[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012105492A1 - 電池の満充電容量検出方法 - Google Patents

電池の満充電容量検出方法 Download PDF

Info

Publication number
WO2012105492A1
WO2012105492A1 PCT/JP2012/051980 JP2012051980W WO2012105492A1 WO 2012105492 A1 WO2012105492 A1 WO 2012105492A1 JP 2012051980 W JP2012051980 W JP 2012051980W WO 2012105492 A1 WO2012105492 A1 WO 2012105492A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
capacity
full charge
change value
charge capacity
Prior art date
Application number
PCT/JP2012/051980
Other languages
English (en)
French (fr)
Inventor
茂人 為実
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2012555860A priority Critical patent/JP5960063B2/ja
Priority to US13/982,624 priority patent/US20130311119A1/en
Publication of WO2012105492A1 publication Critical patent/WO2012105492A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for detecting the full charge capacity of a battery in which the capacity that can be substantially fully charged decreases as the battery is charged and discharged.
  • the full charge capacity (Ahf) is a capacity until the fully charged battery is completely discharged. Since the battery has a characteristic of being significantly deteriorated by overcharge or overdischarge, the deterioration can be reduced by using the battery within a predetermined remaining capacity (SOC [%]) with respect to the full charge capacity (Ahf). For this reason, in order to prevent overcharge and overdischarge, it is important to accurately detect the full charge capacity (Ahf) that decreases with time.
  • the battery can be controlled even if charge / discharge is controlled so that the remaining capacity (SOC [%]) is a predetermined ratio with respect to the detected full charge capacity (Ahf). This is because charging / discharging is performed up to a region where the battery is overcharged or overdischarged, resulting in deterioration. For example, charging / discharging of a battery for vehicles is controlled so that the remaining capacity is in a predetermined range centered on 50%. The remaining capacity (SOC [%]) is determined based on the full charge capacity (Ahf). Therefore, if there is an error in the full charge capacity (Ahf), the remaining capacity ( SOC [%]) cannot be controlled.
  • a power supply device for a vehicle it is important for a power supply device for a vehicle to control the remaining capacity (SOC [%]) of the battery within a range centering on 50% so that charging and discharging are possible. This is because the battery is discharged to accelerate the speed of the vehicle, charged, and decelerated by regenerative braking.
  • a large number of batteries are used to charge large power. Since the power supply device for this application also includes a large number of batteries, it is important to reduce the deterioration of the batteries and extend the life. Therefore, it is important to accurately detect the full charge capacity (Ahf) of the battery to prevent overcharge and overdischarge.
  • Ahf full charge capacity
  • the full charge capacity (Ahf) of the battery can be detected by integrating the charge capacity until the fully discharged battery is fully charged. Further, the full charge capacity (Ahf) can be detected by integrating the discharge capacity until the fully charged battery is completely discharged.
  • these methods can accurately detect the full charge capacity (Ahf) of the battery, they have a drawback that the usage environment of the battery is significantly limited. This is because when the battery is completely discharged, power cannot be taken out of the battery, and when the battery is fully charged, power cannot be supplied to the battery. For example, a battery mounted on a vehicle discharges the battery and accelerates the speed of the vehicle with a motor, and when the vehicle is braked and decelerated, the battery is charged with a generator and regeneratively braked.
  • the battery When the battery is completely discharged, the vehicle speed cannot be accelerated by the battery, and when the battery is fully charged, the battery cannot be charged by regenerative braking. If the battery is completely discharged to detect the full charge capacity (Ahf) as well as the vehicle, there is a disadvantage that not only does the discharge take time, but the battery cannot be used at all in the discharged state. Further, since the battery tends to deteriorate in the full charge and over discharge regions, the battery is completely discharged and fully charged for detecting the full charge capacity (Ahf). In this case, detection of the full charge capacity (Ahf) causes the battery to deteriorate.
  • Patent Document 1 As a method for solving this drawback, a method has been developed in which the degree of deterioration of the battery is detected from the accumulated amount of charge capacity of the battery and the value at which the full charge capacity (Ahf) decreases is detected. (See Patent Document 1) Furthermore, Patent Document 1 also describes a method of detecting the rate of decrease in full charge capacity using the storage temperature and remaining capacity of the battery as parameters.
  • Patent Document 1 can detect the full charge capacity without fully discharging the battery and fully charging. For this reason, the full charge capacity can be detected without restricting the use environment of the battery.
  • this method estimates how much the full charge capacity decreases from the accumulated value of the charge capacity, the storage temperature, and the remaining capacity, there is a drawback that it is difficult to always accurately detect the full charge capacity of the battery. This is because the deterioration of the battery changes in a complicated manner due to various external conditions.
  • the inventor detects the capacity change value ( ⁇ Ah) of the battery and the capacity change value ( ⁇ Ah) from the integrated value of the charge current and discharge current of the battery to be charged / discharged for the purpose of solving this drawback.
  • the open circuit voltage (V OCV ) of the battery is detected before and after the timing, the remaining capacity change value ( ⁇ SOC [%]) is detected from each open circuit voltage (V OCV ), and the remaining capacity change value ( ⁇ SOC [%])
  • a capacity change value ( ⁇ Ah) a method for calculating the full charge capacity (Ahf) of the battery based on the following equation was developed.
  • Ahf ⁇ Ah / ( ⁇ SOC [%] / 100)
  • the above-described full charge capacity detection method has a feature that the full charge capacity of the battery can be detected without completely discharging or fully charging the battery. That is, the battery capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) of the battery at the timing are detected from the integrated value of the charging current and discharging current of the battery to be charged and discharged, and the remaining capacity is detected. This is because the full charge capacity (Ahf) of the battery is calculated from the change value ( ⁇ SOC [%]) and the capacity change value ( ⁇ Ah). However, this method is always difficult to correctly detect the full charge capacity (Ahf) of the battery.
  • An important object of the present invention is to provide a full charge capacity detection method capable of more accurately detecting the full charge capacity (Ahf) of a battery without fully charging or completely discharging the battery.
  • the full charge capacity detection method of the present invention includes a capacity change detection step of calculating a capacity change value ( ⁇ Ah) of a battery from a charge current of the battery charged and discharged at a predetermined timing and an integrated value of the discharge current;
  • the first remaining capacity (SOC 1 [%]) of the battery is determined from the first open circuit voltage (V OCV1 ) detected in this open circuit voltage detection step, and the battery open state is determined from the second open circuit voltage (V OCV2 ).
  • a remaining capacity change value ( ⁇ SOC [%]) is calculated from the difference between the first remaining capacity (SOC 1 [%]) and the second remaining capacity (SOC 2 [%]) determined in the remaining capacity determination step.
  • the battery full charge capacity detection method of the present invention includes a capacity change value ( ⁇ Ah), a remaining capacity change value ( ⁇ SOC [%]), a first open-circuit voltage (V OCV1 ), and a second open-circuit voltage (In a state where at least one of the voltage differences from V OCV2 ) is larger than a preset setting value, the full charge capacity of the battery is determined from the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]). Calculate.
  • the full charge capacity detection method described above has a feature that the full charge capacity (Ahf) of the battery can be detected more accurately without fully charging or completely discharging the battery. This is because the full charge capacity detection method described above includes the capacity change value ( ⁇ Ah), the remaining capacity change value ( ⁇ SOC [%]), the first open circuit voltage (V OCV1 ), and the second open circuit voltage (V OCV2 ).
  • the battery full charge capacity is calculated from the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) only when at least one of the voltage differences is larger than a preset value. is there.
  • the remaining capacity [SOC (%)] is estimated from the open circuit voltage (V OCV ), and the battery full charge capacity (Ahf) is detected using the estimated remaining capacity [SOC (%)] as one parameter, the open circuit is opened.
  • An error in the remaining capacity [SOC (%)] with respect to the voltage (V OCV ) causes an error in the detected full charge capacity (Ahf). Since the error of the remaining capacity [SOC (%)] with respect to the open circuit voltage (V OCV ) fluctuates on both the plus side and the minus side, the remaining capacity change value ( ⁇ SOC [%] is calculated from the difference between the remaining capacity [SOC (%)]. ]) May be accumulated.
  • the remaining capacity [SOC (%)] is estimated from each open circuit voltage (V OCV ) in a state where the capacity change value ( ⁇ Ah) of the battery to be charged / discharged is small and the open circuit voltage (V OCV ) is small.
  • the remaining capacity change value ( ⁇ SOC [%]) is detected, the error may become considerably large. That is, the remaining capacity [SOC (%)] estimated from each open circuit voltage (V OCV ) has an error that changes between the plus side and the minus side, and therefore the difference between the remaining capacity change values ( ⁇ SOC [%]). This is because errors may accumulate in the.
  • FIG. 1 shows a state in which an error with respect to the remaining capacity change value ( ⁇ SOC [%]) changes between a state where the remaining capacity change value ( ⁇ SOC [%]) is small and a large state.
  • (A) of this figure shows a state where the remaining capacity change value ( ⁇ SOC [%]) is small, and (b) shows a state where the remaining capacity change value ( ⁇ SOC [%]) is large.
  • the ratio of error to the remaining capacity change value ( ⁇ SOC [%]) decreases.
  • the remaining capacity change value ( ⁇ SOC [%]) changes from the minimum value ⁇ SOC [%] min to the maximum value ⁇ SOC [%] max, as shown in (a) and (b). Therefore, the error with respect to the remaining capacity change value ( ⁇ SOC [%]) is ( ⁇ SOC [%] max ⁇ SOC [%] min) / ( ⁇ SOC [%]), and the remaining capacity change value ( ⁇ SOC [%]) of the denominator. When becomes larger, the error becomes smaller.
  • the full charge capacity detection method described above detects the full charge capacity (Ahf) of the battery only in a state where the error rate of the remaining capacity change value ( ⁇ SOC [%]) is small. A feature capable of detecting Ahf) is realized.
  • the battery full charge capacity detection method of the present invention can calculate the full charge capacity of the battery based on the following formula in the full charge capacity calculation step.
  • Ahf ⁇ Ah / ( ⁇ SOC [%] / 100)
  • the battery full charge capacity detection method of the present invention compares the capacity change value ( ⁇ Ah) with the set value, and when the capacity change value ( ⁇ Ah) is larger than the set value, the capacity change value ( ⁇ Ah) and the remaining capacity
  • the full charge capacity of the battery can be calculated from the change value ( ⁇ SOC [%]).
  • the remaining capacity change value ( ⁇ SOC [%]) is compared with the set value, and the remaining capacity change value ( ⁇ SOC [%]) is larger than the set value.
  • the full charge capacity of the battery can also be calculated from the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]).
  • the full charge capacity detection method of the present invention compares the voltage difference between the first open circuit voltage (V OCV1 ) and the second open circuit voltage (V OCV2 ) with the set value, and the voltage difference is less than the set value.
  • the full charge capacity of the battery can be calculated from the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]).
  • the full charge capacity detection method of the present invention includes the detected full charge capacity (Ahf1) detected from the remaining capacity change value ( ⁇ SOC [%]) and the capacity change value ( ⁇ Ah), and the previously detected previous value. From the full charge capacity (Ahf2), the full charge capacity (Ahf) of the battery can be detected by the following formula.
  • Full charge capacity (Ahf) weight 1 x detected full charge capacity (Ahf 1) + weight 2 x previous full charge capacity (Ahf 2)
  • weight 1 + weight 2 1.
  • the full charge capacity detection method described above can detect the full charge capacity (Ahf) more accurately because it detects the full charge capacity (Ahf) of the battery while taking into account the previous full charge capacity (Ahf2).
  • the full charge capacity detection method of the present invention can change the weight 1 and the weight 2 by the capacity change value ( ⁇ Ah) and increase the weight 1 as the capacity change value ( ⁇ Ah) increases. .
  • the full charge capacity (Ahf) weight of the battery detected from the capacity change value ( ⁇ Ah) detected more accurately is increased.
  • the full charge capacity (Ahf) of the battery can be detected more accurately.
  • the weight 1 and the weight 2 are changed by the remaining capacity change value ( ⁇ SOC [%]), and as the remaining capacity change value ( ⁇ SOC [%]) increases.
  • the weight 1 can be increased.
  • the full charge capacity change value ( ⁇ SOC [%]) increases, that is, the full charge capacity of the battery ( ⁇ SOC [%]) detected from the more accurately detected remaining capacity change value ( ⁇ SOC [%]). Since the full charge capacity (Ahf) of the battery is rewritten by increasing the weight of Ahf1), the full charge capacity (Ahf) of the battery can be detected more accurately.
  • the weight 1 and the weight 2 are changed by the voltage difference between the first open circuit voltage (V OCV1 ) and the second open circuit voltage (V OCV2 ). As the difference increases, the weight 1 can be increased.
  • This method increases the weight of the detected full charge capacity (Ahf1) that is detected in a state where the voltage difference is large, that is, the battery full charge capacity (Ahf1) that is detected more accurately. Since the capacity (Ahf) is rewritten, the full charge capacity (Ahf) of the battery can be detected more accurately.
  • the full charge capacity detection method of the present invention can change the weight 1 and the weight 2 at the timing of detecting the capacity change value ( ⁇ Ah) and increase the weight 1 as the timing becomes longer. .
  • This method increases the weight of the capacity change value ( ⁇ Ah1) detected in a state where the timing of detecting the capacity change value ( ⁇ Ah) is long, that is, the full charge capacity (Ahf1) of the battery detected more accurately. Since the full charge capacity (Ahf) of the battery is rewritten, the full charge capacity (Ahf) of the battery can be detected more accurately.
  • the full charge capacity detection method of the present invention includes the capacity change value ( ⁇ Ah), the remaining capacity change value ( ⁇ SOC [%]), the first open circuit voltage (V OCV1 ), and the second open circuit voltage.
  • the battery temperature is detected, and the battery deterioration degree [%] is calculated from the detected battery temperature.
  • the battery full charge capacity (Ahf) is calculated from the degree of deterioration [%] of the battery, the initial full charge capacity (Ahf0) of the battery, and the previously detected full charge capacity (Ahf2). Can do.
  • the first detection timing and the second detection timing can be a timing at which no current flows through the battery, and the first detection timing and the second detection timing can be set as time intervals that fluctuate. it can.
  • 4 is a flowchart illustrating a method for detecting a full charge capacity of a battery according to another embodiment of the present invention.
  • 4 is a flowchart illustrating a method for detecting a full charge capacity of a battery according to another embodiment of the present invention.
  • 4 is a flowchart illustrating a method for detecting a full charge capacity of a battery according to another embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a power supply device used in the battery full charge capacity detection method of the present invention.
  • This power supply device is used in a device that supplies power to a motor that drives a vehicle, and is used in a device that charges a battery with a solar cell in the daytime and outputs the charged power in the daytime or at night.
  • This power supply device includes a battery 1 that can be charged, a current detector 2 that detects a charge / discharge current of the battery 1, a voltage detector 3 that detects the voltage of the battery 1, and a temperature detector that detects the temperature of the battery 1.
  • a capacity calculation unit 5 that calculates the output signal of the current detection unit 2 to integrate the current for charging / discharging the battery 1 to detect the capacity (Ah) of the battery 1, and the battery from the output signal of the voltage detection unit 3
  • a remaining capacity detection unit 6 for determining the remaining capacity (SOC [%]) of 1
  • a full charge capacity detection unit 7 for detecting the full charge capacity of the battery 1 based on output signals of the remaining capacity detection unit 6 and the capacity calculation unit 5.
  • the remaining capacity correction circuit 8 corrects the remaining capacity (SOC [%]) of the battery 1 with the full charge capacity detected by the full charge capacity detection unit 7 and detects an accurate remaining capacity (SOC [%]).
  • battery information is transmitted to the vehicle or solar cell device on the main body side using the battery 1 as a power source.
  • the battery 1 is a lithium ion secondary battery or a lithium polymer battery. However, a rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery can be used as the battery.
  • the battery 1 has one or a plurality of secondary batteries connected in series or in parallel.
  • the current detection unit 2 that detects the charging / discharging current of the battery 1 detects the voltage generated at both ends of the current detection resistor 10 connected in series with the battery 1 to detect the charging current and the discharging current.
  • the current detection unit 2 amplifies the voltage induced across the current detection resistor 10 with an amplifier (not shown), and converts an analog signal that is an output signal of the amplifier into a digital signal with an A / D converter (not shown). Convert and output. Since the current detection resistor 10 generates a voltage proportional to the current flowing through the battery 1, the current can be detected by the voltage.
  • the amplifier is an operational amplifier capable of amplifying a +-signal, and distinguishes a charging current and a discharging current by +-of the output voltage.
  • the current detection unit 2 outputs a current signal of the battery 1 to the capacity calculation unit 5, the remaining capacity detection unit 6, and the communication processing unit 9.
  • the voltage detector 3 detects the voltage of the battery 1, converts the detected analog signal into a digital signal by an A / D converter (not shown), and outputs the digital signal.
  • the voltage detection unit 3 outputs the detected voltage signal of the battery 1 to the remaining capacity detection unit 6 and the communication processing unit 9.
  • each battery voltage can be detected and an average value thereof can be output.
  • an average value of the battery modules is output as a battery voltage.
  • the temperature detector 4 detects the temperature of the battery 1, converts the detected signal into a digital signal by an A / D converter (not shown), and outputs the digital signal.
  • the temperature detection unit 4 outputs temperature signals to the capacity calculation unit 5, the remaining capacity detection unit 6, and the communication processing unit 9.
  • the capacity calculation unit 5 calculates the capacity (Ah) that the battery 1 can discharge by calculating the current signal of the digital signal input from the current detection unit 2.
  • the capacity calculation unit 5 subtracts the discharge capacity from the charge capacity of the battery 1 and calculates the capacity (Ah) of the battery 1 that can be discharged as an integrated value (Ah) of the current.
  • the charging capacity is calculated by an integrated value of the charging current of the battery 1 or by multiplying this by charging efficiency.
  • the discharge capacity is calculated by the integrated value of the discharge current.
  • the capacity calculator 5 is a signal input from the temperature detector 4 and can accurately calculate the capacity by correcting the integrated value of the charge capacity and the discharge capacity.
  • the remaining capacity detection unit 6 determines the remaining capacity (SOC [%]) of the battery 1 from the open circuit voltage (V OCV ) of the battery 1.
  • the remaining capacity detection unit 6 detects the open voltage (V OCV ) of the battery 1 from the voltage signal of the battery 1 input from the voltage detection unit 3 and the current signal input from the current detection unit 2, or the current detection unit At the timing when the charge / discharge current value input from 2 becomes 0, the voltage value input from the voltage detector 3 is detected as an open circuit voltage (V OCV ). Further, the remaining capacity detection unit 6 determines the remaining capacity (SOC [%]) of the battery 1 from the detected open circuit voltage (V OCV ) of the battery 1 in order to determine the remaining capacity with respect to the open voltage (V OCV ) of the battery 1.
  • FIG. 3 is a graph showing the remaining capacity (SOC [%]) with respect to the open circuit voltage (V OCV ) of the battery.
  • the memory 11 stores the characteristics of the open circuit voltage-remaining capacity shown in this graph as a function or as a table.
  • the remaining capacity detection unit 6 determines the remaining capacity (SOC [%]) with respect to the open circuit voltage (V OCV ) from the function or table stored in the memory 11.
  • the remaining capacity detection unit 6 does not necessarily need to detect the open circuit voltage (V OCV ) at the timing when the charge / discharge current becomes zero, and the battery 1 is determined from the charge / discharge current of the battery 1 detected by the current detection unit 2.
  • the open circuit voltage (V OCV ) can be calculated and detected.
  • the remaining capacity detection unit 6 stores the detection voltage (V CCV ) of the battery 1 and the open circuit voltage (V OCV ) with respect to the charging / discharging current in the memory 11 as a function or a table.
  • FIG. 4 is a graph showing the open circuit voltage (V OCV ) of the battery with respect to the charge / discharge current of the battery at a specific detection voltage (V CCV ).
  • the memory 11 stores the current-open voltage characteristics shown in this graph as a function or as a table.
  • the remaining capacity detection unit 6 calculates an open circuit voltage (V OCV ) with respect to the detection voltage and the charge / discharge current from a function or table stored in the memory 11, and further calculates the battery 1 from the calculated open circuit voltage (V OCV ). Remaining capacity (SOC [%]) is determined. In other words, the remaining capacity detection unit 6 can detect the open circuit voltage (V OCV ) of the battery 1 even when the charge / discharge current flows through the battery 1 regardless of the charge / discharge state of the battery 1.
  • the capacity calculator 5 and the remaining capacity calculator 6 detect the battery capacity (Ah) and the remaining capacity [SOC (%)] at the first detection timing and the second detection timing.
  • the first detection timing and the second detection timing are preferably set so that no current flows through the battery.
  • the detection timing is set after a state in which no current flows through the battery for a longer time than the preset setting time, so that the remaining capacity [SOC (%)] relative to the open-circuit voltage (V OCV ) can be more accurately determined.
  • the set time is preferably 30 minutes. However, the set time can be, for example, 1 minute to 10 hours, preferably 10 minutes to 3 hours.
  • the remaining time [SOC (%)] relative to the open circuit voltage (V OCV ) can be detected more accurately by extending the set time.
  • the remaining capacity [SOC (%)] with respect to the open circuit voltage (V OCV ) at the first detection timing can be more accurately determined. It can be detected.
  • the setting time of the second detection timing to be shorter than the setting time of the first detection timing, after stopping charging and discharging, the open-circuit voltage (V OCV ) is quickly detected and the remaining capacity [SOC (%)] Can be detected.
  • the first detection timing and the second detection timing are the battery
  • the detection timing can be set to the timing at which the current flows through the battery without specifying the timing at which the charge / discharge current of 1 becomes 0.
  • the time interval between the first detection timing and the second detection timing is not a constant time set in advance, but is a variable time interval, so that the first detection timing and the second detection timing are Is set to an optimal timing, and the full charge capacity (Ahf) of the battery can be detected more accurately.
  • the timing immediately before starting charging at the charging station is set as the first detection timing, and the timing at which charging ends at the charging station is set as the second detection timing.
  • the battery since the charging time becomes longer, the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) are large, and the full charge capacity (Ahf) of the battery is accurate. The probability that it can be detected becomes high.
  • the timing at which the ignition switch 12 is turned on is the first detection timing when the load current of the battery 1 is cut off, and the second detection is performed after the ignition switch 12 is switched off.
  • the first detection timing in the hybrid car is a predetermined range before and after the ignition switch 12 is turned on, for example, from 2 hours before the ignition switch 12 is turned on to within 3 seconds after being turned on, preferably The timing can be within 1 second.
  • the voltage detection unit 3 detects the voltage of the battery 1 last time as the first detection timing, and is detected at this time.
  • the battery voltage stored in the memory 11 can be the first open circuit voltage (V OCV1 ).
  • the second detection timing is after the ignition switch 12 is switched off, and when the voltage of the battery 1 is stabilized, for example, after two hours have elapsed after the ignition switch 12 is switched off.
  • the first detection timing and the second detection timing are set to the timing at which the solar battery is not charged and is not discharged to the load.
  • the battery used for this purpose can also specify the first detection timing and the second detection timing at a specific time or at regular time intervals.
  • Battery 1 is charged and discharged, and changes the capacity (Ah) and remaining capacity (SOC [%]) that can be discharged until it is completely discharged.
  • the capacity (Ah) and the remaining capacity (SOC [%]) that can be discharged from the battery are reduced, and the capacity (Ah) and the remaining capacity (SOC [%]) that can be discharged after being charged are increased.
  • the capacity (Ah) that can be discharged from the battery, which changes from the first detection timing to the second detection timing, is detected by the capacity calculator 5.
  • the capacity calculation unit 5 integrates the charging current and the discharging current of the battery 1 to detect the capacity change value ( ⁇ Ah) in the time period from the first detection timing to the second detection timing, and detects the capacity change value ( ⁇ Ah). ) To calculate the capacity (Ah) that can be discharged.
  • the remaining capacity (SOC [%]) of the battery that changes from the first detection timing to the second detection timing is detected by the remaining capacity detection unit 6.
  • the remaining capacity detection unit 6 includes a first remaining capacity (SOC1 [%]) specified from the voltage of the battery 1 at the first detection timing and a second voltage specified from the battery voltage at the second detection timing.
  • the remaining capacity change value ( ⁇ SOC [%]) is detected from the difference in the remaining capacity (SOC2 [%]).
  • the capacity calculator 5 integrates the charge / discharge currents in the time period from the first detection timing to the second detection timing to detect the capacity change value ( ⁇ Ah), and the battery changes from the capacity change value ( ⁇ Ah).
  • the capacity (Ah) that can be discharged is detected.
  • the remaining capacity detection unit 6 detects the remaining capacity (SOC [%]) from the changing battery open-circuit voltage (V OCV ).
  • the full charge capacity detector 7 calculates a full charge capacity (Ahf) from the changing capacity change value ( ⁇ Ah) of the battery and the remaining capacity change value ( ⁇ SOC [%]).
  • the full charge capacity detector 7 detects the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) of the battery 1 between the first detection timing and the second detection timing.
  • the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) of the battery 1 to be charged / discharged are calculated.
  • the full charge capacity detection unit 7 changes the remaining capacity (SOC [%]) of the battery 1 detected by the remaining capacity detection unit 6, that is, the remaining capacity that changes from the first detection timing to the second detection timing ( From the change value ( ⁇ SOC [%]) of the SOC [%]) and the change in the dischargeable capacity (Ah) of the battery 1 detected by the capacity calculator 5, that is, the capacity change value ( ⁇ Ah) 1 full charge capacity (Ahf) is detected.
  • Ahf ⁇ Ah / ( ⁇ SOC [%] / 100)
  • the full charge capacity detection unit does not always detect the full charge capacity (Ahf) from the remaining capacity change value ( ⁇ SOC [%]) and the capacity change value ( ⁇ Ah).
  • the full charge capacity detection unit compares the capacity change value ( ⁇ Ah) detected from the first detection timing to the second detection timing with a set value stored in advance, and the capacity change value ( ⁇ Ah) is the set value. Only in a larger state, the full charge capacity of the battery is calculated from the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]).
  • the set value stored in the full charge capacity detection unit is, for example, 10% or more of the rated full charge capacity (Ahf).
  • the full charge capacity detection unit compares the remaining capacity change value ( ⁇ SOC [%]) detected from the first detection timing to the second detection timing, not the capacity change value ( ⁇ Ah), with the set value,
  • the full charge capacity of the battery can also be calculated from the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) only when the remaining capacity change value ( ⁇ SOC [%]) is larger than the set value.
  • the full charge capacity detection unit stores a set value of a remaining capacity change value ( ⁇ SOC [%]).
  • the set value is, for example, 10% or more.
  • the full charge capacity detection unit compares the voltage difference between the first open circuit voltage (VOCV1) at the first detection timing and the second open circuit voltage (VOCV2) at the second detection timing with a set value. Only when the voltage difference is larger than the set value, the full charge capacity of the battery can be calculated from the capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]).
  • the full charge capacity detection unit stores the voltage difference as a set value. The set value is 20% or more of the difference between the lowest voltage and the highest voltage.
  • the full charge capacity detection unit includes the capacity change value ( ⁇ Ah), the remaining capacity change value ( ⁇ SOC [%]) from the first detection timing to the second detection timing, and the first open-circuit voltage. Only when the voltage difference between (V OCV1 ) and the second open circuit voltage (V OCV2 ) is larger than a preset value, the capacity change value ( ⁇ Ah) and the remaining capacity change value ( The full charge capacity of the battery is calculated from ⁇ SOC [%]).
  • the full charge capacity detection unit 7 is the first discharge capacity (Ah 1 ) of the battery detected at the first detection timing and the second detection timing only when the specific condition is satisfied as described above.
  • the capacity change value ( ⁇ Ah) is calculated from the difference from the second dischargeable capacity (Ah 2 ) of the battery detected in step 1, or the battery is charged / discharged between the first detection timing and the second detection timing.
  • the capacity change value ( ⁇ Ah) is calculated from the integrated current value.
  • the full charge capacity detection unit 7 determines the remaining capacity (SOC 1 [%]) specified from the first open circuit voltage (V OCV1 ) of the battery detected at the first detection timing, and the second detection timing.
  • the remaining capacity change value ( ⁇ SOC [%]) is calculated from the difference between the remaining capacity (SOC 2 [%]) specified from the second open-circuit voltage (V OCV2 ) detected in step (1).
  • the full charge capacity detection unit 7 detects the detected full charge capacity (Ahf1) detected from the remaining capacity change value ( ⁇ SOC [%]) and the capacity change value ( ⁇ Ah), and the previous full charge capacity ( From Ahf2), the full charge capacity (Ahf) of the battery is more accurately detected by the following equation.
  • Full charge capacity (Ahf) weight 1 x detected full charge capacity (Ahf 1) + weight 2 x previous full charge capacity (Ahf 2)
  • weight 1 + weight 2 1.
  • the full charge capacity detection unit 7 described above sets the latest detected full charge capacity (Ahf1) detected from the remaining capacity change value ( ⁇ SOC [%]) and the capacity change value ( ⁇ Ah) as the correct full charge capacity (Ahf) of the battery.
  • the full charge capacity (Ahf) of the battery is more accurately detected by correcting the full charge capacity (Ahf2) detected before and determining the full charge capacity (Ahf) of the battery.
  • the weight 1 is changed by a capacity change value ( ⁇ Ah) in a time zone from the first detection timing to the second detection timing. That is, the weight 1 is increased as the capacitance change value ( ⁇ Ah) increases.
  • the capacity change value ( ⁇ Ah) is 10% of the rated capacity or the full charge capacity (Ahf)
  • the weight 1 is 0.1, and the capacity change value ( ⁇ Ah) is smaller than 10%. Therefore, the weight 1 is increased as the weight 1 is decreased and becomes larger than 10%.
  • FIG. 5 shows the weight 1 and the weight 2 with respect to the capacitance change value ( ⁇ Ah).
  • Weight 1 and weight 2 for the capacity change value ( ⁇ Ah) are stored in advance in the memory. This method detects the full charge capacity (Ahf) of the battery more accurately by increasing the weight 1 as the capacity change value ( ⁇ Ah) increases and the accuracy of the detected full charge capacity (Ahf) increases. it can.
  • the weight 1 can be changed by the remaining capacity change value ( ⁇ SOC [%]) from the first detection timing to the second detection timing.
  • the full charge capacity detection unit increases the weight 1 as the remaining capacity change value ( ⁇ SOC [%]) increases, for example, in a state where the remaining capacity change value ( ⁇ SOC [%]) becomes 10%. 1 is set to 0.1, the weight 1 is made smaller as the remaining capacity change value ( ⁇ SOC [%]) becomes smaller than 10%, and the weight 1 is made larger as it becomes larger than 10%.
  • FIG. 6 shows weight 1 and weight 2 with respect to the remaining capacity change value ( ⁇ SOC [%]). In this method, as the remaining capacity change value ( ⁇ SOC [%]) increases and the accuracy of the detected full charge capacity (Ahf) increases, the weight 1 is increased and the full charge capacity of the battery (more accurately) Ahf) can be detected.
  • the full charge capacity detection unit can also change the weight 1 by the voltage difference between the first open circuit voltage (V OCV1 ) and the second open circuit voltage (V OCV2 ).
  • the full charge capacity detection unit increases the weight 1 as the voltage difference of the open circuit voltage (V OCV ) increases.
  • the voltage difference of the open circuit voltage (V OCV ) is the voltage difference between the minimum voltage and the maximum voltage.
  • the weight 1 is set to 0.1, the weight 1 is decreased as the voltage difference becomes smaller than 10%, and the weight 1 is increased as the voltage difference becomes larger than 10%.
  • FIG. 7 shows weight 1 and weight 2 with respect to the ratio of the open circuit voltage (V OCV ) to the voltage difference between the minimum voltage and the maximum voltage. In this method, as the voltage difference increases and the accuracy of the detected full charge capacity (Ahf) increases, the weight 1 can be increased to more accurately detect the full charge capacity (Ahf) of the battery.
  • the full charge capacity detection unit can change the length of the time period from the first detection timing to the second detection timing of the weight 1.
  • the full charge capacity detection unit increases the weight 1 as the time zone becomes longer. For example, when the time zone is 1 hour, the weight 1 is set to 0.1 and the length of the time zone is longer than 1 hour. As the length becomes shorter, the weight 1 is made smaller, and as the time becomes longer than 1 hour, the weight 1 is made larger. In this method, as the time period from the first detection timing to the second detection timing becomes longer and the accuracy of the detected full charge capacity (Ahf) becomes higher, the weight 1 is increased and the battery is more accurately detected.
  • the full charge capacity (Ahf) can be detected.
  • the remaining capacity correction circuit 8 corrects the full charge capacity (Ahf) of the battery 1 detected by the full charge capacity detection unit 7 and detects the accurate remaining capacity (SOC [%]) of the battery 1. In other words, the remaining capacity (SOC [SOC [ %]).
  • SOC [%] [capacity that can be discharged (Ah) / full charge capacity (Ahf)] ⁇ 100
  • the remaining capacity correction circuit 8 is based on both the remaining capacity (SOC [%]) of the battery 1 calculated by the above formula and the remaining capacity (SOC [%]) detected by the remaining capacity detector 6 from the battery voltage. The remaining capacity of the battery 1 can be accurately detected.
  • the remaining capacity correction circuit 8 averages, for example, the remaining capacity (SOC [%]) calculated from the full charge capacity (Ahf) and the dischargeable capacity (Ah) and the remaining capacity (SOC [%]) determined from the battery voltage. Then, an accurate remaining capacity (SOC [%]) of the battery 1 is calculated.
  • the exact remaining capacity (SOC [%]) of the battery 1 can also be calculated by weighting (SOC [%]).
  • the communication processing unit 9 includes a remaining capacity (SOC [%]) detected by the remaining capacity correction circuit 8, a full charge capacity (Ahf) detected by the full charge capacity detection unit 7, and a remaining capacity detected by the remaining capacity detection unit 6.
  • the battery information such as the capacity (SOC [%]), the battery voltage detected by the voltage detection unit 3, the current value detected by the current detection unit 2, the temperature detected by the temperature detection unit 4 and the like is supplied via the communication line 13. Is transmitted to the device equipped with.
  • the power supply device can also determine the degree of deterioration of the battery 1 based on the calculated full charge capacity (Ahf).
  • This power supply apparatus determines the degree of deterioration of the battery 1 based on how much the calculated full charge capacity (Ahf) has decreased with respect to the rated capacity (Ahs) of the battery.
  • This power supply device stores a function and a table for detecting the degree of deterioration of the battery from the full charge capacity (Ahf) of the battery and the ratio (Ahf / Ahs) to the rated capacity, and based on the stored function and table. Detects the degree of battery deterioration.
  • the above power supply apparatus detects the full charge capacity (Ahf) of the battery in the following steps. [Capacity change detection process]
  • the full charge capacity detection unit 7 calculates the capacity change value ( ⁇ Ah) of the battery 1 from the integrated value of the charge current and discharge current of the battery 1 to be charged / discharged between the first detection timing and the second detection timing. Calculate.
  • the full charge capacity detector 7 detects the first capacity (Ah 1 ) of the battery detected by the capacity calculator 5 at the first detection timing and the second capacity of the battery detected at the second detection timing.
  • the capacity change value ( ⁇ Ah) is calculated from the difference from (Ah 2 ), or the capacity calculation unit 5 calculates the integrated value of the current charged / discharged between the first detection timing and the second detection timing.
  • the capacitance change value ( ⁇ Ah) to be detected is detected.
  • the remaining capacity detection unit 6 detects the first open circuit voltage (V OCV1 ) of the battery 1 at the first detection timing and the second open circuit voltage (V OCV2 ) of the battery 1 at the second detection timing.
  • the remaining capacity detector 6 detects the open circuit voltage (V OCV ) at the timing when the charge / discharge current of the battery 1 becomes 0, or calculates the open circuit voltage (V OCV ) from the charge / discharge current and detects it. [Remaining capacity judgment process]
  • the remaining capacity detection unit 6 determines the first remaining capacity (SOC 1 [%]) of the battery 1 from the first open circuit voltage (V OCV1 ) detected in the open circuit voltage detection step, and performs the second open circuit.
  • the second remaining capacity (SOC 2 [%]) of the battery 1 is determined from the voltage (V OCV2 ).
  • the remaining capacity detection unit 6 determines the remaining capacity (SOC [%]) of the battery 1 from the open circuit voltage (V OCV ) based on a function or table stored in the memory 11. [Remaining capacity change value calculation process]
  • the full charge capacity detection unit 7 determines the remaining capacity change value ( ⁇ SOC) from the difference between the first remaining capacity (SOC 1 [%]) and the second remaining capacity (SOC 2 [%]) determined in the remaining capacity determination step. [%]). [Full charge capacity calculation process]
  • the full charge capacity detection unit 7 sets the capacity change value ( ⁇ Ah) from the first detection timing to the second detection timing to be larger than the set value or sets the remaining capacity change value ( ⁇ SOC [%]). It is determined whether or not the voltage difference between the first open-circuit voltage (V OCV1 ) and the second open-circuit voltage (V OCV2 ) is greater than the set value, and the capacitance change value ( ⁇ Ah), The capacity change value ( ⁇ Ah) detected in the capacity change detection step only when the remaining capacity change value ( ⁇ SOC [%]) and one or more of the voltage differences are larger than the set value, From the remaining capacity change value ( ⁇ SOC [%]) calculated in the remaining capacity change value calculation step, the full charge capacity (Ahf) of the battery 1 is calculated by the following formula.
  • Ahf ⁇ Ah / ( ⁇ SOC [%] / 100)
  • the full charge capacity detection unit 7 includes a capacity change value ( ⁇ Ah) from the first detection timing to the second detection timing, a remaining capacity change value ( ⁇ SOC [%]), and a first open-circuit voltage (V OCV1 ) and the second open-circuit voltage (V OCV2 ) are all less than the set value, the battery temperature is detected, and the deterioration degree [%] of the battery 1 is calculated from the detected battery temperature, The full charge capacity (Ahf) of the battery 1 is calculated from the calculated deterioration degree [%] of the battery 1. The battery temperature is detected by the temperature detector 4.
  • the full charge capacity detection unit 7 stores a temperature coefficient for converting the battery temperature detected by the temperature detection unit 4 into the degree of deterioration of the battery 1, and the degree of deterioration [%] of the battery 1 is calculated based on the temperature coefficient. Calculate.
  • the deterioration of the battery 1 proceeds as the battery temperature increases. Therefore, the temperature coefficient converted from the battery temperature to the deterioration degree of the battery 1 is a negative coefficient, and is specified such that the absolute value increases as the battery 1 is charged and discharged at a high temperature.
  • This temperature coefficient is stored in a memory or the like as a function or a table, for example.
  • the full charge capacity detection unit 7 detects the battery temperature (for example, the maximum battery temperature) for every predetermined time (for example, 1 second) of the battery 1, the temperature coefficient converted from the detected battery temperature, and the battery 1 A deterioration coefficient which is a product of time corresponding to the temperature is calculated, and this deterioration coefficient is added from the first detection timing to the second detection timing to calculate an addition deterioration coefficient.
  • the time from the first detection timing to the second detection timing to which the deterioration coefficient is added can be a predetermined time with an interval of, for example, a maximum of 4 hours.
  • the full charge capacity detection unit 7 calculates the initial full charge capacity (Ahf0) of the battery 1, the previous full charge capacity (Ahf2) detected earlier, that is, the previous full charge capacity (Ahf2). From the added deterioration coefficient, the deterioration degree [%] of the battery 1 is calculated by the following equation.
  • Deterioration degree [%] [ ⁇ (previous full charge capacity (Ahf2) / initial full charge capacity (Ahf0)) ⁇ 100 ⁇ 2 + additional deterioration coefficient] 1/2
  • the full charge capacity detection unit 7 calculates the deterioration degree [%] calculated from the battery temperature, the initial full charge capacity (Ahf0), and the previous full charge capacity (Ahf2) which is the previous full charge capacity (Ahf2). From the above, the full charge capacity (Ahf) of the battery 1 is calculated by the following equation.
  • Full charge capacity (Ahf2) previous full charge capacity (Ahf2) ⁇ a + initial full charge capacity (Ahf0) ⁇ degradation amount [%] / 100 ⁇ (1-a)
  • the full charge capacity detection unit 7 detects the second capacity (Ah 2 ) of the battery 1 at the second detection timing.
  • the full charge capacity detection unit 7 detects the capacity change value ( ⁇ Ah), the remaining capacity change value ( ⁇ SOC [%]), the first open circuit voltage (V OCV1 ), and the second open circuit voltage (V OCV2 ). It is determined whether or not at least one of the voltage differences is larger than a preset set value.
  • the full charge capacity detector 7 calculates the full charge capacity (Ahf) of the battery 1 from the calculated capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) by the following formula.
  • the remaining capacity correction circuit 8 determines the remaining capacity (SOC [SOC [ %]).
  • the full charge capacity detection unit 7 calculates the degree of deterioration [%] of the battery 1 based on the battery temperature detected by the temperature detection unit 4.
  • the full charge capacity detection unit 7 calculates a deterioration coefficient that is the product of the temperature coefficient specified from the battery temperature and the time that the battery 1 has been at that temperature, and calculates the deterioration coefficient from the first detection timing.
  • the addition deterioration coefficient is calculated by adding up to 2 detection timings.
  • the full charge capacity detection unit 7 calculates the deterioration degree [% of the battery 1 from the initial full charge capacity (Ahf 0 ) of the battery, the previous full charge capacity (Ahf 1 ), and the addition deterioration coefficient by the following formula. ] Is calculated.
  • the full charge capacity detection unit 7 calculates the deterioration degree [%] calculated from the battery temperature, the initial full charge capacity (Ahf0), and the previous full charge capacity (Ahf2) which is the previous full charge capacity (Ahf2).
  • the full charge capacity (Ahf) of the battery 1 is calculated by the following equation.
  • Full charge capacity (Ahf2) previous full charge capacity (Ahf2) ⁇ a + initial full charge capacity (Ahf0) ⁇ degradation amount [%] / 100 ⁇ (1-a)
  • the remaining capacity correction circuit 8 determines the remaining capacity (SOC [SOC [ %]).
  • the remaining capacity (SOC [%]) of the battery 1 is calculated from both the calculated remaining capacity (SOC [%]) and the remaining capacity (SOC [%]) detected from the battery voltage by the remaining capacity detector 6. . Thereby, a more accurate remaining capacity (SOC [%]) can be calculated.
  • the full charge capacity detection unit 7 detects the second capacity (Ah 2 ) of the battery 1 at the second detection timing.
  • the full charge capacity detection unit 7 detects the capacity change value ( ⁇ Ah), the remaining capacity change value ( ⁇ SOC [%]), the first open circuit voltage (V OCV1 ), and the second open circuit voltage (V OCV2 ). It is determined whether or not at least one of the voltage differences is larger than a preset set value.
  • the full charge capacity detector 7 calculates the full charge capacity (Ahf) of the battery 1 from the calculated capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) by the following formula.
  • the remaining capacity correction circuit 8 Based on the full charge capacity (Ahf) of the battery 1 detected by the full charge capacity detector 7, the remaining capacity correction circuit 8 uses the remaining capacity (SOC [SOC [ %]).
  • the full charge capacity detection unit 7 calculates the degree of deterioration [%] of the battery 1 based on the battery temperature detected by the temperature detection unit 4.
  • the full charge capacity detection unit 7 calculates a deterioration coefficient that is the product of the temperature coefficient specified from the battery temperature and the time that the battery 1 has been at that temperature, and calculates the deterioration coefficient from the first detection timing.
  • the addition deterioration coefficient is calculated by adding up to 2 detection timings.
  • the full charge capacity detection unit 7 calculates the deterioration degree [% of the battery 1 from the initial full charge capacity (Ahf 0 ) of the battery, the previous full charge capacity (Ahf 1 ), and the addition deterioration coefficient by the following formula. ] Is calculated.
  • the full charge capacity detection unit 7 calculates the deterioration degree [%] calculated from the battery temperature, the initial full charge capacity (Ahf0), and the previous full charge capacity (Ahf2) which is the previous full charge capacity (Ahf2).
  • the full charge capacity (Ahf) of the battery 1 is calculated by the following equation.
  • Full charge capacity (Ahf2) previous full charge capacity (Ahf2) ⁇ a + initial full charge capacity (Ahf0) ⁇ degradation amount [%] / 100 ⁇ (1-a)
  • the remaining capacity correction circuit 8 determines the remaining capacity (SOC [SOC [ %]).
  • the remaining capacity (SOC [%]) of the battery 1 is calculated from both the calculated remaining capacity (SOC [%]) and the remaining capacity (SOC [%]) detected from the battery voltage by the remaining capacity detector 6. . Thereby, a more accurate remaining capacity (SOC [%]) can be calculated.
  • a state in which no current flows in the battery 1 is detected, and the remaining capacity detection unit 6 detects the first open circuit voltage (V OCV1 ) of the battery 1 using this timing as the first detection timing.
  • the state where no current flows through the battery 1 is a state where, for example, the solar battery does not charge the battery and the battery is not discharged.
  • the full charge capacity detection unit 7 detects the first capacity (Ah 1 ) of the battery 1 at the first detection timing.
  • the remaining capacity detection unit 6 detects the second open circuit voltage (V OCV2 ) of the battery 1 using this timing as the second detection timing.
  • the full charge capacity detection unit 7 detects the second capacity (Ah 2 ) of the battery 1 at the second detection timing.
  • the full charge capacity detection unit 7 detects the capacity change value ( ⁇ Ah), the remaining capacity change value ( ⁇ SOC [%]), the first open circuit voltage (V OCV1 ), and the second open circuit voltage (V OCV2 ). It is determined whether or not at least one of the voltage differences is larger than a preset set value.
  • the full charge capacity detector 7 calculates the full charge capacity (Ahf) of the battery 1 from the calculated capacity change value ( ⁇ Ah) and the remaining capacity change value ( ⁇ SOC [%]) by the following formula.
  • the remaining capacity correction circuit 8 determines the remaining capacity (SOC [SOC [ %]).
  • the full charge capacity detection unit 7 calculates the degree of deterioration [%] of the battery 1 based on the battery temperature detected by the temperature detection unit 4.
  • the full charge capacity detection unit 7 calculates a deterioration coefficient that is the product of the temperature coefficient specified from the battery temperature and the time that the battery 1 has been at that temperature, and calculates the deterioration coefficient from the first detection timing.
  • the addition deterioration coefficient is calculated by adding up to 2 detection timings.
  • the full charge capacity detection unit 7 calculates the deterioration degree [% of the battery 1 from the initial full charge capacity (Ahf 0 ) of the battery, the previous full charge capacity (Ahf 1 ), and the addition deterioration coefficient by the following formula. ] Is calculated.
  • the full charge capacity detection unit 7 calculates the deterioration degree [%] calculated from the battery temperature, the initial full charge capacity (Ahf0), and the previous full charge capacity (Ahf2) which is the previous full charge capacity (Ahf2).
  • the full charge capacity (Ahf) of the battery 1 is calculated by the following equation.
  • Full charge capacity (Ahf2) previous full charge capacity (Ahf2) ⁇ a + initial full charge capacity (Ahf0) ⁇ degradation amount [%] / 100 ⁇ (1-a)
  • the remaining capacity correction circuit 8 determines the remaining capacity (SOC [SOC [ %]).
  • the remaining capacity (SOC [%]) of the battery 1 is calculated from both the calculated remaining capacity (SOC [%]) and the remaining capacity (SOC [%]) detected from the battery voltage by the remaining capacity detector 6. . Thereby, a more accurate remaining capacity (SOC [%]) can be calculated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】電池を満充電や完全に放電することなく、より正確に電池の満充電容量(Ahf)を検出する。 【解決手段】満充電容量検出方法は、充電電流と放電電流の積算値から電池の容量変化値を演算する容量変化検出工程と、電池の第1の開放電圧と第2の開放電圧を検出する開放電圧検出工程と、第1の開放電圧から電池の第1の残容量を、第2の開放電圧から電池の第2の残容量を判定する残容量判定工程と、第1の残容量と第2の残容量の差から残容量変化値を演算する残容量変化値演算工程と、残容量変化値と容量変化値から電池の満充電容量を演算する満充電容量演算工程とからなる。満充電容量検出方法は、容量変化値と、残容量変化値と、第1の開放電圧と第2の開放電圧との電圧差の少なくとも何れかが、あらかじめ設定している設定値よりも大きな状態において、容量変化値と残容量変化値から電池の満充電容量を演算する。

Description

電池の満充電容量検出方法
 本発明は、充放電するにしたがって実質的に満充電できる容量が小さくなる電池の満充電容量を検出する方法に関する。
 電池は、充放電を繰り返すにしたがって、実質的に満充電できる満充電容量(Ahf)が経時的に減少する。満充電容量(Ahf)は、満充電した電池を完全に放電するまでの容量である。電池は、過充電や過放電によって著しく劣化する特性があるので、満充電容量(Ahf)に対して所定の残容量(SOC[%])の範囲で使用することで劣化を少なくできる。このため、過充電や過放電を防止するために、経時的に減少する満充電容量(Ahf)を正確に検出することが大切である。検出する満充電容量(Ahf)に誤差があると、検出した満充電容量(Ahf)に対して所定の割合の残容量(SOC[%])となるように充放電をコントロールしても、電池が過充電や過放電される領域まで充放電が行われてしまい、劣化するからである。たとえば、車両用の電池は、50%を中心とする所定範囲の残容量となるように、充放電をコントロールしている。残容量(SOC[%])は、満充電容量(Ahf)を基準に決定されるので、満充電容量(Ahf)に誤差があると、50%を中心とする決められた範囲に残容量(SOC[%])を制御できなくなる。
 たとえば、満充電容量(Ahf)を10Ahとする電池が5Ahの容量となるまで放電されると残容量(SOC[%])は50%となるが、満充電容量(Ahf)が5Ahに減少した電池では、電池の容量(Ah)が5Ahとなると残容量(SOC[%])は100%となる。したがって、電池の容量(Ah)が5Ahを中心として充放電するように制御しても、10Ahから5Ahまで満充電容量(Ahf)が半減すると、残容量(SOC[%])は100%を中心に充放電されてしまい、過充電状態となって著しく劣化する。とくに、車両用の電源装置は、電池の残容量(SOC[%])を50%を中心とする範囲にコントロールして、充電も放電も可能な状態とすることが大切である。それは、電池を放電して車両の速度を加速し、充電して回生制動で減速するからである。
 車両に搭載される電源装置のみでなく、たとえば太陽電池の電力で充電される電源装置も、大電力を充電するために多数の電池が使用される。この用途の電源装置も、多数の電池を備えることから、電池の劣化を少なくして寿命を長くすることが大切である。したがって、電池の満充電容量(Ahf)を正確に検出して、過充電や過放電を防止することが大切である。
 電池の満充電容量(Ahf)は、完全に放電した電池を満充電するまでの充電容量を積算して検出できる。また、満充電した電池を完全に放電するまでの放電容量を積算しても満充電容量(Ahf)は検出できる。これらの方法は、電池の満充電容量(Ahf)を正確に検出できるが、電池の使用環境を著しく制限する欠点がある。それは、電池を完全に放電された状態にすると、この電池から電力を取り出すことができず、また、満充電された状態にあると、電池に電力を供給できなくなるからである。たとえば、車両に搭載される電池は、電池を放電してモータで車両の速度を加速し、また、車両にブレーキをかけて減速するときに電池を発電機で充電して回生制動するので、電池が完全に放電された状態になると電池で車両の速度を加速できず、また、電池が満充電された状態にあると回生制動で電池を充電できなくなる。車両に限らず、満充電容量(Ahf)を検出するために電池を完全に放電すると、放電に時間がかかるばかりでなく、放電された状態では電池を全く使用できなくなる欠点がある。さらに、電池は満充電と過放電の領域で劣化しやすくなる性質があるので、満充電容量(Ahf)の検出のために電池を完全に放電された状態と、満充電された状態とする方法は、満充電容量(Ahf)の検出が電池を劣化させる原因となる。
 この欠点を解消する方法として、電池の充電容量の累積量から電池が劣化する程度を検出して、満充電容量(Ahf)が減少する値を検出する方法が開発されている。(特許文献1参照)さらに、特許文献1は、電池の保存温度と残容量をパラメーターとして満充電容量の減少率を検出する方法も記載している。
 特許文献1の方法は、電池を完全に放電し、また、満充電することなく満充電容量を検出できる。このため、電池の使用環境を制限することなく満充電容量を検出できる。しかしながら、この方法は、充電容量の累積値や保存温度及び残容量から満充電容量がどの程度減少するかを推定するので、常に電池の満充電容量を正確に検出するのが難しい欠点がある。それは、電池の劣化が種々の外的条件により複雑に変化するからである。
 本発明者は、この欠点を解決することを目的として、充放電される電池の充電電流と放電電流の積算値から電池の容量変化値(δAh)と、この容量変化値(δAh)を検出するタイミングの前後で電池の開放電圧(VOCV)を検出して、各々の開放電圧(VOCV)から残容量変化値(δSOC[%])を検出し、残容量変化値(δSOC[%])と容量変化値(δAh)から、下記の式に基づいて電池の満充電容量(Ahf)を演算する方法を開発した。(特許文献2参照)
     Ahf=δAh/(δSOC[%]/100)
特開2002-236154号公報 特開2008-241358号公報
 以上の満充電容量検出方法は、電池を完全に放電したり満充電したりすることなく、電池の満充電容量を検出できる特徴がある。それは、充放電される電池の充電電流と放電電流の積算値から電池の容量変化値(δAh)と、そのタイミングにおける電池の残容量変化値(δSOC[%])とを検出して、残容量変化値(δSOC[%])と容量変化値(δAh)から電池の満充電容量(Ahf)を演算するからである。しかしながら、この方法は常に正しく電池の満充電容量(Ahf)を検出するのが難しい。満充電容量(Ahf)を正確に検出できない状態で、電池の満充電容量(Ahf)を補正すると、補正された電池の満充電容量(Ahf)の誤差が大きくなって、つねに正確に電池の満充電容量(Ahf)を検出できなくなる欠点がある。
 本発明は、さらに以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、電池を満充電したり完全に放電したりすることなく、より正確に電池の満充電容量(Ahf)を検出できる満充電容量検出方法を提供することにある。
課題を解決するための手段及び発明の効果
 本発明の満充電容量検出方法は、所定のタイミングで充放電される電池の充電電流と放電電流の積算値から電池の容量変化値(δAh)を演算する容量変化検出工程と、
 容量変化値(δAh)を検出する前後のタイミングにおいて電池の第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)を検出する開放電圧検出工程と、
 この開放電圧検出工程で検出される第1の開放電圧(VOCV1)から電池の第1の残容量(SOC[%])を判定すると共に、第2の開放電圧(VOCV2)から電池の第2の残容量(SOC[%])を判定する残容量判定工程と、
 この残容量判定工程で判定される第1の残容量(SOC[%])と第2の残容量(SOC[%])の差から残容量変化値(δSOC[%])を演算する残容量変化値演算工程と、残容量変化値(δSOC[%])と容量変化値(δAh)から電池の満充電容量(Ahf)を演算する満充電容量演算工程とからなる。
 さらに、本発明の電池の満充電容量検出方法は、容量変化値(δAh)と、残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の少なくとも何れかが、あらかじめ設定している設定値よりも大きな状態において、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算する。
 以上の満充電容量検出方法は、電池を満充電したり完全に放電したりすることなく、より正確に電池の満充電容量(Ahf)を検出できる特徴がある。それは、以上の満充電容量検出方法が、容量変化値(δAh)、残容量変化値(δSOC[%])、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の少なくとも何れかが、あらかじめ設定している設定値よりも大きな状態においてのみ、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算するからである。
 開放電圧(VOCV)から電池の残容量[SOC(%)]を推定する方法は、開放電圧(VOCV)に対する残容量[SOC(%)]を常に正確に特定するのが難しい。それは、充放電される電池の種々の条件が、開放電圧(VOCV)に対する残容量[SOC(%)]を変動させる原因となるからである。開放電圧(VOCV)から残容量[SOC(%)]を推定する方法は、開放電圧(VOCV)が同じであっても、電池の現実の残容量[SOC(%)]が異なることがある。したがって、開放電圧(VOCV)から残容量[SOC(%)]を推定し、推定される残容量[SOC(%)]をひとつのパラメーターとして電池の満充電容量(Ahf)を検出すると、開放電圧(VOCV)に対する残容量[SOC(%)]の誤差が、検出される満充電容量(Ahf)の誤差の原因となる。開放電圧(VOCV)に対する残容量[SOC(%)]の誤差は、プラス側とマイナス側の両方に変動するので、残容量[SOC(%)]の差から残容量変化値(δSOC[%])を検出すると、誤差が累積されることがある。とくに、充放電される電池の容量変化値(δAh)が小さく、開放電圧(VOCV)の変化の少ない状態で、各々の開放電圧(VOCV)から残容量[SOC(%)]を推定して、残容量変化値(δSOC[%])を検出すると、誤差が相当に大きくなることがある。それは、各々の開放電圧(VOCV)から推定される残容量[SOC(%)]に、プラス側とマイナス側とに変化する誤差があるので、残容量変化値(δSOC[%])の差には誤差が累積されることがあるからである。
 図1は残容量変化値(δSOC[%])が小さい状態と、大きい状態とで残容量変化値(δSOC[%])に対する誤差が変化する状態を示している。この図の(a)は残容量変化値(δSOC[%])が小さい状態を示し、(b)は残容量変化値(δSOC[%])が大きい状態を示している。この図から明らかなように、残容量変化値(δSOC[%])が大きくなると、残容量変化値(δSOC[%])に対する誤差の割合は小さくなる。残容量変化値(δSOC[%])は、(a)と(b)に示すように、最小値のδSOC[%]minから最大値のδSOC[%]maxまで変化する。したがって、残容量変化値(δSOC[%])に対する誤差は、(δSOC[%]max-δSOC[%]min)/(δSOC[%])となり、分母の残容量変化値(δSOC[%])が大きくなると、誤差は小さくなる。
 以上の満充電容量検出方法は、残容量変化値(δSOC[%])の誤差の割合が小さくなる状態でのみ、電池の満充電容量(Ahf)を検出するので、より正確に満充電容量(Ahf)を検出できる特徴が実現される。
 本発明の電池の満充電容量検出方法は、満充電容量演算工程において、下記の式に基づいて電池の満充電容量を演算することができる。
     Ahf=δAh/(δSOC[%]/100)
 本発明の電池の満充電容量検出方法は、容量変化値(δAh)を設定値に比較して、容量変化値(δAh)が設定値よりも大きい状態において、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算することができる。
 また、本発明の電池の満充電容量検出方法は、残容量変化値(δSOC[%])を設定値に比較して、残容量変化値(δSOC[%])が設定値よりも大きな状態において、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算することもできる。
 さらに、本発明の満充電容量検出方法は、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差を設定値に比較して、電圧差が設定値よりも大きな状態において、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算することができる。
 さらに、本発明の満充電容量検出方法は、残容量変化値(δSOC[%])と容量変化値(δAh)から検出される検出満充電容量(Ahf1)と、先に検出している以前の満充電容量(Ahf2)とから、以下の式で電池の満充電容量(Ahf)を検出することができる。
 満充電容量(Ahf)=ウエイト1×検出満充電容量(Ahf1)+ウエイト2×以前の満充電容量(Ahf2)
  ただし、ウエイト1+ウエイト2=1とする。
 以上の満充電容量検出方法は、以前の満充電容量(Ahf2)を考慮しながら電池の満充電容量(Ahf)を検出するのでより正確に満充電容量(Ahf)を検出できる。
 さらに、本発明の満充電容量検出方法は、ウエイト1とウエイト2を、容量変化値(δAh)で変化させると共に、容量変化値(δAh)が大きくなるにしたがって、ウエイト1を大きくすることができる。
 この方法は、容量変化値(δAh)が大きくなるにしたがって、すなわち、より正確に検出される容量変化値(δAh)から検出される電池の満充電容量(Ahf)のウエイトを大きくして、電池の満充電容量(Ahf)を書き換えるので、より正確に電池の満充電容量(Ahf)を検出できる。
 さらに、本発明の満充電容量検出方法は、ウエイト1とウエイト2とを、残容量変化値(δSOC[%])で変化させると共に、残容量変化値(δSOC[%])が大きくなるにしたがって、ウエイト1を大きくすることもできる。
 この満充電容量検出方法は、残容量変化値(δSOC[%])が大きくなるしたがって、すなわちより正確に検出される残容量変化値(δSOC[%])から検出される電池の満充電容量(Ahf1)のウエイトを大きくして、電池の満充電容量(Ahf)を書き換えるので、より正確に電池の満充電容量(Ahf)を検出できる。
 また、本発明の満充電容量検出方法は、ウエイト1とウエイト2とを、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差とで変化させると共に、電圧差が大きくなるにしたがって、ウエイト1を大きくすることもできる。この方法は、電圧差が大きくなる状態で検出される検出される満充電容量(Ahf1)、すなわちより正確に検出される電池の満充電容量(Ahf1)のウエイトを大きくして、電池の満充電容量(Ahf)を書き換えるので、より正確に電池の満充電容量(Ahf)を検出できる。
 さらにまた、本発明の満充電容量検出方法は、ウエイト1とウエイト2を、容量変化値(δAh)を検出するタイミングで変化させると共に、タイミングが長くなるにしたがって、ウエイト1を大きくすることもできる。
 この方法は、容量変化値(δAh)を検出するタイミングが長い状態で検出される容量変化値(δAh1)、すなわちより正確に検出される電池の満充電容量(Ahf1)のウエイトを大きくして、電池の満充電容量(Ahf)を書き換えるので、より正確に電池の満充電容量(Ahf)を検出できる。
 さらにまた、本発明の満充電容量検出方法は、前記容量変化値(δAh)と、前記残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の全てが、あらかじめ設定している設定値以下である状態において、電池温度を検出して、検出される電池温度から電池の劣化度[%]を演算すると共に、この電池の劣化度[%]と、電池の初期満充電容量(Ahf0)と、先に検出している以前の満充電容量(Ahf2)とから、電池の満充電容量(Ahf)を演算することができる。
 第1の検出タイミングと第2の検出タイミングは、電池に電流が流れないタイミングとすることができ、また、第1の検出タイミングと第2の検出タイミングとを、変動する時間間隔とすることもできる。
残容量変化値(δSOC[%])の大きさによって、誤差が異なることを示す図である。 本発明の一実施例にかかる電池の満充電容量検出方法に使用する電源装置の回路図である。 電池の残容量-開放電圧特性を示すグラフである。 電池の特定の検出電圧において、充放電電流に対する開放電圧特性を示すグラフである。 容量変化値(δAh)に対するウエイト1とウエイト2を示す図である。 残容量変化値(δSOC[%])に対するウエイト1とウエイト2を示す図である。 最低電圧と最大電圧の電圧差に対する開放電圧(VOCV)の比率に対するウエイト1とウエイト2を示す図である。 本発明の他の実施例にかかる電池の満充電容量検出方法を示すフローチャートである。 本発明の他の実施例にかかる電池の満充電容量検出方法を示すフローチャートである。 本発明の他の実施例にかかる電池の満充電容量検出方法を示すフローチャートである。
 以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池の満充電容量検出方法を例示するものであって、本発明は満充電容量検出方法を以下に特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
 図2は、本発明の電池の満充電容量検出方法に使用する電源装置の回路図である。この電源装置は、車両を走行させるモータに電力を供給する装置に使用され、また、昼間に太陽電池で電池を充電して、充電された電力を昼間や夜間に出力する装置に使用される。この電源装置は、充電できる電池1と、電池1の充放電の電流を検出する電流検出部2と、電池1の電圧を検出する電圧検出部3と、電池1の温度を検出する温度検出部4と、電流検出部2の出力信号を演算して電池1を充放電する電流を積算して電池1の容量(Ah)を検出する容量演算部5と、電圧検出部3の出力信号から電池1の残容量(SOC[%])を判定する残容量検出部6と、この残容量検出部6と容量演算部5の出力信号で電池1の満充電容量を検出する満充電容量検出部7と、満充電容量検出部7で検出される満充電容量でもって電池1の残容量(SOC[%])を補正して正確な残容量(SOC[%])を検出する残容量補正回路8と、電池1を電源として使用する本体側の車両や太陽電池装置に、電池情報を伝送する通信処理部9とを備える。
 電池1は、リチウムイオン二次電池またはリチウムポリマー電池である。ただ、電池は、ニッケル水素電池やニッケルカドミウム電池などの充電できる電池を用いることができる。電池1は、ひとつまたは複数の二次電池を直列または並列に接続している。
 電池1の充放電の電流を検出する電流検出部2は、電池1と直列に接続している電流検出抵抗10の両端に発生する電圧を検出して充電電流と放電電流を検出する。電流検出部2は、電流検出抵抗10の両端に誘導される電圧をアンプ(図示せず)で増幅し、アンプの出力信号であるアナログ信号をA/Dコンバータ(図示せず)でデジタル信号に変換して出力する。電流検出抵抗10は、電池1に流れる電流に比例した電圧が発生するので、電圧で電流を検出することができる。アンプは、+-の信号を増幅できるオペアンプで、出力電圧の+-で充電電流と放電電流を識別する。電流検出部2は、容量演算部5と残容量検出部6と通信処理部9に電池1の電流信号を出力する。
 電圧検出部3は、電池1の電圧を検出し、検出したアナログ信号をA/Dコンバータ(図示せず)でデジタル信号に変換して出力する。電圧検出部3は、残容量検出部6と通信処理部9に検出した電池1の電圧信号を出力する。複数の素電池を直列に接続している電源装置にあっては、各々の電池電圧を検出してその平均値を出力することもできる。また、複数の素電池を直列に接続して電池モジュールとし、さらに複数の電池モジュールを直列に接続している電源装置にあっては、電池モジュールの平均値を電池電圧として出力する。
 温度検出部4は、電池1の温度を検出し、検出した信号をA/Dコンバータ(図示せず)でデジタル信号に変換して出力する。温度検出部4は、容量演算部5と残容量検出部6と通信処理部9とに温度信号を出力する。
 容量演算部5は、電流検出部2から入力されるデジタル信号の電流信号を演算して電池1の放電できる容量(Ah)を演算する。この容量演算部5は、電池1の充電容量から放電容量を減算して、電池1の放電できる容量(Ah)を電流の積算値(Ah)として演算する。充電容量は、電池1の充電電流の積算値で、あるいはこれに充電効率をかけて演算される。放電容量は、放電電流の積算値で演算される。容量演算部5は、温度検出部4から入力される信号で、充電容量と放電容量の積算値を補正して正確に容量を演算することができる。
 残容量検出部6は、電池1の開放電圧(VOCV)から電池1の残容量(SOC[%])を、判定する。残容量検出部6は、電圧検出部3から入力される電池1の電圧信号と、電流検出部2から入力される電流信号から電池1の開放電圧(VOCV)を検出し、あるいは電流検出部2から入力される充放電の電流値が0となるタイミングにおいて、電圧検出部3から入力される電圧値を開放電圧(VOCV)として検出する。さらに、残容量検出部6は、検出した電池1の開放電圧(VOCV)から電池1の残容量(SOC[%])を判定するために、電池1の開放電圧(VOCV)に対する残容量(SOC[%])を、関数又はルックアップテーブルとしてメモリ11に記憶している。図3は、電池の開放電圧(VOCV)に対する残容量(SOC[%])を示すグラフである。メモリ11は、このグラフで示す開放電圧-残容量の特性を関数として、あるいはテーブルとして記憶している。残容量検出部6は、メモリ11に記憶される関数やテーブルから、開放電圧(VOCV)に対する残容量(SOC[%])を判定する。
 残容量検出部6は、必ずしも充放電の電流が0になるタイミングにおいて、開放電圧(VOCV)を検出する必要はなく、電流検出部2で検出される電池1の充放電の電流から電池1の開放電圧(VOCV)を演算して検出することもできる。この残容量検出部6は、電池1の検出電圧(VCCV)と充放電の電流に対する開放電圧(VOCV)を、関数又はテーブルとしてメモリ11に記憶している。図4は、特定の検出電圧(VCCV)における、電池の充放電電流に対する電池の開放電圧(VOCV)を示すグラフである。メモリ11は、このグラフで示す電流-開放電圧の特性を関数として、あるいはテーブルとして記憶している。残容量検出部6は、メモリ11に記憶される関数やテーブルから、検出電圧と充放電の電流に対する開放電圧(VOCV)を演算し、さらに、演算された開放電圧(VOCV)から電池1の残容量(SOC[%])を判定する。この残容量検出部6は、電池1の充放電の状態にかかわらず、いいかえると、電池1に充放電の電流が流れる状態においても、電池1の開放電圧(VOCV)を検出できる。
 容量演算部5と残容量演算部6は、第1の検出タイミングと第2の検出タイミングとで電池の容量(Ah)と残容量[SOC(%)]を検出する。第1の検出タイミングと第2の検出タイミングは、好ましくは電池に電流が流れないタイミングとする。検出タイミングは、あらかじめ設定している設定時間よりも長い時間、電池に電流が流れない状態が継続した後に設定することで、開放電圧(VOCV)に対する残容量[SOC(%)]をより正確に検出できる。設定時間は、好ましくは30分とする。ただし、設定時間は、例えば1分ないし10時間、好ましくは10分ないし3時間とすることもできる。設定時間を長くして、開放電圧(VOCV)に対する残容量[SOC(%)]をより正確に検出できる。第1の検出タイミングの設定時間を、第2の検出タイミングの設定時間よりも長くすることで、第1の検出タイミングにおける開放電圧(VOCV)に対する残容量[SOC(%)]をより正確に検出できる。また、第2の検出タイミングの設定時間を第1の検出タイミングの設定時間よりも短くすることで、充電や放電を停止した後、速やかに開放電圧(VOCV)を検出して残容量[SOC(%)]を検出できる。
 ただし、検出電圧と充放電の電流値から開放電圧(VOCV)を演算して残容量(SOC[%])を判定する方法においては、第1の検出タイミングと第2の検出タイミングは、電池1の充放電の電流が0になるタイミングに特定することなく、検出タイミングを電池に電流が流れているタイミングとすることができる。
 第1の検出タイミングと第2の検出タイミングの時間間隔は、あらかじめ設定している一定の時間とすることなく、変動する時間間隔とすることで、第1の検出タイミングと第2の検出タイミングとを最適なタイミングに設定して、電池の満充電容量(Ahf)をより正確に検出できる。たとえば、プラグインハイブリッドカーにあっては、充電ステーションで充電を開始する直前のタイミングを第1の検出タイミングとし、充電ステーションで充電を終了したタイミングを第2の検出タイミングとする。充電ステーションで電池を充電する状態は、ほとんどの場合、充電時間が長くなるので容量変化値(δAh)と残容量変化値(δSOC[%])が大きく、電池の満充電容量(Ahf)を正確に検出できる確率が高くなる。
 ハイブリッドカーにあっては、イグニッションスイッチ12をオンに切り換えるタイミングであって、電池1の負荷電流を遮断するタイミングを第1の検出タイミングとし、イグニッションスイッチ12をオフに切り換えた後を第2の検出タイミングとする。ハイブリッドカーにおける第1の検出タイミングは、イグニッションスイッチ12がオンに切り換えられる前後における所定の範囲、たとえば、イグニッションスイッチ12がオンに切り換えられる2時間前から、オンに切り換えた後3秒以内、好ましくは1秒以内とするタイミングとすることができる。第1の検出タイミングを、イグニッションスイッチ12がオンに切り換えられる前とする場合は、電圧検出部3が、前回、電池1の電圧を検出したタイミングを第1の検出タイミングとし、このとき検出されてメモリ11に記憶される電池電圧を第1の開放電圧(VOCV1)とすることができる。また、第2の検出タイミングは、イグニッションスイッチ12をオフに切り換えた後であって、電池1の電圧が安定したタイミング、たとえばイグニッションスイッチ12をオフに切り換えた後、2時間経過後とする。
 太陽電池の電源に使用される電池にあっては、第1の検出タイミングと第2の検出タイミングとを、太陽電池で充電されず、また負荷に放電されないタイミングとする。ただし、この用途に使用される電池は、特定の時間に、あるいは一定の時間間隔で第1の検出タイミングと第2の検出タイミングとを特定することもできる。
 電池1は、充放電されて、完全に放電されるまで放電できる容量(Ah)と残容量(SOC[%])を変化させる。電池は、放電されて電池の放電できる容量(Ah)と残容量(SOC[%])は減少し、充電されて電池の放電できる容量(Ah)と残容量(SOC[%])は増加する。第1の検出タイミングから第2の検出タイミングまでに変化する電池の放電できる容量(Ah)は、容量演算部5で検出される。容量演算部5は、第1の検出タイミングから第2の検出タイミングまでの時間帯において、電池1の充電電流と放電電流を積算して容量変化値(δAh)を検出し、容量変化値(δAh)から放電できる容量(Ah)を演算する。一方、第1の検出タイミングから第2の検出タイミングまでに変化する電池の残容量(SOC[%])は、残容量検出部6で検出される。残容量検出部6は、第1の検出タイミングにおける電池1の電圧から特定される第1の残容量(SOC1[%])と、第2の検出タイミングにおける電池の電圧から特定される第2の残容量(SOC2[%])の差から残容量変化値(δSOC[%])を検出する。
 容量演算部5は、第1の検出タイミングから第2の検出タイミングまでの時間帯における充放電の電流を積算して容量変化値(δAh)を検出し、容量変化値(δAh)から変化する電池の放電できる容量(Ah)を検出する。残容量検出部6は変化する電池の開放電圧(VOCV)から残容量(SOC[%])を検出する。満充電容量検出部7は、変化する電池の容量変化値(δAh)と、残容量変化値(δSOC[%])から満充電容量(Ahf)を演算する。満充電容量検出部7は、電池1の容量変化値(δAh)と残容量変化値(δSOC[%])とを検出するために、第1の検出タイミングと第2の検出タイミングとの間において、充放電される電池1の容量変化値(δAh)と残容量変化値(δSOC[%])とを演算する。
 満充電容量検出部7は、残容量検出部6で検出される電池1の残容量(SOC[%])の変化、すなわち第1の検出タイミングから第2の検出タイミングまでに変化する残容量(SOC[%])の変化値(δSOC[%])と、容量演算部5で検出される電池1の放電できる容量(Ah)の変化、すなわち容量変化値(δAh)から、下記の式で電池1の満充電容量(Ahf)を検出する。
     Ahf=δAh/(δSOC[%]/100)
 ただし、満充電容量検出部は、残容量変化値(δSOC[%])と容量変化値(δAh)とからつねに満充電容量(Ahf)を検出するのではない。満充電容量検出部は、第1の検出タイミングから第2の検出タイミングまでに検出される容量変化値(δAh)をあらかじめ記憶している設定値に比較し、容量変化値(δAh)が設定値よりも大きい状態においてのみ、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算する。この満充電容量検出部が記憶している設定値は、定格満充電容量(Ahf)の例えば10%以上とする。
 満充電容量検出部は、容量変化値(δAh)でなく、第1の検出タイミングから第2の検出タイミングまでに検出される残容量変化値(δSOC[%])を設定値に比較して、残容量変化値(δSOC[%])が設定値よりも大きな状態に限って、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算することもできる。この満充電容量検出部は、残容量変化値(δSOC[%])の設定値を記憶している。設定値は、たとえば10%以上とする。
 さらに、満充電容量検出部は、第1の検出タイミングにおける第1の開放電圧(VOCV1)と第2の検出タイミングにおけ第2の開放電圧(VOCV2)との電圧差を設定値に比較して、電圧差が設定値よりも大きな状態においてのみ、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算することもできる。満充電容量検出部は、電圧差を設定値にして記憶している。設定値は、最低電圧と最高電圧との差の20%以上とする。
 以上のように、満充電容量検出部は、第1の検出タイミングから第2の検出タイミングまでの容量変化値(δAh)と、残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の少なくとも何れかが、あらかじめ設定している設定値よりも大きな状態においてのみ、容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量を演算する。
 満充電容量検出部7は、以上のように特定の条件を満足する状態に限って、第1の検出タイミングで検出される電池の第1の放電できる容量(Ah)と第2の検出タイミングで検出される電池の第2の放電できる容量(Ah)との差から容量変化値(δAh)を演算し、あるいは、第1の検出タイミングから第2の検出タイミングまでの間に充放電される電流の積算値から容量変化値(δAh)を演算する。また、満充電容量検出部7は、第1の検出タイミングで検出される電池の第1の開放電圧(VOCV1)から特定される残容量(SOC[%])と、第2の検出タイミングで検出される第2の開放電圧(VOCV2)から特定される残容量(SOC[%])の差から残容量変化値(δSOC[%])を演算する。
 満充電容量検出部7は、残容量変化値(δSOC[%])と容量変化値(δAh)から検出される検出満充電容量(Ahf1)と、先に検出している以前の満充電容量(Ahf2)とから、以下の式で電池の満充電容量(Ahf)をより正確に検出する。
 満充電容量(Ahf)=ウエイト1×検出満充電容量(Ahf1)+ウエイト2×以前の満充電容量(Ahf2)
  ただし、ウエイト1+ウエイト2=1とする。
 以上の満充電容量検出部7は、残容量変化値(δSOC[%])と容量変化値(δAh)から検出した最新の検出満充電容量(Ahf1)を電池の正しい満充電容量(Ahf)とせず、以前に検出した満充電容量(Ahf2)を補正して電池の満充電容量(Ahf)を決定することで、より正確に電池の満充電容量(Ahf)を検出する。
 ウエイト1は、第1の検出タイミングから第2の検出タイミングまでの時間帯における容量変化値(δAh)で変化させる。すなわち、容量変化値(δAh)が大きくなるにしたがって、ウエイト1を大きくする。この方法は、容量変化値(δAh)を定格容量又は満充電容量(Ahf)の10%とする状態で、ウエイト1を0.1とし、容量変化値(δAh)が10%よりも小さくなるにしたがって、ウエイト1を小さく、また10%よりも大きくなるにしたがってウエイト1を大きくする。図5は、容量変化値(δAh)に対するウエイト1とウエイト2を示している。容量変化値(δAh)に対するウエイト1とウエイト2は、あらかじめメモリに記憶している。この方法は、容量変化値(δAh)が大きくなって、検出満充電容量(Ahf)の精度が高くなるにしたがって、ウエイト1を大きくして、より正確に電池の満充電容量(Ahf)を検出できる。
 また、ウエイト1は、第1の検出タイミングから第2の検出タイミングまでの残容量変化値(δSOC[%])で変化させることもできる。満充電容量検出部は、残容量変化値(δSOC[%])が大きくなるにしたがって、ウエイト1を大きくし、たとえば、残容量変化値(δSOC[%])が10%となる状態で、ウエイト1を0.1とし、残容量変化値(δSOC[%])が10%よりも小さくなるにしたがって、ウエイト1を小さく、また10%よりも大きくなるにしたがってウエイト1を大きくする。図6は、残容量変化値(δSOC[%])に対するウエイト1とウエイト2を示している。この方法は、残容量変化値(δSOC[%])が大きくなって、検出満充電容量(Ahf)の精度が高くなるにしたがって、ウエイト1を大きくして、より正確に電池の満充電容量(Ahf)を検出できる。
 さらに、満充電容量検出部は、ウエイト1を、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差で変化させることもできる。この満充電容量検出部は、開放電圧(VOCV)の電圧差が大きくなるにしたがって、ウエイト1を大きくし、たとえば、開放電圧(VOCV)の電圧差が、最低電圧と最大電圧の電圧差の10パーセントとなる状態で、ウエイト1を0.1とし、電圧差が10%よりも小さくなるにしたがって、ウエイト1を小さく、また10%よりも大きくなるにしたがってウエイト1を大きくする。図7は、最低電圧と最大電圧の電圧差に対する開放電圧(VOCV)の比率に対するウエイト1とウエイト2を示している。この方法は、電圧差が大きくなって、検出満充電容量(Ahf)の精度が高くなるにしたがって、ウエイト1を大きくして、より正確に電池の満充電容量(Ahf)を検出できる。
 さらにまた、満充電容量検出部は、ウエイト1を、第1の検出タイミングから第2の検出タイミングまでの時間帯の長さ変化させることができる。この満充電容量検出部は、時間帯が長くなるにしたがって、ウエイト1を大きく、たとえば、時間帯が1時間となる状態で、ウエイト1を0.1とし、時間帯の長さが1時間よりも短くなるにしたがって、ウエイト1を小さく、また1時間よりも大きくなるにしたがってウエイト1を大きくする。この方法は、第1の検出タイミングから第2の検出タイミングまでの時間帯が長くなって、検出満充電容量(Ahf)の精度が高くなるにしたがって、ウエイト1を大きくして、より正確に電池の満充電容量(Ahf)を検出できる。
 残容量補正回路8は、満充電容量検出部7で検出される電池1の満充電容量(Ahf)で補正して、電池1の正確な残容量(SOC[%])を検出する。すなわち、満充電容量検出部7で検出される電池1の満充電容量(Ahf)と、容量演算部5で演算される電池1の放電できる容量(Ah)から以下の式で残容量(SOC[%])を検出する。
 残容量(SOC[%])=[放電できる容量(Ah)/満充電容量(Ahf)]×100
 残容量補正回路8は、以上の式で演算される電池1の残容量(SOC[%])と、残容量検出部6が電池電圧から検出する残容量(SOC[%])との両方から、電池1の残容量を正確に検出することができる。残容量補正回路8は、たとえば、満充電容量(Ahf)と放電できる容量(Ah)から演算する残容量(SOC[%])と、電池電圧から判定する残容量(SOC[%])を平均して、電池1の正確な残容量(SOC[%])を演算する。また、電池電圧や残容量(SOC[%])によって、満充電容量(Ahf)と放電できる容量(Ah)から演算される残容量(SOC[%])と、電池電圧から判定される残容量(SOC[%])を重みつけして電池1の正確な残容量(SOC[%])を演算することもできる。
 通信処理部9は、残容量補正回路8で検出される残容量(SOC[%])、満充電容量検出部7で検出する満充電容量(Ahf)、残容量検出部6で検出された残容量(SOC[%])、電圧検出部3で検出した電池電圧、電流検出部2で検出した電流値、温度検出部4で検出した温度等の電池情報を、通信回線13を介して電源装置を装着している機器に伝送する。
 さらに、電源装置は、演算された満充電容量(Ahf)に基づいて、電池1の劣化度を判定することもできる。この電源装置は、演算された満充電容量(Ahf)が、電池の定格容量(Ahs)に対してどの程度減少したかによって電池1の劣化度を判定する。この電源装置は、電池の満充電容量(Ahf)や、定格容量に対する比率(Ahf/Ahs)から電池の劣化度を検出する関数やテーブルを記憶しており、記憶される関数やテーブルに基づいて電池の劣化度を検出する。
 以上の電源装置は、以下に示す工程で電池の満充電容量(Ahf)を検出する。
[容量変化検出工程]
 満充電容量検出部7が、第1の検出タイミングと第2の検出タイミングとの間において、充放電される電池1の充電電流と放電電流の積算値から電池1の容量変化値(δAh)を演算する。
 この工程において、満充電容量検出部7は、容量演算部5が第1の検出タイミングで検出する電池の第1の容量(Ah)と第2の検出タイミングで検出する電池の第2の容量(Ah)との差から容量変化値(δAh)を演算し、あるいは、第1の検出タイミングから第2の検出タイミングまでの間に充放電される電流の積算値として容量演算部5が演算する容量変化値(δAh)を検出する。
[開放電圧検出工程]
 残容量検出部6が、第1の検出タイミングにおける電池1の第1の開放電圧(VOCV1)と第2の検出タイミングにおける電池1の第2の開放電圧(VOCV2)を検出する。残容量検出部6は、電池1の充放電の電流が0になるタイミングにおいて開放電圧(VOCV)を検出し、あるいは、充放電の電流から開放電圧(VOCV)を演算して検出する。
[残容量判定工程]
 さらに、残容量検出部6は、開放電圧検出工程で検出される第1の開放電圧(VOCV1)から電池1の第1の残容量(SOC[%])を判定し、第2の開放電圧(VOCV2)から電池1の第2の残容量(SOC[%])を判定する。残容量検出部6は、メモリ11に記憶する関数又はテーブルに基づいて開放電圧(VOCV)から電池1の残容量(SOC[%])を判定する。
[残容量変化値演算工程]
 満充電容量検出部7が、残容量判定工程で判定される第1の残容量(SOC[%])と第2の残容量(SOC[%])の差から残容量変化値(δSOC[%])を演算する。
[満充電容量演算工程]
 さらに、満充電容量検出部7は、第1の検出タイミングから第2の検出タイミングまでの容量変化値(δAh)が設定値よりも大きいか、あるいは残容量変化値(δSOC[%])が設定値よりも大きいか、あるいは又第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差が設定値よりも大きいかを判定し、容量変化値(δAh)と、残容量変化値(δSOC[%])と、電圧差の何れかひとつ、あるいは複数の数値が設定値よりも大きい状態に限って、容量変化検出工程で検出される容量変化値(δAh)と、残容量変化値演算工程で演算される残容量変化値(δSOC[%])とから、下記の式で電池1の満充電容量(Ahf)を演算する。
     Ahf=δAh/(δSOC[%]/100)
 さらに、満充電容量検出部7は、第1の検出タイミングから第2の検出タイミングまでの容量変化値(δAh)と、残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の全てが設定値以下であるとき、電池温度を検出し、検出された電池温度から電池1の劣化度[%]を演算し、演算された電池1の劣化度[%]から電池1の満充電容量(Ahf)を演算する。電池温度は、温度検出部4において検出される。満充電容量検出部7は、温度検出部4で検出される電池温度を電池1の劣化度合いに換算する温度係数を記憶しており、この温度係数に基づいて電池1の劣化度[%]を演算する。電池1の劣化は、電池温度が高いほど進行する。したがって、電池温度から電池1の劣化度合いに換算する温度係数は、負の係数であって、電池1が高い温度で充放電されるにしたがって絶対値が大きくなるように特定される。この温度係数は、例えば、関数やテーブルとしてメモリ等に記憶される。
 満充電容量検出部7は、電池1の一定時間(例えば1秒)ごとの電池温度(例えば、最大電池温度)を検出し、検出された電池温度から換算される温度係数と、電池1がその温度にあった時間との積である劣化係数を演算し、この劣化係数を、第1の検出タイミングから第2の検出タイミングまで加算して、加算劣化係数を演算する。この劣化係数が加算される第1の検出タイミングから第2の検出タイミングまでの時間は、例えば最大4時間をインターバルとする所定の時間とすることができる。さらに、満充電容量検出部7は、電池1の初期満充電容量(Ahf0)と、先に検出している以前の満充電容量(Ahf2)、すなわち、前回の満充電容量(Ahf2)と、演算された加算劣化係数とから、以下の式で電池1の劣化度[%]を演算する。
  劣化度[%]=[{(前回の満充電容量(Ahf2)/初期満充電容量(Ahf0))×100}+加算劣化係数]1/2
 さらに、満充電容量検出部7は、電池温度から演算された劣化度[%]と、初期満充電容量(Ahf0)と、以前の満充電容量(Ahf2)である前回の満充電容量(Ahf2)とから、以下の式で電池1の満充電容量(Ahf)を演算する。
  満充電容量(Ahf2)=前回の満充電容量(Ahf2)×a+初期満充電容量(Ahf0)×劣化量[%]/100×(1-a)
 ただし、a、bは電池の種類や条件等により特定されるウエイトであって、a+b=1である。
 プラグインハイブリッドカーの電源装置に使用される電池は、以下のステップで、図8のフローチャートに基づいて電池の満充電容量を検出する。
[n=1のステップ]
 充電ステーションでの充電が開始される状態にあるかどうかを判定する。充電ステーションで充電が開始される状態にあっては、充電を開始する以前の電池に電流が流れない状態を第1の検出タイミングとする。
[n=2のステップ]
 残容量検出部6が、第1の検出タイミングにおける電池1の第1の開放電圧(VOCV1)を検出する。
[n=3のステップ]
 残容量検出部6は、検出された第1の開放電圧(VOCV1)から電池1の第1の残容量(SOC[%])を関数やテーブルから判定する。
[n=4のステップ]
 満充電容量検出部7が、第1の検出タイミングにおける電池1の第1の容量(Ah)を検出する。満充電容量検出部7は、たとえば、前回、検出した電池1の満充電容量(Ahf)に、n=3のステップで判定した電池1の第1の残容量(SOC[%])をかけて、電池1の第1の容量(Ah)を演算して検出することができる。
[n=5のステップ]
 充電ステーションでの充電が完了したかどうかを判定する。充電ステーションでの充電が終了するまでこのステップをループする。
[n=6のステップ]
 充電ステーションでの充電が終了すると、所定の時間経過後を第2の検出タイミングとして、残容量検出部6が、電池1の第2の開放電圧(VOCV2)を検出する。
[n=7のステップ]
 残容量検出部6は、検出された第2の開放電圧(VOCV2)から電池1の第2の残容量(SOC[%])を関数やテーブルから判定する。
[n=8のステップ]
 満充電容量検出部7が、第2の検出タイミングにおける電池1の第2の容量(Ah)を検出する。電池1の第2の容量(Ah)は、容量演算部5によって、充放電される電池1の充電電流と放電電流の積算値から演算される。
[n=9のステップ]
 満充電容量検出部7が、第1の検出タイミングにおける電池1の第1の容量(Ah)と第2の検出タイミングにおける電池1の第2の容量(Ah)の差から容量変化値(δAh)を演算する。
[n=10のステップ]
 電池1の第1の残容量(SOC[%])と第2の残容量(SOC[%])の差から残容量変化値(δSOC[%])を演算する。
[n=11のステップ]
 満充電容量検出部7が、検出される容量変化値(δAh)と、残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の少なくとも何れかが、あらかじめ設定している設定値よりも大きな状態にあるかどうかを判定する。
 これらの何れかが設定値よりも大きいと、n=12~13のステップに進み、設定値以下であると、n=14~16のステップに進む。
[n=12のステップ]
 満充電容量検出部7が、演算された容量変化値(δAh)と残容量変化値(δSOC[%])から、以下の式で電池1の満充電容量(Ahf)を演算する。
     Ahf=δAh/(δSOC[%]/100)
[n=13のステップ]
 残容量補正回路8が、満充電容量検出部7で検出される電池1の満充電容量(Ahf)を基準として、容量演算部5で検出される放電できる容量(Ah)から残容量(SOC[%])を演算する。演算された残容量(SOC[%])と、残容量検出部6で電池電圧から検出される残容量(SOC[%])の両方から電池1の残容量(SOC[%])を演算する。これにより、より正確な残容量(SOC[%])を演算できる。
[n=14のステップ]
 満充電容量検出部7は、温度検出部4で検出される電池温度に基づいて、電池1の劣化度[%]を演算する。満充電容量検出部7は、電池温度から特定される温度係数と、電池1がその温度にあった時間との積である劣化係数を演算し、この劣化係数を、第1の検出タイミングから第2の検出タイミングまで加算して、加算劣化係数を演算する。さらに、さらに、満充電容量検出部7は、電池の初期満充電容量(Ahf)と前回の満充電容量(Ahf)、及び加算劣化係数から、以下の式で電池1の劣化度[%]を演算する。
  劣化度[%]=[{(前回の満充電容量(Ahf2)/初期満充電容量(Ahf0))×100}+加算劣化係数]1/2
[n=15のステップ]
 満充電容量検出部7は、電池温度から演算された劣化度[%]と、初期満充電容量(Ahf0)と、以前の満充電容量(Ahf2)である前回の満充電容量(Ahf2)とから、以下の式で電池1の満充電容量(Ahf)を演算する。
  満充電容量(Ahf2)=前回の満充電容量(Ahf2)×a+初期満充電容量(Ahf0)×劣化量[%]/100×(1-a)
 ただし、a、bは電池の種類や条件等により特定されるウエイトであって、a+b=1である。
[n=16のステップ]
 残容量補正回路8が、満充電容量検出部7で検出される電池1の満充電容量(Ahf)を基準として、容量演算部5で検出される放電できる容量(Ah)から残容量(SOC[%])を演算する。演算された残容量(SOC[%])と、残容量検出部6で電池電圧から検出される残容量(SOC[%])の両方から電池1の残容量(SOC[%])を演算する。これにより、より正確な残容量(SOC[%])を演算できる。
 ハイブリッドカーの電源装置は、以下のステップで、図9のフローチャートに基づいて電池の満充電容量を検出する。
[n=1のステップ]
 イグニッションスイッチ12がオンに切り換えられたかどうかを判定する。イグニッションスイッチ12がオンに切り換えられるまで、このステップをループする。
[n=2のステップ]
 イグニッションスイッチ12がオンに切り換えられると、その直後であって、電池の負荷電流が遮断される状態を第1の検出タイミングとして、残容量検出部6が、電池1の第1の開放電圧(VOCV1)を検出する。
[n=3のステップ]
 残容量検出部6は、検出された第1の開放電圧(VOCV1)から電池1の第1の残容量(SOC[%])を関数やテーブルから判定する。
[n=4のステップ]
 満充電容量検出部7が、第1の検出タイミングにおける電池1の第1の容量(Ah)を検出する。満充電容量検出部7は、たとえば、前回、検出した電池1の満充電容量(Ahf)に、n=3のステップで判定した電池1の第1の残容量(SOC[%])をかけて、電池1の第1の容量(Ah)を演算して検出することができる。
[n=5のステップ]
 イグニッションスイッチ12がオフに切り換えられたかどうかを判定する。イグニッションスイッチ12がオフに切り換えられるまで、このステップをループする。
[n=6のステップ]
 イグニッションスイッチ12がオフに切り換えられると、所定の時間経過後を第2の検出タイミングとして、残容量検出部6が、電池1の第2の開放電圧(VOCV2)を検出する。
[n=7のステップ]
 残容量検出部6は、検出された第2の開放電圧(VOCV2)から電池1の第2の残容量(SOC[%])を関数やテーブルから判定する。
[n=8のステップ]
 満充電容量検出部7が、第2の検出タイミングにおける電池1の第2の容量(Ah)を検出する。電池1の第2の容量(Ah)は、容量演算部5によって、充放電される電池1の充電電流と放電電流の積算値から演算される。
[n=9のステップ]
 満充電容量検出部7が、第1の検出タイミングにおける電池1の第1の容量(Ah)と第2の検出タイミングにおける電池1の第2の容量(Ah)の差から容量変化値(δAh)を演算する。
[n=10のステップ]
 満充電容量検出部7が、電池1の第1の残容量(SOC[%])と第2の残容量(SOC[%])の差から残容量変化値(δSOC[%])を演算する。
[n=11のステップ]
 満充電容量検出部7が、検出される容量変化値(δAh)と、残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の少なくとも何れかが、あらかじめ設定している設定値よりも大きな状態にあるかどうかを判定する。
 これらの何れかが設定値よりも大きいと、n=12~13のステップに進み、設定値以下であると、n=14~16のステップに進む。
[n=12のステップ]
 満充電容量検出部7が、演算された容量変化値(δAh)と残容量変化値(δSOC[%])から、以下の式で電池1の満充電容量(Ahf)を演算する。
     Ahf=δAh/(δSOC[%]/100)
[n=13のステップ]
 残容量補正回路8が、満充電容量検出部7で検出される電池1の満充電容量(Ahf)を基準として、容量演算部5で検出される放電できる容量(Ah)から残容量(SOC[%])を演算する。演算された残容量(SOC[%])と、残容量検出部6で電池電圧から検出される残容量(SOC[%])の両方から電池1の残容量(SOC[%])を演算する。これにより、より正確な残容量(SOC[%])を演算できる。
[n=14のステップ]
 満充電容量検出部7は、温度検出部4で検出される電池温度に基づいて、電池1の劣化度[%]を演算する。満充電容量検出部7は、電池温度から特定される温度係数と、電池1がその温度にあった時間との積である劣化係数を演算し、この劣化係数を、第1の検出タイミングから第2の検出タイミングまで加算して、加算劣化係数を演算する。さらに、さらに、満充電容量検出部7は、電池の初期満充電容量(Ahf)と前回の満充電容量(Ahf)、及び加算劣化係数から、以下の式で電池1の劣化度[%]を演算する。
  劣化度[%]=[{(前回の満充電容量(Ahf2)/初期満充電容量(Ahf0))×100}+加算劣化係数]1/2
[n=15のステップ]
 満充電容量検出部7は、電池温度から演算された劣化度[%]と、初期満充電容量(Ahf0)と、以前の満充電容量(Ahf2)である前回の満充電容量(Ahf2)とから、以下の式で電池1の満充電容量(Ahf)を演算する。
  満充電容量(Ahf2)=前回の満充電容量(Ahf2)×a+初期満充電容量(Ahf0)×劣化量[%]/100×(1-a)
 ただし、a、bは電池の種類や条件等により特定されるウエイトであって、a+b=1である。
[n=16のステップ]
 残容量補正回路8が、満充電容量検出部7で検出される電池1の満充電容量(Ahf)を基準として、容量演算部5で検出される放電できる容量(Ah)から残容量(SOC[%])を演算する。演算された残容量(SOC[%])と、残容量検出部6で電池電圧から検出される残容量(SOC[%])の両方から電池1の残容量(SOC[%])を演算する。これにより、より正確な残容量(SOC[%])を演算できる。
 さらに、太陽電池の電源装置の電池は、以下のステップで、図10のフローチャートで示すようにして、電池の満充電容量を検出することもできる。
[n=1、2のステップ]
 電池1に電流が流れない状態を検出し、このタイミングを第1の検出タイミングとして、残容量検出部6が、電池1の第1の開放電圧(VOCV1)を検出する。電池1に電流が流れない状態は、たとえば、太陽電池が電池を充電せず、かつ電池が放電されない状態である。
[n=3のステップ]
 残容量検出部6は、検出された第1の開放電圧(VOCV1)から電池1の第1の残容量(SOC[%])を関数やテーブルから判定する。
[n=4のステップ]
 満充電容量検出部7が、第1の検出タイミングにおける電池1の第1の容量(Ah)を検出する。電池1の第1の容量(Ah)は、容量演算部5によって、充放電される電池1の充電電流と放電電流を積算して演算される。
[n=5、6のステップ]
 第1の検出タイミングでタイマー(図示せず)がカウントを開始する。このタイマーは、第1の検出タイミングと第2の検出タイミングの時間を記憶しており、記憶している時間が経過するとタイムアップする。
[n=7のステップ]
 タイマーがタイムアップすると、このタイミングを第2の検出タイミングとして、残容量検出部6が、電池1の第2の開放電圧(VOCV2)を検出する。電池の開放電圧(VOCV2)は、電流が流れない状態にあっては電池1の電圧とし、電流が流れる状態にあっては、検出電圧と電流から演算する。
[n=8のステップ]
 残容量検出部6は、検出された第2の開放電圧(VOCV2)から電池1の第2の残容量(SOC[%])を関数やテーブルから判定する。
[n=9のステップ]
 満充電容量検出部7が、第2の検出タイミングにおける電池1の第2の容量(Ah)を検出する。電池1の第2の容量(Ah)は、容量演算部5によって、電池1の充放電の電流を積算して演算される。
[n=10のステップ]
 満充電容量検出部7が、第1の検出タイミングにおける電池1の第1の容量(Ah)と第2の検出タイミングにおける電池1の第2の容量(Ah)の差から容量変化値(δAh)を演算する。
[n=11のステップ]
 満充電容量検出部7が、電池1の第1の残容量(SOC[%])と第2の残容量(SOC[%])の差から残容量変化値(δSOC[%])を演算する。
[n=12のステップ]
 満充電容量検出部7が、検出される容量変化値(δAh)と、残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の少なくとも何れかが、あらかじめ設定している設定値よりも大きな状態にあるかどうかを判定する。
 これらの何れかが設定値よりも大きいと、n=13~14のステップに進み、設定値以下であると、n=15~17のステップに進む。
[n=14のステップ]
 満充電容量検出部7が、演算された容量変化値(δAh)と残容量変化値(δSOC[%])から、以下の式で電池1の満充電容量(Ahf)を演算する。
     Ahf=δAh/(δSOC[%]/100)
[n=15のステップ]
 残容量補正回路8が、満充電容量検出部7で検出される電池1の満充電容量(Ahf)を基準として、容量演算部5で検出される放電できる容量(Ah)から残容量(SOC[%])を演算する。演算された残容量(SOC[%])と、残容量検出部6で電池電圧から検出される残容量(SOC[%])の両方から電池1の残容量(SOC[%])を演算する。これにより、より正確な残容量(SOC[%])を演算できる。
[n=14のステップ]
 満充電容量検出部7は、温度検出部4で検出される電池温度に基づいて、電池1の劣化度[%]を演算する。満充電容量検出部7は、電池温度から特定される温度係数と、電池1がその温度にあった時間との積である劣化係数を演算し、この劣化係数を、第1の検出タイミングから第2の検出タイミングまで加算して、加算劣化係数を演算する。さらに、さらに、満充電容量検出部7は、電池の初期満充電容量(Ahf)と前回の満充電容量(Ahf)、及び加算劣化係数から、以下の式で電池1の劣化度[%]を演算する。
  劣化度[%]=[{(前回の満充電容量(Ahf2)/初期満充電容量(Ahf0))×100}+加算劣化係数]1/2
[n=15のステップ]
 満充電容量検出部7は、電池温度から演算された劣化度[%]と、初期満充電容量(Ahf0)と、以前の満充電容量(Ahf2)である前回の満充電容量(Ahf2)とから、以下の式で電池1の満充電容量(Ahf)を演算する。
  満充電容量(Ahf2)=前回の満充電容量(Ahf2)×a+初期満充電容量(Ahf0)×劣化量[%]/100×(1-a)
 ただし、a、bは電池の種類や条件等により特定されるウエイトであって、a+b=1である。
[n=16のステップ]
 残容量補正回路8が、満充電容量検出部7で検出される電池1の満充電容量(Ahf)を基準として、容量演算部5で検出される放電できる容量(Ah)から残容量(SOC[%])を演算する。演算された残容量(SOC[%])と、残容量検出部6で電池電圧から検出される残容量(SOC[%])の両方から電池1の残容量(SOC[%])を演算する。これにより、より正確な残容量(SOC[%])を演算できる。
  1…電池
  2…電流検出部
  3…電圧検出部
  4…温度検出部
  5…容量演算部
  6…残容量検出部
  7…満充電容量検出部
  8…残容量補正回路
  9…通信処理部
 10…電流検出抵抗
 11…メモリ
 12…イグニッションスイッチ
 13…通信回線

Claims (13)

  1.  所定のタイミングで充放電される電池の充電電流と放電電流の積算値から電池の容量変化値(δAh)を演算する容量変化検出工程と、
     容量変化値(δAh)を検出する前後のタイミングにおいて電池の第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)を検出する開放電圧検出工程と、
     この開放電圧検出工程で検出される第1の開放電圧(VOCV1)から電池の第1の残容量(SOC[%])を判定すると共に、第2の開放電圧(VOCV2)から電池の第2の残容量(SOC[%])を判定する残容量判定工程と、
     この残容量判定工程で判定される第1の残容量(SOC[%])と第2の残容量(SOC[%])の差から残容量変化値(δSOC[%])を演算する残容量変化値演算工程と、残容量変化値(δSOC[%])と容量変化値(δAh)から電池の満充電容量(Ahf)を演算する満充電容量演算工程とからなる電池の満充電容量検出方法であって、
     前記容量変化値(δAh)と、前記残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の少なくとも何れかが、あらかじめ設定している設定値よりも大きな状態において、
     前記容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量(Ahf)を演算する電池の満充電容量検出方法。
  2.  前記満充電容量演算工程において、下記の式に基づいて電池の満充電容量(Ahf)を演算する請求項1に記載される電池の満充電容量検出方法。
         Ahf=δAh/(δSOC[%]/100)
  3.  前記容量変化値(δAh)を設定値に比較して、容量変化値(δAh)が設定値よりも大きい状態において、
     前記容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量(Ahf)を演算する請求項1又は2に記載される電池の満充電容量検出方法。
  4.  前記残容量変化値(δSOC[%])を設定値に比較して、残容量変化値(δSOC[%])が設定値よりも大きな状態において、
     前記容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量(Ahf)を演算する請求項1又は2に記載される電池の満充電容量検出方法。
  5.  第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差を設定値に比較して、電圧差が設定値よりも大きな状態において、
     前記容量変化値(δAh)と残容量変化値(δSOC[%])から電池の満充電容量(Ahf)を演算する請求項1又は2に記載される電池の満充電容量検出方法。
  6.  前記残容量変化値(δSOC[%])と容量変化値(δAh)から検出される検出満充電容量(Ahf1)と、先に検出している以前の満充電容量(Ahf2)とから、以下の式で電池の満充電容量(Ahf)を演算する請求項1に記載される電池の満充電容量検出方法。
     満充電容量(Ahf)=ウエイト1×検出満充電容量(Ahf1)+ウエイト2×以前の満充電容量(Ahf2)
      ただし、ウエイト1+ウエイト2=1とする。
  7.  前記ウエイト1とウエイト2とを、容量変化値(δAh)で変化させると共に、容量変化値(δAh)が多くなるにしたがって、ウエイト1を大きくする請求項6に記載される電池の満充電容量検出方法。
  8.  前記ウエイト1とウエイト2とを、残容量変化値(δSOC[%])で変化させると共に、残容量変化値(δSOC[%])が大きくなるにしたがって、ウエイト1を大きくする請求項6に記載される電池の満充電容量検出方法。
  9.  前記ウエイト1とウエイト2とを、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差とで変化させると共に、電圧差が大きくなるにしたがって、ウエイト1を大きくする請求項6に記載される電池の満充電容量検出方法。
  10.  前記ウエイト1とウエイト2とを、容量変化値(δAh)を検出するタイミングで変化させると共に、タイミングが長くなるにしたがって、ウエイト1を大きくする請求項6に記載される電池の満充電容量検出方法。
  11.  前記容量変化値(δAh)と、前記残容量変化値(δSOC[%])と、第1の開放電圧(VOCV1)と第2の開放電圧(VOCV2)との電圧差の全てが、あらかじめ設定している設定値以下である状態において、
     電池温度を検出して、検出される電池温度から電池の劣化度[%]を演算すると共に、この電池の劣化度[%]と、電池の初期満充電容量(Ahf0)と、先に検出している以前の満充電容量(Ahf2)とから、電池の満充電容量(Ahf)を演算する請求項1に記載される電池の満充電容量検出方法。
  12.  前記第1の検出タイミングと前記第2の検出タイミングを、電池に電流が流れないタイミングとする請求項1ないし11のいずれかに記載される電池の満充電容量検出方法。
  13.  前記第1の検出タイミングと第2の検出タイミングとが変動する時間間隔である請求項1ないし12のいずれかに記載される電池の満充電容量検出方法。
PCT/JP2012/051980 2011-01-31 2012-01-30 電池の満充電容量検出方法 WO2012105492A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012555860A JP5960063B2 (ja) 2011-01-31 2012-01-30 電池の満充電容量検出方法
US13/982,624 US20130311119A1 (en) 2011-01-31 2012-01-30 Method of detecting battery full-charge capacity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011019279 2011-01-31
JP2011-019279 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105492A1 true WO2012105492A1 (ja) 2012-08-09

Family

ID=46602706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051980 WO2012105492A1 (ja) 2011-01-31 2012-01-30 電池の満充電容量検出方法

Country Status (3)

Country Link
US (1) US20130311119A1 (ja)
JP (1) JP5960063B2 (ja)
WO (1) WO2012105492A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059227A (ja) * 2012-09-18 2014-04-03 Calsonic Kansei Corp バッテリの健全度算出装置および健全度算出方法
JP2014059226A (ja) * 2012-09-18 2014-04-03 Calsonic Kansei Corp バッテリの健全度算出装置および健全度算出方法
JP2014119265A (ja) * 2012-12-13 2014-06-30 Renesas Electronics Corp 半導体装置、電池パック、及び電子機器
JP2014174172A (ja) * 2013-03-06 2014-09-22 IFP Energies Nouvelles バッテリーの残存容量の決定方法
JP2014185896A (ja) * 2013-03-22 2014-10-02 Toyota Motor Corp 蓄電システム及び蓄電装置の満充電容量推定方法
WO2015025212A1 (en) * 2013-08-23 2015-02-26 Toyota Jidosha Kabushiki Kaisha Electric storage system and full charge capacity estimation method for electric storage device
EP2846395A3 (en) * 2013-09-09 2015-03-25 Samsung SDI Co., Ltd. Battery pack, apparatus including battery pack, and method of managing battery pack
JP2015083928A (ja) * 2013-10-25 2015-04-30 株式会社デンソー 満充電容量算出装置
US20150349385A1 (en) * 2014-04-01 2015-12-03 Medtronic, Inc. Method and System for Predicting Useful Life of a Rechargeable Battery
EP2957921A4 (en) * 2013-07-04 2016-03-09 Lg Chemical Ltd METHOD AND SYSTEM FOR ESTIMATING BATTERY CHARGE (SOC) STATUS
JP2017091852A (ja) * 2015-11-11 2017-05-25 株式会社デンソー 電源システムの制御装置
JP2018048910A (ja) * 2016-09-21 2018-03-29 株式会社豊田自動織機 蓄電装置
JP2018169237A (ja) * 2017-03-29 2018-11-01 日本電気株式会社 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
US10203375B2 (en) 2013-11-14 2019-02-12 Nec Corporation Method for ascertaining storage battery state, state-ascertaining system, and computer program
KR20190070262A (ko) * 2017-12-12 2019-06-20 도요타 지도샤(주) 이차 전지 시스템 및 이차 전지의 활물질의 응력 추정 방법
US10330735B2 (en) 2015-06-17 2019-06-25 Gs Yuasa International Ltd. State estimation device and state estimation method
JP2020125914A (ja) * 2019-02-01 2020-08-20 トヨタ自動車株式会社 満充電容量推定装置
JP2021150220A (ja) * 2020-03-23 2021-09-27 古河電気工業株式会社 バッテリ状態を推定する方法、装置、プログラムおよび記録媒体
CN115190975A (zh) * 2020-03-12 2022-10-14 威斯克航空有限责任公司 实时电池故障检测和健康的状态监控

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768001B2 (ja) * 2012-04-23 2015-08-26 株式会社日立製作所 電池システムのメンテナンス管理システム及び方法
CN103852725B (zh) 2012-11-30 2018-05-01 凹凸电子(武汉)有限公司 用于估算电池剩余容量的设备、方法及系统
JP2015147498A (ja) * 2014-02-06 2015-08-20 株式会社デンソー 車両制御装置
FR3028621B1 (fr) * 2014-11-17 2018-02-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de caracterisation d'un accumulateur
WO2016129212A1 (ja) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 電池状態推定装置、および電源装置
US10107864B2 (en) 2016-04-11 2018-10-23 Inventus Holdings, Llc Step-time battery degradation determination
CN106291390B (zh) * 2016-10-13 2019-06-21 宁德时代新能源科技股份有限公司 一种电池充电时的剩余电量计算方法、装置与电池包
JP7067566B2 (ja) * 2017-12-13 2022-05-16 住友電気工業株式会社 電池監視装置、コンピュータプログラム及び電池監視方法
DE102018219973A1 (de) * 2018-11-21 2020-05-28 Audi Ag Verfahren zum Bestimmen einer Kenngröße eines Energiespeichers sowie Energiemanagementsystem für einen Energiespeicher
CN112540313B (zh) * 2019-09-20 2022-05-13 比亚迪股份有限公司 修正电池可用容量的方法及车辆、介质
CN110797577B (zh) * 2019-10-29 2020-10-09 中兴高能技术有限责任公司 一种锂离子电池充电方法、装置及计算机存储介质
KR102140011B1 (ko) * 2019-10-31 2020-07-31 국민대학교 산학협력단 배터리 관리 방법 및 배터리 관리 시스템
US20210242698A1 (en) * 2020-02-04 2021-08-05 Samsung Electronics Co., Ltd. Method and electronic device for real time adaptive charging of battery
CN114035083B (zh) * 2021-12-13 2023-12-19 广东高标智能科技股份有限公司 电池总容量计算方法、装置、系统和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083970A (ja) * 2003-09-10 2005-03-31 Nippon Soken Inc 二次電池の状態検知装置および状態検知方法
JP2008241358A (ja) * 2007-03-26 2008-10-09 Sanyo Electric Co Ltd 電池の満充電容量検出方法
JP2011007564A (ja) * 2009-06-24 2011-01-13 Toyota Motor Corp 充電状態推定装置および充電状態推定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236154A (ja) * 2001-02-07 2002-08-23 Sanyo Electric Co Ltd 電池の残容量補正方法
JP5393956B2 (ja) * 2007-04-10 2014-01-22 三洋電機株式会社 電池の満充電容量検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083970A (ja) * 2003-09-10 2005-03-31 Nippon Soken Inc 二次電池の状態検知装置および状態検知方法
JP2008241358A (ja) * 2007-03-26 2008-10-09 Sanyo Electric Co Ltd 電池の満充電容量検出方法
JP2011007564A (ja) * 2009-06-24 2011-01-13 Toyota Motor Corp 充電状態推定装置および充電状態推定方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059226A (ja) * 2012-09-18 2014-04-03 Calsonic Kansei Corp バッテリの健全度算出装置および健全度算出方法
JP2014059227A (ja) * 2012-09-18 2014-04-03 Calsonic Kansei Corp バッテリの健全度算出装置および健全度算出方法
JP2014119265A (ja) * 2012-12-13 2014-06-30 Renesas Electronics Corp 半導体装置、電池パック、及び電子機器
JP2014174172A (ja) * 2013-03-06 2014-09-22 IFP Energies Nouvelles バッテリーの残存容量の決定方法
JP2014185896A (ja) * 2013-03-22 2014-10-02 Toyota Motor Corp 蓄電システム及び蓄電装置の満充電容量推定方法
US10073145B2 (en) 2013-07-04 2018-09-11 Lg Chem, Ltd. Method and system for estimating state of charge of battery
EP2957921A4 (en) * 2013-07-04 2016-03-09 Lg Chemical Ltd METHOD AND SYSTEM FOR ESTIMATING BATTERY CHARGE (SOC) STATUS
WO2015025212A1 (en) * 2013-08-23 2015-02-26 Toyota Jidosha Kabushiki Kaisha Electric storage system and full charge capacity estimation method for electric storage device
EP2846395A3 (en) * 2013-09-09 2015-03-25 Samsung SDI Co., Ltd. Battery pack, apparatus including battery pack, and method of managing battery pack
JP2015083928A (ja) * 2013-10-25 2015-04-30 株式会社デンソー 満充電容量算出装置
US10203375B2 (en) 2013-11-14 2019-02-12 Nec Corporation Method for ascertaining storage battery state, state-ascertaining system, and computer program
US20150349385A1 (en) * 2014-04-01 2015-12-03 Medtronic, Inc. Method and System for Predicting Useful Life of a Rechargeable Battery
US10330735B2 (en) 2015-06-17 2019-06-25 Gs Yuasa International Ltd. State estimation device and state estimation method
JP2017091852A (ja) * 2015-11-11 2017-05-25 株式会社デンソー 電源システムの制御装置
JP2018048910A (ja) * 2016-09-21 2018-03-29 株式会社豊田自動織機 蓄電装置
JP2018169237A (ja) * 2017-03-29 2018-11-01 日本電気株式会社 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
KR20190070262A (ko) * 2017-12-12 2019-06-20 도요타 지도샤(주) 이차 전지 시스템 및 이차 전지의 활물질의 응력 추정 방법
KR102084416B1 (ko) 2017-12-12 2020-04-20 도요타 지도샤(주) 이차 전지 시스템 및 이차 전지의 활물질의 응력 추정 방법
JP2020125914A (ja) * 2019-02-01 2020-08-20 トヨタ自動車株式会社 満充電容量推定装置
JP7352035B2 (ja) 2020-03-12 2023-09-27 ウィスク アエロ エルエルシー リアルタイム電池故障検出及び健全性状態監視
CN115190975A (zh) * 2020-03-12 2022-10-14 威斯克航空有限责任公司 实时电池故障检测和健康的状态监控
KR20220147686A (ko) * 2020-03-12 2022-11-03 위스크 에어로 엘엘씨 실시간 배터리 고장 검출 및 건강 상태 모니터링
JP2023510025A (ja) * 2020-03-12 2023-03-10 ウィスク アエロ エルエルシー リアルタイム電池故障検出及び健全性状態監視
KR102666408B1 (ko) 2020-03-12 2024-05-20 위스크 에어로 엘엘씨 실시간 배터리 고장 검출 및 건강 상태 모니터링
CN115190975B (zh) * 2020-03-12 2024-05-28 威斯克航空有限责任公司 实时电池故障检测和健康的状态监控
US12055596B2 (en) 2020-03-12 2024-08-06 Wisk Aero Llc Real-time battery fault detection and state-of-health monitoring
JP2021150220A (ja) * 2020-03-23 2021-09-27 古河電気工業株式会社 バッテリ状態を推定する方法、装置、プログラムおよび記録媒体
JP7449738B2 (ja) 2020-03-23 2024-03-14 古河電気工業株式会社 バッテリ状態を推定する方法、装置、プログラムおよび記録媒体

Also Published As

Publication number Publication date
US20130311119A1 (en) 2013-11-21
JPWO2012105492A1 (ja) 2014-07-03
JP5960063B2 (ja) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5960063B2 (ja) 電池の満充電容量検出方法
US7944178B2 (en) Fully-charged battery capacity detection method
US7974796B2 (en) Fully-charged battery capacity detection method
US9634498B2 (en) Electrical storage system and equalizing method
JP5282789B2 (ja) リチウムイオン二次電池の電池容量検出装置
JP4773848B2 (ja) 二次電池の充放電制御システム、電池制御装置、およびプログラム
JP5784108B2 (ja) 充電制御装置
US9897659B2 (en) Secondary battery charge status estimation device and secondary battery charge status estimation method
WO2012091077A1 (ja) 電池の劣化度の検出方法
WO2012091076A1 (ja) 電池の劣化度の検出方法
US20020105303A1 (en) Residual capacity correction method for battery
JP2000092732A (ja) 組電池のばらつき判定方法及びバッテリ装置
JP2010098866A (ja) 不均衡判定回路、不均衡低減回路、電池電源装置、及び不均衡判定方法
CN102565716A (zh) 用于计算二次电池的残余容量的设备
JPWO2012081696A1 (ja) 電池制御装置および電池制御方法
KR20180116988A (ko) 자동차용 lfp 전지의 soc 산출 시스템 및 방법
JP6770933B2 (ja) 蓄電システム
JP2017138127A (ja) 車載バッテリのsoc管理システム
JP5886225B2 (ja) 電池制御装置及び電池制御方法
JP2006177764A (ja) 電池の学習容量補正方法
JP2001157366A (ja) 組電池の充放電制御方法
JP4030261B2 (ja) 電池の残存量演算回路と残存量演算方法
JP6672976B2 (ja) 充電量算出装置、コンピュータプログラム及び充電量算出方法
JP7113976B2 (ja) 充放電制御装置および充放電制御方法
EP1752780B1 (en) Battery state of charge estimator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555860

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13982624

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742402

Country of ref document: EP

Kind code of ref document: A1