WO2012133583A1 - 超臨界乾燥装置及び超臨界乾燥方法 - Google Patents
超臨界乾燥装置及び超臨界乾燥方法 Download PDFInfo
- Publication number
- WO2012133583A1 WO2012133583A1 PCT/JP2012/058239 JP2012058239W WO2012133583A1 WO 2012133583 A1 WO2012133583 A1 WO 2012133583A1 JP 2012058239 W JP2012058239 W JP 2012058239W WO 2012133583 A1 WO2012133583 A1 WO 2012133583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drying
- liquid
- supercritical
- workpiece
- section
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B1/00—Preliminary treatment of solid materials or objects to facilitate drying, e.g. mixing or backmixing the materials to be dried with predominantly dry solids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/67034—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
Definitions
- the present invention relates to a supercritical drying apparatus, and more particularly to a supercritical drying apparatus capable of reusing a drying prevention liquid used for supercritical drying.
- Supercritical drying is a technology that dries a workpiece without damage by replacing the liquid with a supercritical fluid with high diffusibility and solubility, and then returning it to below the critical point to vaporize the supercritical fluid.
- a technique according to Patent Document 1 can be cited.
- Patent Document 1 introduces a technique in which a substrate is immersed in a transport pallet in which a chemical solution is immersed to perform liquid replacement, and the entire transport pallet is transported to a supercritical drying apparatus.
- an anti-drying liquid is supplied to the wafer so that the wafer does not dry and pattern collapse occurs in the drying chamber.
- alcohol solvents such as IPA are widely used.
- VOC volatile organic compounds
- IPA volatile organic compounds
- an object of the present invention is to provide a technique capable of saving liquid by reusing a drying prevention liquid used in supercritical drying.
- a supercritical drying apparatus includes a rinsing unit that cleans a workpiece with a rinsing liquid as a pretreatment for supercritical drying, and supercritical drying with respect to the workpiece that has been cleaned with the rinsing liquid.
- a supercritical drying section that performs the above process, and a transport section that transports the workpiece between the rinse section and the supercritical drying section, and the supercritical drying section contains the same components as the rinse liquid.
- An anti-drying liquid supply unit for supplying the anti-drying liquid, and the anti-drying liquid recovered from the supercritical drying unit by collecting the anti-drying liquid supplied from the anti-drying liquid supply unit to the supercritical drying unit.
- an anti-drying liquid supply part for supplying the liquid to the rinsing part, wherein the anti-drying liquid recovered from the supercritical drying part is used as at least a part of the rinsing liquid.
- the anti-drying liquid used during supercritical drying can be reused as a rinsing liquid.
- the amount of new rinsing liquid to be used can be reduced, which is superior in cost and has little environmental pollution.
- a cleaning process prior to the drying process and the supercritical drying can be performed.
- the rinse section includes a primary rinse section for performing a primary rinse, and a secondary rinse for cleaning the workpiece washed by the primary rinse section before transporting the workpiece to the supercritical drying section.
- a rinsing part, and the anti-drying liquid recovered from the supercritical drying part may be used in the primary rinsing part.
- the amount of new rinsing used can be reduced, and by using only new rinsing in the secondary rinsing section, liquid replacement with the rinsing liquid can be performed more reliably by rinsing multiple times.
- the surface of the workpiece after the rinse cleaning can be made cleaner.
- the supercritical drying apparatus includes a rinse and a conveyance unit that cleans a workpiece with a rinse liquid as a pretreatment for supercritical drying, and conveys the workpiece, and the rinse liquid.
- a supercritical drying section that performs supercritical drying on the washed workpiece; a drying prevention liquid supply section that supplies a drying prevention liquid containing the same components as the rinse liquid to the supercritical drying section; and the drying An anti-drying liquid feeding part for collecting the anti-drying liquid supplied to the supercritical drying part from an anti-living liquid supply part, and sending the anti-drying liquid collected from the supercritical drying part to the rinsing part;
- the drying prevention liquid recovered from the supercritical drying section is used as at least a part of the rinsing liquid.
- the anti-drying liquid used during supercritical drying can be reused as a rinsing liquid.
- the amount of new rinsing liquid to be used can be reduced, which is superior in cost and has little environmental pollution.
- a cleaning process prior to the drying process and the supercritical drying can be performed.
- a pre-treatment for cleaning with the rinse liquid it further includes a water washing section that performs washing washing of the workpiece.
- a water washing section a washing surface of the workpiece is placed in a vertical state, and the rinsing and transporting section is the processing section.
- the workpiece may be taken out from the water washing section so that the cleaning surface is vertical or downward, and then the workpiece is deformed to change the cleaning surface of the workpiece to be horizontal or upward, and the workpiece may be conveyed.
- the supercritical drying unit includes a processing unit that performs supercritical drying of the workpiece therein, and a high-pressure fluid supply unit that supplies a high-pressure fluid to the processing unit, and the processing unit and the high-pressure drying unit
- the fluid supply unit is connected by a first pipe, the processing unit and the drying prevention liquid supply unit are connected by a second pipe, and the processing unit and the drying prevention liquid feeding unit are connected.
- the space may be connected by a third pipe, and the processing section, the first pipe, the second pipe, and the third pipe may each have an oxide film.
- a supercritical drying apparatus includes a supercritical drying unit that performs supercritical drying on a workpiece, and the supercritical drying unit includes a rinse liquid as a pretreatment for supercritical drying.
- the rinsing and drying treatment unit that performs supercritical drying by supplying the drying prevention liquid containing the same components as the rinsing liquid after washing the workpiece and discharging the rinsing liquid is the same as the rinsing liquid
- An anti-drying liquid supply unit that supplies an anti-drying liquid containing components to the rinsing and drying processing unit, and the anti-drying liquid supplied to the rinsing and drying processing unit from the anti-drying liquid supply unit is recovered, and the rinsing and A drying prevention liquid feeding section for feeding the drying prevention liquid collected from the drying processing section to the rinsing and drying processing section, and at least the drying prevention liquid collected from the rinsing and drying processing section Said It is characterized by using as part of the scan solution.
- the drying preventing liquid can be reused as the rinsing liquid, and it is not necessary to provide a space for performing the rinsing cleaning separately from the supercritical drying section, and the entire apparatus can be made small.
- the supercritical drying unit includes a high-pressure fluid supply unit that supplies a high-pressure fluid to the rinsing and drying processing unit, and a rinse liquid supply unit that supplies the rinsing liquid to the rinsing and drying processing unit.
- the rinsing / drying processing unit and the high-pressure fluid supply unit are connected by a first pipe, and the rinsing / drying processing unit and the anti-drying liquid supply unit are connected by a second pipe,
- the rinse and the drying treatment section and the drying prevention liquid feeding section are connected by a third pipe, and the rinse and the drying treatment section and the rinse liquid supply section are connected by a fourth pipe,
- the rinse and drying processing unit, the first pipe, the second pipe, the third pipe, and the fourth pipe may each have an oxide film.
- the supercritical drying method includes cleaning a workpiece with a rinse liquid, transporting the cleaned workpiece to a supercritical drying section, and supplying the rinse liquid to the supercritical drying section. And supplying the anti-drying liquid containing the same components as the above, exposing the workpiece to the anti-drying liquid, filling the supercritical drying section with a supercritical fluid, and filling the anti-drying liquid with a supercritical fluid. Subsequent to evaporating the fluid in a supercritical state and drying the workpiece, collecting the anti-drying liquid supplied to the supercritical drying section, and at least washing another workpiece It is used as a part.
- the anti-drying liquid used during supercritical drying can be reused as a rinsing liquid.
- the amount of new rinsing liquid to be used can be reduced, which is superior in cost and has little environmental pollution.
- a cleaning process prior to the drying process and the supercritical drying can be performed.
- the cleaning with the rinse liquid includes primary cleaning and secondary cleaning, and the drying prevention liquid may be used as a part of the rinse liquid at the time of the primary cleaning when cleaning another workpiece. Good.
- the amount of new rinsing used can be reduced, and by using only new rinsing in the secondary rinsing section, liquid replacement with the rinsing liquid can be performed more reliably by rinsing multiple times.
- the surface of the workpiece after the rinse cleaning can be made cleaner.
- the supercritical drying method transports a workpiece to a supercritical drying section while washing with a rinse liquid, and the supercritical drying section contains the same components as the rinse liquid.
- Supplying a prevention liquid exposing the workpiece to the anti-drying liquid, filling the supercritical drying part with a fluid in a supercritical state, replacing the anti-drying liquid with a fluid in a supercritical state, and then in a supercritical state
- the fluid is vaporized to dry the workpiece, the anti-drying liquid supplied to the supercritical drying section is recovered, and used as a part of the rinse liquid when cleaning at least another workpiece.
- the anti-drying liquid used during supercritical drying can be reused as a rinsing liquid.
- the amount of new rinsing liquid to be used can be reduced, which is superior in cost and has little environmental pollution.
- a cleaning process prior to the drying process and the supercritical drying can be performed.
- the workpiece is washed with water as a pretreatment for washing with the rinse liquid, and the washing surface of the workpiece is in a vertical state during the washing, and then the posture of the workpiece is changed to change the posture of the workpiece.
- the workpiece may be conveyed by converting the cleaning surface to horizontal or upward.
- a workpiece is washed with a rinse liquid in a supercritical drying section, the rinse liquid is discharged from the supercritical drying section, and the supercritical drying section is discharged. And supplying an anti-drying liquid containing the same components as the rinse liquid, exposing the workpiece to the anti-drying liquid, filling the supercritical drying section with a supercritical fluid, and supercritically filling the anti-drying liquid.
- the supercritical fluid is vaporized, the workpiece is dried, the drying prevention liquid supplied to the supercritical drying section is recovered, and at least another workpiece is washed. It is used as a part of the rinse liquid.
- the drying preventing liquid can be reused as the rinsing liquid, and it is not necessary to provide a space for performing the rinsing cleaning separately from the supercritical drying section, and the entire apparatus can be made small.
- VOCs used as anti-drying liquid after rinsing in supercritical drying and before supercritical drying are returned to the supercritical drying chamber and reused as anti-drying liquid for reuse as wafers cleaned by rinsing. It came to the knowledge that there exists a possibility that the particle contained in the drying prevention liquid may adhere. As a result of diligent study, the present inventor used the drying prevention liquid as a rinsing cleaning liquid in front of the supercritical drying chamber or as a rinsing cleaning liquid in the supercritical drying chamber, so that the wafer is kept clean and used through cleaning and drying. It was found that the amount of VOC produced can be reduced.
- FIG. 1 is a block diagram showing the overall configuration of a supercritical drying apparatus according to an embodiment of the present invention.
- a supercritical drying apparatus includes a rinsing unit 110, a supercritical drying unit 120, a transport unit 130, an anti-drying liquid supply unit 140, a high-pressure fluid supply unit 150, and a discharged liquid recovery.
- the workpiece 10 is an article that has undergone processes such as photolithography, etching, and ion implantation, and is an object to be cleaned and dried.
- the workpiece 10 is formed with, for example, an extremely finely patterned resist, a fine space manufactured by the MEMS technology, and the like.
- the workpiece 10 is subjected to various processes such as washing, conveyance, and drying as it is or in a state of being held by the workpiece holder.
- the workpiece 10 not only the workpiece 10 itself but also the workpiece 10 and a workpiece holder for holding the workpiece 10 may be included.
- the workpiece 10 is conveyed to the rinsing unit 110 after being washed with pure water or after being etched. Note that, in the drawings and the following description, an explanation will be given by taking an example of single-wafer processing of a workpiece, but a plurality of workpieces may be batch-processed collectively.
- the rinse part 110 is a part that rinses the workpiece 10 with the rinse liquid 20 as a pretreatment for supercritical drying.
- the rinse liquid 20 is supplied to the rinse section 110 from the rinse liquid supply section 180 and the liquid feeding section 170.
- the rinsing liquid 20 is usually a liquid having a surface tension smaller than that of pure water, and an alcohol solvent is used.
- IPA isopropyl alcohol
- the rinsing liquid supply unit 180 is usually connected to a tank containing alcohol, and supplies the alcohol in the tank to the rinsing unit 110.
- the liquid feeding unit 170 supplies the drying preventing liquid used for the supercritical drying to the rinsing unit 110. This mechanism will be described in detail later.
- the workpiece 10 is washed with the rinsing liquid 20 and liquid replacement with the rinsing liquid 20 is performed.
- the workpiece 10 cleaned in the rinse unit 110 is transported to the supercritical drying unit 120 by the transport unit 130.
- the transfer unit 130 is a general transfer robot arm, and may be any mechanism that can stably hold and transfer the workpiece 10. The mechanism is not particularly limited.
- the supercritical drying unit 120 is a part that performs supercritical drying on the workpiece 10.
- the supercritical drying unit 120 includes at least a processing unit 121, a gas-liquid separation unit 122, and a workpiece collection unit 123.
- the processing unit 121 is connected to the anti-drying liquid supply unit 140, the high-pressure fluid supply unit 150, and the gas-liquid separation unit 122, and the processing unit 121 and the gas-liquid separation unit 122 are connected to the discharged liquid recovery unit 160.
- FIG. 2 is a diagram for explaining the configuration of the supercritical drying section of the supercritical drying apparatus according to an embodiment of the present invention. Details of the configuration of the supercritical drying unit 120, the anti-drying liquid supply unit 140, the high-pressure fluid supply unit 150, and the discharged liquid recovery unit 160 will be described with reference to FIG. 2 together with FIG.
- the processing unit 121 is a pressure vessel (chamber) that performs supercritical drying on the workpiece 10 therein.
- the processing unit 121 when the workpiece 10 is installed in the processing unit 121 by the transport unit 130, the processing unit 121 is in an open state. When supercritical drying is performed on the workpiece 10 conveyed into the processing unit 121, the processing unit 121 is closed. Although illustration is omitted, after drying is completed, the processing unit 121 is opened again, and the workpiece 10 is carried out of the processing unit 121 by the transport unit 130 and stored in the workpiece collecting unit 123.
- the conveyance work of the workpiece 10 may be performed by the conveyance part 130, and the workpiece 10 may be conveyed by an individual conveyance means. As shown in FIG.
- the workpiece 10 is conveyed to the processing unit 121 in a state where the cleaning surface of the workpiece is in a horizontal state, and may be placed horizontally, or as shown in FIG. 3,
- the cleaning surface may be conveyed to the processing unit 121 in a vertical state and placed vertically.
- the rinse unit 110 can process a plurality of workpieces 10
- the processing unit 121 can process a plurality of workpieces 10, and supercritical drying can be performed on the plurality of workpieces 10 at once by batch processing. Good.
- the drying prevention liquid 30 is supplied to the processing unit 121 from the drying prevention liquid supply unit 140 through a pipe.
- the anti-drying liquid 30 a chemical liquid having a surface tension smaller than that of pure water and having an affinity for a supercritical fluid is usually used.
- alcohol it is desirable to use alcohol as the drying preventing liquid 30 and the rinsing liquid 20, and for example, IPA may be used.
- the processing unit 121 is supplied with a clean anti-drying liquid 30 from the anti-drying liquid supply unit 140 for each workpiece to be supercritically dried.
- the anti-drying liquid 30 is supplied to the processing unit 121 so that the solvent interface of the anti-drying liquid 30 comes to a position higher than the upper surface position of the workpiece 10 conveyed by the conveying unit 130. This prevents the workpiece 10 from drying before supplying the high-pressure fluid to cause pattern collapse or sticking, and replaces pure water remaining on the surface of the workpiece 10 to thereby prevent the interface between the gas phase and the liquid phase. It is also possible to prevent pattern collapse due to the interfacial tension of pure water.
- the fluid 40 that has been liquefied at a high pressure is supplied from the high-pressure fluid supply unit 150 to the processing unit 121 through a pipe.
- the fluid 40 may be any fluid that can be brought into a supercritical state by adjusting temperature and pressure.
- carbon dioxide has a low critical point (7.38 MPa, 31.1 ° C.) and is chemically stable, and therefore can be suitably used as a supercritical fluid.
- the fluid 40 may be supplied to the processing unit 121 in a supercritical state, or may be set to a supercritical state in the processing unit 121 after being supplied to the processing unit 121 in a liquefied state.
- the anti-drying liquid may flow and damage a part of the workpiece 10, so it is desirable to introduce the supercritical carbon dioxide into the processing unit 121.
- the fluid 40 in the supercritical state is dissolved from the vicinity of the interface of the drying preventing liquid 30. While further supplying the fluid 40, the drying preventing liquid 30 (including the supercritical fluid 40) is recovered by the discharge liquid recovery unit 160 and discharged out of the processing unit 120. In this way, the supercritical carbon dioxide is supplied, and the atmosphere around the workpiece 10 is replaced with the supercritical carbon dioxide from the anti-drying liquid 30.
- the processing unit 121 When the atmosphere around the workpiece 10 is replaced with carbon dioxide in a supercritical state, the processing unit 121 is decompressed. Due to the pressure change, carbon dioxide is in a gaseous state, and drying of the workpiece 10 is completed. After the carbon dioxide is collected from the processing unit 121, the workpiece 10 is carried out of the processing unit 121 by the workpiece collecting unit 123 and collected.
- the processing unit 121 After the supercritical drying, there may be a case where a liquid and a gas in which a part of the drying preventing liquid 30 and the high-pressure fluid 40 are mixed are prevalent in the processing unit 121.
- This mixture is recovered from the processing unit 121 through the gas-liquid separation unit 122.
- the gas-liquid separation unit 122 collects the mixture in the processing unit 121 through the exhaust liquid and exhaust pipes and valves of the processing unit 121.
- the gas-liquid separator 122 In the gas-liquid separator 122, the collected mixture is separated into gas and liquid.
- the gas-liquid separation unit 122 is, for example, two sets of pipes and valves provided in the processing unit 121. One is a gas discharge pipe and valve, and after supercritical drying, the valve is opened to discharge exhaust gas, that is, the high-pressure fluid 40 used for supercritical drying and the dry drying liquid 30 in the gaseous state from the processing unit 121. Is done. Exhaust gas is discarded after being removed so as not to affect the atmosphere.
- the other is a pipe and a valve for discharging liquid, and after supercritical drying, the discharged liquid 50 is discharged from the processing unit 121 by opening the valve.
- the content of the discharged liquid 50 is mainly the anti-drying liquid 30 used for supercritical drying, and the anti-drying liquid 30 is mixed with the high-pressure fluid 40 and particles or the like adhering to a minute amount on the workpiece.
- the discharged liquid is sent to the discharged liquid collection unit 160.
- the exhaust liquid recovery unit 160 recovers the exhaust liquid sent from the gas-liquid separation unit 122.
- the discharged liquid recovery unit 160 may be a tank, and may store the recovered discharged liquid 50.
- the effluent 50 is recovered from the gas-liquid separation unit 122 to the effluent recovery unit 160 through a pipe.
- a filter may be provided to remove impurities from the drainage liquid 50.
- the liquid feeding unit 170 has a pipe that connects the discharged liquid collecting unit 160 and the rinsing unit 110 and a mechanism that sends the liquid collected by the discharged liquid collecting unit 160 to the rinsing unit 110, and the discharged liquid passes through the liquid feeding unit 170.
- the discharged liquid recovery unit 160 sends the liquid to the rinse unit 110.
- the transport unit 130 transports the workpiece 10 placed in the rinse unit 110 to the processing unit 121 of the supercritical drying unit 120 and is placed on the processing unit 121.
- the conveyance unit 130 quickly conveys the workpiece 10 to the processing unit 121 so that the workpiece 10 is transferred to the processing unit 121 until the surface of the workpiece 10 washed with the rinse liquid is dried.
- the conveyance unit 130 may convey the workpiece 10 from the apparatus in the previous process to the rinse unit 110.
- FIG. 4 is a block diagram showing an outline of an apparatus when water washing is performed as a pre-rinse washing process in the supercritical drying apparatus according to the embodiment of the present invention.
- a rinsing unit 220 that performs a pre-process of the rinsing unit 110 and a workpiece 190 that transports the workpiece from the rinsing unit 220 to the rinsing unit 110 are provided.
- the workpiece 10 is washed with pure water.
- the workpiece 10 is washed with pure water to remove particles and the like. Moreover, drying of the workpiece 10 is also prevented by pure water cleaning.
- the water washing unit 220 may batch-process a plurality of workpieces 10 at once.
- the workpiece 10 washed in the water washing unit 220 is conveyed to the rinse unit 110 by the conveyance unit 190.
- the transport unit 190 it is desirable to use the transport unit 130 described above. This is because the entire apparatus can be miniaturized by using a common transport unit.
- the supercritical drying apparatus may be systemized including the water washing unit 220.
- the drying preventing liquid 30 used in the processing unit 121 can be reused in the rinsing unit 110, and the amount of new rinsing liquid used can be reduced, resulting in excellent cost.
- a supercritical drying apparatus with less environmental pollution is provided.
- the supercritical fluid has an advantage of low viscosity and does not damage the pattern, but has a weak ability to remove particles.
- the processing unit 121 is supplied with the clean anti-drying liquid 30 from the anti-drying liquid supply unit 140 for each workpiece to be dried. Therefore, the processing unit 121 is excellent in cost and cleanability as described above. It becomes.
- a plurality of rinse sections 110 may be provided, and the workpiece 10 may be rinsed multiple times.
- the anti-drying solution may be reused only for rinsing in one of the rinsing sections.
- the rinse section 110 performs rinse cleaning a plurality of times will be described.
- FIG. 5 is a block diagram showing an example in which a plurality of rinse sections are provided in the supercritical drying apparatus according to an embodiment of the present invention.
- the supercritical drying apparatus of FIG. 5 includes, as the rinsing unit 110, a first rinsing unit 111 that performs primary rinsing and a second rinsing unit 112 that performs secondary rinsing.
- the liquid feeding unit 170 is connected to the first rinse unit 111, but is not connected to the second rinse unit 112.
- the collected anti-drying liquid may be used in either the first rinse 111 or the second rinse part 112, but when the rinse cleaning is performed a plurality of times, the rinse liquid 20 used for the subsequent rinse cleaning is cleaner. Since it is desirable, the aspect utilized in the 1st rinse part 111 is desirable. With the configuration shown in FIG.
- the first rinsing unit 111 it is possible to reduce the amount of new rinsing liquid used by using the discharged liquid 50 fed from the liquid feeding unit 170 for rinsing.
- the second rinse part 112 by using only a new rinse liquid, the liquid replacement from the pure water to the rinse liquid 20 can be more reliably performed by multiple rinse cleaning, and the workpiece 10 after the rinse cleaning is performed. The surface of can be made into a clean state.
- the workpiece 10 When the workpiece 10 is transported between the first rinsing unit 111 and the second rinsing unit 112, it may be performed by the transport unit 130 described above, and another transport unit may be provided. It is desirable to use a common transport unit because the entire apparatus can be downsized.
- primary rinse and secondary rinse are called according to the cleanliness level of a workpiece.
- the secondary rinsing refers to rinsing with the highest level of cleanliness performed immediately before being conveyed to the supercritical drying section 120, and the primary rinsing refers to the entire rinsing before the secondary rinsing. Therefore, the primary rinse part may further have a plurality of rinse parts.
- FIG. 6 is a block diagram showing an outline of a supercritical drying apparatus according to another embodiment of the present invention.
- a supercritical drying apparatus includes a rinsing / conveying unit 210, a supercritical drying unit 120, an anti-drying liquid supply unit 140, a high-pressure fluid supply unit 150, and a discharged liquid recovery unit. 160, a liquid feeding unit 170, a rinsing liquid supply unit 180, and a water washing unit 220.
- the rinse section 110 and the transport section 130 in the above-described embodiment are integrated to constitute the rinse and transport section 210.
- the liquid feeding unit 170 and the rinse liquid supply unit 180 feed the rinse liquid to the rinse and transport unit 210.
- FIG. 7 is a schematic diagram for explaining the configuration of the rinsing and conveying unit 210 in the supercritical drying apparatus according to another embodiment of the present invention, and FIG. 7 (A) pulls up the workpiece 10 from the water washing unit 220.
- FIG. 7B is a schematic diagram for explaining the operation of conveying the workpiece 10 while rinsing the workpiece 10.
- the rinsing and conveying unit 210 includes a workpiece gripping unit 211, a rotation mechanism 212, and a pipe 213.
- the workpiece 10 is mechanically held by the workpiece holding portion 211.
- the posture of the workpiece 10 held by the workpiece holding unit 211 is changed by the rotation mechanism 212.
- the rinse liquid supplied from the rinse liquid supply unit 180 and the liquid feeding unit 170 is guided to the workpiece 10 through the pipe 213.
- the workpiece 10 is allowed to stand in a vertical state (a state in which the cleaning surface is perpendicular to the horizontal plane) in the water washing section 220, and is pulled upward in that state.
- a vertical state a state in which the cleaning surface is perpendicular to the horizontal plane
- the workpiece 10 may be placed in a wafer carrier within the washing unit 220. While the workpiece 10 is pulled up, a rinsing liquid is supplied from the pipe 213 to the workpiece 10, and liquid replacement from pure water to alcohol is performed.
- pure water can easily flow downward due to gravity, and liquid replacement can be performed efficiently.
- the cleaning surface can be pulled up so that pure water flows downward.
- the cleaning surface may be tilted within a range of ⁇ 30 ° from the vertical state, and the cleaning surface of the workpiece 10 may be pulled upward with the cleaning surface facing downward.
- the workpiece gripping unit 211 is rotated by the rotation mechanism 212, and the workpiece is moved from the vertical state to the horizontal state (the cleaning surface is changed).
- the processing unit 121 of the supercritical drying unit 120 since the workpiece 10 is usually installed in a horizontal state, the posture can be smoothly transferred to the supercritical drying unit 120 by changing the posture to the horizontal state in the rinsing process. It becomes possible. Therefore, by performing cleaning while transporting to the supercritical drying unit 120 in a horizontal state, the processing time required for cleaning and transporting the workpiece 10 can be shortened.
- the cleaning surface can be conveyed upward so that the rinsing liquid is less likely to flow downward.
- the cleaning surface of the workpiece 10 may be transported with the cleaning surface inclined upward within a range of ⁇ 30 ° from the upward horizontal state.
- the rinse and the conveyance part 210 are provided with the mechanism which can be expanded-contracted in the horizontal direction, and the workpiece 10 can be moved.
- the whole apparatus can be made small by comprising integrally as the rinse and the conveyance part 210 rather than providing a rinse part and a conveyance part separately.
- one of the first rinse unit 111 and the second rinse unit 112 described in the first embodiment is used as the rinse and transport unit 210, and liquid is fed to both or either of them. It is good also as a structure which connects the part 170 and reuses the drying prevention liquid 30.
- FIG. 1 is a structure which connects the part 170 and reuses the drying prevention liquid 30.
- the rinsing and conveying unit 210 does not need to include the rotation mechanism 212 and the posture of the workpiece 10 is changed as shown in FIG.
- the processed material 10 may be transported from the water washing section 220 to the supercritical drying section 120 without causing it to occur.
- the workpiece 10 is a wafer
- one or more wafers may be transferred from the water washing unit 220 to the supercritical drying unit 120 together with the wafer carrier storing one or more wafers.
- Embodiment 3 With reference to FIG. 9, the supercritical drying apparatus which concerns on Embodiment 3 of this invention is demonstrated.
- FIG. 9 is a block diagram showing an outline of a supercritical drying apparatus according to Embodiment 3 of the present invention.
- FIG. 9 The basic configuration of FIG. 9 and the details of each configuration are the same as those of the first and second embodiments, but the processing unit 121 of the first and second embodiments can also perform a rinse cleaning process.
- a rinsing and drying processing unit 124 is different in that the rinsing liquid 20 is supplied from the rinsing liquid supply unit 180 and the liquid feeding unit 170 to the rinsing and drying processing unit 124. Since the processing unit 121 performs the rinse cleaning process and the supercritical drying process, it is expected that the apparatus is miniaturized and the transport operation is simplified.
- the rinsing and drying processing unit 124 has a function of performing rinsing cleaning inside the processing unit 121 in addition to the function of the processing unit 121.
- the rinsing liquid 20 is supplied from the rinsing liquid supply unit 180 and the liquid feeding unit 170 to the rinsing and drying processing unit 124.
- the drying prevention liquid 30 is supplied from the drying prevention liquid supply unit 140, but the rinse liquid 20 and the drying prevention liquid 30 may be liquids containing the same components.
- rinsing cleaning is performed using the supplied rinsing liquid 20, and liquid replacement is performed on the workpiece 10 conveyed to the rinsing and drying processing unit 124.
- the rinsing liquid 20 is discharged from the rinsing and drying processing section 124 through the gas-liquid separation section 122 and is collected by the discharged liquid collection section 160.
- the anti-drying liquid 30 is supplied from the anti-drying liquid supply section 140 to the rinsing and drying processing section 124. Subsequent processing is as described in the first and second embodiments.
- the rinse and transport unit 210 in FIG. 9 may be the rinse unit 110 and the transport unit 130, and does not have any configuration, and is directly processed into the rinse and dry processing unit 124 from the water washing unit 220.
- the object 10 may be conveyed.
- the collected discharged liquid 50 is reused as the anti-drying liquid 30 in the rinsing and drying processing unit 124.
- the discharged liquid 50 once used in the rinse cleaning or the drying process is used as the anti-drying liquid 30, there is a risk that the processed product 10 after the drying process may be in a clean state.
- the effluent 50 is not used as the drying preventing liquid 30.
- the drying preventing liquid 30 can be reused as the rinsing liquid 20 in the rinsing and drying processing unit 124, and it is not necessary to provide a space for performing the rinsing cleaning separately from the supercritical drying unit. Can be small.
- the rinsing liquid 20 is supplied to the rinsing and drying processing unit 124 in which the workpiece 10 is installed to the workpiece 10. Perform liquid replacement. Thereafter, all of the rinsing liquid 20 may be discharged from the rinsing and drying processing section 124, and then the anti-drying liquid 30 may be supplied to fill the rinsing and drying processing section with the anti-drying liquid 30. Further, as shown in FIG. 15 (b), the rinsing liquid 20 is first supplied to the rinsing and drying processing unit 124 in which the workpiece 10 is installed to perform liquid replacement on the workpiece 10.
- a part of the rinsing liquid 20 is discharged from the rinsing and drying processing unit 124, for example, half removed, and then the drying preventing liquid 30 is supplied, and the rinsing and drying processing unit 124 is filled with the rinsing liquid 20 and the drying preventing liquid 30. Also good.
- the method of supplying the rinsing liquid 20 and the drying prevention liquid 30 to the rinsing and drying processing unit 124 may vary depending on the cleanliness required for the workpiece 10.
- the supercritical drying apparatus according to FIG. 16 will be described.
- liquid replacement is performed in the supercritical drying unit with respect to the supercritical drying unit 120 that performs supercritical drying and its pretreatment, and the workpiece 10 conveyed in the supercritical drying unit.
- the supercritical drying part from the drainage liquid recovery part 160 to the drainage liquid recovery part 160 stored as a part of the liquid 20 and the recovered anti-drying liquid 30 as at least part of the replacement liquid 20 during the liquid replacement process.
- a transport unit 215 is provided.
- the configuration of the transport unit 215 is the same as that of the transport unit 130 and the transport unit 190.
- pure water and / or the rinsing liquid 20 may be supplied.
- the collected discharged liquid 50 is fed from the liquid feeding unit 170 to the rinsing and drying processing unit 124 as the rinse liquid 20.
- a filter such as an adsorbent may be provided to remove impurities from the discharged liquid 50.
- a pipe for directly feeding the rinsing liquid 20 to the rinsing and drying processing section 124 is provided.
- a pipe for connecting the rinsing liquid 20 to the rinsing and drying processing section 124 from the rinsing liquid supply section 180 may be provided, or a pipe for supplying the rinsing liquid supply section 180 may be provided. May be.
- the rinsing and drying processing unit 124 first, liquid replacement with the rinsing liquid 20 is performed. Next, the rinsing liquid 20 used for the liquid replacement is discharged from the rinsing and drying processing unit 124 and discarded. Then, after supplying the drying prevention liquid 30 to the rinsing and drying processing unit 124, the fluid 40 is supplied to the rinsing and drying processing unit 124 to perform supercritical drying. After drying, the anti-drying liquid 30 is discharged from the rinsing and drying processing unit 124, and the fluid 40 is discharged.
- the rinse and drying processing unit 124 and the piping connecting the rinsing and drying processing unit 124 and each component may be subjected to a passivation process described later.
- the rinsing liquid 20 and the drying preventing liquid 30 can be reused as the rinsing liquid 20, and it is not necessary to provide a space for performing the rinsing cleaning separately from the supercritical drying section, and the entire apparatus can be made small. Can do.
- FIG. 10 is a flowchart showing an example of a supercritical drying method according to another embodiment of the present invention.
- pre-processes such as photolithography, etching, and ion implantation are performed on the workpiece 10 (S110).
- the workpiece 10 subjected to the pre-process is conveyed to the water washing section 220 by the carrier 230 or the like, and is immersed in pure water and washed (S120).
- the carrier 230 is immersed in the water washing section 220, damage to the fine pattern can be suppressed by making the cleaning surface of the workpiece 10 vertical.
- the workpiece 10 washed with pure water is washed with the rinsing liquid 20 in the rinsing section 110 and the rinsing and conveying section 210, and liquid replacement from pure water to rinsing liquid is performed (S130).
- the liquid replacement may be performed a plurality of times. It is desirable that the workpiece 10 is pulled up from the water washing section 220 in a vertical state, and the posture is changed to a horizontal state while supplying a rinsing liquid.
- the rinse-cleaned workpiece 10 is transported to the supercritical drying unit 120 by the transport unit 130 and the rinse and transport unit 210 and stored in the processing unit 121 in the open state.
- the drying prevention liquid 30 is supplied from the drying liquid supply unit 140 to prevent the workpiece 10 from drying before the supercritical drying process (S140). .
- liquid replacement with the rinsing liquid may be performed after the conveyance by the conveyance unit 215 or the rinsing and conveyance unit 210.
- the fluid 40 is supplied from the high-pressure fluid supply unit 150 to the processing unit 121 (S150).
- the fluid 40 may be changed from a liquid state to a supercritical state after being supplied in advance.
- the anti-drying fluid may flow and damage a part of the workpiece 10, so it is desirable to introduce the high-pressure fluid 40 that has become a supercritical state into the processing unit 121 in advance.
- the pressure is increased and the temperature is increased until the supercritical state is reached in the processing unit 121.
- the fluid 40 in a supercritical state is dissolved from the interface of the drying preventing liquid 30.
- the fluid 40 is supplied and the anti-drying liquid 30 is discharged. Thereafter, the inside of the processing unit 121 is depressurized to an atmospheric pressure state, the fluid is vaporized, and a drying process is performed (S160).
- the gas-liquid separator 122 separates the effluent 50 and the exhaust gas, and the effluent 50 is collected by the effluent collector 160 (S170).
- the separated exhaust gas is detoxified.
- the collected discharged liquid 50 is fed to the rinsing unit 110 or the rinsing and conveying unit 210 through the liquid feeding unit 170 (S180).
- the discharged liquid 50 thus fed is used as a part of the rinse liquid 20 when the next workpiece 10 is washed.
- the workpiece 10 that has been subjected to the drying process is collected (S190).
- the collected discharged liquid 50 is sent to the rinsing and drying processing section 124 through the liquid feeding section 170 and used as a part of the rinsing liquid 20 for cleaning the next workpiece 10. May be.
- the drying preventing liquid 30 used in the processing unit 121 can be reused in the rinsing unit 110 and the rinsing and transporting unit 210, and the amount of new rinsing liquid used can be reduced, resulting in cost reduction. Excellent supercritical drying process with less environmental pollution.
- Embodiment 5 Next, with reference to FIG.11 and FIG.12, the supercritical drying apparatus which concerns on Embodiment 5 of this invention is demonstrated. Before that, in order to facilitate understanding of the supercritical apparatus according to Embodiment 5, the background to the invention will be briefly described.
- the present embodiment is characterized in that a passivation process is performed on the rinsing section and the drying processing section of the supercritical drying apparatus and the pipes connecting the components.
- the passivation process is preferably performed on the supercritical drying apparatus according to each of the above-described embodiments (Embodiments 1 to 4).
- or rinse part in the supercritical apparatus which concerns on each embodiment, the drying process part, and the passivation process of piping which connects each structure are demonstrated.
- FIG. 11 is a schematic diagram including piping for explaining the configuration of the supercritical drying apparatus according to Embodiments 1 and 2 of the present invention.
- FIG. 12 is a schematic diagram including piping for explaining the configuration of the supercritical drying apparatus according to the third embodiment of the present invention. The details of each configuration excluding the pipes in Embodiments 1 to 3 described above will not be described below.
- the high-pressure fluid supply unit 150 and the processing unit 121 are connected by a first pipe 310.
- the high pressure fluid 40 is supplied from the high pressure fluid supply unit 150 to the processing unit 121 through the first pipe 310.
- the drying prevention liquid supply unit 140 and the processing unit 121 are connected by a second pipe 320.
- the anti-drying liquid 30 is supplied from the anti-drying liquid supply unit 140 to the processing unit 121 through the second pipe 320.
- the gas-liquid separation unit 122 and the processing unit 121 are connected by a third pipe 330.
- An exhaust liquid 50 containing fluid or gas discharged after supercritical drying is sent from the processing unit 121 to the gas-liquid separation unit through the third pipe 330.
- the block 190 that removes and discards the gas and the processing unit 121 are connected by another pipe 335.
- the gas 40 is sent through the other pipe 335 from the processing unit 121 to the block 190 where the gas is detoxified and discarded.
- the supercritical drying apparatus of FIG. 12 has a rinsing and drying processing unit 124 instead of the processing unit 121 of FIG. Then, between the rinsing and drying processing unit 124, the high-pressure fluid supply unit 150, the anti-drying liquid supply unit 140, the gas-liquid separation unit 122, and the block 190 that removes and discards the gas, the pipes 310, 320, It is the same as that of the supercritical drying apparatus of FIG.
- the rinsing liquid supply unit 180 and the processing unit 121 are connected by a fourth pipe 340.
- the rinsing liquid 20 is supplied from the rinsing liquid supply unit 180 to the rinsing and drying processing unit 124 through the fourth pipe 340.
- the interior of the processing unit 121 and the chambers of the rinsing and drying processing unit 124 are usually made of stainless steel.
- stainless steel is usually used as a material for each of the pipes 310 to 340.
- a pressure of about 12 MPa is applied to the processing unit 121, the rinsing and drying processing unit 124, and each of the pipes 310 to 340, and this high pressure causes Fe, Cr, Ni, and the like. It is discharged from the processing unit 121 made of stainless steel, the rinsing and drying processing unit 124, and the pipes 310 to 340, and is discharged from the processing unit 121, the rinsing and drying processing unit 124, the pipings 310 to 340, and the substrate surface. May be contaminated with metal. If the inside of the processing unit 121 is contaminated with metal, the recovered effluent 50 is also contaminated with metal as a result after the supercritical drying process. Even when the effluent 50 is reused as the rinsing liquid 20, the rinsing is performed. The liquid 20 will be in the state contaminated with the metal.
- the processing unit 121, the rinsing and drying processing unit 124 are preferable.
- the surface treatment of each of the pipes 310 to 340 may be performed, and a coating may be applied to the internal surface of each component to prevent metal discharge.
- a passivation treatment is preferable.
- ozone is supplied to the inside of each component of the processing unit 121, the rinsing and drying processing unit 124, and each of the pipes 310 to 340 to oxidize Cr on the internal surface of each component to form an oxide film. This is done by forming.
- FIG. 13 is a schematic diagram for explaining an example of a passivation processing method in the supercritical drying apparatus according to Embodiments 1 and 2 of the present invention.
- FIG. 14 is a schematic diagram for explaining an example of a passivation treatment method in the supercritical drying apparatus according to Embodiment 3 of the present invention.
- the ozone supply unit 400 is connected to the processing unit 121 or the rinsing and drying processing unit 124 through the first pipe 310.
- an oxide film is formed on the surface of the stainless steel.
- the ozone gas 60 compressed at a high concentration is supplied from the ozone supply unit 400.
- the ozone gas 60 is supplied to the processing unit 121 or the rinsing and drying processing unit 124 through the first pipe 310, and is supplied to the pipes 320 to 340 from the processing unit 121 or the rinsing and drying processing unit 124.
- the ends of the pipes 320 to 340 are sealed, and each component in the region P surrounded by the double chain line is exposed to the ozone gas 60.
- the valves of the pipes 320 to 340 may be exposed to the ozone gas 60 by closing the valves of the pipes 320 to 340.
- the ozone gas 60 exposes the processing unit 121, the rinsing and drying processing unit 124, and the pipes 310 to 340 formed of stainless steel, and as a result, an oxide film is formed on the internal surface of the stainless steel of each configuration, and the passivation is performed. Is complete. The thickness of the oxide film is several nm.
- the ozone 60 is exhausted to the block 190 for detoxifying and discarding the gas through another pipe 335, and discarded after the detoxification. Thereafter, the ozone supply unit 400 is replaced with the high-pressure fluid supply unit 150, and a supercritical drying process is performed.
- the above passivating treatment reduces metal discharge from the rinsing and drying processing section and each pipe, thereby maintaining good cleanliness of the supercritical drying section, and in the rinsing and drying processing section, used anti-drying liquid. And metal contamination of the workpiece can be prevented.
- a cleaner rinsing liquid can be used when the anti-drying liquid is reused as a rinsing liquid.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Cleaning In General (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
超臨界乾燥に用いた乾燥防止液を再利用可能とすることを目的とする。 超臨界乾燥の前処理としてリンス液(20)により加工物の洗浄を行うリンス部(110)と、前記リンス液(20)で洗浄された加工物に対して超臨界乾燥を行う超臨界乾燥部(120)と、前記リンス部(110)と前記超臨界乾燥部(120)との間で加工物の搬送を行う搬送部(130)と、を備え、前記超臨界乾燥部(120)は、前記リンス液(20)と同一の成分を含む乾燥防止液(30)を供給する乾燥防止液供給部(140)と、前記乾燥防止液供給部(140)から前記超臨界乾燥部(120)に供給した乾燥防止液(30)を回収し、前記超臨界乾燥部(120)から回収された乾燥防止液(30)を前記リンス部(110)へ送液する乾燥防止液送液部(170)と、を有し、前記超臨界乾燥部(120)から回収された乾燥防止液(30)を少なくとも前記リンス液(20)の一部として再利用することを特徴とする超臨界乾燥装置。
Description
本発明は、超臨界乾燥装置に関し、特に、超臨界乾燥に用いた乾燥防止液を再利用可能な超臨界乾燥装置に関する。
半導体装置の製造工程においては、リソグラフィ工程、エッチング工程、イオン注入工程などの各工程の終了後、次の工程に移る前処理としてウェハ表面に残存する不純物や、ウェハに付着するパーティクル等を除去するために、洗浄及び乾燥が実施されている。
近年、LSIを始めとする高密度・高性能デバイスを作製するために極微細なレジストパターンや、MEMS技術により種々の微細な3次元構造をウェハに形成することがある。上記半導体製品の洗浄後の乾燥工程では、単に残存する洗浄液を乾燥除去したのでは洗浄液の表面張力によりパターン倒壊やパターンの貼り付き(スティッキング)が発生してしまう。また、MEMS技術による3次元構造で、中空構造の場合には、高さ方向においてスティッキングが生じるおそれもある。そのため、表面張力が発生しない超臨界乾燥が用いられる傾向にある。超臨界乾燥は、高い拡散性や溶解性を持つ超臨界流体で液置換を行った後、臨界点以下に戻して超臨界流体を気化することにより、ダメージレスに加工物を乾燥する技術である。一般的な超臨界乾燥技術としては、特許文献1によるものが挙げられる。
超臨界乾燥工程は、洗浄、超臨界乾燥の一連の作業が順に行われる。ウェハは、純水による洗浄が行われるが、純水による洗浄後、そのまま超臨界乾燥へと移行した場合に、パターン内部に純水が残った状態で乾燥が行われ、ウェハが乾燥してウェハ上のパターンが露出すると、3次元構造の微細空間において、気相と液相との界面が生じ、純水の界面張力に起因した毛細管力により構造体が収縮する方向への応力が与えられ、スティッキングが発生するといった問題がある。洗浄に用いる液体の表面張力が大きいほど、毛細管力が大きくなりパターン倒壊を招きやすいことから、純水によるリンス後に、IPA(イソプロピルアルコール)などの純水より表面張力の小さい液体による液置換が行われている。
例えば、特許文献1においては、基板を薬液が浸された搬送パレット内に浸して液置換を行い、搬送パレットごと超臨界乾燥装置に搬送する技術が紹介されている。
超臨界乾燥を行う前段階において、乾燥室内でウェハが乾燥してパターン倒壊が発生することのないよう、乾燥防止液がウェハへと供給されている。この乾燥防止液として、IPAなどのアルコール溶媒が広く用いられている。
洗浄、乾燥において、IPA等の揮発性有機化合物(VOC)が広く使用されている。しかし、近年、VOCについては、地球環境保全の見地から、その排出規制がなされ、使用量の削減が必要とされている。そこで、VOCの再利用技術が注目されている。また、環境保全の面だけではなく、コスト面からも、乾燥防止液として用いたIPAの再利用が課題となっている。しかし、特許文献1で紹介される超臨界乾燥装置ではVOCの再利用が考慮されていない。
そこで、本発明は、このような課題を解決するためになされたものであり、超臨界乾燥において用いた乾燥防止液を再利用して省液化できる技術を提供することを目的とする。
本発明の一実施形態に係る超臨界乾燥装置は、超臨界乾燥の前処理としてリンス液により加工物の洗浄を行うリンス部と、前記リンス液で洗浄された前記加工物に対して超臨界乾燥を行う超臨界乾燥部と、前記リンス部と前記超臨界乾燥部との間で前記加工物の搬送を行う搬送部と、を備え、前記超臨界乾燥部は、前記リンス液と同一の成分を含む乾燥防止液を供給する乾燥防止液供給部と、前記乾燥防止液供給部から前記超臨界乾燥部に供給した前記乾燥防止液を回収し、前記超臨界乾燥部から回収された前記乾燥防止液を前記リンス部へ送液する乾燥防止液送液部と、を有し、前記超臨界乾燥部から回収された前記乾燥防止液を少なくとも前記リンス液の一部として用いることを特徴とする。
これにより、超臨界乾燥の際に用いた乾燥防止液をリンス液として再利用することができ、その結果、新たなリンス液を使用する量が削減でき、コストに優れ、環境汚染の少ない超臨界乾燥処理及び超臨界乾燥の前工程の洗浄処理を行うことができる。
前記リンス部は、1次リンスを行う1次リンス部と、前記1次リンス部で洗浄された前記加工物を前記超臨界乾燥部へ搬送する前に洗浄するための2次リンスを行う2次リンス部と、を含み、前記超臨界乾燥部から回収された前記乾燥防止液を前記1次リンス部で用いてもよい。
これにより、新たなリンスを使用する量を削減することができるとともに、2次リンス部においては新たなリンスのみ用いることで、複数回のリンス洗浄によりリンス液への液置換をより確実に行うことができるとともに、リンス洗浄後の加工物の表面をより清浄な状態とすることができる。
また、本発明の他の実施形態に係る超臨界乾燥装置は、超臨界乾燥の前処理として加工物をリンス液により洗浄し、かつ前記加工物を搬送するリンス及び搬送部と、前記リンス液で洗浄された前記加工物に対して超臨界乾燥を行う超臨界乾燥部と、前記リンス液と同一の成分を含む乾燥防止液を前記超臨界乾燥部に供給する乾燥防止液供給部と、前記乾燥防止液供給部から前記超臨界乾燥部に供給した前記乾燥防止液を回収し、前記超臨界乾燥部から回収された前記乾燥防止液を前記リンス部へ送液する乾燥防止液送液部と、を有し、前記超臨界乾燥部から回収された前記乾燥防止液を少なくとも前記リンス液の一部として用いることを特徴とする。
これにより、超臨界乾燥の際に用いた乾燥防止液をリンス液として再利用することができ、その結果、新たなリンス液を使用する量が削減でき、コストに優れ、環境汚染の少ない超臨界乾燥処理及び超臨界乾燥の前工程の洗浄処理を行うことができる。
前記リンス液による洗浄の前処理として前記加工物の水洗洗浄を行う水洗部をさらに有し、前記水洗部では、前記加工物の洗浄面が垂直状態で置かれ、前記リンス及び搬送部は前記加工物を洗浄面が垂直ないし下向きとなるように前記水洗部より取出し、その後前記加工物を姿勢変形して前記加工物の洗浄面を水平ないし上向きに変換して前記加工物を搬送してもよい。
これにより、加工物を搬送部において自動で姿勢変換することができ、かつ水平状態にすることで加工物の表面の乾燥を防止することができる。
また、前記超臨界乾燥部は、その内部で前記加工物の超臨界乾燥を行う処理部と、前記処理部へと高圧流体を供給する高圧流体供給部とを有し、前記処理部と前記高圧流体供給部との間は第1の配管により接続され、前記処理部と前記乾燥防止液供給部との間は第2の配管により接続され、前記処理部と前記乾燥防止液送液部との間は第3の配管により接続され、前記処理部、前記第1の配管、前記第2の配管及び前記第3の配管はそれぞれ酸化被膜を有してもよい。
これにより、リンス及び乾燥処理部と各配管からの金属排出が低減され、超臨界乾燥部の清浄度が良好に保たれ、リンス及び乾燥処理部内、使用済み乾燥防止液及び加工物の金属汚染を防止することができる。
また、本発明の他の実施形態に係る超臨界乾燥装置は、加工物に対して超臨界乾燥を行う超臨界乾燥部を備え、前記超臨界乾燥部は、超臨界乾燥の前処理としてリンス液により前記加工物の洗浄を行い、前記リンス液を排出した後に前記リンス液と同一の成分を含む乾燥防止液を供給されて超臨界乾燥を行うリンス及び乾燥処理部と、前記リンス液と同一の成分を含む乾燥防止液を前記リンス及び乾燥処理部に供給する乾燥防止液供給部と、前記乾燥防止液供給部から前記リンス及び乾燥処理部に供給した前記乾燥防止液を回収し、前記リンス及び乾燥処理部から回収された前記乾燥防止液を前記リンス及び乾燥処理部へ送液する乾燥防止液送液部と、を有し、前記リンス及び乾燥処理部から回収された前記乾燥防止液を少なくとも前記リンス液の一部として用いることを特徴とする。
これにより、乾燥防止液をリンス液として再利用することができるとともに、リンス洗浄を実施するスペースを超臨界乾燥部と別途設ける必要がなく、装置全体を小さくすることができる。
また、前記超臨界乾燥部は、前記リンス及び乾燥処理部へと高圧流体を供給する高圧流体供給部と、前記リンス及び乾燥処理部へと前記リンス液を供給するリンス液供給部とを有し、前記リンス及び乾燥処理部と前記高圧流体供給部との間は第1の配管により接続され、前記リンス及び乾燥処理部と前記乾燥防止液供給部との間は第2の配管により接続され、前記リンス及び乾燥処理部と前記乾燥防止液送液部との間は第3の配管により接続され、前記リンス及び乾燥処理部と前記リンス液供給部との間は第4の配管により接続され、前記リンス及び乾燥処理部、前記第1の配管、前記第2の配管、前記第3の配管及び前記第4の配管はそれぞれ酸化被膜を有してもよい。
これにより、リンス及び乾燥処理部と各配管からの金属排出が低減され、超臨界乾燥部の清浄度が良好に保たれ、リンス及び乾燥処理部内、使用済み乾燥防止液及び加工物の金属汚染を防止することができる。
また、本発明の他の実施形態に係る超臨界乾燥方法は、加工物をリンス液で洗浄し、洗浄された前記加工物を超臨界乾燥部に搬送し、前記超臨界乾燥部に前記リンス液と同一の成分を含む乾燥防止液を供給して、前記加工物を前記乾燥防止液に曝し、前記超臨界乾燥部を超臨界状態の流体で満たし、前記乾燥防止液を超臨界状態の流体で置換し、その後超臨界状態の流体を気化して前記加工物を乾燥し、前記超臨界乾燥部に供給した前記乾燥防止液を回収し、少なくとも別の加工物を洗浄する際の前記リンス液の一部として用いることを特徴とする。
これにより、超臨界乾燥の際に用いた乾燥防止液をリンス液として再利用することができ、その結果、新たなリンス液を使用する量が削減でき、コストに優れ、環境汚染の少ない超臨界乾燥処理及び超臨界乾燥の前工程の洗浄処理を行うことができる。
前記リンス液での洗浄は、1次洗浄及び2次洗浄を含み、前記乾燥防止液は、別の加工物を洗浄する際の前記1次洗浄の際の前記リンス液の一部として用いてもよい。
これにより、新たなリンスを使用する量を削減することができるとともに、2次リンス部においては新たなリンスのみ用いることで、複数回のリンス洗浄によりリンス液への液置換をより確実に行うことができるとともに、リンス洗浄後の加工物の表面をより清浄な状態とすることができる。
また、本発明の他の実施形態に係る超臨界乾燥方法は、加工物をリンス液で洗浄しつつ超臨界乾燥部に搬送し、前記超臨界乾燥部に前記リンス液と同一の成分を含む乾燥防止液を供給して、前記加工物を前記乾燥防止液に曝し、前記超臨界乾燥部を超臨界状態の流体で満たし、前記乾燥防止液を超臨界状態の流体で置換し、その後超臨界状態の流体を気化して前記加工物を乾燥し、前記超臨界乾燥部に供給した前記乾燥防止液を回収し、少なくとも別の加工物を洗浄する際の前記リンス液の一部として用いることを特徴とする。
これにより、超臨界乾燥の際に用いた乾燥防止液をリンス液として再利用することができ、その結果、新たなリンス液を使用する量が削減でき、コストに優れ、環境汚染の少ない超臨界乾燥処理及び超臨界乾燥の前工程の洗浄処理を行うことができる。
前記リンス液による洗浄の前処理として前記加工物の水洗洗浄を行い、前記水洗の際には、前記加工物の洗浄面が垂直状態であり、その後前記加工物を姿勢変形して前記加工物の洗浄面を水平ないし上向きに変換して前記加工物を搬送してもよい。
これにより、加工物を搬送の際において水平状態にすることで加工物の表面の乾燥を防止することができる。
また、本発明の他の実施形態に係る超臨界乾燥方法は、加工物を超臨界乾燥部においてリンス液で洗浄し、前記超臨界乾燥部より前記リンス液を排出し、前記超臨界乾燥部へと前記リンス液と同一の成分を含む乾燥防止液を供給して、前記加工物を前記乾燥防止液に曝し、前記超臨界乾燥部を超臨界状態の流体で満たし、前記乾燥防止液を超臨界状態の流体で置換し、その後超臨界状態の流体を気化して前記加工物を乾燥し、前記超臨界乾燥部に供給した前記乾燥防止液を回収し、少なくとも別の加工物を洗浄する際の前記リンス液の一部として用いることを特徴とする。
これにより、乾燥防止液をリンス液として再利用することができるとともに、リンス洗浄を実施するスペースを超臨界乾燥部と別途設ける必要がなく、装置全体を小さくすることができる。
本発明により、新たなリンス液の使用量を省液化できる、超臨界乾燥処理及び超臨界乾燥の前工程の洗浄処理を行うことが出来る。
以下、本発明を実施するための形態を、図面を参照しながらいくつかの実施形態として説明する。なお、本発明は、これらの実施形態に限定されることはなく、種々の変形を行なって実施することが可能である。また、図面においては、幅および高さなどは誇張している場合があり、実際の幅および高さなどの間の割合を正確に示していない場合がある。更に、同様の機能を有する部材には同じ符号を用い、説明を省略する場合がある。
(本発明に至る経緯)
超臨界乾燥でリンス後超臨界乾燥前の乾燥防止液として用いられたVOCを、再度超臨界乾燥室内に戻して乾燥防止液として再利用として用いると、リンス洗浄で清浄化されたウェハに再利用の乾燥防止液に含まれるパーティクルが付着する虞があるとの知見に至った。本発明者は鋭意検討した結果、乾燥防止液を超臨界乾燥室前のリンス洗浄液として、または超臨界乾燥室内でのリンス洗浄液として再利用することで、ウェハを清浄に保ちつつ洗浄及び乾燥を通じて使用されるVOCの量を減らすことができるとの知見を得た。
超臨界乾燥でリンス後超臨界乾燥前の乾燥防止液として用いられたVOCを、再度超臨界乾燥室内に戻して乾燥防止液として再利用として用いると、リンス洗浄で清浄化されたウェハに再利用の乾燥防止液に含まれるパーティクルが付着する虞があるとの知見に至った。本発明者は鋭意検討した結果、乾燥防止液を超臨界乾燥室前のリンス洗浄液として、または超臨界乾燥室内でのリンス洗浄液として再利用することで、ウェハを清浄に保ちつつ洗浄及び乾燥を通じて使用されるVOCの量を減らすことができるとの知見を得た。
(実施形態1)
図1は、本発明の一実施形態に係る超臨界乾燥装置の全体構成を示すブロック図である。
図1は、本発明の一実施形態に係る超臨界乾燥装置の全体構成を示すブロック図である。
図1を参照すると、本発明の一実施形態に係る超臨界乾燥装置は、リンス部110、超臨界乾燥部120、搬送部130、乾燥防止液供給部140、高圧流体供給部150、排出液回収部160、送液部170、及びリンス液供給部180を備える。
加工物10は、フォトリソ、エッチング、イオン注入などの工程を経た物品であって、洗浄および乾燥を行う対象物である。加工物10には、例えば、極微細にパターニングされたレジストや、MEMS技術で製造された微細空間などが形成されている。加工物10は、そのまま又は加工物ホルダに保持された状態で、洗浄、搬送、乾燥等の各処理が行われる。以下において加工物10とさす場合に、加工物10そのものだけでなく、加工物10及びこれを保持する加工物ホルダも含むことがある。加工物10は、純水で洗浄された後、またはエッチング後そのままリンス部110へと搬送される。なお、図面および以下の説明では加工物を枚葉処理することを例にして説明を行うが、複数の加工物を一括にバッチ処理してもよいものとする。
リンス部110は、超臨界乾燥の前処理としてリンス液20により加工物10のリンス洗浄を行う部分である。リンス部110には、リンス液供給部180及び送液部170からリンス液20が供給される。リンス液20は、通常純水よりも表面張力が小さい液体であり、アルコール溶媒が用いられる。リンス液20として、例えばIPA(イソプロピルアルコール)が用いられる。リンス液供給部180は通常、アルコールの入ったタンクがつながれ、タンク内のアルコールを送液してリンス部110に供給する。一方、送液部170は超臨界乾燥に用いられた乾燥防止液をリンス部110に供給する。この機構については、後で詳述する。リンス部110において、リンス液20による加工物10の洗浄とリンス液20による液置換を行う。
リンス部110で洗浄処理された加工物10は、搬送部130により超臨界乾燥部120へ搬送される。搬送部130は、一般的な搬送用ロボットアームであり、加工物10を安定的に把持して搬送できる機構であればよく、その機構は特に限定されるものでない。
超臨界乾燥部120は、加工物10に対して超臨界乾燥を行う部分である。超臨界乾燥部120は、処理部121、気液分離部122、加工物回収部123を少なくとも備える。処理部121には乾燥防止液供給部140、高圧流体供給部150、気液分離部122が接続され、処理部121及び気液分離部122は排出液回収部160と接続される。
図2は、本発明の一実施形態に係る超臨界乾燥装置の超臨界乾燥部の構成を説明するための図である。超臨界乾燥部120、乾燥防止液供給部140、高圧流体供給部150、及び排出液回収部160の構成の詳細について、図1とともに、図2を参照しつつ説明を行う。
処理部121は、その内部で加工物10に対して超臨界乾燥を行う耐圧容器(チャンバー)である。図2を参照すると、加工物10を搬送部130により処理部121内に設置する際、処理部121は開状態とする。処理部121内に搬送された加工物10に対して超臨界乾燥を行う際、処理部121は閉状態とする。なお、図示は省略しているが乾燥が終了した後、処理部121が再び開状態となり、搬送部130により加工物10は処理部121外に搬出され、加工物回収部123に格納される。なお、加工物10の搬送作業を搬送部130で行ってもよいし、個別の搬送手段により加工物10を搬送してもよい。加工物10は、図2に示すように、加工物の洗浄面が水平状態となる状態で処理部121へと搬送し、横置きとしてもよく、また、図3に示すように、加工物の洗浄面が垂直状態となる状態で処理部121へと搬送し、縦置きとしてもよい。さらに、リンス部110が複数の加工物10を処理でき、処理部121が複数の加工物10を処理できるようにし、バッチ処理により複数の加工物10に対して一度に超臨界乾燥を行ってもよい。
処理部121には、配管を通じて乾燥防止液供給部140より乾燥防止液30が供給される。乾燥防止液30は通常、純水よりも表面張力が小さく、かつ超臨界流体に親和性を有する薬液を用いる。さらに本発明の一実施形態に係る超臨界乾燥装置においては、リンス液20と同じ材料を含んでいることが望ましい。取り扱い性やコストを考慮すると、乾燥防止液30とリンス液20はアルコールを用いるのが望ましく、例えばIPAを用いるとよい。また、リンス液には乾燥防止液の他に、乾燥防止液に用いた薬液に対して相溶性のある薬液を混合させてもよい。乾燥防止液30をリンス液20と同じ成分を含む薬液を用いることにより、乾燥防止液30として使用されたIPAを、リンス液20として再利用することができる。本実施形態では処理部121には、超臨界乾燥を行う加工物ごとに乾燥防止液供給部140より清浄な乾燥防止液30が供給される。
搬送部130により搬送された加工物10の上面位置よりも高い位置に乾燥防止液30の溶媒界面がくるように、乾燥防止液30が処理部121に供給される。これにより、加工物10が高圧流体供給前に乾燥してパターン倒壊やスティッキングが発生することを防止するとともに、加工物10表面に残存する純水を置換することにより、気相と液相の界面における純水の界面張力によりパターン倒壊が発生することも防止する。
また、処理部121には、高圧流体供給部150より、配管を通じて高圧で液化状態となった流体40が供給される。流体40は、温度と圧力を調整して超臨界状態にできるものであればよい。中でも二酸化炭素は臨界点が低く(7.38MPa、31.1℃)かつ化学的に安定であるため、超臨界流体として好適に用いることができる。なお、流体40は、超臨界状態で処理部121に供給されてもよく、また液化状態で処理部121に供給された後に処理部121で超臨界状態としてもよい。液化状態の二酸化炭素を導入すると乾燥防止液が流動して加工物10の一部に損傷を与えてしまう虞があるため、超臨界状態の二酸化炭素を処理部121に導入することが望ましい。
超臨界状態となった流体40は、乾燥防止液30の界面付近から溶解していく。流体40をさらに供給しながら、乾燥防止液30(超臨界状態の流体40を含む)を排出液回収部160で回収して処理部120の外へ排出する。このように、超臨界状態の二酸化炭素を供給して、加工物10の周りの雰囲気を乾燥防止液30から超臨界状態の二酸化炭素に置換していく。
加工物10の周りの雰囲気が超臨界状態の二酸化炭素に置換されると、処理部121は減圧される。圧力変化により二酸化炭素は気体状態となり、加工物10の乾燥が完了する。二酸化炭素を処理部121から回収した後、加工物10が加工物回収部123により処理部121の外部へと搬出され、回収される。
超臨界乾燥後、処理部121内には乾燥防止液30の一部と高圧流体40とが混合された液体及び気体が蔓延している場合がある。この混合物は、気液分離部122を通じて処理部121から回収される。気液分離部122は、処理部121の排出液及び排気用の配管及びバルブを通じて処理部121内のこの混合物を回収する。
気液分離部122において、回収された混合物について、気体と液体とに分離される。気液分離部122は、例えば処理部121に設けられた2組の配管とバルブである。一方が気体排出用の配管及びバルブであり、超臨界乾燥後、バルブを開放することにより排ガス、すなわち超臨界乾燥に用いた高圧流体40及び気体の状態の乾燥防止液30が処理部121から排出される。排ガスについては、大気に影響を及ぼさないよう、除害のうえ、廃棄される。
また、他方は液体排出用の配管及びバルブであり、超臨界乾燥後、バルブを開放することにより、排出液50が処理部121から排出される。排出液50の内容物は主に超臨界乾燥に用いた乾燥防止液30であり、乾燥防止液30に高圧流体40及び加工物に微量に付着していたパーティクル等が混ざり合っている。排出液は、排出液回収部160へと送られる。
排出液回収部160は、気液分離部122から送られた排出液を回収する。例えば、排出液回収部160はタンクであってもよく、回収した排出液50を蓄液してもよい。気液分離部122から排出液回収部160へは、配管を通じて排出液50が回収される。排出液回収部160において、フィルタを設けて排出液50から不純物を取り除いてもよい。
送液部170は、排出液回収部160とリンス部110とを接続する配管と、排出液回収部160で回収した液体をリンス部110へ送る機構を有し、送液部170を通じて排出液が排出液回収部160からリンス部110へと送液される。
搬送部130は、リンス部110内に置かれた加工物10を超臨界乾燥部120の処理部121へと搬送し、処理部121に置かれる。搬送部130は、リンス液により洗浄された加工物10の表面が乾燥するまでに加工物10が処理部121へ移すよう、速やかに加工物10を処理部121へと搬送する。搬送部130は、前工程の装置からリンス部110へと加工物10を搬送してもよい。
図4は、本発明の実施形態に係る超臨界乾燥装置において、リンス洗浄の前工程として、水洗が行われる場合の装置の概要を示したブロック図である。
図4を参照すると、図1で参照した構成に加えて、リンス部110の前工程を実施する水洗部220及び水洗部220からリンス部110へと加工物を搬送する190を有する。
水洗部220においては、純水を用いて加工物10の洗浄を行う。水洗部220では、加工物10を純水で洗浄し、パーティクル等を除去する。また、純水洗浄により、加工物10の乾燥も防止する。水洗部220は、複数の加工物10を一括してバッチ処理するものであってもよい。
水洗部220において洗浄された加工物10は、搬送部190によりリンス部110へと搬送される。搬送部190として、前述の搬送部130を用いるのが望ましい。搬送部を共通化することにより、装置全体の小型化を図ることができるからである。以上のよう超臨界乾燥装置は、水洗部220を含めてシステム化されていてもよい。
本実施形態に係る超臨界乾燥装置により、処理部121において用いられた乾燥防止液30を、リンス部110において再利用することができ、新たなリンス液を使用する量が削減でき、コストに優れ、環境汚染の少ない超臨界乾燥装置が提供される。また、超臨界流体は、粘性が低くパターンにダメージを与えないという利点がある反面、パーティクルを除去する能力が弱い。本実施形態では処理部121には、乾燥を施す加工物ごとに乾燥防止液供給部140より清浄な乾燥防止液30が供給されるため、上記のようにコストに優れるとともに洗浄性も優れたものとなる。
本実施形態に係る超臨界乾燥装置において、リンス部110を複数設けて、加工物10を複数回リンス洗浄してもよい。そのうちいずれかのリンス部において行うリンス洗浄にのみ乾燥防止液を再利用してもよい。以下、リンス部110にて複数回リンス洗浄を行う態様について説明する。
図5は、本発明の一実施形態に係る超臨界乾燥装置において、複数のリンス部を設けた例を示すブロック図である。
図5を参照すると、図5の超臨界乾燥装置においては、リンス部110として、1次リンスを行う第1リンス部111及び2次リンスを行う第2リンス部112を備える。送液部170は、第1リンス部111と接続されるが、第2リンス部112とは接続されていない。回収された乾燥防止液を第1リンス111及び第2リンス部112のいずれで利用してもよいが、リンス洗浄を複数回行う場合、後のリンス洗浄に用いるリンス液20が、より清浄であることが望ましいことから第1リンス部111で利用する態様が望ましい。図5のような構成により、第1のリンス部111においては、送液部170より送液された排出液50をリンス洗浄に用いて、新たなリンス液の使用量を削減することができるとともに、第2のリンス部112においては新たなリンス液のみ用いることで、複数回のリンス洗浄により純水からリンス液20に対する液置換をより確実に行うことができるとともに、リンス洗浄後の加工物10の表面を清浄な状態とすることができる。
第1リンス部111と第2リンス部112との間で加工物10を搬送する場合には、前述の搬送部130により行いし、別の搬送部を設けてもよい。搬送部を共通化すれば装置全体の小型化を図ることができ望ましい。
なお、本明細書において、1次リンス、2次リンスとは、加工物の清浄度レベルに応じて呼称している。2次リンスとは超臨界乾燥部120に搬送する直前に行う最も清浄度のレベルが高いリンス洗浄をさし、1次リンスとは2次リンス前のリンス洗浄全般をさすものである。したがって、1次リンス部がさらに複数のリンス部を有していてもよい。
(実施形態2)
以下で、図6を参照して本発明の他の実施形態に係る超臨界乾燥装置の構成について説明する。なお、上述した実施形態に係る超臨界乾燥装置と同様の構成については、詳細な説明を省略する。
以下で、図6を参照して本発明の他の実施形態に係る超臨界乾燥装置の構成について説明する。なお、上述した実施形態に係る超臨界乾燥装置と同様の構成については、詳細な説明を省略する。
図6は、本発明の他の実施形態に係る超臨界乾燥装置の概要を示すブロック図である。
図6を参照すると、本発明の他の実施形態に係る超臨界乾燥装置は、リンス及び搬送部210、超臨界乾燥部120、乾燥防止液供給部140、高圧流体供給部150、排出液回収部160、送液部170、リンス液供給部180、及び水洗部220を備える。本発明の他の実施形態に係る超臨界乾燥装置においては、上述の実施形態(実施形態1)におけるリンス部110と搬送部130とが一体とされて、リンス及び搬送部210を構成する。
送液部170及びリンス液供給部180は、リンス液をリンス及び搬送部210へと送液する。
リンス及び搬送部210の具体的な構成を図7を参照しつつ説明する。
図7は、本発明の他の実施形態に係る超臨界乾燥装置におけるリンス及び搬送部210の構成を説明するための概要図であり、図7(A)は水洗部220から加工物10を引き上げる動作を説明するための概略図、図7(B)は加工物10のリンスを行いながら搬送する動作を説明するための概略図である。
図7(A)及び図7(B)を参照すると、リンス及び搬送部210は、加工物把持部211、回転機構212、及び配管213を有する。加工物把持部211により加工物10を機械的に把持する。加工物把持部211により把持された加工物10の姿勢を回転機構212により変化させる。配管213によりリンス液供給部180及び送液部170から供給されるリンス液を加工物10に導く。
図7(A)を参照すると、水洗部220では加工物10が垂直状態(洗浄面が水平面に対して垂直である状態)で静置され、その状態で上方へ引上げられる。加工物10がウェハである場合、水洗部220内でウェハキャリア内に静置されてもよい。加工物10は引き上げられる間、配管213から加工物10にリンス液が供給され、純水からアルコールに液置換が行われる。加工物10を垂直状態とすることで重力により純水が下方に流れやすくなり、液置換を効率的に行うことができる。加工物10を引き上げ中においても、純水からアルコール置換を行うために加工物を垂直状態とすることが好ましいが、これに限定されるものではない。つまり、純水が下方に流れるように洗浄面を下向きにして引き上げることができる。例えば、洗浄面を垂直状態から±30°の範囲内で傾けて加工物10の洗浄面を下向きにして上方へ引き上げてもよい。
次に図7(B)を参照すると、加工物10を水洗部220から引き上げた後、回転機構212により加工物把持部211を回転させ、加工物を垂直状態から上向きの水平状態(洗浄面が水平面に対して平行である状態)へと移行する。超臨界乾燥部120の処理部121では通常、加工物10が水平状態で設置されるため、リンス工程において水平状態へ姿勢変化しておくことで、スムーズに超臨界乾燥部120へ搬送することが可能となる。したがって、水平状態で超臨界乾燥部120への搬送中に洗浄を行うことで、加工物10の洗浄及び搬送に要する処理時間を短縮することが出来る。また、加工物10を水平状態として搬送することで、リンス液が加工物10の表面に留まるようにすることで搬送中の加工物10の乾燥を防止できる。加工物10を搬送する中においても、リンス液により効果的に乾燥を防止するには洗浄面を上向きにした水平状態とすることが好ましいが、これに限定されるものではない。つまり、リンス液が下方に流れにくくなるように、洗浄面を上向きにして搬送することができる。例えば、洗浄面を上向きの水平状態から±30°の範囲内で傾けて加工物10の洗浄面を上向きにして搬送してもよい。なお、図示を省略しているが、リンス及び搬送部210には水平方向に伸縮可能な機構を備え、加工物10の移動を可能としている。
これにより、基板を平易に自動搬送可能とすることができる。また、リンス部と搬送部を別個に設けるよりも、リンス及び搬送部210として一体に構成することで、装置全体を小さくすることができる。
なお、実施形態2に類似の他の実施形態として、実施形態1で説明した第1リンス部111及び第2リンス部112のいずれかをリンス及び搬送部210とし、その両方またはいずれかに送液部170を接続し、乾燥防止液30を再利用する構成としてもよい。
また、加工物10を垂直状態のまま超臨界乾燥部120に置く場合には、図8に示すように、リンス及び搬送部210は回転機構212を備えなくともよく、加工物10の姿勢を変化させることなく加工物10を水洗部220から超臨界乾燥部120へと搬送してもよい。また、加工物10がウェハの場合、1以上のウェハが格納されたウェハキャリアごと1以上のウェハを水洗部220から超臨界乾燥部120へと搬送してもよい。
(実施形態3)
図9を参照して、本発明の実施形態3に係る超臨界乾燥装置について説明する。
図9を参照して、本発明の実施形態3に係る超臨界乾燥装置について説明する。
図9は、本発明の実施形態3に係る超臨界乾燥装置の概要を示すブロック図である。
図9の基本的な構成及び各構成の詳細は、実施形態1や実施形態2と同様であるが、実施形態1や実施形態2の処理部121が、リンス洗浄の工程も行うことが可能なリンス及び乾燥処理部124であり、リンス及び乾燥処理部124に対して、リンス液供給部180及び送液部170よりリンス液20が供給される点で異なる。処理部121は、リンス洗浄処理と超臨界乾燥の処理を行うので、装置の小型化や搬送動作を簡略化が期待される。
本実施形態において、リンス及び乾燥処理部124は、処理部121の機能に加えて、その内部においてリンス洗浄を行うことができる機能を有する。すなわち、具体的には、リンス及び乾燥処理部124に対して、リンス液供給部180及び送液部170から、リンス液20が供給される。なお、乾燥防止液供給部140からは、乾燥防止液30が供給されるが、リンス液20及び乾燥防止液30は同じ成分を含む液でもよい。
リンス及び乾燥処理部124において、供給されたリンス液20を用いて、リンス洗浄を実施し、リンス及び乾燥処理部124へ搬送された加工物10に液置換を実施する。
リンス洗浄が行われた後、リンス液20については、気液分離部122を通じ、リンス及び乾燥処理部124より排出され、排出液回収部160により回収される。
リンス液20の排出後、リンス及び乾燥処理部124に対して、乾燥防止液供給部140より乾燥防止液30を供給する。その後の処理は、実施形態1及び実施形態2において説明したとおりである。なお、本実施形態において、図9におけるリンス及び搬送部210は、リンス部110及び搬送部130でもよく、また、いずれの構成も有さず、水洗部220よりリンス及び乾燥処理部124に直接加工物10が搬送されてもよい。
なお、回収した排出液50を、リンス及び乾燥処理部124において乾燥防止液30としても再利用することも考えられる。しかし、一度リンス洗浄や乾燥処理の際に用いた排出液50を、乾燥防止液30として用いると、乾燥処理後の加工物10が清浄な状態であるための妨げとなる虞があるため、本発明においては、乾燥防止液30としては排出液50を用いていない。
本実施形態により、乾燥防止液30をリンス及び乾燥処理部124においてリンス液20として再利用することができるとともに、リンス洗浄を実施するスペースを超臨界乾燥部と別途設ける必要がなく、装置全体を小さくすることができる。
図9に係る実施形態においては、図15(a)に示すように、加工物10が設置されたリンス及び乾燥処理部124に対して、まずリンス液20を供給して加工物10に対して液置換を行う。その後、リンス及び乾燥処理部124から、リンス液20を全て排出し、それから乾燥防止液30を供給してリンス及び乾燥処理部を乾燥防止液30で満たしてもよい。また、図15(b)に示すように、加工物10が設置されたリンス及び乾燥処理部124に対して、まずリンス液20を供給して加工物10に対して液置換を行う。その後、リンス及び乾燥処理部124から、リンス液20を一部排出、例えば半抜きし、それから乾燥防止液30を供給し、リンス及び乾燥処理部124をリンス液20及び乾燥防止液30により満たしてもよい。リンス及び乾燥処理部124への、こうしたリンス液20及び乾燥防止液30の供給方法については、加工物10に求められる清浄度などにより変化し得る。
また、図9に係る実施形態の変形例として、図16に係る超臨界乾燥装置を説明する。図16に係る超臨界乾燥装置においては、超臨界乾燥及びその前処理を行う超臨界乾燥部120と、前記超臨界乾燥部内に搬送された加工物10に対し、前記超臨界乾燥部内で液置換を行うための置換液(リンス液)20を供給するリンス液供給部180と、液置換処理後であって、超臨界乾燥の前処理として前記加工物の乾燥を防止し、かつ前記置換液と同一の成分を含む乾燥防止液30を前記超臨界乾燥部に供給する乾燥防止液供給部140と、前記乾燥防止液30を前記超臨界乾燥部120から回収し、回収した乾燥防止液30を置換液20の一部として保存する排出液回収部160と、前記回収した乾燥防止液30を、液置換処理の際に置換液20の少なくとも一部として前記排出液回収部160から前記超臨界乾燥部120に送液する送液部170と、を備えることを特徴とする。図9におけるリンス及び搬送部210に代えて、搬送部215を有する。搬送部215の構成は、搬送部130や搬送部190と同様である。搬送部215による搬送中においては、純水及び/又はリンス液20を供給してもよい。回収した排出液50を、送液部170より、リンス及び乾燥処理部124にリンス液20として送液する。送液部170から、送液する際に、吸着剤等のフィルタを設けて排出液50から不純物を取り除いてもよい。なお、送液部170からリンス及び乾燥処理部124へとリンス液20を送液する際の配管の構成としては、直接リンス及び乾燥処理部124へとリンス液20を送液する配管を設けてもよく、リンス液供給部180からリンス及び乾燥処理部124へとリンス液20を送液する配管へと接続する配管を設けてもよく、またリンス液供給部180へと送液する配管を設けてもよい。
リンス及び乾燥処理部124においては、まず、リンス液20による液置換を行う。次に、液置換に用いたリンス液20をリンス及び乾燥処理部124より排出して廃棄する。それから乾燥防止液30をリンス及び乾燥処理部124へと供給した後に流体40をリンス及び乾燥処理部124へと供給して超臨界乾燥を実施する。乾燥実施後、乾燥防止液30をリンス及び乾燥処理部124より排出し、流体40を排出する。
リンス及び乾燥処理部124と、リンス及び乾燥処理部124と各構成を接続する配管は、後述する不動態化処理がなされていてもよい。
本実施形態により、リンス液20及び乾燥防止液30をリンス液20として再利用することができるとともに、リンス洗浄を実施するスペースを超臨界乾燥部と別途設ける必要がなく、装置全体を小さくすることができる。
(実施形態4)
以下で、本発明の他の実施形態に係る超臨界乾燥方法について、図10を参照しつつ説明する。なお、上述した実施形態1ないし実施形態3において説明した内容と重複する内容については説明を省略する。
以下で、本発明の他の実施形態に係る超臨界乾燥方法について、図10を参照しつつ説明する。なお、上述した実施形態1ないし実施形態3において説明した内容と重複する内容については説明を省略する。
図10は、本発明の他の実施形態に係る超臨界乾燥方法の一例を示すフローチャートである。
まず、加工物10に対して、フォトリソ、エッチング、イオン注入等の前工程が行われる(S110)。
前工程が行われた加工物10は、キャリア230などにより、水洗部220へと搬送され、純水に浸漬して洗浄される(S120)。水洗部220にキャリア230を浸漬する際、加工物10の洗浄面を垂直状態とすることで微細なパターンへのダメージを抑えることができる。
純水により洗浄された加工物10は、リンス部110やリンス及び搬送部210において、リンス液20により洗浄され、純水からリンス液への液置換が行われる(S130)。液置換は複数回行われてもよい。水洗部220からの加工物10の引き上げは垂直状態で行い、リンス液を供給しながら水平状態に姿勢変形していくことが望ましい。
リンス洗浄された加工物10は、搬送部130やリンス及び搬送部210により超臨界乾燥部120へと搬送され、開状態の処理部121内に格納される。加工物10が格納された処理部121を閉状態とした後、乾燥液供給部140より乾燥防止液30が供給され、超臨界乾燥処理前に加工物10が乾燥することを防止する(S140)。
なお、上述したとおり、リンス及び乾燥処理部124において、搬送部215やリンス及び搬送部210による搬送後にリンス液への液置換が行われてもよい。
流体40が、高圧流体供給部150より処理部121へと供給される(S150)。流体40は、予め超臨界状態あるいは供給後に液体状態から超臨界状態にしてもよい。液化状態の流体を導入すると乾燥防止液が流動して加工物10の一部に損傷を与える虞があるため、予め超臨界状態となった高圧流体40を処理部121に導入することが望ましい。
導入された高圧流体40が超臨界状態でない場合には、処理部121内において超臨界状態となるまで昇圧・昇温される。超臨界状態となった流体40は、乾燥防止液30の界面から溶解していく。並行して流体40の供給と乾燥防止液30の排出を行う。その後、処理部121内を大気圧状態まで減圧し、流体を気化させて乾燥処理を行う(S160)。
乾燥処理後、気液分離部122において、排出液50、排ガスを分離して、排出液50を排出液回収部160において回収する(S170)。分離された排ガスは、除害される。
回収した排出液50を、リンス部110又はリンス及び搬送部210へと、送液部170を通じて送液する(S180)。送液された排出液50は、リンス液20の一部として、次の加工物10を洗浄する際に用いられる。また、乾燥処理が行われた加工物10を回収する(S190)。
なお、上述したとおり、回収した排出液50を、リンス及び乾燥処理部124へと、送液部170を通じて送液し、リンス液20の一部として、次の加工物10を洗浄する際に用いてもよい。
この一連の処理により、処理部121において用いられた乾燥防止液30を、リンス部110やリンス及び搬送部210において再利用することができ、新たなリンス液を使用する量が削減でき、コストに優れ、環境汚染の少ない超臨界乾燥工程を行うことができる。
(実施形態5)
次に、図11及び図12を参照して、本発明の実施形態5に係る超臨界乾燥装置について説明する。その前に実施形態5に係る超臨界装置に関する理解を容易にするため、発明に至る経緯を簡単に述べる。
次に、図11及び図12を参照して、本発明の実施形態5に係る超臨界乾燥装置について説明する。その前に実施形態5に係る超臨界装置に関する理解を容易にするため、発明に至る経緯を簡単に述べる。
超臨界乾燥においては、超臨界流体を用いる際に、超臨界乾燥を行うチャンバ及びチャンバまで超臨界流体を導く配管に高圧の負荷がかかる。チャンバ及び配管には、ステンレス鋼が用いられるが、このとき、高圧の超臨界流体にかけられた負荷により、ステンレス鋼に起因するFe、Cr、Ni等がチャンバや配管より排出され、金属汚染が発生してしまうという虞があった。そこで本発明者は、チャンバや配管の内側に不動態化処理等を施し、表面に酸化皮膜を形成することを、以下では提案する。
(不動態化処理)
本実施形態では、超臨界乾燥装置のリンス部及び乾燥処理部、及び各構成を接続する配管に不動態化処理を施すことが特徴である。特に、上述の各実施形態(実施形態1~4)に係る超臨界乾燥装置に当該不動態化処理を施すことが好ましい。以下では各実施形態に係る超臨界装置における処理部ないしリンス部及び乾燥処理部、及び各構成を接続する配管の不動態化処理について説明する。
本実施形態では、超臨界乾燥装置のリンス部及び乾燥処理部、及び各構成を接続する配管に不動態化処理を施すことが特徴である。特に、上述の各実施形態(実施形態1~4)に係る超臨界乾燥装置に当該不動態化処理を施すことが好ましい。以下では各実施形態に係る超臨界装置における処理部ないしリンス部及び乾燥処理部、及び各構成を接続する配管の不動態化処理について説明する。
図11は、本発明の実施形態1及び2に係る超臨界乾燥装置の構成を説明するための配管を含む概要図である。また、図12は、本発明の実施形態3に係る超臨界乾燥装置の構成を説明するための配管を含む概要図である。上述した実施形態1から3における配管を除く各構成の詳細については、以下では説明を省略する。
図11を参照すると、高圧流体供給部150と、処理部121とは、第1の配管310により接続されている。第1の配管310を通じて、高圧流体40が高圧流体供給部150から処理部121へと供給される。
乾燥防止液供給部140と、処理部121とは、第2の配管320により接続されている。第2の配管320を通じて、乾燥防止液30が乾燥防止液供給部140から処理部121へと供給される。
気液分離部122と、処理部121とは、第3の配管330により接続されている。超臨界乾燥後に排出される流体ないし気体を含む排出液50が、第3の配管330を通じて、処理部121から気液分離部へと送られる。
気体について除害し廃棄を行うブロック190と、処理部121とは、他の配管335により接続されている。気体40が、他の配管335を通じて、処理部121から気体について除害し廃棄を行うブロック190へと送られる。
図12を参照すると、図12の超臨界乾燥装置においては、図11における処理部121の代わりに、リンス及び乾燥処理部124を有する。そして、リンス及び乾燥処理部124と高圧流体供給部150、乾燥防止液供給部140、気液分離部122、気体について除害し廃棄を行うブロック190との間が、それぞれ各配管310、320、330、335で接続されているのは図11の超臨界乾燥装置と同様である。
図12においては、リンス液供給部180と、処理部121とは、第4の配管340により接続されている。リンス液20が、第4の配管340を通じて、リンス液供給部180からリンス及び乾燥処理部124へと供給される。
処理部121と、リンス及び乾燥処理部124のチャンバの内部は、通常、ステンレス鋼により、製造される。また、各配管310~340の材料としても、通常、ステンレス鋼が用いられる。
流体40として、例えば二酸化炭素を用いた場合、処理部121、リンス及び乾燥処理部124、及び各配管310~340には約12MPaの圧力がかかり、この高い圧力により、Fe、Cr、Niなどがステンレス鋼を材料とする処理部121、リンス及び乾燥処理部124、及び各配管310~340より排出され、処理部121内、リンス及び乾燥処理部124内、各配管310~340内、及び基板表面が金属汚染されてしまう虞がある。処理部121内が金属汚染されると、超臨界乾燥処理後、回収された排出液50も結果として金属汚染されることとなり、排出液50がリンス液20として再利用される際にも、リンス液20が金属汚染された状態となってしまう。
そこで、好ましくは各構成よりFe、Cr、Niなどの金属が排出されることを防止するため、本発明の各実施形態に係る超臨界乾燥装置においては、処理部121、リンス及び乾燥処理部124、及び各配管310~340の表面処理を行い、各構成の内部表面に被膜を施して金属の排出を防止するとよい。ここで、表面処理としては、各構成がステンレス鋼により形成されている場合には、不動態化処理が好ましい。
不動態化処理は、処理部121、リンス及び乾燥処理部124、及び各配管310~340の各構成の内部へと、オゾンを供給し、各構成の内部表面のCrを酸化させて酸化被膜を形成することにより行われる。
次に、図13及び図14を参照して、本発明の実施形態1ないし3に係る超臨界乾燥装置における不動態化処理の方法の一例を説明する。図13は、本発明の実施形態1及び2に係る超臨界乾燥装置における不動態化処理の方法の一例を説明するための概要図である。図14は、本発明の実施形態3に係る超臨界乾燥装置における不動態化処理の方法の一例を説明するための概要図である。
図13及び図14を参照すると、高圧流体供給部150の代わりに、オゾン供給部400が第1の配管310を通じて処理部121ないしリンス及び乾燥処理部124と接続されている。ステンレス鋼の表面がオゾンに暴露されると、ステンレス鋼の表面に酸化被膜が形成される。
図13及び図14において、処理部121又はリンス及び乾燥処理部124を各構成と各配管310~340により接続後、オゾン供給部400から高濃度で圧縮されたオゾンガス60を供給する。オゾンガス60は、第1の配管310を通じて処理部121又はリンス及び乾燥処理部124へと供給され、処理部121又はリンス及び乾燥処理部124から、各配管320~340へと供給される。各配管320~340の端部は封止され、二重鎖線で囲まれた領域P内の各構成をオゾンガス60に暴露する。また、これと異なり、各配管320~340のバルブを閉じることにより、各配管320~340のバルブ手前までをオゾンガス60に暴露してもよい。
オゾンガス60により、ステンレス鋼で形成された処理部121、リンス及び乾燥処理部124及び各配管310~340を暴露し、その結果、各構成のステンレス鋼の内部表面に酸化被膜が形成され、不動態化処理が完了する。酸化被膜の厚さは数nmである。不動態化処理完了後、オゾン60を他の配管335を通じて、気体について除害し廃棄するブロック190へと排気し、除害後に廃棄する。その後、オゾン供給部400を高圧流体供給部150と置換し、超臨界乾燥処理を実施する。
以上の不動態化処理により、リンス及び乾燥処理部と各配管からの金属排出が低減され、これにより超臨界乾燥部の清浄度が良好に保たれ、リンス及び乾燥処理部内、使用済み乾燥防止液及び加工物の金属汚染を防止することができる。使用済み乾燥防止液の金属汚染が防止されることにより、乾燥防止液のリンス液への再利用の際に、より清浄なリンス液を使用することができる。
100 超臨界乾燥装置、110 リンス部、120 超臨界乾燥部、130 搬送部、140 乾燥防止液供給部、150 高圧流体供給部、160 排出液回収部、170 送液部、180 リンス液供給部
Claims (15)
- 超臨界乾燥の前処理としてリンス液により加工物の洗浄を行うリンス部と、
前記リンス液で洗浄された前記加工物に対して超臨界乾燥を行う超臨界乾燥部と、
前記リンス部と前記超臨界乾燥部との間で前記加工物の搬送を行う搬送部と、を備え、
前記超臨界乾燥部は、
前記リンス液と同一の成分を含む乾燥防止液を供給する乾燥防止液供給部と、
前記乾燥防止液供給部から前記超臨界乾燥部に供給した前記乾燥防止液を回収し、前記超臨界乾燥部から回収された前記乾燥防止液を前記リンス部へ送液する乾燥防止液送液部と、
を有し、
前記超臨界乾燥部から回収された前記乾燥防止液を少なくとも前記リンス液の一部として用いることを特徴とする超臨界乾燥装置。 - 前記リンス部は、1次リンスを行う1次リンス部と、前記1次リンス部で洗浄された前記加工物を前記超臨界乾燥部へ搬送する前に洗浄するための2次リンスを行う2次リンス部と、を含み、
前記超臨界乾燥部から回収された前記乾燥防止液を前記1次リンス部で用いることを特徴とする請求項1に記載の超臨界乾燥装置。 - 超臨界乾燥の前処理として加工物をリンス液により洗浄し、かつ前記加工物を搬送するリンス及び搬送部と、
前記リンス液で洗浄された前記加工物に対して超臨界乾燥を行う超臨界乾燥部と、
前記リンス液と同一の成分を含む乾燥防止液を前記超臨界乾燥部に供給する乾燥防止液供給部と、
前記乾燥防止液供給部から前記超臨界乾燥部に供給した前記乾燥防止液を回収し、前記超臨界乾燥部から回収された前記乾燥防止液を前記リンス部へ送液する乾燥防止液送液部と、
を有し、
前記超臨界乾燥部から回収された前記乾燥防止液を少なくとも前記リンス液の一部として用いることを特徴とする超臨界乾燥装置。 - 前記リンス液による洗浄の前処理として前記加工物の水洗洗浄を行う水洗部をさらに有し、
前記水洗部では、前記加工物の洗浄面が垂直状態で置かれ、前記リンス及び搬送部は前記加工物を洗浄面が垂直ないし下向きとなるように前記水洗部より取出し、その後前記加工物を姿勢変形して前記加工物の洗浄面を水平ないし上向きに変換して前記加工物を搬送することを特徴とする請求項3に記載の超臨界乾燥装置。 - 加工物に対して超臨界乾燥を行う超臨界乾燥部を備え、
前記超臨界乾燥部は、超臨界乾燥の前処理としてリンス液により前記加工物の洗浄を行い、前記リンス液を排出した後に前記リンス液と同一の成分を含む乾燥防止液を供給されて超臨界乾燥を行うリンス及び乾燥処理部と、
前記リンス液と同一の成分を含む乾燥防止液を前記リンス及び乾燥処理部に供給する乾燥防止液供給部と、
前記乾燥防止液供給部から前記リンス及び乾燥処理部に供給した前記乾燥防止液を回収し、前記リンス及び乾燥処理部から回収された前記乾燥防止液を前記リンス及び乾燥処理部へ送液する乾燥防止液送液部と、
を有し、
前記リンス及び乾燥処理部から回収された前記乾燥防止液を少なくとも前記リンス液の一
部として用いることを特徴とする超臨界乾燥装置。 - 加工物をリンス液で洗浄し、
洗浄された前記加工物を超臨界乾燥部に搬送し、
前記超臨界乾燥部に前記リンス液と同一の成分を含む乾燥防止液を供給して、前記加工物を前記乾燥防止液に曝し、
前記超臨界乾燥部を超臨界状態の流体で満たし、前記乾燥防止液を超臨界状態の流体で置換し、その後超臨界状態の流体を気化して前記加工物を乾燥し、
前記超臨界乾燥部に供給した前記乾燥防止液を回収し、少なくとも別の加工物を洗浄する際の前記リンス液の一部として用いることを特徴とする超臨界乾燥方法。 - 前記超臨界乾燥部は、その内部で前記加工物の超臨界乾燥を行う処理部と、
前記処理部へと高圧流体を供給する高圧流体供給部とを有し、
前記処理部と前記高圧流体供給部との間は第1の配管により接続され、
前記処理部と前記乾燥防止液供給部との間は第2の配管により接続され、
前記処理部と前記乾燥防止液送液部との間は第3の配管により接続され、
前記処理部、前記第1の配管、前記第2の配管及び前記第3の配管の内部は、それぞれ酸化被膜の表面を有することを特徴とする請求項1に記載の超臨界乾燥装置。 - 前記超臨界乾燥部は、その内部で前記加工物の超臨界乾燥を行う処理部と、
前記処理部へと高圧流体を供給する高圧流体供給部とを有し、
前記処理部と前記高圧流体供給部との間は第1の配管により接続され、
前記処理部と前記乾燥防止液供給部との間は第2の配管により接続され、
前記処理部と前記乾燥防止液送液部との間は第3の配管により接続され、
前記処理部、前記第1の配管、前記第2の配管及び前記第3の配管の内部は、それぞれ酸化被膜の表面を有することを特徴とする請求項2に記載の超臨界乾燥装置。 - 前記超臨界乾燥部は、その内部で前記加工物の超臨界乾燥を行う処理部と、
前記処理部へと高圧流体を供給する高圧流体供給部とを有し、
前記処理部と前記高圧流体供給部との間は第1の配管により接続され、
前記処理部と前記乾燥防止液供給部との間は第2の配管により接続され、
前記処理部と前記乾燥防止液送液部との間は第3の配管により接続され、
前記処理部、前記第1の配管、前記第2の配管及び前記第3の配管の内部は、それぞれ酸化被膜の表面を有することを特徴とする請求項3に記載の超臨界乾燥装置。 - 前記超臨界乾燥部は、その内部で前記加工物の超臨界乾燥を行う処理部と、
前記処理部へと高圧流体を供給する高圧流体供給部とを有し、
前記処理部と前記高圧流体供給部との間は第1の配管により接続され、
前記処理部と前記乾燥防止液供給部との間は第2の配管により接続され、
前記処理部と前記乾燥防止液送液部との間は第3の配管により接続され、
前記処理部、前記第1の配管、前記第2の配管及び前記第3の配管の内部は、それぞれ酸化被膜の表面を有することを特徴とする請求項4に記載の超臨界乾燥装置。 - 前記超臨界乾燥部は、前記リンス及び乾燥処理部へと高圧流体を供給する高圧流体供給部と、
前記リンス及び乾燥処理部へと前記リンス液を供給するリンス液供給部とを有し、
前記リンス及び乾燥処理部と前記高圧流体供給部との間は第1の配管により接続され、
前記リンス及び乾燥処理部と前記乾燥防止液供給部との間は第2の配管により接続され、前記リンス及び乾燥処理部と前記乾燥防止液送液部との間は第3の配管により接続され、前記リンス及び乾燥処理部と前記リンス液供給部との間は第4の配管により接続され、
前記リンス及び乾燥処理部、前記第1の配管、前記第2の配管、前記第3の配管及び前記第4の配管の内部は、それぞれ酸化被膜の表面を有することを特徴とする請求項5に記載の超臨界乾燥装置。 - 前記リンス液の洗浄は、
1次洗浄及び2次洗浄を含み、
前記乾燥防止液は、別の加工物を洗浄する際の前記1次洗浄の際の前記リンス液の一部として用いることを特徴とする請求項6に記載の超臨界乾燥方法。 - 加工物をリンス液で洗浄しつつ超臨界乾燥部に搬送し、
前記超臨界乾燥部に前記リンス液と同一の成分を含む乾燥防止液を供給して、前記加工物を前記乾燥防止液に曝し、
前記超臨界乾燥部を超臨界状態の流体で満たし、前記乾燥防止液を超臨界状態の流体で置換し、その後超臨界状態の流体を気化して前記加工物を乾燥し、
前記超臨界乾燥部に供給した前記乾燥防止液を回収し、少なくとも別の加工物を洗浄する際の前記リンス液の一部として用いることを特徴とする超臨界乾燥方法。 - 前記リンス液による洗浄の前処理として前記加工物の水洗洗浄を行い、
前記水洗の際には、前記加工物の洗浄面が垂直状態であり、
その後前記加工物を姿勢変形して前記加工物の洗浄面を水平ないし上向きに変換して
前記加工物を搬送することを特徴とする請求項13に記載の超臨界乾燥方法。 - 加工物を超臨界乾燥部においてリンス液で洗浄し、
前記超臨界乾燥部より前記リンス液を排出し、
前記超臨界乾燥部へと前記リンス液と同一の成分を含む乾燥防止液を供給して、前記加工物を前記乾燥防止液に曝し、
前記超臨界乾燥部を超臨界状態の流体で満たし、前記乾燥防止液を超臨界状態の流体で置換し、その後超臨界状態の流体を気化して前記加工物を乾燥し、
前記超臨界乾燥部に供給した前記乾燥防止液を回収し、
少なくとも別の加工物を洗浄する際の前記リンス液の一部として用いることを特徴とする超臨界乾燥方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013507694A JP6048400B2 (ja) | 2011-03-30 | 2012-03-28 | 超臨界乾燥装置及び超臨界乾燥方法 |
US14/040,864 US20140130367A1 (en) | 2011-03-30 | 2013-09-30 | Supercritical drying device and supercritical drying method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011076162 | 2011-03-30 | ||
JP2011-076162 | 2011-03-30 | ||
JP2011146509 | 2011-06-30 | ||
JP2011-146509 | 2011-06-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/040,864 Continuation US20140130367A1 (en) | 2011-03-30 | 2013-09-30 | Supercritical drying device and supercritical drying method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133583A1 true WO2012133583A1 (ja) | 2012-10-04 |
Family
ID=46931290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/058239 WO2012133583A1 (ja) | 2011-03-30 | 2012-03-28 | 超臨界乾燥装置及び超臨界乾燥方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140130367A1 (ja) |
JP (1) | JP6048400B2 (ja) |
WO (1) | WO2012133583A1 (ja) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2854163A1 (en) * | 2013-09-30 | 2015-04-01 | Shibaura Mechatronics Corporation | Substrate processing device and substrate processing method |
KR20150088829A (ko) * | 2012-11-26 | 2015-08-03 | 어플라이드 머티어리얼스, 인코포레이티드 | 고 종횡비 반도체 디바이스 구조들에 대한 오염물 제거를 갖는 무-스틱션 건조 프로세스 |
JP2017104908A (ja) * | 2015-12-11 | 2017-06-15 | ズース マイクロテック フォトニック システムズ インコーポレイテッド | レーザ加工後のデブリ除去システムのための犠牲層及び除去方法 |
US10283344B2 (en) | 2014-07-11 | 2019-05-07 | Applied Materials, Inc. | Supercritical carbon dioxide process for low-k thin films |
US10304703B2 (en) | 2015-10-04 | 2019-05-28 | Applied Materials, Inc. | Small thermal mass pressurized chamber |
US10529603B2 (en) | 2017-03-10 | 2020-01-07 | Micromaterials, LLC | High pressure wafer processing systems and related methods |
US10529585B2 (en) | 2017-06-02 | 2020-01-07 | Applied Materials, Inc. | Dry stripping of boron carbide hardmask |
US10566188B2 (en) | 2018-05-17 | 2020-02-18 | Applied Materials, Inc. | Method to improve film stability |
US10573510B2 (en) | 2015-10-04 | 2020-02-25 | Applied Materials, Inc. | Substrate support and baffle apparatus |
US10622214B2 (en) | 2017-05-25 | 2020-04-14 | Applied Materials, Inc. | Tungsten defluorination by high pressure treatment |
US10636669B2 (en) | 2018-01-24 | 2020-04-28 | Applied Materials, Inc. | Seam healing using high pressure anneal |
US10636677B2 (en) | 2017-08-18 | 2020-04-28 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US10643867B2 (en) | 2017-11-03 | 2020-05-05 | Applied Materials, Inc. | Annealing system and method |
US10675581B2 (en) | 2018-08-06 | 2020-06-09 | Applied Materials, Inc. | Gas abatement apparatus |
US10685830B2 (en) | 2017-11-17 | 2020-06-16 | Applied Materials, Inc. | Condenser system for high pressure processing system |
US10704141B2 (en) | 2018-06-01 | 2020-07-07 | Applied Materials, Inc. | In-situ CVD and ALD coating of chamber to control metal contamination |
US10714331B2 (en) | 2018-04-04 | 2020-07-14 | Applied Materials, Inc. | Method to fabricate thermally stable low K-FinFET spacer |
US10720341B2 (en) | 2017-11-11 | 2020-07-21 | Micromaterials, LLC | Gas delivery system for high pressure processing chamber |
US10748783B2 (en) | 2018-07-25 | 2020-08-18 | Applied Materials, Inc. | Gas delivery module |
US10777405B2 (en) | 2015-10-04 | 2020-09-15 | Applied Materials, Inc. | Drying process for high aspect ratio features |
US10847360B2 (en) | 2017-05-25 | 2020-11-24 | Applied Materials, Inc. | High pressure treatment of silicon nitride film |
US10854483B2 (en) | 2017-11-16 | 2020-12-01 | Applied Materials, Inc. | High pressure steam anneal processing apparatus |
US10957533B2 (en) | 2018-10-30 | 2021-03-23 | Applied Materials, Inc. | Methods for etching a structure for semiconductor applications |
US10998200B2 (en) | 2018-03-09 | 2021-05-04 | Applied Materials, Inc. | High pressure annealing process for metal containing materials |
US11018032B2 (en) | 2017-08-18 | 2021-05-25 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US11133174B2 (en) | 2015-10-04 | 2021-09-28 | Applied Materials, Inc. | Reduced volume processing chamber |
US11177128B2 (en) | 2017-09-12 | 2021-11-16 | Applied Materials, Inc. | Apparatus and methods for manufacturing semiconductor structures using protective barrier layer |
US11227797B2 (en) | 2018-11-16 | 2022-01-18 | Applied Materials, Inc. | Film deposition using enhanced diffusion process |
US11581183B2 (en) | 2018-05-08 | 2023-02-14 | Applied Materials, Inc. | Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom |
US11749555B2 (en) | 2018-12-07 | 2023-09-05 | Applied Materials, Inc. | Semiconductor processing system |
US11901222B2 (en) | 2020-02-17 | 2024-02-13 | Applied Materials, Inc. | Multi-step process for flowable gap-fill film |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101874901B1 (ko) * | 2011-12-07 | 2018-07-06 | 삼성전자주식회사 | 기판 건조 장치 및 방법 |
AU2015265420B2 (en) * | 2014-05-30 | 2020-02-27 | Pelican Biotech & Chemical Labs Pvt Ltd | Novel design of multiple microwave/radiofrequency (MW/RF) magnetrons heated single vessel/reactor/chamber and its various applications including a novel dehydration process employing solvent extraction and solvent recovery |
KR102168153B1 (ko) * | 2018-10-10 | 2020-10-22 | (주)유진이엔씨 | 건조액 액화회수장치 및 이를 이용한 반도체 건조시스템 |
JP2023043987A (ja) * | 2021-09-17 | 2023-03-30 | キオクシア株式会社 | 基板処理装置及び基板処理方法 |
JP2023046537A (ja) * | 2021-09-24 | 2023-04-05 | 株式会社Screenホールディングス | 基板処理方法、および、基板処理装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109933A (ja) * | 2001-10-01 | 2003-04-11 | Hitachi Koki Co Ltd | 超臨界乾燥装置 |
JP2003282524A (ja) * | 2002-03-25 | 2003-10-03 | Dainippon Screen Mfg Co Ltd | 高圧乾燥装置、高圧乾燥方法および基板処理装置 |
JP2006130418A (ja) * | 2004-11-05 | 2006-05-25 | Ryusyo Industrial Co Ltd | 超臨界流体洗浄・乾燥装置 |
JP2007305933A (ja) * | 2006-05-15 | 2007-11-22 | Sony Corp | 基板の洗浄方法及び処理装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0770504B2 (ja) * | 1990-12-26 | 1995-07-31 | 信越半導体株式会社 | ウエーハのハンドリング方法及び装置 |
JP3057599B2 (ja) * | 1994-07-06 | 2000-06-26 | キヤノン株式会社 | 洗浄装置及び洗浄方法 |
JPH08107100A (ja) * | 1994-10-06 | 1996-04-23 | Sony Corp | 薬液処理方法及び薬液処理装置 |
US5715612A (en) * | 1995-08-17 | 1998-02-10 | Schwenkler; Robert S. | Method for precision drying surfaces |
JP2001053044A (ja) * | 1999-08-05 | 2001-02-23 | Yamaha Corp | 基板洗浄方法と基板洗浄装置 |
US6905555B2 (en) * | 2001-02-15 | 2005-06-14 | Micell Technologies, Inc. | Methods for transferring supercritical fluids in microelectronic and other industrial processes |
JP2002252197A (ja) * | 2001-02-26 | 2002-09-06 | Dainippon Screen Mfg Co Ltd | 基板処理方法 |
JP3984004B2 (ja) * | 2001-07-16 | 2007-09-26 | 東京エレクトロン株式会社 | 基板処理装置及び基板処理方法 |
JP2003092244A (ja) * | 2001-09-17 | 2003-03-28 | Dainippon Screen Mfg Co Ltd | 基板処理装置 |
JP4330380B2 (ja) * | 2003-05-29 | 2009-09-16 | 株式会社荏原製作所 | めっき装置及びめっき方法 |
US7384484B2 (en) * | 2002-11-18 | 2008-06-10 | Dainippon Screen Mfg. Co., Ltd. | Substrate processing method, substrate processing apparatus and substrate processing system |
JP2004172231A (ja) * | 2002-11-18 | 2004-06-17 | Dainippon Screen Mfg Co Ltd | 基板処理方法、基板処理装置および基板処理システム |
US7524383B2 (en) * | 2005-05-25 | 2009-04-28 | Tokyo Electron Limited | Method and system for passivating a processing chamber |
JP2007324542A (ja) * | 2006-06-05 | 2007-12-13 | Sony Corp | 洗浄装置及び洗浄方法 |
JP2009110984A (ja) * | 2007-10-26 | 2009-05-21 | Dainippon Screen Mfg Co Ltd | 基板処理方法および基板処理装置 |
JP5318670B2 (ja) * | 2009-06-09 | 2013-10-16 | 東京エレクトロン株式会社 | 基板処理装置、基板処理方法、プログラムおよび記憶媒体 |
JP5426439B2 (ja) * | 2010-03-15 | 2014-02-26 | 株式会社東芝 | 超臨界乾燥方法および超臨界乾燥装置 |
US20120062858A1 (en) * | 2010-04-02 | 2012-03-15 | Nikon Corporation | Cleaning method, device manufacturing method, exposure apparatus, and device manufacturing system |
-
2012
- 2012-03-28 WO PCT/JP2012/058239 patent/WO2012133583A1/ja active Application Filing
- 2012-03-28 JP JP2013507694A patent/JP6048400B2/ja not_active Expired - Fee Related
-
2013
- 2013-09-30 US US14/040,864 patent/US20140130367A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109933A (ja) * | 2001-10-01 | 2003-04-11 | Hitachi Koki Co Ltd | 超臨界乾燥装置 |
JP2003282524A (ja) * | 2002-03-25 | 2003-10-03 | Dainippon Screen Mfg Co Ltd | 高圧乾燥装置、高圧乾燥方法および基板処理装置 |
JP2006130418A (ja) * | 2004-11-05 | 2006-05-25 | Ryusyo Industrial Co Ltd | 超臨界流体洗浄・乾燥装置 |
JP2007305933A (ja) * | 2006-05-15 | 2007-11-22 | Sony Corp | 基板の洗浄方法及び処理装置 |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10347511B2 (en) | 2012-11-26 | 2019-07-09 | Applied Materials, Inc. | Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device STR |
KR102161253B1 (ko) * | 2012-11-26 | 2020-09-29 | 어플라이드 머티어리얼스, 인코포레이티드 | 고 종횡비 반도체 디바이스 구조들에 대한 오염물 제거를 갖는 무-스틱션 건조 프로세스 |
KR20150088829A (ko) * | 2012-11-26 | 2015-08-03 | 어플라이드 머티어리얼스, 인코포레이티드 | 고 종횡비 반도체 디바이스 구조들에 대한 오염물 제거를 갖는 무-스틱션 건조 프로세스 |
JP2016503588A (ja) * | 2012-11-26 | 2016-02-04 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 高アスペクト比半導体デバイス構造のための、汚染物質除去を伴うスティクションフリー乾燥処理 |
US11011392B2 (en) | 2012-11-26 | 2021-05-18 | Applied Materials, Inc. | Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device structures |
JP2019024104A (ja) * | 2012-11-26 | 2019-02-14 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 高アスペクト比半導体デバイス構造のための、汚染物質除去を伴うスティクションフリー乾燥処理 |
US10354892B2 (en) | 2012-11-26 | 2019-07-16 | Applied Materials, Inc. | Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device structures |
EP2854163A1 (en) * | 2013-09-30 | 2015-04-01 | Shibaura Mechatronics Corporation | Substrate processing device and substrate processing method |
CN104517873A (zh) * | 2013-09-30 | 2015-04-15 | 芝浦机械电子装置股份有限公司 | 基板处理装置和基板处理方法 |
US10283344B2 (en) | 2014-07-11 | 2019-05-07 | Applied Materials, Inc. | Supercritical carbon dioxide process for low-k thin films |
US10304703B2 (en) | 2015-10-04 | 2019-05-28 | Applied Materials, Inc. | Small thermal mass pressurized chamber |
US11424137B2 (en) | 2015-10-04 | 2022-08-23 | Applied Materials, Inc. | Drying process for high aspect ratio features |
US10573510B2 (en) | 2015-10-04 | 2020-02-25 | Applied Materials, Inc. | Substrate support and baffle apparatus |
US11133174B2 (en) | 2015-10-04 | 2021-09-28 | Applied Materials, Inc. | Reduced volume processing chamber |
US10777405B2 (en) | 2015-10-04 | 2020-09-15 | Applied Materials, Inc. | Drying process for high aspect ratio features |
JP2017104908A (ja) * | 2015-12-11 | 2017-06-15 | ズース マイクロテック フォトニック システムズ インコーポレイテッド | レーザ加工後のデブリ除去システムのための犠牲層及び除去方法 |
US10529603B2 (en) | 2017-03-10 | 2020-01-07 | Micromaterials, LLC | High pressure wafer processing systems and related methods |
US10622214B2 (en) | 2017-05-25 | 2020-04-14 | Applied Materials, Inc. | Tungsten defluorination by high pressure treatment |
US11705337B2 (en) | 2017-05-25 | 2023-07-18 | Applied Materials, Inc. | Tungsten defluorination by high pressure treatment |
US10847360B2 (en) | 2017-05-25 | 2020-11-24 | Applied Materials, Inc. | High pressure treatment of silicon nitride film |
US10529585B2 (en) | 2017-06-02 | 2020-01-07 | Applied Materials, Inc. | Dry stripping of boron carbide hardmask |
US11469113B2 (en) | 2017-08-18 | 2022-10-11 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US10636677B2 (en) | 2017-08-18 | 2020-04-28 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US11462417B2 (en) | 2017-08-18 | 2022-10-04 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US11694912B2 (en) | 2017-08-18 | 2023-07-04 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US11018032B2 (en) | 2017-08-18 | 2021-05-25 | Applied Materials, Inc. | High pressure and high temperature anneal chamber |
US11177128B2 (en) | 2017-09-12 | 2021-11-16 | Applied Materials, Inc. | Apparatus and methods for manufacturing semiconductor structures using protective barrier layer |
US10643867B2 (en) | 2017-11-03 | 2020-05-05 | Applied Materials, Inc. | Annealing system and method |
US10720341B2 (en) | 2017-11-11 | 2020-07-21 | Micromaterials, LLC | Gas delivery system for high pressure processing chamber |
US11756803B2 (en) | 2017-11-11 | 2023-09-12 | Applied Materials, Inc. | Gas delivery system for high pressure processing chamber |
US11527421B2 (en) | 2017-11-11 | 2022-12-13 | Micromaterials, LLC | Gas delivery system for high pressure processing chamber |
US10854483B2 (en) | 2017-11-16 | 2020-12-01 | Applied Materials, Inc. | High pressure steam anneal processing apparatus |
US11610773B2 (en) | 2017-11-17 | 2023-03-21 | Applied Materials, Inc. | Condenser system for high pressure processing system |
US10685830B2 (en) | 2017-11-17 | 2020-06-16 | Applied Materials, Inc. | Condenser system for high pressure processing system |
US10636669B2 (en) | 2018-01-24 | 2020-04-28 | Applied Materials, Inc. | Seam healing using high pressure anneal |
US10998200B2 (en) | 2018-03-09 | 2021-05-04 | Applied Materials, Inc. | High pressure annealing process for metal containing materials |
US11881411B2 (en) | 2018-03-09 | 2024-01-23 | Applied Materials, Inc. | High pressure annealing process for metal containing materials |
US10714331B2 (en) | 2018-04-04 | 2020-07-14 | Applied Materials, Inc. | Method to fabricate thermally stable low K-FinFET spacer |
US11581183B2 (en) | 2018-05-08 | 2023-02-14 | Applied Materials, Inc. | Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom |
US10566188B2 (en) | 2018-05-17 | 2020-02-18 | Applied Materials, Inc. | Method to improve film stability |
US10704141B2 (en) | 2018-06-01 | 2020-07-07 | Applied Materials, Inc. | In-situ CVD and ALD coating of chamber to control metal contamination |
US11361978B2 (en) | 2018-07-25 | 2022-06-14 | Applied Materials, Inc. | Gas delivery module |
US10748783B2 (en) | 2018-07-25 | 2020-08-18 | Applied Materials, Inc. | Gas delivery module |
US11110383B2 (en) | 2018-08-06 | 2021-09-07 | Applied Materials, Inc. | Gas abatement apparatus |
US10675581B2 (en) | 2018-08-06 | 2020-06-09 | Applied Materials, Inc. | Gas abatement apparatus |
US10957533B2 (en) | 2018-10-30 | 2021-03-23 | Applied Materials, Inc. | Methods for etching a structure for semiconductor applications |
US11227797B2 (en) | 2018-11-16 | 2022-01-18 | Applied Materials, Inc. | Film deposition using enhanced diffusion process |
US11749555B2 (en) | 2018-12-07 | 2023-09-05 | Applied Materials, Inc. | Semiconductor processing system |
US11901222B2 (en) | 2020-02-17 | 2024-02-13 | Applied Materials, Inc. | Multi-step process for flowable gap-fill film |
Also Published As
Publication number | Publication date |
---|---|
US20140130367A1 (en) | 2014-05-15 |
JPWO2012133583A1 (ja) | 2014-07-28 |
JP6048400B2 (ja) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6048400B2 (ja) | 超臨界乾燥装置及び超臨界乾燥方法 | |
JP5522028B2 (ja) | 基板処理装置、基板処理方法及び記憶媒体 | |
JP2003518736A (ja) | 製作品の超臨界式プロセス装置と方法 | |
US6763840B2 (en) | Method and apparatus for cleaning substrates using liquid carbon dioxide | |
US11342204B2 (en) | Method and apparatus for cleaning semiconductor wafers | |
CN101479831B (zh) | 利用弯液面的蚀刻后晶片表面清洁 | |
JP6068029B2 (ja) | 基板処理方法、基板処理装置および記憶媒体 | |
JP2007524229A (ja) | 超臨界流体洗浄のためのロードロックシステム | |
KR101643455B1 (ko) | 기판 처리 방법 및 장치 | |
TWI291200B (en) | Method for cleaning an article | |
US20080006291A1 (en) | Cleaning method and cleaning apparatus | |
JP2008091498A (ja) | 基板処理装置及び基板処理方法 | |
KR102219883B1 (ko) | 기판 처리 방법 | |
US20230044888A1 (en) | Method and apparatus for treating substrate | |
KR100696379B1 (ko) | 세정 장치 및 이를 이용한 세정 방법 | |
JPH0417333A (ja) | 基板の超臨界ガスによる洗浄方法及び洗浄システム | |
JP2010056208A (ja) | 基板洗浄装置 | |
CN1292822C (zh) | 应用在清洗液循环系统中可延长过滤器寿命的清洗装置 | |
JP2007142335A (ja) | 高圧処理方法 | |
US20090217950A1 (en) | Method and apparatus for foam-assisted wafer cleaning | |
KR100872995B1 (ko) | 기판처리장치 및 이를 이용한 기판처리방법 | |
JP2008103769A (ja) | 基板処理装置および基板処理方法 | |
JP6020626B2 (ja) | デバイス用Ge基板の洗浄方法、洗浄水供給装置及び洗浄装置 | |
JP2005142301A (ja) | 高圧処理方法、及び高圧処理装置 | |
JP2010080668A (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12764108 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013507694 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12764108 Country of ref document: EP Kind code of ref document: A1 |