[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012108296A1 - ターボ式過給機付き内燃機関の制御装置 - Google Patents

ターボ式過給機付き内燃機関の制御装置 Download PDF

Info

Publication number
WO2012108296A1
WO2012108296A1 PCT/JP2012/052077 JP2012052077W WO2012108296A1 WO 2012108296 A1 WO2012108296 A1 WO 2012108296A1 JP 2012052077 W JP2012052077 W JP 2012052077W WO 2012108296 A1 WO2012108296 A1 WO 2012108296A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
scavenging
amount
control device
Prior art date
Application number
PCT/JP2012/052077
Other languages
English (en)
French (fr)
Inventor
露木 毅
尚純 加藤
大介 高木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12744698.7A priority Critical patent/EP2674595B1/en
Priority to US13/983,933 priority patent/US9255534B2/en
Priority to CN201280007976.0A priority patent/CN103348117B/zh
Priority to KR1020137022165A priority patent/KR101544295B1/ko
Publication of WO2012108296A1 publication Critical patent/WO2012108296A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/145Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke with intake and exhaust valves exclusively in the cylinder head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to control of an internal combustion engine including a variable valve mechanism and a turbocharger.
  • a variable valve mechanism is controlled to provide a valve overlap period. During this valve overlap period, the residual gas in the cylinder is scavenged into the exhaust passage using the differential pressure between the intake pressure and the exhaust pressure. A technique for increasing the amount of fresh air is known.
  • JP 2006-283636A discloses a technique for obtaining a scavenging effect by controlling the throttle valve opening so that the intake pressure becomes higher than the exhaust pressure during the valve overlap period.
  • the scavenging amount during the valve overlap period varies depending on the operating state of the internal combustion engine and the operating environment even if the valve overlap period is the same.
  • the exhaust pressure is different between the steady state where the rotation speed of the turbocharger is constant and the transient state where the rotation speed increases, so the engine rotation speed, load, etc.
  • the scavenging amount is different even in the same operating state and the same overlap period length.
  • valve overlap period is controlled by searching a map in which the valve overlap period is assigned to the engine speed and load as in JP 2006-283636A, a scavenging amount suitable for the operating state and operating environment is not necessarily obtained. Not always.
  • an object of the present invention is to obtain a scavenging amount suitable for an operating state and an operating environment even in an internal combustion engine with a turbocharger.
  • FIG. 1 is a configuration diagram of a system to which this embodiment is applied.
  • FIG. 2 is a diagram showing a stroke order of the in-line four-cylinder internal combustion engine.
  • FIG. 3 is a block diagram showing the calculation contents for setting the fuel injection amount, which is executed by the control unit.
  • FIG. 4 is a block diagram of control executed by the control unit to determine whether or not to reduce the valve overlap period.
  • FIG. 5 is a block diagram showing the calculation contents for obtaining the scavenging rate, which is executed by the control unit.
  • FIG. 6 is a block diagram showing the calculation contents for obtaining the exhaust pressure executed by the control unit.
  • FIG. 7 is a block diagram showing the calculation contents for obtaining the transient exhaust pressure fluctuation executed by the control unit.
  • FIG. 1 is a configuration diagram of a system to which this embodiment is applied.
  • FIG. 2 is a diagram showing a stroke order of the in-line four-cylinder internal combustion engine.
  • FIG. 3 is a block diagram showing the calculation contents for
  • FIG. 8 is a block diagram showing the calculation contents for determining the conversion angle of the variable valve mechanism executed by the control unit.
  • FIG. 9 is a block diagram for calculating the scavenging amount upper limit value based on the catalyst temperature, which is executed by the control unit.
  • FIG. 10 is a block diagram for calculating the scavenging amount upper limit value based on the NOx emission amount, which is executed by the control unit.
  • FIG. 11 is a block diagram for calculating the scavenging amount upper limit value when the torque suddenly changes, executed by the control unit.
  • FIG. 1 is a system configuration diagram of an internal combustion engine to which the present embodiment is applied.
  • a throttle chamber 4 for adjusting the amount of air flowing into the internal combustion engine 1 is provided at the inlet of the intake manifold 2 of the internal combustion engine 1, and an intake passage 6 is connected upstream thereof.
  • a compressor 5 a of the supercharger 5 is installed on the upstream side of the throttle chamber 4 in the intake passage 6, and an air flow meter 8 for detecting the intake air amount is installed further on the upstream side.
  • a fuel injection valve 15 that directly injects fuel into the cylinder is disposed in each cylinder of the internal combustion engine 1.
  • a turbine 5 b of the supercharger 5 is installed in the exhaust passage 7.
  • the supercharger 5 is a so-called turbocharger, and a compressor 5a and a turbine 5b are connected via a shaft 5c. For this reason, when the turbine 5b is rotated by the exhaust energy of the internal combustion engine 1, the compressor 5a rotates and pressure-feeds the intake air to the downstream side.
  • An exhaust gas purification catalyst 18 is disposed downstream of the turbine 5b.
  • a three-way catalyst is used as the exhaust catalyst 18.
  • the recirculation passage 10 is a passage connecting the intake passage 6a and an intake passage downstream of the air flow meter 8 and upstream of the compressor 5a (hereinafter referred to as an intake passage 6b), and is provided in the middle.
  • an intake passage 6b an intake passage downstream of the air flow meter 8 and upstream of the compressor 5a
  • the recirculation valve 9 is opened when the differential pressure between the supercharging pressure and the pressure in the intake manifold 2 (hereinafter referred to as the intake pipe pressure) exceeds a predetermined value, as is generally known.
  • the intake pipe pressure For example, the reaction force of the built-in spring is urged in the valve closing direction against the valve body provided inside, and the boost pressure acts in the valve opening direction of the valve body, while the intake pressure is applied in the valve closing direction.
  • the valve is opened.
  • the differential pressure between the supercharging pressure and the intake pipe pressure when the recirculation valve 9 is opened can be set to an arbitrary value depending on the spring constant of the spring.
  • variable valve mechanism 14 changes the intake valve closing timing (IVC) so that an overlap period in which both the exhaust valve and the intake valve are opened occurs.
  • IVC intake valve closing timing
  • a generally known variable valve mechanism such as one that changes the rotational phase of the intake camshaft relative to the crankshaft or one that changes the operating angle of the intake valve can be used.
  • a similar variable valve mechanism 14 may be provided on the exhaust valve side to variably control the valve timing of the intake valve and the exhaust valve.
  • the control unit 12 reads parameters relating to the operating state such as the intake air amount detected by the air flow meter 8, the accelerator opening detected by the accelerator opening sensor 13, the engine speed detected by the crank angle sensor 20, and the like. Controls ignition timing, valve timing, air-fuel ratio, etc.
  • valve timing control and air-fuel ratio control performed by the control unit 12 will be described.
  • control unit 12 When the pressure in the intake manifold 2 is higher than the pressure in the exhaust manifold 3, the control unit 12 is a variable valve operation so that a valve overlap period during which the intake valve and the exhaust valve are open occurs. Actuate mechanism 14.
  • FIG. 2 shows the stroke order of an in-line four-cylinder internal combustion engine in which the ignition order is the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder.
  • the hatched portion in the figure indicates the valve overlap period.
  • the exhaust manifold 3 joins the exhaust gas discharged from the cylinder during the exhaust stroke and the scavenging gas from the other cylinders during the intake stroke at that time.
  • the exhaust gas exhausted in the exhaust stroke # 3ex of the third cylinder in FIG. 2 and the scavenged gas scavenged in the valve overlap period # 1sc of the first cylinder that becomes the intake stroke at that time merge.
  • the amount of gas introduced into the turbine 5b increases when there is no valve overlap period, that is, when there is no scavenging.
  • the rotational speed of the turbine 5b increases and the supercharging pressure by the compressor 5a increases.
  • the scavenging discharges the residual gas in the cylinder together with the fresh air gas, the efficiency of filling the fresh air in the cylinder is increased as a result.
  • the energy for rotating the turbine 5b is obtained by burning the mixture of the exhaust gas and the scavenging gas joined by the exhaust manifold 3 before flowing into the turbine 5b by air-fuel ratio control described later. Increase.
  • the fuel injection amount is set so that the air-fuel ratio is easy to burn. That is, the air-fuel ratio in the cylinder is made richer than the stoichiometric air-fuel ratio, exhaust gas containing unburned hydrocarbons is exhausted, and this exhaust gas and scavenging gas are mixed to facilitate combustion. For example, the fuel injection amount is set so that the stoichiometric air-fuel ratio is obtained.
  • the exhaust gas discharged in the exhaust stroke # 3ex of the third cylinder and the valve overlap of the first cylinder A fuel injection amount is set such that the mixture of scavenging gas discharged in the period # 1sc has an air-fuel ratio at which it is easy to burn. That is, when focusing on the air-fuel ratio in the cylinder of the third cylinder, the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, and exhaust gas including unburned fuel is discharged in the exhaust stroke.
  • the fuel injection amount set as described above is all injected by one fuel injection per stroke.
  • the fuel injection timing is after the valve overlap period during the intake stroke, that is, after the exhaust valve is closed, or during the compression stroke. Details of the air-fuel ratio control will be described later.
  • the fuel that becomes the unburned hydrocarbon in the exhaust gas changes from a higher hydrocarbon with a long carbon chain to a lower hydrocarbon with a short carbon chain by receiving the heat of combustion during the expansion stroke, It becomes more combustible.
  • the air-fuel ratio in the cylinder becomes richer than the stoichiometric air-fuel ratio, it approaches the output air-fuel ratio, so that the output can be improved as compared with the case of operating at the stoichiometric air-fuel ratio.
  • the inside of the cylinder is cooled by the latent heat of vaporization when the fuel is vaporized in the cylinder, it contributes to the improvement of the charging efficiency.
  • FIG. 3 is a block diagram showing the calculation contents for setting the fuel injection amount to be injected into the cylinder. This block diagram includes estimation of the air-fuel ratio in the cylinder and in the exhaust manifold 3, which is performed using the set fuel injection amount.
  • the exhaust pipe air-fuel ratio target value setting unit 301 sets an exhaust pipe target air-fuel ratio that is a target air-fuel ratio in the exhaust manifold 3.
  • the target air-fuel ratio is set to an air-fuel ratio at which the mixture of exhaust gas and scavenging gas is easy to burn, for example, the stoichiometric air-fuel ratio.
  • the air-fuel ratio is not limited to the stoichiometric air-fuel ratio.
  • the air-fuel ratio is set so that the mixture of the exhaust gas and the scavenging gas satisfies the required value of the exhaust performance, that is, does not decrease the conversion efficiency of the exhaust catalyst 18. May be. Even in this case, the charging efficiency in the cylinder is improved by the scavenging effect, the generated torque is increased, and the exhaust performance can be prevented from being lowered.
  • the in-cylinder trap intake air amount estimation unit 302 is a cylinder that is confined in the cylinder at the end of the intake stroke of the intake air amount based on the intake air amount detected by the air flow meter 8 and the scavenging rate. Estimate the amount of intake air in the inner trap.
  • the scavenging rate is a value obtained by dividing the amount of fresh air by the amount of gas in the cylinder. A method for calculating the scavenging rate will be described later.
  • the cylinder scavenging gas amount estimation unit 303 is the amount of the intake air amount that flows out to the exhaust manifold 3 during the valve overlap period for the cylinder that is in the intake stroke when the cylinder whose trap trap intake air amount has been calculated is in the exhaust stroke.
  • the cylinder scavenging gas amount is estimated based on the scavenging rate and the intake air amount.
  • the in-cylinder fuel injection amount setting unit 304 determines the fuel injection amount into the cylinder based on the exhaust air target air-fuel ratio, the in-cylinder trap intake air amount, and the cylinder scavenging gas amount.
  • the air-fuel ratio changes to the lean side by the amount diluted with the scavenging gas.
  • the fuel injection amount is set so as to be the stoichiometric air-fuel ratio with respect to the in-cylinder trap intake air amount
  • the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio.
  • the amount of hydrocarbons required to reach the target air-fuel ratio in the exhaust pipe when diluted to the scavenging gas is determined based on the trap air intake amount in the cylinder and the cylinder scavenging gas amount, and this hydrocarbon amount is generated.
  • the fuel injection amount necessary for the above is set based on the trap air intake amount in the cylinder.
  • the cylinder air-fuel ratio estimation unit 305 estimates the air-fuel ratio in the cylinder from the fuel injection amount and the trap trap intake air amount.
  • the exhaust pipe air-fuel ratio estimation unit 306 estimates the air-fuel ratio in the exhaust manifold 3 from the cylinder air-fuel ratio and the cylinder scavenging gas amount. If the in-cylinder fuel injection amount is feedback controlled based on these estimated values and the exhaust pipe target air-fuel ratio, the air-fuel ratio in the exhaust manifold 3 can be controlled with higher accuracy.
  • FIG. 4 is a block diagram of control for determining whether or not to reduce the valve overlap period based on the cylinder air-fuel ratio estimation value obtained by the cylinder air-fuel ratio estimation unit 305.
  • the scavenging amount increases, the amount of fuel necessary to bring the air-fuel ratio in the exhaust pipe to a desired air-fuel ratio also increases, and the air-fuel ratio in the cylinder becomes richer accordingly. Therefore, when the fuel injection amount obtained by the calculation of FIG. 3 is used and the air-fuel ratio in the cylinder exceeds the combustion limit, in order to shorten the valve overlap period and reduce the scavenging amount, FIG. 4 is performed.
  • In-cylinder air-fuel ratio allowable value calculation unit 401 sets an in-cylinder air-fuel ratio allowable value obtained based on conditions such as a combustion limit.
  • the cylinder air-fuel ratio estimation unit 402 reads the cylinder air-fuel ratio estimated by the cylinder air-fuel ratio estimation unit 305 of FIG.
  • the determination unit 403 compares the in-cylinder air-fuel ratio allowable value and the in-cylinder air-fuel ratio estimated value, and if it is determined that the in-cylinder air-fuel ratio estimated value is richer, the VTC control that is the control unit of the variable valve mechanism 14 A request to reduce the valve overlap period is made to the unit 404. As a result, the valve overlap period is reduced and the scavenging amount is reduced. That is, the upper limit value of the scavenging amount for satisfying the performance requirement is determined.
  • FIG. 5 is a block diagram showing calculation contents for calculating the scavenging rate.
  • the scavenging rate is determined based on the amount of heat generated from the engine speed and the amount of intake air and the amount of gas passing through the exhaust manifold 3 during steady operation.
  • the increase in the rotational speed of the turbine 5b is delayed with respect to the increasing speed of the amount of gas flowing through the exhaust manifold 3 during transient operation, pressure loss occurs.
  • the exhaust pressure during transient operation becomes higher than the exhaust pressure during steady operation with the same intake air amount and the same engine speed. Therefore, in the calculation of FIG. 5, the scavenging rate is calculated by correcting the exhaust pressure during steady operation by the increase / decrease of the exhaust pressure fluctuation amount during transient operation (hereinafter referred to as transient pressure fluctuation).
  • the collector pressure reading unit 501 reads the pressure in the intake manifold 2 as the collector pressure.
  • the exhaust pressure reading unit 502 reads the exhaust pressure obtained by calculation described later.
  • a transient pressure fluctuation reading unit 503 reads a transient exhaust pressure fluctuation amount obtained by calculation described later.
  • the exhaust valve front / rear differential pressure calculation unit 504 calculates the exhaust valve front / rear differential pressure by subtracting the exhaust pressure from the collector pressure and adding the transient pressure fluctuation thereto. As a result, the differential pressure before and after the exhaust valve including the transient exhaust pressure fluctuation amount is calculated.
  • the engine rotation speed reading unit 505 reads the engine rotation speed based on the detection value of the crank angle sensor 20, and the overlap amount reading unit 506 reads the valve overlap amount obtained by the calculation described later.
  • a scavenging rate calculation unit 507 obtains a scavenging rate using a map set in advance based on the engine speed, the valve overlap amount, and the exhaust valve front-rear differential pressure, and the scavenging rate setting unit 508 scavenges the calculation result. Read as a rate. As shown in FIG. 5, the map used here is the exhaust valve front-rear differential pressure and the horizontal axis is the valve overlap amount.
  • the control unit 12 stores a plurality of maps for each engine speed. Yes.
  • FIG. 6 is a block diagram showing the calculation contents for obtaining the exhaust pressure read by the exhaust pressure reading unit 502. Since the exhaust pressure is greatly affected by the atmospheric pressure and the exhaust temperature, correction based on these increases the accuracy of estimating the exhaust pressure, and consequently the accuracy of estimating the scavenging rate. Specifically, the following calculation is performed.
  • the exhaust temperature reading unit 601 reads the detection value of the exhaust temperature sensor 17, and the intake air amount reading unit 602 reads the detection value of the air flow meter 8.
  • a reference exhaust pressure calculation unit 603 calculates a reference exhaust pressure using a map prepared in advance based on these read values. Thus, the exhaust pressure corresponding to the intake air amount and the exhaust temperature can be set as the reference value.
  • the reference atmospheric pressure reading unit 604 reads the detected value of the atmospheric pressure sensor 16 when the reference exhaust pressure is calculated. Further, the atmospheric pressure reading unit 605 reads the current detection value of the atmospheric pressure sensor 16. Then, the atmospheric pressure correction unit 606 calculates the sum of the value obtained by subtracting the reference atmospheric pressure from the reference exhaust pressure and the atmospheric pressure, and the exhaust pressure calculation unit 607 reads the calculation result as the exhaust pressure. Thereby, the exhaust pressure according to atmospheric pressure can be estimated.
  • FIG. 7 is a block diagram for calculating the transient exhaust pressure fluctuation amount read by the transient pressure fluctuation reading unit.
  • the transient exhaust pressure fluctuation amount is calculated using the intake air amount and the change amount of the throttle valve opening as a trigger for determining whether or not the operation is transient.
  • the intake air amount reading unit 701 reads the detection value of the air flow meter 8.
  • a throttle valve opening reading unit 702 reads the throttle opening.
  • the throttle valve opening may be detected by a throttle position sensor, or in the case of an electronically controlled throttle, an instruction value to an actuator that drives the throttle valve may be read.
  • the intake air change rate calculation unit 703 calculates an intake air change rate ⁇ QA that is a change rate of the intake air amount based on the intake air amount read by the intake air amount reading unit 701.
  • the intake air change rate correction value calculation unit 714 calculates a value obtained by adding a first-order lag to the intake air change rate ⁇ QA as the intake air change rate correction value QMv by the following equation (1).
  • a transient exhaust pressure change amount estimation unit 711 calculates a reference transient exhaust pressure from a previously created map, and inputs the calculation result to the switch unit 712. To do.
  • a change amount of the intake air amount is calculated by the intake air amount change calculation unit 704, and the first transient determination criteria and the intake air amount change amount stored in advance in the first transient determination criteria setting unit 705 by the first determination unit 708. And compare.
  • the throttle valve opening change amount calculation unit 706 calculates the change amount of the throttle valve opening, and the second determination unit 709 stores the second transient determination criterion and the throttle stored in the second transient determination criterion setting unit 707 in advance. Compare the amount of change in valve opening.
  • the third determination unit 710 reads the determination results of the first determination unit 708 and the second determination unit 709. Then, at least one of the intake amount change amount larger than the first transient determination criteria in the first determination unit 708 or the throttle valve opening change amount larger than the first transient determination criteria in the second determination unit 709 is established. If it is, it is determined that the vehicle is in transient operation. This determination result is input to the switch unit 712, and the switch unit 712 switches to a side where a transient exhaust pressure fluctuation is added when in a transient operation, and switches to a side where a transient exhaust pressure fluctuation amount is not added when not in a transient operation. The transient exhaust pressure fluctuation determining unit 713 sets the value output from the switch unit 712 as the transient exhaust pressure fluctuation amount.
  • FIG. 8 is a flowchart showing a control routine executed by the control unit 12 for determining the conversion angle of the variable valve mechanism 14. During this control, the valve overlap period is calculated.
  • step S801 the control unit 12 reads the operating state of the internal combustion engine 1, for example, the collector pressure, the engine rotation speed, the intake air temperature, the atmospheric pressure, the basic injection pulse, and the like.
  • the basic injection pulse is a value correlated with the output of the internal combustion engine 1.
  • step S802 the control unit 12 calculates a scavenging amount upper limit value obtained from the operation state.
  • a scavenging amount upper limit value obtained from the operation state.
  • FIG. 9 is a block diagram for calculating the scavenging amount upper limit value based on the catalyst temperature.
  • the combustion energy is large.
  • the efficiency of the supercharger 5 increases.
  • the higher the scavenging rate the higher the ratio of fresh air in the cylinder and the higher the filling efficiency. That is, in order to satisfy performance requirements such as output improvement for the internal combustion engine 1, the scavenging amount should be as large as possible.
  • the valve overlap period is limited by conditions such as the combustion limit, the upper limit of the scavenging amount is also limited.
  • the exhaust catalyst 18 is heated to a higher temperature by combustion in the exhaust manifold 3. Since the exhaust gas purification performance deteriorates when the temperature of the exhaust catalyst 18 rises excessively, it is necessary to set an upper limit value of the scavenging amount in order to suppress the temperature rise of the exhaust catalyst 18.
  • the scavenging amount is limited to such an extent that the exhaust catalyst 18 is not deteriorated, and this is set as the scavenging amount upper limit value.
  • the collector pressure Boost As the operating state, the collector pressure Boost, the engine rotation speed NE, the basic injection pulse TP, the intake air temperature TAN, and the atmospheric pressure PAMB are read.
  • the catalyst upper limit temperature calculation unit 901 calculates a catalyst upper limit temperature that is an upper limit temperature of the exhaust catalyst 18 determined according to the operating state.
  • the scavenged catalyst upper limit temperature calculation unit 902 calculates the estimated scavenging catalyst temperature that is the estimated temperature of the exhaust catalyst 18 in the normal operating state where there is no scavenging, that is, the operating state in which the mixture of scavenging gas and exhaust gas is not combusted. calculate.
  • a scavenging catalyst temperature increase allowable value calculation unit 903 calculates a scavenging catalyst temperature increase allowable value that is a difference between the catalyst upper limit temperature and the non-scavenging estimated catalyst temperature.
  • the temperature rise of the exhaust catalyst 18 during scavenging can be allowed by the permissible value for the catalyst temperature rise during scavenging.
  • the catalyst temperature allowable scavenging amount calculation unit 905 uses a map created in advance based on the scavenging catalyst temperature increase allowable value and the air-fuel ratio in the cylinder of the internal combustion engine 1 calculated by the cylinder air-fuel ratio calculation unit 904.
  • a catalyst temperature allowable scavenging amount that is a scavenging amount upper limit value determined from the temperature of 18 is calculated.
  • the map used here shows the relationship between the scavenging amount and the catalyst temperature rise for each cylinder air-fuel ratio.
  • the catalyst temperature allowable scavenging amount determining unit 906 sets the calculation result as the scavenging amount upper limit value in the catalyst temperature allowable scavenging amount determining unit 906.
  • the scavenging upper limit catalyst temperature calculation is performed.
  • the calculation result of the unit 902 varies depending on the driving state and the environment.
  • the catalyst temperature allowable scavenging amount also becomes a value corresponding to the operating state and environment.
  • the scavenging amount upper limit value in the next cycle can be obtained by using a value that estimates the state of the next cycle as the engine rotational speed to be input. Therefore, even in the case of control during transient operation where feedforward control is required, it is possible to cope by calculating the scavenging amount upper limit after a predetermined time.
  • step S802 of FIG. 8 the control unit 12 calculates a scavenging amount upper limit value that satisfies the performance requirement determined by the calculation of FIG. 4 in addition to the catalyst temperature allowable scavenging amount. Then, the smaller one is set as the scavenging amount upper limit value.
  • step S803 in FIG. 8 the control unit 12 determines the valve overlap period based on the scavenging amount obtained in step S802. If the scavenging amount and the valve overlap period are obtained in advance according to the specifications of the internal combustion engine to be applied, the valve overlap period can be easily set based on the scavenging amount. Then, the overlap amount reading unit 506 in FIG. 5 reads this value.
  • step S804 the control unit 12 determines the conversion angle of the variable valve mechanism 14 for realizing the valve overlap period determined in step S803. If the relationship between the valve overlap period and the conversion angle is obtained in advance in accordance with the profile of the intake cam and exhaust cam of the internal combustion engine 1 to be applied, the conversion angle can be easily determined in accordance with the valve overlap period. Can do.
  • the mixture of scavenging gas and exhaust gas mixed in the exhaust manifold 3 can be controlled to an air-fuel ratio at which combustion is easy.
  • the present embodiment has been described with respect to the case where the internal combustion engine 1 is a direct injection type in-cylinder, the present invention is not limited to this, and a so-called port injection type internal combustion in which fuel is injected into an intake port communicating with each cylinder. Applicable to institutions.
  • a port injection type internal combustion engine if the fuel injection is performed after the valve overlap period ends, that is, after the exhaust valve is closed, the injected fuel may be discharged together with the scavenging gas to the exhaust manifold 3. Therefore, the fuel injection amount setting method described above can be applied as it is.
  • the cylinder scavenging gas amount estimation unit 303 estimates the cylinder scavenging gas amount for the cylinder that is in the intake stroke when the cylinder whose trap trap intake air amount is calculated is in the exhaust stroke. This is to cope with a transient operation state. However, in the normal operation, the cylinder trap intake air amount and the cylinder scavenging gas amount are the same for each cylinder, so the cylinder scavenging gas amount of the same cylinder as the cylinder that calculated the cylinder trap intake air amount is used. Can also determine the fuel injection amount.
  • the control unit 12 sets a scavenging amount for satisfying the performance requirements for the internal combustion engine 1 and controls the length of the valve overlap period according to the scavenging amount, so that the ratio of fresh air in the cylinder by scavenging, That is, the filling efficiency is improved.
  • control unit 12 limits the scavenging amount upper limit value based on the estimated temperature of the exhaust catalyst 18, the temperature of the exhaust catalyst 18 is excessive when the scavenging gas is mixed with the exhaust gas in the exhaust manifold 3 and burned. Can be prevented from rising.
  • control unit 12 limits the scavenging amount upper limit value based on the operating state of the internal combustion engine 1 and the placed environment.
  • an appropriate scavenging amount upper limit value can be set.
  • the intake air amount and the exhaust temperature differ depending on the operating state and the surrounding environment, and the catalyst temperature rise allowable scavenging amount calculated based on these also differs, but according to the control, an appropriate scavenging amount upper limit value is set. Can be set.
  • the turbocharger 5 when the atmospheric pressure is low, the turbocharger 5 is likely to rotate. Therefore, compared with a state where the atmospheric pressure is high, the rotational speed is likely to increase even if the scavenging amount is the same, and there is a possibility of over-rotation. In this case, if a part of the exhaust gas is bypassed by a wastegate or the like, over-rotation can be suppressed and the supercharger 5 can be protected. However, in this case, energy from scavenging gas and exhaust gas combustion is wasted.
  • the scavenging amount upper limit value is set based on the environment in which the internal combustion engine 1 is placed, the scavenging amount can be set so as not to overspeed, and the turbocharger 5 is protected without wasting energy. it can.
  • the control unit 12 sets the scavenging amount upper limit value based on the scavenging-unexecuted state estimated based on the operating state and the state after scavenging execution estimated based on the in-cylinder target air-fuel ratio. That is, the catalyst temperature allowable scavenging amount is set based on the temperature in the exhaust manifold 3 determined by the operating state such as the intake air temperature, and the temperature rise caused by burning the mixed gas of the scavenging gas and the exhaust gas. A scavenging amount upper limit value can be set.
  • the control unit 12 is in a state where scavenging is not performed after a predetermined time estimated based on the operation state estimated value, for example, after one cycle, and a state after scavenging is estimated based on the in-cylinder target air-fuel ratio, Based on the above, set the upper limit of scavenging amount. That is, the scavenging amount upper limit value for the next cycle can be set by inputting a value that estimates the state of the next cycle as the engine speed, load, or the like. An appropriate scavenging amount upper limit value can be set even during transient operation that requires feedforward control, such as during acceleration.
  • control unit 12 calculates a plurality of scavenging amount upper limit values based on a plurality of conditions, the control unit 12 selects the smallest scavenging amount upper limit value, so that it is possible to reliably prevent the system performance from being deteriorated.
  • the system to which this embodiment is applied is the same as that of the first embodiment.
  • the control is basically the same, but differs in that the scavenging amount upper limit value is calculated based on the NOx generation amount. Therefore, a method for calculating the scavenging amount upper limit value will be described.
  • the scavenging gas blown from the intake passage to the exhaust passage does not contain fuel, so the air-fuel ratio of the gas flowing into the exhaust catalyst 18 becomes leaner as the scavenging amount increases. Sneak away. If the inside of the exhaust catalyst 18 becomes leaner than the stoichiometric air-fuel ratio, the NOx conversion efficiency deteriorates, and the inflowing NOx cannot be completely processed, and the exhaust performance may deteriorate.
  • the scavenging amount upper limit value is set so that NOx that cannot be processed by the exhaust catalyst 18 is not generated.
  • FIG. 10 is a block diagram showing the contents of the calculation contents for setting the scavenging amount upper limit value based on the NOx generation amount, which is executed by the control unit 12 in the present embodiment.
  • the NOx generation amount calculation unit 1001 reads the engine rotational speed NE and the basic injection pulse TP, and performs a map search based on them, thereby calculating an allowable NOx generation amount (allowable NOx emission value during scavenging). To do.
  • the amount of NOx produced here refers to the amount discharged from the internal combustion engine 1.
  • the vertical axis of the map used in the NOx generation amount calculation unit 1001 is the collector pressure Boost.
  • the basic injection pulse TP is determined according to the cylinder intake air mass and has a correlation with the collector pressure Boost. Therefore, when the map search is performed, the read basic injection pulse TP is converted into the collector pressure Boost based on the correlation.
  • the collector pressure Boost may be directly read.
  • the cylinder air-fuel ratio reading unit 1002 reads the cylinder air-fuel ratio estimated by the cylinder air-fuel ratio estimating unit 305 in FIG.
  • the scavenging amount calculation unit 1003 searches for a map indicating the relationship between the scavenging amount and the NOx generation amount created in advance for each cylinder air-fuel ratio by the NOx generation amount calculated by the NOx generation amount calculation unit 1001. A scavenging amount allowable in the operation state is calculated. This scavenging amount is set as the NOx generation allowable scavenging amount.
  • the NOx generation allowable scavenging amount setting unit 1004 sets the NOx generation allowable scavenging amount as the scavenging amount upper limit value.
  • the scavenging amount upper limit as described above, it is possible to prevent the NOx conversion efficiency of the exhaust catalyst 18 from deteriorating when the mixture of scavenging gas and exhaust gas is combusted in the exhaust manifold 3.
  • the NOx generation amount calculation unit 1001 When the scavenging amount upper limit value is determined based on the operating state of the internal combustion engine 1 such as the engine rotational speed and the environment in which the internal combustion engine 1 operates such as the intake air temperature and the atmospheric pressure as described above, the NOx generation amount calculation unit 1001 The calculation results vary depending on the driving state and environment. As a result, the NOx generation allowable scavenging amount also becomes a value according to the operating state and environment.
  • control unit 12 limits the scavenging amount upper limit value based on the estimated value of the NOx emission amount from the internal combustion engine 1 to the exhaust manifold 3, it is possible to prevent the NOx conversion efficiency of the exhaust catalyst 18 from being lowered due to scavenging.
  • This embodiment relates to control in the case where the torque demand increases rapidly as in acceleration in the same system as the first embodiment.
  • Basic control is the same as in the first embodiment, but the scavenging amount upper limit value set in step S602 in FIG. 6 is different.
  • the setting of the scavenging amount upper limit value will be described.
  • FIG. 11 is a block diagram showing the contents of calculation for setting the scavenging amount upper limit value.
  • the scavenging amount with the smaller catalyst temperature allowable scavenging amount or NOx generation allowable scavenging amount is set as the scavenging amount upper limit value.
  • the torque request value for the internal combustion engine 1 suddenly increases as during sudden acceleration, the torque request is made within a range that does not adversely affect the system such as the internal combustion engine 1 and the supercharger 5 shown in FIG. Switch to a higher scavenging amount upper limit that prioritizes satisfaction.
  • the minimum value selection unit 1109 selects the smaller of the catalyst temperature allowable scavenging amount or the NOx generation allowable scavenging amount and inputs the result to the switch 1113.
  • the torque change rate determination unit 1110 determines whether or not the change rate of the torque request value for the internal combustion engine 1 exceeds a preset threshold value based on, for example, the accelerator opening change amount.
  • the threshold value is a value for determining whether it is necessary to prioritize the torque response over the catalyst temperature or the NOx generation amount, and is set in advance for each vehicle model to which this control is applied.
  • the timer 1111 When the torque request value change speed exceeds the threshold value, the timer 1111 is operated, and the switch 1113 is switched to the torque pickup allowable scavenging amount side described later only during a preset timer operation period.
  • the timer operation period can be set arbitrarily, in order to prevent adverse effects on the system, the timer operation period is set shorter as the torque pickup allowable scavenging amount described later increases.
  • the torque pickup allowable scavenging amount setting unit 1112 sets a torque pickup allowable scavenging amount that is a scavenging amount upper limit value when torque response is prioritized based on the operating state and operating environment of the internal combustion engine 1.
  • the torque pickup allowable scavenging amount is set to a value that does not cause performance degradation of the exhaust catalyst 18 or the supercharger 5 even if the scavenging amount is maintained within the time during which the timer 1111 is operating.
  • the upper limit value of the normal scavenging amount is a level that does not cause a decrease in performance even when the normal scavenging amount upper limit is operated, whereas the allowable torque scavenging amount of the torque pickup is a level that can be allowed temporarily.
  • the torque pickup allowable scavenging amount for each operating state and operating environment is previously mapped and searched. .
  • it is set to a value that is larger than the catalyst temperature allowable scavenging amount and the NOx generation allowable scavenging amount and that can ensure the combustion stability.
  • the scavenging amount upper limit setting unit 1114 sets the scavenging amount selected by the switch 1113 as the scavenging amount upper limit value.
  • the control unit 12 calculates the scavenging amount upper limit value based on the performance requirements for the internal combustion engine 1 such as the torque requirement, and the constraint conditions such as the catalyst temperature and the NOx generation amount. Then, when the torque request value change rate exceeds the threshold value, such as during rapid acceleration, the torque pickup allowable scavenging amount is selected from the plurality of scavenging amount upper limit values, otherwise, Select the smaller scavenging amount upper limit based on the constraint.
  • the smaller scavenging amount upper limit value based on the constraint condition is selected, so the largest scavenging amount is set in a range that does not affect the system.
  • a scavenging amount upper limit value that is larger than the scavenging amount based on the constraint condition is set for a certain period of time. That is, the upper limit value of the scavenging amount is raised only for a certain period. As a result, the energy supplied to the turbine 5b increases, and as a result, the torque responsiveness increases.
  • the control unit 12 increases the scavenging amount. As a result, the combustion energy in the exhaust manifold 3, that is, the energy supplied to the turbine 5b increases, so that the torque response of the internal combustion engine 1 is improved.
  • control unit 12 relaxes the scavenging amount upper limit for a certain period of time, thus improving the torque response and preventing system performance degradation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

吸気側又は排気側の少なくとも一方に可変動弁機構を備えるターボ式過給機付き内燃機関の制御装置において、バルブオーバーラップ期間中に吸気通路から筒内を通過して排気通路へと吹き抜ける掃気量の、内燃機関に対する性能要求を満足させるための上限値を定める掃気量設定手段と、掃気量に応じてバルブオーバーラップ期間の長さを制御する可変動弁制御手段とを備える。

Description

ターボ式過給機付き内燃機関の制御装置
 本発明は、可変動弁機構及びターボ過給機を備える内燃機関の制御に関する。
 可変動弁機構を制御してバルブオーバーラップ期間を設け、このバルブオーバーラップ期間中に、吸気圧と排気圧の差圧を利用して、筒内残留ガスを排気通路へ掃気することで筒内の新気量を増加させる技術が知られている。
 例えば、JP2006-283636Aでは、バルブオーバーラップ期間中に吸気圧が排気圧より高くなるようにスロットルバルブ開度を制御し、掃気効果を得る技術が開示されている。
 ところで、バルブオーバーラップ期間中の掃気量は、同じバルブオーバーラップ期間長さであっても、内燃機関の運転状態や運転する環境によって異なる。特に、ターボ式過給機を備える場合には、過給機の回転速度が一定となった定常状態と、回転速度が上昇する過渡状態とでは排気圧が異なるため、エンジン回転速度や負荷等の運転状態が同一で、かつ同一オーバーラップ期間長さでも掃気量が異なる。
 したがって、JP2006-283636Aのようにバルブオーバーラップ期間をエンジン回転速度及び負荷に割りつけたマップを検索することでバルブオーバーラップ期間を制御すると、必ずしもその運転状態や運転環境に適した掃気量が得られるとは限らない。
 そこで、本発明では、ターボ式過給機付き内燃機関においても、運転状態や運転環境に適した掃気量が得られるようにすることを目的とする。
 この発明の詳細並びに他の特徴や利点は、明細書の以降の記載の中で説明されるとともに、添付された図面に示される。
図1は、本実施形態を適用するシステムの構成図である。 図2は、直列4気筒内燃機関の行程順序を示す図である。 図3は、コントロールユニットが実行する、燃料噴射量を設定するための演算内容を示すブロック図である。 図4は、コントロールユニットが実行する、バルブオーバーラップ期間を低減するか否かを判断するための制御のブロック図である。 図5は、コントロールユニットが実行する、掃気率を求めるための演算内容を示すブロック図である。 図6は、コントロールユニットが実行する、排気圧力を求めるための演算内容を示すブロック図である。 図7は、コントロールユニットが実行する、過渡排気圧力変動を求めるための演算内容を示すブロック図である。 図8は、コントロールユニットが実行する、可変動弁機構の変換角を決定するための演算内容を示すブロック図である。 図9は、コントロールユニットが実行する、触媒温度に基づく掃気量上限値算出のためのブロック図である。 図10は、コントロールユニットが実行する、NOx排出量に基づく掃気量上限値算出のためのブロック図である。 図11は、コントロールユニットが実行する、トルク急変時の掃気量上限値算出のためのブロック図である。
(第1実施形態)
 図1は本実施形態を適用する内燃機関のシステム構成図である。
 内燃機関1の吸気マニホールド2の入口には、内燃機関1に流入する空気量を調整するためのスロットルチャンバ4が設けられ、その上流には吸気通路6が接続されている。吸気通路6のスロットルチャンバ4より上流側には、過給機5のコンプレッサ5aが設置され、更にその上流には、吸入空気量を検出するエアフローメータ8が設置されている。
 内燃機関1の各シリンダには燃料をシリンダ内に直接噴射する燃料噴射弁15が配置されている。排気通路7には、過給機5のタービン5bが設置されている。
 過給機5は、いわゆるターボ式過給機であり、コンプレッサ5aとタービン5bがシャフト5cを介して接続されている。このため、タービン5bが内燃機関1の排気エネルギにより回転すると、コンプレッサ5aが回転し吸入空気を下流側に圧送する。
 タービン5bの下流側には、排気浄化用の排気触媒18が配置される。排気触媒18としては、例えば三元触媒が用いられる。
 リサーキュレーション通路10は、吸気通路6aと、エアフローメータ8より下流側かつコンプレッサ5aより上流側の吸気通路(以下、吸気通路6bという)とを接続する通路であり、途中に設けたリサーキュレーションバルブ9が開弁すると両吸気通路6a、6bが連通し、閉弁すると連通が遮断される。
 リサーキュレーションバルブ9は、一般に知られているものと同様に、過給圧と吸気マニホールド2内の圧力(以下、吸気管圧という)との差圧が所定値以上になったときに開弁する。例えば、内部に備える弁体に対して、内蔵するスプリングの反力が閉弁方向に付勢されており、さらに、弁体の開弁方向に過給圧が作用し、閉弁方向には吸気管圧が作用しており、過給圧と吸気管圧との差圧がスプリングの反力を超えた場合に開弁する。これにより、過給状態で走行中にスロットルチャンバ4が全閉となった場合に、過給圧の過上昇を防止することができる。なお、リサーキュレーションバルブ9が開弁するときの過給圧と吸気管圧との差圧は、スプリングのバネ定数により任意の値に設定することができる。
 可変動弁機構14は、排気弁と吸気弁のいずれもが開弁したオーバーラップ期間が生ずるように、吸気弁閉時期(IVC)を変化させるものであれば足りる。例えば、クランクシャフトに対する吸気カムシャフトの回転位相を変化させるものや、吸気バルブの作動角を変化させるもの等、一般的に知られている可変動弁機構を用いることができる。なお、排気弁側にも同様の可変動弁機構14を設けて、吸気弁及び排気弁のバルブタイミングを可変制御するようにしてもよい。
 コントロールユニット12は、エアフローメータ8で検出する吸入空気量、アクセル開度センサ13で検出するアクセル開度、クランク角センサ20で検出するエンジン回転速度等といった運転状態に関するパラメータを読み込み、これらに基づいて点火時期、バルブタイミング、空燃比等の制御を行う。
 次に、コントロールユニット12が行うバルブタイミング制御及び空燃比制御について説明する。
 コントロールユニット12は、吸気マニホールド2内の圧力が排気マニホールド3内の圧力より高い場合には、吸気弁及び排気弁が開弁しているバルブオーバーラップ期間が生ずるバルブタイミングとなるように可変動弁機構14を作動させる。
 これは、バルブオーバーラップ期間中に、吸気マニホールド2から流入した新気が掃気ガスとしてそのまま排気マニホールド3へ吹き抜ける、いわゆる掃気効果を利用して、タービン5bの回転速度を高め、シリンダ内への充填効率を高めるためである。
 この効果について図2を用いて具体的に説明する。図2は点火順序が1番気筒-3番気筒-4番気筒-2番気筒である直列4気筒内燃機関の行程順序について示したものである。図中の斜線を付した部分はバルブオーバーラップ期間を示す。
 バルブオーバーラップ期間を設けると、排気マニホールド3では排気行程中の気筒から排出される排気ガスと、そのとき吸気行程中の他の気筒の掃気ガスが合流する。例えば、図2の3番気筒の排気行程#3exで排気される排気ガスと、そのとき吸気行程となる1番気筒のバルブオーバーラップ期間#1scに掃気される掃気ガスが合流する。
 このため、バルブオーバーラップ期間が無い場合、つまり掃気が無い場合に比べてタービン5bに導入されるガス量が増加する。これによりタービン5bの回転速度が高まり、コンプレッサ5aによる過給圧が高まる。また、掃気によって新気ガスとともにシリンダ内の残留ガスも排出されるので、結果的にシリンダの新気の充填効率が高まる。
 さらに、本実施形態では、後述する空燃比制御によって、排気マニホールド3で合流した排気ガスと掃気ガスの混合気を、タービン5bに流入する前に燃焼させることで、タービン5bを回転させるためのエネルギを増大させる。
 このために、あるシリンダから排気行程中に排気される排気ガスと、同時期に吸気行程となるシリンダからバルブオーバーラップ期間中に掃気される掃気ガスの混合気が、タービン5bに流入する前に燃焼し易い空燃比となるように燃料噴射量を設定する。すなわち、シリンダ内の空燃比を理論空燃比よりもリッチな空燃比にして、未燃炭化水素を含んだ排気ガスを排出させ、この排気ガスと掃気ガスとが混合することで燃焼し易い空燃比、例えば理論空燃比になるような燃料噴射量を設定する。
 例えば、図2の3番気筒の吸気行程#3inで吸入した空気量に対する燃料噴射量を設定する場合は、3番気筒の排気行程#3exで排出される排気ガスと1番気筒のバルブオーバーラップ期間#1scで排出される掃気ガスの混合気が燃焼し易い空燃比となるような燃料噴射量を設定する。つまり、3番気筒のシリンダ内の空燃比に着目すると、理論空燃比よりリッチな空燃比となり、排気行程では未燃燃料を含む排気ガスが排出される。
 上記のように設定した燃料噴射量は、1行程あたり1回の燃料噴射によってすべて噴射する。燃料噴射時期は、吸気行程中のバルブオーバーラップ期間終了後、つまり排気弁閉弁後、又は圧縮行程中とする。なお、空燃比制御の詳細については後述する。
 このように噴射すると、排気ガス中の未燃炭化水素となる燃料は、膨張行程中の燃焼熱を受けることで炭素鎖の長い高級炭化水素から炭素鎖が短い低級炭化水素へと変化して、より燃焼性が高くなる。また、シリンダ内の空燃比が理論空燃比よりリッチになることで、出力空燃比に近づくので、理論空燃比で運転する場合より出力を向上させ得る。さらに、燃料がシリンダ内で気化する際の気化潜熱によってシリンダ内が冷却されるので、充填効率の向上に寄与する。
 図3は、シリンダ内に噴射する燃料噴射量を設定する演算内容を示すブロック図である。なお、このブロック図には、設定した燃料噴射量を用いて行う、シリンダ内及び排気マニホールド3内の空燃比の推定も含まれている。
 排気管内空燃比目標値設定部301は、排気マニホールド3内の目標空燃比である排気管内目標空燃比を設定する。目標空燃比は、排気ガスと掃気ガスの混合気が燃焼し易い空燃比、例えば理論空燃比に設定する。
 なお、理論空燃比に限らず、例えば、排気ガスと掃気ガスの混合気が排気性能の要求値を満足するような、つまり排気触媒18の転換効率を低下させない程度の空燃比になるように設定してもよい。この場合でも、掃気効果によりシリンダ内の充填効率は向上して発生トルクは増大し、かつ排気性能の低下を防止できる。
 シリンダ内トラップ吸入空気量推定部302は、エアフローメータ8で検出した吸入空気量と、掃気率とに基づいて、吸入空気量のうち吸気行程終了時点でシリンダ内に閉じ込められている量であるシリンダ内トラップ吸入空気量を推定する。なお、掃気率は新気量をシリンダ内ガス量で除した値をいう。掃気率の算出方法については後述する。
 シリンダ掃気ガス量推定部303は、シリンダ内トラップ吸入空気量を算出した気筒が排気行程のときに吸気行程となる気筒について、吸入空気量のうちバルブオーバーラップ期間中に排気マニホールド3へ流出する量であるシリンダ掃気ガス量を掃気率と吸入空気量に基づいて推定する。
 シリンダ内燃料噴射量設定部304では、排気管内目標空燃比、シリンダ内トラップ吸入空気量、シリンダ掃気ガス量に基づいて、シリンダ内への燃料噴射量を決定する。
 排気ガスは、排気マニホールド3で掃気ガスと混合すると、掃気ガスに希釈される分だけ空燃比がリーン側に変化する。例えば、シリンダ内トラップ吸入空気量に対して理論空燃比となるように燃料噴射量を設定すると、排気の空燃比は理論空燃比となり、排気マニホールド3で掃気ガスと混合すると理論空燃比よりリーンになる。
 そこで、シリンダ内トラップ吸入空気量及びシリンダ掃気ガス量に基づいて、掃気ガスに希釈されたときに排気管内目標空燃比となるのに必要な炭化水素量を求め、この炭化水素量を発生させるのに必要な燃料噴射量を、シリンダ内トラップ吸入空気量に基づいて設定する。
 シリンダ内空燃比推定部305では、燃料噴射量とシリンダ内トラップ吸入空気量からシリンダ内の空燃比を推定する。排気管内空燃比推定部306では、シリンダ内空燃比とシリンダ掃気ガス量から排気マニホールド3内の空燃比を推定する。これらの推定値と排気管内目標空燃比とに基づいて、シリンダ内燃料噴射量をフィードバック制御すれば、排気マニホールド3内の空燃比をより高精度で制御することができる。
 図4は、シリンダ内空燃比推定部305で求めたシリンダ内空燃比推定値に基づいてバルブオーバーラップ期間を低減するか否かを判断する制御のブロック図である。掃気量が増大するほど、排気管内空燃比を所望の空燃比にするために必要な燃料量も増大し、これに伴ってシリンダ内の空燃比もよりリッチ化する。そこで、図3の演算によって求められた燃料噴射量としたときにシリンダ内の空燃比が燃焼限界を超えてしまう場合には、バルブオーバーラップ期間を短くして掃気量を減少させるために、図4の演算を行う。
 シリンダ内空燃比許容値算出部401では、燃焼限界等の条件に基づいて求まるシリンダ内空燃比許容値を設定する。シリンダ内空燃比推定部402は、図3のシリンダ内空燃比推定部305で推定したシリンダ内空燃比を読み込む。
 判定部403では、シリンダ内空燃比許容値とシリンダ内空燃比推定値を比較し、シリンダ内空燃比推定値の方がリッチであると判定したら、可変動弁機構14の制御部であるVTC制御部404にバルブオーバーラップ期間の低減要求を行う。これにより、バルブオーバーラップ期間が低減されて、掃気量が減少する。つまり、性能要求を満足するための掃気量の上限値が定まることになる。
 上述した図3、図4の制御により、排気マニホールド3内の排気ガスと掃気ガスとの混合気の空燃比を燃焼し易い空燃比に制御し、かつシリンダ内の燃焼安定性を確保することができる。
 次に、図3でシリンダ内トラップ吸入空気量及びシリンダ掃気ガス量の推定に用いる掃気率について説明する。
 図5は掃気率を算出するための演算内容を示すブロック図である。
 掃気率は、定常運転時であればエンジン回転速度や吸入空気量から求まる発熱量や排気マニホールド3を通過するガス量に基づいて定まる。しかし、過渡運転時には排気マニホールド3を流れるガス量の増加速度に対してタービン5bの回転速度上昇が遅れるため、圧損が生じる。その結果、過渡運転時における排気圧力は、同一吸入空気量、同一エンジン回転速度の定常運転時における排気圧力に比べて高くなる。そこで、図5の演算では、定常運転時の排気圧力を、過渡運転時における排気圧力変動量(以下、過渡圧力変動という)の増減分で補正して掃気率を算出する。
 コレクタ圧力読込部501で、吸気マニホールド2内の圧力をコレクタ圧力として読み込む。排気圧力読込部502では後述する演算により求めた排気圧を読み込む。過渡圧力変動読込部503で、後述する演算により求めた過渡排気圧力変動量を読み込む。
 排気バルブ前後差圧算出部504では、コレクタ圧力から排気圧力を減算し、それに過渡圧力変動を加算して排気バルブ前後差圧を算出する。これにより過渡排気圧力変動量を含んだ排気バルブ前後差圧が算出される。
 一方、エンジン回転速度読込部505でクランク角センサ20の検出値に基づいてエンジン回転速度を読み込み、オーバーラップ量読込部506で後述する演算で求めたバルブオーバーラップ量を読み込む。
 そして、掃気率演算部507で、エンジン回転速度、バルブオーバーラップ量、及び排気バルブ前後差圧に基づいて予め設定したマップを用いて掃気率を求め、その演算結果を掃気率設定部508で掃気率として読み込む。ここで用いるマップは、図5に示すように、縦軸が排気バルブ前後差圧、横軸がバルブオーバーラップ量となっており、コントロールユニット12はこのマップをエンジン回転速度ごとに複数記憶している。
 図6は、排気圧力読み込む部502で読み込む排気圧力を求めるための演算内容を示すブロック図である。排気圧力は、大気圧や排気温度の影響を大きく受けるので、これらに基づく補正を行うことで排気圧力の推定精度を高め、ひいては掃気率の推定精度を高める。具体的には、次のような演算を行う。
 排気温度読込部601で排気温度センサ17の検出値を読み込み、吸入空気量読込部602でエアフローメータ8の検出値を読み込む。基準排気圧力算出部603で、これら読み込んだ値に基づいて、予め作成しておいたマップを用いて基準となる排気圧力を算出する。これにより吸入空気量及び排気温度に応じた排気圧力を基準値とすることができる。
 一方、基準大気圧読込部604で、基準排気圧を算出したときの大気圧センサ16の検出値を読み込む。さらに、大気圧読込部605で、大気圧センサ16の現在の検出値を読み込む。そして、大気圧補正部606で、基準排気圧力から基準大気圧を減算した値と大気圧との和を演算し、演算結果を排気圧力算出部607で排気圧力として読み込む。これにより、大気圧に応じた排気圧力を推定することができる。
 図7は、過渡圧力変動読み込み部で読み込む過渡排気圧力変動量を算出するためのブロック図である。
 ここでは、過渡運転か否かを判定するトリガーとして吸入空気量及びスロットルバルブ開度の変化量を用いて、過渡排気圧力変動量を算出する。
 吸入空気量読込部701でエアフローメータ8の検出値を読み込む。スロットルバルブ開度読込部702でスロットル開度を読み込む。スロットルバルブ開度は、スロットルポジションセンサで検出してもよいし、電子制御スロットルの場合にはスロットルバルブを駆動するアクチュエータへの指示値を読み込んでもよい。
 吸気変化速度算出部703では、吸入空気量読込部701で読み込んだ吸入空気量に基づいて吸入空気量の変化速度である吸気変化速度△QAを算出する。吸気変化速度補正値演算部714では下式(1)により吸気変化速度△QAに一次遅れを与えた値を吸気変化速度補正値QMvとして算出する。
  QMv=△QA×k+(1-k)×QMvz   ・・・(1)
 過渡排気圧変化量推定部711で、上記のようにして求めた吸気変化速度補正値QMvに基づいて、予め作成したマップから基準となる過渡排気圧を算出し、算出結果をスイッチ部712に入力する。
 吸気量変化量算出部704で吸入空気量の変化量を算出し、第1判定部708で、第1過渡判定クライテリア設定部705に予め格納しておいた第1過渡判定クライテリアと吸気量変化量とを比較する。
 スロットルバルブ開度変化量算出部706でスロットルバルブ開度の変化量を算出し、第2判定部709で、第2過渡判定クライテリア設定部707に予め格納しておいた第2過渡判定クライテリアとスロットルバルブ開度変化量とを比較する。
 第3判定部710は、第1判定部708及び第2判定部709の判定結果を読み込む。そして、第1判定部708で吸気量変化量が第1過渡判定クライテリアより大きい、または第2判定部709でスロットルバルブ開度変化量が第1過渡判定クライテリアより大きい、の少なくとも一方が成立していれば、過渡運転時であると判定する。この判定結果はスイッチ部712に入力され、スイッチ部712は過渡運転時である場合は過渡排気圧力変動を付加する側へ切り替わり、過渡運転時でない場合は過渡排気圧力変動量を付加しない側へ切り替る。過渡排気圧力変動決定部713では、スイッチ部712から出力された値を過渡排気圧力変動量として設定する。
 図8は、コントロールユニット12が実行する、可変動弁機構14の変換角を決定するための制御ルーチンを示すフローチャートである。この制御の途中でバルブオーバーラップ期間を算出する。
 ステップS801で、コントロールユニット12は、内燃機関1の運転状態、例えば、コレクタ圧、エンジン回転速度、吸気温度、大気圧、基本噴射パルス等を読み込む。基本噴射パルスは内燃機関1の出力に相関のある値である。
 ステップS802で、コントロールユニット12は、上記運転状態から求まる掃気量上限値を算出する。ここで、掃気量上限値の求め方の一例について説明する。
 図9は、触媒温度に基づく掃気量上限値算出のためのブロック図である。
 掃気分を含めた排気マニホールド3内の空燃比が理論空燃比となるように燃料噴射をして、排気マニホールド3内で排気ガスと掃気ガスの混合気を燃焼させる場合には、燃焼エネルギが大きいほど過給機5の効率が高まる。また、掃気率が高いほど筒内の新気の割合が高くなり充填効率が高まる。つまり、内燃機関1に対する出力向上等の性能要求を満足するためには、掃気量はできるだけ大きい方がよい。ただし、図4に示したように、燃焼限界等の条件によってバルブオーバーラップ期間が制限されることから、掃気量の上限も制限される。
 一方、掃気量が多くなるほど、排気マニホールド3内での燃焼によって排気触媒18がより高温まで加熱される。排気触媒18は、温度が過剰に上昇すると排気浄化性能が劣化するので、排気触媒18の温度上昇を抑制するために掃気量の上限値を設定する必要がある。
 そこで、掃気量を、排気触媒18の劣化を招かない程度に制限し、これを掃気量上限値とする。
 なお、運転状態としては、コレクタ圧Boost、エンジン回転速度NE、基本噴射パルスTP、吸気温度TAN、及び大気圧PAMBを読み込む。
 触媒上限温度算出部901は、運転状態に応じて定まる排気触媒18の上限温度である触媒上限温度を算出する。
 同様に、掃気無し触媒上限温度算出部902で掃気が無い通常運転状態、つまり掃気ガスと排気ガスとの混合気を燃焼させない運転状態での排気触媒18の推定温度である掃気無し触媒推定温度を算出する。
 掃気時触媒昇温許容値算出部903は、触媒上限温度と掃気無し触媒推定温度の差である掃気時触媒昇温許容値を算出する。この掃気時触媒昇温許容値分だけ、掃気時の排気触媒18の昇温を許容し得る。
 触媒温度許容掃気量算出部905では、掃気時触媒昇温許容値と、シリンダ内空燃比算出部904で求めた内燃機関1のシリンダ内の空燃比とから、予め作成したマップを用いて排気触媒18の温度から定まる掃気量上限値である触媒温度許容掃気量を算出する。ここで用いるマップは、シリンダ内空燃比ごとに掃気量と触媒昇温量との関係を示すものである。
 そして、算出結果を触媒温度許容掃気量決定部906で触媒温度許容掃気量を掃気量上限値として設定する。
 上記のようにエンジン回転速度等といった内燃機関1の運転状態や、吸気温度や大気圧といった内燃機関1が運転する環境に基づいて掃気量上限値を決定する場合には、掃気無し触媒上限温度算出部902の算出結果が運転状態や環境に応じて異なる。その結果、触媒温度許容掃気量も運転状態や環境に応じた値となる。
 また、図9の演算にあたり、入力するエンジン回転速度等として、次サイクルの状態を推測した値を用いれば、次サイクルにおける掃気量上限値を求めることができる。したがって、フィードフォワード制御が要求されるような過渡運転時の制御であっても、同様に所定時間後の掃気量上限値を算出することで対応することができる。
 図8の説明に戻る。
 図8のステップS802で、コントロールユニット12は、触媒温度許容掃気量の他に、図4の演算により定まる性能要求を満足する掃気量上限値も算出する。そして、いずれか小さい方を掃気量上限値として設定する。図8のステップS803で、コントロールユニット12は、ステップS802で求めた掃気量に基づいてバルブオーバーラップ期間を決定する。適用する内燃機関の仕様に応じて、掃気量とバルブオーバーラップ期間を予め求めておけば、掃気量に基づいて容易にバルブオーバーラップ期間を設定することができる。そして、図5のオーバーラップ量読込部506では、この値を読み込む。
 ステップS804で、コントロールユニット12は、ステップS803で決定したバルブオーバーラップ期間を実現するための可変動弁機構14の変換角を決定する。適用する内燃機関1の吸気カム、排気カムのプロフィール等に応じて、バルブオーバーラップ期間と変換角との関係を予め求めておけば、バルブオーバーラップ期間に応じて容易に変換角を決定することができる。
 上記にようにして図3の演算により燃料噴射量を設定すれば、排気マニホールド3内で混合した掃気ガスと排気ガスの混合気を燃焼し易い空燃比に制御することができる。
 なお、本実施形態は、内燃機関1が筒内直接噴射式の場合について説明したが、これに限られるわけではなく、各シリンダに連通する吸気ポート内に燃料を噴射する、いわゆるポート噴射式内燃機関にも適用できる。ポート噴射式内燃機関の場合には、上記燃料噴射をバルブオーバーラップ期間終了後、つまり排気弁閉弁後に行うようにすれば、噴射された燃料が掃気ガスとともに排気マニホールド3に排出されることがないので、上述した燃料噴射量の設定方法をそのまま適用することができる。
 また、図3では、シリンダ掃気ガス量推定部303において、シリンダ内トラップ吸入空気量を算出した気筒が排気行程のときに吸気行程となる気筒についてシリンダ掃気ガス量を推定している。これは、過渡運転状態にも対応するためである。しかし、定常運転の場合には、シリンダ内トラップ吸入空気量及びシリンダ掃気ガス量はいずれも各気筒とも同じなので、シリンダ内トラップ吸入空気量を算出した気筒と同じ気筒のシリンダ掃気ガス量を用いても燃料噴射量を決定できる。
 以上により本実施形態では、次の効果が得られる。
 コントロールユニット12は、内燃機関1に対する性能要求を満足させるための掃気量を設定し、この掃気量に応じてバルブオーバーラップ期間の長さを制御するので、掃気によって筒内の新気の割合、つまり充填効率が向上する。
 コントロールユニット12は、排気触媒18の推定温度に基づいて掃気量上限値を制限するので、掃気ガスを排気マニホールド3内で排気ガスと混合させて燃焼させたときに、排気触媒18の温度が過剰に上昇することを防止できる。
 コントロールユニット12は、内燃機関1の運転状態及びおかれた環境に基づいて掃気量上限値を制限するので、適切な掃気量上限値を設定できる。すなわち、運転状態及びおかれた環境が異なれば、吸入空気量や排気温度等も異なり、これらに基づいて算出する触媒昇温許容掃気量も異なるが、制御によれば適切な掃気量上限値を設定することができる。
 例えば、気圧が低い場合にはターボ式過給機5は回転し易くなるので、気圧が高い状態と比べると、掃気量が同一でも回転速度が上昇し易く、過回転するおそれがある。この場合、ウエストゲート等により排気の一部をバイパスさせれば過回転を抑制して過給機5を保護できるが、これでは掃気ガスと排気ガスの燃焼によるエネルギが無駄になる。そこで、内燃機関1のおかれた環境に基づいて掃気量上限値を設定すれば、過回転とならないように掃気量を設定することができ、エネルギを無駄にすることなく過給機5を保護できる。
 コントロールユニット12は、運転状態に基づいて推定する掃気未実行の状態と、筒内の目標空燃比に基づいて推定する掃気実行後の状態と、に基づいて掃気量上限値を設定する。つまり、吸気温度等の運転状態により定まる排気マニホールド3内の温度と、掃気ガスと排気ガスの混合ガスを燃焼させることによる温度上昇分と、に基づいて触媒温度許容掃気量を設定するので、適切な掃気量上限値を設定することができる。
 コントロールユニット12は、運転状態推定値に基づいて推定する所定時間経過後、例えば1サイクル後、の掃気未実行の状態と、筒内の目標空燃比に基づいて推定する掃気実行後の状態と、に基づいて掃気量の上限値を設定する。つまり、エンジン回転速度や負荷等として次サイクルの状態を推定した値を入力することで、次サイクルの掃気量上限値を設定することができる。加速時のようにフィードフォワード制御が要求される過渡運転時にも、適切な掃気量上限値を設定することができる。
 コントロールユニット12は、複数の条件に基づいて複数の掃気量上限値を算出した場合には、最も小さい掃気量上限値を選択するので、システムの性能低下を確実に防止できる。
(第2実施形態)
 次に第2実施形態について説明する。
 本実施形態を適用するシステムは第1実施形態と同様である。制御についても基本的には同様であるが、NOx生成量に基づいて掃気量上限値を算出する点で相違する。そこで、掃気量上限値の算出方法について説明する。
 筒内直接噴射式内燃機関の場合には、吸気通路から排気通路へ吹き抜ける掃気ガスに燃料が含まれていないため、排気触媒18へ流入するガスの空燃比は、掃気量が増加するほどリーン側にずれる。排気触媒18内が理論空燃比よりもリーン化すると、NOx転換効率が悪化し、流入するNOxを処理しきれなくなって排気性能が悪化するおそれがある。
 そこで、排気触媒18で処理しきれないほどのNOxが発生しないように、掃気量上限値を設定する。
 図10は、本実施形態でコントロールユニット12が実行する、NOx生成量に基づいて掃気量上限値を設定するための演算内容を示す内容を示すブロック図である。
 NOx生成量算出部1001で、エンジン回転速度NE及び基本噴射パルスTPを読み込み、これらに基づいてマップ検索することで、当該運転状態において許容し得るNOx生成量(掃気時NOx排出許容値)を算出する。ここでいうNOx生成量は内燃機関1から排出される量をいう。
 NOx生成量算出部1001で用いるマップの縦軸はコレクタ圧Boostになっている。基本噴射パルスTPはシリンダ吸入空気質量に応じて定まり、コレクタ圧Boostと相関関係がある。そこで、マップ検索する際には、読み込んだ基本噴射パルスTPを上記相関関係に基づいてコレクタ圧Boostに変換する。なお、コレクタ圧Boostを直接読み込んでも構わない。
 シリンダ内空燃比読込部1002で、図3のシリンダ内空燃比推定部305で推定したシリンダ内空燃比を読み込む。
 掃気量算出部1003で、シリンダ内空燃比毎に予め作成しておいた掃気量とNOx生成量との関係を示すマップを、NOx生成量算出部1001で算出したNOx生成量で検索することで当該運転状態において許容し得る掃気量を算出する。この掃気量をNOx発生許容掃気量とする。
 NOx発生許容掃気量設定部1004では、NOx発生許容掃気量を掃気量上限値として設定する。
 上記のように掃気量上限値を設定することで、排気マニホールド3内で掃気ガスと排気ガスの混合気を燃焼させる場合の、排気触媒18のNOx転換効率悪化を防止できる。
 また、上記のようにエンジン回転速度等といった内燃機関1の運転状態や、吸気温度や大気圧といった内燃機関1が運転する環境に基づいて掃気量上限値を決定すると、NOx生成量算出部1001の算出結果が運転状態や環境に応じて異なる。その結果、NOx発生許容掃気量も運転状態や環境に応じた値となる。
 以上により本実施形態では、第1実施形態と同様の効果に加え、さらに次の効果が得られる。
 コントロールユニット12は、内燃機関1から排気マニホールド3へのNOx排出量の推定値に基づいて掃気量上限値を制限するので、掃気することによる排気触媒18のNOx転換効率の低下を防止できる。
(第3実施形態)
 次に第3実施形態について説明する。
 本実施形態は、第1実施形態等と同様のシステムにおいて、加速時のようにトルク要求が急激に増加する場合の制御に関する。基本的な制御は第1実施形態と同様であるが、図6のステップS602で実行する掃気量上限値の設定が異なる。以下、掃気量上限値の設定について説明する。
 図11は、掃気量上限値を設定するための演算の内容を示すブロック図である。ここでは、原則として、触媒温度許容掃気量又はNOx発生許容掃気量の小さい方の掃気量を掃気量上限値とする。ただし、急加速時のように内燃機関1に対するトルク要求値が急激に大きくなる場合には、図1に示した内燃機関1や過給機5といったシステムに悪影響を与えない範囲で、トルク要求を満足させることを優先した、より大きい掃気量上限値に切り替える。
 このように掃気量上限値を大きくすると、排気マニホールド3内で掃気ガスと排気ガスの混合気が燃焼したときのエネルギが大きくなり、その結果、タービン5bの回転上昇速度が高まるので、内燃機関1のトルク応答性が高まる。
 図11の演算ブロック1101-1104及び演算ブロック105-1108は、それぞれ図9、図10と同じ内容なので説明を省略する。
 最小値選択部1109は、触媒温度許容掃気量又はNOx発生許容掃気量の小さい方を選択し、その結果をスイッチ1113に入力する。
 トルク変化速度判定部1110は、内燃機関1に対するトルク要求値の変化速度が予め設定した閾値を超えたか否かを、例えばアクセル開度変化量等に基づいて判定する。閾値は、触媒温度やNOx生成量よりもトルク応答を優先させる必要があるか否かを判定するための値であり、本制御を適用する車種毎に予め設定しておく。
 トルク要求値変化速度が閾値を超えていた場合には、タイマ1111を作動させて、予め設定したタイマ作動期間中だけスイッチ1113を後述するトルクピックアップ許容掃気量側に切り替える。タイマ作動期間は任意に設定することができるが、システムへの悪影響を防止するため、後述するトルクピックアップ許容掃気量が大きいほど短く設定する。
 トルクピックアップ許容掃気量設定部1112では、内燃機関1の運転状態及び運転環境に基づいて、トルク応答を優先させる場合の掃気量上限値であるトルクピックアップ許容掃気量を設定する。
 トルクピックアップ許容掃気量は、タイマ1111が作動している時間内であれば、その掃気量を維持しても排気触媒18や過給機5等の性能低下を招かない値を設定する。すなわち、通常の掃気量上限値が定常的に作動しても性能低下を招かないレベルであるのに対し、トルクピックアップ許容掃気量は、一時的なら許容し得るレベルである。
 具体的には、内燃機関1や排気触媒18の仕様や、排気経路長等に応じて変わるものなので、運転状態及び運転環境毎のトルクピックアップ許容掃気量を予めマップ化しておき、これを検索する。例えば、触媒温度許容掃気量及びNOx発生許容掃気量よりも大きく、かつ、燃焼安定度を確保できる程度の値に設定する。
 掃気量上限値設定部1114は、スイッチ1113で選択された掃気量を掃気量上限値として設定する。
 上述したように、コントロールユニット12は、トルク要求等といった内燃機関1への性能要求、触媒温度やNOx発生量等といった制約条件のそれぞれに基づいた掃気量上限値を算出する。そして、急加速時等のようにトルク要求値変化速度が閾値を超えている場合には、これら複数の掃気量上限値の中からトルクピックアップ許容掃気量を選択し、それ以外の場合には、制約条件に基づく掃気量上限値の小さい方を選択する。
 定常運転状態であれば、制約条件に基づく掃気量上限値の小さい方が選択されるので、システムに影響を与えない範囲で最も大きい掃気量が設定されることになる。
 一方、加速時のようにトルク要求の急激な増大が有った場合には、一定期間だけ、制約条件に基づく掃気量よりも大きな掃気量上限値が設定される。つまり、掃気量の上限値が一定期間だけ引き上げる。これにより、タービン5bへ供給するエネルギが増大し、その結果トルク応答性が高まる。
 以上により本実施形態では、第1実施形態と同様の効果に加え、さらに次の効果が得られる。
 トルク要求が急激に増加した場合は、コントロールユニット12は掃気量を増大させる。これにより、排気マニホールド3内での燃焼エネルギ、つまりタービン5bへ供給するエネルギが増大するので、内燃機関1のトルク応答が向上する。
 トルク要求が急激に増加した場合は、コントロールユニット12は一定期間だけ掃気量上限値を緩和するので、トルク応答を向上させつつ、システムの性能低下を防止できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年2月7日に日本国特許庁に出願された特願2011-24132に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (9)

  1.  吸気側又は排気側の少なくとも一方に可変動弁機構を備えるターボ式過給機付き内燃機関の制御装置であって、
     前記内燃機関に対する性能要求を検知する性能要求検知手段と、
     バルブオーバーラップ期間中に吸気通路から筒内を通過して排気通路へと吹き抜ける掃気量の、前記性能要求を満足させるための上限値を定める掃気量設定手段と、
     前記掃気量の上限値に応じてバルブオーバーラップ期間の長さを制御する可変動弁制御手段と、を備えるターボ式過給機付き内燃機関の制御装置。
  2.  請求項1に記載のターボ式過給機付き内燃機関の制御装置であって、
     排気通路中に設けた排気触媒の温度を推定する手段をさらに備え、
     前記掃気量設定手段は、前記排気触媒の推定温度に基づいて前記掃気量の上限値を制限するターボ式過給機付き内燃機関の制御装置。
  3.  請求項1または2に記載のターボ式過給機付き内燃機関の制御装置であって、
     内燃機関から排気通路へ排出されるNOx排出量を推定する手段をさらに備え、
     前記掃気量設定手段は、前記NOx排出量の推定値に基づいて前記掃気量の上限値を制限するターボ式過給機付き内燃機関の制御装置。
  4.  請求項1から3のいずれかに記載のターボ式過給機付き内燃機関の制御装置であって、
     前記掃気量設定手段は、前記内燃機関の運転状態及び前記内燃機関がおかれた環境に基づいて前記掃気量の上限値を設定するターボ式過給機付き内燃機関の制御装置。
  5.  請求項1から4のいずれかに記載のターボ式過給機付き内燃機関の制御装置であって、
     前記内燃機関の運転状態を検出する運転状態検出手段と、
     筒内の目標空燃比を設定する目標空燃比設定手段と、
    をさらに備え、
     前記掃気量設定手段は、前記運転状態に基づいて推定する掃気未実行の状態と、前記目標空燃比に基づいて推定する掃気実行後の状態と、に基づいて前記掃気量の上限値を設定するターボ式過給機付き内燃機関の制御装置。
  6.  請求項5に記載のターボ式過給機付き内燃機関の制御装置であって、
     前記内燃機関の所定時間経過後の運転状態を推定する運転状態推定手段をさらに備え、
     前記掃気量設定手段は、運転状態推定値に基づいて推定する所定時間経過後の掃気未実行の状態と、前記目標空燃比に基づいて推定する掃気実行後の状態と、に基づいて前記掃気量の上限値を設定するターボ式過給機付き内燃機関の制御装置。
  7.  請求項1から6のいずれかに記載のターボ式過給機付き内燃機関の制御装置であって、
     前記内燃機関に対するトルク要求の増加速度が予め設定した閾値を超えた場合は、前記掃気量設定手段は、前記掃気量を増大させるターボ式過給機付き内燃機関の制御装置。
  8.  請求項1から7のいずれかに記載のターボ式過給機付き内燃機関の制御装置であって、
     前記内燃機関に対するトルク要求の増加速度が予め設定した閾値を超えた場合は、前記掃気量設定手段は、一定期間だけ前記掃気量の上限値を緩和するターボ式過給機付き内燃機関の制御装置。
  9.  請求項1から8のいずれかに記載のターボ式過給機付き内燃機関の制御装置であって、
     前記掃気量設定手段は、複数の条件に基づいて複数の掃気量上限値を算出した場合には、最も小さい掃気量上限値を選択するターボ式過給機付き内燃機関の制御装置。
PCT/JP2012/052077 2011-02-07 2012-01-31 ターボ式過給機付き内燃機関の制御装置 WO2012108296A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12744698.7A EP2674595B1 (en) 2011-02-07 2012-01-31 Control device for internal combustion engine equipped with turbocharger
US13/983,933 US9255534B2 (en) 2011-02-07 2012-01-31 Control device for internal combustion engine with turbo-supercharger
CN201280007976.0A CN103348117B (zh) 2011-02-07 2012-01-31 带有涡轮式增压器的内燃机的控制装置
KR1020137022165A KR101544295B1 (ko) 2011-02-07 2012-01-31 터보식 과급기가 구비된 내연 기관의 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011024132A JP2012163047A (ja) 2011-02-07 2011-02-07 ターボ式過給機付き内燃機関の制御装置
JP2011-024132 2011-02-07

Publications (1)

Publication Number Publication Date
WO2012108296A1 true WO2012108296A1 (ja) 2012-08-16

Family

ID=46638512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052077 WO2012108296A1 (ja) 2011-02-07 2012-01-31 ターボ式過給機付き内燃機関の制御装置

Country Status (6)

Country Link
US (1) US9255534B2 (ja)
EP (1) EP2674595B1 (ja)
JP (1) JP2012163047A (ja)
KR (1) KR101544295B1 (ja)
CN (1) CN103348117B (ja)
WO (1) WO2012108296A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111315976A (zh) * 2017-11-07 2020-06-19 Fca美国有限责任公司 调节扫气期间排放的发动机控制系统和方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858159B2 (ja) * 2012-07-05 2016-02-10 トヨタ自動車株式会社 内燃機関
JP2015200294A (ja) * 2014-04-10 2015-11-12 日産自動車株式会社 エンジン
US9567886B2 (en) * 2014-12-02 2017-02-14 MAGNETI MARELLI S.p.A. Method to control the temperature of the exhaust gases of a supercharged internal combustion engine
DE102015214702A1 (de) * 2015-07-31 2017-02-02 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP6319254B2 (ja) 2015-09-29 2018-05-09 マツダ株式会社 エンジンの制御装置
KR101766076B1 (ko) 2015-12-08 2017-08-07 현대자동차주식회사 내연기관의 제어 장치 및 제어 방법
CN105649755B (zh) * 2015-12-30 2017-12-26 南京航空航天大学 一种确定涡轮增压汽油机扫气率的方法
SE541558C2 (en) * 2016-10-19 2019-10-29 Scania Cv Ab Method and system for controlling the intake and exhaust valves in an internal combustion engine
JP6503037B1 (ja) * 2017-10-04 2019-04-17 本田技研工業株式会社 内燃機関の制御装置
US10221794B1 (en) * 2017-11-07 2019-03-05 Fca Us Llc Measurement, modeling, and estimation of scavenging airflow in an internal combustion engine
DE102022207802A1 (de) 2022-07-28 2024-02-08 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und einer Vorrichtung zur Steuerung einer Brennkraftmaschine mit einer verstellbaren Ventilüberschneidung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111632A (ja) * 1989-09-25 1991-05-13 Yamaha Motor Co Ltd 2サイクルディーゼルエンジンの給気装置
JPH10274069A (ja) * 1997-03-28 1998-10-13 Mazda Motor Corp 機械式過給機付筒内噴射式エンジン
JP2006283636A (ja) 2005-03-31 2006-10-19 Toyota Motor Corp エンジンの制御装置
JP2008075549A (ja) * 2006-09-21 2008-04-03 Hitachi Ltd 内燃機関の制御装置
JP2009197759A (ja) * 2008-02-25 2009-09-03 Mazda Motor Corp 過給機付エンジンシステム
JP2010249002A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp 内燃機関の制御システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098964A (ja) * 1999-09-30 2001-04-10 Mazda Motor Corp 火花点火式直噴エンジンの制御装置
JP2003293801A (ja) * 2002-03-29 2003-10-15 Mazda Motor Corp パワートレインの制御装置
JP2005048678A (ja) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP4031765B2 (ja) * 2004-03-22 2008-01-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4433861B2 (ja) * 2004-04-05 2010-03-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4367398B2 (ja) * 2005-10-19 2009-11-18 トヨタ自動車株式会社 内燃機関の制御装置
JP4386134B2 (ja) * 2008-01-23 2009-12-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4506842B2 (ja) * 2008-01-23 2010-07-21 トヨタ自動車株式会社 内燃機関の制御装置
US8364376B2 (en) * 2009-02-27 2013-01-29 GM Global Technology Operations LLC Torque model-based cold start diagnostic systems and methods
JP5262863B2 (ja) 2009-03-10 2013-08-14 マツダ株式会社 多気筒エンジンの排気システムの制御方法およびその装置
US8135535B2 (en) 2009-06-09 2012-03-13 Ford Global Technologies, Llc Modeling catalyst exotherm due to blowthrough
US8191354B2 (en) * 2009-10-20 2012-06-05 Ford Global Technologies, Llc Method and aftertreatment configuration to reduce engine cold-start NOx emissions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111632A (ja) * 1989-09-25 1991-05-13 Yamaha Motor Co Ltd 2サイクルディーゼルエンジンの給気装置
JPH10274069A (ja) * 1997-03-28 1998-10-13 Mazda Motor Corp 機械式過給機付筒内噴射式エンジン
JP2006283636A (ja) 2005-03-31 2006-10-19 Toyota Motor Corp エンジンの制御装置
JP2008075549A (ja) * 2006-09-21 2008-04-03 Hitachi Ltd 内燃機関の制御装置
JP2009197759A (ja) * 2008-02-25 2009-09-03 Mazda Motor Corp 過給機付エンジンシステム
JP2010249002A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp 内燃機関の制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111315976A (zh) * 2017-11-07 2020-06-19 Fca美国有限责任公司 调节扫气期间排放的发动机控制系统和方法

Also Published As

Publication number Publication date
US20130305713A1 (en) 2013-11-21
EP2674595B1 (en) 2018-03-07
CN103348117B (zh) 2017-01-18
EP2674595A4 (en) 2016-12-07
JP2012163047A (ja) 2012-08-30
EP2674595A1 (en) 2013-12-18
KR101544295B1 (ko) 2015-08-12
US9255534B2 (en) 2016-02-09
CN103348117A (zh) 2013-10-09
KR20130117864A (ko) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5668763B2 (ja) 多気筒内燃機関の制御装置
WO2012108296A1 (ja) ターボ式過給機付き内燃機関の制御装置
JP5772025B2 (ja) 内燃機関の制御装置
JP5786348B2 (ja) 過給機付き内燃機関の制御装置
WO2002014665A1 (fr) Moteur a combustion interne par compression
US20140331651A1 (en) Control apparatus for internal combustion engine
US20130247853A1 (en) Control unit for variable valve timing mechanism and control method for variable valve timing mechanism
JP2015200294A (ja) エンジン
JP6112186B2 (ja) ターボ式過給機付き内燃機関の制御装置
US11067008B2 (en) Internal combustion engine control method and internal combustion engine control device
JP5644342B2 (ja) 多気筒内燃機関の制御装置
JP4778879B2 (ja) 内燃機関の過給圧制御装置
JP5857678B2 (ja) 内燃機関の制御装置及び内燃機関の制御方法
JP2005226492A (ja) ターボチャージャを備えた内燃機関
JPWO2013080362A1 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744698

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13983933

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137022165

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012744698

Country of ref document: EP