor of the ZrNdPr composite oxide and the precursor of activated alumina are sufficiently mixed, dried at 150 ° C. in the air, pulverized, and then fired at a temperature of 500 ° C. for 2 hours in the air. Thereby, the said composite particle material can be obtained.
- the ZrNdPr composite oxide precursor and activated alumina precursor obtained by the same neutralization treatment as in Method 1 were each washed with water, dried at 150 ° C. in the atmosphere, and then pulverized to a mean particle size of about 100 nm by a ball mill. Thereafter, both are mixed and calcined in the atmosphere at a temperature of 500 ° C. for 2 hours. Thereby, the said composite particle material can be obtained.
- the precursor of the ZrNdPr composite oxide obtained by the same neutralization treatment as in Method 1 is washed with water, dried at 150 ° C. in the atmosphere, and calcined at a temperature of 500 ° C. for 2 hours. Grind to about 100 nm. Then, the activated alumina precursor obtained by the same neutralization treatment as in method 1 is washed with water, mixed with the pulverized product, dried in the atmosphere at 150 ° C., and further maintained at a temperature of 500 ° C. for 2 hours. Firing is performed. Thereby, the said composite particle material can be obtained.
- -Sample A- Specimen A was a CeZrNd composite oxide particle material (no noble metal support), and was prepared in the same procedure as the above-described “Rh-doped CeZrNd composite oxide preparation method” without adding rhodium nitrate. .
- Test material B is an Rh-supported CeZrNd composite oxide particle material (Rh support amount 0.1 mass%). After preparing the CeZrNd composite oxide particle material by the same method as test material A, a rhodium nitrate solution was added. Rh was supported on the CeZrNd composite oxide particle material by evaporation to dryness. The composition of the CeZrNd composite oxide is the same as that of the specimen A.
- test material C is a Pt-supported CeZrNd composite oxide particle material (Pt support amount 3.2 mass%).
- Pt support amount 3.2 mass% After preparing the CeZrNd composite oxide particle material in the same manner as the test material A, dinitrodiamine platinum nitrate Using the solution, Pt was supported on the CeZrNd composite oxide particle material by the evaporation to dryness method.
- the specimen D was a Rh-doped CeZrNd composite oxide particle material (Rh-doped amount 0.1 mass%), and was prepared by the “Rh-doped CeZrNd composite oxide preparation method” described above.
- the composition of the CeZrNd composite oxide is the same as that of the specimen A.
- Example E- Specimen E is Rh-supported Rh-doped CeZrNd composite oxide particle material (Rh-supported amount 0.1% by mass, Rh-doped amount 0.1% by mass). Is supported.
- test material F is a Pt-supported Rh-doped CeZrNd composite oxide particle material (Pt-supported amount of 3.1% by mass, Rh-doped amount of 0.1% by mass). Is supported. Dinitrodiamine platinum nitric acid solution was used for evaporation to dryness.
- FIG. 21 denotes a quartz tube through which a model gas is circulated, and a specimen set is provided therein.
- the specimen set includes glass wool 22, specimen pellets 23, glass wool spacer (thickness 1 mm) 24, carbon black 25, and glass wool 26, which are sequentially stacked from the upstream side toward the downstream side.
- the sample material pellet 23 and the carbon black 25 are brought into a non-contact state by the glass wool spacer 24.
- Specimens A to F were aged at a temperature of 800 ° C. for 24 hours in the atmosphere, then compacted with a pressure of 25 tons, then pulverized and adjusted to a particle size of 100 to 300 ⁇ m by sieving. 11 at the position of reference numeral 23.
- the amount of the test material in the pellet 23 is 20 mg, and the carbon amount of the carbon black 25 is 5 mg.
- the sample material set was heated to 580 ° C. while flowing He gas through the quartz tube 21 and then helium gas containing 3.5% 18 O 2 at the same temperature (flow rate: 100 cc / min) Switched to.
- Quadrupole mass spectrometry of CO and CO 2 concentration (C 16 O, C 18 O, C 16 O 2 , C 16 O 18 O, C 18 O 2 ) on the downstream side of the specimen set over 600 seconds after this switching
- the amount of carbon combustion was calculated from these concentrations.
- the oxygen constituting the CeZrNd composite oxide of each test material is 16 O.
- C 16 O and C 16 O 2 are those 16 O released from the inside CeZrNd mixed oxide occurs reacts with carbon from the interior 16 O also CeZrNd mixed oxide of C 16 O 18 O It has been released. This indicates that an oxygen exchange reaction occurs in the CeZrNd composite oxide.
- the CeZrNd composite oxide doped with Rh and carrying Pt is released from the inside of the oxide with respect to carbon 1 mm downstream with the glass wool spacer 24 in between. It can be seen that more of 16 O was supplied while maintaining the activity and promoted combustion.
- Rh / Pt mass ratio of specimen F and carbon combustion performance under non-contact conditions It was investigated how the Rh / Pt mass ratio in the Pt-supported Rh-doped CeZrNd composite oxide particle material of the test material F affects the carbon combustion under non-contact conditions. That is, various Pt-supported Rh-doped CeZrNd composite oxide particle materials in which the total amount of noble metal combined with Pt and Rh is fixed at 3.2% by mass and the Rh-doped amount and the Pt-supported amount are changed are prepared. Each carbon combustion amount was measured by the “carbon combustion performance evaluation method” described above. The results are shown in Table 1 and FIG.
- the particulate combustion removal catalyst material is configured by combining Ce-containing composite oxide, Zr-containing composite oxide, activated alumina, and Rh and Pt as catalytic metals.
- Ce-containing composite oxide Zr-containing composite oxide
- activated alumina activated alumina
- Rh and Pt as catalytic metals.
- One specific example is a catalyst system in which Pt is supported on an Rh-doped CeZrNd composite oxide particle material and a ZrNdPr composite oxide / active alumina composite particle material. Therefore, the influence of the Rh / total Pt mass ratio on the carbon combustion performance under non-contact conditions in this catalyst system was investigated.
- total Pt means the total amount of Pt supported on the Rh-doped CeZrNd composite oxide and Pt supported on the composite particle material.
- Rh / Total Pt Mass Ratio of Specimen In order to variously change the Rh / total Pt mass ratio, the Rh doping amount of the Rh-doped CeZrNd composite oxide particle material and the mixture of the Rh-doped CeZrNd composite oxide particle material and the ZrNdPr composite oxide / active alumina composite particle material The amount of Pt supported (total amount of Pt) was varied. However, the total amount of the Rh-doped amount and the total Pt amount is the test material amount (the total amount of the Pt-supported ZrNdPr composite oxide / active alumina composite particle material and the Pt-supported Rh-doped CeZrNd composite oxide particle material). It was made to become 2 mass%.
- the carbon combustion amount is 6.5 mmol / g-cat or more.
- the carbon combustion amount is the largest.
- any composition except Rh Rh-doped CeZrNd mixed oxide, CeO 2: ZrO 2: Nd 2 O 3 24: 72: 4 ( molar ratio), the Rh-doped amount 0.1 wt%,
- the catalyst materials according to Examples 1 to 12 were mixed with the Rh-doped CeZrNd composite oxide and the ZrNdPr composite oxide / active alumina composite particle material, and the composition of the composite particle material ( The mass ratio between the ZrNdPr composite oxide and the activated alumina is different. Each catalyst material has a different Rh content as a result of the difference in the mixing ratio.
- the catalyst material according to Comparative Example 1 is obtained by supporting 3.0% by mass of Pt on the ZrNdPr composite oxide particle material.
- the catalyst material according to Comparative Example 2 is obtained by supporting 3.0% by mass of Pt on the Rh-doped CeZrNd composite oxide particle material.
- the catalyst material according to Comparative Example 3 is obtained by supporting 3.0% by mass of Pt on the activated alumina particle material.
- FIG. 15 shows masses of ZrNdPr composite oxide (ZrNdPrOx), activated alumina (Al 2 O 3 ), and Rh-doped CeZrNd composite oxide (Rh-doped CZN) of the catalyst materials according to Examples 1 to 12 and Comparative Examples 1 to 6. It is a ternary phase diagram (triangular chart) showing the ratio.
- the catalyst materials of Examples 1 to 12 and Comparative Examples 1 to 6 were supported on the filter.
- a SiC honeycomb filter (capacity 2.44 L) having a cell wall thickness of 16 mil (4.064 ⁇ 10 ⁇ 1 mm) and 178 cells per square inch (645.16 mm 2 ) was employed.
- the amount of catalyst material supported per liter of filter was 20 g / L.
- the filter carrying the catalyst material was attached to the exhaust pipe of the engine, and the engine was operated to deposit soot in the actual exhaust gas on the filter.
- a sample filter of 11.3 cc (diameter 17 mm, length 50 mm) was cut out from the filter on which soot was deposited, and the exhaust gas passage was sealed as shown in FIGS.
- Each of the obtained sample filters was attached to a simulated gas flow reactor, and the gas temperature was raised while flowing N 2 gas. After the filter inlet temperature was stabilized at 580 ° C., the simulated exhaust gas was switched from N 2 gas to simulated exhaust gas (O 2 ; 7.5%, remaining N 2 ), and flowed at a space velocity of 40000 / h. And the concentration in the gas of CO and CO 2 generated by burning soot is measured in real time, and the amount of carbon combustion per unit time is calculated from each concentration using the following formula. did.
- Carbon burning rate (g / h) ⁇ Gas flow rate (L / h) x [(CO + CO 2 ) concentration (ppm) / (1 x 10 6 )] ⁇ x 12 (g / mol) /22.4 (L / mol)
- the integrated value of the amount of carbon combustion with respect to time is obtained, and the soot burning rate (the soot burning amount per minute (1 g / min-L in the filter 1L) is calculated from the time required until the soot burning rate reaches 90%. )).
- Results are shown in FIG. Examples 1-12 all have a higher soot burning rate than Comparative Examples 1-6.
- the soot burning rate of Example 7 is the highest (0.046 g / min-L), and Examples 3 and 8 (0.045 g / min-L) are the same. (0.044 g / min-L), Examples 4, 6, 11 (0.043 g / min-L), Examples 2, 12 (0.040 g / min-L), Examples 1, 5, 9 ( 0.038 g / min-L) continues.
- the mass ratio of ZrNdPr composite oxide (ZrNdPrOx), activated alumina (Al 2 O 3 ), and Rh-doped CeZrNd composite oxide is A (corresponding to Example 4 in the ternary phase diagram shown in FIG. 15).
- the mass ratio is A (18 + 3/4, 6 + 1/4, 75) point, B (6 + 1/4, 18 + 3/4, 75) point, and E (16 + 2/3, 50, 33 + 1) corresponding to Example 10. / 3) point, and within the range surrounded by F (50, 16 + 2/3, 33 + 1/3) point corresponding to Example 2.
- the mass ratio is a point corresponding to Example 4 (18 + 3/4, 6 + 1/4, 75) and a point corresponding to Example 3 (37.5, 12 .5, 50), points corresponding to Example 6 (33 + 1/3, 33 + 1/3, 33 + 1/3), points corresponding to Example 10 (16 + 2/3, 50, 33 + 1/3), and Example 11 It is preferable to make it within the range surrounded by the corresponding point (12.5, 37.5, 50) and the point (12.5, 12.5, 75) corresponding to Example 8. it can.
- the catalyst material according to Comparative Example 7 is a mixture of ZrNdPr composite oxide (ZrNdPrOx) powder, activated alumina (Al 2 O 3 ) powder and Rh-doped CeZrNd composite oxide powder in a mass ratio of 6: 2: 1.
- the mixture is obtained by supporting 3.0% by mass of Pt, and the mass ratio is the same as the mass ratio of the three components in Example 1.
- the compositions of the ZrNdPr composite oxide and the Rh-doped CeZrNd composite oxide are also the same as in Example 1 and Comparative Example 7.
- Example 1 has a higher soot burning rate than Comparative Example 7 both in the first stage of combustion (corresponding to a rapid combustion region under contact conditions) and in the second half of combustion (corresponding to a slow combustion region under non-contact conditions).
- the combination of the composite particle material of Zr-containing composite oxide and activated alumina and the Rh-doped Ce-containing composite oxide particle material has a great effect in rapidly burning soot in both contact and non-contact conditions. I understand that.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
上記触媒金属としてRhとPtとを含み、
上記Ce含有複合酸化物は、上記RhがドープされたRhドープCe含有複合酸化物粒子として上記触媒層に存在し、且つ該RhドープCe含有複合酸化物粒子に上記Ptが担持されており、
上記Zr含有複合酸化物と上記活性アルミナとは、Zr含有複合酸化物粒子と活性アルミナ粒子とが混じり合って凝集した複合粒子として上記触媒層に存在し、且つ該複合粒子に上記Ptが担持されており、
上記RhドープCe含有複合酸化物粒子材と上記複合粒子材とは、上記Zr含有複合酸化物、上記活性アルミナ及び上記RhドープCe含有複合酸化物が、(Zr含有複合酸化物,活性アルミナ,RhドープCe含有複合酸化物)の三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、C(22+2/9,66+6/9,11+1/9)点及びD(66+6/9,22+2/9,11+1/9)点で囲まれる範囲内の質量比となるように混合されていることを特徴とする。
図6はディーゼルエンジンの排ガス通路11に配置されたパティキュレートフィルタ(以下、単に「フィルタ」という。)1を示す。フィルタ1よりも排ガス流の上流側の排ガス通路11には、活性アルミナ等のサポート材にPt、Pd等に代表される触媒金属を担持した酸化触媒(図示省略)を配置することができる。このような酸化触媒をフィルタ1の上流側に配置するときは、該酸化触媒によって排ガス中のHC、COを酸化させ、その酸化燃焼熱でフィルタ1に流入する排ガス温度を高めてフィルタ1を加熱することによって、パティキュレートを燃焼除去することができる。また、NOが酸化触媒でNO2に酸化され、該NO2がフィルタ1にパティキュレートを燃焼させる酸化剤として供給されることになる。
[RhドープCe含有複合酸化物粒子材]
上記Ce含有複合酸化物にRhがドープされてなるRhドープCe含有複合酸化物粒子材として好ましいのは、Ceと、Zrと、Ce以外の希土類金属(例えば、Nd、Pr等)との複合酸化物にRhがドープされてなるRhドープCeZr系複合酸化物粒子材である。例えば、RhドープCeZrNd複合酸化物粒子材は次の方法によって調製することができる。このRhドープCeZrNd複合酸化物粒子材を以下では適宜「RhドープCZN」の記号で表す。
すなわち、硝酸セリウム6水和物とオキシ硝酸ジルコニル溶液と硝酸ネオジム6水和物と硝酸ロジウム溶液とをイオン交換水に溶かす。この硝酸塩溶液に28質量%アンモニア水の8倍希釈液を混合して中和させることにより、共沈物を得る。この共沈物を含む溶液を遠心分離器にかけて上澄み液を除去する(脱水)、そこにさらにイオン交換水を加えて撹拌する(水洗)、という脱水・水洗の操作を必要回数繰り返すことで、余剰な塩基性溶液を除去する。最終的に脱水を行なった後の共沈物について、大気中において150℃の温度で一昼夜乾燥させ、粉砕した後、大気中において500℃の温度に2時間保持する焼成を行なう。これにより、RhドープCeZrNd複合酸化物粒子材を得ることができる。
上記調製法により、CeO2:ZrO2:Nd2O3=24:72:4(モル比)、Rhドープ量0.1質量%のRhドープCeZrNd複合酸化物粒子材を調製した。透過電子顕微鏡を用いたTEM像観察によれば、そのRhドープCeZrNd複合酸化物粒子材の一次粒子の平均粒子径(「個数平均粒子径」のこと。以下、同じ。)は約10nm、二次粒子の平均粒子径は50~100nm、三次粒子(フィルタに触媒層を形成すべく、スラリー状態にしてボールミルで粉砕した粒子)の平均粒子径は300~400nmであった。
上記複合粒子材は、平均粒子径20~100nmのZr含有複合酸化物粒子と平均粒子径20~100nmの活性アルミナ粒子とが混じり合って凝集した複合粒子よりなることが好ましい。この場合のZr含有複合酸化物として好ましいのは、Zrと、Ce以外の希土類金属(例えば、La,Nd,Y,Prから選ばれる少なくとも一種)との複合酸化物であり、例えば、ZrNdPr複合酸化物である。このZrNdPr複合酸化物・活性アルミナ複合粒子材を以下では適宜「ZrNdPrOx・Al2O3」の記号で表す(ZrNdPr複合酸化物を「ZrNdPrOx」で表し、活性アルミナを「Al2O3」で表す。)。
オキシ硝酸ジルコニル溶液と硝酸ネオジム6水和物と硝酸プラセオジウムをイオン交換水に溶かす。この硝酸塩溶液に28質量%アンモニア水の8倍希釈液を混合して中和させることにより、ZrNdPr複合酸化物の前駆体(共沈物)を得る。一方、硝酸アルミニウムをイオン交換水に溶かした溶液から同じく中和処理によって活性アルミナの前駆体(沈殿物)を得る。ZrNdPr複合酸化物の前駆体と活性アルミナの前駆体とを充分に混合し、大気中において150℃で乾燥させ、粉砕した後、大気中において500℃の温度に2時間保持する焼成を行なう。これにより、上記複合粒子材を得ることができる。
方法1と同じ中和処理によって得られるZrNdPr複合酸化物の前駆体と活性アルミナの前駆体をそれぞれ水洗し、大気中において150℃で乾燥させた後、ボールミルによって平均粒子径100nm程度まで粉砕し、しかる後に両者を混合して大気中において500℃の温度に2時間保持する焼成を行なう。これにより、上記複合粒子材を得ることができる。
方法1と同じ中和処理によって得られるZrNdPr複合酸化物の前駆体を水洗し、大気中において150℃で乾燥させ、さらに500℃の温度に2時間保持する焼成を行ない、次いでボールミルによって平均粒子径100nm程度まで粉砕する。そうして、方法1と同じ中和処理によって得られる活性アルミナの前駆体を水洗し、上記粉砕物と混合した後、大気中において150℃で乾燥させ、さらに500℃の温度に2時間保持する焼成を行なう。これにより、上記複合粒子材を得ることができる。
[供試材の調製]
供試材として次の6種類のCe含有複合酸化物粒子材を調製した。
供試材Aは、CeZrNd複合酸化物粒子材(貴金属担持なし)であり、硝酸ロジウムを添加せずに、他は先に説明した「RhドープCeZrNd複合酸化物調製法」と同じ手順で調製した。CeZrNd複合酸化物の組成は、CeO2:ZrO2:Nd2O3=24:72:4(モル比)である。
供試材Bは、Rh担持CeZrNd複合酸化物粒子材(Rh担持量0.1質量%)であり、供試材Aと同じ方法でCeZrNd複合酸化物粒子材を調製した後、硝酸ロジウム溶液を用い、蒸発乾固法にてRhをCeZrNd複合酸化物粒子材に担持させた。CeZrNd複合酸化物の組成は供試材Aと同じである。
供試材Cは、Pt担持CeZrNd複合酸化物粒子材(Pt担持量3.2質量%)であり、供試材Aと同じ方法でCeZrNd複合酸化物粒子材を調製した後、ジニトロジアミン白金硝酸溶液を用い、蒸発乾固法にてPtをCeZrNd複合酸化物粒子材に担持させた。
供試材Dは、RhドープCeZrNd複合酸化物粒子材(Rhドープ量0.1質量%)であり、先に説明した「RhドープCeZrNd複合酸化物調製法」で調製した。CeZrNd複合酸化物の組成は供試材Aと同じである。
供試材Eは、Rh担持RhドープCeZrNd複合酸化物粒子材(Rh担持量0.1質量%,Rhドープ量0.1質量%)であり、供試材DにRhを蒸発乾固法にて担持させたものである。
供試材Fは、Pt担持RhドープCeZrNd複合酸化物粒子材(Pt担持量3.1質量%,Rhドープ量0.1質量%)であり、供試材DにPtを蒸発乾固法にて担持させたものである。蒸発乾固にはジニトロジアミン白金硝酸溶液を用いた。
図11に示す試験装置にて各供試材の非接触条件でのカーボン燃焼性能を評価した。同図において、21はモデルガスを流通させる石英管であり、その内部に供試材セットが設けられている。供試材セットは、上流側から下流側に向かって、グラスウール22、供試材のペレット23、グラスウールスペーサ(厚さ1mm)24、カーボンブラック25、及びグラスウール26が順に重ねられたものである。グラスウールスペーサ24によって供試材ペレット23とカーボンブラック25とを非接触状態にしている。
結果を図12に示す。供試材A~E間ではカーボン燃焼量に殆ど差が出ていない。つまり、CeZrNd複合酸化物にRhをドープしても、Rhを担持しても、或いはPtを担持しても、カーボン燃焼性能は、そのような貴金属をドープないしは担持しない場合と殆ど変わらない。これに対して、供試材FのPt担持RhドープCeZrNd複合酸化物では、他の供試材に比べてカーボン燃焼量が2倍程度多くなっている。CeZrNd複合酸化物にRhをドープし且つPtを担持することが、上記非接触条件(先に説明した緩慢燃焼域(燃焼後期))でのカーボンの燃焼に特異な効果を示すことがわかる。
供試材FのPt担持RhドープCeZrNd複合酸化物粒子材におけるRh/Pt質量比が非接触条件でのカーボンの燃焼にどのように影響しているかを調べた。すなわち、PtとRhとを合わせたトータル貴金属量は3.2質量%に固定し、Rhドープ量とPt担持量とを変化させた各種のPt担持RhドープCeZrNd複合酸化物粒子材を調製し、各々のカーボン燃焼量を先に説明した[カーボン燃焼性能評価方法]によって測定した。結果を表1及び図13に示す。
本発明は、パティキュレート燃焼除去用触媒材を、Ce含有複合酸化物とZr含有複合酸化物と活性アルミナと触媒金属としてのRh及びPtとを組み合わせて構成している。その具体例の一つは、RhドープCeZrNd複合酸化物粒子材とZrNdPr複合酸化物・活性アルミナ複合粒子材とにPtを担持させてなる触媒系である。そこで、この触媒系においてRh/全Pt質量比が非接触条件でのカーボン燃焼性能に及ぼす影響を調べた。ここに、「全Pt」は、RhドープCeZrNd複合酸化物に担持されたPtと、上記複合粒子材に担持されたPtとを合わせた量を意味する。
混合比 ZrNdPrOx・Al2O3:RhドープCZN=8:1(質量比)
複合粒子材の組成 ZrNdPrOx:Al2O3=3:1(質量比)
RhドープCZNのRhを除く組成 CeO2:ZrO2:Nd2O3=24:72:4(モル比)
ZrNdPrOxの組成 ZrO2:Nd2O3:Pr2O3=70:12:18(モル比)
Rh/全Pt質量比を種々に変えるために、RhドープCeZrNd複合酸化物粒子材のRhドープ量と、RhドープCeZrNd複合酸化物粒子材とZrNdPr複合酸化物・活性アルミナ複合粒子材との混合物に対するPt担持量(全Pt量)とを種々に変えた。但し、Rhドープ量と全Pt量との合計量は供試材量(Pt担持ZrNdPr複合酸化物・活性アルミナ複合粒子材とPt担持RhドープCeZrNd複合酸化物粒子材との合計量)の3.2質量%となるようにした。
Rh/全Pt質量比が相違する各供試材のカーボン燃焼量を先に説明した[カーボン燃焼性能評価方法]によって測定した。結果を表2及び図14に示す。
[触媒材の構成]
-実施例1~12-
実施例1~12に係る触媒材はいずれも、RhドープCeZrNd複合酸化物粒子材とZrNdPr複合酸化物・活性アルミナ複合粒子材とにPtを担持させてなる。また、いずれも、RhドープCeZrNd複合酸化物のRhを除く組成は、CeO2:ZrO2:Nd2O3=24:72:4(モル比)、そのRhドープ量は0.1質量%、ZrNdPr複合酸化物の組成はZrO2:Nd2O3:Pr2O3=70:12:18(モル比)、RhドープCeZrNd複合酸化物粒子材とZrNdPr複合酸化物・活性アルミナ複合粒子材との混合物に対するPt担持量は3.0質量%である。
比較例1~6の触媒材構成を表4に示す。
実施例1~12及び比較例1~6に係る触媒材による煤の燃焼速度を次の方法によって求めた。
={ガス流速(L/h)×[(CO+CO2)濃度(ppm)/(1×106)]}×12(g/mol)/22.4(L/mol)
2 排ガス流入路(排ガス通路)
3 排ガス流出路(排ガス通路)
6 細孔(排ガス通路)
7 触媒層
Claims (8)
- 排ガス中のパティキュレートを捕集するフィルタの排ガス通路壁に、Ce含有複合酸化物とCeを含有しないZr含有複合酸化物と活性アルミナと触媒金属とを含む触媒層が設けられている触媒付パティキュレートフィルタであって、
上記触媒金属としてRhとPtとを含み、
上記Ce含有複合酸化物は、上記RhがドープされたRhドープCe含有複合酸化物粒子として上記触媒層に存在し、且つ該RhドープCe含有複合酸化物粒子に上記Ptが担持されており、
上記Zr含有複合酸化物と上記活性アルミナとは、Zr含有複合酸化物粒子と活性アルミナ粒子とが混じり合って凝集した複合粒子として上記触媒層に存在し、且つ該複合粒子に上記Ptが担持されており、
上記RhドープCe含有複合酸化物粒子材と上記複合粒子材とは、上記Zr含有複合酸化物、上記活性アルミナ及び上記RhドープCe含有複合酸化物が、(Zr含有複合酸化物,活性アルミナ,RhドープCe含有複合酸化物)の三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、C(22+2/9,66+6/9,11+1/9)点及びD(66+6/9,22+2/9,11+1/9)点で囲まれる範囲内の質量比となるように混合されていることを特徴とする触媒付パティキュレートフィルタ。 - 請求項1において、
上記RhドープCe含有複合酸化物粒子材と上記複合粒子材とは、上記Zr含有複合酸化物、上記活性アルミナ及び上記RhドープCe含有複合酸化物が、上記三成分相図において、A(18+3/4,6+1/4,75)点、B(6+1/4,18+3/4,75)点、E(16+2/3,50,33+1/3)点及びF(50,16+2/3,33+1/3)点で囲まれる範囲内の質量比となるように混合されていることを特徴とする触媒付パティキュレートフィルタ。 - 請求項1において、
上記RhとPtとの質量比Rh/Ptが1/1000以上1/4以下であることを特徴とする触媒付パティキュレートフィルタ。 - 請求項2において、
上記RhとPtとの質量比Rh/Ptが1/1000以上1/4以下であることを特徴とする触媒付パティキュレートフィルタ。 - 請求項1において、
上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径は20~100nmであることを特徴とする触媒付パティキュレートフィルタ。 - 請求項2において、
上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径は20~100nmであることを特徴とする触媒付パティキュレートフィルタ。 - 請求項3において、
上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径は20~100nmであることを特徴とする触媒付パティキュレートフィルタ。 - 請求項4において、
上記複合粒子を構成する上記Zr含有複合酸化物粒子及び上記活性アルミナ粒子各々の平均粒子径は20~100nmであることを特徴とする触媒付パティキュレートフィルタ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/346,936 US9381497B2 (en) | 2011-09-22 | 2012-08-01 | Catalyzed particulate filter |
DE112012003969.6T DE112012003969B4 (de) | 2011-09-22 | 2012-08-01 | Katalysierter Feststoff-Filter |
CN201280046190.XA CN103813854B (zh) | 2011-09-22 | 2012-08-01 | 带催化剂的粒子过滤器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011207774A JP5742625B2 (ja) | 2011-09-22 | 2011-09-22 | 触媒付パティキュレートフィルタ |
JP2011-207774 | 2011-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013042300A1 true WO2013042300A1 (ja) | 2013-03-28 |
Family
ID=47914094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/004877 WO2013042300A1 (ja) | 2011-09-22 | 2012-08-01 | 触媒付パティキュレートフィルタ |
Country Status (5)
Country | Link |
---|---|
US (1) | US9381497B2 (ja) |
JP (1) | JP5742625B2 (ja) |
CN (1) | CN103813854B (ja) |
DE (1) | DE112012003969B4 (ja) |
WO (1) | WO2013042300A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018147408A1 (ja) * | 2017-02-13 | 2018-08-16 | エヌ・イーケムキャット株式会社 | 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2834001B1 (de) * | 2012-04-05 | 2017-11-01 | Umicore AG & Co. KG | Verfahren zur entfernung von kohlenmonoxid und kohlenwasserstoff aus dem abgas mager betriebener verbrennungsmotoren |
CN109641196B (zh) * | 2016-06-17 | 2022-04-05 | 巴斯夫公司 | 钯柴油机氧化催化剂 |
JP6443501B1 (ja) * | 2017-06-23 | 2018-12-26 | マツダ株式会社 | 排気ガス浄化システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007043442A1 (ja) * | 2005-10-06 | 2007-04-19 | Mitsui Mining & Smelting Co., Ltd. | パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置 |
JP2008221204A (ja) * | 2007-02-15 | 2008-09-25 | Mazda Motor Corp | 排ガス成分浄化用触媒材及び排ガス成分浄化用触媒 |
JP2009299521A (ja) * | 2008-06-11 | 2009-12-24 | Toyota Central R&D Labs Inc | 排ガス浄化方法及び排ガス浄化装置 |
JP2010223076A (ja) * | 2009-03-23 | 2010-10-07 | Honda Motor Co Ltd | 排気浄化装置 |
JP2010270695A (ja) * | 2009-05-22 | 2010-12-02 | Mazda Motor Corp | 排気浄化装置及び排気浄化方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1213874A (en) * | 1983-05-12 | 1986-11-12 | Tomohisa Ohata | Process for producing honeycomb catalyst for exhaust gas conversion |
JP2005329318A (ja) | 2004-05-19 | 2005-12-02 | Mazda Motor Corp | ディーゼルパティキュレートフィルタ |
US8067330B2 (en) | 2007-02-15 | 2011-11-29 | Mazda Motor Corporation | Catalytic material and catalyst for purifying exhaust gas component |
JP4849034B2 (ja) | 2007-08-08 | 2011-12-28 | マツダ株式会社 | 触媒付パティキュレートフィルタ |
JP5023950B2 (ja) | 2007-10-10 | 2012-09-12 | マツダ株式会社 | 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ |
EP2055365B1 (en) | 2007-10-10 | 2018-02-28 | Mazda Motor Corporation | Catalyst-supported particulate filter |
JP5488215B2 (ja) * | 2010-06-07 | 2014-05-14 | マツダ株式会社 | 排気ガス浄化用触媒 |
-
2011
- 2011-09-22 JP JP2011207774A patent/JP5742625B2/ja active Active
-
2012
- 2012-08-01 CN CN201280046190.XA patent/CN103813854B/zh not_active Expired - Fee Related
- 2012-08-01 WO PCT/JP2012/004877 patent/WO2013042300A1/ja active Application Filing
- 2012-08-01 DE DE112012003969.6T patent/DE112012003969B4/de not_active Expired - Fee Related
- 2012-08-01 US US14/346,936 patent/US9381497B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007043442A1 (ja) * | 2005-10-06 | 2007-04-19 | Mitsui Mining & Smelting Co., Ltd. | パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置 |
JP2008221204A (ja) * | 2007-02-15 | 2008-09-25 | Mazda Motor Corp | 排ガス成分浄化用触媒材及び排ガス成分浄化用触媒 |
JP2009299521A (ja) * | 2008-06-11 | 2009-12-24 | Toyota Central R&D Labs Inc | 排ガス浄化方法及び排ガス浄化装置 |
JP2010223076A (ja) * | 2009-03-23 | 2010-10-07 | Honda Motor Co Ltd | 排気浄化装置 |
JP2010270695A (ja) * | 2009-05-22 | 2010-12-02 | Mazda Motor Corp | 排気浄化装置及び排気浄化方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018147408A1 (ja) * | 2017-02-13 | 2018-08-16 | エヌ・イーケムキャット株式会社 | 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒 |
JPWO2018147408A1 (ja) * | 2017-02-13 | 2019-12-19 | エヌ・イーケムキャット株式会社 | 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒 |
JP7002812B2 (ja) | 2017-02-13 | 2022-01-20 | エヌ・イーケムキャット株式会社 | 排ガス用浄化触媒組成物の製造方法 |
JP2022061979A (ja) * | 2017-02-13 | 2022-04-19 | エヌ・イーケムキャット株式会社 | 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒 |
JP7187654B2 (ja) | 2017-02-13 | 2022-12-12 | エヌ・イーケムキャット株式会社 | 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒 |
Also Published As
Publication number | Publication date |
---|---|
JP5742625B2 (ja) | 2015-07-01 |
US9381497B2 (en) | 2016-07-05 |
DE112012003969B4 (de) | 2022-03-17 |
CN103813854B (zh) | 2015-11-25 |
US20140205508A1 (en) | 2014-07-24 |
DE112012003969T5 (de) | 2014-07-10 |
JP2013066856A (ja) | 2013-04-18 |
CN103813854A (zh) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5381008B2 (ja) | パティキュレートフィルタ及びその製造方法 | |
JP5023969B2 (ja) | 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ | |
JP5742625B2 (ja) | 触媒付パティキュレートフィルタ | |
JP2013117190A (ja) | 触媒付きパティキュレートフィルタ | |
JP5991162B2 (ja) | 触媒付パティキュレートフィルタ | |
JP5023968B2 (ja) | 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ | |
JP4985299B2 (ja) | 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ | |
JP5954159B2 (ja) | 触媒付パティキュレートフィルタ | |
JP5974850B2 (ja) | 触媒付パティキュレートフィルタ | |
JP5979013B2 (ja) | 触媒付パティキュレートフィルタの製造方法 | |
JP5834925B2 (ja) | 触媒付パティキュレートフィルタ | |
JP5023950B2 (ja) | 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ | |
JP4858394B2 (ja) | 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ | |
JP5942550B2 (ja) | 粒子状物質燃焼触媒及びその製造方法 | |
JP6627813B2 (ja) | 触媒付きパティキュレートフィルタの製造方法 | |
JP6194699B2 (ja) | 触媒付パティキュレートフィルタの製造方法 | |
JP5939140B2 (ja) | 触媒付パティキュレートフィルタ | |
JP7087557B2 (ja) | パティキュレート浄化用触媒材及びその製造方法 | |
JP5942812B2 (ja) | 触媒付パティキュレートフィルタ | |
JP6149757B2 (ja) | エンジン排ガス浄化用触媒材及びパティキュレートフィルタ | |
JP5949520B2 (ja) | 触媒付パティキュレートフィルタ | |
JP2010094627A (ja) | 排気ガス浄化用触媒 | |
JP2009090235A (ja) | 排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタ | |
JP6288113B2 (ja) | パティキュレートフィルタ | |
JP2016043323A (ja) | 触媒付パティキュレートフィルタ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12833601 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 14346936 Country of ref document: US Ref document number: 1120120039696 Country of ref document: DE Ref document number: 112012003969 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12833601 Country of ref document: EP Kind code of ref document: A1 |