[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012132953A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2012132953A1
WO2012132953A1 PCT/JP2012/056828 JP2012056828W WO2012132953A1 WO 2012132953 A1 WO2012132953 A1 WO 2012132953A1 JP 2012056828 W JP2012056828 W JP 2012056828W WO 2012132953 A1 WO2012132953 A1 WO 2012132953A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
display device
liquid crystal
electrode
crystal display
Prior art date
Application number
PCT/JP2012/056828
Other languages
English (en)
French (fr)
Inventor
守口 正生
庸輔 神崎
雄大 高西
崇嗣 楠見
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to KR1020137026995A priority Critical patent/KR101514594B1/ko
Priority to US14/006,479 priority patent/US9377644B2/en
Priority to EP12763589.4A priority patent/EP2690492A4/en
Priority to CN201280012567XA priority patent/CN103430088A/zh
Priority to BR112013022675A priority patent/BR112013022675A2/pt
Priority to JP2013507381A priority patent/JP5318302B2/ja
Publication of WO2012132953A1 publication Critical patent/WO2012132953A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133311Environmental protection, e.g. against dust or humidity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • H10D30/6725Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device having supplementary regions or layers for improving the flatness of the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/451Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by the compositions or shapes of the interlayer dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices

Definitions

  • the present invention relates to a display device such as a liquid crystal display device.
  • liquid crystal display devices have been used in various fields and in various environments.
  • the liquid crystal display device is used, for example, in a high temperature and high humidity environment.
  • TFTs thin film transistors
  • FIG. 16 is a cross-sectional view of a conventional liquid crystal display device.
  • the liquid crystal display device shown in FIG. 16 has a structure in which a TFT substrate 81 and a counter substrate 82 are bonded to each other, and a liquid crystal 83 is sealed between two substrates.
  • a seal 84 is provided around a portion where the two substrates face each other.
  • the TFT substrate 81 is obtained by forming a TFT 86 on a glass substrate 85 and forming a protective film 87 and a planarizing film 88 thereon.
  • the planarizing film 88 for example, an acrylic resin film is used.
  • the planarizing film 88 made of acrylic resin has high hygroscopicity. For this reason, when the liquid crystal display device is used in a high-temperature and high-humidity environment, moisture in the air enters the planarizing film 88 from the vicinity of the seal 84 (see arrow A1). The intruded moisture diffuses in the planarizing film 88 and reaches the vicinity of the TFT 86.
  • the TFT 86 is covered with the protective film 87, it is difficult to completely cover the TFT 86 with the protective film 87 because the surface of the TFT 86 has irregularities. For this reason, moisture may pass through the protective film 87 and reach the interface between the protective film 87 and the semiconductor layer 89. At this time, the characteristics of the TFT 86 greatly vary under the influence of moisture.
  • Patent Document 1 describes a liquid crystal display device for solving this problem (see FIGS. 17 and 18).
  • the end surface of the planarization film 91 is covered with a seal 92.
  • the end surface of the planarizing film 91 is covered with a protective film 95.
  • Patent Document 1 describes a liquid crystal display device configured so that the planarizing film 91 does not directly contact air.
  • an object of the present invention is to provide a display device that can prevent display deterioration caused by moisture absorption of a planarizing film.
  • a first aspect of the present invention is a display device having a structure in which two substrates are bonded together, A first substrate including a thin film transistor formed on an insulating substrate and a planarization film covering the thin film transistor; A second substrate disposed opposite to the first substrate, The first substrate may further include a moisture-proof protective film that covers the entire surface of the planarization film.
  • a seal provided around a portion where the first and second substrates face each other; An end face of the planarization film is disposed in a region surrounded by the seal or under the seal.
  • the end face of the planarization film has a taper shape.
  • the first substrate further includes a pixel electrode provided on the opposite side of the planarization film with the protective film interposed therebetween, and a contact portion that electrically connects the pixel electrode and the electrode of the thin film transistor,
  • the protective film is formed on a side surface of the contact portion.
  • the first substrate is provided on one surface side of the protective film, and is provided on the other surface side of the first electrode electrically connected to the electrode of the thin film transistor and electrically connected to the common wiring. And a second electrode connected to each other.
  • a sixth aspect of the present invention is the fifth aspect of the present invention,
  • the first electrode has a slit shape.
  • the protective film is any one of a SiO 2 film, a SiN film, a SiON film, and a laminated film thereof.
  • the thin film transistor includes a semiconductor layer formed of an oxide semiconductor.
  • the thin film transistor includes a semiconductor layer formed of either amorphous silicon or crystalline silicon.
  • the planarizing film is a resin film.
  • the protective film is provided on a flat surface, the coverage of the flattened film is enhanced. Therefore, by covering the entire surface of the planarization film with a protective film having moisture resistance, moisture can be prevented from entering the planarization film, and display deterioration due to moisture absorption of the planarization film can be prevented. .
  • the end face of the flattening film is disposed in the region surrounded by the seal or under the seal to prevent the end face of the flattening film from directly contacting the air, Display deterioration caused by moisture absorption of the planarizing film can be more effectively prevented.
  • the end face of the flattening film is tapered to increase the coverage of the end face of the flattening film, and display deterioration due to moisture absorption of the flattening film is more effective. Can be prevented.
  • the moisture intrusion route to the planarizing film is reduced, and display deterioration due to moisture absorption of the planarizing film is achieved. Can be prevented more effectively.
  • a capacitor can be formed by sandwiching a protective film provided for moisture prevention between two electrodes, and the formed capacitor can be used as an auxiliary capacitor.
  • the auxiliary capacitor can be made light transmissive and the aperture ratio of the display element can be increased.
  • a fringe electric field can be generated by making the first electrode into a slit shape. Therefore, in the liquid crystal display device, the orientation of the liquid crystal can be controlled using the generated fringe electric field, and the viewing angle characteristics can be improved.
  • moisture penetration into the planarizing film is prevented by using a moisture-proof SiO 2 film, SiN film, SiON film, or a laminated film thereof as a protective film.
  • a moisture-proof SiO 2 film, SiN film, SiON film, or a laminated film thereof as a protective film.
  • display deterioration due to moisture absorption of the planarizing film can be prevented. This effect becomes significant when a SiN film or a SiON film having high moisture resistance is used.
  • a display device including an oxide semiconductor TFT whose characteristics greatly fluctuate when affected by moisture display deterioration due to moisture absorption of the planarization film can be prevented.
  • a display device including an amorphous silicon TFT or a crystalline silicon TFT, display deterioration due to moisture absorption of the planarization film can be prevented.
  • flattening is performed by covering the entire surface of the flattening film using a protective film having moisture resistance. Intrusion of moisture into the film can be prevented, and display deterioration due to moisture absorption of the planarization film can be prevented.
  • FIG. 1 is a cross-sectional view of a liquid crystal display device according to a first embodiment of the present invention. It is a figure which shows the manufacturing process of the liquid crystal display device shown in FIG. It is a continuation figure of FIG. 2A. It is a continuation figure of FIG. 2B. It is a continuation figure of FIG. 2C. It is a continuation figure of FIG. 2D. It is a continuation figure of FIG. 2E. It is a continuation figure of FIG. 2F. It is a continuation figure of FIG. 2G. It is a continuation figure of FIG. 2H. It is a figure which shows the example of the characteristic change of an oxide semiconductor TFT.
  • FIG. 2A shows the manufacturing process of the liquid crystal display device shown in FIG.
  • FIG. 2B It is a continuation figure of FIG. 2C.
  • FIG. 2D It is a continuation figure of FIG. 2D.
  • FIG. 2E It is a continuation figure of FIG. 2F.
  • FIG. 2G It is a continuation figure of FIG.
  • FIG. 2 is a cross-sectional view illustrating a first configuration example of a terminal portion of the liquid crystal display device illustrated in FIG. 1. It is sectional drawing which shows the 2nd structural example of the terminal part of the liquid crystal display device shown in FIG.
  • FIG. 2 is a cross-sectional view illustrating a first configuration example of a contact portion of the liquid crystal display device illustrated in FIG. 1.
  • FIG. 4 is a cross-sectional view illustrating a second configuration example of a contact portion of the liquid crystal display device illustrated in FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a third configuration example of a contact portion of the liquid crystal display device illustrated in FIG. 1. It is sectional drawing of the liquid crystal display device which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a cross-sectional view of a liquid crystal display device according to the first embodiment of the present invention.
  • a liquid crystal display device 100 shown in FIG. 1 has a structure in which a TFT substrate 10 and a counter substrate 2 are bonded to each other, and a liquid crystal 3 is sealed between two substrates.
  • the TFT substrate 10 and the counter substrate 2 are disposed to face each other, and a resin seal 4 is provided around a portion where the two substrates face each other.
  • the counter substrate 2 is provided with a counter electrode, a color filter (both not shown), and the like.
  • the TFT substrate 10 and various wirings are formed on the TFT substrate 10.
  • the TFT 1 is formed by sequentially forming a gate electrode 12, a gate insulating film 13, a semiconductor layer 14, and a source / drain electrode 15 on a glass substrate 11.
  • a protective film 16, a resin flattening film 17 (hereinafter referred to as a flattening resin film), and a moisture-proof protective film 18 are sequentially formed on the substrate after the TFT 1 is formed.
  • the protective film 16 is provided to protect the TFT 1 by preventing the TFT 1 and the planarizing resin film 17 from directly contacting each other.
  • the planarizing resin film 17 is provided for planarizing the surface of the substrate.
  • the end surface of the planarizing resin film 17 is provided in a region surrounded by the seal 4 (hereinafter referred to as the inside of the seal 4).
  • the size of the flattening resin film 17 is larger as it is closer to the glass substrate 11, and the end surface of the flattening resin film 17 has a tapered shape.
  • the protective film 18 is provided so as to cover the entire surface of the planarizing resin film 17 in order to prevent moisture from entering the planarizing resin film 17.
  • the gate electrode 12 and the source / drain electrode 15 are formed using, for example, Cu / Ti.
  • the gate insulating film 13 for example, a SiO 2 film, a SiN film, or a laminated film thereof is used.
  • the semiconductor layer 14 is formed using an oxide semiconductor such as amorphous silicon, crystalline silicon, or IGZO (Indium Gallium Zinc Oxide).
  • the protective film 16 for example, a SiO 2 film, a SiN x film, a SiON film, or a laminated film thereof is used.
  • the planarizing resin film 17 for example, an acrylic resin film or the like is used as a resin film that has insulating properties and light transmittance and can be easily processed.
  • the protective film 18 for example, a SiO 2 film, a SiN film, a SiON film, or a laminated film thereof is used. Note that another insulating substrate may be used instead of the glass substrate 11.
  • a manufacturing method of the liquid crystal display device 100 having the contact portion 5 will be described with reference to FIGS. 2A to 2I.
  • the gate electrode 12 is formed on the glass substrate 11 using Cu / Ti or the like (FIG. 2A).
  • a gate insulating film 13 covering the surface of the substrate is formed by forming a SiO 2 film, a SiN film, or a laminated film thereof on the substrate (FIG. 2B).
  • a semiconductor layer 14 is formed over the gate electrode 12 using amorphous silicon, crystalline silicon, or an oxide semiconductor (eg, IGZO) (FIG. 2C).
  • a sputtering method is used.
  • a source / drain electrode 15 in contact with the semiconductor layer 14 is formed on the substrate using Cu / Ti or the like (FIG. 2D).
  • a protective film 16 that covers the entire surface of the substrate is formed by forming a SiO 2 film, a SiN x film, a SiON film, or a laminated film thereof on the substrate (FIG. 2E).
  • a planarizing resin film 17 that covers the entire surface of the substrate is formed using acrylic resin or the like. Thereafter, direct patterning is performed by photolithography to form an opening at a position where the contact portion 5 is to be formed (FIG. 2F).
  • a protective film 18 covering the surface of the substrate including the entire surface of the planarizing resin film 17 is formed by forming a SiO 2 film, a SiN film, a SiON film, or a laminated film thereof on the substrate. .
  • a contact hole reaching the drain electrode 15 is formed at a position where the contact portion 5 is formed by photolithography (FIG. 2G).
  • a transparent conductive film 19 in contact with the drain electrode 15 is formed using ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) (FIG. 2H).
  • the transparent conductive film 19 is also formed inside the contact hole, whereby the contact portion 5 is formed.
  • the transparent conductive film 19 formed on the protective film 18 functions as a pixel electrode.
  • the pixel electrode is provided on the opposite side of the planarizing resin film 17 with the protective film 18 interposed therebetween, and the contact portion 5 electrically connects the pixel electrode and the drain electrode 15 of the TFT 1.
  • the TFT substrate 10 is completed through the above
  • an alignment film (not shown) is provided on the surface of the TFT substrate 10 on which the TFT 1 is formed and on the surface of the counter substrate 2 on which the counter electrode is formed.
  • the TFT substrate 10 and the counter substrate 2 are arranged to face each other (the surface on which the alignment film is provided is made to face), a seal 4 is provided around a portion where the two substrates face each other, and the two substrates are separated by spacers ( The liquid crystal 3 is filled between the two substrates (FIG. 2I).
  • the end surface of the planarizing resin film 17 is provided inside the seal 4.
  • the liquid crystal display device 100 is completed through the above steps.
  • the TFT substrate 10 of the liquid crystal display device 100 is provided with a moisture-proof protective film 18 that covers the entire surface of the planarizing resin film 17.
  • the end surface of the planarizing resin film 17 is disposed inside the seal 4 and has a tapered shape.
  • the protective film 18 is provided on a flat surface, the coverage of the flattening resin film 17 is enhanced. For this reason, even when moisture in the air enters the liquid crystal display device 100, it is possible to prevent moisture from entering the planarizing resin film 17. As a result, it is possible to prevent moisture from reaching the interface between the semiconductor layer 14 and the protective film 16 and to prevent the characteristics of the TFT 1 from being affected by moisture. Therefore, according to the liquid crystal display device 100, display deterioration due to moisture absorption of the planarizing resin film 17 can be prevented.
  • the end surface of the flattening resin film 17 since the end surface of the flattening resin film 17 is disposed inside the seal 4, the end surface of the flattening resin film 17 does not directly contact air. Since the resin-made seal 4 has moisture resistance, moisture that enters the apparatus can be reduced by the moisture-proof effect of the seal 4. By disposing the end surface of the flattening resin film 17 inside the seal 4 in this way, the end surface of the flattening resin film 17 is prevented from coming into direct contact with air, and display caused by moisture absorption of the flattening resin film 17 is achieved. Deterioration can be prevented more effectively.
  • the end surface of the flattening resin film 17 in a tapered shape, the coverage of the end surface of the flattening resin film 17 can be increased. Thereby, it is possible to more effectively prevent moisture from entering the planarizing resin film 17 and more effectively prevent display deterioration due to moisture absorption of the planarizing resin film 17.
  • FIG. 3 is a diagram illustrating an example of a characteristic change of the oxide semiconductor TFT.
  • the horizontal axis represents the gate voltage
  • the vertical axis represents the drain current.
  • FIG. 3 shows an initial characteristic (thin broken line) of a certain oxide semiconductor TFT, characteristics after 2000 hours in a conventional liquid crystal display device (thick broken line), and 2000 hours in the liquid crystal display device 100 according to the present embodiment. The characteristics after the passage (thick solid line) are described.
  • the resin flattened film absorbs moisture in the air
  • the characteristics of the oxide semiconductor TFT greatly change from the initial characteristics after 2000 hours. For this reason, display deterioration occurs in a conventional liquid crystal display device including an oxide semiconductor TFT.
  • the planarizing resin film 17 does not absorb moisture in the air
  • the characteristics of the oxide semiconductor TFT hardly change from the initial characteristics even after 2000 hours. As can be seen from this example, according to the liquid crystal display device 100, display deterioration due to moisture absorption of the planarization film can be prevented.
  • the protective film 18 for example, a SiO 2 film, a SiN film, a SiON film, or a laminated film thereof can be used.
  • the SiN film and the SiON film have high moisture resistance. Therefore, in the liquid crystal display device provided with the SiN film or the SiON film as the protective film 18, the above effect becomes remarkable.
  • the amorphous silicon TFT the crystalline silicon TFT, and the oxide semiconductor TFT
  • the characteristics of the oxide semiconductor TFT greatly fluctuate when affected by moisture. Therefore, in the liquid crystal display device including the oxide semiconductor TFT, the above effect becomes remarkable.
  • the end surface of the flattening resin film 17 is disposed inside the seal 4, but the end surface of the flattening resin film 17 may be disposed under the seal 4. Even when the end surface of the flattening resin film 17 is provided under the seal 4, the same effect as that provided when the end surface is provided inside the seal 4 is obtained. Further, if a sufficient effect can be obtained with only the protective film 18, the end surface of the planarizing resin film 17 may be disposed outside the region surrounded by the seal 4.
  • the liquid crystal display device 100 is provided with the protective film 16, the liquid crystal display device may not necessarily include the protective film 16.
  • the protective film 16 is provided in order to prevent the planarization resin film 17 that is an organic material from being in contact with the semiconductor layer 14 and reducing the reliability of the TFT 1. By providing the protective film 16, the reliability of the liquid crystal display device 100 can be increased.
  • the configuration of the terminal portion and the contact portion of the liquid crystal display device 100 will be described.
  • the gate electrode is used as a terminal, an opening reaching the gate electrode is formed.
  • the reliability of the terminal can be increased by providing the transparent electrode 7 that covers the gate electrode 6 as shown in FIG.
  • the source electrode is used as a terminal, an opening reaching the source electrode is formed.
  • the reliability of the terminal can be increased by providing the transparent electrode 9 that covers the source electrode 8 as shown in FIG.
  • the following configuration can be considered for the contact portion connecting the gate electrode and the source electrode.
  • FIG. 6 In the first configuration example (FIG. 6), an opening is formed in the gate insulating film 13, and the source wiring 51 is disposed in the opening. Thereby, the contact part 52 which connects the gate electrode 12 and the source electrode is formed.
  • the gate electrode 12 and the source electrode are connected using ITO, IZO, or the like, similarly to the pixel electrode 53. Since ITO and IZO are formed by sputtering, if a wiring for connecting the stages is formed using ITO or IZO, disconnection of the wiring is likely to occur. Therefore, the pattern end of IGZO is arranged outside the pattern end of the source wiring, and the size of the opening is increased in the lower layer. According to this method, since the contact portion 54 can be formed with only one opening, the area efficiency can be increased. Moreover, since each layer can be patterned and etched at once, the manufacturing process can be shortened.
  • the contact 55 for the gate electrode 12 and the contact 57 for the source electrode 56 are formed separately, and the two contacts 55 and 57 are connected using the pixel electrode 58. According to this method, the contact portion can be easily formed.
  • FIG. 9 is a cross-sectional view of a liquid crystal display device according to the second embodiment of the present invention.
  • a liquid crystal display device 200 shown in FIG. 9 has a structure in which the TFT substrate 20 and the counter substrate 2 are bonded together and the liquid crystal 3 is sealed between the two substrates.
  • the same elements as those described above are denoted by the same reference numerals and description thereof is omitted.
  • the TFT substrate 20 of the liquid crystal display device 200 includes a pixel electrode provided on the opposite side of the planarizing resin film 17 with the protective film 18 interposed therebetween, a pixel electrode, and a drain electrode 15 of the TFT 1. And a contact portion 5 for electrically connecting the two.
  • the protective film 18 is not formed on the side surface of the contact portion 5 (see FIG. 2I).
  • the protective film 18 is formed not only on the planarizing resin film 17 but also on the side surface of the contact portion 5.
  • the moisture intrusion route to the planarizing resin film 17 can be reduced by forming the moisture-proof protective film 18 on the side surface of the contact portion 5. Accordingly, display deterioration due to moisture absorption of the planarizing resin film 17 can be more effectively prevented.
  • FIG. 10 is a cross-sectional view of a liquid crystal display device according to the third embodiment of the present invention.
  • a liquid crystal display device 300 shown in FIG. 10 has a structure in which the TFT substrate 30 and the counter substrate 2 are bonded together, and the liquid crystal 3 is sealed between the two substrates.
  • a common wiring 31 to which a common voltage is applied is formed on the substrate after the gate insulating film 13 is formed.
  • a lower layer electrode 33 that is electrically connected to the common wiring 31 is formed on the planarizing resin film 17, a lower layer electrode 33 that is electrically connected to the common wiring 31 is formed.
  • the protective film 18 is formed so as to cover the entire surface of the planarizing resin film 17 and the lower layer electrode 33.
  • an upper layer electrode 32 electrically connected to the drain electrode 15 is formed so as to face the lower layer electrode 33 with the protective film 18 interposed therebetween.
  • the TFT substrate 30 is provided on one surface side of the protective film 18, and is provided on the other surface side of the protective film 18 and the upper layer electrode 32 electrically connected to the drain electrode 15 of the TFT 1.
  • a lower layer electrode 33 electrically connected to the wiring 31.
  • a capacitor is formed by sandwiching the protective film 18 provided for moisture prevention between two electrodes (the upper layer electrode 32 and the lower layer electrode 33), and the formed capacitor is used as an auxiliary capacitor.
  • the auxiliary capacitor can be made light transmissive and the aperture ratio of the display element can be increased.
  • FIG. 11 is a cross-sectional view of a liquid crystal display device according to the fourth embodiment of the present invention.
  • a liquid crystal display device 400 shown in FIG. 11 has a structure in which the TFT substrate 40 and the counter substrate 2 are bonded together and the liquid crystal 3 is sealed between the two substrates.
  • the common wiring 31, the upper layer electrode 41, and the lower layer electrode 33 are formed on the TFT substrate 40 of the liquid crystal display device 400.
  • the upper layer electrode 41 has a slit shape.
  • FIG. 12 is a plan view of the liquid crystal display device 400. As shown in FIG. 12, the slit-like upper layer electrode 41 and the planar lower layer electrode 33 are arranged so as to overlap in a region surrounded by the common wiring 31, the gate wiring 42 and the data wiring 43. The lower layer electrode 33 is connected to a common wiring 31 to which a common voltage is applied. Thereby, a fringe electric field can be formed in the region.
  • the slit-shaped electrode itself may be used as the upper layer electrode 41, or an electrode partially having a slit shape may be used as the upper layer electrode 41.
  • the lower layer electrode 33 is not provided in a portion corresponding to the upper layer electrode 41 which is not slit-shaped, and a TN (Twisted Nematic) or vertical alignment liquid crystal mode is used for this portion. Accordingly, a fringe field mode liquid crystal display device having excellent viewing angle characteristics can be configured.
  • the capacitance can be formed by sandwiching the protective film 18 provided for moisture prevention between the two electrodes (the upper layer electrode 32 and the lower layer electrode 33). Moreover, a fringe electric field can be generated by making the upper layer electrode 32 into a slit shape. Accordingly, the orientation of the liquid crystal can be controlled using the generated fringe electric field, and the viewing angle characteristics can be improved.
  • the configurations of the terminal portions and contact portions of the liquid crystal display devices 200, 300, and 400 according to the second to fourth embodiments are the same as those of the liquid crystal display device 100 according to the first embodiment (FIGS. 4 to 4). 8).
  • the bottom gate channel etch type TFT is used.
  • a TFT having another structure may be used. Even when the TFT described below is used, the same effects as those of the first to fourth embodiments can be obtained.
  • FIG. 13 is a cross-sectional view of a liquid crystal display device provided with an etch stopper type TFT.
  • a channel protective film 61 is provided on the channel.
  • the number of processes increases, but damage during etching is prevented, and stable production becomes possible.
  • the channel protective film 61 is present, the TFT characteristics are less likely to fluctuate even under the influence of moisture.
  • FIG. 14 is a cross-sectional view of a liquid crystal display device having a bottom contact type TFT.
  • a source / drain electrode 15 is formed on a gate insulating film 13, and a semiconductor layer 14 is formed thereon.
  • the semiconductor layer 14 is not damaged during channel etching.
  • the semiconductor layer 14 and the planarizing resin film 17 are opposed to each other over a wide area, the effect of the present invention becomes more remarkable.
  • FIG. 15 is a cross-sectional view of a liquid crystal display device having a top gate type TFT.
  • the semiconductor layer 14 is formed after the source / drain electrode 15 is formed, and then the gate insulating film 13 and the gate electrode 12 are sequentially formed.
  • the semiconductor layer 14 is not damaged during channel etching. Even with this structure, the effects of the present invention can be obtained.
  • the display device of the present invention it is possible to prevent display deterioration due to moisture absorption of the planarization film.
  • the display device of the present invention has a feature that it can prevent display deterioration due to moisture absorption of the planarization film, it can be used for various display devices having a structure in which two substrates are bonded, such as a liquid crystal display device. Can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 ガラス基板11上にTFT1を形成し、TFT1を覆う平坦化樹脂膜17を形成する。さらに、平坦化樹脂膜17の表面全体を覆う防湿性の保護膜18を形成する。保護膜18には、SiO2 膜、SiN膜、SiON膜、または、これらの積層膜を使用する。平坦化樹脂膜17の端面をシール4の内側または下に配置し、平坦化樹脂膜17の端面をテーパー形状とする。これにより、平坦化樹脂膜17への水分の侵入を防止し、表示劣化を防止する。この効果は、酸化物半導体TFTを含む表示装置において顕著になる。

Description

表示装置
 本発明は、液晶表示装置などの表示装置に関する。
 近年、液晶表示装置は、様々な分野で使用され、様々な環境下で使用されている。液晶表示装置は、例えば、高温高湿の環境下でも使用される。ところが、液晶表示装置を高温高湿の環境下で使用したときに、装置の内部に侵入した水分の影響を受けて薄膜トランジスタ(Thin Film Transistor:以下、TFTという)の特性が変動し、表示劣化が発生することがある。
 図16は、従来の液晶表示装置の断面図である。図16に示す液晶表示装置は、TFT基板81と対向基板82を貼り合わせて、2枚の基板の間に液晶83を封入した構造を有する。2枚の基板が対向する部分の周囲にはシール84が設けられる。TFT基板81は、ガラス基板85上にTFT86を形成し、その上に保護膜87と平坦化膜88を形成することにより得られる。
 平坦化膜88には、例えば、アクリル樹脂膜が使用される。ところが、アクリル樹脂製の平坦化膜88は、高い吸湿性を有する。このため、液晶表示装置を高温高湿の環境下で使用した場合、空気中の水分がシール84の付近から平坦化膜88に侵入する(矢印A1を参照)。侵入した水分は、平坦化膜88内で拡散し、TFT86の近傍に到達する。TFT86は保護膜87で覆われているが、TFT86の表面に凹凸があるために、TFT86を保護膜87で完全に覆うことは困難である。このため、水分が保護膜87を透過して、保護膜87と半導体層89の界面にまで到達することがある。このときTFT86の特性は、水分の影響を受けて大きく変動する。
 特許文献1には、この問題を解決するための液晶表示装置が記載されている(図17および図18を参照)。図17に示す液晶表示装置では、平坦化膜91の端面はシール92で覆われている。図18に示す液晶表示装置では、平坦化膜91の端面は保護膜95で覆われている。このように特許文献1には、平坦化膜91が直接空気に接しないように構成した液晶表示装置が記載されている。
日本国特開平10-232404号公報
 しかしながら、図17に示す液晶表示装置では、シール92とゲート絶縁膜93の界面から水分が侵入しやすい(矢印A2を参照)。図18に示す液晶表示装置では、シール92と保護膜95の界面から水分が侵入しやすい(矢印A3を参照)。これらの界面から侵入した水分が平坦化膜91に到達すると、水分は平坦化膜91内で拡散しTFT94の近傍に容易に到達する。したがって、これらの液晶表示装置では、平坦化膜の吸湿に起因する表示劣化を十分に防止することができない。
 それ故に、本発明は、平坦化膜の吸湿に起因する表示劣化を防止できる表示装置を提供することを目的とする。
 本発明の第1の局面は、2枚の基板を貼り合わせた構造を有する表示装置であって、
 絶縁性基板上に形成された薄膜トランジスタと、前記薄膜トランジスタを覆う平坦化膜とを含む第1基板と、
 前記第1基板に対向して配置される第2基板とを備え、
 前記第1基板は、前記平坦化膜の表面全体を覆う防湿性の保護膜をさらに含むことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第1および第2基板が対向する部分の周囲に設けられたシールをさらに備え、
 前記平坦化膜の端面は、前記シールで囲まれた領域内、または、前記シールの下に配置されていることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記平坦化膜の端面は、テーパー形状を有することを特徴とする。
 本発明の第4の局面は、本発明の第2の局面において、
 前記第1基板は、前記保護膜を挟んで前記平坦化膜とは反対側に設けられた画素電極と、前記画素電極と前記薄膜トランジスタの電極とを電気的に接続するコンタクト部とをさらに含み、
 前記コンタクト部の側面には前記保護膜が形成されていることを特徴とする。
 本発明の第5の局面は、本発明の第2の局面において、
 前記第1基板は、前記保護膜の一方の面側に設けられ、前記薄膜トランジスタの電極に電気的に接続された第1電極と、前記保護膜の他方の面側に設けられ、コモン配線に電気的に接続された第2電極とをさらに含むことを特徴とする。
 本発明の第6の局面は、本発明の第5の局面において、
 前記第1電極はスリット形状を有することを特徴とする。
 本発明の第7の局面は、本発明の第2の局面において、
 前記保護膜は、SiO2 膜、SiN膜、SiON膜、および、これらの積層膜のいずれかであることを特徴とする。
 本発明の第8の局面は、本発明の第2の局面において、
 前記薄膜トランジスタは、酸化物半導体で形成された半導体層を有することを特徴とする。
 本発明の第9の局面は、本発明の第2の局面において、
 前記薄膜トランジスタは、アモルファスシリコン、および、結晶性シリコンのいずれかで形成された半導体層を有することを特徴とする。
 本発明の第10の局面は、本発明の第2の局面において、
 前記平坦化膜は樹脂膜であることを特徴とする。
 本発明の第1の局面によれば、保護膜は平坦な面上に設けられるので、平坦化膜の被覆性は高くなる。したがって、防湿性を有する保護膜を用いて平坦化膜の表面全体を覆うことにより、平坦化膜への水分の侵入を防止し、平坦化膜の吸湿に起因する表示劣化を防止することができる。
 本発明の第2の局面によれば、平坦化膜の端面をシールで囲まれた領域内またはシールの下に配置することにより、平坦化膜の端面が空気に直接接することを防止して、平坦化膜の吸湿に起因する表示劣化をより効果的に防止することができる。
 本発明の第3の局面によれば、平坦化膜の端面をテーパー形状とすることにより、平坦化膜の端面の被覆性を高くし、平坦化膜の吸湿に起因する表示劣化をより効果的に防止することができる。
 本発明の第4の局面によれば、コンタクト部の側面にも防湿性の保護膜を形成することにより、平坦化膜への水分の侵入経路を減らし、平坦化膜の吸湿に起因する表示劣化をより効果的に防止することができる。
 本発明の第5の局面によれば、防湿用に設けた保護膜を2枚の電極で挟み込むことにより容量を形成し、形成した容量を補助容量として使用することができる。また、2枚の電極を透明電極とすることにより、補助容量に光透過性を持たせ、表示素子の開口率を高くすることができる。
 本発明の第6の局面によれば、第1電極をスリット形状とすることにより、フリンジ電界を発生させることができる。したがって、液晶表示装置では、発生させたフリンジ電界を用いて液晶の配向を制御し、視野角特性を改善することができる。
 本発明の第7の局面によれば、防湿性を有するSiO2 膜、SiN膜、SiON膜、または、これらの積層膜を保護膜として使用することにより、平坦化膜への水分の侵入を防止し、平坦化膜の吸湿に起因する表示劣化を防止することができる。この効果は、高い防湿性を有するSiN膜、SiON膜を使用した場合に顕著になる。
 本発明の第8の局面によれば、水分の影響を受けたときに特性が大きく変動する酸化物半導体TFTを含む表示装置において、平坦化膜の吸湿に起因する表示劣化を防止することができる。
 本発明の第9の局面によれば、アモルファスシリコンTFTまたは結晶性シリコンTFTを含む表示装置において、平坦化膜の吸湿に起因する表示劣化を防止することができる。
 本発明の第10の局面によれば、高い吸湿性を有する樹脂製の平坦化膜を用いた場合でも、防湿性を有する保護膜を用いて平坦化膜の表面全体を覆うことにより、平坦化膜への水分の侵入を防止し、平坦化膜の吸湿に起因する表示劣化を防止することができる。
本発明の第1の実施形態に係る液晶表示装置の断面図である。 図1に示す液晶表示装置の製造工程を示す図である。 図2Aの続図である。 図2Bの続図である。 図2Cの続図である。 図2Dの続図である。 図2Eの続図である。 図2Fの続図である。 図2Gの続図である。 図2Hの続図である。 酸化物半導体TFTの特性変化の例を示す図である。 図1に示す液晶表示装置の端子部の第1構成例を示す断面図である。 図1に示す液晶表示装置の端子部の第2構成例を示す断面図である。 図1に示す液晶表示装置のコンタクト部の第1構成例を示す断面図である。 図1に示す液晶表示装置のコンタクト部の第2構成例を示す断面図である。 図1に示す液晶表示装置のコンタクト部の第3構成例を示す断面図である。 本発明の第2の実施形態に係る液晶表示装置の断面図である。 本発明の第3の実施形態に係る液晶表示装置の断面図である。 本発明の第4の実施形態に係る液晶表示装置の断面図である。 図11に示す液晶表示装置の平面図である。 本発明の変形例に係るエッチストッパ型TFTを備えた液晶表示装置の断面図である。 本発明の変形例に係るボトムコンタクト型TFTを備えた液晶表示装置の断面図である。 本発明の変形例に係るトップゲート型TFTを備えた液晶表示装置の断面図である。 従来の液晶表示装置の断面図である。 従来の液晶表示装置の断面図である。 従来の液晶表示装置の断面図である。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る液晶表示装置の断面図である。図1に示す液晶表示装置100は、TFT基板10と対向基板2を貼り合わせて、2枚の基板の間に液晶3を封入した構造を有する。TFT基板10と対向基板2は対向して配置され、2枚の基板が対向する部分の周囲には樹脂製のシール4が設けられる。対向基板2には、対向電極やカラーフィルタ(いずれも図示せず)などが設けられる。
 TFT基板10には、TFT1と各種の配線(ゲート配線やデータ配線など)が形成される。TFT1は、ガラス基板11上にゲート電極12、ゲート絶縁膜13、半導体層14、および、ソース/ドレイン電極15を順に形成することにより形成される。TFT1形成後の基板には、保護膜16、樹脂製の平坦化膜17(以下、平坦化樹脂膜という)、および、防湿性を有する保護膜18が順に形成される。
 保護膜16は、TFT1と平坦化樹脂膜17が直接接することを防止して、TFT1を保護するために設けられる。平坦化樹脂膜17は、基板の表面を平坦化するために設けられる。平坦化樹脂膜17の端面は、シール4で囲まれた領域内(以下、シール4の内側という)に設けられる。平坦化樹脂膜17のサイズはガラス基板11に近いほど大きく、平坦化樹脂膜17の端面はテーパー形状を有する。保護膜18は、平坦化樹脂膜17への水分の侵入を防止するために、平坦化樹脂膜17の表面全体を覆うように設けられる。
 ゲート電極12とソース/ドレイン電極15は、例えばCu/Tiなどを用いて形成される。ゲート絶縁膜13には、例えばSiO2 膜、SiN膜、または、これらの積層膜が使用される。半導体層14は、例えばアモルファスシリコン、結晶性シリコン、または、IGZO(Indium Gallium Zinc Oxide :酸化インジウム・ガリウム・亜鉛)などの酸化物半導体を用いて形成される。保護膜16には、例えばSiO2 膜、SiNX 膜、SiON膜、または、これらの積層膜が使用される。平坦化樹脂膜17には、絶縁性と光透過性を有し、加工が容易な樹脂膜として、例えばアクリル樹脂膜などが使用される。保護膜18には、例えばSiO2 膜、SiN膜、SiON膜、または、これらの積層膜が使用される。なお、ガラス基板11に代えて、他の絶縁性基板を用いてもよい。
 図2A~図2Iを参照して、コンタクト部5を有する液晶表示装置100の製造方法を説明する。TFT基板10を作成するために、まず、ガラス基板11上にCu/Tiなどを用いてゲート電極12を形成する(図2A)。次に、基板上にSiO2 膜、SiN膜、または、これらの積層膜を形成することにより、基板の表面を覆うゲート絶縁膜13を形成する(図2B)。次に、アモルファスシリコン、結晶性シリコン、または、酸化物半導体(例えばIGZO)を用いて、ゲート電極12の上部に半導体層14を形成する(図2C)。例えば酸化物半導体を用いて半導体層14を形成するときには、スパッタ法を使用する。次に、基板上にCu/Tiなどを用いて、半導体層14と接するソース/ドレイン電極15を形成する(図2D)。次に、基板上にSiO2 膜、SiNX 膜、SiON膜、または、これらの積層膜を形成することにより、基板の表面全体を覆う保護膜16を形成する(図2E)。次に、アクリル樹脂などを用いて、基板の表面全体を覆う平坦化樹脂膜17を形成する。その後、フォトリソグラフィ加工によって直接パターニングを行うことにより、コンタクト部5を形成する位置に開口を形成する(図2F)。
 次に、基板上にSiO2 膜、SiN膜、SiON膜、または、これらの積層膜を形成することにより、平坦化樹脂膜17の表面全体を含め、基板の表面を覆う保護膜18を形成する。その後、フォトリソグラフィ加工によって、コンタクト部5を形成する位置にドレイン電極15に到達するコンタクトホールを形成する(図2G)。次に、ITO(Indium Tin Oxide:酸化インジウムスズ)やIZO(Indium Zinc Oxide :酸化インジウム亜鉛)などを用いて、ドレイン電極15に接する透明導電膜19を形成する(図2H)。透明導電膜19はコンタクトホールの内部にも形成され、これによりコンタクト部5が形成される。保護膜18上に形成された透明導電膜19は、画素電極として機能する。画素電極は保護膜18を挟んで平坦化樹脂膜17とは反対側に設けられ、コンタクト部5は画素電極とTFT1のドレイン電極15とを電気的に接続する。以上の工程によって、TFT基板10が完成する。
 次に、TFT基板10のTFT1を形成した側の面と、対向基板2の対向電極を形成した側の面に配向膜(図示せず)を設ける。その後、TFT基板10と対向基板2を対向させて配置し(配向膜を設けた面を対向させる)、2枚の基板が対向する部分の周囲にシール4を設け、2枚の基板をスペーサ(図示せず)を介在させて貼り合わせ、2枚の基板の間に液晶3を充填する(図2I)。この際、平坦化樹脂膜17の端面は、シール4の内側に設けられる。以上の工程により、液晶表示装置100が完成する。
 以下、本実施形態に係る液晶表示装置100の効果を説明する。上述したように、従来の液晶表示装置では、平坦化膜の吸湿に起因する表示劣化が問題になることがある。この問題を解決するために、液晶表示装置100のTFT基板10には、平坦化樹脂膜17の表面全体を覆う防湿性の保護膜18が設けられる。平坦化樹脂膜17の端面は、シール4の内側に配置され、テーパー形状を有する。
 このように液晶表示装置100では、保護膜18は平坦な面上に設けられるので、平坦化樹脂膜17の被覆性は高くなる。このため、空気中の水分が液晶表示装置100の内部に侵入した場合でも、平坦化樹脂膜17への水分の侵入を防止することができる。これにより、水分が半導体層14と保護膜16の界面に到達することを防止し、TFT1の特性が水分の影響を受けて変動することを防止することができる。したがって、液晶表示装置100によれば、平坦化樹脂膜17の吸湿に起因する表示劣化を防止することができる。
 また、平坦化樹脂膜17の端面はシール4の内側に配置されているので、平坦化樹脂膜17の端面が空気に直接接することはない。樹脂製のシール4は防湿性を有するので、シール4の防湿効果によって、装置に侵入する水分を減らすことができる。このように平坦化樹脂膜17の端面をシール4の内側に配置することにより、平坦化樹脂膜17の端面が空気に直接接することを防止して、平坦化樹脂膜17の吸湿に起因する表示劣化をより効果的に防止することができる。
 また、平坦化樹脂膜17の端面をテーパー形状とすることにより、平坦化樹脂膜17の端面の被覆性を高くすることができる。これにより、平坦化樹脂膜17への水分の侵入をより効果的に防止し、平坦化樹脂膜17の吸湿に起因する表示劣化をより効果的に防止することができる。
 図3は、酸化物半導体TFTの特性変化の例を示す図である。図3において、横軸はゲート電圧を表し、縦軸はドレイン電流を表す。図3には、ある酸化物半導体TFTについて、初期特性(細破線)と、従来の液晶表示装置における2000時間経過後の特性(太破線)と、本実施形態に係る液晶表示装置100における2000時間経過後の特性(太実線)とが記載されている。
 従来の液晶表示装置では、樹脂製の平坦化膜が空気中の水分を吸湿するので、酸化物半導体TFTの特性は2000時間経過後には初期特性から大きく変化する。このため、酸化物半導体TFTを含む従来の液晶表示装置では、表示劣化が発生する。これに対して、液晶表示装置100では、平坦化樹脂膜17は空気中の水分を吸湿しないので、酸化物半導体TFTの特性は2000時間経過後でも初期特性からほとんど変化しない。この例から分かるように、液晶表示装置100によれば、平坦化膜の吸湿に起因する表示劣化を防止することができる。
 保護膜18には、例えば、SiO2 膜、SiN膜、SiON膜、または、これらの積層膜を使用することができる。このうちSiN膜とSiON膜は、高い防湿性を有する。したがって、保護膜18としてSiN膜やSiON膜を備えた液晶表示装置では、上記の効果は顕著になる。
 また、アモルファスシリコンTFT、結晶性シリコンTFT、および、酸化物半導体TFTのうち、酸化物半導体TFTの特性は、水分の影響を受けたときに大きく変動する。したがって、酸化物半導体TFTを含む液晶表示装置では、上記の効果は顕著になる。
 なお、液晶表示装置100では平坦化樹脂膜17の端面をシール4の内側に配置することとしたが、平坦化樹脂膜17の端面をシール4の下に配置してもよい。平坦化樹脂膜17の端面をシール4の下に設けた場合でも、シール4の内側に設けた場合と同じ効果が得られる。また、保護膜18だけで十分な効果が得られるのであれば、平坦化樹脂膜17の端面をシール4で囲まれた領域の外部に配置してもよい。
 また、液晶表示装置100は保護膜16を備えることとしたが、液晶表示装置は必ずしも保護膜16を備えていなくてもよい。保護膜16は、有機物である平坦化樹脂膜17が半導体層14と接して、TFT1の信頼性が低下することを防止するために設けられる。保護膜16を設けることにより、液晶表示装置100の信頼性を高くすることができる。
 以下、液晶表示装置100の端子部とコンタクト部の構成について説明する。ゲート電極を端子として使用する場合には、ゲート電極に到達する開口を形成する。腐食性を有する金属でゲート電極を形成する場合には、図4に示すようにゲート電極6を覆う透明電極7を設けることにより、端子の信頼性を高くすることができる。同様に、ソース電極を端子として使用する場合には、ソース電極に到達する開口を形成する。腐食性を有する金属でソース電極を形成する場合には、図5に示すようにソース電極8を覆う透明電極9を設けることにより、端子の信頼性を高くすることができる。
 ゲート電極とソース電極を接続するコンタクト部については、以下の構成が考えられる。第1の構成例(図6)では、ゲート絶縁膜13に開口を形成し、開口部にソース配線51を配置する。これにより、ゲート電極12とソース電極を接続するコンタクト部52を形成する。
 第2の構成例(図7)では、画素電極53と同様にITOやIZOなどを用いて、ゲート電極12とソース電極を接続する。ITOやIZOはスパッタ法で成膜されるので、ITOやIZOを用いて段間を接続する配線を形成すると、配線に段切れが発生しやすい。そこで、IGZOのパターン端をソース配線のパターン端よりも外側に配置し、下層ほど開口のサイズを大きくする。この方法によれば、1個の開口だけでコンタクト部54を形成できるので、面積効率を高くすることができる。また、各層を一括してパターニングおよびエッチングできるので、製造工程を短縮することができる。
 第3の構成例(図8)では、ゲート電極12用のコンタクト55とソース電極56用のコンタクト57を別個に形成し、2個のコンタクト55、57を画素電極58を用いて接続する。この方法によれば、コンタクト部を容易に形成することができる。
 (第2の実施形態)
 図9は、本発明の第2の実施形態に係る液晶表示装置の断面図である。図9に示す液晶表示装置200は、TFT基板20と対向基板2を貼り合わせて、2枚の基板の間に液晶3を封入した構造を有する。以下に示す各実施形態の構成要素のうち、先に述べた実施形態と同一の要素については、同一の参照符号を付して説明を省略する。
 第1の実施形態と同様に、液晶表示装置200のTFT基板20は、保護膜18を挟んで平坦化樹脂膜17とは反対側に設けられた画素電極と、画素電極とTFT1のドレイン電極15とを電気的に接続するコンタクト部5とを含んでいる。第1の実施形態に係る液晶表示装置100では、コンタクト部5の側面に保護膜18は形成されていない(図2Iを参照)。これに対して、本実施形態に係る液晶表示装置200では、平坦化樹脂膜17上だけではなく、コンタクト部5の側面にも保護膜18が形成されている。
 このような液晶表示装置200を製造するためには、図2A~図2Iに示す製造工程にフォトリソグラフィ工程を追加する必要がある。具体的には、図2Fに示す基板に保護膜18を形成した後、図2Fに示す開口よりも少し小さい開口を保護膜18にパターニングする必要がある。
 本実施形態に係る液晶表示装置200によれば、コンタクト部5の側面にも防湿性の保護膜18を形成することにより、平坦化樹脂膜17への水分の侵入経路を減らすことができる。したがって、平坦化樹脂膜17の吸湿に起因する表示劣化をより効果的に防止することができる。
 (第3の実施形態)
 図10は、本発明の第3の実施形態に係る液晶表示装置の断面図である。図10に示す液晶表示装置300は、TFT基板30と対向基板2を貼り合わせて、2枚の基板の間に液晶3を封入した構造を有する。
 ゲート絶縁膜13を形成した後の基板には、コモン電圧が印加されるコモン配線31が形成される。平坦化樹脂膜17上には、コモン配線31に電気的に接続される下層電極33が形成される。保護膜18は、平坦化樹脂膜17と下層電極33の表面全体を覆うように形成される。保護膜18上には、ドレイン電極15に電気的に接続される上層電極32が、保護膜18を挟んで下層電極33と対向するように形成される。このようにTFT基板30は、保護膜18の一方の面側に設けられ、TFT1のドレイン電極15に電気的に接続された上層電極32と、保護膜18の他方の面側に設けられ、コモン配線31に電気的に接続された下層電極33とを含む。
 本実施形態に係る液晶表示装置300によれば、防湿用に設けた保護膜18を2枚の電極(上層電極32と下層電極33)で挟み込むことにより容量を形成し、形成した容量を補助容量として使用することができる。また、2枚の電極を透明電極とすることにより、補助容量に光透過性を持たせ、表示素子の開口率を高くすることができる。
 (第4の実施形態)
 図11は、本発明の第4の実施形態に係る液晶表示装置の断面図である。図11に示す液晶表示装置400は、TFT基板40と対向基板2を貼り合わせて、2枚の基板の間に液晶3を封入した構造を有する。
 第3の実施形態と同様に、液晶表示装置400のTFT基板40には、コモン配線31、上層電極41、および、下層電極33が形成される。ただし、液晶表示装置400では、上層電極41はスリット形状を有する。
 図12は、液晶表示装置400の平面図である。図12に示すように、スリット状の上層電極41と面状の下層電極33は、コモン配線31とゲート配線42とデータ配線43で囲まれた領域内で重ねて配置される。下層電極33は、コモン電圧が印加されるコモン配線31に接続される。これにより、上記領域内にフリンジ電界を形成することができる。
 なお、スリット状の電極自身を上層電極41として使用してもよく、一部をスリット状とした電極を上層電極41として使用してもよい。また、スリット状でない上層電極41に対応する部分には下層電極33を設けず、この部分についてはTN(Twisted Nematic )や垂直配向の液晶モードを使用する。これにより、視野角特性に優れたフリンジフィールドモードの液晶表示装置を構成することができる。
 本実施形態に係る液晶表示装置400によれば、防湿用に設けた保護膜18を2枚の電極(上層電極32と下層電極33)で挟み込むことにより、容量を形成することができる。また、上層電極32をスリット形状とすることにより、フリンジ電界を発生させることができる。したがって、発生させたフリンジ電界を用いて液晶の配向を制御し、視野角特性を改善することができる。
 なお、第2~第4の実施形態に係る液晶表示装置200、300、400の端子部とコンタクト部の構成は、第1の実施形態に係る液晶表示装置100と同じである(図4~図8を参照)。
 また、第1~第4の実施形態では、ボトムゲートのチャネルエッチ型TFTを用いることとしたが、他の構造を有するTFTを用いてもよい。以下に示すTFTを用いた場合でも、第1~第4の実施形態と同様の効果が得られる。
 図13は、エッチストッパ型TFTを備えた液晶表示装置の断面図である。図13に示すTFTでは、チャネル上にチャネル保護膜61が設けられている。この構造を用いた場合、工程数が増加するが、エッチング時のダメージを防止し、安定した生産が可能となる。また、チャネル保護膜61が存在するので、水分の影響を受けてもTFTの特性は変動しにくくなる。
 図14は、ボトムコンタクト型TFTを備えた液晶表示装置の断面図である。図14に示すTFTでは、ゲート絶縁膜13上にソース/ドレイン電極15が形成され、その上に半導体層14が形成されている。この構造を用いた場合、半導体層14はチャネルエッチ時にダメージを受けない。また、半導体層14と平坦化樹脂膜17が広い面積で対向するので、本発明の効果はより顕著になる。
 図15は、トップゲート型TFTを備えた液晶表示装置の断面図である。図15に示すTFTを形成するときには、ソース/ドレイン電極15を形成した後に半導体層14を形成し、その後にゲート絶縁膜13とゲート電極12を順に形成する。この構造を用いた場合、半導体層14はチャネルエッチ時にダメージを受けない。この構造でも、本発明の効果が得られる。
 以上に示すように、本発明の表示装置によれば、平坦化膜の吸湿に起因する表示劣化を防止することができる。
 本発明の表示装置は、平坦化膜の吸湿に起因する表示劣化を防止できるという特徴を有するので、液晶表示装置など、2枚の基板を貼り合わせた構造を有する各種の表示装置に利用することができる。
 1…TFT
 2…対向基板
 3…液晶
 4…シール
 5…コンタクト部
 10、20、30、40…TFT基板
 11…ガラス基板
 12…ゲート電極
 13…ゲート絶縁膜
 14…半導体層
 15…ソース/ドレイン電極
 16、18…保護膜
 17…平坦化樹脂膜
 19…透明導電膜
 31…コモン配線
 32、41…上層電極
 33…下層電極
 100、200、300、400…液晶表示装置

Claims (10)

  1.  2枚の基板を貼り合わせた構造を有する表示装置であって、
     絶縁性基板上に形成された薄膜トランジスタと、前記薄膜トランジスタを覆う平坦化膜とを含む第1基板と、
     前記第1基板に対向して配置される第2基板とを備え、
     前記第1基板は、前記平坦化膜の表面全体を覆う防湿性の保護膜をさらに含むことを特徴とする、表示装置。
  2.  前記第1および第2基板が対向する部分の周囲に設けられたシールをさらに備え、
     前記平坦化膜の端面は、前記シールで囲まれた領域内、または、前記シールの下に配置されていることを特徴とする、請求項1に記載の表示装置。
  3.  前記平坦化膜の端面は、テーパー形状を有することを特徴とする、請求項2に記載の表示装置。
  4.  前記第1基板は、前記保護膜を挟んで前記平坦化膜とは反対側に設けられた画素電極と、前記画素電極と前記薄膜トランジスタの電極とを電気的に接続するコンタクト部とをさらに含み、
     前記コンタクト部の側面には前記保護膜が形成されていることを特徴とする、請求項2に記載の表示装置。
  5.  前記第1基板は、前記保護膜の一方の面側に設けられ、前記薄膜トランジスタの電極に電気的に接続された第1電極と、前記保護膜の他方の面側に設けられ、コモン配線に電気的に接続された第2電極とをさらに含むことを特徴とする、請求項2に記載の表示装置。
  6.  前記第1電極はスリット形状を有することを特徴とする、請求項5に記載の表示装置。
  7.  前記保護膜は、SiO2 膜、SiN膜、SiON膜、および、これらの積層膜のいずれかであることを特徴とする、請求項2に記載の表示装置。
  8.  前記薄膜トランジスタは、酸化物半導体で形成された半導体層を有することを特徴とする、請求項2に記載の表示装置。
  9.  前記薄膜トランジスタは、アモルファスシリコン、および、結晶性シリコンのいずれかで形成された半導体層を有することを特徴とする、請求項2に記載の表示装置。
  10.  前記平坦化膜は樹脂膜であることを特徴とする、請求項2に記載の表示装置。
PCT/JP2012/056828 2011-03-25 2012-03-16 表示装置 WO2012132953A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137026995A KR101514594B1 (ko) 2011-03-25 2012-03-16 표시 장치
US14/006,479 US9377644B2 (en) 2011-03-25 2012-03-16 Display device
EP12763589.4A EP2690492A4 (en) 2011-03-25 2012-03-16 DISPLAY DEVICE
CN201280012567XA CN103430088A (zh) 2011-03-25 2012-03-16 显示装置
BR112013022675A BR112013022675A2 (pt) 2011-03-25 2012-03-16 dispositivo de visor
JP2013507381A JP5318302B2 (ja) 2011-03-25 2012-03-16 表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011067624 2011-03-25
JP2011-067624 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012132953A1 true WO2012132953A1 (ja) 2012-10-04

Family

ID=46930686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056828 WO2012132953A1 (ja) 2011-03-25 2012-03-16 表示装置

Country Status (7)

Country Link
US (1) US9377644B2 (ja)
EP (1) EP2690492A4 (ja)
JP (1) JP5318302B2 (ja)
KR (1) KR101514594B1 (ja)
CN (1) CN103430088A (ja)
BR (1) BR112013022675A2 (ja)
WO (1) WO2012132953A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439844A (zh) * 2013-08-30 2013-12-11 京东方科技集团股份有限公司 阵列基板、显示装置及制作阵列基板的方法
JP2014092692A (ja) * 2012-11-05 2014-05-19 Seiko Epson Corp 液晶装置、及び電子機器
WO2014080930A1 (ja) * 2012-11-21 2014-05-30 シャープ株式会社 液晶表示装置
JP2014186321A (ja) * 2013-02-21 2014-10-02 Semiconductor Energy Lab Co Ltd 液晶表示装置及び電子機器
WO2014199801A1 (ja) * 2013-06-11 2014-12-18 堺ディスプレイプロダクト株式会社 液晶パネル
WO2014199839A1 (ja) * 2013-06-11 2014-12-18 堺ディスプレイプロダクト株式会社 液晶パネル及び絶縁膜の溝部形成方法
JP2016051093A (ja) * 2014-09-01 2016-04-11 三菱電機株式会社 液晶表示パネル、及びその製造方法
JP2017040859A (ja) * 2015-08-21 2017-02-23 株式会社ジャパンディスプレイ 画像表示装置
JP2018132770A (ja) * 2012-10-12 2018-08-23 株式会社半導体エネルギー研究所 液晶表示装置
JP2018185516A (ja) * 2012-10-12 2018-11-22 株式会社半導体エネルギー研究所 液晶表示装置
US10700210B2 (en) 2014-11-28 2020-06-30 Sharp Kabushiki Kaisha Semiconductor device, and manufacturing method for same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577032B (zh) * 2015-04-24 2017-04-01 群創光電股份有限公司 顯示裝置
CN108333648A (zh) * 2018-02-09 2018-07-27 广州奥翼电子科技股份有限公司 电泳显示器的保护膜、电泳显示器及其封装方法
KR102159993B1 (ko) * 2018-12-03 2020-09-25 한국과학기술연구원 유기광전자소자의 봉지필름 및 그 제조방법
CN109683371A (zh) * 2019-01-29 2019-04-26 深圳市华星光电半导体显示技术有限公司 显示面板
KR102236190B1 (ko) * 2020-06-12 2021-04-06 한국과학기술연구원 유기광전자소자의 봉지필름 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310533A (ja) * 1992-10-15 1994-11-04 Fujitsu Ltd 薄膜トランジスタ・マトリクスの製造方法
JPH10232404A (ja) 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2001267578A (ja) * 2000-03-17 2001-09-28 Sony Corp 薄膜半導体装置及びその製造方法
JP2006243393A (ja) * 2005-03-03 2006-09-14 Sharp Corp 表示装置用プラスチック基板およびその製造方法
WO2009072226A1 (ja) * 2007-12-06 2009-06-11 Sharp Kabushiki Kaisha 可撓性を有する表示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298447B1 (en) * 1996-06-25 2007-11-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display panel
JP4055764B2 (ja) * 2004-01-26 2008-03-05 セイコーエプソン株式会社 電気光学装置及び電子機器
JP5144006B2 (ja) * 2005-07-25 2013-02-13 ペンタックスリコーイメージング株式会社 表示スクリーンを備えるカメラ
JP4797740B2 (ja) * 2006-03-27 2011-10-19 ソニー株式会社 液晶表示装置
CN102096251B (zh) * 2006-09-27 2013-07-03 夏普株式会社 有源矩阵基板及具备该有源矩阵基板的液晶显示装置
JP4638462B2 (ja) * 2007-03-26 2011-02-23 株式会社 日立ディスプレイズ 液晶表示装置
JP4487318B2 (ja) * 2007-07-26 2010-06-23 エプソンイメージングデバイス株式会社 液晶表示装置及びその製造方法
JP5408914B2 (ja) 2008-07-03 2014-02-05 株式会社ジャパンディスプレイ 液晶表示パネル
JP2010015019A (ja) * 2008-07-04 2010-01-21 Hitachi Displays Ltd 液晶表示装置およびその製造方法
JP5392670B2 (ja) * 2008-12-01 2014-01-22 株式会社ジャパンディスプレイ 液晶表示装置及びその製造方法
JP4911167B2 (ja) 2008-12-19 2012-04-04 ソニー株式会社 液晶パネル及び電子機器
TWI511288B (zh) * 2009-03-27 2015-12-01 Semiconductor Energy Lab 半導體裝置
JP5709837B2 (ja) * 2010-03-10 2015-04-30 シチズンホールディングス株式会社 液晶素子及び液晶素子の製造方法
KR101948168B1 (ko) * 2011-12-08 2019-04-26 엘지디스플레이 주식회사 내로우 베젤 타입 액정표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310533A (ja) * 1992-10-15 1994-11-04 Fujitsu Ltd 薄膜トランジスタ・マトリクスの製造方法
JPH10232404A (ja) 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2001267578A (ja) * 2000-03-17 2001-09-28 Sony Corp 薄膜半導体装置及びその製造方法
JP2006243393A (ja) * 2005-03-03 2006-09-14 Sharp Corp 表示装置用プラスチック基板およびその製造方法
WO2009072226A1 (ja) * 2007-12-06 2009-06-11 Sharp Kabushiki Kaisha 可撓性を有する表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690492A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103313A (ja) * 2012-10-12 2021-07-15 株式会社半導体エネルギー研究所 表示装置
JP2018185516A (ja) * 2012-10-12 2018-11-22 株式会社半導体エネルギー研究所 液晶表示装置
JP2018132770A (ja) * 2012-10-12 2018-08-23 株式会社半導体エネルギー研究所 液晶表示装置
JP2014092692A (ja) * 2012-11-05 2014-05-19 Seiko Epson Corp 液晶装置、及び電子機器
WO2014080930A1 (ja) * 2012-11-21 2014-05-30 シャープ株式会社 液晶表示装置
JP2018063440A (ja) * 2013-02-21 2018-04-19 株式会社半導体エネルギー研究所 液晶表示装置
JP2014186321A (ja) * 2013-02-21 2014-10-02 Semiconductor Energy Lab Co Ltd 液晶表示装置及び電子機器
JP2019152889A (ja) * 2013-02-21 2019-09-12 株式会社半導体エネルギー研究所 液晶表示装置
US10365514B2 (en) 2013-02-21 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
WO2014199839A1 (ja) * 2013-06-11 2014-12-18 堺ディスプレイプロダクト株式会社 液晶パネル及び絶縁膜の溝部形成方法
US9733505B2 (en) 2013-06-11 2017-08-15 Sakai Display Products Corporation Liquid crystal panel and method of forming groove in insulating film
CN105247408B (zh) * 2013-06-11 2018-03-30 堺显示器制品株式会社 液晶面板和绝缘膜的槽部形成方法
US10031361B2 (en) 2013-06-11 2018-07-24 Sakai Display Products Corporation Liquid crystal panel
CN105247408A (zh) * 2013-06-11 2016-01-13 堺显示器制品株式会社 液晶面板和绝缘膜的槽部形成方法
WO2014199801A1 (ja) * 2013-06-11 2014-12-18 堺ディスプレイプロダクト株式会社 液晶パネル
CN103439844B (zh) * 2013-08-30 2016-06-01 京东方科技集团股份有限公司 阵列基板、显示装置及制作阵列基板的方法
CN103439844A (zh) * 2013-08-30 2013-12-11 京东方科技集团股份有限公司 阵列基板、显示装置及制作阵列基板的方法
JP2016051093A (ja) * 2014-09-01 2016-04-11 三菱電機株式会社 液晶表示パネル、及びその製造方法
US10700210B2 (en) 2014-11-28 2020-06-30 Sharp Kabushiki Kaisha Semiconductor device, and manufacturing method for same
JP2017040859A (ja) * 2015-08-21 2017-02-23 株式会社ジャパンディスプレイ 画像表示装置

Also Published As

Publication number Publication date
CN103430088A (zh) 2013-12-04
BR112013022675A2 (pt) 2016-12-06
US9377644B2 (en) 2016-06-28
KR101514594B1 (ko) 2015-04-22
EP2690492A4 (en) 2015-03-04
US20140009706A1 (en) 2014-01-09
JPWO2012132953A1 (ja) 2014-07-28
KR20130132648A (ko) 2013-12-04
EP2690492A1 (en) 2014-01-29
JP5318302B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5318302B2 (ja) 表示装置
JP6049764B2 (ja) 表示パネル
US9632634B2 (en) Touch panel and display device with touch panel
JP6076626B2 (ja) 表示装置及びその製造方法
JP5450802B2 (ja) 表示装置及びその製造方法
JP7350903B2 (ja) Tft回路基板
JP2010256517A (ja) アクティブマトリクス型表示装置
JP5243665B2 (ja) 表示装置の製造方法
US20200035719A1 (en) Thin-film transistor substrate, method for manufacturing thin-film transistor substrate, and display device
JP2014095795A (ja) 液晶表示装置およびその製造方法
US10707240B2 (en) Display device
GB2546667B (en) Manufacturing method and manufacturing equipment of thin film transistor substrate
JP2019078862A (ja) アクティブマトリクス基板およびその製造方法
US9459505B2 (en) Display device and manufacturing method thereof
JP5951329B2 (ja) 液晶表示装置
JP5714676B2 (ja) 液晶表示装置およびその製造方法
US9496287B2 (en) Semiconductor device and production method therefor
US12224332B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507381

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012763589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14006479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137026995

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022675

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013022675

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130904