[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012133404A1 - Ipmモータの回転子及びそれを用いたipmモータ - Google Patents

Ipmモータの回転子及びそれを用いたipmモータ Download PDF

Info

Publication number
WO2012133404A1
WO2012133404A1 PCT/JP2012/057927 JP2012057927W WO2012133404A1 WO 2012133404 A1 WO2012133404 A1 WO 2012133404A1 JP 2012057927 W JP2012057927 W JP 2012057927W WO 2012133404 A1 WO2012133404 A1 WO 2012133404A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
ipm motor
permanent magnet
steel
steel plate
Prior art date
Application number
PCT/JP2012/057927
Other languages
English (en)
French (fr)
Inventor
智永 岩津
幸男 片桐
藤原 進
森川 茂
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to BR112013023948-4A priority Critical patent/BR112013023948B1/pt
Priority to MX2013011397A priority patent/MX2013011397A/es
Priority to CA2829872A priority patent/CA2829872C/en
Priority to EP12763062.2A priority patent/EP2693602B1/en
Priority to KR1020137028634A priority patent/KR101854491B1/ko
Priority to CN2012800139028A priority patent/CN103430427A/zh
Priority to AU2012233855A priority patent/AU2012233855B2/en
Priority to RU2013148562/07A priority patent/RU2578200C2/ru
Priority to US14/007,870 priority patent/US8841810B2/en
Publication of WO2012133404A1 publication Critical patent/WO2012133404A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotor of a permanent magnet embedded motor (hereinafter referred to as “IPM motor”) used in, for example, an electric vehicle, a hybrid vehicle, and a machine tool, and an IPM motor using the rotor.
  • IPM motor a permanent magnet embedded motor
  • IPM motor uses an expensive permanent magnet, but the cost is high, but the efficiency is higher than that of the induction motor. For this reason, IPM motors are widely used in, for example, drive motors and power generation motors for hybrid vehicles and electric vehicles, home appliances, motors for various machine tools and industrial machines, and the like.
  • the iron core of the IPM motor is divided into a stator and a rotor. Since an AC magnetic field is directly applied to the stator-side iron core through the windings, to increase efficiency, the stator-side iron core has a high magnetic permeability and at the same time increases the volume resistivity, thereby reducing the iron loss. Is required to be reduced. For this reason, an electromagnetic steel sheet in which soft magnetic properties are improved by adding Si to an extremely low carbon steel is used for the iron core on the stator side.
  • the rotor-side iron core plays a role of increasing the magnetic flux density mainly as a yoke.
  • the rotor side iron core is slightly affected by the AC magnetic field generated from the stator side, but the effect is limited. Therefore, from the viewpoint of characteristics, it is not necessary to use an electromagnetic steel sheet advantageous for iron loss characteristics for the iron core on the rotor side.
  • the electromagnetic steel sheet is used only for the stator, the product yield of the electromagnetic steel sheet is lowered and the manufacturing cost of the motor is increased. Therefore, the same electromagnetic steel sheet as that for the stator side is usually used for the iron core on the rotor side. .
  • the IPM motor When an IPM motor is mounted on an automobile, the IPM motor is also required to be reduced in size because of the need for reducing the size and weight of the automobile. In that case, the rotational speed of the rotor can be increased in order to obtain a motor output (torque) equal to or higher than that of the conventional one even if the size is reduced. In general, the efficiency of the motor becomes better as the rotational speed of the rotor is increased.
  • an induced electromotive force is generated in the stator winding due to the rotation of the embedded permanent magnet. This induced electromotive force increases as the rotational speed increases. When the induced electromotive force exceeds the input voltage, the motor cannot rotate.
  • Patent Document 1 when operating in a high-speed rotation region, a magnetic flux in a direction that cancels the magnetic flux of the permanent magnet is generated from the stator side to weaken the induced electromotive force.
  • Field control is performed. This field-weakening control allows operation in a high-speed rotation range, but uses electric power to cancel out the magnetic flux of the permanent magnet, so the motor torque decreases.
  • Patent Document 1 it is attempted to reduce the amount of power used for field-weakening control by devising the shape of the magnet.
  • a material having a high yield strength is suitable as a material for the rotor.
  • the yield strength after magnetic annealing is about 400 N / mm 2 .
  • JP 2000-278900 A JP 2009-153230 A JP 2009-46738 A
  • the inventors of the present application have developed IPM motors using various steel plates as materials while developing rotor steel plates for high-speed rotation, and as a result of evaluating the performance of the motors, the coercive force of the material steel plates is adjusted.
  • a large output torque can be obtained in a high-speed rotation range in which field-weakening control is performed.
  • the rotor can be rotated to a higher rotational speed.
  • Patent Document 1 attempts to reduce the amount of electric power used for field-weakening control by devising the shape of the magnet, but does not consider the point of adjusting the coercive force of the material steel plate. Also, Patent Documents 2 and 3 do not consider the point of adjusting the coercive force of the material steel plate. That is, in the conventional configuration, since the point of adjusting the coercive force of the material steel plate is not taken into consideration, the output torque in the high rotation range is small, and accordingly, the maximum rotation number is also low.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an IPM motor rotor and an IPM that can increase the output torque in a high rotation range and increase the maximum rotation speed. It is to provide a motor.
  • the rotor of the IPM motor according to the present invention is formed by laminating material steel plates having a magnetic flux density B8000 value of 1.65 T or more when the magnetic field strength is 8000 A / m and a coercive force of 100 A / m or more.
  • the IPM motor according to the present invention incorporates the rotor described above.
  • the material steel plates having a magnetic flux density B8000 value of 1.65 T or more and a coercive force of 100 A / m or more when the magnetic field strength is 8000 A / m are laminated. Since the rotor core formed as a result is used, the output torque in the high rotation range can be increased, and the maximum rotational speed can be increased. Further, according to the IPM motor of the present invention, since the above-described rotor is used, similarly, the output torque in the high rotation range can be further increased and the maximum rotation speed can be further increased.
  • the rotor of the IPM motor of the present invention is formed by laminating material steel plates having a yield strength of 750 N / mm 2 or more, the centrifugal force that acts on the permanent magnet even when the rotor is rotated at a high speed. The rotor will not be damaged by the force. Therefore, the width of the bridge portion provided around the permanent magnet insertion hole can be reduced. If the bridge width can be narrowed, the leakage magnetic flux can be effectively reduced, which increases the degree of freedom in designing the rotor. Further, since the permanent magnet may be reduced in size, the cost of the motor can be greatly reduced.
  • FIG. 1 is a front view showing a rotor of an IPM motor according to an embodiment of the present invention.
  • the rotor 1 of the IPM motor has a rotor core 10 (rotor body) formed by laminating a steel plate for rotor (material steel plate) described later, and a rotor core 10.
  • a plurality of permanent magnet insertion holes 11 provided in the rotor core 10 at intervals from each other along the circumferential direction, and permanent magnets 12 embedded in the permanent magnet insertion holes 11 are included.
  • An IPM motor is configured by arranging a stator (not shown) on the outer periphery of the rotor 1.
  • Each permanent magnet insertion hole 11 has first and second insertion holes 11a and 11b arranged in a V shape so that the rotation center 10a side of the rotor core 10 is the top, and the first and second insertion holes 11a and 11b at the top. 2 includes a bridge 11c that partitions the insertion holes 11a and 11b.
  • the permanent magnet 12 is embedded in the first and second insertion holes 11a and 11b, respectively. That is, two permanent magnets 12 are embedded in the permanent magnet insertion hole 11.
  • FIG. 2 is a front view showing a rotor 2 of an IPM motor different from the rotor of the IPM motor of FIG.
  • symbol is attached
  • the rotor 2 includes a rotor core 10 and a plurality of permanent magnet insertion holes 20 provided in the rotor core 10 at intervals from each other along the circumferential direction of the rotor core 10.
  • a permanent magnet 21 embedded in each permanent magnet insertion hole 20 is included.
  • the rotor core 10 is formed by laminating material steel plates to be described later, like the rotor core 10 of the rotor 1 of FIG.
  • the permanent magnet insertion holes 20 are arranged at 90 ° intervals along the circumferential direction of the rotor core 10. Each permanent magnet insertion hole 20 is formed in a straight line, and one permanent magnet 21 is embedded in each permanent magnet insertion hole 20.
  • the magnetic flux in the direction to cancel the magnetic flux of the permanent magnet 12 is applied from the stator side.
  • Field weakening control is performed to suppress the induced electromotive force.
  • the rated rotational speed of such an IPM motor is 7500 rpm when the rotor 1 of FIG. 1 is used, and 10,000 rpm when the rotor 2 of FIG. 2 is used.
  • the above-described field weakening control is performed in a high-speed rotation range exceeding these rotation speeds.
  • the rotor core 10 is formed by laminating raw steel plates having a magnetic flux density B8000 value of 1.65 T or more and a coercive force of 100 A / m or more when the magnetic field strength is 8000 A / m.
  • the value of the magnetic flux density B8000 is set to 1.65 T or more because the inductance at the position where the permanent magnet 12 is inserted (d-axis) and the position where it is not inserted (q-axis) when the rotor 1 rotates at high speed. This is because the reluctance torque based on the difference between the values of the steel plates is effectively utilized, and the torque performance equal to or higher than that of the conventional steel plate is exhibited particularly in the high-speed rotation region.
  • the coercive force is set to 100 A / m or more as follows.
  • the IPM motor is affected by the magnetic saturation of the iron core material, for example, "Tokyo Gakugei University Faculty of Engineering Bulletin, Vol. 27 No. 1 (2004), P126-132". It is known that inductance decreases and reluctance torque decreases. That is, a steel sheet with a small coercive force, such as a magnetic steel sheet, easily causes magnetic saturation, so that the reluctance torque cannot be increased immediately even if the input current is increased, whereas a steel sheet with a large coercive force is used as the material steel sheet.
  • the material steel plate of the rotor core 10 preferably has a yield strength of 750 N / mm 2 or more. By setting the yield strength in such a range, the rotor core 10 can withstand the centrifugal force acting on the permanent magnet 12 during high-speed rotation, and the rotor is not damaged even in a high-speed rotation range.
  • the rotor core 10 of the present invention is a high performance steel plate that is capable of obtaining high speed rotation and high torque because the material steel plate is a weak steel plate that is excellent in field weakness controllability, so that a decrease in torque is suppressed even in a high speed rotation range.
  • a motor can be provided. Thereby, it becomes possible to apply to various uses including automobiles and home appliances.
  • a bridge 11c provided in each permanent magnet insertion hole 11 of the rotor 1 in FIG. 1 is for ensuring the strength around each permanent magnet insertion hole 11.
  • the width of the bridge 11c (the width of the bridge 11c along the separating direction of the first and second insertion holes 11a and 11b) can be reduced, thereby reducing leakage magnetic flux. it can. If the strength of the rotor core is increased and the width of the bridge 11c is reduced and the rotor is not damaged and the leakage magnetic flux can be reduced, the design freedom of the rotor is increased. Further, since the permanent magnet 12 may be downsized by reducing the leakage magnetic flux, the cost of the motor can be greatly reduced.
  • the bridge width may be designed in consideration of both high torque due to high speed rotation and miniaturization of the permanent magnet.
  • the upper limit of the yield strength of the raw steel plate of the rotor core 10 is 2000 N / mm 2 . This is because a material exhibiting a yield strength exceeding 2000 N / mm 2 cannot obtain a magnetic flux density B8000 value of 1.65 T or more when the magnetic field strength is 8000 A / m.
  • the present inventors manufactured the raw material steel plate of the rotor core 10 by the following manufacturing method A by using the steel which has a component composition shown in Table 1 as a raw material.
  • Manufacturing method A Steel having the component composition shown in Table 1 is melted in vacuum, these continuous cast pieces are heated to 1250 ° C., finish-rolled at 950 ° C. and wound at 560 ° C., and a hot-rolled steel sheet having a thickness of 1.8 mm is obtained. Obtained. After pickling these hot-rolled steel plates, a cold-rolled steel strip having a thickness of 0.35 mm was obtained by one cold rolling (final rolling ratio: about 81%). The obtained cold-rolled steel strip was passed through a continuous furnace set at 400 ° C.
  • an insulating film having a thickness of about 1 ⁇ m and having a semi-organic composition containing Cr-based oxide and Mg-based oxide was formed on both surfaces of the steel sheet.
  • a JIS No. 5 test piece was cut out from the obtained steel strip and subjected to a tensile test. Moreover, a ring-shaped test piece having an inner diameter of 33 mm and an outer diameter of 45 mm was produced by punching and subjected to magnetization measurement. Table 2 shows the yield strength, tensile strength, yield ratio (YR), magnetic flux density (B 8000 ) and coercive force (Hc) when the strength of the magnetic field is 8000 A / m.
  • the present inventors manufactured the raw steel plate of the rotor 10 by the following manufacturing method B using the steel which has a component composition shown in Table 1 as a raw material.
  • Manufacturing method B Steel having the component composition shown in Table 1 is melted, these continuous cast pieces are heated to 1250 ° C., finish-rolled at 850 ° C. and wound at 560 ° C. to obtain a hot-rolled steel plate having a thickness of 1.8 mm. It was.
  • the hot-rolled steel sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.35 mm.
  • the obtained cold-rolled steel sheet was heated to 900 ° C., passed through a Pb—Bi alloy bath set at 250 ° C., cooled to 250 ° C.
  • the present inventors manufactured the raw material steel plate of the rotor 10 by the following manufacturing method C using the steel which has a component composition shown in Table 1 as a raw material.
  • Manufacturing method C Among the steels having the composition shown in Table 1, No. 1, 2, 3, 4, and 5 continuous cast slabs were heated to 1250 ° C. in the same manner as in production method A, finished and rolled at 950 ° C., wound at 560 ° C., and hot-rolled steel sheet having a thickness of 1.8 mm Got. After pickling these hot-rolled steel plates, a cold-rolled steel strip having a thickness of 0.35 mm was obtained by one cold rolling (final rolling ratio: about 81%).
  • the obtained cold-rolled steel strip was subjected to recrystallization annealing for 60 seconds through a continuous furnace set at 800 ° C.
  • maintains 120 s or more in the continuous furnace set to 450 degreeC was performed. Thereafter, light cold rolling with an elongation of 0.3% was performed, and an insulating film having a thickness of about 1 ⁇ m having a semi-organic composition containing Cr-based oxide and Mg-based oxide was formed on both surfaces of the steel sheet.
  • a rotor made of a commercially available electrical steel sheet (35A300) was also produced at the same time and subjected to the same evaluation. Moreover, only one stator was manufactured, and the manufactured rotor was rearranged for performance evaluation as a motor. The maximum output of each motor is 4.5 kw. In this performance evaluation, field weakening control was performed at 10,000 rpm or more. In addition, it was as follows when the mechanical characteristic and magnetic characteristic by the method similar to the raw material steel plate of this invention were evaluated about the commercially available electromagnetic steel plate (35A300). Plate thickness 0.35mm Yield strength 381 N / mm 2 Tensile strength 511 N / mm 2 Saturation magnetic flux density B8000 1.76T Coercive force 75A / m
  • the specifications of the manufactured rotor and stator are as follows. ⁇ Specifications of the first rotor Outer diameter: 80.1mm, shaft length 50mm -Number of stacked sheets: 0.35mm / 140 sheets-Center and outer bridge widths: 1.00mm -Permanent magnet: Neodymium magnet (NEOMAX-38VH), 9.0mm width x 3.0mm thickness x 50mm length, total 16 embeds ⁇ Specifications of stator ⁇ Gap length: 0.5mm ⁇ Outer diameter: 138.0 mm, yoke thickness: 10 mm, length: 50 mm -Iron core material: electromagnetic steel plate (35A300), plate thickness 0.35mm -Number of stacked layers: 140-Winding method: distributed winding
  • Table 5 shows the maximum torque and efficiency of the motor at 15000 rpm when each first rotor was incorporated.
  • FIG. 4 shows the relationship between the maximum torque at 15000 rpm and the coercive force
  • FIG. 5 shows the relationship between the efficiency at 15000 rpm and the coercive force.
  • field weakening control was performed at 10,000 rpm or more.
  • the steel plates (No. 1 steel and No. 2 steel manufactured by the manufacturing method C) and the coercive force Hc of less than 100 A / m are rotors.
  • the torque at 15000 rpm showed a low value of less than 2.0 N ⁇ m, and the efficiency also showed a low value of less than 60%.
  • a high torque exceeding 2.0 N ⁇ m and a good efficiency of 60% or more can be obtained.
  • the coercive force is 300 A / m or more
  • a higher torque of 2.5 N ⁇ m or more and a high efficiency of 70% or more can be obtained.
  • the No. 7 steel produced by the manufacturing method B having a high coercive force but having a low magnetic flux density B8000 of 1.61 T has low torque and efficiency due to the low magnetic flux density.
  • the inventors of the present invention have obtained the No. manufactured by the manufacturing method B. No. 4 steel (with a yield strength exceeding 750 N / mm 2 ) and No. 4 steel.
  • a second rotor shown in FIG. 6 was further produced using 6 steels (those with the highest yield strength) (hereinafter referred to as “ultra high strength steel plates”).
  • the second rotor of FIG. 6 reduces the leakage flux by narrowing the bridge width by half compared to the first rotor of FIG. 3, and the size of the permanent magnet is reduced from 9.0 mm to 8.0 mm. (About 11% downsizing). Further, field weakening control was performed at 10,000 rpm or more.
  • the specifications of the second rotor are as follows. In addition, what was used for evaluation of said magnetic flux density etc. was utilized about the stator. ⁇ Specifications of the second rotor Outer diameter: 80.1mm, shaft length 50mm -Number of stacked sheets: 0.35 mm / 140 sheets-Center bridge and outer bridge width: 0.5 mm -Permanent magnet: Neodymium magnet (NEOMAX-38VH), 8.0mm width x 3.0mm thickness x 50mm length, total 16 embedded
  • first and second rotors were produced using electromagnetic steel sheets. No. manufactured by electrical steel sheet and manufacturing method B Table 6 shows the maximum torque and efficiency from 5000 rpm to 15000 rpm of an IPM motor using a rotor made of 6 steel.
  • the No. of production method B having a yield strength of 1300 N / mm 2 or more without breaking up to 42000 rpm.
  • the first rotor did not break even at 50000 rpm.
  • the use of the ultra-high strength steel sheet of the present invention for the rotor material compared to the electromagnetic steel sheet can avoid breaking up to a high rotational speed.
  • the outer bridge portion is a beam portion in which the permanent magnet insertion hole is close to the outer peripheral portion of the rotor.
  • the inventors produced a rotor 2 (third rotor) shown in FIG. 2 using an ultra-high-strength steel plate and used it for a motor performance evaluation test.
  • a rotor made of electromagnetic steel sheet was also produced at the same time and subjected to the same evaluation.
  • the maximum output of the IPM motor 2 is 3.7 kw.
  • the specifications of the manufactured rotor and stator are as follows. ⁇ Specifications of the third rotor Outer diameter: 80.0mm, shaft length 75mm -Number of stacked sheets: 0.35 mm / 210 sheets-Bridge width: 3.0 mm -Permanent magnet: Neodymium magnet (NEOMAX-38VH), 40.0mm width x 2.0mm thickness x 75mm length, embedded in total 4 ⁇ Stator specifications-Gap length: 0.5mm ⁇ Outer diameter: 160.0 mm, yoke thickness: 17 mm, length: 75 mm -Iron core material: electromagnetic steel plate (35A300), plate thickness 0.35mm -Number of layers: 210-Winding method: distributed winding
  • Table 8 shows the maximum torque and efficiency of the IPM motor using each rotor from 5000 rpm to 12000 rpm.
  • the field weakening control was performed at a rotational speed exceeding 10,000 rpm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Thin Magnetic Films (AREA)

Abstract

 磁界の強さが8000A/mである時の磁束密度B8000の値が1.65T以上であるとともに、保磁力が100A/m以上の素材鋼板が積層されることにより形成された回転子鉄心を用いる。

Description

IPMモータの回転子及びそれを用いたIPMモータ
 本発明は、例えば電気自動車、ハイブリッド自動車、及び工作機械等に使用される永久磁石埋め込み型モータ(以下「IPMモータ」と記す)の回転子、及びそれを用いたIPMモータに関する。
 一般に、IPMモータは、高価な永久磁石を使用するためコストは高くなるものの、誘導電動機と比べて効率が高い。このため、IPMモータは、例えば、ハイブリッド自動車及び電気自動車の駆動用モータ及び発電用モータ、家電製品、並びに各種の工作機械や産業機械用のモータ等に広く使用されている。
 IPMモータの鉄心は、固定子と回転子とに分けられる。固定子側の鉄心には巻線を通じて交流磁界が直接付与されるので、効率を高くするために、固定子側の鉄心には、高透磁率であると同時に体積抵抗率を高めて、鉄損を低減できることが要求される。このため、固定子側の鉄心には、極低炭素鋼にSiを添加して軟磁気特性を改善した電磁鋼板が用いられる。
 一方、回転子側の鉄心には永久磁石が埋め込まれるため、回転子側の鉄心は、主にヨークとして磁束密度を高める役割を担う。回転子側の鉄心は固定子側から発生する交流磁界の影響を僅かに受けるが、その影響は限定的である。従って、特性の観点から見ると、鉄損特性に有利な電磁鋼板を回転子側の鉄心に使用する必要はない。しかし、固定子のみに電磁鋼板を使用すると電磁鋼板の製品歩留りが低下して、モータの製造コストが高くなるので、通常は、回転子側の鉄心にも固定子側と同じ電磁鋼板が用いられる。
 IPMモータが自動車に搭載される場合、自動車の小型軽量化のニーズからIPMモータにも小型化が求められる。その場合、小型化しても従来と同等以上のモータ出力(トルク)を得るために、回転子の回転数が高められる。一般に、モータの効率は回転子の回転速度を高くするほど良好となる。しかし、IPMモータでは、埋め込まれた永久磁石の回転により、固定子巻線に誘導起電力が発生する。この誘導起電力は、回転速度の上昇に伴い増加する。そして、誘導起電力が入力電圧を超えたところで、モータは回転できなくなる。
 このためIPMモータでは、例えば特許文献1等に示されるように、高速回転域で運転する際に、永久磁石の磁束を打ち消す方向の磁束を固定子側から発生させ、誘導起電力を抑制する弱め界磁制御が行われている。この弱め界磁制御により、高速回転域での運転が可能となる反面、永久磁石の磁束を打ち消すために電力を使用するため、モータトルクは減少する。なお、特許文献1では、磁石の形状に工夫を施すことにより、弱め界磁制御に使用する電力量を少なくすることが図られている。
 一方、IPMモータを小型化しても従来と同等以上のトルクを得るため回転子の回転数を高めると、回転子に埋め込まれた永久磁石に作用する遠心力が増大して回転子の破損にいたる問題がある。破損を起こさないためには、回転子の素材として降伏強度が高い材料が好適である。例えば3%程度のSiを含有する無方向性電磁鋼板(35A300)の場合、磁性焼鈍後の降伏強度は約400N/mm2程度である。このため、回転子の直径が80mm以上の比較的大型のIPMモータの場合、回転子の構造によって異なるものの、20000rpm程度が破損を起こさない回転速度の限界と考えられている。これまでも、電磁鋼板をベースに鉄心の降伏強度を高くする検討が種々行われてきたが、それでも高々780N/mm2程度である。
 このように、IPMモータの小型化にあたり高速回転化してトルクを得ようとする場合、従来の電磁鋼板を素材とする回転子鉄心では、高速回転域では弱め界磁制御を行ってもトルクが減少してしまう問題と、永久磁石に作用する遠心力により回転子が破損する問題とがあり、高速回転化に限界があった。
 高速回転化による回転子鉄心の破損を抑制する方法として、例えば下記の特許文献2等では、回転子鉄心の素材として軟質かつ焼入れ性を有する材料を用い、永久磁石の挿入孔が近接したブリッヂ部やその近傍部分のみに部分焼入れを施すことによって強度を上昇させることが提案されている。また、例えば下記の特許文献3等では、回転子鉄心用素材として、電磁鋼板ではなく、高強度かつ高飽和磁束密度である材料を用いることも提案されている。
特開2000-278900号公報 特開2009-153230号公報 特開2009-46738号公報
 本願発明者らは、高速回転用の回転子用鋼板の開発を行う中で、種々の鋼板を素材としてIPMモータを試作し、モータの性能評価を行った結果、素材鋼板の保磁力を調節することにより、弱め界磁制御を行う高速回転域で大きな出力トルクが得られることを見出した。より大きな出力トルクが得られることで、より高い回転数まで回転子を回転できる。
 特許文献1では、磁石の形状に工夫を施すことにより、弱め界磁制御に使用する電力量を少なくすることが図られているが、素材鋼板の保磁力を調節する点については考慮されていない。また、特許文献2,3においても、素材鋼板の保磁力を調節する点については考慮されていない。すなわち、従来構成では、素材鋼板の保磁力を調節する点について考慮されていないため、高回転域での出力トルクが小さくなっており、それに伴い最大回転数も低くなっている。
 本発明は、上記のような課題を解決するためになされたものであり、その目的は、高回転域での出力トルクをより大きくでき、最大回転数をより高くできるIPMモータの回転子及びIPMモータを提供することである。
 本発明に係るIPMモータの回転子は、磁界の強さが8000A/mである時の磁束密度B8000の値が1.65T以上であるとともに、保磁力が100A/m以上の素材鋼板が積層されることにより形成された回転子鉄心と、回転子鉄心の周方向に互いに間隔をおいて回転子鉄心に設けられた複数の永久磁石挿入孔と、各永久磁石挿入孔に埋め込まれた永久磁石とを備える。
 また、本発明に係るIPMモータは、前述の回転子が組み込まれている。
 本発明のIPMモータの回転子によれば、磁界の強さが8000A/mである時の磁束密度B8000の値が1.65T以上であるとともに、保磁力が100A/m以上の素材鋼板が積層されることにより形成された回転子鉄心が用いられているので、高回転域での出力トルクをより大きくでき、最大回転数をより高くできる。
 また、本発明のIPMモータによれば、前述の回転子を用いているので、同様に、高回転域での出力トルクをより大きくでき、最大回転数をより高くできる。
 さらに、本発明のIPMモータの回転子は、750N/mm2以上の降伏強度を有する素材鋼板が積層されることにより形成されているので、回転子を高速回転しても永久磁石に作用する遠心力により回転子が破損することがない。そのため、永久磁石挿入孔の周囲に設けられるブリッヂ部の幅を狭くすることができる。ブリッヂ幅を狭くできれば漏れ磁束を効果的に低減できるので、回転子の設計自由度が高まる。また、永久磁石を小型化してもよいので、モータのコストを大幅に低減できる。
本発明の実施の形態によるIPMモータの回転子を示す正面図である。 図1の回転子とは別のIPMモータの回転子を示す正面図である。 素材鋼板の評価に用いた第1回転子を示す説明図である。 素材鋼板を用いたIPMモータでの15000rpmにおける最大トルクと保磁力との関係を示すグラフである。 素材鋼板を用いたIPMモータでの15000rpmにおける効率と保磁力との関係を示すグラフである。 素材鋼板の評価に用いた第2回転子を示す説明図である。
 以下、本発明を実施するための形態について、図面を参照して説明する。
 図1は、本発明の実施の形態によるIPMモータの回転子を示す正面図である。図に示すように、IPMモータの回転子1には、後述の回転子用鋼板(素材鋼板)が積層されることにより形成された回転子鉄心10(回転子本体)と、回転子鉄心10の周方向に沿って互いに間隔を置いて回転子鉄心10に設けられた複数の永久磁石挿入孔11と、各永久磁石挿入孔11に埋め込まれた永久磁石12とが含まれている。なお、回転子1の外周に図示しない固定子が配置されることで、IPMモータが構成される。
 各永久磁石挿入孔11には、回転子鉄心10の回転中心10a側を頂部とするようにV字状に配置された第1及び第2挿入孔11a,11bと、その頂部において第1及び第2挿入孔11a,11b間を仕切るブリッヂ11cとが含まれている。永久磁石12は、第1及び第2挿入孔11a,11b内にそれぞれ埋め込まれている。すなわち、永久磁石挿入孔11に2つの永久磁石12が埋め込まれている。
 次に、図2は、図1のIPMモータの回転子とは別のIPMモータの回転子2を示す正面図である。なお、図1の回転子1に含まれる構成と同じ又は同様の構成には同じ符号を付して説明する。図2に示すように、回転子2には、回転子鉄心10と、回転子鉄心10の周方向に沿って互いに間隔を置いて回転子鉄心10に設けられ複数の永久磁石挿入孔20と、各永久磁石挿入孔20に埋め込まれた永久磁石21とが含まれている。回転子鉄心10は、図1の回転子1の回転子鉄心10と同様に、後述の素材鋼板が積層されることで形成されたものである。
 各永久磁石挿入孔20は、回転子鉄心10の周方向に沿って90°間隔で配置されている。各永久磁石挿入孔20はそれぞれ直線状に形成されており、各永久磁石挿入孔20に対して1つの永久磁石21が埋め込まれている。
 図1及び図2に示すような回転子1,2を用いたIPMモータでは、周知のように、高速回転域で運転する際に、永久磁石12の磁束を打ち消す方向の磁束を固定子側から発生させ、誘導起電力を抑制する弱め界磁制御が行われる。このようなIPMモータの定格回転速度は、図1の回転子1を用いた場合には7500rpmとされ、図2の回転子2を用いた場合には10000rpmとされる。上述の弱め界磁制御は、これらの回転速度を超える高速回転域で行われる。
 回転子鉄心10は、磁界の強さが8000A/mである時の磁束密度B8000の値が1.65T以上であるとともに、保磁力が100A/m以上の素材鋼板が積層されることで形成される。
 磁束密度B8000の値が1.65T以上とされているのは、回転子1として高速回転する際に永久磁石12を挿入した位置(d軸)と挿入していない位置(q軸)でのインダクタンスの値の差に基づくリラクタンストルクを有効に活用し、とくに高速回転領域において従来の鋼板と同等以上のトルク性能を発揮するためである。
 保磁力が100A/m以上とされているのは、以下の通りである。一般に、モータの入力電流を高くすると、出力トルクは増加する。しかしながら、例えば「東京学芸大学工学部紀要、Vol.27 No.1(2004)、P126~132」のように、IPMモータでは鉄心材の磁気飽和の影響を受けるため、入力電流が高くなると、q軸インダクタンスが低下して、リラクタンストルクが低下することが知られている。すなわち、電磁鋼板などの保磁力の小さな鋼板では、容易に磁気飽和を生じるため、入力電流を増加させても直ぐにリラクタンストルクが上昇できなくなるのに対して、保磁力が大きな鋼板を素材鋼板とした場合には、磁気飽和が生じにくいため、比較的高い入力電流値までリラクタンストルクの低下が抑制される。その結果として、出力トルク及び効率を向上できるものと考えられる。本願発明者らが種々の鋼板を素材としてIPMモータを試作し、モータの性能評価を行ったところ、100A/m以上の保磁力を有する素材鋼板を用いて回転子鉄心10を形成することで、高速回転時に行う弱め界磁制御の消費電力を低減でき、出力トルクを向上できることを見出した。但し、保磁力が大きくなると、磁束密度が低くなる傾向が認められ、磁束密度B8000の値が1.65T未満となる場合には十分なリラクタンストルクが得られなくなる。
 回転子鉄心10の素材鋼板は、降伏強度が750N/mm2以上であることが好ましい。降伏強度をこのような範囲とすることで、回転子鉄心10が高速回転時に永久磁石12に作用する遠心力に耐えることができ、高速回転域においても回転子が破損することがない。しかも本発明の回転子鉄心10は、その素材鋼板が弱め界磁制御性に優れた鋼板であることにより高速回転域においてもトルクの低下が抑制されるため、高速回転と高トルクが得られる高性能のモータを提供できる。これにより、自動車・家電をはじめ各種用途への適用が可能となる。
 図1の回転子1の各永久磁石挿入孔11に設けられたブリッヂ11cは、各永久磁石挿入孔11周辺の強度を確保するためのものである。素材鋼板自体に十分な強度を持たせることでブリッヂ11cの幅(第1及び第2挿入孔11a,11bの離間方向に沿うブリッヂ11cの幅)を小さくすることができ、それにより漏れ磁束を少なくできる。回転子鉄心の強度を高めることでブリッヂ11cの幅を小さくしても回転子が破損せず漏れ磁束も低減できるのであれば、回転子の設計自由度が高まる。また漏れ磁束の低減により永久磁石12を小型化してもよいので、モータのコストを大幅に低減できる。また永久磁石12を小さくせずに出力トルクの向上を図ることも可能となる。高速回転が可能になることによる高トルク化と永久磁石の小型化の両者を勘案してブリッヂ幅を設計してもよい。
 なお、回転子鉄心10の素材鋼板の降伏強度の上限は、2000N/mm2である。これは、2000N/mm2を超える降伏強度を呈する材料では、磁界の強さが8000A/mである時の磁束密度B8000の値が1.65T以上得られないためである。
 本発明者らは、表1に示す成分組成を有する鋼を素材として、下記の製造方法Aにより回転子鉄心10の素材鋼板を製造した。
製造方法A
 表1に示す成分組成を有する鋼を真空溶解し、これらの連鋳片を1250℃に加熱し、950℃で仕上げ圧延して560℃で巻取り、板厚1.8mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板を酸洗した後、一回の冷間圧延にて板厚0.35mmの冷間圧延鋼帯を得た(最終圧延率:約81%)。得られた冷間圧延鋼帯を400℃に設定した連続炉に60秒通板してテンションアニーリング処理(引張張力100N/mm2)を施した。また、その後、Cr系酸化物及びMg系酸化物を含有する半有機組成の約1μmの厚さの絶縁皮膜を鋼板の両面に形成した。
Figure JPOXMLDOC01-appb-T000001
製造方法Aで製造した素材鋼板の評価
 得られた鋼帯からJIS5号試験片を切り出し、引張試験に供した。また、内径33mm及び外形45mmのリング状の試験片を打抜きにより作製し、磁化測定に供した。各サンプルの降伏強さ、引張強さ、降伏比(YR)、磁界の強さが8000A/mのときの磁束密度(B8000)と保磁力(Hc)を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 また、本発明者らは、表1に示す成分組成を有する鋼を素材として、下記の製造方法Bにより回転子10の素材鋼板を製造した。
製造方法B
 表1に示す成分組成を有する鋼を溶解して、これらの連鋳片を1250℃に加熱し、850℃で仕上げ圧延して560℃で巻取り、板厚1.8mmの熱延鋼板を得た。この熱延鋼板を酸洗後、冷間圧延して板厚0.35mmの冷延鋼板を得た。得られた冷延鋼板を、900℃まで加熱し,250℃に設定したPb-Bi合金浴中へ通板して、100℃/sの平均冷却速度で250℃まで冷却し、引き続き400℃に設定した電気炉中に60s保持しつつ、プレステンパーを施した。その後、Cr系酸化物およびMg系酸化物を含有する半有機組成の約1μmの厚さの絶縁皮膜を鋼板の両面に塗布した。
製造方法Bで製造した素材鋼板の評価
 製造方法Bで製造した素材鋼板に対して、上述の製造方法Aで製造した素材鋼板と同様の試験を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 さらに、本発明者らは、表1に示す成分組成を有する鋼を素材として、下記の製造方法Cにより回転子10の素材鋼板を製造した。
製造方法C
 表1に示す成分組成を有する鋼の内、No.1,2,3,4,5の連鋳片を製造方法Aと同様にして1250℃に加熱し、950℃で仕上げ圧延して560℃で巻取り、板厚1.8mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板を酸洗した後、一回の冷間圧延にて板厚0.35mmの冷間圧延鋼帯を得た(最終圧延率:約81%)。得られた冷間圧延鋼帯を800℃に設定した連続炉に60秒通板する再結晶焼鈍を施した。なお、冷却は8℃/sで550℃まで冷却後、450℃に設定した連続炉中に120s以上保持する過時効処理を施した。その後、0.3%の伸び率の軽冷延を行い、更にCr系酸化物及びMg系酸化物を含有する半有機組成の約1μmの厚さの絶縁皮膜を鋼板の両面に形成した。
製造方法Cで製造した素材鋼板の評価
 製造方法Cで製造した素材鋼板に対して、上述の製造方法A,Bで製造した素材鋼板と同様の試験を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
IPMモータとしての評価(磁束密度と保磁力について)
 表5に示すように、製造方法Aで製造したNo.1鋼、No.3鋼、No.5鋼およびNo.9鋼、製造方法Bで製造したNo.1鋼、No.2鋼、No.4鋼、No.6鋼およびNo.7鋼、更には製造方法Cで製造したNo.1鋼、No.2鋼、No.4鋼およびNo.5鋼について、図3に示す8極(4極対)構造の第1回転子を打抜き加工により作製し、負荷トルクを付与したモータ性能評価試験に供した。なお、比較のため市販の電磁鋼板(35A300)を素材とした回転子も同時に作製し、同様の評価に供した。また、固定子は1ヶのみ製造し、製造した回転子を組替えてモータとしての性能評価に供した。モータの最大出力はいずれも4.5kwである。また、この性能評価では、10000rpm以上で弱め界磁制御を行った。
なお、市販の電磁鋼板(35A300)について、本発明の素材鋼板と同様の方法による機械的特性と磁気的特性を評価したところ、次のとおりであった。
板厚 0.35mm
降伏強さ 381N/mm2
引張強さ 511N/mm2
飽和磁束密度B8000 1.76T
保磁力 75A/m
Figure JPOXMLDOC01-appb-T000005
 作製した回転子および固定子の仕様は以下の通りである。
 ◎第1回転子の仕様
  外径:80.1mm、軸長50mm
  ・積層枚数:0.35mm/140枚
  ・センターブリッヂ、アウターブリッヂの幅:1.00mm
  ・永久磁石:ネオジム磁石(NEOMAX-38VH)、9.0mm幅×
                3.0mm厚×50mm長さ、合計16ヶ埋め込み
 ◎固定子の仕様
  ・ギャップ長:0.5mm
  ・外径:138.0mm、ヨーク厚:10mm、長さ:50mm
  ・鉄心素材:電磁鋼板(35A300)、板厚0.35mm
  ・積層枚数:140枚
  ・巻線方式:分布巻き
 それぞれの第1回転子を組込んだときの15000rpmにおけるモータの最大トルクと効率を表5に合わせて示した。また、図4に15000rpmにおける最大トルクと保磁力との関係を示すとともに、図5に15000rpmにおける効率と保磁力との関係を示す。また、この性能評価でも、10000rpm以上で弱め界磁制御を行った。
 表5、図4、図5の結果から明らかなように、保磁力Hcが100A/m未満の鋼板(電磁鋼板、並びに製造方法Cで製造したNo.1鋼及びNo.2鋼)を回転子鉄心の素材とした回転子を組込んだモータでは、15000rpmにおけるトルクが2.0N・m未満の低い値を示し、効率も60%未満の低い値を示した。これに対して、本願発明範囲の磁束密度と保磁力を有する素材鋼板を回転子鉄心としたモータでは2.0N・mを超える高いトルクと60%以上の良好な効率が得られる。とくに保磁力が300A/m以上の領域では、2.5N・m以上と更に高いトルクと70%以上の高い効率が得られる。
 一方、高保磁力を有するものの磁束密度B8000が1.61Tと低い製造方法BによるNo.7鋼では、磁束密度が低いことに起因してトルク及び効率が低くなる。
IPMモータとしての評価(ブリッヂ幅と強度について)
 本発明者らは、製造方法Bで製造したNo.4鋼(降伏強度が750N/mm2を超えるもの)及びNo.6鋼(最も降伏強度が高かったもの)(以下、これらを超高強度鋼板と呼ぶ)を用いて、図6に示す第2回転子をさらに作製した。図6の第2回転子は、図3の第1回転子と比べてブリッジ幅を1/2に狭くして漏れ磁束を低減させ、永久磁石の大きさを幅9.0mmから幅8.0mmとした(約11%小型化)したものである。また、10000rpm以上で弱め界磁制御を行った。
 第2回転子の仕様は以下の通りである。なお、固定子については上記の磁束密度等の評価に用いたものを利用した。
 ◎第2回転子の仕様
  外径:80.1mm、軸長50mm
  ・積層枚数:0.35mm/140枚
  ・センターブリッヂ、アウターブリッヂの幅:0.5mm
  ・永久磁石:ネオジム磁石(NEOMAX-38VH)、8.0mm幅×
                3.0mm厚×50mm長さ、合計16ヶ埋め込み
 また、比較のため、電磁鋼板を用いて第1及び第2回転子を作製した。電磁鋼板と製造方法Bで製造したNo.6鋼を素材とした回転子を用いたIPMモータの5000rpm~15000rpmまでの最大トルクおよび効率を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、超高強度鋼板を回転子鉄心の素材に用いると、第2回転子のようにブリッヂの幅を狭くしても、また、永久磁石を小型化したにも拘わらず、電磁鋼板を鉄心素材とした回転子と同等以上のモータ性能を有するロータが得られることがわかる。特に10000rpmを超える高速回転域では、保磁力に起因する弱め界磁性の向上により高トルクの良好な特性が得られることがわかる。
 また、上記試験に用いた回転子を固定子から取り外して鋼製カバーを取り付けた状態とし、変速機を介して負荷モータへ接続して負荷モータ側から駆動させることによって、50000rpmまでの過回転試験を行い回転子が遠心力により破壊する回転速度を調べた。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、回転子素材として電磁鋼板を用い、ブリッヂ幅が1.0mmである第1回転子では、30450rpmで回転子が破壊した。これに対して、降伏強度が750N/mm2以上の超高強度鋼板である製造方法BのNo.4鋼を回転子素材として用いた場合、第1回転子では43200rpまで破断せず、ブリッヂ幅を0.5mmに狭くした第2回転子でも電磁鋼板の第1回転子と同等以上の36000rpmまで破断しなかった。降伏強度が950N/mm2以上である製造方法AのNo.6鋼では、ブリッヂ幅が0.5mmの第2回転子の場合、42000rpmまで破断せず、降伏強度が1300N/mm2以上である製造方法BのNo.6鋼では、第1回転子の場合、50000rpmでも破断しなかった。このように、電磁鋼板に比べて本発明の超高強度鋼板を回転子素材に用いることで、高い回転数まで破断を回避できることが確認できた。
 なお、破壊した回転子を調べたところ、どの回転子もインナーブリッヂ部とアウターブリッヂ部がともに塑性変形しているか破断しており、永久磁石が脱落していた。アウターブリッヂ部とは、永久磁石挿入孔が回転子外周部と接近している梁部である。
IPMモータとしての評価(図2の回転子を用いた場合)
 本発明者らは、超高強度鋼板を用いて図2に示す回転子2(第3回転子)を作製し、モータ性能評価試験に供した。また、電磁鋼板を素材とした回転子も同時に作製し、同様の評価に供した。なお、IPMモータ2の最大出力は3.7kwである。
 作製した回転子および固定子の仕様は以下の通りである。
 ◎第3回転子の仕様
  外径:80.0mm、軸長75mm
  ・積層枚数:0.35mm/210枚
  ・ブリッジの幅:3.0mm
  ・永久磁石:ネオジム磁石(NEOMAX-38VH)、40.0mm幅
                ×2.0mm厚×75mm長さ、合計4ヶ埋め込み
 ◎固定子の仕様
  ・ギャップ長:0.5mm
  ・外径:160.0mm、ヨーク厚:17mm、長さ:75mm
  ・鉄心素材:電磁鋼板(35A300)、板厚0.35mm
  ・積層枚数:210枚
  ・巻線方式:分布巻き
 それぞれの回転子を用いたIPMモータの5000rpm~12000rpmまでの最大トルクおよび効率を表8に示す。なお、10000rpmを超える回転数で弱め界磁制御を行った。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、電磁鋼板を用いた場合、弱め界磁制御を行っても12000rpmでは回転できなくなった。これに対して、保磁力の大きなNo.6鋼を素材とした回転子では回転可能であり、より高速回転域までの駆動が可能であることがわかる。

Claims (6)

  1.  磁界の強さが8000A/mである時の磁束密度B8000の値が1.65T以上であるとともに、保磁力が100A/m以上の素材鋼板が積層されることにより形成された回転子鉄心と、
     前記回転子鉄心の周方向に互いに間隔をおいて前記回転子鉄心に設けられた複数の永久磁石挿入孔と、
     各永久磁石挿入孔に埋め込まれた永久磁石と
     を備えている、IPMモータの回転子。
  2.  前記素材鋼板の保磁力は300A/m以上である、請求項1記載のIPMモータの回転子。
  3.  前記素材鋼板の降伏強度は750N/mm2以上である、請求項1又は請求項2に記載のIPMモータの回転子。
  4. 前記素材鋼板の降伏強度は950N/mm2以上である、請求項1又は請求項2に記載のIPMモータの回転子。
  5.  前記素材鋼板の降伏強度は1300N/mm2以上である、請求項1又は請求項2に記載のIPMモータの回転子。
  6.  請求項1から請求項5までのいずれか1項に記載の回転子が組み込まれている、IPMモータ。
PCT/JP2012/057927 2011-03-31 2012-03-27 Ipmモータの回転子及びそれを用いたipmモータ WO2012133404A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112013023948-4A BR112013023948B1 (pt) 2011-03-31 2012-03-27 rotor para um motor de ipm, e, motor de ipm
MX2013011397A MX2013011397A (es) 2011-03-31 2012-03-27 Rotor para motor de ipm y motor de ipm equipado con el mismo.
CA2829872A CA2829872C (en) 2011-03-31 2012-03-27 Rotor for ipm motor, and ipm motor equipped with same
EP12763062.2A EP2693602B1 (en) 2011-03-31 2012-03-27 Rotor for ipm motor, and ipm motor equipped with same
KR1020137028634A KR101854491B1 (ko) 2011-03-31 2012-03-27 Ipm 모터의 회전자 및 그것을 이용한 ipm 모터
CN2012800139028A CN103430427A (zh) 2011-03-31 2012-03-27 Ipm马达的转子以及使用该转子的ipm马达
AU2012233855A AU2012233855B2 (en) 2011-03-31 2012-03-27 Rotor for IPM motor, and IPM motor equipped with same
RU2013148562/07A RU2578200C2 (ru) 2011-03-31 2012-03-27 Ротор для двигателя со встроенными постоянными магнитами и двигатель со встроенными постоянными магнитами, снабженный им
US14/007,870 US8841810B2 (en) 2011-03-31 2012-03-27 Rotor for IPM motor, and IPM motor equipped with same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011081214 2011-03-31
JP2011081215 2011-03-31
JP2011-081215 2011-03-31
JP2011-081214 2011-03-31
JP2011264671A JP5186036B2 (ja) 2011-03-31 2011-12-02 Ipmモータの回転子及びそれを用いたipmモータ
JP2011-264671 2011-12-02

Publications (1)

Publication Number Publication Date
WO2012133404A1 true WO2012133404A1 (ja) 2012-10-04

Family

ID=46931120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057927 WO2012133404A1 (ja) 2011-03-31 2012-03-27 Ipmモータの回転子及びそれを用いたipmモータ

Country Status (12)

Country Link
US (1) US8841810B2 (ja)
EP (1) EP2693602B1 (ja)
JP (1) JP5186036B2 (ja)
KR (1) KR101854491B1 (ja)
CN (1) CN103430427A (ja)
AU (1) AU2012233855B2 (ja)
BR (1) BR112013023948B1 (ja)
CA (1) CA2829872C (ja)
MX (1) MX2013011397A (ja)
RU (1) RU2578200C2 (ja)
TW (1) TW201240282A (ja)
WO (1) WO2012133404A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150691A (ja) * 2019-03-14 2020-09-17 三菱電機株式会社 ロータ、および回転電機

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254629B (zh) * 2012-03-30 2016-08-24 日新制钢株式会社 Ipm马达的转子铁芯用钢板的制造方法
CN104245986B (zh) * 2012-03-30 2018-02-23 日新制钢株式会社 Ipm马达的转子铁芯用钢板及其制造方法
FR3002091B1 (fr) * 2013-02-14 2016-07-15 Moteurs Leroy-Somer Machine electrique tournante.
JP6339768B2 (ja) * 2013-03-29 2018-06-06 日新製鋼株式会社 弱め界磁性に優れたipmモータのロータ鉄心用鋼板及びその製造方法
JP2015002649A (ja) * 2013-06-18 2015-01-05 日新製鋼株式会社 Ipmモータの回転子及びそれを用いたipmモータ
DE102015213624A1 (de) * 2015-07-20 2017-01-26 Robert Bosch Gmbh Permanent erregte elektrische Maschine mit optimierter Geometrie
JP6509355B2 (ja) * 2015-09-30 2019-05-08 三菱電機株式会社 電動パワーステアリング用永久磁石モータ
US10505415B2 (en) 2016-05-19 2019-12-10 GM Global Technology Operations LLC Permanent magnet electric machine
US10184442B2 (en) * 2016-05-19 2019-01-22 GM Global Technology Operations LLC Permanent magnet electric machine
US10293804B2 (en) 2016-05-19 2019-05-21 GM Global Technology Operations LLC Hybrid vehicle engine starter systems and methods
DE102016125558A1 (de) * 2016-12-23 2018-06-28 Scanlab Gmbh Galvanometerantrieb mit mehrschichtigen Permanentmagneten
US10605217B2 (en) 2017-03-07 2020-03-31 GM Global Technology Operations LLC Vehicle engine starter control systems and methods
US10819259B2 (en) 2017-05-04 2020-10-27 Ge Global Sourcing Llc Permanent magnet based electric machine having enhanced torque
JP7166066B2 (ja) * 2018-03-20 2022-11-07 株式会社東芝 回転電機
US10436167B1 (en) 2018-04-24 2019-10-08 GM Global Technology Operations LLC Starter system and method of control
US10480476B2 (en) 2018-04-24 2019-11-19 GM Global Technology Operations LLC Starter system and method of control
TWI686036B (zh) * 2018-09-26 2020-02-21 財團法人工業技術研究院 永磁馬達
JP7189816B2 (ja) * 2019-03-19 2022-12-14 日本製鉄株式会社 Ipmモータのロータ
JP7222327B2 (ja) * 2019-07-17 2023-02-15 日本製鉄株式会社 ロータコア及び回転電機
CN111555480B (zh) * 2020-05-26 2021-04-30 安徽美芝精密制造有限公司 电机、压缩机和制冷设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278900A (ja) 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
JP2003049251A (ja) * 2001-08-07 2003-02-21 Shin Etsu Chem Co Ltd ボイスコイルモータ磁気回路ヨーク用鉄合金板材およびボイスコイルモータ磁気回路用ヨーク
JP2007306735A (ja) * 2006-05-12 2007-11-22 Yaskawa Electric Corp 永久磁石モータ
JP2008031553A (ja) * 2006-06-29 2008-02-14 Hitachi Metals Ltd 半硬質磁性材料の製造方法ならびに半硬質磁性材料
JP2008231462A (ja) * 2007-03-16 2008-10-02 Hitachi Metals Ltd 磁性合金、アモルファス合金薄帯、および磁性部品
JP2009038908A (ja) * 2007-08-02 2009-02-19 Nisshin Steel Co Ltd ヒステリシスモータ及びヒステリシスモータ用ロータの製造方法
JP2009046738A (ja) 2007-08-22 2009-03-05 Nisshin Steel Co Ltd 永久磁石埋め込み型モータのロータ鉄心用鋼板及びその製造方法
JP2009153230A (ja) 2007-12-18 2009-07-09 Yaskawa Electric Corp ロータコアの製造方法、該製造方法により製造されたロータコア、およびそのロータ、並びに該ロータを有する埋込磁石型回転電機、さらに該回転電機を用いた車両、昇降機、および加工機。
JP2010229519A (ja) * 2009-03-27 2010-10-14 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331784A (ja) * 1995-03-24 1996-12-13 Hitachi Metals Ltd 永久磁石界磁方式回転機
JPH1189144A (ja) * 1997-09-09 1999-03-30 Hitachi Ltd 永久磁石回転電機及びそれを用いた電動車両
JP3871873B2 (ja) * 2000-10-18 2007-01-24 株式会社東芝 永久磁石型回転子
JP4422953B2 (ja) * 2002-08-22 2010-03-03 株式会社日立製作所 永久磁石の製造方法
RU29417U1 (ru) * 2002-12-23 2003-05-10 Ермолаев Дмитрий Сергеевич Магнитопровод универсальной электрической машины
JP3740482B2 (ja) * 2003-09-16 2006-02-01 株式会社日立製作所 電動車両用の永久磁石回転電機
JP2005224006A (ja) * 2004-02-05 2005-08-18 Mitsubishi Heavy Ind Ltd Ipm回転電機
KR20050118518A (ko) * 2004-06-14 2005-12-19 삼성전자주식회사 영구자석 매립형 모터
JP2006196855A (ja) * 2004-12-13 2006-07-27 Nissan Motor Co Ltd 軟磁性鉄心材料及びその製造方法
PL1840906T3 (pl) * 2004-12-17 2015-11-30 Hitachi Metals Ltd Rdzeń magnetyczny do przekładnika prądowego, przekładnik prądowy i licznik watogodzinowy
JP4848842B2 (ja) * 2006-05-29 2011-12-28 株式会社ジェイテクト ブラシレスモータ及び電動パワーステアリング装置
US7815749B2 (en) * 2006-06-29 2010-10-19 Hitachi Metals, Ltd. Method for manufacturing semi-hard magnetic material and semi-hard magnetic material
TW200828731A (en) * 2006-12-18 2008-07-01 Delta Electronics Inc Permeability element, motor stator structure and manufacturing method thereof
JP4896104B2 (ja) * 2008-09-29 2012-03-14 株式会社日立製作所 焼結磁石及びそれを用いた回転機
JP5159577B2 (ja) * 2008-11-19 2013-03-06 株式会社東芝 永久磁石式回転電機
WO2010070888A1 (ja) * 2008-12-15 2010-06-24 株式会社 東芝 永久磁石式回転電機
CN101626216A (zh) * 2009-08-05 2010-01-13 奇瑞汽车股份有限公司 一种基于永磁同步电机的弱磁控制系统及其控制方法
JP2011067048A (ja) * 2009-09-18 2011-03-31 Sanyo Electric Co Ltd 永久磁石同期モータ
JPWO2012014260A1 (ja) * 2010-07-30 2013-09-09 株式会社日立製作所 回転電機及びそれを用いた電動車両
US8508092B2 (en) * 2010-11-19 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Permanent magnet rotors and methods of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278900A (ja) 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
JP2003049251A (ja) * 2001-08-07 2003-02-21 Shin Etsu Chem Co Ltd ボイスコイルモータ磁気回路ヨーク用鉄合金板材およびボイスコイルモータ磁気回路用ヨーク
JP2007306735A (ja) * 2006-05-12 2007-11-22 Yaskawa Electric Corp 永久磁石モータ
JP2008031553A (ja) * 2006-06-29 2008-02-14 Hitachi Metals Ltd 半硬質磁性材料の製造方法ならびに半硬質磁性材料
JP2008231462A (ja) * 2007-03-16 2008-10-02 Hitachi Metals Ltd 磁性合金、アモルファス合金薄帯、および磁性部品
JP2009038908A (ja) * 2007-08-02 2009-02-19 Nisshin Steel Co Ltd ヒステリシスモータ及びヒステリシスモータ用ロータの製造方法
JP2009046738A (ja) 2007-08-22 2009-03-05 Nisshin Steel Co Ltd 永久磁石埋め込み型モータのロータ鉄心用鋼板及びその製造方法
JP2009153230A (ja) 2007-12-18 2009-07-09 Yaskawa Electric Corp ロータコアの製造方法、該製造方法により製造されたロータコア、およびそのロータ、並びに該ロータを有する埋込磁石型回転電機、さらに該回転電機を用いた車両、昇降機、および加工機。
JP2010229519A (ja) * 2009-03-27 2010-10-14 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BULLETIN OF DEPARTMENT OF TECHNOLOGY OF TOKYO GAKUGEI UNIVERSITY, vol. 27, no. 1, 2004, pages 126 - 132
See also references of EP2693602A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150691A (ja) * 2019-03-14 2020-09-17 三菱電機株式会社 ロータ、および回転電機

Also Published As

Publication number Publication date
EP2693602A4 (en) 2016-01-06
CN103430427A (zh) 2013-12-04
EP2693602A1 (en) 2014-02-05
AU2012233855B2 (en) 2016-04-14
BR112013023948A2 (pt) 2016-12-13
AU2012233855A1 (en) 2013-09-26
MX2013011397A (es) 2014-04-16
JP2012217318A (ja) 2012-11-08
US8841810B2 (en) 2014-09-23
JP5186036B2 (ja) 2013-04-17
CA2829872C (en) 2016-09-06
CA2829872A1 (en) 2012-10-04
KR101854491B1 (ko) 2018-05-03
KR20140039183A (ko) 2014-04-01
EP2693602B1 (en) 2019-05-29
TW201240282A (en) 2012-10-01
US20140015364A1 (en) 2014-01-16
RU2013148562A (ru) 2015-05-10
RU2578200C2 (ru) 2016-03-27
BR112013023948B1 (pt) 2021-02-23

Similar Documents

Publication Publication Date Title
JP5186036B2 (ja) Ipmモータの回転子及びそれを用いたipmモータ
US20160362762A1 (en) Steel sheet for rotor core for ipm motor, and method for manufacturing same
JP2020020005A (ja) 無方向性電磁鋼板の製造方法
JP6339768B2 (ja) 弱め界磁性に優れたipmモータのロータ鉄心用鋼板及びその製造方法
JP5584829B2 (ja) Ipmモータのロータ鉄心用鋼板の製造方法
JP2015002649A (ja) Ipmモータの回転子及びそれを用いたipmモータ
JP2005060811A (ja) 高張力無方向性電磁鋼板およびその製造方法
JP5333415B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP2017057456A (ja) 無方向性電磁鋼板を使用したモータ用高強度部材とその製造方法
JP2011174103A (ja) 鉄心用磁性材及びその製造方法、鉄心
WO2017138181A1 (ja) Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP2013076161A (ja) 高速回転ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP6110097B2 (ja) 高出力リラクタンスモータ鉄心用鋼板とその製造方法、これを素材とするリラクタンスモータ用ロータ、ステータおよびリラクタンスモータ
JP2001025181A (ja) ステータコア材料及びそれを搭載したモータ
JP2012092445A (ja) 磁気特性に優れたipmモータのロータ鉄心用鋼板
JP2016194144A (ja) Ipmモータのロータ鉄心用鋼板及びその製造方法
JP5947539B2 (ja) 磁気特性の異方性に優れる高速回転ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP2017093277A (ja) 装置
JP2016194145A (ja) Ipmモータのロータ鉄心用鋼板及びその製造方法
JP5468107B2 (ja) 永久磁石埋め込み型モータのロータ鉄心用鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2829872

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012763062

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012233855

Country of ref document: AU

Date of ref document: 20120327

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14007870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005585

Country of ref document: TH

Ref document number: MX/A/2013/011397

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137028634

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013148562

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023948

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023948

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130918