[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012120893A1 - 不揮発性記憶装置の製造方法 - Google Patents

不揮発性記憶装置の製造方法 Download PDF

Info

Publication number
WO2012120893A1
WO2012120893A1 PCT/JP2012/001620 JP2012001620W WO2012120893A1 WO 2012120893 A1 WO2012120893 A1 WO 2012120893A1 JP 2012001620 W JP2012001620 W JP 2012001620W WO 2012120893 A1 WO2012120893 A1 WO 2012120893A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
layer
oxide material
resistance
electrode
Prior art date
Application number
PCT/JP2012/001620
Other languages
English (en)
French (fr)
Inventor
高橋 一郎
三河 巧
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013503399A priority Critical patent/JP5518250B2/ja
Priority to US13/997,818 priority patent/US8927331B2/en
Publication of WO2012120893A1 publication Critical patent/WO2012120893A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Definitions

  • the present invention relates to a variable resistance nonvolatile memory element whose resistance value changes according to an applied electrical signal, and more particularly, to a bipolar operation type nonvolatile memory whose resistance value reversibly changes based on electrical signals having different polarities.
  • the present invention relates to a method for manufacturing a nonvolatile memory device provided with a volatile memory element.
  • variable resistance nonvolatile memory element has a property that a resistance value reversibly changes by an electrical signal, and is an element capable of storing information corresponding to the resistance value in a nonvolatile manner. That means.
  • a variable resistance nonvolatile memory element has a structure in which a variable resistance layer made of a variable resistance material is sandwiched between a pair of electrodes, and a difference in electrical characteristics between the pair of electrodes. Based on the above, it is roughly divided into a bipolar operation type and a unipolar operation type.
  • a bipolar operation type nonvolatile memory element (hereinafter referred to as a “bipolar operation type element”) has a voltage for changing a resistance state from a high resistance state to a low resistance state (low resistance) and a low resistance state to a high resistance state. This is an element of a type in which the voltage for changing the resistance state to a state (high resistance) has different polarities.
  • a unipolar operation type nonvolatile memory element hereinafter referred to as “unipolar operation type element” is a type of element in which the voltage for reducing the resistance and the voltage for increasing the resistance have the same polarity. It is.
  • Patent Document 2 discloses a resistance variable element in which tantalum oxide layers having different oxygen contents are stacked and used as a resistance variable layer.
  • Patent Document 2 discloses a resistance variable element in which tantalum oxide layers having different oxygen contents are stacked and used as a resistance variable layer.
  • FIG. 15 is a schematic diagram showing an example of a cross-sectional structure of a nonvolatile memory device having a variable resistance element disclosed in Patent Document 2.
  • the nonvolatile memory device 600 shown in the figure includes a substrate 500, a first wiring 501 formed on the substrate 500, and a first interlayer insulating layer 502 formed on the substrate 500 so as to cover the first wiring 501.
  • the first contact plug 504 penetrates the first interlayer insulating layer 502 and electrically connects the first wiring 501 and the first electrode layer 505.
  • the second contact plug 510 penetrates the second interlayer insulating layer 508 and electrically connects the second electrode layer 507 and the second wiring 511.
  • the resistance change element 512 includes a first electrode layer 505, a resistance change layer 506, and a second electrode layer 507. Furthermore, the resistance change layer 506 is configured by a stacked structure of a first tantalum oxide layer 506a and a second tantalum oxide layer 506b.
  • the second tantalum oxide layer 506b has a composition represented by TaO y satisfying 2.1 ⁇ y ⁇ 2.5, and the first tantalum oxide layer 506a has 0.8 ⁇ x ⁇ . It has a composition represented by TaO x satisfying 1.9.
  • An object of the present invention is to solve the above-described problems and to provide a method for manufacturing a nonvolatile memory device having high endurance characteristics.
  • a method for manufacturing a nonvolatile memory device includes a step of forming a first oxide material layer formed of an oxygen-deficient transition metal oxide, After the step of forming a second oxide material layer made of a metal oxide and having a lower oxygen deficiency than the first oxide material layer, and the step of forming the second oxide material layer, A plasma treatment step of exposing the second oxide material layer to plasma generated by a rare gas.
  • the surface of the second oxide layer is exposed to plasma containing a rare gas, thereby having high endurance characteristics.
  • a non-volatile storage device can be realized.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a nonvolatile memory device according to Embodiment 1 of the present invention.
  • 2A to 2E are cross-sectional views illustrating an example of the first half of the method for manufacturing the nonvolatile memory device according to Embodiment 1 of the present invention.
  • FIGS. 3A to 3G are cross-sectional views illustrating an example of the latter half of the method for manufacturing the nonvolatile memory device according to Embodiment 1 of the present invention.
  • FIG. 4A is a graph comparing the amount of film loss of the second resistance change layer in Examples, Comparative Examples, and Reference Examples according to Embodiment 1 of the present invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a nonvolatile memory device according to Embodiment 1 of the present invention.
  • 2A to 2E are cross-sectional views illustrating an example of the first half of the method for manufacturing the nonvolatile memory device according to Embodiment 1
  • FIG. 4B is a graph showing variations in initial resistance of the resistance variable element after formation of the nonvolatile memory device in the example, the comparative example, and the reference example according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing the relationship between the size of the resistance variable element formed without heat treatment and the square root of the reciprocal of the initial resistance value.
  • FIG. 6 is a diagram showing the relationship between the reciprocal of the slope of the square root of the reciprocal of the initial resistance value of the resistance variable element and the film thickness of the second tantalum oxide layer.
  • 7A to 7D are cross-sectional views showing the main parts of the method for manufacturing the nonvolatile memory device according to Embodiment 2 of the present invention.
  • FIG. 1 is a diagram showing variations in initial resistance of the resistance variable element after formation of the nonvolatile memory device in the example, the comparative example, and the reference example according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing the relationship between the size of the resistance
  • FIG. 8 is a graph comparing the amount of film loss of the second resistance change layer in the first to third embodiments of the present invention.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of the nonvolatile memory device according to Embodiment 3 of the present invention.
  • 10 (a) to 10 (f) are cross-sectional views showing the main parts of the method for manufacturing the nonvolatile memory device according to Embodiment 3 of the present invention.
  • FIG. 11 is a diagram for explaining the formation of a filament in the variable resistance layer.
  • 12A to 12H are cross-sectional views showing the main parts of the method for manufacturing the nonvolatile memory device according to Embodiment 4 of the present invention.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of a nonvolatile memory device according to a modification of the embodiment of the present invention.
  • FIGS. 14A to 14D are cross-sectional views showing the main parts of a method for manufacturing a nonvolatile memory device according to a modification of the embodiment of the present invention.
  • FIG. 15 is a schematic diagram illustrating an example of a cross-sectional structure of a nonvolatile memory device disclosed in Patent Document 2 on which a resistance variable element is mounted.
  • FIG. 16 is a graph showing the relationship between the thickness of the second tantalum oxide layer in the resistance variable element and the thickness after completion of the nonvolatile memory device.
  • FIG. 17 is a graph showing an oxygen concentration profile analysis result of a laminated film having the structure of the resistance variable element described in Patent Document 2.
  • FIG. 18 is a graph showing the relationship between the AES analysis oxygen peak in the second tantalum oxide layer immediately after formation of the resistance variable element and the RTA treatment temperature.
  • the nonvolatile memory device 600 is formed using the resistance variable element 512 disclosed in Patent Document 2, the following problems occur.
  • the variable resistance element 512 is subjected to heat treatment in steps such as formation of an interlayer insulating film, plug formation, wiring formation, and recovery annealing. It will be.
  • a thermal budget is applied to the resistance variable element 512, and oxygen diffuses from the second tantalum oxide layer 506b to the first tantalum oxide layer 506a.
  • FIG. 16 shows the film thickness of the second tantalum oxide layer after the formation of the second tantalum oxide layer in the resistance variable element (hereinafter referred to as “film thickness during film formation”) and the completion of the nonvolatile memory device.
  • film thickness during film formation Is a graph showing the relationship with the film thickness of the second tantalum oxide layer (hereinafter referred to as “film thickness after completion”).
  • the figure shows a resistance variable type having a resistance variable layer composed of a first tantalum oxide material layer represented by TaO x and a second tantalum oxide material layer represented by TaO y.
  • the relationship between the film thickness (graph horizontal axis) of the second tantalum oxide layer in the device and the film thickness after completion (graph vertical axis) is shown.
  • FIG. 16 is a line indicating that the film thickness at the time of forming the second tantalum oxide layer is equal to the film thickness after completion. From the graph of FIG. 16, it can be seen that the film thickness after completion of the second tantalum oxide layer is smaller than the film thickness at the time of film formation. This indicates that the film thickness of the second tantalum oxide layer has decreased between the formation of the variable resistance element and the completion of the nonvolatile memory device (see “film reduction amount” in the figure). .
  • FIG. 17 is a graph showing the analysis result of the oxygen concentration profile for the laminated film having the same structure as the resistance variable element described in Patent Document 2.
  • the graph shown in the figure is composed of the first tantalum oxide material layer represented by TaO x , the second tantalum oxide material layer represented by TaO y , and iridium.
  • AES Auger electron spectroscopy
  • the figure also shows the oxygen concentration profile of the sample (dashed line) given the thermal budget after the iridium as the second electrode material layer was deposited, and the oxygen concentration profile of the sample not given the thermal budget (solid line). And are shown together.
  • the thermal budget is a general term for a thermal process applied to the variable resistance layer in a standard process for forming an interlayer insulating film, wiring, protective film, etc. after the variable resistance element is formed.
  • the thermal budget was set to 400 ° C. for 30 minutes.
  • the peak intensity of oxygen in the second tantalum oxide material layer (in region Z of FIG. 17) is attenuated, and oxygen in the first tantalum oxide material layer is reduced.
  • the peak intensity is increasing. This indicates that the oxygen in the second tantalum oxide material layer has diffused into the first tantalum oxide material layer by applying the thermal budget.
  • the resistance value and resistance change characteristic of the resistance change element 512 depend on the film thickness and oxygen content of the second tantalum oxide material layer. Therefore, as shown in FIG. 17, oxygen is diffused from the second tantalum oxide material layer by a given thermal budget, and the oxygen content and film thickness of the second tantalum oxide material layer are reduced. And resistance value and resistance change characteristic will also change. Therefore, in order to obtain a nonvolatile memory device having a desired resistance value and resistance change characteristics, it is necessary to suppress the deterioration of the oxygen concentration profile due to the thermal budget. Degradation of the oxygen concentration profile due to the thermal budget causes variations in the film characteristics and film thickness of the second tantalum oxide layer within the wafer surface, resulting in degradation of reliability characteristics such as endurance.
  • the film thickness of the second tantalum oxide layer after the nonvolatile memory device is formed does not decrease, that is, the second tantalum oxide is applied by the given thermal budget.
  • a technique for manufacturing a nonvolatile memory device without diffusing oxygen from the layer becomes indispensable.
  • FIG. 18 is a graph showing the relationship between the AES analysis oxygen peak in the second tantalum oxide layer immediately after formation of the resistance variable element and the RTA treatment temperature.
  • the RTA temperature is increased to 450 ° C.
  • the AES analysis oxygen peak in the second tantalum oxide layer is significantly reduced, and the second tantalum oxide layer which is a high resistance layer Oxygen has already diffused during the RTA annealing after film formation.
  • RTA at 400 ° C. has an effect of suppressing oxygen diffusion by strengthening Ta—O bond, but from the result of RTA at 450 ° C., oxygen diffusion also proceeds simultaneously.
  • the present inventor has a limit to reforming the film in which oxygen diffusion is suppressed by applying thermal energy to the second tantalum oxide layer, which is a high resistance layer. It was considered effective to give energy to the second tantalum oxide which is the resistance layer.
  • the problem of oxygen diffusion is a problem that occurs similarly in the case of a resistance change layer having an oxide layer composed of not only a tantalum oxide but also an oxygen-deficient transition metal oxide.
  • a method for manufacturing a nonvolatile memory device includes a step of forming a first oxide material layer including an oxygen-deficient transition metal oxide.
  • a step of forming a second oxide material layer made of a transition metal oxide and having a lower oxygen deficiency than the first oxide material layer, and a step of forming the second oxide material layer And a plasma processing step of exposing the second oxide material layer to plasma generated by a rare gas.
  • the effective film thickness reduction of the second oxide material layer can be suppressed, and the element performance of the resistance variable element can be improved.
  • variation in voltage applied to the resistance change layer can be suppressed by suppressing variation in element performance, and high endurance characteristics can be realized.
  • the second oxide material layer may be exposed to plasma generated only by a rare gas.
  • the rare gas may be a single kind of rare gas.
  • the method may further include a step of forming a first electrode material layer on the substrate and a step of forming a second electrode material layer on the second oxide material layer, In the step of forming the oxide material layer, the first oxide material layer is formed on the first electrode material layer, and in the step of forming the second oxide material layer, the first oxide material layer is formed.
  • the second oxide material layer may be formed on the oxide material layer.
  • the method further includes a step of forming a first electrode material layer on the substrate, and a step of forming a second electrode material layer on the first oxide material layer, In the step of forming the oxide material layer, the second oxide material layer is formed on the first electrode material layer, and in the step of forming the first oxide material layer, the second oxide material layer is formed.
  • the first oxide material layer may be formed on the oxide material layer.
  • a method for manufacturing a nonvolatile memory device includes a step of forming a first electrode material layer over a substrate, and an oxygen-deficient transition metal oxide over the first electrode material layer.
  • a step of depositing a first oxide material layer comprising: a transition metal oxide on the first oxide material layer, wherein the oxygen deficiency is higher than that of the first oxide material layer;
  • the second oxide material layer is converted into a plasma generated by a gas containing at least a rare gas.
  • An exposure plasma treatment step a step of forming a second electrode material layer on the second oxide material layer after the plasma treatment step; the first electrode material layer; and the first oxide material.
  • the variable resistance element including a first electrode layer, a first variable resistance layer, a second variable resistance layer, and a second electrode layer formed by patterning, the first electrode layer and the second electrode layer Forming a conductive path from a surface in contact with the second electrode layer to a surface in contact with the first variable resistance layer by applying an initialization voltage pulse between the first variable resistance layer and the second variable resistance layer. It is characterized by including.
  • the method for manufacturing a nonvolatile memory device includes a step of forming a first electrode material layer on a substrate, and a transition metal oxide on the first electrode material layer.
  • the second After the step of depositing a high first oxide material layer and the step of depositing the second oxide material layer and before the step of depositing the first oxide material layer, the second After the plasma treatment step of exposing the oxide material layer to a plasma generated by a gas containing at least a rare gas and the step of depositing the first oxide material layer, the oxide material layer is formed on the first oxide material layer.
  • the first electrode layer of the second resistance change layer Forming a conductive path from a surface in contact with the surface in contact with the first variable resistance layer.
  • These manufacturing methods can suppress the diffusion of oxygen from the second oxide material layer to the first oxide material layer in a process involving heat treatment after forming the second oxide material layer. Thereby, the effective film thickness reduction of the second oxide material layer can be suppressed, and the element performance of the resistance variable element can be improved. In addition, variation in voltage applied to the resistance change layer can be suppressed by suppressing variation in element performance, and high endurance characteristics can be realized. In addition, since the second tantalum oxide material layer formed as a deposited film suppresses variations in film thickness compared to the film formed by oxidation, it becomes possible to form a filament with a lower forming voltage. Forming processing becomes easy. Further, the filament current flowing through the formed filament is stabilized.
  • the plasma processing step may include a mixed plasma processing step in which the second oxide material layer is exposed to plasma generated by a mixed gas of a rare gas and oxygen.
  • a single gas plasma processing step of exposing the second oxide material layer to plasma generated by a single kind of rare gas may be further included before the mixed plasma processing step.
  • the plasma processing step may further include an annealing step in which heat treatment is performed in a nitrogen gas atmosphere after the mixed plasma processing step.
  • the step of forming the second oxide material layer and the plasma treatment step may be repeated a plurality of times in succession.
  • the oxygen defect portion is further effective by repeatedly performing the film formation step of the second oxide material layer and the plasma treatment step of the surface of the second oxide material layer a plurality of times. Can be repaired. Thereby, it can suppress effectively that the effective film thickness of a 2nd oxide material layer reduces.
  • the first oxide material layer is made of tantalum oxide having a composition represented by TaO x (where 0.8 ⁇ x ⁇ 1.9), and the second oxide material layer
  • the layer may be made of tantalum oxide having a composition represented by TaO y (where x ⁇ y).
  • the resistance value of the resistance change layer can be changed stably.
  • Embodiments 1 to 3 a structure in which a first tantalum oxide layer having a low oxygen content is formed on a first electrode and a second tantalum oxide layer having a high oxygen content is formed thereon. (B mode structure) will be described.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a nonvolatile memory device according to Embodiment 1 of the present invention.
  • the nonvolatile memory device 10 illustrated in the figure is a nonvolatile memory device having a resistance variable element 112, and includes a substrate 100, a first wiring 101 formed on the substrate 100, and a first on the substrate 100.
  • the first interlayer insulating layer 102 is composed of a silicon oxide film or the like (thickness: 500 to 1000 nm).
  • the second interlayer insulating layer 108 is composed of a silicon oxide film (thickness: 500 to 1000 nm).
  • the first contact plug 104 penetrates the first interlayer insulating layer 102 and electrically connects the first wiring 101 and the first electrode layer 105.
  • the second contact plug 110 penetrates through the second interlayer insulating layer 108 and electrically connects the second electrode layer 107 and the second wiring 111.
  • the variable resistance element 112 includes a first electrode layer 105 (thickness: 5 to 100 nm) made of tantalum nitride or the like, a variable resistance layer 106 (thickness: 20 to 100 nm), and a noble metal (Pt, Ir, Pd, etc.).
  • a second electrode layer 107 (thickness: 5 to 100 nm).
  • a noble metal is preferably used in terms of resistance change characteristics.
  • processing of a noble metal is difficult, but in the present embodiment, processing is relatively easy because the second electrode layer 107 is disposed on the resistance variable element 112.
  • the first electrode layer 105 includes, for example, Au (gold), Pt (platinum), Ir (iridium), Cu (copper), TaN (tantalum nitride), Ta (tantalum), Ti (titanium), TiN ( One or a plurality of materials of (titanium nitride) may be used.
  • the first electrode layer 105 may be the same size as the second electrode layer 107.
  • the arrangement of each electrode layer and each metal oxide layer may be arranged upside down.
  • the resistance change layer 106 includes a first resistance change layer 106a which is a first oxide layer made of tantalum oxide which is an oxygen-deficient transition metal oxide, and a second oxidation made of tantalum oxide.
  • the second variable resistance layer 106b which is a physical layer, is laminated.
  • the oxygen content rate of the second resistance change layer 106b is higher than the oxygen content rate of the first resistance change layer 106a.
  • an oxygen-deficient transition metal oxide is an oxidation in which the oxygen content (atomic ratio: the ratio of the number of oxygen atoms to the total number of atoms) is lower than that of an oxide having a stoichiometric composition. Say things.
  • the transition metal element is tantalum (Ta)
  • the stoichiometric oxide composition is Ta 2 O 5 and the ratio of the number of atoms of Ta and O (O / Ta) is 2.5. is there. Therefore, in the oxygen-deficient Ta oxide, the atomic ratio of Ta and O is larger than 0 and smaller than 2.5.
  • the tantalum oxide composition of the first resistance change layer 106a is TaO x , x is 0.8 or more and 1.9 or less, the tantalum oxide composition of the second resistance change layer 106b is TaO y, and y is 2 It is preferably 1 or more and 2.5 or less.
  • the resistance value of the resistance change layer 106 can be stably changed at high speed.
  • the second resistance change layer 106b is exposed to Ar plasma after tantalum oxide, which is a constituent material of the second resistance change layer 106b, is deposited by sputtering. Thereby, it is possible to suppress diffusion of oxygen in the tantalum oxide constituting the second resistance change layer 106b due to a thermal budget generated in the subsequent element formation process or the like.
  • the resistance variable element 112 in the nonvolatile memory device 10 changes from a high resistance state to a low resistance state by applying a negative voltage pulse to the second electrode layer 107 with respect to the first electrode layer 105.
  • the resistance variable element 112 is changed from a low resistance state to a high resistance state (high resistance).
  • the positive voltage pulse applied to the second electrode layer 107 causes oxygen ions in the first resistance change layer 106a to be taken into the second resistance change layer 106b, and the oxygen content of the second resistance change layer 106b. Will increase. It is inferred that this leads to higher resistance.
  • FIGS. 3 (a) to 3 (g) are respectively a first half process and a second half of the method for manufacturing the nonvolatile memory device according to the first embodiment of the present invention. It is sectional drawing which shows an example of a process. The main part of the manufacturing method of the nonvolatile memory device 10 will be described using these. In addition, the following description is an example to the last and is not limited to a specific material, a processing method, and processing conditions. The following manufacturing methods can be applied in combination with known methods.
  • FIG. 2A is a cross-sectional view after the step of forming the first wiring 101.
  • a conductive layer (thickness: 400 to 600 nm) made of aluminum is formed by a sputtering method over a substrate 100 which is a semiconductor substrate on which transistors, lower layer wirings, and the like are formed.
  • the first wiring 101 is formed by patterning using a desired mask and processing by dry etching. Thus, the first wiring 101 is formed.
  • FIG. 2B is a cross-sectional view after the step of forming the first interlayer insulating layer 102.
  • plasma TEOS tetraethyl orthosilicate
  • CVD Chemical Vapor Deposition
  • the first interlayer insulating layer 102 (thickness: 500 to 1000 nm) is formed by planarizing the surface.
  • the first interlayer insulating layer 102 is formed.
  • a fluorine-containing oxide for example, FSG
  • a low-k material may be used to reduce parasitic capacitance between wirings.
  • FIG. 2C is a cross-sectional view after the step of forming the first contact hole 103.
  • a first contact hole 103 (diameter: 50 to 300 nm) penetrating the first interlayer insulating layer 102 and connected to the first wiring 101 is formed by patterning using a desired mask and processing by dry etching. To do.
  • the width of the first wiring 101 is larger than that of the first contact hole 103.
  • FIG. 2D is a cross-sectional view after the step of filling the conductive material of the first contact plug 104.
  • a titanium (Ti) / titanium nitride (TiN) layer (thickness: 5 to 30 nm each) functioning as an adhesion layer and a diffusion barrier is formed as a lower layer by a sputtering method / CVD method, respectively.
  • tungsten (W, thickness: 200 to 400 nm) which is a main component of the contact plug, is formed on the upper layer by a CVD method.
  • the first contact hole 103 is filled with a conductive layer 104M (W / Ti / TiN structure) having a stacked structure that will later become the first contact plug 104.
  • FIG. 2E is a cross-sectional view after the step of forming the first contact plug 104.
  • the entire surface of the wafer is planarized and polished using a chemical mechanical polishing method (CMP method), and the unnecessary conductive layer 104M on the first interlayer insulating layer 102 is removed.
  • CMP method chemical mechanical polishing method
  • FIG. 3A is a cross-sectional view after the step of forming the first electrode material layer 105M and the tantalum oxide material layer 106aF.
  • the first contact plug 104 is covered, and a first electrode material layer 105M (thickness: 20 to 50 nm) made of tantalum nitride (TaN) is sputtered on the first interlayer insulating layer 102.
  • a first electrode material layer 105M thickness: 20 to 50 nm
  • TaN tantalum nitride
  • a tantalum oxide material layer 106aF which is a first oxide material layer, is formed over the first electrode material layer 105M by a sputtering method.
  • the tantalum oxide material layer 106aF is formed by a so-called reactive sputtering method in which a sputtering target made of tantalum is sputtered in an atmosphere containing oxygen.
  • the thickness of the tantalum oxide material layer 106aF can be measured using a spectroscopic ellipsometry method, for example, the thickness is 30 nm.
  • Sputtering conditions were a power output of 1000 W, a film forming pressure of 0.05 Pa, a mixed gas of argon and oxygen as the sputtering gas, and an oxygen flow rate such that the resistivity of the tantalum oxide material layer 106aF was 3 m ⁇ cm, for example.
  • the tantalum oxide material layer 106aF is a thin film before being patterned to become the first resistance change layer 106a, and constitutes the first resistance change layer 106a.
  • the first electrode material layer 105M and the tantalum oxide material layer 106aF are formed.
  • FIG. 3B is a cross-sectional view after the first film forming step of forming the tantalum oxide material layer 106bF having a higher resistivity than the tantalum oxide material layer 106aF.
  • the tantalum oxide material layer 106bF that is the second oxide material layer is formed over the tantalum oxide material layer 106aF.
  • the tantalum oxide material layer 106bF is formed by RF magnetron sputtering using tantalum oxide having a composition represented by Ta 2 O 5 as a sputtering target and using argon (Ar) as a sputtering gas.
  • the sputtering conditions are, for example, an RF power output of 200 W, a deposition pressure of 0.3 Pa, an argon gas flow rate of 300 sccm, and a substrate temperature of room temperature.
  • the thickness of the tantalum oxide material layer 106bF effective for causing a resistance change with the tantalum oxide material layer 106aF is 3 to 10 nm, and the thickness is measured using a spectroscopic ellipsometry method. Further, the film formation rate when the tantalum oxide material layer 106bF is formed using the above-described sputtering conditions is, for example, 1.2 nm / min.
  • the tantalum oxide material layer 106bF is a layer before being subjected to surface treatment and patterning to form the second resistance change layer 106b.
  • FIG. 3C is a cross-sectional view of the process of irradiating Ar plasma to the tantalum oxide material layer 106bF to be the second variable resistance layer 106b.
  • the film quality of the tantalum oxide material layer 106bF is changed by the plasma irradiation.
  • the tantalum oxide material layer after plasma irradiation is referred to as a tantalum oxide material layer 106bA.
  • a plasma apparatus having a power source for generating plasma and a radio frequency (RF) power source from the substrate is used to control the substrate bias.
  • RF radio frequency
  • the substrate temperature at the time of plasma irradiation is room temperature
  • the power source for plasma generation is 500 W
  • the pressure is 3 Pa
  • the processing time is 5 minutes.
  • this step prevents oxygen in the second resistance change layer 106b from diffusing into the first resistance change layer 106a.
  • This Ar plasma irradiation step corresponds to a plasma treatment step in which the surface of the tantalum oxide material layer 106bF is exposed to plasma generated by a gas containing at least a rare gas, and is exposed to plasma generated by a single kind of rare gas. This corresponds to a single gas plasma processing step.
  • Example 1- (1) and Example 1- (2) two conditions of a substrate bias of 0 W and 20 W were implemented (see Table 1).
  • Table 1 is a table for explaining each example of the nonvolatile memory device according to Embodiment 1 and its processing conditions.
  • Example 1- (3) Ar plasma irradiation was first performed under the same conditions as in Example 1- (1), and then RTA treatment was performed at 400 ° C. for 10 minutes in a nitrogen atmosphere (see Table 1). ).
  • Example 1- (4) Ar plasma irradiation was performed under the same conditions as in Example 1- (2), and then RTA treatment was performed at 400 ° C. for 10 minutes in a nitrogen atmosphere (see Table 1). .
  • the manufacturing methods of Examples 1- (3) and 1- (4) are the same as the steps shown in FIGS. 2 and 3 except for the above-described steps.
  • the processing conditions of Examples 1- (3) and 1- (4) are also listed in Table 1.
  • FIG. 3D is a cross-sectional view after the step of forming the second electrode material layer 107M.
  • iridium (Ir) as the second electrode material layer 107M is formed on the tantalum oxide material layer 106bA by a sputtering method.
  • the second electrode material layer 107 ⁇ / b> M is a thin film body before being patterned to form the second electrode layer 107, and constitutes the second electrode layer 107.
  • FIG. 3E is a cross-sectional view after the step of forming the resistance variable element 112.
  • the first electrode material layer 105M, the tantalum oxide material layers 106aF and 106bA, and the second electrode material layer 107M are processed by patterning and dry etching using a mask.
  • a resistance variable element 112 including the first electrode layer 105, the first resistance change layer 106a, the second resistance change layer 106b, and the second electrode layer 107 is formed.
  • the variable resistance element 112 is formed by simultaneously patterning and dry etching the first electrode material layer 105M, the first tantalum oxide material layer 106aF, the second tantalum oxide material layer 106bF, and the second electrode material layer 107M.
  • the method is not limited to the method of forming, and may be formed separately.
  • the first electrode material layer 105M, the first tantalum oxide material layer 106a, the second tantalum oxide material layer 106bF, and the second electrode material layer 107M are not necessarily patterned. May be.
  • the above-described embodiment can also be applied to the case where a hole-buried variable resistance element is formed by embedding some or all of these layers in holes in an insulating interlayer film.
  • FIG. 3F is a cross-sectional view after the step of covering the resistance variable element 112 and forming the second interlayer insulating layer 108 (thickness: 500 to 1000 nm).
  • the second interlayer insulating layer 108 is formed in this step, for example, it is heated to 400 ° C. for the purpose of relaxing the residual stress of the second interlayer insulating layer 108 and removing moisture remaining in the second interlayer insulating layer 108. Heat-treat for 10 minutes in the furnace.
  • FIG. 3G is a cross-sectional view after the step of forming the second contact hole 109 and the second contact plug 110.
  • the second contact hole 109 and the second contact plug 110 are formed by the same manufacturing method as in FIGS. 2 (a) to 2 (e).
  • the second wiring 111 is formed covering the second contact plug 110.
  • heat treatment is performed for 10 minutes in a furnace heated to 400 ° C. for the purpose of preventing corrosion of aluminum constituting the second wiring 111, thereby completing the nonvolatile memory device 10. To do.
  • the manufacturing method of the present invention does not necessarily include the above-described heat treatment step.
  • the effect of the present invention is also effective for a thermal budget generated by introducing a process other than the above heat treatment process, and a thermal budget applied due to various other factors.
  • examples, reference examples, and comparative examples will be described based on the thermal budget generated by the above-described heat treatment process, but this is an example of the description, and the present invention is not limited thereto.
  • FIG. 4A is a graph comparing the amount of film loss of the second resistance change layer in Examples, Comparative Examples, and Reference Examples according to Embodiment 1 of the present invention.
  • the amount is being compared.
  • the left side of the vertical axis represents the second calculated from the film thickness when the second resistance change layer 106b is formed (black circle in FIG. 4A) and the electrical characteristics after the nonvolatile memory device is completed.
  • This represents the film thickness (white circle in FIG. 4A) of the resistance change layer 106b.
  • the film thickness of the second variable resistance layer 106b calculated from the electrical characteristics is the film of the second variable resistance layer 106b converted from the initial resistance value of the second variable resistance layer 106b after completion of the nonvolatile memory device. It is thick.
  • FIG. 5 is a diagram showing the relationship between the size of the resistance variable element 112 formed without heat treatment and the square root of the reciprocal of the initial resistance value (hereinafter referred to as (1 / ⁇ ) 1/2 ).
  • the thickness of the second resistance change layer is 3 nm (black circle in FIG. 5), 4 nm (black rhombus in FIG. 5), and 5 nm (black triangle in FIG. 5).
  • the film thickness 106b the relationship between the size of the resistance variable element 112 and (1 / ⁇ ) 1/2 is shown.
  • the size of the resistance variable element 112 shown on the horizontal axis in FIG. 5 refers to the length of one side of the resistance variable element 112 having a square shape in plan view.
  • FIG. 6 shows the relationship between the reciprocal (1 / g) of the slope (g) of the square root of the reciprocal of the initial resistance value of the variable resistance element 112 and the film thickness of the second variable resistance layer 106b. From FIG. 6, it can be seen that the film thickness of the second variable resistance layer 106b is linearly related to the reciprocal of g. Assuming that the oxygen concentration profile is represented on a straight line shown in FIG. 6 as well the thickness of the second variable resistance layer 106b degraded by the heat treatment, the effective thickness d a of the second variable resistance layer 106b is 6 can be defined by the linear equation shown in FIG. 6, that is, the following equation (1).
  • d a represents the effective thickness of the second variable resistance layer 106b. That is, the effective film thickness is the resistance variable element 112 in the case where the annealing is not performed from the initial resistance value of the annealed second resistance change layer 106b to the annealed second resistance change layer 106b. It is the film thickness converted into the film thickness of the second resistance change layer 106b.
  • the effective thickness d a of the second variable resistance layer 106b shown in equation (1) it is possible to evaluate the degree of degradation of the oxygen concentration profile.
  • the effective thickness d a is the thickness of the second variable resistance layer 106b which is converted from the initial resistance value of the second variable resistance layer 106b after the nonvolatile memory device completed.
  • the right side of the vertical axis shows the second resistance change layer calculated from the film thickness at the time of film formation of the second resistance change layer 106b and the electrical characteristics after the nonvolatile memory device 10 is completed.
  • the difference from the film thickness of 106b that is, the amount of film reduction of the second resistance change layer 106b (black triangle in FIG. 4A) is shown.
  • the film loss amount is a value corresponding to the diffusion amount of oxygen in the second resistance change layer 106b.
  • a large value means that oxygen in the second resistance change layer 106b diffuses and is non-volatile.
  • the film thickness of the second variable resistance layer 106b after the storage device 10 is formed is small. Note that the thickness of the second resistance change layer 106b during film formation and the thickness of the second resistance change layer 106b calculated from the electrical characteristics are different from each other in measurement method, so the absolute value of the difference is strictly an actual value. However, it is considered that the difference in the amount of film loss between the conditions represents the difference in the oxygen content contained in the second resistance change layer 106b.
  • Comparative Example H- (1) is a sample formed by forming the tantalum oxide material layer 106bF, which is a high resistance layer, and depositing the upper Ir electrode as it is.
  • the film thickness (film thickness at the time of film formation) when the tantalum oxide material layer 106bF was formed was 5.5 nm, whereas the nonvolatile memory device 10 was formed.
  • the film thickness (film thickness after completion) evaluated from the later electrical characteristics is reduced to 3.6 nm. That is, the thickness reduction amount of the second resistance change layer 106b was 1.9 nm.
  • Reference Example H- (2) is a sample obtained by forming a tantalum oxide material layer 106bF and then performing a heat treatment at 400 ° C. for 10 minutes in a nitrogen atmosphere.
  • the film thickness when the tantalum oxide material layer 106bF was formed was 5.5 nm
  • the film thickness evaluated from the electrical characteristics after the device was formed was It was 3.9 nm. That is, the amount of film loss of the second resistance change layer 106b was 1.6 nm.
  • a heat treatment is performed at 400 ° C. for 10 minutes in an N 2 atmosphere. It turns out that it was suppressed to some extent.
  • the present inventor has considered that it is effective to apply energy to the tantalum oxide material layer 106bF without applying thermal energy to the tantalum oxide material layer 106bF which is a high resistance layer.
  • the manufacturing method according to the embodiment of the present invention generates a rare gas plasma such as Ar (argon), Kr (krypton), Xe (xenon), He (helium), and Ar + and Kr in the plasma. This includes a step of supplying energy by causing + , Xe + and He + to collide with the film surface of the tantalum oxide material layer 106bF.
  • Example 1- (1) the RF power of the substrate bias power supply is set to 0 W
  • Example 1- (2) the RF power of the substrate bias power supply is set to 0 W. 20W.
  • Example 1- (1) and Example 1- (2) show almost the same results as Reference Example H- (2) that was heat-treated at 400 ° C. for 10 minutes. .
  • a heat treatment at 400 ° C. for 10 minutes is performed after the formation of the tantalum oxide material layer 106bF by performing a rare gas plasma irradiation process such as Ar.
  • a rare gas plasma irradiation process such as Ar. It is shown that the same oxygen diffusion suppression effect as that obtained is achieved. That is, in this embodiment, oxygen diffusion from the second variable resistance layer 106b with improved film quality is achieved by supplying energy of rare gas ions in plasma to the tantalum oxide material layer 106bF which is a high resistance layer.
  • Example 1- (1) and Example 1- (2) since the amount of film reduction is almost the same, the RF power for attracting Ar ions is not applied even if it is applied. Also good. However, since the tantalum oxide material layer 106bF is etched when the RF power of the substrate bias power supply exceeds 50 W, the above conditions are set such that the tantalum oxide material layer 106bF is not etched by the rare gas plasma in order to avoid this. In this example, the RF power is preferably 0 W or more and 50 W or less.
  • FIG. 4B is a graph showing variations in initial resistance of the resistance variable element after formation of the nonvolatile memory device in the example, the comparative example, and the reference example according to Embodiment 1 of the present invention.
  • the initial resistance varies greatly due to the heat treatment. I understand.
  • Example 1- (1) and Example 1- (2) irradiated with a rare gas plasma at room temperature it can be seen that variations in initial resistance can be suppressed as compared with Reference Example H- (2).
  • the above-described effects are not obtained only when the plasma gas is Ar, and other rare gases may be used.
  • the plasma gas is Ar, and other rare gases may be used.
  • ions in the rare gas plasma are irradiated onto the film surface of the tantalum oxide material layer 106bF, which is a high resistance layer, and by supplying energy, diffusion of oxygen in the second resistance change layer 106b is suppressed. Because it is a thing.
  • the same effect can be obtained by using Kr, Xe, He, Ne or other rare gas ions other than Ar gas.
  • each rare gas element has a difference in energy applied to the film surface due to a difference in cross sectional area of each collision, the same effect can be obtained by adjusting the power source power for plasma generation.
  • the oxygen in the tantalum oxide material layer 106bF is diffused into the tantalum oxide material layer 106aF or the second electrode material layer 107M. It is possible to suppress the reduction of the effective film thickness of the second resistance change layer 106b. Therefore, the deterioration of the oxygen concentration profile of the resistance change layer 106 is suppressed, and the element performance of the resistance change element 112 is improved. In addition, variation in voltage applied to the resistance change layer 106 can be suppressed by suppressing variation in element performance, and high endurance characteristics can be realized.
  • the manufacturing method according to the present embodiment which includes a step of exposing to plasma generated by a single rare gas, can process the wafer at a relatively low temperature (for example, room temperature), thereby realizing a low temperature process. it can.
  • a relatively low temperature for example, room temperature
  • the plasma vacuum chamber contains a trace gas that is not a rare gas for generating plasma.
  • the trace gas include a gas that is previously adsorbed on the side wall inside the plasma vacuum chamber and is mixed into the plasma when the plasma is generated, and a gas that is included depending on the purity of the rare gas supply source.
  • An aspect in which such a trace gas is present in the plasma is also included in the manufacturing method according to Embodiment 1 of the present invention because the trace gas does not contribute to plasma generation.
  • oxygen is supplemented to oxygen deficient parts by exposing the tantalum oxide material layer to a mixed plasma of rare gas such as Ar and oxygen.
  • a mixed plasma of rare gas such as Ar and oxygen.
  • the nonvolatile memory device according to the second embodiment of the present invention has the same configuration as the nonvolatile memory device 10 according to the first embodiment, but after forming the tantalum oxide material layer that becomes the second resistance change layer.
  • the reforming method is different.
  • the second variable resistance layer which is a tantalum oxide layer, deposits a tantalum oxide material layer by sputtering and then exposes it to Ar / O 2 plasma, so that heat in the subsequent element formation process and the like can be obtained. It is possible to suppress diffusion of oxygen in the second resistance change layer due to the budget.
  • FIG. 7 is a cross-sectional view showing the main part of the method for manufacturing the nonvolatile memory device according to Embodiment 2 of the present invention.
  • the manufacturing method of the principal part of the nonvolatile memory device according to Embodiment 2 will be described using these.
  • the manufacturing method of the nonvolatile memory device according to the present embodiment is the second resistance change layer as compared with the manufacturing method of the nonvolatile memory device 10 according to the first embodiment shown in FIGS.
  • the tantalum oxide material layer 206bF is formed by sputtering and then exposed to plasma, and the RTA treatment is subsequently performed.
  • the description of the same points as in the manufacturing method of Embodiment 1 is omitted, and the following description starts with the step after the tantalum oxide material layer 206bF is formed by sputtering.
  • the following description is an example to the last and is not limited to a specific material, a processing method, and processing conditions. The following manufacturing methods can be applied in combination with known methods.
  • a tantalum oxide material layer 206bF to be the second variable resistance layer is formed under the same sputtering conditions as in the first embodiment.
  • FIG. 7B is a cross-sectional view of the step of irradiating the surface of the tantalum oxide material layer 206bF with Ar plasma and the step of irradiating Ar / O 2 plasma.
  • Ar plasma processing is performed on the surface of the tantalum oxide material layer 206bF using the plasma processing apparatus used in Embodiment 1, and subsequently, Ar / O 2 plasma processing is performed.
  • This process has the following flow.
  • the surface of the tantalum oxide material layer 206bF is exposed to Ar plasma for 5 minutes.
  • the substrate temperature during processing is room temperature
  • the plasma generation power source power is 500 W
  • the substrate bias power source power is 20 W
  • the pressure is 3 Pa
  • the processing time is 5 minutes. is there.
  • This Ar plasma irradiation process corresponds to a single gas plasma treatment process in which the surface of the tantalum oxide material layer 206bF is exposed to plasma generated by a single kind of rare gas.
  • the above conditions are the conditions (Example 1- (2)) implemented in the first embodiment of the present invention.
  • oxygen in the second resistance change layer 106b diffuses into the first resistance change layer 106a. It has become clear that this can be suppressed.
  • an Ar / O 2 plasma irradiation step is performed.
  • the plasma is continuously generated under the following conditions in a state where plasma is generated, that is, without turning off the plasma generation power source power and the substrate bias application power source power. Switch.
  • the substrate temperature during processing is room temperature
  • the power source for plasma generation is 500 W
  • the RF power source power is 20 W
  • the pressure is 4 Pa
  • O 2 5 sccm
  • the processing time is 3 minutes.
  • the surface of the tantalum oxide material layer 206bF is exposed to Ar / O 2 plasma, and the tantalum oxide material layer 206bF is modified into a tantalum oxide material layer 206bAO in which oxygen is supplemented to oxygen defects.
  • This Ar / O 2 plasma irradiation step corresponds to a plasma treatment step in which the surface of the tantalum oxide material layer 206bF is exposed to plasma generated by a gas containing at least a rare gas, and a mixed gas of a rare gas and oxygen is used. This corresponds to a mixed plasma treatment process in which the generated plasma is exposed.
  • FIG. 7C is a cross-sectional view of an annealing process in which the tantalum oxide material layer 206bA is heat-treated in a nitrogen gas atmosphere after the mixed plasma processing process.
  • oxygen that has been incorporated into the tantalum oxide material layer 206bAO serving as the second resistance change layer and is still unbonded as Ta—O is bonded at 400 ° C. and 10 ° C. in a nitrogen atmosphere.
  • RTA for a minute is performed to modify the tantalum oxide material layer 206bAO to be the second variable resistance layer.
  • the tantalum oxide material layer 206bAO is further modified into the tantalum oxide material layer 206bAOR by performing the Ar / O 2 plasma treatment process and RTA performed after the Ar plasma irradiation, and then Oxygen in the second resistance change layer 206b patterned in the step is further suppressed from diffusing into the first resistance change layer 106a.
  • iridium (Ir) as the second electrode material layer 107M is formed on the tantalum oxide material layer 206bAOR by a sputtering method. To do.
  • Example 2- (1) the manufacturing method according to Embodiment 2 was performed under the above-described conditions.
  • Table 1 the processing conditions of Example 2- (1) are added.
  • FIG. 8 is a graph comparing the amount of film loss of the second resistance change layer in Examples, Comparative Examples, and Reference Examples according to Embodiments 1 to 3 of the present invention.
  • the figure shows not only Examples 1- (1) and 1- (2), Comparative Example H- (1) and Reference Example H- (2) according to Embodiment 1, but also Embodiment 2
  • the film reduction amount of the second resistance change layer in Example 2- (1) is compared.
  • a description of the results obtained from the graph of FIG. 4A is omitted here.
  • Example 2- (1) the film thickness when the tantalum oxide material layer 206bF serving as the second variable resistance layer was formed was 5.3 nm.
  • the film thickness of the tantalum oxide material layer 206bAOR that had been subjected to the Ar plasma treatment and Ar / O 2 plasma treatment described above was 5.8 nm.
  • the black circle mark of Example 2- (1) in the graph of FIG. 8 plots the film thickness of 5.8 nm after the Ar / O 2 plasma treatment is completed. Thereafter, RTA is performed at 400 ° C. for 10 minutes in a nitrogen atmosphere, and iridium (Ir) as the second electrode material layer 107M is formed by a sputtering method.
  • Ir iridium
  • the film thickness of the second resistance change layer evaluated from the electrical characteristics after completion of the nonvolatile memory device of Example 2- (1) is 4.6 nm, and the film reduction amount is only 1.2 nm. there were. From the above results, the Ar / O 2 plasma irradiation and the RTP treatment after the Ar plasma irradiation are performed in order to supply more excess oxygen to the second resistance change layer in advance. There is an effect of suppressing the diffusion and further suppressing the film loss of the second tantalum oxide. Next, it will be described below that Ar / O 2 plasma irradiation contributes to this effect.
  • Example 1- (3) Ar plasma irradiation was performed under the same conditions as in Example 1- (2), and then RTA treatment was performed at 400 ° C. for 10 minutes in a nitrogen atmosphere. As shown in FIG. 8, since the film reduction amounts of Example 1- (3) and Example 1- (2) are approximately the same, after performing Ar irradiation, 400 ° C., 10 ° C. in an N 2 atmosphere. It can be seen that even if the RTA of the minute is performed, the effect of suppressing the reduction of the film does not increase any more. Therefore, the effect of suppressing diffusion of oxygen in Example 2- (1) over Example 1- (2) was not obtained by the RTA treatment but by the Ar / O 2 plasma treatment process. It can be said that.
  • Example 2- (1) shows an example in which the Ar plasma treatment is performed before the Ar / O 2 plasma treatment is performed, but the above effect is not limited to this.
  • Example 2- (2) in FIG. 8 shows the result of performing only the Ar / O 2 plasma treatment.
  • the difference between the film reduction amount of Comparative Example H- (1) and the film reduction amount of Example 2- (2) corresponds to the effect of suppressing oxygen diffusion by Ar / O 2 plasma treatment.
  • the difference in the film reduction amount is larger than, for example, the difference between the film reduction amount in Comparative Example H- (1) and the film reduction amount in Example 1- (2). This indicates that the effect of suppressing oxygen diffusion by Ar / O 2 plasma treatment is higher than the effect by Ar plasma treatment.
  • the difference between the film reduction amount of Comparative Example H- (1) and the film reduction amount of Example 2- (2) is the same as that of Example 1- (2) and that of Example 2- (1). It is almost the same as the difference from the amount of film loss. This indicates that the effect of Ar / O 2 plasma treatment can be obtained without employing Ar plasma treatment as a pretreatment.
  • the above effect is not obtained only with Ar / O 2 gas, and a mixed gas of other rare gas and oxygen may be used.
  • the tantalum oxide of the second resistance change layer is oxidized by oxygen ions and oxygen radicals from the film surface of the second resistance change layer, which is a high resistance layer, using rare gas / oxygen mixed plasma. Since oxygen ions and oxygen radicals can be generated using Kr, Xe, He, Ne or other rare gas ions other than Ar gas, the same effect can be obtained.
  • the tantalum oxide material layer 206bF which is the second oxide material layer is formed by the method for manufacturing the nonvolatile memory device according to this embodiment.
  • oxygen in the tantalum oxide material layer 206bF is formed.
  • it can suppress that it diffuses in the tantalum oxide material layer 106aF or the 2nd electrode material layer 107M, and can suppress that the effective film thickness of a 2nd resistance change layer reduces.
  • this Embodiment compared with the manufacturing method which concerns on Embodiment 1, there exists a suppression effect more efficiently.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of the nonvolatile memory device according to Embodiment 3 of the present invention.
  • the nonvolatile memory device 30 according to the present embodiment shown in the figure is different from the nonvolatile memory device 10 according to the first embodiment in the method of forming the second resistance change layer.
  • the second resistance change layer 306b3 is a second oxide layer composed of a lower layer 306b1 and an upper layer 306b2, and each layer is formed in stages.
  • the Ar / O 2 plasma treatment described in Embodiment 2 is performed, and then, after depositing the upper layer 306b2 by sputtering, the Ar / O 2 plasma treatment is performed again.
  • the second variable resistance layer which is a high resistance layer, is formed in two steps, and the Ar / O 2 plasma treatment described in the second embodiment is repeatedly performed each time. Thereafter, heat treatment is performed by RTA to form the second resistance change layer 306b3.
  • FIG. 10 is a cross-sectional view showing the main parts of the method for manufacturing the nonvolatile memory device according to Embodiment 3 of the present invention.
  • the manufacturing method of the principal part of the nonvolatile memory device according to Embodiment 3 will be described using these.
  • the manufacturing method of the nonvolatile memory device 30 according to the present embodiment is different from the manufacturing method of the nonvolatile memory device 10 according to the first embodiment shown in FIGS.
  • the forming process and its processing process are different.
  • the description of the same points as in the manufacturing method of the first embodiment will be omitted, and the following description will be made from the step after forming the tantalum oxide layer 106aF serving as the first resistance change layer which is a low resistance layer.
  • the following description is an example to the last and is not limited to a specific material, a processing method, and processing conditions. The following manufacturing methods can be applied in combination with known methods.
  • FIG. 10A is a cross-sectional view after the first film formation step for forming the lower layer 306b1F.
  • the lower layer 306b1F made of the tantalum oxide material constituting the second resistance change layer is formed.
  • a film with a thickness of 2.6 nm is formed under the same sputtering conditions as in the first embodiment. In this way, the lower layer 306b1F is formed.
  • FIG. 10B is a cross-sectional view of the step of irradiating the surface of the lower layer 306b1F with Ar plasma and the step of irradiating Ar / O 2 plasma.
  • Ar plasma treatment is performed under the same conditions as in the first embodiment, and subsequently, Ar / O 2 plasma treatment is performed under the same conditions as in the second embodiment.
  • the substrate temperature at the time of processing is room temperature
  • the plasma generation power source power is, for example, 500 W
  • the substrate bias power source power is 20 W
  • the pressure is 3 Pa
  • the Ar plasma treatment time is 5 minutes.
  • This Ar plasma irradiation process corresponds to a single gas plasma treatment process in which the surface of the lower layer 306b1F is exposed to plasma generated by a single kind of rare gas.
  • an Ar / O 2 plasma irradiation step is performed.
  • the plasma state is continuously generated under the following conditions without turning off the plasma generation power source power and the substrate bias application power source power while the plasma is still generated. Switch to.
  • the substrate temperature during processing is room temperature
  • the power source for plasma generation is 500 W
  • the RF power source power is 20 W
  • the pressure is 4 Pa
  • O 2 5 sccm
  • the processing time is 3 minutes.
  • the lower layer 306b1F becomes the lower layer 306b1AO subjected to the process, and the film thickness of the lower layer 306b1AO becomes, for example, 4.7 nm.
  • This Ar / O 2 plasma irradiation step corresponds to a plasma treatment step in which the surface of the lower layer 306b1F is exposed to plasma generated by a gas containing at least a rare gas, and plasma generated by a mixed gas of a rare gas and oxygen. This also corresponds to the mixed plasma processing step exposed to.
  • FIG. 10C is a cross-sectional view after the first film formation step for forming the upper layer 306b2F.
  • an upper layer 306b2F made of a tantalum oxide material, which is a constituent element of the second variable resistance layer, is deposited by 0.7 nm using a sputtering apparatus.
  • the total film thickness of the lower layer 306b1AO and the upper layer 306b2F, which are components of the second resistance change layer is, for example, 5.4 nm.
  • FIG. 10D is a cross-sectional view of the step of irradiating the surface of the upper layer 306b2F with Ar plasma and the step of irradiating Ar / O 2 plasma.
  • Ar plasma treatment is performed under the same conditions as in the first embodiment, and subsequently, Ar / O 2 plasma treatment is performed under the same conditions as in the second embodiment.
  • Ar plasma irradiation process exposure is performed in Ar plasma for 5 minutes.
  • the substrate temperature during processing is room temperature
  • the power source for plasma generation is 500 W
  • the substrate bias power source power is 20 W
  • the pressure is 3 Pa
  • the processing time is 5 minutes.
  • This Ar plasma irradiation process corresponds to a single gas plasma treatment process in which the surface of the upper layer 306b2F is exposed to plasma generated by a single kind of rare gas.
  • an Ar / O 2 plasma irradiation step is performed.
  • the plasma is generated as it is, that is, the plasma generation power supply and the substrate bias application power supply are not turned off, and the following conditions are continuously satisfied. Switch the plasma state.
  • the substrate temperature during processing is room temperature
  • the power source for plasma generation is 500 W
  • the RF power source power is 20 W
  • the pressure is 4 Pa
  • O 2 5 sccm
  • the processing time is 3 Minutes.
  • the upper layer 306b2F becomes the upper layer 306b2AO subjected to the treatment, and after the treatment, the total film thickness of the lower layer 306b1AO and the upper layer 306b2AO becomes, for example, 6.2 nm.
  • This Ar / O 2 plasma irradiation process corresponds to a plasma treatment process in which the surface of the upper layer 306b2F is exposed to plasma generated by a gas containing at least a rare gas, and plasma generated by a mixed gas of a rare gas and oxygen. This corresponds to the mixed plasma processing step exposed to.
  • FIG. 10E is a cross-sectional view after the annealing step in which the lower layer 306b1AO and the upper layer 306b2AO are heat-treated in a nitrogen gas atmosphere.
  • RTA is performed at 400 ° C. for 10 minutes in an N 2 atmosphere for the purpose of bonding the oxygen trapped in the lower layer 306b1AO and the upper layer 306b2AO to the Ta—O unbonded portion.
  • iridium (Ir) as the second electrode material layer 107M is formed on the upper layer 306b2AOR by a sputtering method.
  • the nonvolatile memory device 30 having the resistance variable element 312 is manufactured in the same manner as the manufacturing steps shown in FIGS. 3 (e) to 3 (g). Therefore, the description is omitted.
  • Example 3- (1) the manufacturing method according to Embodiment 3 was performed under the above-described conditions.
  • Table 1 the processing conditions of Example 3- (1) are added.
  • Example 3- (1) in Embodiment 3 of the present invention is shown in FIG.
  • the figure shows Examples 1- (1) and 1- (2) according to Embodiment 1, Comparative Example H- (1) and Reference Example H- (2), and Example 2 according to Embodiment 2.
  • the film thickness reduction amount of the second resistance change layer is compared between (1) and Example 3- (1) according to the third embodiment.
  • a description of the results obtained from the graph of FIG. 4A is omitted here.
  • the black circle mark of Example 3- (1) described in the graph of FIG. 8 indicates the lower layer 306b1AO and the upper layer 306b2AO after the second Ar / O 2 plasma treatment process shown in FIG.
  • the total film thickness of 6.2 nm is plotted.
  • the film thickness evaluated from the electrical characteristics after the completion of the nonvolatile memory device 30 was 6.2 nm.
  • Ar / O 2 gas may be a mixed gas with other noble gases and oxygen.
  • the present invention oxidizes the tantalum oxide of the second resistance change layer by oxygen ions and oxygen radicals from the surface of the second resistance change layer, which is a high resistance layer, using a rare gas / oxygen mixed plasma.
  • oxygen ions and oxygen radicals can be generated even by using Kr, Xe, He, Ne, or other rare gas ions other than Ar gas, and the same effect can be obtained.
  • the effect is the deposition and subsequent Ar / O 2 plasma treatment process of the second variable resistance layer has repeated twice, may be performed by dividing into three times or more.
  • the lower oxide layer 306b1F and the upper layer 306b2F that are the second oxide material layers are formed, and the oxide material layers are formed.
  • the oxygen defect portion can be more effectively repaired. Therefore, oxygen in the second resistance change layer diffuses into the first resistance change layer or the second electrode material layer 107M by a process step involving heat treatment after the second resistance change layer is formed by repeating the above steps. This can be suppressed more effectively. Thereby, it becomes possible to suppress very effectively that the effective film thickness of a 2nd resistance change layer reduces. This is considered to be because oxygen defects in the second variable resistance layer were efficiently repaired by performing plasma irradiation stepwise in the depth direction of the second oxide material layer.
  • (Embodiment 4) [Configuration of non-volatile storage device]
  • the inventor further deposits a second oxide material layer that is a high resistance layer, and then exposes the second oxide material layer to a plasma containing a rare gas to expose the second oxide material layer. It has been found that by improving the film quality, the forming voltage can be lowered, the filament current can be stabilized, and the endurance characteristics can be improved.
  • the knowledge will be described using an example in which the second oxide material layer is a tantalum oxide material layer.
  • the tantalum oxide material layer formed as a deposited film can reduce the forming voltage as compared with the oxidized tantalum oxide material layer. This is because even if the second tantalum oxide material layer (high resistance layer) formed as a deposited film is macroscopically in the stoichiometric composition of Ta 2 O 5 , the tantalum oxide material layer is From the statistical and microscopic viewpoints, it is considered that they have oxygen deficiency.
  • a second tantalum oxide material layer formed by oxidizing a part of the first tantalum oxide material is converted into a second tantalum oxide material layer formed as a deposited film. It is considered that the denseness of the film is higher than that. Therefore, the second tantalum oxide material layer formed as a deposited film has an advantage that the forming voltage during the forming process can be reduced as compared with the tantalum oxide material layer formed by oxidation. In addition, the second tantalum oxide material layer formed as a deposited film is less subject to variations in film thickness as compared to a film formed by oxidation, so that variations in forming voltage can be reduced.
  • the second tantalum oxide material layer formed as the deposited film has a lower density than the oxidized film, there is a possibility of deteriorating the oxygen concentration profile due to the thermal budget.
  • the present inventor after depositing the second tantalum oxide material layer, exposes the tantalum oxide material layer to a plasma containing a rare gas, thereby forming a forming voltage as compared with the oxidized film. It has been found that the endurance characteristics can be improved compared to conventional deposited films.
  • the resistance variable element 112 is changed from the initial state to a state in which the high resistance state and the low resistance state can be reversibly transitioned according to the applied pulse voltage. This is a process for changing. Forming is also called an initial break.
  • a filament (conductive path) is formed in the second variable resistance layer 106b by applying a predetermined voltage to the variable resistance element to break down the transition metal oxide.
  • the voltage applied at this time is called “forming voltage” (or initialization voltage).
  • the resistance variable element 112 can be changed to a state in which the high resistance state and the low resistance state can be reversibly transitioned according to the applied pulse voltage.
  • FIG. 11 is a diagram for explaining the formation of filaments in the resistance change layer, and shows the result of simulation using a percolation model.
  • a filament conductive path
  • the percolation model assumes a random distribution such as oxygen defect sites (hereinafter simply referred to as “defect sites”) of the second resistance change layer 106b. If the density of defect sites exceeds a certain threshold, the defect sites are connected. It is a model based on the theory that the probability of forming is increased.
  • “defect” means that oxygen is deficient in the transition metal oxide, and “density of defect sites” corresponds to the degree of oxygen deficiency. That is, as the oxygen deficiency increases, the density of defect sites also increases.
  • the oxygen ion sites of the second resistance change layer 106b are approximately assumed as regions (sites) partitioned in a lattice shape, and the filaments formed by the defect sites formed stochastically are obtained by simulation. Yes.
  • a site including “0” represents a defect site formed in the second resistance change layer 106b.
  • a blank site represents a site occupied by oxygen ions, which means a high resistance region.
  • a cluster of defect sites (an assembly of defect sites connected to each other) indicated by an arrow is a filament formed in the second resistance change layer 106b when a voltage is applied in the vertical direction in the figure, that is, A path through which a current flows is shown. As shown in FIG.
  • the filament that allows current to flow between the lower surface and the upper surface of the second variable resistance layer 106 b is configured by a cluster of defect sites that connect from the upper end to the lower end of randomly distributed defect sites. The Based on this percolation model, the number and shape of filaments are formed stochastically.
  • FIG. 12 is a cross-sectional view showing the main part of the method for manufacturing the nonvolatile memory device according to Embodiment 4 of the present invention.
  • a method for manufacturing the main part of the nonvolatile memory device according to Embodiment 4 will be described with reference to FIG.
  • the manufacturing method of the nonvolatile memory device according to the present embodiment has a forming process for the resistance variable element. Only the point of execution is different.
  • the description of the same points as in the manufacturing method of Embodiment 2 is omitted, and the following description starts with the step after the tantalum oxide material layer 206bF is formed by sputtering.
  • the following description is an example to the last and is not limited to a specific material, a processing method, and processing conditions.
  • the following manufacturing methods can be applied in combination with known methods.
  • a tantalum oxide material layer 206bF to be a second variable resistance layer is formed under the same sputtering conditions as in the first embodiment.
  • Ar plasma treatment is performed on the surface of the tantalum oxide material layer 206bF using the plasma treatment apparatus used in the first embodiment.
  • an Ar / O 2 plasma irradiation step is performed.
  • this Ar / O 2 plasma irradiation process reconstructs Ta—O bonds and improves the film quality of the tantalum oxide material layer 206bF, but does not increase the film thickness of the tantalum oxide material layer 206bF. .
  • an annealing step is performed in which the tantalum oxide material layer 206bA is heat-treated in a nitrogen gas atmosphere.
  • the second electrode material layer 107M is formed.
  • a resistance variable element 212 is formed.
  • the resistance variable element 212 is covered to form a second interlayer insulating layer 108.
  • the second contact hole 109 and the second contact plug 110 are formed.
  • a forming process is performed on the resistance variable element 212.
  • a forming voltage is applied between the second electrode layer 107 and the first electrode layer 105.
  • the resistance value of the resistance variable element 212 is higher than the resistance value of the normal operation when the process shown in FIG.
  • a negative voltage pulse is applied to the second electrode layer 107 with respect to the variable resistance element 212 with reference to the first electrode layer 105.
  • a forming voltage initialization voltage pulse
  • a filament conductive path
  • the resistance variable element 212 is in a state where it can reversibly transition between a normal high resistance state and a low resistance state.
  • the film quality is improved without increasing the film thickness of the tantalum oxide material layer 206bF by being exposed to the mixed plasma of rare gas such as Ar and oxygen in the plasma treatment step shown in FIG. It has been improved.
  • This makes it possible to form a filament with a lower forming voltage than in the case where the plasma processing step is not performed, and the forming process is facilitated. Further, the filament current flowing through the formed filament is stabilized. Such an effect is particularly remarkable when the second variable resistance layer 206b is formed by a sputtering method.
  • oxygen in the tantalum oxide material layer 206bF can be suppressed from diffusing into the tantalum oxide material layer 106aF or the second electrode material layer 107M. Reduction of the effective film thickness of the second resistance change layer 206b can be suppressed. Therefore, deterioration of the oxygen concentration profile of the resistance change layer 206 is suppressed, and the element performance of the resistance change element 212 is improved. In addition, variation in voltage applied to the resistance change layer 206 can be suppressed by suppressing variation in element performance, and high endurance characteristics can be realized.
  • the above effect is not obtained only with Ar / O 2 gas, and a mixed gas of other rare gas and oxygen may be used.
  • a mixed gas of other rare gas and oxygen may be used.
  • This is to improve the film quality of the second resistance change layer by oxygen ions and oxygen radicals from the surface of the second resistance change layer, which is a high resistance layer, using a rare gas / oxygen mixed plasma in this embodiment.
  • oxygen ions and oxygen radicals can be generated even by using Kr, Xe, He, Ne, or other rare gas ions other than Ar gas, and the same effect can be obtained.
  • the method for manufacturing the nonvolatile memory device according to the present invention has been described based on the first to third embodiments. However, the method for manufacturing the nonvolatile memory device according to the present invention is limited to the above-described first to third embodiments. It is not something. Modifications obtained by applying various modifications conceived by those skilled in the art to Embodiments 1 to 3 without departing from the gist of the present invention, and nonvolatile memories manufactured using the manufacturing method according to the present invention Various devices incorporating the device are also included in the present invention.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of a nonvolatile memory device according to a modification of the embodiment of the present invention.
  • the same components as those in the nonvolatile memory device 10 described in FIG. the difference between the nonvolatile memory device 40 and the nonvolatile memory device 10 is the difference in arrangement between the first resistance change layer having a low oxygen content and the second resistance change layer having a high oxygen content. is there.
  • the oxygen content rate is lower than the second resistance change layer 406 b on the second resistance change layer 406 b that is the second oxide layer having a high oxygen content rate.
  • a first variable resistance layer 406a which is a first oxide layer, is disposed to form a variable resistance layer 406.
  • FIG. 14 is a cross-sectional view showing the main parts of a method for manufacturing a nonvolatile memory device according to a modification of the embodiment of the present invention.
  • the method for manufacturing the nonvolatile memory device according to this modification is different from the method for manufacturing the nonvolatile memory device 10 according to the first embodiment shown in FIGS. And the processing steps are different.
  • the description of the same points as in the manufacturing method of the first embodiment will be omitted, and the process after forming the first contact plug 104 will be described below.
  • the first contact plug 104 is covered and the first interlayer insulating layer is formed.
  • a first electrode material layer 405M (thickness: 20 to 50 nm) made of iridium (Ir) is formed on 102 by a sputtering method.
  • a tantalum oxide material layer 406bF is formed over the first electrode material layer 405M by a sputtering method.
  • the tantalum oxide material layer 406bF is formed by a reactive sputtering method using tantalum as a target and oxygen as a reaction gas.
  • the conditions for forming the tantalum oxide layer 406bF by reactive sputtering are, for example, a power output of 1000 W, an Ar flow rate of 20 sccm, an oxygen flow rate of 40 sccm, a pressure of 0.06 Pa, and a substrate temperature of room temperature.
  • the thickness of the tantalum oxide material layer 406bF effective for causing a resistance change by stacking the tantalum oxide material layer 406aF having a low oxygen content as an upper layer is 3 to 10 nm.
  • This film formation process corresponds to the first film formation process for forming the tantalum oxide material layer 406bF.
  • a tantalum oxide material layer 406bF that becomes the second resistance change layer 406b after processing is subjected to Ar plasma irradiation, and the film quality is changed to the tantalum oxide material layer 406bA.
  • This uses a plasma device with a power source for plasma generation and a radio frequency (RF) power source from the substrate to control the substrate bias.
  • RF radio frequency
  • the substrate temperature during processing is room temperature
  • the power source for plasma generation is 500 W
  • the pressure 3 Pa
  • the gas flow rate 100 sccm
  • the processing time is 5 minutes.
  • This Ar plasma irradiation step corresponds to a plasma treatment step in which the surface of the tantalum oxide material layer 406bF is exposed to plasma generated by a gas containing at least a rare gas, and is exposed to plasma generated by a single kind of rare gas. This corresponds to a single gas plasma processing step.
  • the tantalum oxide material layer 406aF having a low oxygen content is formed on the tantalum oxide material layer 406bA.
  • the tantalum oxide material layer 406aF is formed by a reactive sputtering method in a gas atmosphere containing oxygen using a sputtering target made of tantalum.
  • the thickness of the tantalum oxide material layer 406aF is, for example, 20 to 30 nm.
  • the power output is 1000 W and the film forming pressure is 0.05 Pa.
  • tantalum nitride (TaN) as the second electrode material layer 407M is formed on the tantalum oxide material layer 406aF. It is formed by a sputtering method.
  • the nonvolatile memory device 40 having the resistance variable element 412 is manufactured by the manufacturing method including the above steps.
  • the tantalum oxide material layer 406aF having a low oxygen content is formed on the tantalum oxide material layer 406bF having a high oxygen content.
  • the tantalum oxide material layer 106b is disposed on the tantalum oxide material layer 106aF
  • the tantalum oxide material layer 106bF is formed by reactive sputtering using oxygen as a reaction gas
  • the tantalum oxide material layer 106aF having a low oxygen content is exposed to an oxygen plasma atmosphere.
  • the surface of the tantalum oxide material layer 106aF is oxidized, and the variable resistance layer 106 having a target oxygen concentration profile cannot be obtained.
  • the tantalum oxide material layer 406bF shown in FIG. 406bF can be formed by a reactive sputtering method using tantalum as a target and oxygen as a reaction gas.
  • the tantalum oxide material layer having a low oxygen content is formed even after the plasma treatment or heat treatment for modifying the tantalum oxide material layer 406bF is performed after the tantalum oxide material layer 406bF having a high oxygen content is formed. Since 406aF has not yet been formed, there is no concern that oxygen will diffuse into the tantalum oxide material layer 406aF.
  • the film formation rate of the tantalum oxide material layer 406bF when formed by the reactive sputtering method is 6 nm / min, and the manufacturing method (film formation rate: 1.2 nm / min) shown in FIG. Compared to 5 times faster.
  • the film formation rate can be increased, and the nonvolatile memory device 40 can be manufactured at a lower cost than the nonvolatile memory device 10. .
  • the forming process according to the fourth embodiment may be performed in the final process of the manufacturing method according to this modification. Even in this case, similarly to the fourth embodiment, it is possible to achieve both the reduction of the forming voltage, the stabilization of the filament current, and the improvement of the endurance characteristics.
  • the variable resistance layer has a laminated structure of tantalum oxide.
  • the tantalum oxide can be formed by processing at a relatively low temperature from room temperature. Therefore, when the process for processing the tantalum oxide is performed at a relatively low temperature, it is possible to suppress performance deterioration of the resistance variable element or the peripheral circuit element due to heat.
  • the resistance change layer of the present embodiment is not limited to tantalum oxide.
  • the resistance change layer is, for example, a resistance change layer such as a hafnium (Hf) oxide laminated structure or a zirconium (Zr) oxide laminated structure. It may be a high resistance of a variable resistance material of a type that contributes to the change.
  • the composition of the first hafnium oxide is HfO x and the composition of the second hafnium oxide is HfO y , 0.9 ⁇ x ⁇ 1.6
  • y is about 1.8 ⁇ y ⁇ 2.0
  • the thickness of the second hafnium oxide is 3 nm or more and 4 nm or less.
  • the composition of the first zirconium oxide is ZrO x and the composition of the second zirconium oxide is ZrO y , 0.9 ⁇ x ⁇ 1.4 It is preferable that y is about 1.9 ⁇ y ⁇ 2.0, and the film thickness of the second zirconium oxide is 1 nm or more and 5 nm or less.
  • an oxide layer such as tantalum may be included, and for example, a trace amount of other elements may be included. It is also possible to intentionally include a small amount of other elements by fine adjustment of the resistance value, and such a case is also included in the scope of the present invention. For example, if nitrogen is added to the resistance change layer, the resistance value of the resistance change layer increases and the reactivity of resistance change can be improved.
  • the first transition metal constituting the first resistance change layer and the second transition metal constituting the second resistance change layer may be different transition metals.
  • the second resistance change layer has a smaller oxygen deficiency than the first resistance change layer.
  • the degree of oxygen deficiency refers to the ratio of oxygen deficiency with respect to the amount of oxygen constituting the oxide of the stoichiometric composition in each transition metal.
  • the resistance value of the second resistance change layer can be made higher than the resistance value of the first resistance change layer.
  • the voltage applied between the first electrode layer and the second electrode layer at the time of resistance change corresponds to the resistance value of each layer, and the second resistance change than the first resistance change layer. More distributed to the layers. Thereby, an oxidation-reduction reaction is more likely to occur in the second resistance change layer.
  • the second resistance is higher than that of the first resistance change layer.
  • the oxygen content of the variable layer is high corresponds to “the oxygen deficiency of the second variable resistance layer is lower than that of the first variable resistance layer”. Therefore, the relationship of the oxygen content in the above embodiment can be appropriately read as the relationship of the degree of oxygen deficiency.
  • the standard electrode potential of the second transition metal is preferably smaller than the standard electrode potential of the first transition metal.
  • the standard electrode potential is more difficult to oxidize as its value is larger, and represents a characteristic that it is easier to oxidize as its value is smaller.
  • the resistance change phenomenon occurs when a redox reaction occurs in a minute filament (conductive path) formed in the second resistance change layer having a high resistance value, and the resistance value changes. Therefore, by disposing a metal oxide having a standard electrode potential smaller than that of the first resistance change layer in the second resistance change layer, resistance change easily occurs in the second resistance change layer, and a stable resistance change operation can be obtained. .
  • the method for manufacturing a nonvolatile memory device of the present invention has an effect of suppressing deterioration of the oxygen concentration profile of the resistance change layer due to a thermal budget, and manufacture of a nonvolatile memory device such as ReRAM that requires high reliability. Useful in the method.
  • Nonvolatile memory device 100 500 Substrate 101, 501 First wiring 102, 502 First interlayer insulating layer 103, 503 First contact hole 104, 504 First contact plug 104M Conductive layer 105, 505 First 1 electrode layer 105M, 405M 1st electrode material layer 106, 206, 406, 506 Resistance change layer 106a, 406a 1st resistance change layer 106aF, 106bF, 106bA, 206bA, 206bAO, 206bAOR, 206bF, 406aF, 406bA, 406bF Tantalum oxidation Physical material layer 106b, 206b, 306b3, 406b Second variable resistance layer 107, 507 Second electrode layer 107M, 407M Second electrode material layer 108, 508 Second interlayer insulating layer 109, 509 Second contact hole 110, 510 Second contact plug 111, 511 Second wiring 112, 212, 312, 412, 512 Resistance change element 306b

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 不揮発性記憶装置(10)の製造方法であって、酸素不足型の遷移金属酸化物で構成されたタンタル酸化物材料層(106aF)を形成する工程と、遷移金属酸化物で構成され、タンタル酸化物材料層(106aF)よりも酸素不足度が低いタンタル酸化物材料層(106bF)を形成する工程と、タンタル酸化物材料層(106bF)を形成する工程の後に、タンタル酸化物材料層(106bF)を、希ガスにより生成したプラズマに曝すプラズマ処理工程とを含む。

Description

不揮発性記憶装置の製造方法
 本発明は、与えられる電気的信号に応じて抵抗値が変化する抵抗変化型の不揮発性記憶素子に関し、特に極性の異なる電気的信号に基づいて可逆的に抵抗値が変化するバイポーラ動作型の不揮発性記憶素子を備えた不揮発性記憶装置の製造方法に関する。
 近年、デジタル技術の進展に伴って、携帯情報機器や情報家電等の電子機器がより一層高機能化している。これらの電子機器の高機能化に伴い、使用される半導体素子の微細化及び高速化が急速に進んでいる。その中でも、フラッシュメモリに代表されるような大容量の不揮発性メモリの用途が急速に拡大している。更に、このフラッシュメモリに置き換わる次世代の新型不揮発性メモリとして、いわゆる抵抗変化型の不揮発性記憶素子を備えた不揮発性記憶装置の研究開発が進んでいる。ここで、抵抗変化型の不揮発性記憶素子とは、電気的信号によって抵抗値が可逆的に変化する性質を有し、この抵抗値に対応した情報を不揮発的に記憶することが可能な素子のことをいう。
 特許文献1に開示されているように、抵抗変化型の不揮発性記憶素子は一対の電極間に抵抗変化材料からなる抵抗変化層を挟んでなる構造を有しており、その電気的特性の違いに基づいてバイポーラ動作型及びユニポーラ動作型の2つに大別される。
 バイポーラ動作型の不揮発性記憶素子(以下、「バイポーラ動作型素子」という)は、高抵抗状態から低抵抗状態に抵抗状態を変化(低抵抗化)させるための電圧と、低抵抗状態から高抵抗状態に抵抗状態を変化(高抵抗化)させるための電圧とが、互いに異なる極性であるタイプの素子である。これに対し、ユニポーラ動作型の不揮発性記憶素子(以下、「ユニポーラ動作型素子」という)は、低抵抗化させるための電圧と高抵抗化させるための電圧とが、同一極性であるタイプの素子である。
 特許文献2に開示されているように、高抵抗層(高酸素濃度層)及び低抵抗層(低酸素濃度層)の積層構造からなる抵抗変化層を有するバイポーラ動作型素子の場合、低電圧で安定した高速駆動を実現することができる。特許文献2には、酸素含有率の異なるタンタル酸化物層を積層して抵抗変化層に用いた抵抗変化型素子が開示されている。
国際公開第2007/013174号 国際公開第2008/149484号
I.G.Baek et al., Tech.Digest IEDM 2004,587頁
 特許文献2では、酸素含有率の異なるタンタル酸化物層を積層して抵抗変化層に用いた抵抗変化型素子が開示されている。
 図15は、特許文献2に開示された、抵抗変化型素子を搭載した不揮発性記憶装置の断面構造の一例を示す模式図である。同図に記載された不揮発性記憶装置600は、基板500と、基板500上に形成された第1配線501と、基板500上に第1配線501を覆って形成された第1層間絶縁層502と、第1コンタクトホール503の内部にタングステンを主成分として埋め込まれた第1コンタクトプラグ504と、第1コンタクトプラグ504を被覆するように第1層間絶縁層502上に形成された抵抗変化型素子512と、抵抗変化型素子512を被覆して形成された第2層間絶縁層508と、第2コンタクトホール509の内部に形成された第2コンタクトプラグ510と、第2コンタクトプラグ510を被覆するように第2層間絶縁層508上に形成された第2配線511とを備える。
 第1コンタクトプラグ504は、第1層間絶縁層502を貫通して第1配線501と第1電極層505とを電気的に接続する。第2コンタクトプラグ510は、第2層間絶縁層508を貫通して、第2電極層507と第2配線511とを電気的に接続する。
 抵抗変化型素子512は、第1電極層505、抵抗変化層506及び第2電極層507で構成される。さらに、抵抗変化層506は、第1のタンタル酸化物層506aと第2のタンタル酸化物層506bとの積層構造から構成される。第2のタンタル酸化物層506bは、2.1≦y≦2.5を満足するTaOで表される組成を有しており、第1のタンタル酸化物層506aは0.8≦x≦1.9を満たすTaOで表される組成を有する。
 このような従来の不揮発性記憶装置においては、特にエンデュランス(書き換え耐性)を含めた信頼性の確保が課題となる。
 本発明の目的は、上記の課題を解決するものであり、高エンデュランス特性を有する不揮発性記憶装置の製造方法を提供することにある。
 上記目的を達成するために、本発明の一態様に係る不揮発性記憶装置の製造方法は、酸素不足型の遷移金属酸化物で構成された第1の酸化物材料層を形成する工程と、遷移金属酸化物で構成され、前記第1の酸化物材料層よりも酸素不足度が低い第2の酸化物材料層を形成する工程と、前記第2の酸化物材料層を形成する工程の後に、前記第2の酸化物材料層を、希ガスにより生成したプラズマに曝すプラズマ処理工程とを含む。
 本発明の不揮発性記憶装置の製造方法によれば、第2の酸化物層を形成した後に、第2の酸化物層の表面を、希ガスを含むプラズマに曝すことにより、高エンデュランス特性を有する不揮発性記憶装置を実現できる。
図1は、本発明の実施の形態1に係る不揮発性記憶装置の概略構成を示す断面図である。 図2の(a)から(e)は、本発明の実施の形態1に係る不揮発性記憶装置の製造方法の前半の工程の一例を示す断面図である。 図3の(a)から(g)は、本発明の実施の形態1に係る不揮発性記憶装置の製造方法の後半の工程の一例を示す断面図である。 図4Aは、本発明の実施の形態1に係る実施例、比較例及び参考例における、第2抵抗変化層の膜減り量を比較したグラフである。 図4Bは、本発明の実施の形態1に係る実施例、比較例及び参考例における、不揮発性記憶装置形成後の抵抗変化型素子の初期抵抗のばらつきを示すグラフである。 図5は、熱処理を与えずに形成した抵抗変化型素子のサイズと初期抵抗値の逆数の平方根との関係を示す図である。 図6は、抵抗変化型素子の初期抵抗値の逆数の平方根の傾きの逆数と第2のタンタル酸化物層の膜厚との関係を示す図である。 図7の(a)から(d)は、本発明の実施の形態2に係る不揮発性記憶装置の製造方法の要部を示す断面図である。 図8は、本発明の実施の形態1~3における、第2抵抗変化層の膜減り量を比較したグラフである。 図9は、本発明の実施の形態3に係る不揮発性記憶装置の概略構成を示す断面図である。 図10の(a)から(f)は、本発明の実施の形態3に係る不揮発性記憶装置の製造方法の要部を示す断面図である。 図11は、抵抗変化層におけるフィラメントの形成を説明するための図である。 図12の(a)から(h)は、本発明の実施の形態4に係る不揮発性記憶装置の製造方法の要部を示す断面図である。 図13は、本発明の実施の形態の変形例に係る不揮発性記憶装置の概略構成を示す断面図である。 図14の(a)から(d)は、本発明の実施の形態の変形例に係る不揮発性記憶装置の製造方法の要部を示す断面図である。 図15は、特許文献2に開示された、抵抗変化型素子を搭載した不揮発性記憶装置の断面構造の一例を示す模式図である。 図16は、抵抗変化型素子における第2のタンタル酸化物層の成膜時膜厚と不揮発性記憶装置完成後膜厚との関係を示すグラフである。 図17は、特許文献2に記載された抵抗変化型素子の構造を有する積層膜の酸素濃度プロファイル分析結果を表すグラフである。 図18は、抵抗変化型素子形成直後における第2のタンタル酸化物層中AES分析酸素ピークと、RTA処理温度との関係を表すグラフである。
 (本発明の基礎となった知見)
 本発明者は、不揮発性記憶装置の信頼性を向上させるべく鋭意検討を重ねた結果、抵抗変化型素子に与えられる熱バジェットによって第2のタンタル酸化物層の酸素が拡散し、エンデュランス等の信頼性特性の劣化を招くことを見出し、本発明を完成した。以下に、当該問題について説明し、その後に本発明の実施の形態について説明する。
 特許文献2に開示された抵抗変化型素子512を用いて不揮発性記憶装置600を形成する場合には、以下の課題が生じる。不揮発性記憶装置600の製造プロセスにおいては、多層配線の形成の際に、層間絶縁膜の成膜、プラグ形成、配線形成、リカバリーアニールなどの工程において、抵抗変化型素子512に熱処理が施されることになる。この熱処理等により抵抗変化型素子512に熱バジェットが与えられ、第2のタンタル酸化物層506bから第1のタンタル酸化物層506aに酸素が拡散する。
 図16は、抵抗変化型素子における第2のタンタル酸化物層の成膜後の第2のタンタル酸化物層の膜厚(以下「成膜時の膜厚」という)と不揮発性記憶装置完成後における第2のタンタル酸化物層の膜厚(以下「完成後の膜厚」という)との関係を示すグラフである。同図には、上記TaOで表される第1のタンタル酸化物材料層と、上記TaOで表される第2のタンタル酸化物材料層とで構成された抵抗変化層を有する抵抗変化型素子における、第2のタンタル酸化物層の成膜時の膜厚(グラフ横軸)と完成後の膜厚(グラフ縦軸)との関係が示されている。なお、図16の破線は、第2のタンタル酸化物層の成膜時の膜厚と完成後の膜厚とが等しいことを示す線である。図16のグラフから、第2のタンタル酸化物層の完成後の膜厚は、成膜時の膜厚よりも小さくなっていることがわかる。これは、抵抗変化型素子の形成後から不揮発性記憶装置完成までの間に、第2のタンタル酸化物層の膜厚が減少したことを示している(図中の「膜減り量」参照)。
 図17は、特許文献2に記載された抵抗変化型素子と同じ構造を有する積層膜について酸素濃度プロファイルの分析結果を表すグラフである。同図に表されたグラフは、具体的には、上記TaOで表される第1のタンタル酸化物材料層と、上記TaOで表される第2のタンタル酸化物材料層と、イリジウムで構成された第2電極材料層とをこの順で積層した膜について、膜厚方向に酸素濃度プロファイルをオージェ電子分光法(AES)により分析した結果を表している。また同図には、第2電極材料層としてのイリジウムが成膜された後に、熱バジェットを与えたサンプル(破線)の酸素濃度プロファイルと、熱バジェットを与えていないサンプル(実線)の酸素濃度プロファイルとが併せて示されている。ここで、熱バジェットとは、抵抗変化型素子形成後に層間絶縁膜や配線、保護膜等を形成する標準プロセスにおいて、抵抗変化層に印加される熱工程を総称する。図17に示される熱バジェットありの例では、熱バジェットを、400℃、30分とした。
 図17からわかるように、熱バジェットを与えることにより、第2のタンタル酸化物材料層における(図17の領域Zにおける)酸素のピーク強度が減衰し、第1のタンタル酸化物材料層における酸素のピーク強度が増加している。これは、熱バジェットを与えることにより、第2のタンタル酸化物材料層中の酸素が、第1のタンタル酸化物材料層に拡散したことを示している。
 抵抗変化型素子512の抵抗値や抵抗変化特性は、第2のタンタル酸化物材料層の膜厚と酸素含有量に依存する。そのため、図17に示したように、与えられた熱バジェットにより第2のタンタル酸化物材料層から酸素が拡散し、第2のタンタル酸化物材料層の酸素含有量や膜厚が減少してしまうと、抵抗値や抵抗変化特性も変化してしまう。したがって、所望の抵抗値と抵抗変化特性を有する不揮発性記憶装置を得るためには、熱バジェットによる酸素濃度プロファイルの劣化を抑制しなければならない。熱バジェットによる酸素濃度プロファイルの劣化は、ウエハ面内での第2のタンタル酸化物層の膜特性や膜厚のばらつきを招き、結果的にエンデュランス等の信頼性特性の劣化を招くことになる。従って、不揮発性記憶装置の信頼性向上には、不揮発性記憶装置の形成後の第2のタンタル酸化物層の膜厚が低下しないこと、すなわち、与えられた熱バジェットにより第2のタンタル酸化物層から酸素を拡散させずに不揮発性記憶装置を製造する技術が必要不可欠となる。
 上記の事情を鑑みて、第2のタンタル酸化物材料層の成膜後に、RTP(Rapid Thermal Process)による熱処理を行い、第2のタンタル酸化物材料層の酸素が拡散し難い膜質に改質することを目的とした実験を行った。抵抗変化型素子の形成後、RTA(Rapid Thermal Annealing)処理を実施し、上部にイリジウム電極を形成した。これ以降の工程は省略し、後工程において熱バジェットは加えなかった。
 図18は、抵抗変化型素子形成直後における第2のタンタル酸化物層中のAES分析酸素ピークと、RTA処理温度との関係を表すグラフである。同図に示されるように、RTA温度を450℃に高温化すると、第2のタンタル酸化物層中のAES分析酸素ピークは著しく減少しており、高抵抗層である第2のタンタル酸化物層成膜後のRTAアニール時に、既に酸素が拡散してしまっている。詳細は後述するが、400℃でのRTAではTa-O結合強化による酸素拡散の抑制効果があることがわかっているが、一方で、450℃でのRTAの結果から、酸素拡散も同時に進行していることが解る。そこで、本発明者は、高抵抗層である第2のタンタル酸化物層に熱エネルギーを与えることで酸素拡散が抑制された膜に改質することには限界があり、熱を与えずに高抵抗層である第2のタンタル酸化物にエネルギーを与えることが有効であると考えた。
 また、酸素拡散の問題は、タンタル酸化物だけでなく、酸素不足型の遷移金属酸化物で構成された酸化物層を有する抵抗変化層であれば、同様に生じる問題であると推察される。
 このような問題を解決するために、本発明の一態様に係る不揮発性記憶装置の製造方法は、酸素不足型の遷移金属酸化物で構成された第1の酸化物材料層を形成する工程と、遷移金属酸化物で構成され、前記第1の酸化物材料層よりも酸素不足度が低い第2の酸化物材料層を形成する工程と、前記第2の酸化物材料層を形成する工程の後に、前記第2の酸化物材料層を、希ガスにより生成したプラズマに曝すプラズマ処理工程とを含むことを特徴とする。
 本態様により、第2の酸化物材料層を形成した後の熱処理を伴うプロセス等における、第2の酸化物材料層から第1の酸化物材料層への酸素の拡散を抑制できる。これにより、第2の酸化物材料層の実効的な膜厚の低減を抑制でき、抵抗変化型素子の素子性能の向上が図られる。また、素子性能ばらつきの抑制により抵抗変化層に印加される電圧ばらつきを抑制でき、高エンデュランス特性を実現できる。
 また、例えば、前記プラズマ処理工程では、前記第2の酸化物材料層を、希ガスのみにより生成したプラズマに曝してもよい。
 また、例えば、前記プラズマ処理工程では、前記希ガスが、単一種類の希ガスであってもよい。
 また、例えば、さらに、基板上に、第1電極材料層を形成する工程と、前記第2の酸化物材料層の上に、第2電極材料層を形成する工程とを含み、前記第1の酸化物材料層を形成する工程では、前記第1電極材料層の上に、前記第1の酸化物材料層を形成し、前記第2の酸化物材料層を形成する工程では、前記第1の酸化物材料層の上に、前記第2の酸化物材料層を形成してもよい。
 また、例えば、さらに、基板上に、第1電極材料層を形成する工程と、前記第1の酸化物材料層の上に、第2電極材料層を形成する工程とを含み、前記第2の酸化物材料層を形成する工程では、前記第1電極材料層の上に、前記第2の酸化物材料層を形成し、前記第1の酸化物材料層を形成する工程では、前記第2の酸化物材料層の上に、前記第1の酸化物材料層を形成してもよい。
 また、本発明の一態様に係る不揮発性記憶装置の製造方法は、基板上に、第1電極材料層を形成する工程と、前記第1電極材料層上に、酸素不足型の遷移金属酸化物で構成された第1の酸化物材料層を堆積する工程と、前記第1の酸化物材料層上に、遷移金属酸化物で構成され、前記第1の酸化物材料層よりも酸素不足度が低い第2の酸化物材料層を堆積する工程と、前記第2の酸化物材料層を堆積する工程の後に、前記第2の酸化物材料層を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程と、前記プラズマ処理工程の後に、前記第2の酸化物材料層の上に、第2電極材料層を形成する工程と、前記第1電極材料層、前記第1の酸化物材料層、前記第2の酸化物材料層、及び、前記第2電極材料層がそれぞれパターニングされて形成された第1電極層、第1抵抗変化層、第2抵抗変化層、及び、第2電極層から構成される抵抗変化型素子において、前記第1電極層と前記第2電極層との間に初期化電圧パルスを印加することにより、前記第2抵抗変化層のうち前記第2電極層と接する面から前記第1抵抗変化層と接する面にかけて、導電パスを形成する工程とを含むことを特徴とする。
 また、本発明の一態様に係る不揮発性記憶装置の製造方法は、基板上に、第1電極材料層を形成する工程と、前記第1電極材料層上に、遷移金属酸化物で構成された第2の酸化物材料層を堆積する工程と、前記第2の酸化物材料層上に、酸素不足型の遷移金属酸化物で構成され、前記第2の酸化物材料層よりも酸素不足度が高い第1の酸化物材料層を堆積する工程と、前記第2の酸化物材料層を堆積する工程の後であって前記第1の酸化物材料層を堆積する工程の前に、前記第2の酸化物材料層を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程と、前記第1の酸化物材料層を堆積する工程の後に、前記第1の酸化物材料層の上に、第2電極材料層を形成する工程と、前記第1電極材料層、前記第2の酸化物材料層、前記第1の酸化物材料層、及び、前記第2電極材料層がそれぞれパターニングされて形成された第1電極層、第2抵抗変化層、第1抵抗変化層、及び、第2電極層から構成される抵抗変化型素子において、前記第1電極層と前記第2電極層との間に初期化電圧パルスを印加することにより、前記第2抵抗変化層のうち前記第1電極層と接する面から前記第1抵抗変化層と接する面にかけて、導電パスを形成する工程とを含むことを特徴とする。
 これらの製造方法により、第2の酸化物材料層を形成した後の熱処理を伴うプロセス等における、第2の酸化物材料層から第1の酸化物材料層への酸素の拡散を抑制できる。これにより、第2の酸化物材料層の実効的な膜厚の低減を抑制でき、抵抗変化型素子の素子性能の向上が図られる。また、素子性能ばらつきの抑制により抵抗変化層に印加される電圧ばらつきを抑制でき、高エンデュランス特性を実現できる。また、堆積膜として形成された第2のタンタル酸化物材料層は、酸化形成された膜に比べて膜厚のばらつきが抑制されるため、より低いフォーミング電圧でフィラメントを形成することが可能となり、フォーミング処理が容易となる。また、形成されたフィラメントを流れるフィラメント電流が安定化する。
 また、例えば、前記プラズマ処理工程は、前記第2の酸化物材料層を、希ガスと酸素との混合ガスにより生成したプラズマに曝す混合プラズマ処理工程を含んでもよい。
 これにより、酸素の拡散をより効率的に抑制でき、第2の酸化物材料層の実効的な膜厚の低減をより効率的に抑制できる。
 また、例えば、さらに、前記混合プラズマ処理工程の前に、前記第2の酸化物材料層を、単一種類の希ガスにより生成したプラズマに曝す単ガスプラズマ処理工程を含んでもよい。
 また、例えば、前記プラズマ処理工程は、さらに、前記混合プラズマ処理工程の後に、窒素ガス雰囲気中で加熱処理するアニール工程を含んでもよい。
 また、例えば、前記第2の酸化物材料層を形成する工程と前記プラズマ処理工程とを連続して複数回繰り返してもよい。
 この製造方法によれば、第2の酸化物材料層の成膜工程と、当該第2の酸化物材料層の表面のプラズマ処理工程とを複数回繰り返し実施することで、酸素欠陥部をさらに効果的に修復できる。これにより、第2の酸化物材料層の実効的な膜厚が低減してしまうことを効果的に抑制できる。
 また、例えば、前記第1の酸化物材料層は、TaO(但し、0.8≦x≦1.9)で表される組成を有するタンタル酸化物で構成され、前記第2の酸化物材料層は、TaO(但し、x<y)で表される組成を有するタンタル酸化物で構成されてもよい。
 これにより、抵抗変化層の抵抗値を安定して変化させることができる。
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
 以下、本発明の一態様に係る不揮発性記憶装置の製造方法について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。
 また、同じ構成要素については同じ符号を付しており説明を省略する場合がある。また、トランジスタや抵抗変化型素子等の形状については模式的なものであり、その個数等についても図示しやすい個数としている。実施の形態1~3に関しては、第1の電極上に酸素含有率の低い第1のタンタル酸化物層を形成し、その上に酸素含有率の高い第2のタンタル酸化物層を形成する構造(Bモード構造)をもって説明する。
 (実施の形態1)
 [不揮発性記憶装置の構成]
 図1は、本発明の実施の形態1に係る不揮発性記憶装置の概略構成を示す断面図である。同図に記載された不揮発性記憶装置10は、抵抗変化型素子112を有する不揮発性記憶装置であり、基板100と、基板100上に形成された第1配線101と、基板100上に第1配線101を覆って形成された第1層間絶縁層102と、第1コンタクトホール103(直径:50~300nm)の内部にタングステンを主成分として埋め込まれた第1コンタクトプラグ104と、第1コンタクトプラグ104に接続するように第1層間絶縁層102上に形成された抵抗変化型素子112と、抵抗変化型素子112を被覆して形成された第2層間絶縁層108と、第2コンタクトホール109(直径:50~300nm)の内部にタングステンを主成分として形成された第2コンタクトプラグ110と、第2コンタクトプラグ110に接続するように第2層間絶縁層108上に形成された第2配線111とを備える。
 第1層間絶縁層102は、シリコン酸化膜等(厚さ:500~1000nm)で構成される。また、第2層間絶縁層108は、シリコン酸化膜(厚さ:500~1000nm)で構成される。第1コンタクトプラグ104は、第1層間絶縁層102を貫通して第1配線101と第1電極層105とを電気的に接続する。第2コンタクトプラグ110は、第2層間絶縁層108を貫通して第2電極層107と第2配線111とを電気的に接続する。
 抵抗変化型素子112は、窒化タンタル等で構成される第1電極層105(厚さ:5~100nm)、抵抗変化層106(厚さ:20~100nm)、及び貴金属(Pt、Ir、Pd等)から構成される第2電極層107(厚さ:5~100nm)を備える。第2電極層107としては、抵抗変化特性上、貴金属が用いられることが好ましい。一方、一般に貴金属は加工が困難であるが、本実施の形態では、第2電極層107が抵抗変化型素子112の上部に配置されていることにより、比較的加工が容易となる。
 ここで、第1電極層105は、例えば、Au(金)、Pt(白金)、Ir(イリジウム)、Cu(銅)、TaN(窒化タンタル)、Ta(タンタル)、Ti(チタン)、TiN(窒化チタン)のうちの1つ、または、複数の材料を用いて構成されていてもよい。また、第1電極層105は第2電極層107と同等のサイズでもよい。各電極層と各金属酸化物層の配置は、上下逆に配置されてもよい。
 抵抗変化層106は、酸素不足型の遷移金属酸化物であるタンタル酸化物で構成された第1の酸化物層である第1抵抗変化層106aと、タンタル酸化物で構成された第2の酸化物層である第2抵抗変化層106bとが積層されて構成されている。ここで、第2抵抗変化層106bの酸素含有率は、第1抵抗変化層106aの酸素含有率よりも高くなっている。ここで、酸素不足型の遷移金属酸化物とは、化学量論的な組成を有する酸化物と比較して酸素の含有量(原子比:総原子数に占める酸素原子数の割合)が少ない酸化物をいう。例えば、遷移金属元素がタンタル(Ta)の場合、化学量論的な酸化物の組成はTaであって、TaとOとの原子数の比率(O/Ta)は2.5である。したがって、酸素不足型のTa酸化物において、TaとOの原子比は0より大きく、2.5より小さいことになる。
 第1抵抗変化層106aのタンタル酸化物組成をTaOとし、xが0.8以上1.9以下であり、且つ、第2抵抗変化層106bのタンタル酸化物組成をTaOとし、yが2.1以上2.5以下であることが好ましい。これにより、抵抗変化層106の抵抗値を安定して高速に変化させることが可能となる。第2抵抗変化層106bは、後述する様に、第2抵抗変化層106bの構成材料であるタンタル酸化物をスパッタリングで堆積した後、Arプラズマ中に曝されている。これにより、これ以降の素子形成工程等に生じる熱バジェットによる、第2抵抗変化層106bを構成するタンタル酸化物中の酸素の拡散を抑制できる。
 次に、不揮発性記憶装置10の抵抗変化動作について説明する。不揮発性記憶装置10内の抵抗変化型素子112は、第1電極層105を基準にして、第2電極層107に負の電圧パルスが印加されることにより、高抵抗状態から低抵抗状態に変化(低抵抗化)し、反対に、第2電極層107に正の電圧パルスが印加されることにより、抵抗変化型素子112を低抵抗状態から高抵抗状態に変化(高抵抗化)する。
 第2電極層107に印加された負の電圧パルスにより、第2抵抗変化層106b中の酸素イオンが第2抵抗変化層106b中から追い出され、第2抵抗変化層106bの少なくとも一部の領域の酸素含有率が減少すると考えられる。これにより低抵抗化が発現するものと推察される。一方、第2電極層107に印加された正の電圧パルスにより、第1抵抗変化層106a中の酸素イオンが、第2抵抗変化層106b中に取り込まれ、第2抵抗変化層106bの酸素含有率が増大すると考えられる。これにより高抵抗化が発現するものと推察される。
 [不揮発性記憶装置の製造方法]
 図2(a)~図2(e)及び図3(a)~図3(g)は、それぞれ、本発明の実施の形態1に係る不揮発性記憶装置の製造方法の前半の工程及び後半の工程の一例を示す断面図である。これらを用いて、不揮発性記憶装置10の製造方法の要部について説明する。なお、以下の説明は、あくまでも一例であり、特定の材料、加工方法および加工条件に限定されるものではない。以下の製造方法は、公知の方法と組み合わせて応用できる。
 図2(a)は、第1配線101を形成する工程後の断面図である。本工程では、まず、トランジスタや下層配線などが形成されている半導体基板である基板100上に、アルミニウムで構成された導電層(厚さ:400~600nm)をスパッタリング法により形成する。次に、これを所望のマスクを用いたパターニングとドライエッチングによる加工により第1配線101を形成する。以上により、第1配線101が形成される。
 図2(b)は、第1層間絶縁層102を形成する工程後の断面図である。本工程では、まず、第1配線101を被覆するように基板100上に絶縁層としてのプラズマTEOS(オルトケイ酸テトラエチル)をCVD(Chemical Vapor Deposition)法により形成する。その後、表面を平坦化することで第1層間絶縁層102(厚さ:500~1000nm)を形成する。以上により、第1層間絶縁層102が形成される。第1層間絶縁層102については、プラズマTEOSの他に、配線間の寄生容量の低減のためにフッ素含有酸化物(例えば、FSG)やlow-k材料を用いてもよい。
 図2(c)は、第1コンタクトホール103を形成する工程後の断面図である。本工程では、所望のマスクを用いたパターニングとドライエッチングによる加工により、第1層間絶縁層102を貫通して第1配線101に接続される第1コンタクトホール103(直径:50~300nm)を形成する。なお、図2(c)では、第1配線101の幅が第1コンタクトホール103より大きな外形となっている。これにより、パターニングの際にマスク合わせずれが生じても、第1配線101と第1コンタクトプラグ104の接触する面積を一定に保つことができる。その結果、例えば、接触面積のばらつきに伴うセル電流の変動を防止できる。
 図2(d)は、第1コンタクトプラグ104の導電材料を充填する工程後の断面図である。本工程では、まず、下層に密着層及び拡散バリアとして機能するチタン(Ti)/チタン窒化物(TiN)層(厚さ:各々5~30nm)をそれぞれスパッタリング法/CVD法で成膜する。その後、上層にコンタクトプラグの主たる構成要素となるタングステン(W、厚さ:200~400nm)をCVD法で成膜する。その結果、第1コンタクトホール103は、後に第1コンタクトプラグ104となる積層構造の導電層104M(W/Ti/TiN構造)で充填される。
 図2(e)は、第1コンタクトプラグ104を形成する工程後の断面図である。本工程では、化学的機械研磨法(CMP法)を用いてウエハ全面を平坦化研磨し、第1層間絶縁層102上の不要な導電層104Mを除去する。これにより、第1コンタクトホール103の内部に第1コンタクトプラグ104が形成される。 
 図3(a)は、第1電極材料層105M及びタンタル酸化物材料層106aFを形成する工程後の断面図である。本工程では、まず、第1コンタクトプラグ104を被覆して、第1層間絶縁層102上に、タンタル窒化物(TaN)からなる第1電極材料層105M(厚さ:20~50nm)をスパッタリング法で形成する。なお、第1電極材料層105Mは、後工程でパターニングされて第1電極層105となる前の薄膜体であり、第1電極層105を構成する。続いて、第1電極材料層105M上に、第1の酸化物材料層であるタンタル酸化物材料層106aFをスパッタリング法により形成する。タンタル酸化物材料層106aFの形成には、タンタルからなるスパッタターゲットを、酸素を含む雰囲気中でスパッタリングする、いわゆる反応性スパッタ法を用いる。タンタル酸化物材料層106aFの厚さは分光エリプソメトリ法を用いて測定でき、例えば、その厚さは30nmとする。スパッタリング条件は、電源出力1000W、成膜圧力0.05Paとし、スパッタガスにはアルゴンと酸素の混合ガスを用いて、タンタル酸化物材料層106aFの抵抗率が例えば3mΩcmとなるよう、酸素の流量を制御する。タンタル酸化物材料層106aFは、パターニングされて第1抵抗変化層106aとなる前の薄膜体であり、第1抵抗変化層106aを構成する。以上により、第1電極材料層105M及びタンタル酸化物材料層106aFが形成される。
 図3(b)は、タンタル酸化物材料層106aFよりも抵抗率の高いタンタル酸化物材料層106bFを形成する第1成膜工程後の断面図である。本工程では、タンタル酸化物材料層106aF上に、第2の酸化物材料層であるタンタル酸化物材料層106bFを形成する。タンタル酸化物材料層106bFの形成には、Taで表される組成を有するタンタル酸化物をスパッタターゲットとして用い、スパッタガスにアルゴン(Ar)を用いたRFマグネトロンスパッタリング法により形成する。スパッタリングの条件は、例えば、RF電源出力が200W、成膜圧力が0.3Pa、アルゴンガス流量が300sccm、基板温度が室温である。タンタル酸化物材料層106aFと抵抗変化を起こすのに有効なタンタル酸化物材料層106bFの厚さは3~10nmであり、その厚さは分光エリプソメトリ法を用いて測定される。また、上述したスパッタリング条件を用いてタンタル酸化物材料層106bFを形成したときの成膜レートは、例えば、1.2nm/分である。タンタル酸化物材料層106bFは、表面処理およびパターニングされて第2抵抗変化層106bが形成される前の層である。
 図3(c)は、第2抵抗変化層106bとなるタンタル酸化物材料層106bFに、Arプラズマ照射する工程の断面図である。プラズマ照射により、タンタル酸化物材料層106bFは膜質が変化する。以下では、説明の簡便のため、プラズマ照射後のタンタル酸化物材料層を、タンタル酸化物材料層106bAとよぶことにする。本工程では、プラズマ生成のための電源と、基板バイアスを制御するために基板から高周波(RF)電源を備えたプラズマ装置を用いる。その条件は、例えば、プラズマ照射時の基板温度を室温とし、プラズマ生成用電源パワーが500W、圧力が3Pa、ガス流量がAr=100sccmで、処理時間が5分である。詳細は後述するが、この工程により、第2抵抗変化層106bの酸素が第1抵抗変化層106aへ拡散することが抑制される。本Arプラズマ照射工程は、タンタル酸化物材料層106bFの表面を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程に相当し、また、単一種類の希ガスにより生成したプラズマに曝す単ガスプラズマ処理工程に相当する。すなわち、本実施の形態においては、「希ガスを含むガス」がArガスである例について説明するが、これは説明の簡便のためであり、後述するように、本実施の形態はこれに限定さるものではない。なお、本工程で生成されたプラズマには酸素及び酸素ラジカルは含まれていない。
 ここで、実施例1-(1)及び実施例1-(2)として、基板バイアスが0W及び20Wの2条件を実施した(表1参照)。
 表1は、実施の形態1に係る不揮発性記憶装置の各実施例およびその処理条件を説明する表である。
 また、参考例として、タンタル酸化物材料層106bFを成膜した後(図3(b)の後)にArプラズマ処理(図3(c))を行わず、その代わりに、タンタル酸化物材料層106bFを成膜した後に窒素雰囲気において400℃、10分のRTA処理を行ったサンプルを作成し、これを参考例H-(2)とした(表1参照)。また、タンタル酸化物材料層106bFを成膜した後にArプラズマ処理及びRTAのいずれも実施しないサンプルを作成し、これを比較例H-(1)とした(表1参照)。上述した実施例、参考例及び比較例の製造方法において、上記以外のその他の工程(図3(c)以外の工程)は、図2及び図3に示す工程と同様である。詳細は後述するが、RTA処理を実施した参考例H-(2)においては、タンタル酸化物材料層106bFに対して何も処理を実施しなかった比較例H-(1)に比べ、第2抵抗変化層106bの酸素が第1抵抗変化層106aへ拡散することが抑制されていることが観察された。Arプラズマ照射を行った実施例は、RTAを実施した参考例とほぼ同等の拡散抑制効果が得られており、基板を加熱処理せずに拡散抑制効果が奏されることが解った。詳細は後述する。
 さらに、実施例1-(3)として、まず実施例1-(1)と同条件でArプラズマ照射を実施し、その後、窒素雰囲気において400℃、10分のRTA処理を実施した(表1参照)。また、実施例1-(4)として、実施例1-(2)と同条件でArプラズマ照射を実施し、その後、窒素雰囲気において400℃、10分のRTA処理を実施した(表1参照)。上記実施例1-(3)及び1-(4)の製造方法も、上記以外のその他の工程は、図2及び図3に示す工程と同様である。上記実施例1-(3)及び1-(4)の処理条件も、表1に記載されている。
 再び、不揮発性記憶装置10の製造工程に戻って説明する。
 図3(d)は、第2電極材料層107Mを形成する工程後の断面図である。本工程では、タンタル酸化物材料層106bA上に第2電極材料層107Mとしてのイリジウム(Ir)をスパッタリング法により形成する。第2電極材料層107Mは、パターニングされて第2電極層107が形成される前の薄膜体であり、第2電極層107を構成する。
 図3(e)は、抵抗変化型素子112を形成する工程後の断面図である。本工程では、マスクを用いたパターニングとドライエッチングにより、第1電極材料層105Mと、タンタル酸化物材料層106aF及び106bAと、第2電極材料層107Mとを加工する。これにより、第1電極層105と、第1抵抗変化層106aと、第2抵抗変化層106bと、第2電極層107とで構成される抵抗変化型素子112が形成される。なお、抵抗変化型素子112の形成は、第1電極材料層105M、第1のタンタル酸化物材料層106aF、第2のタンタル酸化物材料層106bF、第2電極材料層107Mを同時にパターニング及びドライエッチングして形成する方法に限らず、別々に形成してもよい。
 また、抵抗変化型素子112の形成において、第1電極材料層105M、第1のタンタル酸化物材料層106a、第2のタンタル酸化物材料層106bF、第2電極材料層107Mは必ずしもパターニング加工されなくてもよい。例えば、それらの各層の一部または全部を絶縁層間膜中のホール中に埋め込んで、ホール埋め込み型の抵抗変化型素子を形成する場合にも、上記実施の形態を応用することができる。
 図3(f)は、抵抗変化型素子112を被覆して、第2層間絶縁層108(厚さ:500~1000nm)を形成する工程後の断面図である。本工程において第2層間絶縁層108を形成した後に、第2層間絶縁層108の残留応力を緩和する目的と第2層間絶縁層108に残留する水分を除去する目的で、例えば、400℃に加熱された炉の中で10分間熱処理する。
 図3(g)は、第2コンタクトホール109及び第2コンタクトプラグ110を形成する工程後の断面図である。本工程では、図2(a)~図2(e)と同様の製造方法で、第2コンタクトホール109及び第2コンタクトプラグ110を形成する。本工程の後で、第2コンタクトプラグ110を被覆して、第2配線111を形成する。第2配線111を形成した後、第2配線111を構成するアルミニウムの腐食を防止する目的で、例えば、400℃に加熱された炉の中で10分間熱処理を行い、不揮発性記憶装置10が完成する。
 上述したように、本実施の形態における不揮発性記憶装置10の製造方法では、図3(f)及び図3(g)に示す工程おいて、例えば、400℃に加熱された炉の中で10分間熱処理を行う工程を含む。この熱処理により、抵抗変化型素子112に熱バジェットが与えられる。なお、本発明の製造方法は、上述の熱処理工程を必ずしも含まずともよい。本発明の効果は、上記の熱処理工程以外の工程を導入することで生じる熱バジェット、および、その他の種々の要因で加わる熱バジェットに対しても、その効果を奏するものである。以下では、実施例、参考例及び比較例の説明に際して、上述の熱処理工程により生じた熱バジェットに基づいて説明するが、これは説明の一例であり、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-T000001
  [酸素濃度プロファイルの劣化抑制効果]
 図4Aは、本発明の実施の形態1に係る実施例、比較例及び参考例における、第2抵抗変化層の膜減り量を比較したグラフである。同図には、上述した実施例1-(1)及び実施例1-(2)、ならびに、比較例H-(1)及び参考例H-(2)についての第2抵抗変化層の膜減り量が比較されている。図4Aのグラフにおいて、縦軸の左側は、第2抵抗変化層106bの成膜時の膜厚(図4Aの黒丸)と、不揮発性記憶装置が完成した後の電気的特性から算出した第2抵抗変化層106bの膜厚(図4Aの白丸)とを表している。ここで、電気的特性から算出した第2抵抗変化層106bの膜厚とは、不揮発性記憶装置完成後の第2抵抗変化層106bの初期抵抗値から換算された第2抵抗変化層106bの膜厚である。
 ここで、第2抵抗変化層106bの膜厚換算方法について説明する。
 図5は、熱処理を与えずに形成した抵抗変化型素子112のサイズと、初期抵抗値の逆数の平方根(以下、(1/ρ)1/2と表す)との関係を示す図である。図5に示した例では抵抗変化型素子に熱処理を行っていないことから、酸素濃度プロファイルの劣化は生じていない。図5では、第2抵抗変化層の膜厚を3nm(図5中の黒丸)、4nm(図5中の黒菱形)、5nm(図5中の黒三角)とし、それぞれの第2抵抗変化層106bの膜厚について、抵抗変化型素子112のサイズと、(1/ρ)1/2との関係を示している。ここで、図5の横軸に示す抵抗変化型素子112のサイズとは、平面視において正方形形状を有する抵抗変化型素子112の1辺の長さをいう。
 図5に示した結果から、抵抗変化型素子112のサイズに対して(1/ρ)1/2は線形の関係にあり、その傾きは第2抵抗変化層106bの膜厚により異なることがわかる。以下、抵抗変化型素子112のサイズと(1/ρ)1/2とを線形近似したときの傾きをgで表す。
 図6に、抵抗変化型素子112の初期抵抗値の逆数の平方根の傾き(g)の逆数(1/g)と第2抵抗変化層106bの膜厚との関係を示す。図6からは、第2抵抗変化層106bの膜厚は、gの逆数に対して線形の関係にあることがわかる。ここで、熱処理によって酸素濃度プロファイルが劣化した第2抵抗変化層106bの膜厚も同様に図6に示す直線上に表されると仮定すると、第2抵抗変化層106bの実効膜厚dは、図6に示す直線の式、すなわち以下の数式(1)により定義できる。
  d=9.84×10-4×(1/g)+2.21    (1)
 ここで、dは第2抵抗変化層106bの実効膜厚を表す。つまり、実効膜厚とは、アニール後の第2抵抗変化層106bの初期抵抗値から、アニール後の第2抵抗変化層106bの膜厚を、アニールを行わないとした場合の抵抗変化型素子112の第2抵抗変化層106bの膜厚へと換算した膜厚である。式(1)で示した第2抵抗変化層106bの実効膜厚dにより、酸素濃度プロファイルの劣化の度合いを評価することが可能である。この実効膜厚dが、不揮発性記憶装置完成後の第2抵抗変化層106bの初期抵抗値から換算された第2抵抗変化層106bの膜厚である。
 再び、図4Aに戻って、各実施例、比較例及び参考例の結果について説明する。一方、図4Aのグラフにおいて、縦軸の右側は、第2抵抗変化層106bの成膜時の膜厚と、不揮発性記憶装置10が完成した後の電気的特性から算出した第2抵抗変化層106bの膜厚との差分、つまり第2抵抗変化層106bの膜減り量(図4Aの黒三角)を表している。この膜減り量は、言い換えると、第2抵抗変化層106b中の酸素の拡散量に相当する値であり、この値が大きいことは、第2抵抗変化層106b中の酸素が拡散し、不揮発性記憶装置10が形成された後の第2抵抗変化層106bの膜厚が小さくなっていることを示している。なお、第2抵抗変化層106bの成膜時の膜厚と電気的特性から算出した第2抵抗変化層106bの膜厚とは、測定方法が異なるため、その差の絶対値は厳密には実際の膜減り量を表していないが、各条件間の膜減り量の差は第2抵抗変化層106b中に含まれる酸素含有量の差を表していると考えられる。
 比較例H-(1)は、高抵抗層であるタンタル酸化物材料層106bFを形成し、そのまま上部のIr電極を堆積して形成したサンプルである。比較例H-(1)に示されるように、タンタル酸化物材料層106bFを形成した際の膜厚(成膜時膜厚)は5.5nmであったのに対し、不揮発性記憶装置10形成後の電気的特性から評価した膜厚(完成後膜厚)は3.6nmまで低下している。すなわち、第2抵抗変化層106bの膜減り量は1.9nmとなった。
 参考例H-(2)は、タンタル酸化物材料層106bFを形成した後、窒素雰囲気において400℃、10分の熱処理を実施したサンプルである。参考例H-(2)に示されるように、タンタル酸化物材料層106bFを形成した際の膜厚は5.5nmであったのに対し、装置形成後の電気的特性から評価した膜厚は3.9nmであった。すなわち、第2抵抗変化層106bの膜減り量は1.6nmとなった。これより、高抵抗層であるタンタル酸化物材料層106bFを形成した後、N雰囲気において400℃、10分の熱処理を実施することで、第2抵抗変化層106bの膜減り量は0.3nm程度抑制されたことが解る。この結果は、タンタル酸化物材料層106bFの形成後に、400℃、10分の熱を与えることにより膜中のTaとOの未結合部が結合し、これ以降のプロセスで熱バジェットが加わっても第2抵抗変化層106bの酸素が拡散しにくい膜質に変化したことを示唆している。しかしながら、前述した様に、400℃のRTAはTa-O結合強化による酸素拡散の抑制効果がある一方で、酸素拡散も同時に進行してしまう。
 上記結果を鑑みて、本発明者は、高抵抗層であるタンタル酸化物材料層106bFに熱エネルギーを与えずにタンタル酸化物材料層106bFにエネルギーを与えることが有効であると考えた。本発明の実施の形態の製造方法は、上述した通り、Ar(アルゴン)、Kr(クリプトン)、Xe(キセノン)、He(ヘリウム)などの希ガスプラズマを生成し、プラズマ中のAr、Kr、Xe、Heをタンタル酸化物材料層106bFの膜表面に衝突させエネルギーを供与する工程を含むものである。
 ここで、本実施例において、タンタル酸化物材料層106bFを形成した後で実施したプラズマ照射の条件について記載する。プラズマ生成に使用したガスはArガスを用い、その流量は100sccmとし、チャンバー圧力は3Paとした。プラズマ生成用メイン電源のパワーは500Wとし、処理時間は5分とした。また、Arイオンの引き込みエネルギーを変化させるために、実施例1-(1)では、基板バイアス用電源のRFパワーを0Wとし、実施例1-(2)では、基板バイアス用電源のRFパワーを20Wとした。
 図4Aに示すように、実施例1-(1)及び実施例1-(2)共に、400℃、10分の熱処理を実施した参考例H-(2)とほぼ同等の結果を示している。これは、高抵抗層であるタンタル酸化物材料層106bFの形成後に、Arなどの希ガスプラズマ照射工程を実施することにより、タンタル酸化物材料層106bFの形成後に400℃、10分の熱処理を実施した場合と同様の酸素拡散抑制効果が奏されることを示している。すなわち、本実施例は、高抵抗層であるタンタル酸化物材料層106bFに、プラズマ中の希ガスイオンのエネルギーを供与することによって、膜質が改善された第2抵抗変化層106bからの酸素拡散を抑制できることを示している。また、プラズマ照射工程は、熱処理に比べて低温で実施することができるため、低温プロセスという視点からも有効である。実施例1-(1)及び実施例1-(2)の実験結果において、膜減り量がほぼ同程度であることから、Arイオン引き込み用のRFパワーは、印加しても、印加しなくてもよい。ただし、基板バイアス電源のRFパワーが50Wを超えると、タンタル酸化物材料層106bFがエッチングされるため、これを回避すべく、タンタル酸化物材料層106bFが希ガスプラズマによりエッチングされないような条件、上記の例ではRFパワーは0W以上50W以下とすることが好ましい。
 図4Bは、本発明の実施の形態1に係る実施例、比較例及び参考例における、不揮発性記憶装置形成後の抵抗変化型素子の初期抵抗のばらつきを示すグラフである。参考例H-(2)に示される不揮発性記憶装置は、熱処理を実施することで第2抵抗変化層の膜減り量が抑制されるものの、上記熱処理により初期抵抗のばらつきが大きくなっていることが解る。一方、室温で希ガスプラズマを照射した実施例1-(1)及び実施例1-(2)では、参考例H-(2)に比べて初期抵抗のばらつきを抑制できることが解る。
 なお、上述した効果は、プラズマガスをArとした場合のみで得られる訳ではなく、その他の希ガスを用いても良い。これは、本発明が希ガスプラズマ中のイオンが高抵抗層であるタンタル酸化物材料層106bFの膜表面に照射され、そのエネルギーを供与することで第2抵抗変化層106bの酸素拡散が抑制されるものであるからである。そのため、本発明の実施の形態では、Arガス以外の、Kr、Xe、He、Neその他の希ガスイオンを用いても同様の効果が奏される。それぞれの希ガス元素は、各々の衝突断面積の違いにより膜表面に与えるエネルギーに差は生ずるが、プラズマ生成の電源パワーの調整により同様の効果が得られる。
 以上のように、本実施の形態に係る不揮発性記憶装置10の製造方法では、タンタル酸化物材料層106bFの酸素が、タンタル酸化物材料層106aFまたは第2電極材料層107M中に拡散することを抑制でき、第2抵抗変化層106bの実効的な膜厚の低減を抑制できる。よって、抵抗変化層106の酸素濃度プロファイルの劣化が抑制され、抵抗変化型素子112の素子性能の向上が図られる。また、素子性能ばらつきの抑制により抵抗変化層106に印加される電圧ばらつきも抑制でき、高エンデュランス特性を実現できる。
 また、単一の希ガスにより生成されたプラズマに曝す工程を有する本実施の形態の製造方法は、ウエハの温度を比較的低温(例えば室温)で処理することができるため、低温化プロセスを実現できる。
 また、本実施の形態に係る製造方法において、プラズマ真空槽内には、プラズマを生成するための希ガスではない微量ガスが含まれていることが想定される。上記微量ガスとは、例えば、予めプラズマ真空槽内部の側壁に吸着しておりプラズマ生成時にプラズマに混入するガス、及び、希ガスの供給元の純度に依存して含まれるガスなどが挙げられる。このような微量ガスがプラズマ内に存在している態様も、当該微量ガスはプラズマ生成に寄与するものではないことから、本発明の実施の形態1に係る製造方法に含まれる。
 (実施の形態2)
 [不揮発性記憶装置の構成]
 本発明者は、さらに酸素拡散が抑制される手法を検討した。その結果、高抵抗層であるタンタル酸化物材料層において、酸素が配置すべき所望のサイトに酸素が欠乏している酸素欠損部に酸素を導入することにより、酸素をTaと確実に結合させ、酸素拡散を抑制できることを見出した。高抵抗層であるタンタル酸化物材料層は、マクロ的にはTaの化学量論的組成にあったとしても、タンタル酸化物材料層は、統計的およびミクロ的には、酸素欠損を有している。この観点から、高抵抗層であるタンタル酸化物材料層を堆積した後、Ar等の希ガスと酸素との混合プラズマ中に、タンタル酸化物材料層を曝すことで、酸素欠陥部に酸素を補完しTa-O結合を構築し、タンタル酸化物材料層を改質すること着想した。
 本発明の実施の形態2に係る不揮発性記憶装置は、実施の形態1に係る不揮発性記憶装置10と構成は同じであるが、第2抵抗変化層となるタンタル酸化物材料層を形成した後の改質処理方法が異なる。詳細は後述するが、タンタル酸化物層である第2抵抗変化層は、タンタル酸化物材料層をスパッタリングで堆積した後、Ar/Oプラズマ中に曝すことで、以降の素子形成工程等の熱バジェットによる第2抵抗変化層中の酸素が拡散することを抑制できる。
 [不揮発性記憶装置の製造方法]
 図7は、本発明の実施の形態2に係る不揮発性記憶装置の製造方法の要部を示す断面図である。これらを用いて、実施の形態2に係る不揮発性記憶装置の要部の製造方法について説明する。本実施の形態に係る不揮発性記憶装置の製造方法は、図2及び図3に示された実施の形態1に係る不揮発性記憶装置10の製造方法と比較して、第2抵抗変化層となるタンタル酸化物材料層206bFをスパッタリングで成膜した後、プラズマ中に曝す工程と、その後にRTA処理を実施しているところが異なる。実施の形態1の製造方法と同じ点は説明を省略し、以下、タンタル酸化物材料層206bFをスパッタリングで成膜した後の工程から説明する。なお、以下の説明は、あくまでも一例であり、特定の材料、加工方法および加工条件に限定されるものではない。以下の製造方法は、公知の方法と組み合わせて応用できる。
 図7(a)に示すように、第2抵抗変化層となるタンタル酸化物材料層206bFを、実施の形態1と同様のスパッタリング条件で成膜する。
 図7(b)は、タンタル酸化物材料層206bFの表面に、Arプラズマを照射する工程およびAr/Oプラズマを照射する工程の断面図である。本工程では、タンタル酸化物材料層206bFの表面に対して、実施の形態1で用いたプラズマ処理装置を用いてArプラズマ処理を実施し、これに引き続き、Ar/Oプラズマ処理を実施する。この処理は、次の様なフローとしている。
 まず、Arプラズマ照射工程において、タンタル酸化物材料層206bFの表面を、Arプラズマ中に5分間曝す。その条件は、例えば、処理時の基板温度は室温であり、プラズマ生成用電源パワーは500W、基板バイアス電源パワーは20W、圧力は3Pa、ガス流量はAr=100sccmであり、処理時間は5分である。本Arプラズマ照射工程は、タンタル酸化物材料層206bFの表面を、単一種類の希ガスにより生成したプラズマに曝す単ガスプラズマ処理工程に相当する。上記条件は、本発明の実施の形態1で実施した条件(実施例1-(2))であり、この工程により、第2抵抗変化層106bの酸素が、第1抵抗変化層106aへ拡散するのを抑制できることが明らかになっている。
 このArプラズマ照射工程に引き続き、Ar/Oプラズマ照射工程を実施する。Ar/Oプラズマ照射工程では、プラズマが生成されたままの状態で、すなわち、プラズマ生成用電源パワー、及び、基板バイアス印加用電源パワーはオフとせずに、連続的に次の条件にプラズマ状態を切り替える。その条件は、例えば、処理時の基板温度は室温であり、プラズマ生成用電源パワーは500W、RF電源パワーは20W、圧力は4Pa、ガス流量はAr=95sccm、O2=5sccmであり、処理時間は3分である。上記条件により、タンタル酸化物材料層206bFの表面を、Ar/Oプラズマ中に曝し、タンタル酸化物材料層206bFを、酸素欠陥部に酸素が補完されたタンタル酸化物材料層206bAOへ改質する。本Ar/Oプラズマ照射工程は、タンタル酸化物材料層206bFの表面を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程に相当し、また、希ガスと酸素との混合ガスにより生成したプラズマに曝す混合プラズマ処理工程に相当する。
 図7(c)は、混合プラズマ処理工程の後に、タンタル酸化物材料層206bAを、窒素ガス雰囲気中で加熱処理するアニール工程の断面図である。本工程では、第2抵抗変化層となるタンタル酸化物材料層206bAO中に取り込まれた酸素であって、未だTa-Oとして未結合である酸素を結合する目的で、窒素雰囲気において400℃、10分間のRTAを実施し、第2抵抗変化層となるタンタル酸化物材料層206bAOに改質する。詳細は後述するが、Arプラズマ照射に引き続いて実施したAr/Oプラズマ処理工程とRTAとを実施することにより、タンタル酸化物材料層206bAOはタンタル酸化物材料層206bAORにさらに改質され、その後の工程でパターニングされた第2抵抗変化層206bの酸素が、第1抵抗変化層106aへ拡散することがさらに抑制される。
 次に、図7(d)に示すように、第2電極材料層107Mを形成する工程において、タンタル酸化物材料層206bAOR上に第2電極材料層107Mとしてのイリジウム(Ir)をスパッタリング法により形成する。
 以降の工程は、実施の形態1の図3(e)から図3(g)に示す製造工程と同様に製造する。従って、説明は省略する。
 ここで、実施例2-(1)として、上述した条件にて実施の形態2に係る製造方法を実施した。表1には、実施例2-(1)の処理条件を追記している。
 [酸素濃度プロファイルの劣化抑制効果]
 図8は、本発明の実施の形態1~3に係る実施例、比較例及び参考例における、第2抵抗変化層の膜減り量を比較したグラフである。同図には、実施の形態1に係る実施例1-(1)及び1-(2)、比較例H-(1)及び参考例H-(2)だけでなく、実施の形態2に係る実施例2-(1)についての第2抵抗変化層の膜減り量が比較されている。図4Aのグラフから得られる結果の説明は、ここでは省略する。
 本実施の形態に係る実施例2-(1)について、第2抵抗変化層となるタンタル酸化物材料層206bFを形成した際の膜厚は5.3nmであった。次に、上述したArプラズマ処理及びAr/Oプラズマ処理を経たタンタル酸化物材料層206bAORの膜厚は5.8nmであった。図8のグラフ中の実施例2-(1)の黒丸印は、Ar/Oプラズマ処理が終了した後の膜厚5.8nmをプロットしている。その後は、窒素雰囲気における400℃、10分のRTAを実施し、第2電極材料層107Mとしてのイリジウム(Ir)をスパッタリング法により形成している。そして、実施例2-(1)の不揮発性記憶装置の完成後の電気的特性から評価した第2抵抗変化層の膜厚は、4.6nmであり、膜減り量は、僅か1.2nmであった。以上の結果から、Arプラズマ照射を実施後の、Ar/Oプラズマ照射とRTP処理は、第2抵抗変化層にさらに過剰な酸素をあらかじめ供給するため、後工程における熱バジェット印加時の酸素の拡散を抑制し第2のタンタル酸化物の膜減りをさらに抑制する効果がある。次に、この効果には、Ar/Oプラズマ照射が寄与していることを以下に説明する。
 実施例1-(3)は、実施例1-(2)と同じ条件でArプラズマ照射を実施した後、窒素雰囲気中で400℃、10分のRTA処理を実施したものである。図8に示すように、実施例1-(3)と実施例1-(2)の膜減り量がほぼ同程度であることから、Ar照射を行った後に、N雰囲気における400℃、10分のRTAを実施しても、膜減り抑制効果はそれ以上に大きくならないことが分かる。従って、実施例2-(1)が、実施例1-(2)に対して、さらに酸素拡散抑制効果が得られたのは、RTA処理によるものでなく、Ar/Oプラズマ処理工程によるものであると言える。
 なお、実施例2-(1)は、Ar/Oプラズマ処理を実施する前にArプラズマ処理を実施した例を示すものであるが、上記効果は、これに限定されない。図8の実施例2-(2)は、Ar/Oプラズマ処理のみを行なった結果を示している。ここで、比較例H-(1)の膜減り量と実施例2-(2)の膜減り量との差分は、Ar/Oプラズマ処理による酸素拡散の抑制効果に対応する。上記膜減り量の差分は、例えば、比較例H-(1)の膜減り量と実施例1-(2)の膜減り量との差分に比べて大きい。これは、Ar/Oプラズマ処理による酸素拡散の抑制効果が、Arプラズマ処理による効果よりも高いことを示している。また、比較例H-(1)の膜減り量と実施例2-(2)の膜減り量との差分は、実施例1-(2)の膜減り量と実施例2-(1)の膜減り量との差分とほぼ同程度である。これは、Arプラズマ処理を前処理として採用せずとも、Ar/Oプラズマ処理による効果が得られることを示している。
 また、上記効果は、Ar/Oガスのみで得られる訳ではなく、その他の希ガスと酸素との混合ガスを用いても良い。これは、本実施の形態は希ガス/酸素混合プラズマを用いて、高抵抗層である第2抵抗変化層の膜表面から酸素イオン、酸素ラジカルにより第2抵抗変化層のタンタル酸化物を酸化するものであり、Arガス以外の、Kr、Xe、He、Neその他の希ガスイオンを用いても酸素イオン、酸素ラジカルを生成できるため、同様の効果が得られる。
 以上のように、本実施の形態に係る不揮発性記憶装置の製造方法により、第2の酸化物材料層であるタンタル酸化物材料層206bFが形成された後、タンタル酸化物材料層206bF中の酸素が、タンタル酸化物材料層106aFまたは第2電極材料層107M中に拡散することを抑制でき、第2抵抗変化層の実効的な膜厚が低減することを抑制できる。また、本実施の形態では、実施の形態1に係る製造方法に比して、さらに効率的に抑制効果を奏する。これは、第2抵抗変化層において酸素が欠損している酸素欠損部に、例えば、Ar/Oの混合ガスにより生成されたプラズマにより酸素を導入し、これをタンタル元素と確実に結合させることにより、酸素拡散抑制効果が促進されるものと推定される。
 (実施の形態3)
 [不揮発性記憶装置の構成]
 発明者は、さらに酸素拡散を抑制できる手法を検討した。その結果、第2抵抗変化層を所望膜厚に形成するにあたり、第2抵抗変化層のスパッタリングによる成膜を数回に分けて実施し、スパッタリング成膜をするたびに、実施の形態2で説明した希ガスと酸素の混合プラズマによるプラズマ酸化処理を実施する方法を見出した。詳細は後述するが、これにより、抵抗変化型素子形成以降の熱バジェットによる第2抵抗変化層の酸素拡散をさらに抑制できる。
 図9は、本発明の実施の形態3に係る不揮発性記憶装置の概略構成を示す断面図である。同図に記載された、本実施の形態に係る不揮発性記憶装置30は、実施の形態1に係る不揮発性記憶装置10と比較して、第2抵抗変化層の形成方法が異なる。詳細は後述するが、第2抵抗変化層306b3は下部層306b1と上部層306b2とから構成される第2の酸化物層であり、各層を段階的に形成する。すなわち、下部層306b1をスパッタリングで堆積した後に、実施の形態2で説明したAr/Oプラズマ処理を実施し、その後、上部層306b2をスパッタリングで堆積した後に、再度Ar/Oプラズマ処理を実施して形成する。このように、高抵抗層である第2抵抗変化層を2回に分けて成膜し、その都度、実施の形態2で説明したAr/Oプラズマ処理を繰り返し実施するものである。この後に、RTAにより熱処理を実施し、第2抵抗変化層306b3を形成する。この方法により製造することで、抵抗変化型素子形成以降の工程における熱バジェットにより第2抵抗変化層306b3中の酸素が拡散することを抑制できる。
 [不揮発性記憶装置の製造方法]
 図10は、本発明の実施の形態3に係る不揮発性記憶装置の製造方法の要部を示す断面図である。これらを用いて、実施の形態3に係る不揮発性記憶装置の要部の製造方法について説明する。本実施の形態に係る不揮発性記憶装置30の製造方法は、図2及び図3に示された実施の形態1に係る不揮発性記憶装置10の製造方法と比較して、第2抵抗変化層の形成工程及びその処理工程が異なる。実施の形態1の製造方法と同じ点は説明を省略し、以下、低抵抗層である第1抵抗変化層となるタンタル酸化物層106aFを形成した後の工程から説明する。なお、以下の説明は、あくまでも一例であり、特定の材料、加工方法および加工条件に限定されるものではない。以下の製造方法は、公知の方法と組み合わせて応用できる。
 図10(a)は、下部層306b1Fを成膜する第1成膜工程後の断面図である。本工程では、低抵抗層であり第1の酸化物材料層であるタンタル酸化物材料層106aFを形成した後、第2抵抗変化層を構成するタンタル酸化物材料で構成された下部層306b1Fを、実施の形態1と同じスパッタリング条件で、例えば、2.6nm成膜する。このようにして、下部層306b1Fが成膜される。
 図10(b)は、下部層306b1Fの表面に、Arプラズマを照射する工程およびAr/Oプラズマを照射する工程の断面図である。本工程では、実施の形態1と同じ条件でArプラズマ処理を実施し、これに引き続き、実施の形態2と同じ条件でAr/Oプラズマ処理を実施する。
 まず、Arプラズマ照射工程では、Arプラズマ処理条件として、処理時の基板温度は室温とし、プラズマ生成用電源パワーは、例えば500W、基板バイアス電源パワーは20W、圧力は3Pa、ガス流量はAr=100sccmであり、Arプラズマ処理時間は5分である。本Arプラズマ照射工程は、下部層306b1Fの表面を、単一種類の希ガスにより生成したプラズマに曝す単ガスプラズマ処理工程に相当する。
 このArプラズマ照射工程に引き続き、Ar/Oプラズマ照射工程を実施する。Ar/Oプラズマ照射工程では、例えば、プラズマは生成されたままの状態で、プラズマ生成用電源パワー、及び、基板バイアス印加用電源パワーはオフとせずに、連続的に次の条件にプラズマ状態に切り替える。その条件として、例えば、処理時の基板温度は室温とし、プラズマ生成用電源パワーは500W、RF電源パワーは20W、圧力は4Pa、ガス流量はAr=95sccm、O=5sccmであり、処理時間は3分である。この処理により、下部層306b1Fは当該処理が施された下部層306b1AOとなり、下部層306b1AOの膜厚は、例えば、4.7nmとなる。本Ar/Oプラズマ照射工程は、下部層306b1Fの表面を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程に相当し、また、希ガスと酸素との混合ガスにより生成したプラズマに曝す混合プラズマ処理工程にも相当する。
 図10(c)は、上部層306b2Fを成膜する第1成膜工程後の断面図である。本工程では、スパッタリング装置を用いて、第2抵抗変化層の構成要素となるタンタル酸化物材料で構成された上部層306b2Fを0.7nm堆積する。この状態で、第2抵抗変化層の構成要素となる下部層306b1AOと、上部層306b2Fとの合計膜厚は、例えば、5.4nmとなる。
 図10(d)は、上部層306b2Fの表面に、Arプラズマを照射する工程およびAr/Oプラズマを照射する工程の断面図である。本工程では、実施の形態1と同じ条件によるArプラズマ処理と、これに引き続き、実施の形態2と同じ条件によるAr/Oプラズマ処理を実施する。
 まず、Arプラズマ照射工程では、Arプラズマ中で5分間曝す。その条件として、処理時の基板温度は室温であり、プラズマ生成用電源パワーは500W、基板バイアス電源パワーは20W、圧力は3Pa、ガス流量はAr=100sccmであり、処理時間は5分である。本Arプラズマ照射工程は、上部層306b2Fの表面を、単一種類の希ガスにより生成したプラズマに曝す単ガスプラズマ処理工程に相当する。
 このArプラズマ照射工程に引き続き、Ar/Oプラズマ照射工程を実施する。Ar/Oプラズマ照射工程では、例えば、プラズマは生成されたままの状態で、すなわち、プラズマ生成用電源パワー、及び、基板バイアス印加用電源パワーはオフとせずに、連続的に次の条件にプラズマ状態を切り替える。その条件として、処理時の基板温度は室温であり、プラズマ生成用電源パワーは500W、RF電源パワーは20W、圧力は4Pa、ガス流量はAr=95sccm、O=5sccmであり、処理時間は3分である。この処理により、上部層306b2Fは当該処理が施された上部層306b2AOとなり、当該処理の後には、下部層306b1AOと、上部層306b2AOとの合計膜厚は、例えば、6.2nmとなる。本Ar/Oプラズマ照射工程は、上部層306b2Fの表面を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程に相当し、また、希ガスと酸素との混合ガスにより生成したプラズマに曝す混合プラズマ処理工程に相当する。
 図10(e)は、下部層306b1AO及び上部層306b2AOを、窒素ガス雰囲気中で加熱処理するアニール工程後の断面図である。本工程では、下部層306b1AO及び上部層306b2AOの中にとりこまれた酸素を、Ta-O未結合部を結合させる目的で、N雰囲気における400℃、10分のRTAを実施する。詳細は後述するが、下部層306b1AO及び上部層306b2AOにRTAが施された下部層306b1AOR及び上部層306b2AORを第2抵抗変化層の構成要素とすることにより、第2抵抗変化層の酸素が、第1抵抗変化層へ拡散するのをさらに抑制することが可能となる。
 次に、図10(f)に示すように、第2電極材料層107Mを形成する工程において、上部層306b2AOR上に第2電極材料層107Mとしてのイリジウム(Ir)をスパッタリング法により形成する。
 以降の工程は、図3(e)から図3(g)に示す製造工程と同様にして、抵抗変化型素子312を有する不揮発性記憶装置30を製造する。従って、説明は省略する。
 ここで、実施例3-(1)として、上述した条件にて実施の形態3に係る製造方法を実施した。表1には、実施例3-(1)の処理条件を追記している。
 [酸素濃度プロファイルの劣化抑制効果]
 本発明の実施の形態3における実施例3-(1)の結果を、図8中に示している。同図には、実施の形態1に係る実施例1-(1)及び1-(2)、比較例H-(1)及び参考例H-(2)、実施の形態2に係る実施例2-(1)、ならびに実施の形態3に係る実施例3-(1)についての第2抵抗変化層の膜減り量が比較されている。図4Aのグラフから得られる結果の説明は、ここでは省略する。
 図8のグラフに記載された実施例3-(1)の黒丸印は、図10(d)に示す2回目のAr/Oプラズマトリートメント処理が終了した後の下部層306b1AO及び上部層306b2AOの合計膜厚6.2nmがプロットされたものである。これに対し、不揮発性記憶装置30の完成後の電気的特性から評価した膜厚は、6.2nmであった。これにより、Ar/Oプラズマトリートメント処理後の膜厚に対する膜減り量が抑制されたことが解る。なお、上記効果は、Ar/Oガスのみで得られる訳ではなく、その他の希ガスと酸素との混合ガスを用いてもよい。これは、本発明は希ガス/酸素混合プラズマを用いて、高抵抗層である第2抵抗変化層の膜表面から酸素イオン、酸素ラジカルにより第2抵抗変化層のタンタル酸化物を酸化するものであり、Arガス以外の、Kr、Xe、He、Neその他の希ガスイオンを用いても酸素イオン、酸素ラジカルを生成できるため、同様の効果が得られる。また、上記効果は、第2抵抗変化層の成膜とその後のAr/Oプラズマトリートメント処理を2回繰り返しているが、3回以上に分けて実施してもよい。
 以上のように、本実施の形態に係る不揮発性記憶装置30の製造方法により、第2の酸化物材料層である下部層306b1F及び上部層306b2Fの成膜工程と、これらの酸化物材料層の表面のプラズマ処理工程とを繰り返し実施することで、酸素欠陥部をさらに効果的に修復することが可能となる。よって、上記工程を繰り返して第2抵抗変化層を積層形成した後の熱処理を伴うプロセス工程により、第2抵抗変化層の酸素が、第1抵抗変化層または第2電極材料層107M中に拡散することをより効果的に抑制できる。これにより、第2抵抗変化層の実効的な膜厚が低減することを極めて効率的に抑えることが可能となる。これは第2の酸化物材料層の深さ方向に渡って、プラズマ照射を段階的に行なうことにより、第2抵抗変化層中の酸素欠陥を効率的に修復できたためと考えられる。
 (実施の形態4)
 [不揮発性記憶装置の構成]
 本発明者は、さらに、高抵抗層である第2の酸化物材料層を堆積した後、希ガスを含むプラズマ中に第2の酸化物材料層を曝して当該第2の酸化物材料層の膜質を改善することにより、フォーミング電圧の低電圧化及びフィラメント電流の安定化と、エンデュランス特性の向上とを両立できることを見いだした。以下、第2の酸化物材料層がタンタル酸化物材料層である例を用いて当該知見について説明する。
 第2の酸化物材料層が、絶縁層または非常に高抵抗な半導体層である場合、後述の通り、フォーミング処理が行われる。本発明者は、フォーミング処理において、堆積膜として形成されたタンタル酸化物材料層の方が、酸化形成されたタンタル酸化物材料層に比べて、フォーミング電圧を低減できることを見出した。これは、堆積膜として形成された第2のタンタル酸化物材料層(高抵抗層)は、マクロ的にはTaの化学量論的組成にあったとしても、タンタル酸化物材料層は、統計的およびミクロ的には、酸素欠損を有しているためと考えられる。別の言い方をすれば、例えば、第1のタンタル酸化物材料の一部を酸化して形成された第2のタンタル酸化物材料層は、堆積膜として形成された第2のタンタル酸化物材料層に比べて、膜の緻密度が高いと考えられる。そのため、堆積膜として形成された第2のタンタル酸化物材料層は、酸化形成されたタンタル酸化物材料層に比べて、フォーミング処理時のフォーミング電圧を低減できるという利点を有する。また、堆積膜として形成された第2のタンタル酸化物材料層は、酸化形成された膜に比べて膜厚のばらつきが抑制されるため、フォーミング電圧のばらつきも低減できる。
 一方で、堆積膜として形成された第2のタンタル酸化物材料層は、酸化形成された膜に比べて緻密度が低いため、熱バジェットによる酸素濃度プロファイルの劣化をもたらす可能性がある。
 これに対して、本発明者は、第2のタンタル酸化物材料層を堆積した後、希ガスを含むプラズマ中にタンタル酸化物材料層を曝すことにより、酸化形成された膜に比べてフォーミング電圧が低く、かつ、従来の堆積膜よりもエンデュランス特性を向上させることができることを見出した。
 以下、高抵抗層であるタンタル酸化物材料層を堆積した後、Ar等の希ガスと酸素との混合プラズマ中にタンタル酸化物材料層を曝す例について説明する。
 [フィラメント形成]
 以下、高抵抗変化層におけるフィラメント形成について説明する。図1に記載された不揮発性記憶装置10において、第2抵抗変化層106bが絶縁体で構成される場合、製造直後は抵抗変化動作しない。そのため、この製造直後の不揮発性記憶装置10にフォーミング処理を施す。なお、「製造直後」とは、抵抗変化型素子112を形成後であって、かつ、まだ抵抗変化型素子112に抵抗値を読み出す目的以外で電気的パルスが印加されていない時点を意味する。「フォーミング処理」とは、抵抗変化型素子112に対する初期化処理である。具体的には、遷移金属酸化物を絶縁破壊することで、初期状態から、印加されるパルス電圧に応じて高抵抗状態と低抵抗状態とを可逆的に遷移できる状態に抵抗変化型素子112を変化させるための処理である。なお、フォーミングは、初期ブレイクとも呼ばれる。
 フォーミング処理では、抵抗変化型素子に所定の電圧を印加して遷移金属酸化物を絶縁破壊することで第2抵抗変化層106b中にフィラメント(導電パス)を形成する。このとき印加される電圧を「フォーミング電圧」(または初期化電圧)と呼ぶ。フォーミング電圧を印加することにより、印加されるパルス電圧に応じて高抵抗状態と低抵抗状態とを可逆的に遷移できる状態に抵抗変化型素子112を変化させることができる。
 図11は、抵抗変化層におけるフィラメントの形成を説明するための図であり、パーコレーションモデル(percolation model)を用いたシミュレーションの結果を示している。ここでは、図1に記載された不揮発性記憶装置10における第2抵抗変化層106b中の酸素欠陥サイトが繋がることによりフィラメント(導電パス)が形成されると仮定している。パーコレーションモデルとは、第2抵抗変化層106bの酸素欠陥サイト(以下、単に「欠陥サイト」という)等のランダムな分布を仮定し、欠陥サイト等の密度がある閾値を超えると欠陥サイト等の繋がりが形成される確率が増加するという理論に基づくモデルである。ここで「欠陥」とは、遷移金属酸化物中で酸素が欠損していることを意味し、「欠陥サイトの密度」とは酸素不足度とも対応している。すなわち、酸素不足度が大きくなると、欠陥サイトの密度も大きくなる。
 ここでは、第2抵抗変化層106bの酸素イオンサイトを、格子状に仕切られた領域(サイト)として近似的に仮定し、確率的に形成される欠陥サイトによって形成されるフィラメントをシミュレーションで求めている。図11において、“0”が含まれているサイトは第2抵抗変化層106b中に形成される欠陥サイトを表している。他方、空白となっているサイトは酸素イオンが占有しているサイトを表しており、高抵抗な領域を意味している。また、矢印で示される欠陥サイトのクラスター(互いに接続された欠陥サイトの集合体)は、図中の上下方向に電圧が印加された場合に第2抵抗変化層106b内に形成されるフィラメント、すなわち電流が流れるパスを示している。図11に示すように、第2抵抗変化層106bの下面と上面との間に電流を流すフィラメントは、ランダムに分布する欠陥サイトの内の上端から下端までを接続する欠陥サイトのクラスターで構成される。このパーコレーションモデルに基づくと、フィラメントの本数及び形状は確率的に形成されることになる。
 [不揮発性記憶装置の製造方法]
 以下、本発明の実施の形態4に係る不揮発性記憶装置の製造方法について説明する。本実施の形態4に係る不揮発性記憶装置の製造方法は、実施の形態2に係る不揮発性記憶装置の製造方法の最後に、上述したフォーミング工程を実行するものである。以下、実施の形態2に係る不揮発性記憶装置の製造方法と異なる点を中心に説明する。
 図12は、本発明の実施の形態4に係る不揮発性記憶装置の製造方法の要部を示す断面図である。同図を用いて、実施の形態4に係る不揮発性記憶装置の要部の製造方法について説明する。本実施の形態に係る不揮発性記憶装置の製造方法は、図7に示された実施の形態2に係る不揮発性記憶装置10の製造方法と比較して、抵抗変化型素子に対してフォーミング工程を実行する点のみが異なる。実施の形態2の製造方法と同じ点は説明を省略し、以下、タンタル酸化物材料層206bFをスパッタリングで成膜した後の工程から説明する。なお、以下の説明は、あくまでも一例であり、特定の材料、加工方法および加工条件に限定されるものではない。以下の製造方法は、公知の方法と組み合わせて応用できる。
 まず、図12の(a)に示すように、第2抵抗変化層となるタンタル酸化物材料層206bFを、実施の形態1と同様のスパッタリング条件で成膜する。
 次に、図12の(b)に示すように、タンタル酸化物材料層206bFの表面に対して、実施の形態1で用いたプラズマ処理装置を用いてArプラズマ処理を実施する。このArプラズマ照射工程に引き続き、Ar/Oプラズマ照射工程を実施する。このAr/Oプラズマ照射工程により、上述したように、Ta-O結合を再構築し、タンタル酸化物材料層206bFの膜質が改善されるが、タンタル酸化物材料層206bFの膜厚は増加しない。
 次に、図12の(c)に示すように、タンタル酸化物材料層206bAを、窒素ガス雰囲気中で加熱処理するアニール工程を実施する。
 次に、図12の(d)に示すように、第2電極材料層107Mを形成する。
 上述した図12の(a)~(d)の工程は、実施の形態2における図7の(a)~(d)に示された工程と同様である。
 次に、図12の(e)に示すように、抵抗変化型素子212を形成する。
 次に、図12の(f)に示すように、抵抗変化型素子212を被覆して、第2層間絶縁層108を形成する。
 次に、図12の(g)に示すように、第2コンタクトホール109及び第2コンタクトプラグ110を形成する。
 上述した図12の(e)~(g)の工程は、実施の形態1における図3の(e)~(g)に示された工程と同様である。
 最後に、図12の(h)に示すように、抵抗変化型素子212についてフォーミング処理を実施する。具体的には、第2電極層107と第1電極層105との間に、フォーミング電圧を印加する。抵抗変化型素子212の抵抗値は、図12の(g)に示された工程が終了した時点では通常動作の抵抗値よりも高いレベルとなっている。ここで、抵抗変化型素子212に対して、例えば、第1電極層105を基準にして第2電極層107に負の電圧パルスを印加する。この電圧パルスであるフォーミング電圧(初期化電圧パルス)の印加により、第2抵抗変化層206bのうち第2電極層107と接する面から第1抵抗変化層106aにかけてフィラメント(導電パス)が形成され、抵抗変化型素子212は、通常の高抵抗状態と低抵抗状態とを可逆的に遷移できる状態となる。
 このとき、図12の(b)に示されるプラズマ処理工程においてAr等の希ガスと酸素との混合プラズマ中に曝されたことによりタンタル酸化物材料層206bFの膜厚を増加させることなく膜質が改善されている。これにより、上記プラズマ処理工程を実行しない場合と比べて、より低いフォーミング電圧でフィラメントを形成することが可能となり、フォーミング処理が容易となる。また、形成されたフィラメントを流れるフィラメント電流が安定化する。このような効果は、特に、第2抵抗変化層206bがスパッタリング法で形成された場合に顕著となる。
 また、本実施の形態に係る不揮発性記憶装置の製造方法においても、タンタル酸化物材料層206bFの酸素が、タンタル酸化物材料層106aFまたは第2電極材料層107M中に拡散することを抑制でき、第2抵抗変化層206bの実効的な膜厚の低減を抑制できる。よって、抵抗変化層206の酸素濃度プロファイルの劣化が抑制され、抵抗変化型素子212の素子性能の向上が図られる。また、素子性能ばらつきの抑制により抵抗変化層206に印加される電圧ばらつきも抑制でき、高エンデュランス特性を実現できる。
 また、上記効果は、Ar/Oガスのみで得られる訳ではなく、その他の希ガスと酸素との混合ガスを用いても良い。これは、本実施の形態は希ガス/酸素混合プラズマを用いて、高抵抗層である第2抵抗変化層の膜表面から酸素イオン、酸素ラジカルにより第2抵抗変化層の膜質を改善するものであり、Arガス以外の、Kr、Xe、He、Neその他の希ガスイオンを用いても酸素イオン、酸素ラジカルを生成できるため、同様の効果が得られる。
 また、上記実施形態1~3に示されるように、少なくとも希ガスを含むガスによるプラズマ処理が行われれば膜質改善によるエンデュランス特性の向上が得られる。したがって、上記実施形態1~3のそれぞれと本実施形態のフォーミング形成工程とを適宜組み合わせることができる。
 以上、本発明に係る不揮発性記憶装置の製造方法について実施の形態1~3に基づき説明したが、本発明に係る不揮発性記憶装置の製造方法は、上述した実施の形態1~3に限定されるものではない。実施の形態1~3に対して、本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る製造方法を使用して製造された不揮発性記憶装置を内蔵した各種機器も本発明に含まれる。
 [不揮発性記憶装置の構成の変形例]
 なお、実施の形態1~3で説明した不揮発性記憶装置の有する抵抗変化型素子において、低抵抗層である第1抵抗変化層と高抵抗層である第2抵抗変化層との積層順を逆にした構成においても、本発明の不揮発性記憶装置の製造方法が適用される。以下、図13及び図14を用いて、上記構成に係る不揮発性記憶装置の製造方法を説明する。
 図13は、本発明の実施の形態の変形例に係る不揮発性記憶装置の概略構成を示す断面図である。なお、図13において、図1に記載された不揮発性記憶装置10と同じ構成要素については同じ符号を用い、説明を省略する。図13に示すように、不揮発性記憶装置40と不揮発性記憶装置10との違いは、酸素含有率の低い第1抵抗変化層と酸素含有率の高い第2抵抗変化層との配置の違いにある。図13に記載された不揮発性記憶装置40においては、酸素含有率の高い第2の酸化物層である第2抵抗変化層406bの上に、第2抵抗変化層406bよりも酸素含有率の低い第1の酸化物層である第1抵抗変化層406aが配置され、抵抗変化層406が構成されている。
 [不揮発性記憶装置の製造方法]
 図14は、本発明の実施の形態の変形例に係る不揮発性記憶装置の製造方法の要部を示す断面図である。本変形例に係る不揮発性記憶装置の製造方法は、図2及び図3に示された実施の形態1に係る不揮発性記憶装置10の製造方法と比較して、第2抵抗変化層の形成工程及びその処理工程が異なる。実施の形態1の製造方法と同じ点は説明を省略し、以下、第1コンタクトプラグ104を形成した後の工程から説明する。
 図14の(a)に示すように、第1電極材料層405M及び酸素含有率の高いタンタル酸化物材料層406bFを形成する工程において、第1コンタクトプラグ104を被覆して、第1層間絶縁層102上に、イリジウム(Ir)からなる第1電極材料層405M(厚さ:20~50nm)をスパッタリング法で形成する。続いて、第1電極材料層405M上に、タンタル酸化物材料層406bFをスパッタリング法により形成する。タンタル酸化物材料層406bFの形成には、タンタルをターゲットとし、酸素を反応ガスとした反応性スパッタ法を用いる。反応性スパッタ法によりタンタル酸化物層406bFを形成するときの条件としては、例えば、電源出力は1000W、Ar流量は20sccm、酸素流量は40sccm、圧力は0.06Pa、基板温度は室温である。上層として酸素含有率の低いタンタル酸化物材料層406aFを積層して抵抗変化を起こすのに有効なタンタル酸化物材料層406bFの厚さは、3~10nmである。本成膜工程は、タンタル酸化物材料層406bFを成膜する第1成膜工程に相当する。
 次に、図14の(b)に示すように、加工後に第2抵抗変化層406bとなるタンタル酸化物材料層406bFに、Arプラズマ照射する工程を行い、タンタル酸化物材料層406bAへと膜質を改善する。これは、プラズマ生成のための電源と、基板バイアスを制御するために基板から高周波(RF)電源を備えたプラズマ装置を用いている。その条件は、例えば、処理時の基板温度を室温とし、プラズマ生成用電源パワーが500W、圧力が3Pa、ガス流量がAr=100sccmで、処理時間が5分である。この工程により、第2抵抗変化層406bが、上層の第1抵抗変化層406aへ拡散することが抑制される。本Arプラズマ照射工程は、タンタル酸化物材料層406bFの表面を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程に相当し、また、単一種類の希ガスにより生成したプラズマに曝す単ガスプラズマ処理工程に相当する。
 次に、図14の(c)に示すように、タンタル酸窒化物材料層406aFを形成する工程において、タンタル酸化物材料層406bAの上に、酸素含有率の低いタンタル酸化物材料層406aFを形成する。タンタル酸化物材料層406aFの形成には、タンタルからなるスパッタターゲットを用いて、酸素を含むガス雰囲気中での反応性スパッタ法を用いる。タンタル酸化物材料層406aFの厚さは、例えば、20~30nmである。スパッタリング条件としては、例えば、電源出力は1000W、成膜圧力は0.05Paである。
 次に、図14の(d)に示すように、第2電極材料層407Mを形成する工程において、タンタル酸化物材料層406aFの上に、第2電極材料層407Mとしての窒化タンタル(TaN)をスパッタリング法により形成する。
 以上の工程を含む製造方法により、抵抗変化型素子412を有する不揮発性記憶装置40を製造する。
 上記変形例に係る不揮発性記憶装置40では、酸素含有率の高いタンタル酸化物材料層406bF上に、酸素含有率の低いタンタル酸化物材料層406aFを形成する。これにより、第2抵抗変化層406bの製造方法の選択幅が広がる。
 タンタル酸化物材料層106aFの上にタンタル酸化物層106bを配置する不揮発性記憶装置10において、例えば、タンタル酸化物材料層106bFを、酸素を反応ガスに用いて反応性スパッタ法により形成する場合、酸素含有率の低いタンタル酸化物材料層106aFが酸素プラズマ雰囲気に曝される。これにより、タンタル酸化物材料層106aFの表面が酸化されてしまい、狙いの酸素濃度プロファイルを有する抵抗変化層106を得ることができない。
 これに対し、不揮発性記憶装置40では、タンタル酸化物材料層406aFが酸素プラズマに曝されないため、図14の(a)で示したタンタル酸化物材料層406bFの形成工程において、タンタル酸化物材料層406bFを、タンタルをターゲットとし、酸素を反応ガスとした反応性スパッタ法で形成することができる。この場合、酸素含有率が高いタンタル酸化物材料層406bFを形成した後に、タンタル酸化物材料層406bFを改質するためのプラズマ処理や熱処理を加えても、酸素含有率が低いタンタル酸化物材料層406aFは未だ形成されていないため、タンタル酸化物材料層406aFに酸素が拡散する懸念はない。また、反応性スパッタ法により形成したときのタンタル酸化物材料層406bFの成膜レートは6nm/分であり、図3(b)で示した製造方法(成膜レート:1.2nm/分)に比べて5倍程度速い。このように不揮発性記憶装置40の製造方法では、成膜レートを早くすることが可能であり、不揮発性記憶装置40は、不揮発性記憶装置10に比べて低コストで製造することが可能となる。
 なお、本変形例に係る製造方法では、下層のタンタル酸化物材料層406bFの形成後、当該層の表面に対し、実施の形態1で説明した条件と同様の条件にてArプラズマ処理のみを実施した例を示したが、当該Arプラズマ処理の後、実施の形態2で説明した条件と同様の条件にてAr+Oプラズマ処理とRTA処理とを実施してもよい。この場合には、タンタル酸化物材料層406bFがその後の工程でパターニングされた第2抵抗変化層406bの酸素が、第1抵抗変化層406aへ拡散することがさらに抑制される。
 さらに、本変形例に係る製造方法の最終工程において、実施の形態4に係るフォーミング工程を実施してもよい。この場合においても、実施の形態4と同様に、フォーミング電圧の低電圧化及びフィラメント電流の安定化と、エンデュランス特性の向上とを両立できる。
 また、上記の各実施の形態及び変形例においては、抵抗変化層は、タンタル酸化物の積層構造で構成される例について説明した。なお、タンタル酸化物は、室温から比較的低温の処理で形成することが可能である。そのため、タンタル酸化物を加工する工程を比較的低温で実施する場合には、熱による抵抗変化型素子または周辺の回路素子などの性能劣化を抑制することもできる。ただし、本実施の形態の抵抗変化層はタンタル酸化物に限定されない。抵抗変化層は、例えば、ハフニウム(Hf)酸化物の積層構造やジルコニウム(Zr)酸化物の積層構造などの抵抗変化層で、バイポーラ型の抵抗変化をし、高抵抗層が酸化還元反応で抵抗変化に寄与するタイプの抵抗変化材料の高抵抗であってもよい。
 ハフニウム酸化物の積層構造を採用する場合は、第1のハフニウム酸化物の組成をHfOとし、第2のハフニウム酸化物の組成をHfOとすると、0.9≦x≦1.6程度であって、yが1.8<y<2.0程度で、第2のハフニウム酸化物の膜厚は3nm以上、4nm以下であることが好ましい。
 また、ジルコニウム酸化物の積層構造を採用する場合は、第1のジルコニウム酸化物の組成をZrOとし、第2のジルコニウム酸化物の組成をZrOとすると、0.9≦x≦1.4程度であって、yが1.9<y<2.0程度で、第2のジルコニウム酸化物の膜厚は1nm以上、5nm以下であることが好ましい。
 また、抵抗変化を発現する主たる抵抗変化層としては、タンタル等の酸化物層が含まれていればよく、これ以外に例えば微量の他元素が含まれていても構わない。抵抗値の微調整等で、他元素を少量、意図的に含めることも可能であり、このような場合も本発明の範囲に含まれるものである。例えば、抵抗変化層に窒素を添加すれば、抵抗変化層の抵抗値が上がり、抵抗変化の反応性を改善できる。
 また、上記実施の形態1~4において、第1抵抗変化層を構成する第1の遷移金属と、第2抵抗変化層を構成する第2の遷移金属とは、異なる遷移金属であってもよい。この場合、第2抵抗変化層は、第1抵抗変化層よりも酸素不足度が小さいことが好ましい。ここで、酸素不足度とは、それぞれの遷移金属において、その化学量論的組成の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。
 第2抵抗変化層の酸素不足度を第1抵抗変化層の酸素不足度よりも小さくすることにより、第2抵抗変化層の抵抗値を第1抵抗変化層の抵抗値よりも高くすることができる。このような構成とすることにより、抵抗変化時に第1電極層と第2電極層との間に印加された電圧が、各層の抵抗値に対応して第1抵抗変化層よりも第2抵抗変化層により多く分配される。これにより、第2抵抗変化層中において酸化還元反応がより発生しやすくなる。
 なお、第1抵抗変化層を構成する第1の遷移金属と第2抵抗変化層を構成する第2の遷移金属とが同じ遷移金属である場合において、「第1抵抗変化層よりも第2抵抗変化層の酸素含有率が高い」ことは「第1抵抗変化層よりも第2抵抗変化層の酸素不足度が低い」ことに対応する。そのため、上記実施の形態における酸素含有率の関係は、適宜酸素不足度の関係として読み替え可能である。
 また、上記第1の遷移金属と上記第2の遷移金属とが互いに異なる材料である場合、第2の遷移金属の標準電極電位は、第1の遷移金属の標準電極電位より小さい方が好ましい。標準電極電位は、その値が大きいほど酸化しにくく、その値が小さいほど酸化しやすい特性を表す。第2抵抗変化層を、第1抵抗変化層より標準電極電位の小さい金属酸化物で構成することにより、第2抵抗変化層中で酸化還元反応がより発生しやすくなる。
 ここで、抵抗変化現象は、抵抗値が高い第2抵抗変化層中に形成された微小なフィラメント(導電パス)中で酸化還元反応が起こってその抵抗値が変化し、発生すると考えられる。したがって、第2抵抗変化層に第1抵抗変化層より標準電極電位が小さい金属の酸化物を配置することにより、第2抵抗変化層において抵抗変化が起こりやすくなり、安定した抵抗変化動作が得られる。
 例えば、第1抵抗変化層に、酸素不足型のタンタル酸化物を用い、第2抵抗変化層にチタン酸化物(TiO)を用いてもよい。チタン(標準電極電位=-1.63eV)はタンタル(標準電極電位=-0.6eV)より標準電極電位が低い材料であるので、この構成によれば、安定した抵抗変化動作が得られる。
 本発明の不揮発性記憶装置の製造方法は、熱バジェットによる抵抗変化層の酸素濃度プロファイルの劣化を抑制する効果を有しており、高信頼性が要求されるReRAM等の不揮発性記憶装置の製造方法に有用である。
 10、30、40、600  不揮発性記憶装置
 100、500  基板
 101、501  第1配線
 102、502  第1層間絶縁層
 103、503  第1コンタクトホール
 104、504  第1コンタクトプラグ
 104M  導電層
 105、505  第1電極層
 105M、405M  第1電極材料層
 106、206、406、506  抵抗変化層
 106a、406a  第1抵抗変化層
 106aF、106bF、106bA、206bA、206bAO、206bAOR、206bF、406aF、406bA、406bF  タンタル酸化物材料層
 106b、206b、306b3、406b  第2抵抗変化層
 107、507  第2電極層
 107M、407M  第2電極材料層
 108、508  第2層間絶縁層
 109、509  第2コンタクトホール
 110、510  第2コンタクトプラグ
 111、511  第2配線
 112、212、312、412、512  抵抗変化型素子
 306b1、306b1AO、306b1AOR、306b1F  下部層
 306b2、306b2AO、306b2AOR、306b2F  上部層
 506a  第1のタンタル酸化物層
 506b  第2のタンタル酸化物層

Claims (12)

  1.  酸素不足型の遷移金属酸化物で構成された第1の酸化物材料層を形成する工程と、
     遷移金属酸化物で構成され、前記第1の酸化物材料層よりも酸素不足度が低い第2の酸化物材料層を形成する工程と、
     前記第2の酸化物材料層を形成する工程の後に、前記第2の酸化物材料層を、希ガスにより生成したプラズマに曝すプラズマ処理工程とを含む
     不揮発性記憶装置の製造方法。
  2.  前記プラズマ処理工程では、
     前記第2の酸化物材料層を、希ガスのみにより生成したプラズマに曝す
     請求項1に記載の不揮発性記憶装置の製造方法。
  3.  前記プラズマ処理工程では、
     前記希ガスが、単一種類の希ガスである
     請求項2に記載の不揮発性記憶装置の製造方法。
  4.  さらに、
     基板上に、第1電極材料層を形成する工程と、
     前記第2の酸化物材料層の上に、第2電極材料層を形成する工程とを含み、
     前記第1の酸化物材料層を形成する工程では、前記第1電極材料層の上に、前記第1の酸化物材料層を形成し、
     前記第2の酸化物材料層を形成する工程では、前記第1の酸化物材料層の上に、前記第2の酸化物材料層を形成する
     請求項1に記載の不揮発性記憶装置の製造方法。
  5.  さらに、
     基板上に、第1電極材料層を形成する工程と、
     前記第1の酸化物材料層の上に、第2電極材料層を形成する工程とを含み、
     前記第2の酸化物材料層を形成する工程では、前記第1電極材料層の上に、前記第2の酸化物材料層を形成し、
     前記第1の酸化物材料層を形成する工程では、前記第2の酸化物材料層の上に、前記第1の酸化物材料層を形成する
     請求項1に記載の不揮発性記憶装置の製造方法。
  6.  基板上に、第1電極材料層を形成する工程と、
     前記第1電極材料層上に、酸素不足型の遷移金属酸化物で構成された第1の酸化物材料層を堆積する工程と、
     前記第1の酸化物材料層上に、遷移金属酸化物で構成され、前記第1の酸化物材料層よりも酸素不足度が低い第2の酸化物材料層を堆積する工程と、
     前記第2の酸化物材料層を堆積する工程の後に、前記第2の酸化物材料層を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程と、
     前記プラズマ処理工程の後に、前記第2の酸化物材料層の上に、第2電極材料層を形成する工程と、
     前記第1電極材料層、前記第1の酸化物材料層、前記第2の酸化物材料層、及び、前記第2電極材料層がそれぞれパターニングされて形成された第1電極層、第1抵抗変化層、第2抵抗変化層、及び、第2電極層から構成される抵抗変化型素子において、前記第1電極層と前記第2電極層との間に初期化電圧パルスを印加することにより、前記第2抵抗変化層のうち前記第2電極層と接する面から前記第1抵抗変化層と接する面にかけて、導電パスを形成する工程とを含む
     不揮発性記憶装置の製造方法。
  7.  基板上に、第1電極材料層を形成する工程と、
     前記第1電極材料層上に、遷移金属酸化物で構成された第2の酸化物材料層を堆積する工程と、
     前記第2の酸化物材料層上に、酸素不足型の遷移金属酸化物で構成され、前記第2の酸化物材料層よりも酸素不足度が高い第1の酸化物材料層を堆積する工程と、
     前記第2の酸化物材料層を堆積する工程の後であって前記第1の酸化物材料層を堆積する工程の前に、前記第2の酸化物材料層を、少なくとも希ガスを含むガスにより生成したプラズマに曝すプラズマ処理工程と、
     前記第1の酸化物材料層を堆積する工程の後に、前記第1の酸化物材料層の上に、第2電極材料層を形成する工程と、
     前記第1電極材料層、前記第2の酸化物材料層、前記第1の酸化物材料層、及び、前記第2電極材料層がそれぞれパターニングされて形成された第1電極層、第2抵抗変化層、第1抵抗変化層、及び、第2電極層から構成される抵抗変化型素子において、前記第1電極層と前記第2電極層との間に初期化電圧パルスを印加することにより、前記第2抵抗変化層のうち前記第1電極層と接する面から前記第1抵抗変化層と接する面にかけて、導電パスを形成する工程とを含む
     不揮発性記憶装置の製造方法。
  8.  前記プラズマ処理工程は、
     前記第2の酸化物材料層を、希ガスと酸素との混合ガスにより生成したプラズマに曝す混合プラズマ処理工程を含む
     請求項6または7に記載の不揮発性記憶装置の製造方法。
  9.  前記プラズマ処理工程は、
     さらに、
     前記混合プラズマ処理工程の前に、前記第2の酸化物材料層を、単一種類の希ガスにより生成したプラズマに曝す単ガスプラズマ処理工程を含む
     請求項8に記載の不揮発性記憶装置の製造方法。
  10.  前記プラズマ処理工程は、
     さらに、
     前記混合プラズマ処理工程の後に、窒素ガス雰囲気中で加熱処理するアニール工程を含む
     請求項8または9に記載の不揮発性記憶装置の製造方法。
  11.  前記第2の酸化物材料層を形成する工程と前記プラズマ処理工程とを連続して複数回繰り返す
     請求項1~10のいずれか1項に記載の不揮発性記憶装置の製造方法。
  12.  前記第1の酸化物材料層は、TaO(但し、0.8≦x≦1.9)で表される組成を有するタンタル酸化物で構成され、
     前記第2の酸化物材料層は、TaO(但し、x<y)で表される組成を有するタンタル酸化物で構成される
     請求項1~10のいずれか1項に記載の不揮発性記憶装置の製造方法。
PCT/JP2012/001620 2011-03-10 2012-03-09 不揮発性記憶装置の製造方法 WO2012120893A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013503399A JP5518250B2 (ja) 2011-03-10 2012-03-09 不揮発性記憶装置の製造方法
US13/997,818 US8927331B2 (en) 2011-03-10 2012-03-09 Method of manufacturing nonvolatile memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011053209 2011-03-10
JP2011-053209 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012120893A1 true WO2012120893A1 (ja) 2012-09-13

Family

ID=46797864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001620 WO2012120893A1 (ja) 2011-03-10 2012-03-09 不揮発性記憶装置の製造方法

Country Status (3)

Country Link
US (1) US8927331B2 (ja)
JP (1) JP5518250B2 (ja)
WO (1) WO2012120893A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146633A (ja) * 2013-01-28 2014-08-14 National Institute For Materials Science 多機能電気伝導素子
JP2014207046A (ja) * 2013-03-18 2014-10-30 パナソニック株式会社 抵抗変化素子の評価方法、評価装置、検査装置、及び不揮発性記憶装置
US20150037613A1 (en) * 2013-07-30 2015-02-05 Seagate Technology Llc Magnetic devices with overcoats
US8999808B2 (en) 2012-11-21 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonvolatile memory element and method for manufacturing the same
JP2017098564A (ja) * 2016-12-27 2017-06-01 国立研究開発法人物質・材料研究機構 多機能電気伝導素子の使用方法
US10304482B2 (en) 2015-03-22 2019-05-28 Seagate Technology Llc Devices including an overcoat layer
JP2020107625A (ja) * 2018-12-26 2020-07-09 パナソニック株式会社 抵抗変化型不揮発性記憶素子及びそれを用いた抵抗変化型不揮発性記憶装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597320B2 (ja) * 2012-03-29 2014-10-01 パナソニック株式会社 不揮発性記憶装置の製造方法
JP5650855B2 (ja) 2013-02-08 2015-01-07 パナソニックIpマネジメント株式会社 不揮発性記憶素子の製造方法、不揮発性記憶素子及び不揮発性記憶装置
US8860182B1 (en) * 2013-03-22 2014-10-14 Kabushiki Kaisha Toshiba Resistance random access memory device
JP2015060891A (ja) 2013-09-17 2015-03-30 株式会社東芝 記憶装置
US9112148B2 (en) 2013-09-30 2015-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell structure with laterally offset BEVA/TEVA
US9178144B1 (en) 2014-04-14 2015-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with bottom electrode
US9209392B1 (en) 2014-10-14 2015-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with bottom electrode
KR20170078284A (ko) * 2015-12-29 2017-07-07 에스케이하이닉스 주식회사 반도체 장치의 제조 방법 및 동작 방법
US10734576B2 (en) * 2018-03-16 2020-08-04 4D-S, Ltd. Resistive memory device having ohmic contacts
US10991881B2 (en) 2019-05-31 2021-04-27 Tokyo Electron Limited Method for controlling the forming voltage in resistive random access memory devices
US11647680B2 (en) * 2020-06-11 2023-05-09 International Business Machines Corporation Oxide-based resistive memory having a plasma-exposed bottom electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109876A1 (ja) * 2009-03-25 2010-09-30 パナソニック株式会社 抵抗変化素子の駆動方法及び不揮発性記憶装置
JP2010226058A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 不揮発性記憶装置及びその製造方法
WO2011024455A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 半導体記憶装置及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253038A (ja) 1991-01-30 1992-09-08 Toshiba Corp 有機非線形光学材料
KR100960208B1 (ko) 2005-07-29 2010-05-27 후지쯔 가부시끼가이샤 저항 기억 소자 및 불휘발성 반도체 기억 장치
US8022502B2 (en) 2007-06-05 2011-09-20 Panasonic Corporation Nonvolatile memory element, manufacturing method thereof, and nonvolatile semiconductor apparatus using the nonvolatile memory element
JP2009021524A (ja) 2007-07-13 2009-01-29 Panasonic Corp 抵抗変化素子とその製造方法ならびに抵抗変化型メモリ
JP2010251352A (ja) 2009-04-10 2010-11-04 Panasonic Corp 不揮発性記憶素子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109876A1 (ja) * 2009-03-25 2010-09-30 パナソニック株式会社 抵抗変化素子の駆動方法及び不揮発性記憶装置
JP2010226058A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 不揮発性記憶装置及びその製造方法
WO2011024455A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 半導体記憶装置及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999808B2 (en) 2012-11-21 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonvolatile memory element and method for manufacturing the same
JP2014146633A (ja) * 2013-01-28 2014-08-14 National Institute For Materials Science 多機能電気伝導素子
JP2014207046A (ja) * 2013-03-18 2014-10-30 パナソニック株式会社 抵抗変化素子の評価方法、評価装置、検査装置、及び不揮発性記憶装置
US9829521B2 (en) 2013-03-18 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Estimation method, estimation device, and inspection device for variable resistance element, and nonvolatile memory device
US20150037613A1 (en) * 2013-07-30 2015-02-05 Seagate Technology Llc Magnetic devices with overcoats
US10304482B2 (en) 2015-03-22 2019-05-28 Seagate Technology Llc Devices including an overcoat layer
JP2017098564A (ja) * 2016-12-27 2017-06-01 国立研究開発法人物質・材料研究機構 多機能電気伝導素子の使用方法
JP2020107625A (ja) * 2018-12-26 2020-07-09 パナソニック株式会社 抵抗変化型不揮発性記憶素子及びそれを用いた抵抗変化型不揮発性記憶装置
JP7308026B2 (ja) 2018-12-26 2023-07-13 ヌヴォトンテクノロジージャパン株式会社 抵抗変化型不揮発性記憶素子及びそれを用いた抵抗変化型不揮発性記憶装置
US11889776B2 (en) 2018-12-26 2024-01-30 Nuvoton Technology Corporation Japan Variable resistance non-volatile memory element and variable resistance non-volatile memory device using the element

Also Published As

Publication number Publication date
US20130295745A1 (en) 2013-11-07
US8927331B2 (en) 2015-01-06
JPWO2012120893A1 (ja) 2014-07-17
JP5518250B2 (ja) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5518250B2 (ja) 不揮発性記憶装置の製造方法
JP5159996B2 (ja) 抵抗変化型素子の製造方法
JP3896576B2 (ja) 不揮発性メモリおよびその製造方法
JP5340508B1 (ja) 抵抗変化型不揮発性記憶装置及びその製造方法
JP5406314B2 (ja) 不揮発性半導体記憶素子の製造方法および不揮発性半導体記憶装置の製造方法
JP5432423B2 (ja) 不揮発性記憶素子及びその製造方法
JP4960537B1 (ja) 不揮発性記憶素子および不揮発性記憶素子の製造方法
JP5899474B2 (ja) 不揮発性記憶素子、不揮発性記憶装置、不揮発性記憶素子の製造方法、及び不揮発性記憶装置の製造方法
JP5036909B2 (ja) 抵抗変化型素子及びその製造方法
JP4913268B2 (ja) 不揮発性記憶装置及びその製造方法
JP5242864B1 (ja) 不揮発性記憶素子の製造方法
TW201628131A (zh) 電阻式隨機存取記憶體的製造方法
JP2011238828A (ja) 半導体装置及びその製造方法
CN105826467B (zh) 一种存储器装置及其制造方法
WO2013057920A1 (ja) 不揮発性記憶素子及びその製造方法
JP2011238696A (ja) 抵抗変化素子及びその製造方法、並びに半導体装置及びその製造方法
TW201724491A (zh) 記憶體結構及其製造方法
TWI607592B (zh) 具一記憶體結構之半導體元件
CN106920876B (zh) 存储器结构及其制造方法
US20170179384A1 (en) Memory structure having material layer made from a transition metal on interlayer dielectric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754933

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013503399

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13997818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754933

Country of ref document: EP

Kind code of ref document: A1