WO2012126338A1 - 一种锂离子电池硅碳复合负极材料及其制备方法 - Google Patents
一种锂离子电池硅碳复合负极材料及其制备方法 Download PDFInfo
- Publication number
- WO2012126338A1 WO2012126338A1 PCT/CN2012/072491 CN2012072491W WO2012126338A1 WO 2012126338 A1 WO2012126338 A1 WO 2012126338A1 CN 2012072491 W CN2012072491 W CN 2012072491W WO 2012126338 A1 WO2012126338 A1 WO 2012126338A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- ion battery
- lithium
- hours
- gas
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1275—Process of deposition of the inorganic material performed under inert atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a battery electrode material and a preparation method thereof, in particular to a lithium ion battery silicon carbon composite anode material and a preparation method thereof.
- the carbon material has a small volume effect and high electrical conductivity, and the combination of silicon and carbon can effectively buffer the volume effect of silicon, reduce electrochemical polarization, and improve the stability of charge and discharge cycles.
- Chinese patent CN200510030785.8 discloses a silicon/carbon/graphite composite anode material for lithium ion batteries, which is prepared by concentrated sulfuric acid carbonization. The material consists of elemental silicon, graphite particles and amorphous carbon. It does not have a porous structure. Its first lithium removal capacity is about 1000 mAh/g, but after 10 charge and discharge cycles, the capacity is reduced by about 20%. it is good.
- a silicon material with a porous structure is designed, and the internal pores reserve space for volume expansion of silicon, which can reduce the macroscopic volume change of the material during lithium storage, relieve mechanical stress, and thereby improve the electrode. Structural stability.
- Chinese patent ZL200610028893.6 discloses a silicon-copper carbon composite material having a nanoporous structure prepared by high energy ball milling, having a pore diameter of 2 to 50 nm, a copper content of about 40 wt.%, and a carbon content of about 30 wt%. The material exhibits good charge and discharge cycle stability, but has a low reversible capacity of only about 580 mAh/g.
- International Patent PCT/KR2008/006420 discloses a silicon nanowire-carbon composite material having a mesoporous structure prepared by an alumina template method, wherein the silicon nanowire has a diameter of 3 to 20 nm and a mesoporous diameter of 2 to 20 nm. The carbon content is 5 to 10 wt.%. The material has a charge and discharge capacity of 2000 mAh/g at 1C rate, and the cycle stability is good, but the process is complicated and it is difficult to achieve industrial production.
- Angewandte Chemie International Edition Journal No. 52, 2008, pp. 10151-10154 reports a silicon-based material having a three-dimensional macroporous structure.
- silicon tetrachloride was reduced with sodium naphthalene, and butyl lithium was introduced to prepare a butyl-encapsulated silica gel.
- silica particles were added as a template, followed by heat treatment and carbonization, and finally, hydrofluoric acid was used to obtain macropores.
- the macroporous silicon is a single crystal structure having an average particle diameter of 30 ⁇ or more and a pore diameter of 200 nm.
- the material has a reversible capacity of 2820 mAh/g at 0.2 C rate and good cycle performance.
- its synthesis process is cumbersome, and it uses more corrosive and high-risk chemical reagents. Its waste will have an impact on the environment, and the preparation cost is high, which is not conducive to industrial large-scale application.
- a large-pore silicon-silver composite is reported in Advanced Materials magazine, Vol. 22, pp. 1 ⁇ 4, 2010.
- the elemental silicon with three-dimensional macroporous structure was prepared by magnesium thermal reduction method, and silver nanoparticles were deposited in the macropores by silver mirror reaction, and the silver content was 8 wt.%.
- the macroporous silicon is a single crystal structure having a particle size of 1 to 5 ⁇ and a pore diameter of about 200 nm. Its first lithium removal capacity is 2917 mAh/ g , and it remains above 2000 mAh/g after 100 cycles. However, the use of silver will greatly increase the production cost of materials, which is not conducive to its industrial application. Summary of the invention
- the object of the present invention is to provide a lithium-ion battery silicon-carbon composite anode material and a preparation method thereof.
- the silicon carbon composite negative electrode material provided by the present invention has the characteristics of high capacity, cycle stability, and excellent rate performance.
- the preparation method of the silicon carbon composite anode material provided by the invention is simple in process, low in cost, and suitable for industrial production.
- the structural composition of a lithium-ion battery silicon-carbon composite anode material of the present invention is as follows - consisting of a porous silicon substrate and a carbon coating layer, wherein the composition of the carbon coating layer accounts for 2 to 70 wt.%, is amorphous carbon, and has a thickness of 2 ⁇ 30 nm; porous silicon matrix is polycrystalline structure, its particle size is 50 nm ⁇ 20 ⁇ , pore size is 2 ⁇ 150 nm, pore volume is 0.1 ⁇ 1.5 cm 3 /g, and specific surface area is 30 ⁇ 300 m 2 /g.
- the lithium-ion battery silicon-carbon composite anode material of the invention not only has a porous structure, but also effectively buffers silicon
- the volume effect that occurs during charging and discharging, and a uniform carbon coating on the surface of the particles improves cycle stability and high current charge and discharge characteristics while maintaining high capacity.
- the composition of the carbon coating layer is 2 to 70 wt.%, and if it is less than 2 wt.%, the content is too low, which is insufficient to enhance the conductivity and stabilize the structure, and if it is more than 70 wt.%, the content is excessive. High, due to the low capacity of the carbon coating itself, the specific capacity of the entire composite anode material is greatly reduced. In addition, the present invention does not contain precious metals and can greatly reduce the cost.
- the preparation method of the lithium-ion battery silicon-carbon composite anode material of the present invention is as follows, and the following are expressed by weight:
- the shielding gas used in the present invention is a mixed gas of argon gas, chlorine gas, helium gas, argon gas and hydrogen gas or a mixed gas of chlorine gas and hydrogen gas, and the volume content of hydrogen gas in the mixed gas is 2 to 20%.
- the gaseous carbon source used in the present invention is acetylene, methane, ethane, ethylene, propionium or carbon monoxide.
- the liquid carbon source used in the present invention is benzene, toluene, xylene, ethanol, n-hexane or cyclohexane.
- the solid carbon source used in the present invention is polyvinyl chloride, polyvinylidene fluoride, polyacrylonitrile, polyethylene glycol, polystyrene, furfural resin, epoxy resin, coal tar pitch, petroleum pitch, sucrose or Glucose, wherein the molecular weight of polychloroacetic acid is 50,000 ⁇ 120,000, the molecular weight of poly(vinylidene fluoride) is 250,000 ⁇ 1000000, the molecular weight of polyacrylonitrile is 30,000 ⁇ 20000, the molecular weight of polyacetal is 20,000 ⁇ 300,000, polyphenylene The molecular weight of cerium is between 50,000 and 200,000, and the molecular weight of furfural resin is between 500 and 10,000. The amount is between 300 and 8000.
- the solvent used in the present invention is water, ethanol, acetamidine, acetone, tetrahydrofuran, benzene, toluene, xylene, dimethylformamide or N-methylpyrrolidone.
- the temperature of the porous silicon substrate is 600 to 900 ° C. If the temperature is lower than 600 ° C, the reduction reaction of mesoporous silica is insufficient. If the temperature is higher than 900 V, the obtained product grains are obtained. is too big.
- the temperature of carbon coating is 600 ⁇ 1100 °C. If the temperature is lower than 600 °C, the carbonization is incomplete or the conductivity of carbon is not high. If the temperature is higher than 1100 'C, SiC impurities are formed.
- the invention relates to a method for preparing a silicon-carbon composite anode material for a lithium ion battery.
- a method for preparing a silicon-carbon composite anode material for a lithium ion battery For the preparation method of mesoporous silica, see Science Journal, Vol. 279, No. 5350, pp. 548-552, et al., etc.: 1 to 8 parts of ethylene oxide.
- /propylene oxide block copolymer is dissolved in 10 ⁇ 50 parts of water, 0 ⁇ 9 parts of 1-butanol and 3 ⁇ 6 parts of 2 mol/L hydrochloric acid, stir well and then add 6 ⁇ 12 parts of positive silicon Ethyl acetate, and then stirred at 10 ⁇ 50 °C for 12 ⁇ 36 hours; then transferred to a hydrothermal reaction kettle, kept at 80 ⁇ 120 °C for 12 ⁇ 36 hours, cooled and centrifuged at 3000 ⁇ 10000 r/min, 80 Dry at ⁇ 120 ° C, and then calcined at 500 ° 800 ° C for 1 to 6 hours in an air atmosphere to obtain mesoporous silica.
- the silicon-carbon composite anode material of the lithium ion battery comprises a porous silicon substrate and a carbon coating layer, and the porous silicon matrix has a uniformly distributed porous structure, which not only effectively buffers the volume effect of the silicon in the process of inserting and deintercalating lithium, but also has Conducive to the penetration of electrolyte and the transport of lithium ions, the diffusion distance of lithium ions in silicon is reduced, and the large current charge and discharge of silicon-based anodes is realized.
- the carbon coating layer also functions to enhance conductivity and maintain material structure stability, and the lithium ion battery silicon-carbon composite anode material of the present invention has the advantages of high reversible capacity, good cycle performance, and excellent rate performance.
- the mesoporous silica is first reduced by magnesium, the porous silicon substrate is obtained by pickling, and a uniform carbon package is coated on the surface of the porous silicon substrate.
- the coating is used to improve conductivity without the use of precious metals.
- the method is simple in process and low in cost, and is suitable for large-scale industrial production.
- a lithium ion battery silicon carbon composite anode material of the present invention is assembled into a lithium ion battery by using a lithium metal sheet as a counter electrode.
- the lithium ion battery contains an electrolyte composed of a lithium salt and a solvent, and the lithium salt thereof includes an inorganic salt such as lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ) or lithium perchlorate (LiC10 4 ), and double ethylene.
- LiPF 6 lithium hexafluorophosphate
- LiBF 4 lithium tetrafluoroborate
- LiC10 4 lithium perchlorate
- An organic salt such as lithium borate (LiBOB) or lithium bis(trifluoromethanesulfonate) (LiTFSI), the solvent of which includes acetonitrile carbonate (EC), propyl acrylate (PC), dimethyl carbonate At least one of (DMC) and diethyl carbonate (DEC) has a lithium salt concentration of less than 2 mol/L.
- LiBOB lithium borate
- LiTFSI lithium bis(trifluoromethanesulfonate)
- EC acetonitrile carbonate
- PC propyl acrylate
- DMC diethyl carbonate
- DEC diethyl carbonate
- the lithium-ion battery silicon-carbon composite anode material of the present invention exhibits reversible capacities of 1556, 1290, 877 and 598 mAh/g, respectively, wherein 0.2C corresponds to current density. It is 300 mA/g. Even with 15C charge and discharge, it showed a capacity of 474 mAh/g.
- Fig. 1 is a scanning electron micrograph (a) and a transmission electron micrograph ( ) of a porous silicon substrate obtained in Example 1.
- Fig. 2 is a graph showing the pore size distribution of the porous silicon substrate obtained in Example 1.
- Fig. 4 is a graph showing the charge and discharge curves of the lithium-ion battery assembled in the lithium ion battery of the lithium ion battery obtained in the first, second, and tenth cycles.
- Fig. 5 is a graph showing the capacity-cycle number of the first 40 cycles of the lithium ion battery assembled by the lithium ion battery silicon carbon composite anode material obtained in Example 1.
- Fig. 6 is a graph showing the capacity-cycle number of lithium ion batteries assembled by a lithium ion battery silicon-carbon composite anode material obtained in Example 1 at different magnifications.
- Figure ⁇ is a transmission electron micrograph of a lithium-ion battery silicon-carbon composite negative electrode material obtained in Example 2.
- Fig. 8 is a scanning electron micrograph of the porous silicon substrate obtained in Example 3.
- Fig. 9 is a capacity-cycle number curve of the first 40 cycles of a lithium ion battery assembled with a silicon carbon composite material having no porous structure obtained in Comparative Example 1.
- Fig. 10 is a capacity-cycle number curve of the first 40 cycles of a lithium ion battery assembled with a porous silicon substrate having no carbon coating layer obtained in Comparative Example 2. detailed description
- the assembly and test method of the lithium ion battery is as follows - the lithium ion battery silicon carbon composite anode material of the invention and 20 wt.% binder (the styrene butadiene rubber-carboxymethyl cellulose sodium having a solid content of 2 wt%) Emulsion or N-polyvinylidene fluoride at a concentration of 0.02 g/ml
- the methylpyrrolidone solution was mixed with 20 ⁇ .% of a conductive agent (SuperP conductive carbon black), uniformly stirred, coated on a copper foil, and placed in an oven at 601; to 80 ° C for drying.
- a punch having a diameter of 12 to 16 mm was punched into a pole piece, placed in a vacuum oven at 601; at 120 ° C for 8 to 12 hours, and then transferred to an argon-filled glove box.
- the lithium metal plate is used as the counter electrode
- the ENTEK PE porous film is used as the separator
- the mixed solution of ethylene carbonate of 1 moH 1 lithium hexafluorophosphate and dimethyl carbonate (1:1 by volume) is used as the electrolyte to assemble the CR2016 button battery.
- the LAND battery test system (provided by Wuhan Jinnuo Electronics Co., Ltd.) performs constant current charge and discharge performance test.
- the charge and discharge cutoff voltage is 0.01 ⁇ 1.2 V with respect to Li/Li+, and the charge and discharge rate is 0.05C ⁇ 15C, of which 0.2C corresponds.
- the current density is 300 mA/g.
- mesoporous silica Dissolve 4.0 g of ethylene oxide/propylene oxide block copolymer (trade name Pluronic P123) in a mixed solution of 30.0 g of water and 120.0 g of hydrochloric acid (2 mol/L), and mix well. Add 8.4 g of tetraethyl orthosilicate (TEOS), stir at 35 ° C for 24 hours, then transfer to a hydrothermal reaction kettle, incubate at 100 ° C for 24 hours, cool and centrifuge at 4000 r / min, 95 ° C After drying, it was calcined at 550 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
- TEOS tetraethyl orthosilicate
- the porous silicon substrate is placed in a high-temperature furnace, heated to 900 ° C under argon gas protection, and then acetylene is loaded with argon (the volume ratio of argon to acetylene is 5:1, and the total flow rate is 300 ml/min). ), after 4 hours of heat preservation, a carbon coating layer is formed on the surface of the porous silicon substrate after acetylene cracking to obtain a silicon-carbon composite anode material of a lithium ion battery.
- FIG. 1 The morphology and structure of the porous silicon substrate are shown in Fig. 1.
- the particles are approximately cylindrical, with a length of about 600 nm and a diameter of about 400 nm.
- the pore size distribution curve is shown in Fig. 2.
- the pore diameter is about 40 nm
- the pore volume is 0.56 cm 3 /g
- the specific surface area is 78.5 m 2 /g.
- Figure 3 is a transmission electron micrograph of the interface between a porous silicon substrate and a carbon coating.
- the (111) crystal plane of silicon can be seen with an interplanar spacing of 0.31 nm.
- the carbon coating is amorphous carbon. It is about 7 nm.
- the content of the carbon coating layer was 40.0 wt.%. It can be seen from the electron diffraction photograph in Fig. 3 that silicon has a polycrystalline structure, and the smallest diameter polycrystalline diffraction ring in the photo corresponds to silicon. (111) crystal face.
- the prepared lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
- the first three charge and discharge curves are shown in Fig. 4.
- the capacity-cycle number curve of the first 40 cycles is shown in Fig. 5.
- the efficiency of the first charge and discharge bin is 72.0%, and the reversible capacity after 1 cycle at 0.2C is 1509 mAh/g, and the capacity retention rate is 90.1%.
- the charge and discharge tests were carried out at 0.05C, 0.2C, 0.5C, 1C, 4C, 8C and 15C.
- the reversible capacities were 1583mAh/g, 1556 mAh/g.1370 mAh/g, and 1290 mAh/g. 877 mAh/ g. 598 mAh/g and 474 mAh/g, as shown in Figure 6.
- the electrochemical performance of the material is superior to that of the conventionally prepared silicon-carbon composite.
- mesoporous silica Dissolve 3.( ⁇ ?111]:01 1 ⁇ ?123 in a mixed solution of 22.58 water, 3.0 g 1-butanol and 90.0 g hydrochloric acid (2 mol/L), stir well and then add 6.3 gTEOS, stir at 35 °C for 24 hours, then transfer to a hydrothermal reaction kettle, thermostat at 100 °C for 24 hours, cool, centrifuge at 4000r/min, dry at 100 °C, then at 600 ° in air atmosphere C was calcined for 2 hours to obtain mesoporous silica.
- the porous silicon substrate was a polycrystalline structure having an average particle diameter of 2.4 ⁇ m, an average pore diameter of 35 nm, a pore volume of 0.61 cmVg, and a specific surface area of 73.3 m 2 /g.
- Fig. 7 is a transmission electron micrograph of a silicon-carbon composite negative electrode material for a lithium ion battery. From Fig. ⁇ (a), it can be seen that the material has a porous structure, and Fig. 7 (b) shows a porous silicon substrate and a carbon coating. At the interface, the (111) crystal plane of silicon can be seen, the interplanar spacing is 0.31 nm, the carbon coating layer is amorphous carbon, and the thickness is about 5 nm. The content of the carbon coating layer was 25.6 wt%.
- a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
- the first charge and discharge warehouse efficiency was 75.2%, and the reversible capacity after 40 cycles was 1325 mAh/ g . Capacity retention rate. 73.7%.
- mesoporous silica ?123 was dissolved in a mixed solution of 30. (water, 4.0 g of 1-butanol and 120.0 g of hydrochloric acid (2 mol / L), stirred well, then added 8.4 g of TEOS, and then stirred at 35 ° C for 24 hours, then transferred to The hydrothermal reaction vessel was thermostated at 100 ° C for 24 hours, cooled, centrifuged at 4000 r/min, dried 100, and calcined at 600 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
- the temperature is raised to 750 ° C, after 7 hours of heat preservation, it is naturally cooled, and then stirred in 30 ml hydrochloric acid (2 mol / L) for 12 hours, centrifuged 4 times at 4000 r / min, at 80 ° C vacuum drying for 12 hours to obtain a porous silicon substrate;
- the porous silicon substrate is placed in a high-temperature furnace, heated to 900 ° C under argon gas protection, and then acetylene is loaded with argon (the volume ratio of argon to acetylene is 4:1, and the total flow rate is 250 ml / Min), kept for 3 hours, after acetylene cracking, a carbon coating layer is formed on the surface of the porous silicon substrate to obtain a lithium-ion battery silicon-carbon composite anode material.
- the porous silicon substrate has a polycrystalline structure with an average particle diameter of 2.5 ⁇ , an average pore diameter of 32 nm, a pore volume of 0.64 cm 3 /g, and a specific surface area of 73.0 m 2 /g, and its morphology is shown in Fig. 8.
- the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 34.6 wt.%, which is amorphous carbon and has a thickness of about 6 nm.
- a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium-ion battery for charge and discharge test.
- the efficiency of the first charge and discharge warehouse was 72.2%, and the reversible capacity after 40 cycles was 1570 mAh/ g .
- the rate is 84.8%.
- the porous silicon substrate has a polycrystalline structure with an average particle diameter of 700 nm, an average pore diameter of 23 nm, a pore volume of 0.42 cm 3 /g, and a specific surface area of 78.1 m 2 /g.
- the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 18.3 wt.%, which is amorphous carbon and has a thickness of about 4 nm.
- the prepared lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
- the efficiency of the first charge and discharge warehouse was 76.5 %, and the reversible capacity after 40 cycles was 1825 mAh / g .
- the rate is 83.6 %.
- mesoporous silica 3.5 g of Pluronic P123 was dissolved in a mixed solution of 26.3 g of water and 105.0 g of hydrochloric acid (2 mol/L), and after stirring, 7.4 g of TEOS was added, followed by stirring at 35 ° C for 24 hours. Then, the mixture was transferred to a hydrothermal reaction vessel, heated at 100 ° C for 24 hours, cooled, centrifuged at 5000 r/min, dried 80, and calcined at 600 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
- the porous silicon substrate has a polycrystalline structure with an average particle diameter of 650 nm, an average pore diameter of 24 nm, a pore volume of 0.43 cm 3 /g, and a specific surface area of 77.8 m 2 /g.
- the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 31.4 wt.%, which is amorphous carbon and has a thickness of about 6 nm.
- a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
- the first charge and discharge coulombic efficiency was 74.1%, and the first lithium insertion capacity was 1855 mAh/g.
- the amount is 1374 mAh/g.
- mesoporous silica 2. ( ⁇ ?123 was dissolved in a mixed solution of 15. (water, 2.0 g of 1-butanol and 60.0 g of hydrochloric acid (2 mol / L), stirred uniformly, then added 4.2 g of TEOS, and then stirred at 35 ° C for 24 hours, then transferred to The hydrothermal reaction vessel was thermostated at 100 ° C for 24 hours, cooled, centrifuged at 6000 r/min, dried 100, and calcined at 550 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
- the porous silicon substrate has a polycrystalline structure with an average particle diameter of 2.5 ⁇ , an average pore diameter of 34 nm, a pore volume of 0.66 cm 3 /g, and a specific surface area of 72.8 m 2 /g.
- the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 20.9 wt.%, which is amorphous carbon and has a thickness of about 4 nm.
- a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test.
- the first charge and discharge coulombic efficiency was 64.0%
- the first lithium insertion capacity was 1242 mAh/g
- the delithiation capacity was 795 mAh. /g.
- mesoporous silica 3.0 8 ?123 was dissolved in a mixed solution of 22.5 8 water, 3.0 g 1-butanol and 135.0 g hydrochloric acid (2 mol / L), stirred well, then added 9.5 g TEOS, and then stirred at 35 ° C for 24 hours, then transferred to water heat
- the reactor was thermostated at 100 ° C for 24 hours, cooled, centrifuged at 5000 r/min, dried 80, and calcined at 650 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
- the porous silicon substrate has a polycrystalline structure with an average particle diameter of 2.6 ⁇ , an average pore diameter of 33 nm, a pore volume of 0.65 cm 3 /g, and a specific surface area of 72.9 m 2 /g.
- the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 29.3 wt.%, which is amorphous carbon and has a thickness of about 6 nm.
- a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium-ion battery for charge and discharge test.
- the efficiency of the first charge and discharge warehouse was 67.2%, the first lithium insertion capacity was 1291 mAh/g, and the lithium removal capacity was 867. mAh/g.
- mesoporous silica Dissolve 4.0 g of Pluronic P123 in a mixed solution of 30.0 g of water and 120.0 g of hydrochloric acid (2 mol/L), stir well, add 8.4 g of TEOS, and stir at 35 ° C for 24 hours. Then, the mixture was transferred to a hydrothermal reaction vessel, kept at a constant temperature of 100 ° C for 24 hours, cooled, centrifuged at 5000 r/min, dried 80, and calcined at 550 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
- the porous silicon substrate has a polycrystalline structure with an average particle diameter of 600 nm, an average pore diameter of 24 nm, a pore volume of 0.44 cm 3 /g, and a specific surface area of 77.7 m 2 /g.
- the content of the carbon coating layer in the silicon-carbon composite anode material of the lithium ion battery is 21.3 wt.%, which is amorphous carbon and has a thickness of about 4 nm.
- a lithium-ion battery silicon-carbon composite anode material was assembled into a lithium ion battery for charge and discharge test. The first charge and discharge coulombic efficiency was 72.0%, the first lithium insertion capacity was 1263 mAh/g, and the delithiation capacity was 910 mAh. /g. Comparative example 1
- the mixture of chlorine gas and hydrogen gas (hydrogen volume content 5%) was heated to 900 ° C, and kept for 2 hours to crack the polyvinyl chloride, and after cooling, a silicon-carbon composite material was obtained, and a non-porous structure was obtained.
- the content of the carbon coating layer is 28.8 wt.%, which is amorphous carbon and has a thickness of about 6 nm.
- a silicon-carbon composite material prepared was assembled into a lithium ion battery for charge and discharge test, and the capacity-cycle number curve of the first 40 cycles was as shown in FIG. Its first charge-discharge coulombic efficiency is 78.0%, the first reversible capacity is 1194 mAh/g, the reversible capacity after 40 cycles is 186 mAh/g, and the capacity retention rate is only 15.6 %. Comparative example 2
- mesoporous silica 2. ( ⁇ ?123 was dissolved in a mixed solution of 15. (water, 2.0 g of 1-butanol and 60.0 g of hydrochloric acid (2 mol / L), stirred uniformly, then added 4.2 g of TEOS, and then stirred at 35 ° C for 24 hours, then transferred to The hydrothermal reaction vessel was thermostated at 100 ° C for 24 hours, cooled, centrifuged at 5000 r/min, dried at 90 V, and then calcined at 650 ° C for 2 hours in an air atmosphere to obtain mesoporous silica.
- the porous silicon substrate has a polycrystalline structure with an average particle diameter of 2.5 ⁇ , an average pore diameter of 34 nm, a pore volume of 0.66 cm 3 /g, and a specific surface area of 72.8 m 2 /g. Carbon-free coating.
- the prepared porous silicon substrate was assembled into a lithium ion battery for charge and discharge test, and the capacity-cycle number curve of the first 40 cycles was as shown in FIG. Its first charge and discharge coulombic efficiency is 81.1%, the first reversible capacity At 2837 mAh/g, the reversible capacity after 40 cycles was 1554 mAh/ g , and the capacity retention was 54.8%. It can be seen from Comparative Example 1 that a lithium ion battery silicon carbon composite material having a porous structure and a carbon coating layer obtained by the present invention has better cycle performance than a silicon carbon composite material having no porous structure, which is beneficial to uniform distribution.
- the porous structure can effectively buffer the volume effect of silicon in the process of inserting and deintercalating lithium, and improve the stability of the electrode structure. It can be seen from Comparative Example 2 that a lithium ion battery silicon carbon composite material having a porous structure and a carbon coating layer obtained by the present invention has better cycle performance than a porous silicon material having no carbon coating layer, which is beneficial to The carbon coating acts to enhance conductivity and maintain the conductive network of the electrodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014500238A JP5992989B2 (ja) | 2011-03-18 | 2012-03-17 | リチウムイオン電池のためのケイ素−炭素複合材料の負極材料およびその製造方法 |
US14/005,791 US9663860B2 (en) | 2011-03-18 | 2012-03-17 | Silicon-carbon composite anode material for lithium ion batteries and a preparation method thereof |
DE112012001289.5T DE112012001289B4 (de) | 2011-03-18 | 2012-03-17 | Silicium-Kohlenstoff-Verbundanodenmaterial für Lithiumionenbatterien und Herstellungsverfahren dafür |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110065254.8 | 2011-03-18 | ||
CN201110065254.8A CN102157731B (zh) | 2011-03-18 | 2011-03-18 | 一种锂离子电池硅碳复合负极材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012126338A1 true WO2012126338A1 (zh) | 2012-09-27 |
Family
ID=44439023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/072491 WO2012126338A1 (zh) | 2011-03-18 | 2012-03-17 | 一种锂离子电池硅碳复合负极材料及其制备方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9663860B2 (zh) |
JP (1) | JP5992989B2 (zh) |
CN (1) | CN102157731B (zh) |
DE (1) | DE112012001289B4 (zh) |
WO (1) | WO2012126338A1 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103515582A (zh) * | 2013-10-10 | 2014-01-15 | 中国海洋石油总公司 | 一种锂离子电池硅碳复合负极材料的制法 |
CN104662715A (zh) * | 2013-05-30 | 2015-05-27 | 株式会社Lg化学 | 多孔性硅类负极活性物质及其制备方法、包含它的锂二次电池 |
US9196896B2 (en) | 2012-07-24 | 2015-11-24 | Lg Chem, Ltd. | Porous silicon-based electrode active material and secondary battery comprising the same |
JP2016502253A (ja) * | 2013-09-17 | 2016-01-21 | エルジー・ケム・リミテッド | 多孔性シリコン系負極活物質及びこれを含むリチウム二次電池 |
JP2016515993A (ja) * | 2013-03-13 | 2016-06-02 | エネヴェート・コーポレーション | 電池電極用のケイ素粒子 |
US9512523B2 (en) | 2012-04-19 | 2016-12-06 | Lg Chem, Ltd. | Porous electrode active material and secondary battery including the same |
US9780357B2 (en) | 2012-04-19 | 2017-10-03 | Lg Chem, Ltd. | Silicon-based anode active material and secondary battery comprising the same |
US9879344B2 (en) | 2012-07-26 | 2018-01-30 | Lg Chem, Ltd. | Electrode active material for secondary battery |
US20180069238A1 (en) * | 2013-06-21 | 2018-03-08 | Unist (Ulsan National Institute Of Science And Technology) | Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same |
CN108043437A (zh) * | 2017-11-09 | 2018-05-18 | 国家电网公司 | 一种空心SiC载体型Ir-Ru催化剂的制备方法 |
US10103378B2 (en) | 2010-01-18 | 2018-10-16 | Enevate Corporation | Methods of forming composite material films |
US10461366B1 (en) | 2010-01-18 | 2019-10-29 | Enevate Corporation | Electrolyte compositions for batteries |
US10541412B2 (en) | 2015-08-07 | 2020-01-21 | Enevate Corporation | Surface modification of silicon particles for electrochemical storage |
US10707478B2 (en) | 2017-12-07 | 2020-07-07 | Enevate Corporation | Silicon particles for battery electrodes |
CN111804315A (zh) * | 2020-07-23 | 2020-10-23 | 天津大沽化工股份有限公司 | 一种非汞催化剂纳米材料的制备方法 |
CN114171728A (zh) * | 2021-11-30 | 2022-03-11 | 陕西科技大学 | 一种三维多孔硅碳复合材料、制备方法及其应用 |
US11380890B2 (en) | 2010-01-18 | 2022-07-05 | Enevate Corporation | Surface modification of silicon particles for electrochemical storage |
US11387443B1 (en) | 2021-11-22 | 2022-07-12 | Enevate Corporation | Silicon based lithium ion battery and improved cycle life of same |
Families Citing this family (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102157731B (zh) | 2011-03-18 | 2015-03-04 | 上海交通大学 | 一种锂离子电池硅碳复合负极材料及其制备方法 |
CN102208634B (zh) * | 2011-05-06 | 2014-04-16 | 北京科技大学 | 一种多孔硅/碳复合材料及其制备方法 |
GB2492167C (en) | 2011-06-24 | 2018-12-05 | Nexeon Ltd | Structured particles |
CN102324501B (zh) * | 2011-09-09 | 2013-10-16 | 中国科学院过程工程研究所 | 一种锂离子电池硅基负极复合材料及其制备方法 |
CN103000385B (zh) * | 2011-09-15 | 2016-01-13 | 海洋王照明科技股份有限公司 | 一种超级混合电容电池及其制造方法 |
CN102306798B (zh) * | 2011-09-30 | 2014-06-18 | 南开大学 | 一种用于锂离子二次电池负极材料及其制备方法 |
EP2900596B1 (en) * | 2011-11-30 | 2017-09-27 | Robert Bosch GmbH | Mesoporous silicon/carbon composite for use as lithium ion battery anode material and process of preparing the same |
EP2810322A1 (en) | 2012-01-30 | 2014-12-10 | Nexeon Limited | Composition of si/c electro active material |
CN103288088B (zh) * | 2012-02-23 | 2016-02-17 | 苏州宝时得电动工具有限公司 | 一种多晶硅的制备方法 |
GB2499984B (en) | 2012-02-28 | 2014-08-06 | Nexeon Ltd | Composite particles comprising a removable filler |
US20150064553A1 (en) * | 2012-03-30 | 2015-03-05 | Toda Kogyo Corp. | Negative electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery |
CN103378368B (zh) * | 2012-04-17 | 2016-06-15 | 万向电动汽车有限公司 | 一种硅负极锂离子电池及制造方法 |
KR101396489B1 (ko) * | 2012-05-08 | 2014-05-19 | 세진이노테크(주) | 실리콘계 음극 활물질의 제조 방법, 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지 |
GB2502625B (en) | 2012-06-06 | 2015-07-29 | Nexeon Ltd | Method of forming silicon |
CN102707243A (zh) * | 2012-06-18 | 2012-10-03 | 江苏理士电池有限公司 | 极板干荷性能检测方法 |
EP2693533B1 (en) * | 2012-08-03 | 2018-06-13 | LG Chem, Ltd. | Electrode active material for secondary battery |
US9461304B2 (en) | 2012-08-21 | 2016-10-04 | Kratos LLC | Group IVA functionalized particles and methods of use thereof |
JP6115909B2 (ja) * | 2012-10-22 | 2017-04-19 | 国立研究開発法人産業技術総合研究所 | リチウム二次電池用負極およびその製造方法、並びに該負極を用いたリチウム二次電池および該電池を用いた電気機器 |
GB2507535B (en) | 2012-11-02 | 2015-07-15 | Nexeon Ltd | Multilayer electrode |
CN102969488B (zh) * | 2012-12-05 | 2015-09-23 | 奇瑞汽车股份有限公司 | 一种无定形多孔硅及其制备方法、含该材料的锂离子电池 |
CN102969489B (zh) * | 2012-12-05 | 2016-08-17 | 奇瑞汽车股份有限公司 | 一种硅碳复合材料及其制备方法、含该材料的锂离子电池 |
CN103915609B (zh) * | 2012-12-31 | 2017-10-13 | 宁波杉杉新材料科技有限公司 | 硅‑氧化硅‑碳复合材料、锂离子二次电池负极材料、其制备方法和应用 |
CN103035917B (zh) * | 2013-01-09 | 2014-08-13 | 北京科技大学 | 一种锂离子电池二氧化硅/碳复合负极材料的制备方法 |
DE112013006722B4 (de) * | 2013-02-22 | 2020-10-15 | Kabushiki Kaisha Toyota Jidoshokki | Negativelektrodenaktivmaterial, Herstellungsverfahren für selbiges und elektrischer Speicherapparat |
CN103236525B (zh) * | 2013-05-06 | 2015-09-23 | 奇瑞汽车股份有限公司 | 一种硅碳复合材料及其制备方法、锂离子电池 |
CN103280560B (zh) * | 2013-05-20 | 2015-11-11 | 北京科技大学 | 一种锂离子电池介孔氧化亚硅碳复合负极材料的制备方法 |
CN104347857B (zh) * | 2013-07-29 | 2017-07-07 | 华为技术有限公司 | 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池 |
CN103531760B (zh) * | 2013-10-28 | 2015-07-08 | 北京化工大学 | 一种蛋黄-蛋壳结构多孔硅碳复合微球及其制备方法 |
CN105849947B (zh) * | 2013-12-25 | 2019-12-13 | 株式会社丰田自动织机 | 负极活性物质和其制造方法及蓄电装置 |
CN103700819B (zh) * | 2013-12-30 | 2016-04-06 | 合肥国轩高科动力能源有限公司 | 表面具有梯度变化包覆层的硅复合负极材料的制备方法 |
CN105960726B (zh) * | 2014-01-31 | 2019-12-17 | 株式会社丰田自动织机 | 负极活性物质及其制备方法、负极和非水系二次电池 |
DE102014202156A1 (de) | 2014-02-06 | 2015-08-06 | Wacker Chemie Ag | Si/G/C-Komposite für Lithium-Ionen-Batterien |
KR101567203B1 (ko) | 2014-04-09 | 2015-11-09 | (주)오렌지파워 | 이차 전지용 음극 활물질 및 이의 방법 |
CN104979536B (zh) * | 2014-04-10 | 2018-05-29 | 宁德新能源科技有限公司 | 锂离子电池及其阳极片、阳极活性材料的制备方法 |
CN105024055A (zh) * | 2014-04-15 | 2015-11-04 | 中国科学院宁波材料技术与工程研究所 | 一种锂离子电池多孔纳米硅-碳复合负极材料及其制备方法 |
KR101604352B1 (ko) | 2014-04-22 | 2016-03-18 | (주)오렌지파워 | 음극 활물질 및 이를 포함하는 리튬 이차 전지 |
CN105098185B (zh) * | 2014-04-29 | 2018-08-14 | 华为技术有限公司 | 复合负极材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池 |
KR101692330B1 (ko) * | 2014-06-09 | 2017-01-03 | 울산과학기술원 | 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
KR102276423B1 (ko) * | 2014-06-10 | 2021-07-12 | 삼성전자주식회사 | 복합체, 이를 이용한 전기화학적 활물질 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자 |
EP3158599B1 (en) * | 2014-06-20 | 2019-06-05 | The Regents Of The University Of California | Porous silicon electrode and method |
KR101550781B1 (ko) | 2014-07-23 | 2015-09-08 | (주)오렌지파워 | 2 차 전지용 실리콘계 활물질 입자의 제조 방법 |
CN105470459B (zh) * | 2014-08-11 | 2018-05-15 | 微宏动力系统(湖州)有限公司 | 一种硅碳复合负极材料及其制备方法 |
WO2016053032A1 (ko) * | 2014-10-02 | 2016-04-07 | 주식회사 엘지화학 | 리튬 이차전지용 음극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
KR101766535B1 (ko) | 2014-10-02 | 2017-08-10 | 주식회사 엘지화학 | 리튬 이차전지용 음극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 |
US9780361B2 (en) * | 2014-11-12 | 2017-10-03 | GM Global Technology Operations LLC | Methods for forming porous materials |
CN105720258B (zh) * | 2014-12-03 | 2019-05-31 | 上海杉杉科技有限公司 | 锂离子电池负极材料及其制备方法和应用、锂离子电池 |
GB2533161C (en) | 2014-12-12 | 2019-07-24 | Nexeon Ltd | Electrodes for metal-ion batteries |
JP6434351B2 (ja) * | 2015-03-26 | 2018-12-05 | 株式会社豊田自動織機 | アモルファス含有Si粉末及びその製造方法 |
CN104817064B (zh) * | 2015-05-08 | 2017-03-08 | 吉林大学 | 蛋白石页岩基碳复合材料及制备方法 |
CN105161695A (zh) * | 2015-06-12 | 2015-12-16 | 南通彩都新能源科技有限公司 | 一种锂离子电池负极用球状活性物质粒子及其制备方法、应用 |
DE102015212182A1 (de) * | 2015-06-30 | 2017-01-05 | Robert Bosch Gmbh | Anode für eine Batteriezelle, Verfahren zur Herstellung einer Anode und Batteriezelle |
DE102015212202A1 (de) | 2015-06-30 | 2017-01-05 | Robert Bosch Gmbh | Siliciummonolith-Graphit-Anode für eine Lithium-Zelle |
DE112015006671T5 (de) * | 2015-07-07 | 2018-03-15 | Robert Bosch Gmbh | Silicium-basierter Kompositionswerkstoff mit dreidimensionalem Bindungsnetzwerk für Lithium-Ionen-Batterien |
JP6589513B2 (ja) * | 2015-09-28 | 2019-10-16 | 株式会社豊田自動織機 | シリコン材料の製造方法 |
KR101841327B1 (ko) * | 2015-11-17 | 2018-05-08 | 한양대학교 산학협력단 | 전극 재료 및 그 제조 방법 |
CN105789571B (zh) * | 2016-01-26 | 2018-05-01 | 北京大学 | 多孔碳球包裹的硅/二氧化硅纳米复合材料及其制备方法和应用 |
DE102016203349A1 (de) * | 2016-03-01 | 2017-09-07 | Wacker Chemie Ag | Herstellung von Si/C-Kompositpartikeln |
CN105826528B (zh) * | 2016-03-22 | 2019-01-15 | 浙江大学 | 一种多孔硅-铜复合材料及其制备方法和应用 |
CN105655564B (zh) * | 2016-03-30 | 2019-03-01 | 深圳市国创新能源研究院 | SiOx/C复合负极材料及其制备方法和应用 |
US10734642B2 (en) | 2016-03-30 | 2020-08-04 | Global Graphene Group, Inc. | Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries |
CN106099113B (zh) * | 2016-06-30 | 2019-07-02 | 中南大学 | 一种核壳结构硅碳复合材料及其制备方法 |
KR101889661B1 (ko) | 2016-08-18 | 2018-08-17 | 주식회사 엘지화학 | 실리콘 플레이크를 포함하는 음극재 및 실리콘 플레이크의 제조방법 |
CN106328900B (zh) * | 2016-10-09 | 2019-04-30 | 珠海格力电器股份有限公司 | 一种钛酸锂和碳双层包覆的硅复合材料、制备方法及应用 |
CN106450329A (zh) * | 2016-10-15 | 2017-02-22 | 成都育芽科技有限公司 | 一种高容量高稳定性的锂电池电极用硅碳复合纳米材料 |
CN106450221B (zh) * | 2016-11-11 | 2019-01-11 | 深圳市鑫永丰科技有限公司 | 一种含铝硅碳复合负极材料及其制备方法 |
CN106450322A (zh) * | 2016-11-22 | 2017-02-22 | 东南大学 | 一种多孔硅电极材料及其制备方法和应用 |
CN106299322A (zh) * | 2016-11-24 | 2017-01-04 | 杭州启澄科技有限公司 | 一种高容量锂离子电池电极用复合纳米材料及其制备方法 |
CN106848273B (zh) * | 2017-01-19 | 2018-07-24 | 深圳市沃特玛电池有限公司 | 一种硅碳复合材料的制备方法 |
CN106654228A (zh) * | 2017-01-20 | 2017-05-10 | 中天储能科技有限公司 | 一种多孔SiOx核壳微球的制备方法 |
US11495792B2 (en) | 2017-02-16 | 2022-11-08 | Global Graphene Group, Inc. | Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material |
US10840502B2 (en) | 2017-02-24 | 2020-11-17 | Global Graphene Group, Inc. | Polymer binder for lithium battery and method of manufacturing |
US11978904B2 (en) | 2017-02-24 | 2024-05-07 | Honeycomb Battery Company | Polymer binder for lithium battery and method of manufacturing |
US10985373B2 (en) | 2017-02-27 | 2021-04-20 | Global Graphene Group, Inc. | Lithium battery cathode and method of manufacturing |
CN108666566B (zh) | 2017-03-31 | 2021-08-31 | 华为技术有限公司 | 一种制备电极材料的方法、电极材料及电池 |
US11742475B2 (en) * | 2017-04-03 | 2023-08-29 | Global Graphene Group, Inc. | Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing |
US10483533B2 (en) | 2017-04-10 | 2019-11-19 | Global Graphene Group, Inc. | Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing |
US10916766B2 (en) | 2017-04-10 | 2021-02-09 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method |
US10862129B2 (en) | 2017-04-12 | 2020-12-08 | Global Graphene Group, Inc. | Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method |
CN107146888B (zh) * | 2017-05-16 | 2020-06-05 | 成都城电电力工程设计有限公司 | 一种聚合物修饰的三维有序介孔硅负极材料及其制备方法 |
CN106976865A (zh) * | 2017-05-25 | 2017-07-25 | 上海应用技术大学 | 一种介孔碳材料及其制备方法 |
CN107221673A (zh) * | 2017-06-16 | 2017-09-29 | 安徽科达洁能新材料有限公司 | 一种锂离子电池硅碳负极材料的制备方法 |
US10804537B2 (en) | 2017-08-14 | 2020-10-13 | Global Graphene Group, Inc. | Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing |
US10964951B2 (en) | 2017-08-14 | 2021-03-30 | Global Graphene Group, Inc. | Anode-protecting layer for a lithium metal secondary battery and manufacturing method |
GB201803983D0 (en) | 2017-09-13 | 2018-04-25 | Unifrax I Llc | Materials |
CN107768618A (zh) * | 2017-09-25 | 2018-03-06 | 北京博雅合众环保科技有限公司 | 硅碳复合材料的制备方法及其作为锂离子电池负极材料的应用 |
CN107994217B (zh) * | 2017-11-23 | 2020-05-19 | 广东工业大学 | 一种双包覆硅基复合材料的制备方法及锂离子电池 |
CN108023076B (zh) * | 2017-11-30 | 2020-05-19 | 武汉科技大学 | 一种蜂窝状硅碳复合材料、其制备方法和应用 |
CN108011091B (zh) * | 2017-12-05 | 2020-08-14 | 桂林电器科学研究院有限公司 | 铟铋合金包覆镁硅铁颗粒制备硅铁粉的方法及硅铁粉 |
CN108017057B (zh) * | 2017-12-05 | 2019-09-06 | 桂林电器科学研究院有限公司 | 锡铟合金包覆硅镁颗粒制备泡沫状硅粉的方法及硅粉 |
CN108054355B (zh) * | 2017-12-05 | 2020-01-17 | 桂林电器科学研究院有限公司 | 泡沫状硅粉及其制备方法、锂离子电池 |
CN108039485B (zh) * | 2017-12-05 | 2019-03-15 | 桂林电器科学研究院有限公司 | 泡沫状硅粉与其制备方法以及应用其的锂离子电池 |
CN108039484B (zh) * | 2017-12-05 | 2020-12-11 | 桂林电器科学研究院有限公司 | 海绵状硅粉及其制备方法以及锂离子电池 |
CN108039467B (zh) * | 2017-12-05 | 2020-06-05 | 桂林电器科学研究院有限公司 | 海绵状硅粉及其制备方法及应用其的锂离子电池 |
CN108002389B (zh) * | 2017-12-05 | 2019-05-07 | 桂林电器科学研究院有限公司 | 锌铋合金包覆硅镁颗粒制备泡沫状硅粉的方法及硅粉 |
CN110061198B (zh) * | 2018-01-19 | 2020-12-08 | 中南大学 | 一种硅碳复合负极材料及其制备方法和应用 |
CN108390053B (zh) * | 2018-01-23 | 2020-04-17 | 中国平煤神马能源化工集团有限责任公司 | 一种片状硼掺杂多孔硅电极材料及其制备方法 |
US10573894B2 (en) | 2018-02-21 | 2020-02-25 | Global Graphene Group, Inc. | Protected particles of anode active materials for lithium batteries |
US10601034B2 (en) | 2018-02-21 | 2020-03-24 | Global Graphene Group, Inc. | Method of producing protected particles of anode active materials for lithium batteries |
US11721832B2 (en) | 2018-02-23 | 2023-08-08 | Global Graphene Group, Inc. | Elastomer composite-encapsulated particles of anode active materials for lithium batteries |
CN111936419A (zh) * | 2018-02-28 | 2020-11-13 | 加利福尼亚大学董事会 | 硅锂离子电极材料 |
US10964936B2 (en) | 2018-03-02 | 2021-03-30 | Global Graphene Group, Inc. | Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10971722B2 (en) | 2018-03-02 | 2021-04-06 | Global Graphene Group, Inc. | Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10818926B2 (en) | 2018-03-07 | 2020-10-27 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
US11005094B2 (en) | 2018-03-07 | 2021-05-11 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
CN108493412B (zh) * | 2018-03-20 | 2020-08-21 | 北京工业大学 | 一种多孔硅碳复合负极材料的制备方法 |
US10971723B2 (en) | 2018-04-16 | 2021-04-06 | Global Graphene Group, Inc. | Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles |
US11043694B2 (en) | 2018-04-16 | 2021-06-22 | Global Graphene Group, Inc. | Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles |
CN108682817A (zh) * | 2018-05-21 | 2018-10-19 | 北京工业大学 | 一种用于锂离子电池的多孔硅碳负极材料制备方法 |
CN108735992A (zh) * | 2018-05-21 | 2018-11-02 | 北京工业大学 | 一种以硅藻土为原料的分级多孔硅碳复合结构及制备方法 |
CN108963203A (zh) * | 2018-06-11 | 2018-12-07 | 浙江衡远新能源科技有限公司 | 一种碳包覆的多孔硅复合材料的制备方法 |
US11121398B2 (en) | 2018-06-15 | 2021-09-14 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing cathode material particulates |
US10978698B2 (en) | 2018-06-15 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery |
US10862157B2 (en) | 2018-06-18 | 2020-12-08 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer |
US10854927B2 (en) | 2018-06-18 | 2020-12-01 | Global Graphene Group, Inc. | Method of improving cycle-life of alkali metal-sulfur secondary battery |
US10978744B2 (en) | 2018-06-18 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting anode of a lithium-sulfur battery |
US10957912B2 (en) | 2018-06-18 | 2021-03-23 | Global Graphene Group, Inc. | Method of extending cycle-life of a lithium-sulfur battery |
US10777810B2 (en) | 2018-06-21 | 2020-09-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing a protected lithium anode |
US11276852B2 (en) | 2018-06-21 | 2022-03-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing an elastic anode-protecting layer |
US10873088B2 (en) | 2018-06-25 | 2020-12-22 | Global Graphene Group, Inc. | Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life |
US11239460B2 (en) | 2018-08-22 | 2022-02-01 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US11043662B2 (en) | 2018-08-22 | 2021-06-22 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US10886528B2 (en) | 2018-08-24 | 2021-01-05 | Global Graphene Group, Inc. | Protected particles of cathode active materials for lithium batteries |
US11223049B2 (en) | 2018-08-24 | 2022-01-11 | Global Graphene Group, Inc. | Method of producing protected particles of cathode active materials for lithium batteries |
US10971724B2 (en) | 2018-10-15 | 2021-04-06 | Global Graphene Group, Inc. | Method of producing electrochemically stable anode particulates for lithium secondary batteries |
US10629899B1 (en) | 2018-10-15 | 2020-04-21 | Global Graphene Group, Inc. | Production method for electrochemically stable anode particulates for lithium secondary batteries |
CN109378461A (zh) * | 2018-10-26 | 2019-02-22 | 桑顿新能源科技有限公司 | 一种新型介孔结构硅碳负极材料的制备方法 |
US10971725B2 (en) | 2019-01-24 | 2021-04-06 | Global Graphene Group, Inc. | Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer |
US11791450B2 (en) | 2019-01-24 | 2023-10-17 | Global Graphene Group, Inc. | Method of improving cycle life of a rechargeable lithium metal battery |
CN110335998A (zh) * | 2019-05-29 | 2019-10-15 | 中国平煤神马能源化工集团有限责任公司 | 一种锂离子电池多孔硅碳纳米片复合负极材料及其制备方法 |
CN110240166B (zh) * | 2019-07-04 | 2021-01-12 | 北华航天工业学院 | 一种SiO2@C纳米复合材料及其制备方法 |
CN110828786B (zh) * | 2019-10-09 | 2021-08-06 | 兰溪致德新能源材料有限公司 | 长循环氧化亚硅/碳复合负极材料的制备方法 |
CN111276684A (zh) * | 2020-02-17 | 2020-06-12 | 东南大学 | 一种碳包覆复合材料的制备方法及其应用 |
CN111755684B (zh) * | 2020-07-06 | 2022-05-24 | 马鞍山科达普锐能源科技有限公司 | 一种锂离子电池用硅碳负极材料及其制备方法 |
CN111785969A (zh) * | 2020-07-08 | 2020-10-16 | 吴耀帮 | 多孔纳米Si-SiO2-C@石墨复合锂离子电池负极粉的制备方法以及锂离子电池 |
CN111785946B (zh) * | 2020-07-23 | 2021-12-03 | 苏州大学 | 负极活性材料及其制备及应用 |
TWI830935B (zh) * | 2020-07-24 | 2024-02-01 | 芯量科技股份有限公司 | 多層狀長循環矽碳負極材料之製造方法 |
CN111933922B (zh) * | 2020-08-06 | 2022-05-24 | 中科(马鞍山)新材料科创园有限公司 | 一种具有包覆层的负极极片、其制备方法及用途 |
KR102402461B1 (ko) * | 2020-09-23 | 2022-05-27 | 대주전자재료 주식회사 | 다공성 규소계-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질 |
CN112479177A (zh) * | 2020-11-26 | 2021-03-12 | 天能帅福得能源股份有限公司 | 一种有序介孔硅碳复合材料的制备方法 |
CN112670488A (zh) * | 2021-01-27 | 2021-04-16 | 郑州轻工业大学 | 锂离子电池C@Cu@Si复合多孔负极材料的制备方法 |
CN113003577A (zh) * | 2021-02-24 | 2021-06-22 | 山东大学 | 一种孔隙率可控多孔硅的绿色的制备方法及其应用 |
CN113328096A (zh) * | 2021-05-28 | 2021-08-31 | 成都大学 | 一种硅碳复合材料的制备方法、硅基负极材料和锂离子电池 |
CN114122397B (zh) * | 2021-10-12 | 2023-11-10 | 湖南金硅科技有限公司 | 一种碳纳米管连接的双碳层包覆介孔氧化亚硅复合材料及其制备方法和应用 |
CN114044519B (zh) * | 2021-11-11 | 2023-10-20 | 上海大学 | 一种还原剂可控制备多孔硅材料的方法 |
TWI805123B (zh) * | 2021-12-10 | 2023-06-11 | 芯量科技股份有限公司 | 矽碳複合負極材料及其製備方法與應用 |
CN114242987B (zh) * | 2021-12-22 | 2023-09-26 | 格龙新材料科技(常州)有限公司 | 一种三维多孔硅碳复合材料的制备方法 |
CN114361417B (zh) * | 2021-12-30 | 2023-12-05 | 宁波亿纬创能锂电池有限公司 | 一种负极材料及其制备方法和用途 |
CN114864915B (zh) * | 2022-06-23 | 2023-07-21 | 格龙新材料科技(常州)有限公司 | 一种多孔硅/碳纳米管复合材料的制备方法 |
CN115775883B (zh) * | 2023-02-13 | 2023-06-02 | 四川富临新能源科技有限公司 | 磷酸铁锂正极材料的表面改性方法 |
CN116081627B (zh) * | 2023-02-15 | 2024-06-25 | 盐城工学院 | 一种多孔SiOx@C复合材料的原位液相制备方法 |
CN116014113B (zh) * | 2023-03-23 | 2023-09-19 | 宁德新能源科技有限公司 | 负极材料、二次电池和电子装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101222039A (zh) * | 2006-05-09 | 2008-07-16 | 三星Sdi株式会社 | 包含金属纳米晶体复合物的负极活性物质及其制法以及包含该负极活性物质的阳极和锂电池 |
CN101527357A (zh) * | 2009-04-24 | 2009-09-09 | 清华大学 | 纳米硅无定型碳复合锂离子电池负极材料及其制备方法 |
CN101609891A (zh) * | 2007-07-27 | 2009-12-23 | 三星Sdi株式会社 | Si/C复合物、负极活性材料、及包含其的锂电池 |
CN100576610C (zh) * | 2006-12-22 | 2009-12-30 | 比亚迪股份有限公司 | 一种含硅复合材料及其制备方法 |
CN102157731A (zh) * | 2011-03-18 | 2011-08-17 | 上海交通大学 | 一种锂离子电池硅碳复合负极材料及其制备方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100379059C (zh) | 2005-10-27 | 2008-04-02 | 中国科学院上海硅酸盐研究所 | 一种锂离子电池硅/碳/石墨复合负极材料及其制备方法 |
KR20080006420A (ko) | 2006-07-14 | 2008-01-16 | 이기웅 | 흉터 방지용 탄력 밴드 |
US20090186267A1 (en) * | 2008-01-23 | 2009-07-23 | Tiegs Terry N | Porous silicon particulates for lithium batteries |
CN101510602B (zh) * | 2009-02-19 | 2010-11-03 | 上海交通大学 | 一种锂离子电池用硅复合负极材料的制备方法 |
JP5100694B2 (ja) | 2009-04-01 | 2012-12-19 | 三菱電機株式会社 | 半導体装置 |
TW201133983A (en) * | 2009-11-03 | 2011-10-01 | Envia Systems Inc | High capacity anode materials for lithium ion batteries |
JP5809897B2 (ja) * | 2010-09-17 | 2015-11-11 | 古河電気工業株式会社 | 多孔質シリコン粒子及びその製造方法、並びにリチウムイオン二次電池用負極及びリチウムイオン二次電池 |
KR101634843B1 (ko) * | 2012-07-26 | 2016-06-29 | 주식회사 엘지화학 | 이차전지용 전극 활물질 |
-
2011
- 2011-03-18 CN CN201110065254.8A patent/CN102157731B/zh active Active
-
2012
- 2012-03-17 DE DE112012001289.5T patent/DE112012001289B4/de active Active
- 2012-03-17 US US14/005,791 patent/US9663860B2/en active Active
- 2012-03-17 JP JP2014500238A patent/JP5992989B2/ja active Active
- 2012-03-17 WO PCT/CN2012/072491 patent/WO2012126338A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101222039A (zh) * | 2006-05-09 | 2008-07-16 | 三星Sdi株式会社 | 包含金属纳米晶体复合物的负极活性物质及其制法以及包含该负极活性物质的阳极和锂电池 |
CN100576610C (zh) * | 2006-12-22 | 2009-12-30 | 比亚迪股份有限公司 | 一种含硅复合材料及其制备方法 |
CN101609891A (zh) * | 2007-07-27 | 2009-12-23 | 三星Sdi株式会社 | Si/C复合物、负极活性材料、及包含其的锂电池 |
CN101527357A (zh) * | 2009-04-24 | 2009-09-09 | 清华大学 | 纳米硅无定型碳复合锂离子电池负极材料及其制备方法 |
CN102157731A (zh) * | 2011-03-18 | 2011-08-17 | 上海交通大学 | 一种锂离子电池硅碳复合负极材料及其制备方法 |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11380890B2 (en) | 2010-01-18 | 2022-07-05 | Enevate Corporation | Surface modification of silicon particles for electrochemical storage |
US10103378B2 (en) | 2010-01-18 | 2018-10-16 | Enevate Corporation | Methods of forming composite material films |
US11728476B2 (en) | 2010-01-18 | 2023-08-15 | Enevate Corporation | Surface modification of silicon particles for electrochemical storage |
US11955623B2 (en) | 2010-01-18 | 2024-04-09 | Enevate Corporation | Silicon particles for battery electrodes |
US10622620B2 (en) | 2010-01-18 | 2020-04-14 | Enevate Corporation | Methods of forming composite material films |
US12126007B2 (en) | 2010-01-18 | 2024-10-22 | Enevate Corporation | Silicon particles for battery electrodes |
US12132195B2 (en) | 2010-01-18 | 2024-10-29 | Enevate Corporation | Silicon particles for battery electrodes |
US11196037B2 (en) | 2010-01-18 | 2021-12-07 | Enevate Corporation | Silicon particles for battery electrodes |
US11183712B2 (en) | 2010-01-18 | 2021-11-23 | Enevate Corporation | Electrolyte compositions for batteries |
US10461366B1 (en) | 2010-01-18 | 2019-10-29 | Enevate Corporation | Electrolyte compositions for batteries |
US9831500B2 (en) | 2012-04-19 | 2017-11-28 | Lg Chem, Ltd. | Porous electrode active material and secondary battery including the same |
US9780357B2 (en) | 2012-04-19 | 2017-10-03 | Lg Chem, Ltd. | Silicon-based anode active material and secondary battery comprising the same |
US9512523B2 (en) | 2012-04-19 | 2016-12-06 | Lg Chem, Ltd. | Porous electrode active material and secondary battery including the same |
US9196896B2 (en) | 2012-07-24 | 2015-11-24 | Lg Chem, Ltd. | Porous silicon-based electrode active material and secondary battery comprising the same |
US9879344B2 (en) | 2012-07-26 | 2018-01-30 | Lg Chem, Ltd. | Electrode active material for secondary battery |
JP2016515993A (ja) * | 2013-03-13 | 2016-06-02 | エネヴェート・コーポレーション | 電池電極用のケイ素粒子 |
JP2015524993A (ja) * | 2013-05-30 | 2015-08-27 | エルジー・ケム・リミテッド | 多孔性シリコン系負極活物質、この製造方法、及びこれを含むリチウム二次電池 |
CN104662715A (zh) * | 2013-05-30 | 2015-05-27 | 株式会社Lg化学 | 多孔性硅类负极活性物质及其制备方法、包含它的锂二次电池 |
US9843034B2 (en) | 2013-05-30 | 2017-12-12 | Lg Chem, Ltd. | Porous silicon-based anode active material, method of preparing the same, and lithium secondary battery including the anode active material |
US20180069238A1 (en) * | 2013-06-21 | 2018-03-08 | Unist (Ulsan National Institute Of Science And Technology) | Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same |
US10862116B2 (en) * | 2013-06-21 | 2020-12-08 | Unist (Ulsan National Institute Of Science And Technology) | Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same |
JP2016502253A (ja) * | 2013-09-17 | 2016-01-21 | エルジー・ケム・リミテッド | 多孔性シリコン系負極活物質及びこれを含むリチウム二次電池 |
CN103515582A (zh) * | 2013-10-10 | 2014-01-15 | 中国海洋石油总公司 | 一种锂离子电池硅碳复合负极材料的制法 |
US10541412B2 (en) | 2015-08-07 | 2020-01-21 | Enevate Corporation | Surface modification of silicon particles for electrochemical storage |
CN108043437A (zh) * | 2017-11-09 | 2018-05-18 | 国家电网公司 | 一种空心SiC载体型Ir-Ru催化剂的制备方法 |
CN108043437B (zh) * | 2017-11-09 | 2023-09-22 | 国家电网公司 | 一种空心SiC载体型Ir-Ru催化剂的制备方法 |
US11309536B2 (en) | 2017-12-07 | 2022-04-19 | Enevate Corporation | Silicon particles for battery electrodes |
US10707478B2 (en) | 2017-12-07 | 2020-07-07 | Enevate Corporation | Silicon particles for battery electrodes |
US11539041B2 (en) | 2017-12-07 | 2022-12-27 | Enevate Corporation | Silicon particles for battery electrodes |
US11777077B2 (en) | 2017-12-07 | 2023-10-03 | Enevate Corporation | Silicon particles for battery electrodes |
CN111804315A (zh) * | 2020-07-23 | 2020-10-23 | 天津大沽化工股份有限公司 | 一种非汞催化剂纳米材料的制备方法 |
CN111804315B (zh) * | 2020-07-23 | 2023-02-10 | 天津大沽化工股份有限公司 | 一种非汞催化剂纳米材料的制备方法 |
US11387443B1 (en) | 2021-11-22 | 2022-07-12 | Enevate Corporation | Silicon based lithium ion battery and improved cycle life of same |
CN114171728A (zh) * | 2021-11-30 | 2022-03-11 | 陕西科技大学 | 一种三维多孔硅碳复合材料、制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
JP2014513385A (ja) | 2014-05-29 |
US9663860B2 (en) | 2017-05-30 |
DE112012001289B4 (de) | 2024-01-25 |
US20140147751A1 (en) | 2014-05-29 |
JP5992989B2 (ja) | 2016-09-14 |
CN102157731B (zh) | 2015-03-04 |
DE112012001289T5 (de) | 2013-12-12 |
CN102157731A (zh) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5992989B2 (ja) | リチウムイオン電池のためのケイ素−炭素複合材料の負極材料およびその製造方法 | |
CN108428876B (zh) | 一种高性能硅/碳纳米复合负极材料及其制备方法 | |
US20230268494A1 (en) | Silicon-based anode material and preparation method therefor, and secondary battery | |
CN106848199B (zh) | 一种锂离子电池纳米硅/多孔碳复合负极材料及其制备方法和应用 | |
CN109167031B (zh) | 一种纳米硅碳复合材料及其制备方法和应用 | |
CN103311522B (zh) | 一种硅/碳复合微球负极材料及其制备方法和用途 | |
CN113078318A (zh) | 一种三维多孔硅碳复合材料、其制备方法及其应用 | |
CN106099113B (zh) | 一种核壳结构硅碳复合材料及其制备方法 | |
CN107994217B (zh) | 一种双包覆硅基复合材料的制备方法及锂离子电池 | |
CN111048770B (zh) | 一种三元掺杂的硅基复合材料及其制备方法和应用 | |
CN108682820B (zh) | 一种硅碳复合负极材料和负极片及其制备方法以及锂离子电池 | |
CN102208635A (zh) | 一种锂离子电池负极材料及其制作方法、锂离子电池 | |
CN103165874A (zh) | 一种锂离子电池多孔硅负极材料及其制备方法和用途 | |
JP7575600B2 (ja) | コアシェル構造を有するシリコン基粒子およびその製造方法、負極材料、極片と電池 | |
CN113764642A (zh) | 一种含锂硅氧化物复合负极材料及其制备方法和锂离子电池 | |
CN113851627A (zh) | 一种多孔硅碳负极材料及其制备方法 | |
CN109167032A (zh) | 一种纳米硅基复合材料及其制备方法和应用 | |
CN112635727A (zh) | 具有核壳结构的硅氧颗粒及其制备方法、负极材料、电池 | |
EP4379865A1 (en) | Two-element lithium supplementing additive, preparation method therefor, and use thereof | |
CN109286014A (zh) | 一种表面改性的硅碳复合材料及其制备方法和应用 | |
CN111342014A (zh) | 一种锂离子电池硅碳负极材料及其制备方法 | |
CN114314594B (zh) | 一种用作锂离子电池负极材料的纳米片状硅碳复合材料及其制备方法 | |
WO2021102847A1 (zh) | 负极材料及包含其的电化学装置和电子装置 | |
CN113903891B (zh) | 一种含准金属态锂的无定形碳基复合负极材料的制备方法和应用 | |
CN116454256B (zh) | 硅碳复合材料的制备方法、硅碳复合材料和电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12760480 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014500238 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120012895 Country of ref document: DE Ref document number: 112012001289 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14005791 Country of ref document: US |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULR 112(1) EPC (EPO FORM 1205A DATED 15-01-2014 ) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12760480 Country of ref document: EP Kind code of ref document: A1 |