WO2012102268A1 - 有機エレクトロルミネッセンス素子、及び照明装置 - Google Patents
有機エレクトロルミネッセンス素子、及び照明装置 Download PDFInfo
- Publication number
- WO2012102268A1 WO2012102268A1 PCT/JP2012/051438 JP2012051438W WO2012102268A1 WO 2012102268 A1 WO2012102268 A1 WO 2012102268A1 JP 2012051438 W JP2012051438 W JP 2012051438W WO 2012102268 A1 WO2012102268 A1 WO 2012102268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- auxiliary electrode
- organic
- substrate
- compound layer
- Prior art date
Links
- 238000005286 illumination Methods 0.000 title description 8
- 239000000758 substrate Substances 0.000 claims abstract description 202
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 135
- 239000000463 material Substances 0.000 claims description 73
- 238000005401 electroluminescence Methods 0.000 claims description 18
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 239000004332 silver Substances 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 160
- 238000000034 method Methods 0.000 description 83
- 230000008569 process Effects 0.000 description 30
- 238000000605 extraction Methods 0.000 description 27
- 239000011521 glass Substances 0.000 description 25
- 239000011347 resin Substances 0.000 description 24
- 229920005989 resin Polymers 0.000 description 24
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000000576 coating method Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 13
- 238000007639 printing Methods 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000005304 joining Methods 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000012777 electrically insulating material Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 238000007650 screen-printing Methods 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- 239000005388 borosilicate glass Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000005354 aluminosilicate glass Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000005355 lead glass Substances 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000469 dry deposition Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80516—Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/814—Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/824—Cathodes combined with auxiliary electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80522—Cathodes combined with auxiliary electrodes
Definitions
- the present invention relates to an organic electroluminescence element and a lighting device.
- an organic electroluminescence element (hereinafter referred to as an organic EL element) having an organic compound layer including a light emitting layer between a pair of electrodes formed on a substrate. At least one of the pair of electrodes of the organic EL element is a transparent electrode, and the transparent electrode is formed on a transparent substrate.
- a light transmissive material such as ITO or IZO (registered trademark) is used.
- the material constituting the transparent electrode has a higher electrical resistance than metal. Therefore, when a transparent electrode is formed on a substrate in a planar shape with a large area, a large voltage drop occurs. As a result, in the case of an organic EL element, luminance unevenness occurs in the substrate surface. This luminance unevenness becomes conspicuous because the influence of the voltage drop increases as the distance from the place (electrode pad or the like) where power is supplied from the external power source to the transparent electrode. Therefore, a method of installing an auxiliary electrode has been disclosed in order to reduce the voltage drop due to the transparent electrode (see, for example, Patent Documents 1 to 3).
- Patent Document 1 describes an electroluminescent panel that is also used as a light source for illumination.
- the electroluminescent panel includes a substrate, a first electrode, an auxiliary electrode formed on the first electrode, a first electrode, a light emitting layer formed on the auxiliary electrode and defining a light emitting region, and the light emitting layer And a second electrode formed on the substrate.
- the auxiliary electrode and the light emitting layer are in direct contact. For this reason, the luminance of light emitted from the light emitting layer around the auxiliary electrode is increased, resulting in luminance unevenness.
- Patent Literature 2 and Patent Literature 3 disclose methods for eliminating luminance unevenness that occurs even when such an auxiliary electrode is installed.
- Patent Document 2 discloses a transparent substrate, a transparent electrode formed on the transparent substrate, a light emitting functional layer formed on the transparent electrode, and a back electrode made of a metal material formed on the light emitting functional layer.
- a light emitting device is described in which a first auxiliary electrode is provided on a transparent electrode, and a second auxiliary electrode is provided on a back electrode.
- Patent Document 3 describes an organic EL light-emitting device that is also used as a lighting device.
- a transparent electrode is formed on a transparent glass substrate, an auxiliary electrode having a predetermined pattern is formed on the transparent electrode, and the auxiliary electrode is covered with an insulating layer having a laminated structure.
- An organic EL layer is formed on the transparent electrode, and a counter electrode is provided so as to cover the insulating layer and the organic EL layer.
- the auxiliary electrode is covered with the insulating layer, and the auxiliary electrode and the organic EL layer are not in direct contact with each other, so that luminance unevenness is suppressed.
- JP 2008-103305 A International Publication No. 2008/126269 JP 2008-10243 A
- the light emitting device described in Patent Document 2 still has a problem that luminance unevenness is still large.
- an auxiliary electrode for the counter electrode is not formed. Therefore, when the counter electrode is a transparent electrode, there is a problem that a voltage drop occurs in the counter electrode and luminance unevenness occurs.
- An object of the present invention is to provide an organic EL element in which luminance unevenness is suppressed, and an illumination device including the organic EL element.
- the organic EL element of the present invention is an organic EL element in which a first substrate, a first electrode, an organic compound layer, and a second electrode are arranged in this order, Between the first electrode and the second electrode, a first insulating portion and a second auxiliary electrode are formed in this order from the first electrode side, The second electrode and the second auxiliary electrode are electrically connected, The first electrode and the organic compound layer are insulated from the second auxiliary electrode by the first insulating portion.
- the first insulating portion and the second auxiliary electrode are formed in this order from the first electrode side between the first electrode and the second electrode, and the second electrode and the second auxiliary electrode are Conducted. Therefore, the voltage drop at the second electrode is reduced, and uneven brightness can be suppressed. Furthermore, the organic compound layer is insulated from the second auxiliary electrode by the first insulating portion. That is, since the organic compound layer and the second auxiliary electrode are not directly electrically connected, luminance unevenness can be suppressed. Moreover, according to this invention, since the 1st electrode is insulated from the 2nd auxiliary electrode by the 1st insulating part, the short circuit of an organic EL element can be prevented.
- a first auxiliary electrode is formed between the first electrode and the first insulating portion;
- the first electrode and the first auxiliary electrode are electrically connected, It is preferable that the organic compound layer is insulated from the first auxiliary electrode by the first insulating portion.
- the first auxiliary electrode is formed between the first electrode and the first insulating portion, and the first electrode and the first auxiliary electrode are electrically connected. Therefore, in addition to the second electrode, the voltage drop at the first electrode is also reduced, and uneven brightness can be suppressed. Furthermore, the organic compound layer is insulated from the first auxiliary electrode by the first insulating portion. That is, since the organic compound layer and the first auxiliary electrode are not directly electrically connected, luminance unevenness can be suppressed. Moreover, according to this invention, the 1st auxiliary electrode, the 1st insulating part, and the 2nd auxiliary electrode are formed in this order from the 1st electrode side.
- the first electrode and the second electrode are formed at positions facing each other with the first insulating portion interposed therebetween. Therefore, the aperture ratio of the organic EL element can be improved. And according to this invention, each of the 1st auxiliary electrode and the 2nd auxiliary electrodes, the 1st auxiliary electrode, and the 2nd electrodes, and the 2nd auxiliary electrode, and the 1st electrodes by the 1st insulating part, respectively Is insulated. As a result, a short circuit of the organic EL element can be prevented.
- the first auxiliary electrode and the second insulating part are located between the first electrode and the second electrode at positions where the first insulating part and the second auxiliary electrode are not formed. Formed in this order from one electrode side, The first electrode and the first auxiliary electrode are electrically connected, It is preferable that the organic compound layer is insulated from the first auxiliary electrode by the second insulating portion.
- the first auxiliary electrode and the second insulating portion are located between the first electrode and the second electrode, where the first insulating portion and the second auxiliary electrode are not formed. They are formed in this order from the first electrode side.
- the first electrode and the first auxiliary electrode are electrically connected. Therefore, in addition to the second electrode, the voltage drop at the first electrode is also reduced, and uneven brightness can be suppressed.
- the organic compound layer is insulated from the first auxiliary electrode by the second insulating portion. That is, since the organic compound layer and the first auxiliary electrode are not directly electrically connected, luminance unevenness can be suppressed.
- the first auxiliary electrode and the second electrode are insulated from each other by the first insulating portion. As a result, a short circuit of the organic EL element can be prevented.
- the first insulating part and the second insulating part are preferably formed of the same material.
- the first insulating portion and the second insulating portion are formed of the same material, the first insulating portion and the second insulating portion can be formed in the same process. Therefore, the manufacturing process of an organic EL element can be simplified.
- the distance between the second auxiliary electrode and the first electrode is preferably larger than the thickness dimension of the organic compound layer.
- the distance between the second auxiliary electrode and the first electrode is larger than the thickness dimension of the organic compound layer. Therefore, since the organic compound layer and the second auxiliary electrode are not directly electrically connected, luminance unevenness can be suppressed.
- the organic EL device of the present invention is formed on the first substrate, the first electrode formed on the first substrate, the organic compound layer formed on the first electrode, and the organic compound layer.
- An organic EL device comprising a second electrode, A second auxiliary electrode that is electrically connected to the second electrode is formed on the first substrate.
- the second auxiliary electrode is formed not on the first electrode but on the first substrate. Therefore, the pressure at the time of forming the second auxiliary electrode by using a conductive paste or the like by a printing method or a coating method is not applied to the first electrode. As a result, the first electrode is prevented from being damaged, so that the organic EL element can emit light more uniformly. In addition, since the second electrode and the second auxiliary electrode are electrically connected, the voltage drop at the second electrode is reduced, and luminance unevenness can be suppressed.
- the organic EL device of the present invention Between the first electrode and the second auxiliary electrode, and between the organic compound layer and the second auxiliary electrode, an insulating portion is formed, The first electrode and the organic compound layer are preferably insulated from the second auxiliary electrode by the insulating portion.
- the organic compound layer is insulated from the second auxiliary electrode by the first insulating portion. That is, since the organic compound layer and the second auxiliary electrode are not directly electrically connected, luminance unevenness can be suppressed. And according to this invention, since the 1st electrode is insulated from the 2nd auxiliary electrode by the 1st insulating part, the short circuit of an organic EL element can be prevented.
- the first substrate has a flat plate-like main body portion and a protruding portion protruding in a vertical direction from the main body portion surface, On the protrusion, the first electrode, the organic compound layer, and the second electrode are formed, It is preferable that the second auxiliary electrode is formed on the main body.
- the second auxiliary electrode is formed not on the first electrode but on the first substrate. Furthermore, the second auxiliary electrode is formed not on the protruding portion of the first substrate on which the first electrode is formed, but on the main body portion of the first substrate. Since the position where the first electrode is formed and the position where the second auxiliary electrode is formed are separated from each other, the pressure when the second auxiliary electrode is formed by a printing method or a coating method using a conductive paste or the like is first. It can prevent more reliably that it adds with respect to one electrode. As a result, the first electrode is more reliably prevented from being damaged, so that the organic EL element can emit light more uniformly. In addition, since the second electrode and the second auxiliary electrode are electrically connected, the voltage drop at the second electrode is reduced, and luminance unevenness can be suppressed.
- a first auxiliary electrode that is electrically connected to the first electrode On the main body, a first auxiliary electrode that is electrically connected to the first electrode is formed, An insulating part is formed between the first auxiliary electrode and the second auxiliary electrode, The first auxiliary electrode is preferably insulated from the second auxiliary electrode by the insulating portion.
- the first auxiliary electrode is formed not on the first electrode but on the main body of the first substrate. Since the position where the first electrode is formed is different from the position where the first auxiliary electrode is formed, the pressure when the first auxiliary electrode is formed by a printing method or a coating method using a conductive paste or the like is first. It can prevent more reliably joining to one electrode. As a result, the first electrode is more reliably prevented from being damaged, so that the organic EL element can emit light more uniformly. In addition, since the first electrode and the first auxiliary electrode are electrically connected, the voltage drop at the first electrode is reduced, and luminance unevenness can be suppressed. Furthermore, since the first auxiliary electrode is insulated from the second auxiliary electrode by the insulating portion, a short circuit of the organic EL element can be prevented.
- the main body portion and the protruding portion are made of different members.
- the main body portion and the protruding portion are made of different members, there is no need to process one member to form the main body portion and the protruding portion. Since bonding may be performed, the first substrate can be easily manufactured and the manufacturing cost can be reduced. For example, when the first substrate is made of glass or transparent resin, it is necessary to process such as etching and cutting in order to form the main body portion and the protruding portion from one glass plate or transparent resin, which increases the manufacturing cost. . According to the present invention, since the first substrate having the main body portion and the protruding portion can be manufactured by bonding glass plates or transparent resin plates having different sizes, the manufacturing is easy and the manufacturing cost is reduced.
- the different members mean that the member of the main body portion and the member of the protruding portion are independent members, and include not only different materials but also the same material.
- the above description is not intended to exclude the embodiment in which the main body portion and the protruding portion are integrally formed.
- the organic EL device of the present invention includes a first substrate, an insulating portion formed on the first substrate, a first electrode formed on the insulating portion, and an organic compound formed on the first electrode.
- An organic EL device comprising a layer and a second electrode formed on the organic compound layer, On the first substrate, a first auxiliary electrode electrically connected to the first electrode and a second auxiliary electrode electrically connected to the second electrode are formed via the insulating portion, The first auxiliary electrode and the second auxiliary electrode are insulated by the insulating portion, When the organic electroluminescence element is viewed in a cross section in the thickness direction of the first substrate, the thickness dimension of the insulating portion is larger than the thickness dimension of the first auxiliary electrode and the second auxiliary electrode. It is characterized by.
- the first auxiliary electrode and the second auxiliary electrode are formed not on the first electrode but on the first substrate. Therefore, the pressure at the time of forming the first auxiliary electrode and the second auxiliary electrode by a printing method or a coating method using a conductive paste or the like is not applied to the first electrode. As a result, the first electrode is prevented from being damaged, so that the organic EL element can emit light more uniformly. Also, since the first electrode and the first auxiliary electrode are conducted, the voltage drop at the first electrode is reduced, and the second electrode and the second auxiliary electrode are conducted, so the voltage drop at the second electrode is reduced. , Brightness unevenness can be suppressed.
- the thickness dimension of the insulating portion is larger than the thickness dimension of the first auxiliary electrode and the second auxiliary electrode. Therefore, the organic compound layer formed on the first electrode of the insulating portion and the first auxiliary electrode or the second auxiliary electrode are formed at positions separated from each other. Thus, since the organic compound layer and the first auxiliary electrode or the second auxiliary electrode are not directly electrically connected, luminance unevenness can be suppressed. In addition, since the first auxiliary electrode and the second auxiliary electrode are insulated by the insulating portion, a short circuit of the organic EL element can be prevented.
- a second substrate is disposed opposite the first substrate via the organic compound layer and the second electrode;
- the first substrate and the second substrate are transparent substrates,
- the first electrode and the second electrode are preferably transparent electrodes.
- the first substrate and the second substrate are transparent substrates, and the first electrode and the second electrode are transparent electrodes. Therefore, light generated in the organic compound layer can be efficiently extracted from the first substrate side and the second substrate side. Therefore, the organic EL element of the present invention can be an element that emits light on both the first substrate side and the second substrate side.
- At least one of the first auxiliary electrode and the second auxiliary electrode includes at least one of silver, gold, tungsten, aluminum, and nickel and a binder.
- At least one of the first auxiliary electrode and the second auxiliary electrode includes at least one of silver, gold, tungsten, aluminum, and nickel and a binder. Therefore, at least one of the first auxiliary electrode and the second auxiliary electrode can be formed using a conductive paste.
- the auxiliary electrode can be easily formed by a printing method or a coating method, and the resistance of the formed auxiliary electrode can be reduced.
- the lighting device of the present invention is Any one of the organic EL elements of the present invention is provided.
- any one of the above-described organic EL elements of the present invention is provided, it is possible to provide an illumination device in which luminance unevenness is suppressed.
- This illumination device can suppress uneven brightness even in a large area.
- Sectional drawing of the organic EL element which concerns on 1st embodiment It is the schematic of the manufacturing process of the organic EL element which concerns on 1st embodiment, Comprising: The schematic explaining the process of forming a 1st electrode on a 1st board
- 2D of the organic EL element which concerns on 1st embodiment Comprising: The schematic explaining the process of forming a 2nd auxiliary electrode on a 1st insulating part. Schematic explaining the process of forming an organic compound layer on a 1st electrode following the process of FIG. 3A. Schematic explaining the process of forming a 2nd electrode following the process of FIG. 3B. Sectional drawing of the organic EL element which concerns on 2nd embodiment. It is the schematic of the manufacturing process of the organic EL element which concerns on 2nd embodiment, Comprising: The schematic explaining the process of forming a 1st electrode on a 1st board
- FIG. 5A Schematic explaining the process of forming a 1st insulating part following the process of FIG. 5B.
- FIG. 1 is a cross-sectional view along the substrate thickness direction of the organic EL element 1 according to the first embodiment of the present invention.
- 2A to 2D and FIGS. 3A to 3C are schematic views for explaining a manufacturing process of the organic EL element 1.
- FIG. 1 In the organic EL element 1, the first substrate 10, the first electrode 11, the organic compound layer 12, the second electrode 13, and the second substrate 18 are arranged in this order. Between the 1st electrode 11 and the 2nd electrode 13, the 1st insulating part 14 and the 2nd auxiliary electrode 16 are formed in this order from the 1st electrode 11 side.
- first auxiliary electrode 15 and the second insulating portion 17 are located between the first electrode 11 and the second electrode 13 at positions where the first insulating portion 14 and the second auxiliary electrode 16 are not formed. They are formed in this order from the first electrode 11 side.
- the vertical and horizontal directions are based on the case where the first substrate 10 is on the bottom and the second substrate 18 is on the top as shown in the cross-sectional view of FIG. And
- the first substrate 10 is a smooth plate-like member for supporting the first electrode 11 and the like.
- the first substrate 10 is a translucent transparent substrate, and light from the organic compound layer 12 can be extracted from the first substrate 10 side. Therefore, it is preferable that the light transmittance of the visible region (400 nm or more and 700 nm or less) of the first substrate 10 is 50% or more.
- the first substrate 10 include a glass plate and a polymer plate.
- the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the polymer plate examples include those formed from a polycarbonate resin, an acrylic resin, a polyethylene terephthalate resin, a polyether sulfide resin, a polysulfone resin, and the like as raw materials.
- the material of the first substrate 10 is preferably a flexible material, for example, a polymer plate.
- a vertical length dimension is approximately 80 mm to 100 mm, and a horizontal length dimension. Is about 80 mm to 100 mm, and a thickness of 0.1 mm to 5 mm can be used.
- a plurality of first substrates 10 may be cut out from a large substrate material.
- a part of the periphery of the first substrate 10 includes a first electrode extraction portion 10 ⁇ / b> A for performing electrical extraction from the first electrode 11, and a second electrode extraction portion for performing electrical extraction from the second electrode 13. 10B.
- one end portion of the first substrate 10 is a first electrode extraction portion 10A, and the other end portion is a second electrode extraction portion 10B.
- the first electrode 11 plays a role of injecting holes into the organic compound layer 12 as an anode in the organic EL element 1, and it is effective to have a work function of 4.5 eV or more.
- the first electrode 11 is formed on the first substrate 10. At this time, the first electrode 11 reaches the first electrode extraction portion 10A.
- the first electrode 11 on the first electrode extraction portion 10A is electrically connected to the outside.
- the material used for the first electrode 11 include indium tin oxide alloy (ITO), tin oxide (NWSA), indium zinc oxide (IZO), gold, silver, platinum, and copper.
- the first electrode 11 is preferably a transparent electrode. In this case, the light transmittance in the visible region of the first electrode 11 is preferably greater than 10%.
- the material for the transparent electrode for example, ITO or IZO is used.
- the sheet resistance of the first electrode 11 is preferably several hundred ⁇ / ⁇ ( ⁇ / sq. Ohm per square) or less.
- the thickness dimension of the 1st electrode 11 is based also on the material to be used, it is normally selected in the range of 10 nm or more and 1 ⁇ m or less, preferably 10 nm or more and 200 nm or less.
- the first auxiliary electrode 15 is made of a material having a smaller electrical resistivity than the material used for the first electrode 11, and prevents a voltage drop due to the electrical resistance of the first electrode 11.
- the first auxiliary electrode 15 is formed on the first electrode 11, and the first auxiliary electrode 15 and the first electrode 11 are electrically connected.
- the first auxiliary electrode 15 is formed in, for example, a stripe shape or a comb shape. Further, the first auxiliary electrode 15 may be formed to reach the first electrode extraction portion 10 ⁇ / b> A, and the first auxiliary electrode 15 may be electrically connected to the outside.
- the first auxiliary electrode 15 is covered with the second insulating portion 17, and the organic compound layer 12, the second electrode 13, and the first auxiliary electrode 15 are electrically insulated.
- the second auxiliary electrode 16 is made of a material having a smaller electrical resistivity than the material used for the second electrode 13, and prevents a voltage drop due to the electrical resistance of the second electrode 13.
- the second auxiliary electrode 16 is formed on the first insulating portion 14, and the second electrode 13 and the second auxiliary electrode 16 are electrically connected.
- the second auxiliary electrode 16 is formed in a stripe shape or a comb shape, for example.
- a first insulating portion 14 is formed between the second auxiliary electrode 16 and the first electrode 11, and the first electrode 11 and the second auxiliary electrode 16 are electrically insulated.
- the second auxiliary electrode 16 is formed on the first insulating portion 14 so as not to be electrically connected to the organic compound layer 12 and is also electrically insulated from the organic compound layer 12.
- a known electrode material is used for the first auxiliary electrode 15 and the second auxiliary electrode 16, and a metal or an alloy can be used.
- the metal for example, it is preferable to include at least one of silver (Ag), Al (aluminum), Au (gold), W (tungsten), and Ni (nickel).
- the 1st auxiliary electrode 15 and the 2nd auxiliary electrode 16 may be comprised with the material containing these metals and alloys, and a binder, and specifically, using the electroconductive paste material containing these. Preferably it is formed.
- the binder a resin material or an inorganic material is used. Examples of the resin material for the binder include acrylic resin and PET (polyethylene terephthalate).
- the inorganic material for the binder examples include glass frit.
- the conductive paste material may contain an organic solvent for adjusting viscosity in order to form a paste.
- a silver paste is preferable.
- the thickness dimensions of the first auxiliary electrode 15 and the second auxiliary electrode 16 are preferably 1 ⁇ m or more and 50 ⁇ m or less.
- the first insulating portion 14 is formed on the first electrode 11.
- a second auxiliary electrode 16 is formed on the first insulating portion 14, and the first electrode 11 and the second auxiliary electrode 16 are electrically insulated.
- the second insulating portion 17 is formed on the first auxiliary electrode 15 so as to cover the first auxiliary electrode 15. Therefore, the first auxiliary electrode 15 and the second electrode 13 are electrically insulated, and the first auxiliary electrode 15 and the organic compound layer 12 are electrically insulated.
- the distance between the second auxiliary electrode 16 and the first electrode 11 is preferably larger than the thickness dimension of the organic compound layer 12. Therefore, in the organic EL element 1, the thickness dimension of the first insulating portion 14 is formed larger than the thickness dimension of the organic compound layer 12. By defining the relationship between the thickness dimensions in this way, the distance between the second auxiliary electrode 16 and the first electrode 11 becomes larger than the thickness dimension of the organic compound layer 12.
- the organic compound layer 12 is not in contact with the second auxiliary electrode 16 formed on the first insulating portion 14 so that the organic compound layer 12 and the second auxiliary electrode 16 are not electrically connected. It has become.
- the thickness dimension of the organic compound layer 12 is generally formed to be 1 ⁇ m or less
- the thickness dimension of the first insulating portion 14 is preferably more than 1 ⁇ m and 50 ⁇ m or less.
- the first insulating portion 14 and the second insulating portion 17 may be made of an electrically insulating material (electrically insulating material).
- the electrically insulating material include photosensitive resins such as photosensitive polyimide, acrylic resins, and the like. Photocurable resins such as resins, thermosetting resins, and inorganic materials such as silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) can be given.
- the photosensitive resin may be a positive photosensitive resin or a negative photosensitive resin.
- the second insulating portion 17 may be formed using a material different from that of the first auxiliary electrode 15, or a conductive material constituting the first auxiliary electrode 15 by processing the surface of the first auxiliary electrode 15. Alternatively, the conductive material may be transformed into an insulating material (such as a metal oxide film).
- the organic compound layer 12 includes at least one layer composed of an organic compound.
- the organic compound layer 12 may contain an inorganic compound.
- the organic compound layer 12 is formed on the first electrode 11.
- the organic compound layer 12 is electrically insulated from the first auxiliary electrode 15 and the second auxiliary electrode 16 as described above.
- the organic compound layer 12 has at least one light emitting layer. Therefore, the organic compound layer 12 may be composed of, for example, a single light-emitting layer, or employed in known organic EL elements such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer. The layer to be formed may be laminated through a light emitting layer.
- a known light emitting material used in a conventional organic EL element is used for the light emitting layer, and the light emitting layer has a structure showing monochromatic light such as red, green, blue, yellow, or a combination thereof, for example, white color.
- the thing of the structure which shows light emission is used.
- a doping method is known in which a host is doped with a light emitting material as a dopant.
- excitons can be efficiently generated from the charge injected into the host. And the exciton energy of the produced
- the light emitting layer may be fluorescent or phosphorescent.
- the thickness dimension of the light emitting layer is preferably 5 nm to 50 nm, more preferably 7 nm to 50 nm, and most preferably 10 nm to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer and the adjustment of chromaticity may be difficult. If the thickness exceeds 50 nm, the driving voltage of the element may increase.
- any material selected from known materials used in conventional organic EL elements may be used. it can.
- the thickness dimensions of these layers included in the organic compound layer 12 are not particularly limited except those specifically defined in the above description. However, if the layer thickness is too thin, defects such as pinholes are likely to occur. If the thickness is too large, a high applied voltage is required and the efficiency is deteriorated. Therefore, the range of several nm to 1 ⁇ m is usually preferable.
- the second electrode 13 plays a role of injecting electrons into the organic compound layer 12 as a cathode in the organic EL element 1, and a material having a small work function is preferable.
- the second electrode 13 is formed on the organic compound layer 12, the second auxiliary electrode 16, and the second insulating portion 17.
- the second electrode 13 is electrically connected to the second auxiliary electrode 16 on the second electrode extraction portion 10B side, and the second auxiliary electrode 16 reaches the second electrode extraction portion 10B.
- the second auxiliary electrode 16 is electrically connected to the outside.
- the second electrode 13 is preferably a transparent electrode. Therefore, the light transmittance in the visible region of the second electrode 13 is preferably greater than 10%.
- the sheet resistance of the second electrode 13 is preferably several hundred ⁇ / ⁇ ( ⁇ / sq. Ohm per square) or less.
- the thickness dimension of the 2nd electrode 13 is based also on the material to be used, it is normally selected in the range of 10 nm or more and 1 ⁇ m or less, preferably 10 nm or more and 200 nm or less.
- ITO or IZO is used as the transparent electrode.
- specific examples of the material used for the second electrode 13 are not particularly limited, but specifically, indium, aluminum, magnesium, silver, Examples thereof include magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, and magnesium-silver alloy.
- substrate 18 is arrange
- the organic compound layer 12 is sealed by accommodating the organic compound layer 12 between the 2nd board
- the second substrate 18 is preferably a plate-like, film-like, or foil-like member.
- a glass plate, a polymer plate, a glass film, a polymer film, a metal plate, a metal foil, etc. are mentioned.
- the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the polymer plate include those using a polycarbonate resin, an acrylic resin, a polyethylene terephthalate resin, a polyether sulfide resin, a polysulfone resin, or the like as a raw material.
- the material of the second substrate 18 is preferably a flexible material, such as a polymer plate or a polymer film.
- a glass plate or a glass film is preferable because it is excellent in moisture and oxygen barrier properties.
- the second substrate 18 is a transparent substrate. Is preferred. Therefore, the light transmittance of the visible region (400 nm or more and 700 nm or less) of the second substrate 18 is preferably 50% or more.
- a recess is formed in the second substrate 18 so that the second electrode 13 or the like does not contact the second substrate 18.
- the vertical length is approximately 80 mm to 100 mm
- the horizontal length is approximately
- a plate material having a thickness dimension of 80 mm to 100 mm and a thickness dimension of 0.1 mm to 5 mm can be used.
- the thickness dimension is 0.1 mm or less, the air permeability increases and the sealing performance decreases.
- a plurality of second substrates 18 may be cut out from a large substrate material.
- the above-mentioned joining member is preferably made of an inorganic compound from the viewpoints of sealing properties, moisture resistance, and joining strength.
- the low melting glass is preferable from the point that the joining member can be joined by laser irradiation.
- the low melting point here means a melting point of 650 ° C. or lower.
- the melting point is preferably 300 ° C. or higher and 600 ° C. or lower.
- the low-melting glass preferably includes a transition metal oxide capable of bonding glass and metal, a rare earth oxide, and the like, and more preferably powder glass (frit glass).
- the composition of powdered glass, SiO 2, B 2 O 3 and is preferably one comprises Al 2 O 3.
- the first electrode 11 is formed on the first substrate 10. At this time, the first electrode 11 is also formed on the first electrode extraction portion 10A.
- a transparent glass substrate is used for the first substrate 10, and a material for transparent electrodes is used for the first electrode 11. Examples of the method for forming the first electrode 11 include a method of forming a film by a sputtering method and then patterning by a photolithography process, a mask vapor deposition method, and the like.
- the first auxiliary electrode 15 is formed on the first electrode 11.
- the first auxiliary electrode 15 is formed by a dry deposition method such as a vacuum deposition method, a sputtering method, a plasma method, an ion plating method, a screen printing method, an ink jet printing method, a spin coating method, a dipping method, or a flow coating method.
- a dry deposition method such as a vacuum deposition method, a sputtering method, a plasma method, an ion plating method, a screen printing method, an ink jet printing method, a spin coating method, a dipping method, or a flow coating method.
- Known methods such as a wet film-forming method such as In the organic EL element 1, the first auxiliary electrode 15 is formed by a screen printing method using a silver paste as a conductive paste material. Specifically, after applying silver paste to a predetermined position on the first electrode 11 by screen printing, the paste material is dried to form the first auxiliary electrode 15.
- the first insulating portion 14 is formed on the first electrode 11 and the first auxiliary electrode 15, and the second insulating portion 17 is formed on the first electrode 11.
- known wet film forming methods such as screen printing, ink jet printing, spin coating, dipping, flow coating, mask vapor deposition method, mask sputtering method, etc.
- the well-known dry-type film-forming method is mentioned.
- the first insulating part 14 and the second insulating part 17 are formed of the same material.
- a positive photoresist material containing an electrically insulating resin is used as the electrically insulating material, and the first insulating portion 14 and the second insulating portion 17 are formed by a wet film forming method.
- the paste-like photoresist material is applied on the first electrode 11 and the first auxiliary electrode 15 by a wet film forming method.
- a mask having a predetermined shape is used to irradiate light other than the portions where the first insulating portion 14 and the second insulating portion 17 are formed (exposure).
- the photoresist material remains in a portion that has not been irradiated with light, and a first insulating portion 14 and a second insulating portion 17 are formed as shown in FIG. 2D.
- the second auxiliary electrode 16 is formed on the first insulating portion 14. At this time, a part of the second auxiliary electrode 16 is also formed on the second electrode extraction portion 10B.
- a method for forming the second auxiliary electrode 16 a method similar to that for the first auxiliary electrode 15 may be used.
- the second auxiliary electrode 16 is formed by a screen printing method using a silver paste.
- the organic compound layer 12 is formed on the first electrode 11. At this time, the organic compound layer 12 is formed so that the thickness dimension thereof is smaller than the thickness dimension of the first insulating portion 14.
- a dry film forming method such as a vacuum deposition method, a sputtering method, a plasma method, an ion plating method, or a wet film forming method such as a spin coating method, a dipping method, a flow coating method, or an ink jet method is used.
- a known method such as the above can be adopted.
- the second electrode 13 is formed on the organic compound layer 12, the second auxiliary electrode 16, and the second insulating portion 17.
- a material for a transparent electrode is used for the second electrode 13.
- the same method as that for the first electrode 11 can be used.
- the first substrate 10 and the second substrate 18 are bonded.
- a transparent glass substrate is used for the second substrate 18, and powder glass is used for the bonding member. In this way, the organic EL element 1 is manufactured.
- the first auxiliary electrode 15 and the second auxiliary electrode 16 are electrically connected to the first electrode 11 and the second electrode 13, respectively.
- the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed of a conductive material having a lower electrical resistivity than the first electrode 11 and the second electrode 13. Therefore, the voltage drop in the 1st electrode 11 and the 2nd electrode 13 which are transparent electrodes becomes small, and the brightness nonuniformity of the organic EL element 1 can be suppressed.
- the organic compound layer 12 is insulated from the second auxiliary electrode 16 by the first insulating portion 14 and insulated from the first auxiliary electrode 15 by the second insulating portion 17. That is, since the organic compound layer 12 is not directly electrically connected to the first auxiliary electrode 15 and the second auxiliary electrode 16 having a low electrical resistivity, the luminance unevenness of the organic EL element 1 can be suppressed.
- the thickness dimension of the first insulating portion 14 is organic so that the distance between the second auxiliary electrode 16 and the first electrode 11 is larger than the thickness dimension of the organic compound layer 12.
- the compound layer 12 is formed larger than the thickness dimension. Therefore, since the organic compound layer 12 and the second auxiliary electrode 16 are not directly electrically connected, luminance unevenness of the organic EL element 1 can be suppressed.
- the first electrode 11 is insulated from the second auxiliary electrode 16 by the first insulating portion 14, and the second electrode 13 is insulated from the first auxiliary electrode 15 by the second insulating portion 17. Therefore, a short circuit of the organic EL element 1 can be prevented.
- the organic EL element 1 is an organic EL element that emits light on both sides of the first substrate 10 side and the second substrate 18 side, and in addition, the luminance unevenness is suppressed as shown in the above effect (1). .
- the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed using a conductive paste material. Therefore, the first auxiliary electrode 15 and the second auxiliary electrode 16 can be easily formed by a printing method or a coating method, and the resistance thereof can be reduced.
- the manufacturing process of the organic EL element 1 can be simplified.
- FIG. 4 is a sectional view taken along the substrate thickness direction of the organic EL element 2 according to the second embodiment of the present invention.
- the organic EL element 2 is different from the organic EL element 1 according to the first embodiment in the position where the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed. That is, in the organic EL element 1, the first auxiliary electrode 15 and the second auxiliary electrode 16 are alternately arranged along the surface of the first substrate 10 as shown in FIG. In the element 2, as shown in FIG. 4, the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed at positions facing each other across the first insulating portion 14. About the other point, the organic EL element 2 is comprised similarly using the material, member, etc. similar to the organic EL element 1.
- FIG. 1 is a sectional view taken along the substrate thickness direction of the organic EL element 2 according to the second embodiment of the present invention.
- the organic EL element 2 is different from the organic EL element 1 according to the first embodiment in the position where the first auxiliary electrode 15 and the second
- the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed at positions facing each other with the first insulating portion 14 interposed therebetween. Therefore, the first auxiliary electrode 15 is formed on the first electrode 11, the first insulating portion 14 is formed on the first auxiliary electrode 15 so as to cover it, and the second auxiliary electrode 16 is formed on the first insulating portion 14. Is formed.
- the distance between the second auxiliary electrode 16 and the first electrode 11 is larger than the thickness dimension of the organic compound layer. Therefore, in the organic EL element 2, the total dimension of the thickness dimension of the first insulating portion 14 and the thickness dimension of the first auxiliary electrode 15 is formed larger than the thickness dimension of the organic compound layer. By defining the relationship between the thickness dimensions in this way, the distance between the second auxiliary electrode 16 and the first electrode 11 becomes larger than the thickness dimension of the organic compound layer 12.
- the organic compound layer 12 is not in contact with the second auxiliary electrode 16 formed on the first insulating portion 14 so that the organic compound layer 12 and the second auxiliary electrode 16 are not electrically connected. It has become.
- the first electrode 11 is formed on the first substrate 10. At this time, the first electrode 11 is also formed on the first electrode extraction portion 10A.
- the first auxiliary electrode 15 is formed on the first electrode 11.
- the first insulating portion 14 is formed on the first electrode 11 and the first auxiliary electrode 15.
- a mask having a predetermined shape corresponding to a position covering the first auxiliary electrode 15 is used, and the first insulating portion 14 is not formed.
- the part is irradiated with light (exposure). After the exposure, when developed with a developer, the photoresist material remains in a portion that has not been irradiated with light, and a first insulating portion 14 is formed as shown in FIG. 5D.
- the organic compound layer 12 is formed on the first electrode 11.
- the organic compound layer 12 is formed so that the thickness dimension is smaller than the total dimension of the thickness dimension of the first insulating portion 14 and the thickness dimension of the first auxiliary electrode 15.
- the second auxiliary electrode 16 is formed on the first insulating portion 14.
- a part of the second auxiliary electrode 16 is also formed on the second electrode extraction portion 10B.
- the second electrode 13 is formed on the organic compound layer 12, the second auxiliary electrode 16, and the first insulating portion 14.
- the first substrate 10 and the second substrate 18 are bonded. In this way, the organic EL element 2 is manufactured.
- the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed at positions facing each other with the first insulating portion 14 interposed therebetween. That is, when the organic EL element 2 is viewed in plan in the thickness direction of the first substrate 10, the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed at overlapping positions. Therefore, compared with the case where each auxiliary electrode 15 and 16 is formed alternately with respect to the 1st electrode 11 and the 2nd electrode 13 like the organic EL element 1, the aperture ratio of the organic EL element 2 is improved. Can do.
- the organic compound layer 12 is insulated from the second auxiliary electrode 16 and the first auxiliary electrode 15 by the first insulating portion 14. That is, since the organic compound layer 12 is not directly electrically connected to the first auxiliary electrode 15 and the second auxiliary electrode 16 having a low electric resistivity, luminance unevenness of the organic EL element 2 can be suppressed.
- the total dimension of the thickness dimension of the first insulating portion 14 and the thickness dimension of the first auxiliary electrode 15 is formed larger than the thickness dimension of the organic compound layer 12. Therefore, the distance between the second auxiliary electrode 16 and the first electrode 11 becomes larger than the thickness dimension of the organic compound layer 12. As a result, since the organic compound layer 12 and the second auxiliary electrode 16 are not directly electrically connected, the luminance unevenness of the organic EL element 2 can be suppressed.
- the first electrode 11 is insulated from the second auxiliary electrode 16 by the first insulating portion 14, and the second electrode 13 is insulated from the first auxiliary electrode 15 by the first insulating portion 14. Therefore, a short circuit of the organic EL element 2 can be prevented.
- FIG. 7 is a cross-sectional view along the substrate thickness direction of the organic EL element 3 according to the third embodiment of the present invention.
- the organic EL element 3 differs from the organic EL element 1 according to the first embodiment at a position where a second auxiliary electrode that is electrically connected to the second electrode is formed. That is, in the organic EL element 1, the second auxiliary electrode 16 is formed between the first electrode 11 and the second electrode 13 as shown in FIG. As shown, the second auxiliary electrode 36 is formed on the first substrate 30. About the other point, the organic EL element 3 is comprised similarly using the material, member, etc. similar to the organic EL element 1.
- FIG. 1 is a cross-sectional view along the substrate thickness direction of the organic EL element 3 according to the third embodiment of the present invention.
- the organic EL element 3 differs from the organic EL element 1 according to the first embodiment at a position where a second auxiliary electrode that is electrically connected to the second electrode is formed. That is, in the organic EL element 1, the second auxiliary electrode
- substrate 30 of the organic EL element 3 demonstrated below, the 1st electrode 31, the organic compound layer 32, the 2nd electrode 33, the 1st insulating part 34, the 2nd auxiliary electrode 36, and the 2nd
- the substrate 38 includes a first substrate 10, a first electrode 11, an organic compound layer 12, a second electrode 13, a first insulating portion 14, a second auxiliary electrode 16, and a second substrate corresponding to the organic EL element 1, respectively.
- the same material as 18 is used.
- the first electrode 31 is formed with a light-transmitting thin film metal layer to suppress the voltage drop of the first electrode 31.
- the thickness dimension of the first electrode 31 is preferably 3 nm or more and 15 nm or less, and the light transmittance in the visible region of the first electrode 31 is preferably greater than 40%.
- the resistance is preferably 20 ⁇ / ⁇ or less.
- the metal used for the thin film metal layer include silver, a silver alloy, a gold alloy, Al, and an Al alloy. In the case of using an alloy, preferred metals other than the main metal are transition metals such as Pd, Ni, Nb, W, and Ti, and rare earth metals such as Sm, Yb, and Hf.
- the first electrode extraction portion 30A and the second electrode extraction portion 30B are formed as in the first embodiment.
- the first electrode 31 of the organic EL element 3 is formed on the first substrate 30. At this time, the first electrode 31 is not formed over the entire surface of the first substrate 30, but is provided with a space for forming the second auxiliary electrode 36. For example, when the organic EL element 3 is viewed in plan in the thickness direction of the first substrate 30, the first electrode 31 is formed in a comb shape.
- the second auxiliary electrode 36 of the organic EL element 3 is formed on the first substrate 30. As described above, the second auxiliary electrode 36 is formed in a space provided on the first substrate 30 with a predetermined distance from the first electrode 31 so as not to be electrically connected to the first electrode 31. Yes.
- the second auxiliary electrode 36 is formed of a material having a lower electrical resistivity than the second electrode 33.
- the organic EL element 3 is formed by a method such as a printing method or a coating method using a conductive paste material. In the organic EL element 3, the auxiliary electrode corresponding to the first auxiliary electrode 15 in the organic EL element 1 and the insulating part corresponding to the second insulating part 17 are not formed. Alternatively, an auxiliary electrode may be formed on the first electrode 31, and an insulating part may be formed so as to cover the auxiliary electrode.
- the first insulating portion 34 of the organic EL element 3 is formed between the first electrode 31 and the second auxiliary electrode 36. As described above, since the first electrode 31 and the second auxiliary electrode 36 are formed on the first substrate 30 with a predetermined interval, the first insulating portion 34 is formed so as to fill this interval portion. Has been.
- the organic compound layer 32 of the organic EL element 3 is formed on the first electrode 31.
- a first insulating portion 34 is formed between the organic compound layer 32 and the second auxiliary electrode 36.
- the second electrode 33 of the organic EL element 3 is formed on the organic compound layer 32, the first insulating portion 34, and the second auxiliary electrode 36.
- the second substrate 38 of the organic EL element 3 is disposed to face the first substrate 30 and is bonded to each other by a bonding member (not shown). And the organic compound layer 32 is sealed by accommodating the organic compound layer 32 between the 2nd board
- the second auxiliary electrode 36 is formed not on the first electrode 31 but on the first substrate 30. Therefore, the pressure when forming the second auxiliary electrode 36 by using a conductive paste material by a printing method or a coating method is not applied to the first electrode 31. As a result, damage to the first electrode 31 is prevented, and the organic EL element 3 can emit light more uniformly.
- the second auxiliary electrode 36 is electrically connected to the second electrode 13.
- the second auxiliary electrode 36 is formed of a conductive material having a lower electrical resistivity than the second electrode 33. Therefore, the voltage drop in the second electrode 33 is reduced, and the luminance unevenness of the organic EL element 3 can be suppressed.
- the organic compound layer 32 is insulated from the second auxiliary electrode 36 by the first insulating portion 34. That is, since the organic compound layer 32 is not directly electrically connected to the second auxiliary electrode 36 having a low electric resistivity, luminance unevenness of the organic EL element 3 can be suppressed.
- FIG. 8 is a cross-sectional view along the substrate thickness direction of the organic EL element 4 according to the fourth embodiment of the present invention.
- the organic EL element 4 is different from the organic EL element 1 according to the first embodiment in the shape of the first substrate, and includes a first auxiliary electrode that conducts with the first electrode and a second auxiliary electrode that conducts with the second electrode. It differs in the position where it is formed. That is, the organic EL element 1 is a flat first substrate 10 as shown in FIG. 1, whereas the organic EL element 4 has a step as shown in FIG. 8 in the organic EL element 4. . In the organic EL element 1, as shown in FIG.
- the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed between the first electrode 11 and the second electrode 13, whereas In the organic EL element 4, as shown in FIG. 8, the first auxiliary electrode 45 and the second auxiliary electrode 46 are formed on the lower side of the step of the first substrate 40.
- the organic EL element 4 is comprised similarly using the material, member, etc. similar to the organic EL element 1.
- FIG. If it writes in check, the 1st board
- the second substrate 48 corresponding to the first substrate 10, the first electrode 11, the organic compound layer 12, the second electrode 13, the first insulating portion 14, the first auxiliary electrode 15, respectively, of the organic EL element 1.
- the same material as the second auxiliary electrode 16 and the second substrate 18 is used.
- the first substrate 40 of the organic EL element 4 has a flat plate-like main body portion 40a and a protruding portion 40b protruding in the vertical direction from the surface of the main body portion 40a. Therefore, as shown in FIG. 8, the first substrate 40 has a step and has a convex cross section.
- substrate 40 consists of a member from which the main-body part 40a and the protrusion part 40b differ. Since the main body portion 40a and the protruding portion 40b are made of different members, there is no need to process one member to form the main body portion 40ba and the protruding portion 40b, and the members of the main body portion 40a and the members of the protruding portion 40b are formed. Since bonding may be performed, the manufacture of the first substrate 40 is facilitated and the manufacturing cost is reduced.
- the member of the protruding portion 40b is smaller in size than the member of the main body portion 40a, and secures a surface for forming a first auxiliary electrode 45 and the like which will be described later when both members are joined.
- the thickness dimension of both members is such that when the height of the first auxiliary electrode 45 is made larger than the height of the protruding portion 40b and the protruding portion 40b and the first auxiliary electrode 45 are brought close to each other or brought into close contact with each other, the first auxiliary electrode 45 Since the connection with the first electrode 41 is ensured, it is preferable.
- the member of the protruding portion 40b include a polymer material and an inorganic paste material. Such a member is preferable because various printing methods and coating methods can be used. More preferable polymer materials are acrylate, polycarbonate, polystyrene, polyolefin, polyimide, polysulfone polyester, epoxy resin, phenol resin, silicone resin, and fluorine resin.
- the inorganic paste material may include a composite polymer material, and may include a material in which the organic content becomes minute after firing.
- a first electrode extraction portion 40C is formed on the protruding portion 40b, and a second electrode extraction portion 40D is formed on the main body portion 40a. .
- the first electrode 41 of the organic EL element 4 is formed on the protruding portion 40 b of the first substrate 40. That is, the first electrode 41 is formed on the upper side of the step of the first substrate 40.
- the first auxiliary electrode 45 of the organic EL element 4 is a surface in the same direction as the surface on which the protruding portion 40b of the main body portion 40a of the first substrate 40 is formed, and is formed at a position close to the step.
- the first auxiliary electrode 45 is formed of a material having a lower electrical resistivity than the first electrode 41.
- the organic EL element 4 is formed by a method such as a printing method or a coating method using a conductive paste material.
- the first auxiliary electrode 45 is electrically connected to the first electrode 41. In the organic EL element 4, as shown in FIG. 8, the first electrode 41 is formed to extend from the protrusion 40b to the surface of the main body 40a where the first auxiliary electrode 45 is formed. .
- the first auxiliary electrode 45 is formed so as to cover a part of the extended portion of the first electrode 41.
- the second auxiliary electrode 46 of the organic EL element 4 is on the same surface as the first auxiliary electrode 45 of the main body portion 40a of the first substrate 40 and is located farther than the first auxiliary electrode 45. Is formed.
- the second auxiliary electrode 46 and the first auxiliary electrode 45 are formed so as not to be electrically connected to each other with a predetermined interval.
- the second auxiliary electrode 46 is electrically connected to the second electrode 43.
- the second auxiliary electrode 46 is formed in the same manner as the first auxiliary electrode 45. Further, the first auxiliary electrode 45 and the second auxiliary electrode 46 may be formed simultaneously.
- the organic compound layer 42 of the organic EL element 4 is formed on the first electrode 41.
- the organic compound layer 42 is also extended to the extended portion of the first electrode 41.
- the extended portion of the organic compound layer 42 and the first auxiliary electrode are formed. Insulating part 44 is interposed between 45 and 45. Therefore, the organic compound layer 42 and the first auxiliary electrode 45 are not directly electrically connected.
- the insulating portion 44 of the organic EL element 4 is formed between the first auxiliary electrode 45 and the second auxiliary electrode 46. As described above, since the first auxiliary electrode 45 and the second auxiliary electrode 46 are formed on the main body portion 40a of the first substrate 40 with a predetermined interval, the insulating portion is filled so as to fill this interval portion. 44 is formed. The insulating portion 44 is also provided between the second auxiliary electrode 46 and the first electrode 41, between the second auxiliary electrode 46 and the organic compound layer 42, and between the first electrode 41 and the second electrode 43. Formed and insulated from each other.
- the second electrode 43 of the organic EL element 4 is formed on the organic compound layer 42, the insulating portion 44, and the second auxiliary electrode 46.
- the second electrode 43 is electrically connected to the second auxiliary electrode 46.
- the second substrate 48 of the organic EL element 4 is disposed to face the first substrate 40 and is bonded to each other by a bonding member (not shown).
- the organic compound layer 42 is accommodated between the second substrate 48 and the first substrate 40 bonded to each other, whereby the organic compound layer 42 is sealed.
- the first auxiliary electrode 45 and the second auxiliary electrode 46 are formed not on the first electrode 41 but on the main body portion 40 a of the first substrate 40. Therefore, the pressure at the time of forming the first auxiliary electrode 45 and the second auxiliary electrode 46 by a printing method or a coating method using a conductive paste material is not applied to the first electrode 41. As a result, damage to the first electrode 41 is prevented, so that the organic EL element 4 can emit light more uniformly.
- the protruding portion 40b where the first electrode 41 is formed and the main body portion 40a where the first auxiliary electrode 45 and the second auxiliary electrode 46 are formed are separated via a step, On the other hand, it can prevent more reliably that a pressure is added.
- the organic compound layer 42 is insulated from the first auxiliary electrode 45 and the second auxiliary electrode 46 by the insulating portion 44. That is, since the organic compound layer 42 is not directly electrically connected to the first auxiliary electrode 45 and the second auxiliary electrode 46 having a low electric resistivity, luminance unevenness of the organic EL element 4 can be suppressed.
- the first electrode 41 is insulated from the second auxiliary electrode 46 by the insulating portion 44
- the second electrode 43 is insulated from the first auxiliary electrode 45 by the insulating portion 44
- FIG. 9 is a cross-sectional view along the substrate thickness direction of the organic EL element 5 according to the fifth embodiment of the present invention.
- the organic EL element 5 is different from the organic EL element 1 according to the first embodiment in the position where the first auxiliary electrode and the second auxiliary electrode are formed. Furthermore, the position where the first electrode is formed is different. That is, regarding the former difference, in the organic EL element 1, as shown in FIG. 1, the first auxiliary electrode 15 and the second auxiliary electrode 16 are formed between the first electrode 11 and the second electrode 13. In contrast, in the organic EL element 5, as shown in FIG. 9, the first auxiliary electrode 55 and the second auxiliary electrode 56 are formed on the first substrate 50. As for the latter difference, in the organic EL element 1, as shown in FIG.
- the first electrode 11 is formed on the first substrate 10, whereas in the organic EL element 5, as shown in FIG.
- the first insulating part 54 is formed on the first substrate 50, and the first electrode 51 is formed on the first insulating part 54.
- the organic EL element 5 is comprised similarly using the material, member, etc. similar to the organic EL element 1.
- FIG. That is, when described in a confirming manner, the first substrate 50, the first electrode 51, the organic compound layer 52, the second electrode 53, the first insulating portion 54, the first auxiliary electrode 55, the first of the organic EL element 5 described below.
- the second auxiliary electrode 56, the second insulating portion 57, and the second substrate 58 respectively correspond to the first substrate 10, the first electrode 11, the organic compound layer 12, the second electrode 13, and the first electrode of the organic EL element 1.
- the same material as the insulating part 14, the first auxiliary electrode 15, the second auxiliary electrode 16, the second insulating part 17, and the second substrate 18 is used.
- the first insulating portion 54 is formed on the first substrate 50. At this time, the first insulating portion 54 is not formed over the entire surface of the first substrate 50, but is formed with a predetermined interval on the first substrate 50 as shown in FIG. . Specifically, the first insulating portion 54 makes the first electrode 51 and the second electrode 53 conductive to the first auxiliary electrode 55 and the second auxiliary electrode 56 formed on the first substrate 50, respectively. It is formed with a space for. The thickness dimension of the first insulating portion 54 is formed larger than the thickness dimension of the first auxiliary electrode 55 and the second auxiliary electrode 56.
- the first electrode extraction portion 50A and the second electrode extraction portion 50B are formed as in the first embodiment.
- the first auxiliary electrode 55 and the second auxiliary electrode 56 of the organic EL element 5 are both formed on the first substrate 50.
- a first auxiliary electrode 55 and a second auxiliary electrode 56 are formed at a predetermined interval between the first insulating portions 54. Therefore, the first insulating portion 54 is interposed between the first auxiliary electrode 55 and the second auxiliary electrode 56, and the first auxiliary electrode 55 and the second auxiliary electrode 56 are insulated.
- the first auxiliary electrode 55 and the second auxiliary electrode 56 are formed of a material having a lower electrical resistivity than the first electrode 51 and the second electrode 53.
- the organic EL element 5 is formed by a method such as a printing method or a coating method using a conductive paste material.
- the first insulating electrode 54 is formed after the first auxiliary electrode 55 and the second auxiliary electrode 56 are formed on the first substrate 50, as shown in FIG.
- a part of the first insulating portion 54 covers a part on the first auxiliary electrode 55 and the second auxiliary electrode 56.
- the first electrode 51 of the organic EL element 5 is formed on the first insulating portion 54.
- the first electrode 51 is formed to extend from the first insulating portion 54 to the first auxiliary electrode 55 so as to travel along the side surface of the first insulating portion 54, and the first electrode 51 is formed of the first auxiliary electrode 55. Conducted with.
- the organic compound layer 52 of the organic EL element 5 is formed on the first electrode 51.
- the second electrode 53 of the organic EL element 5 is formed on the organic compound layer 52.
- the second electrode 53 is formed to extend from the organic compound layer 52 to the second auxiliary electrode 56 so as to travel along the side surface of the first insulating portion 54, and the second electrode 53 includes the second auxiliary electrode 56 and the second auxiliary electrode 56. Conduct.
- the second insulating portion 57 of the organic EL element 5 is formed between the first electrode 51 and the second electrode 53.
- the second insulating portion 57 includes a first portion 57a and a second portion 57b according to the provided position.
- the first portion 57 a is provided in the middle of the second electrode 53 being extended so as to be electrically connected to the second auxiliary electrode 56.
- the second portion 57 b is provided at a location where the first electrode 51 is electrically connected to the first auxiliary electrode 55.
- the first insulating portions 54 are formed with a predetermined interval, the first insulating portions 54 are valley-shaped as shown in FIG.
- the second portion 57b is formed so as to fill this valley-shaped portion.
- the second electrode 53 is also electrically connected to the second electrode 53 formed on the adjacent first insulating portion 54 through the second portion 57b.
- the second substrate 58 of the organic EL element 5 is disposed to face the first substrate 50 and is bonded to each other by a bonding member (not shown). And the organic compound layer 52 is sealed by accommodating the organic compound layer 52 between the second substrate 58 and the first substrate 50 bonded to each other.
- the first auxiliary electrode 55 and the second auxiliary electrode 56 are formed not on the first electrode 51 but on the first substrate 50. Therefore, the pressure at the time of forming the first auxiliary electrode 55 and the second auxiliary electrode 56 by using a conductive paste material by a printing method or a coating method is not applied to the first electrode 51. As a result, the first electrode 51 is prevented from being damaged, and the organic EL element 5 can emit light more uniformly.
- the thickness dimension of the first insulating portion 54 is formed larger than the thickness dimension of the first auxiliary electrode 55 and the second auxiliary electrode 56. Therefore, the organic compound layer 52 formed on the first insulating portion 54 via the first electrode 51 is located away from the first auxiliary electrode 55 and the second auxiliary electrode 56 on the first substrate 50. . That is, since the organic compound layer 52 is not directly electrically connected to the first auxiliary electrode 55 and the second auxiliary electrode 56 having a low electrical resistivity, luminance unevenness of the organic EL element 5 can be suppressed.
- the first auxiliary electrode 55 and the second auxiliary electrode 56 are insulated by the first insulating portion 54, and the first electrode 51 and the second electrode 53 are insulated by the second insulating portion 57. Therefore, a short circuit of the organic EL element 5 can be prevented.
- FIG. 10 is a cross-sectional view taken along the substrate thickness direction of the organic EL element 4 according to the fourth embodiment of the present invention.
- the organic EL element 6 is different from the organic EL element 4 according to the fourth embodiment in the configuration of the protruding portion of the first substrate.
- the first substrate 60 of the organic EL element 6 has a step similar to the first substrate 40 of the organic EL element 4, and has a main body portion 60a and a protruding portion 60b.
- the protruding portion 60b is formed as a light extraction layer on the flat plate-like main body portion 60a.
- the protrusion 60b as the light extraction layer is preferably formed of a material having a high refractive index.
- the refractive index of the protrusion 60b is preferably 1.5 or more and 2.5 or less.
- a first electrode extraction portion 60C is formed on the protruding portion 60b, and a second electrode extraction portion 60D is formed on the main body portion 60a. .
- a high refractive index material in which fine particles with a high refractive index are dispersed in a matrix material is formed on the surface of the main body 60a.
- the fine particles having a high refractive index include fine particles such as inorganic oxides such as titania and zirconia.
- An example of the matrix material is a transparent resin.
- the surface of the protrusion 60b is preferably formed flat. Since the first electrode 41, the organic compound layer 42, and the second electrode 43 are stacked on the protruding portion 60b, a short circuit between the electrodes can be prevented by forming the surface of the protruding portion 60b serving as a base flat.
- the protrusion 60b is formed by a wet film formation method or the like. Specifically, for example, a highly refraction material made into an ink with a solvent is applied to the surface of the main body 60a by a spin coating method, and then the solvent is evaporated and dried to form a film.
- the organic EL element demonstrated in the aspect which takes out light emission from an organic compound layer from both sides of a 1st board
- the substrate from which light emission is not extracted and the electrode material disposed on the substrate side do not have to be transparent.
- the heat radiating member may be filled in the internal space formed by joining the first substrate and the second substrate.
- the heat radiating member plays a role of efficiently transferring heat generated in the organic EL element to the substrate side.
- a space between the second electrode 13 and the second substrate 18 may be filled with a heat dissipation member.
- the heat radiating member an inactive member having good thermal conductivity is preferable, and fluorine oil or the like can be used.
- the concave portion is formed on the second substrate, but it may be a flat second substrate.
- a spacer for maintaining a distance between the first substrate and the second substrate may be disposed so that the organic compound layer or the like is not crushed between the substrates.
- the thickness dimension of the above-described joining member may be formed large and used as a spacer.
- the organic EL element of the present invention can be used, for example, as a light source for illumination or display that requires uniform light emission.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
有機EL素子の一対の電極は、少なくともいずれかが透明電極とされ、透明電極は、透明な基板上に形成される。透明電極を構成する材料としては、ITOやIZO(登録商標)などの光透過性の材料が用いられている。例えば、有機EL素子の場合には、有機化合物層からの光が透明電極、及び透明基板を透過して素子の外部へ取り出される。
そこで、透明電極による電圧降下を少なくするため、補助電極を設置する方法が開示されている(例えば、特許文献1~3参照)。
特許文献1に記載された電界発光パネルにおいて、補助電極と発光層とが直接接触している。そのため、補助電極の周辺の発光層からの発光輝度が大きくなり、輝度ムラが発生してしまう。
このような補助電極を設置した場合にも発生する輝度ムラを解消させる方法が、例えば、特許文献2や特許文献3に開示されている。
また、特許文献3に記載の有機EL発光装置では、対向電極に対する補助電極が形成されていない。そのため、対向電極を透明電極とした際には、対向電極における電圧降下が発生し、輝度ムラが発生するという問題がある。
前記第一電極と前記第二電極との間に、第一絶縁部、及び第二補助電極が、前記第一電極側からこの順に形成され、
前記第二電極と前記第二補助電極とが導通し、
前記第一電極、及び前記有機化合物層が、前記第一絶縁部によって前記第二補助電極と絶縁されている
ことを特徴とする。
また、本発明によれば、第一電極が、第一絶縁部によって第二補助電極と絶縁されているので、有機EL素子の短絡を防止できる。
前記第一電極と前記第一絶縁部との間に第一補助電極が形成され、
前記第一電極と前記第一補助電極とが導通し、
前記有機化合物層が、前記第一絶縁部によって前記第一補助電極と絶縁されている
ことが好ましい。
さらに、有機化合物層が、第一絶縁部によって第一補助電極と絶縁されている。つまり、有機化合物層と第一補助電極とが直接、電気的に接続されていないので、輝度ムラを抑制できる。
また、本発明によれば、第一補助電極、第一絶縁部、及び第二補助電極が、第一電極側からこの順に形成されている。つまり、第一電極と第二電極とが第一絶縁部を挟んで互いに対向する位置に形成されている。よって、有機EL素子の開口率を向上させることができる。
そして、本発明によれば、第一絶縁部によって、第一補助電極、及び第二補助電極同士、第一補助電極、及び第二電極同士、並びに第二補助電極、及び第一電極同士のそれぞれが絶縁されている。その結果、有機EL素子の短絡を防止できる。
前記第一電極と前記第二電極との間であって、前記第一絶縁部、及び前記第二補助電極が形成されていない位置に、第一補助電極、及び第二絶縁部が、前記第一電極側からこの順に形成され、
前記第一電極と前記第一補助電極とが導通し、
前記有機化合物層が、前記第二絶縁部によって前記第一補助電極と絶縁されている
ことが好ましい。
さらに、有機化合物層が、第二絶縁部によって第一補助電極と絶縁されている。つまり、有機化合物層と第一補助電極とが直接、電気的に接続されていないので、輝度ムラを抑制できる。
そして、第一絶縁部によって、第一補助電極、及び第二電極同士が絶縁されている。その結果、有機EL素子の短絡を防止できる。
前記第一絶縁部、及び前記第二絶縁部が同じ材料で形成されている
ことが好ましい。
前記第二補助電極と前記第一電極との距離が、前記有機化合物層の厚さ寸法よりも大きい
ことが好ましい。
前記第一基板上には、前記第二電極と導通する第二補助電極が形成されている
ことを特徴とする。
また、第二電極と第二補助電極とが導通するので、第二電極における電圧降下が小さくなり、輝度ムラを抑制できる。
前記第一電極と前記第二補助電極との間、並びに前記有機化合物層と前記第二補助電極との間には、絶縁部が形成され、
前記第一電極、及び前記有機化合物層が、前記絶縁部によって前記第二補助電極と絶縁されている
ことが好ましい。
そして、本発明によれば、第一電極が、第一絶縁部によって第二補助電極と絶縁されているので、有機EL素子の短絡を防止できる。
前記第一基板は、平板状の本体部と前記本体部面から垂直方向に突出する突出部とを有し、
前記突出部上には、前記第一電極、前記有機化合物層、及び前記第二電極が形成され、
前記本体部上には、前記第二補助電極が形成されている
ことが好ましい。
また、第二電極と第二補助電極とが導通するので、第二電極における電圧降下が小さくなり、輝度ムラを抑制できる。
前記本体部上には、前記第一電極と導通する第一補助電極が形成され、
前記第一補助電極と前記第二補助電極との間には、絶縁部が形成され、
前記第一補助電極が、前記絶縁部によって前記第二補助電極と絶縁されている
ことが好ましい。
また、第一電極と第一補助電極とが導通するので、第一電極における電圧降下が小さくなり、輝度ムラを抑制できる。
さらに、第一補助電極が、絶縁部によって第二補助電極と絶縁されているので、有機EL素子の短絡を防止できる。
前記本体部と前記突出部とが異なる部材からなる
ことが好ましい。
例えば、第一基板をガラスや透明樹脂とする場合、1つのガラス板や透明樹脂から本体部、及び突出部を形成するには、エッチングや切削等の加工が必要となって製造コストが高くなる。本発明によれば、大きさの異なるガラス板や透明樹脂板を接合することで本体部、及び突出部を有する第一基板を製造できるので、製造が容易で、製造コストも低くなる。
ここで、異なる部材とは、本体部の部材と突出部の部材とがそれぞれ独立した部材であることを意味しており、異なる材質である場合に限らず、同じ材質である場合も含む。
上記記載は、本発明が前記本体部と前記突出部とが一体的に形成されている形態を除くことを意図するものではない。
前記第一基板上には、前記第一電極と導通する第一補助電極、及び前記第二電極と導通する第二補助電極が前記絶縁部を介して形成され、
前記第一補助電極と前記第二補助電極とが前記絶縁部によって絶縁され、
前記有機エレクトロルミネッセンス素子を前記第一基板の厚さ方向断面で見た場合に、前記絶縁部の厚さ寸法は、前記第一補助電極、及び前記第二補助電極の厚さ寸法よりも大きい
ことを特徴とする。
また、第一電極と第一補助電極とが導通するので、第一電極における電圧降下が小さくなるとともに、第二電極と第二補助電極とが導通するので、第二電極における電圧降下が小さくなり、輝度ムラを抑制できる。
さらに、有機EL素子を第一基板の厚さ方向断面で見た場合に、絶縁部の厚さ寸法は、第一補助電極、及び第二補助電極の厚さ寸法よりも大きい。そのため、絶縁部の第一電極上に形成された有機化合物層と第一補助電極又は第二補助電極とは、離れた位置に形成されている。このように、有機化合物層と第一補助電極又は第二補助電極とが直接、電気的に接続されていないので、輝度ムラを抑制できる。
加えて、絶縁部によって、第一補助電極と第二補助電極とが絶縁されているので、有機EL素子の短絡を防止できる。
第二基板が、前記有機化合物層、及び前記第二電極を介して前記第一基板と対向して配置され、
前記第一基板、及び前記第二基板が透明基板であり、
前記第一電極、及び前記第二電極が透明電極である
ことが好ましい。
よって、本発明の有機EL素子は、第一基板側、及び第二基板側の両面で発光する素子とすることができる。
前記第一補助電極、及び前記第二補助電極の少なくともいずれかが、銀、金、タングステン、アルミニウム、及びニッケルの少なくともいずれかとバインダとを含む
ことが好ましい。
前記いずれかの本発明の有機EL素子を備えることを特徴とする。
以下、本発明の第一実施形態を図面に基づいて説明する。
(光電変換装置の全体構成)
図1は、本発明の第一実施形態に係る有機EL素子1の基板厚さ方向に沿った断面図である。図2A~図2D、及び図3A~図3Cは、有機EL素子1の製造工程を説明する概略図である。
有機EL素子1では、第一基板10、第一電極11、有機化合物層12、第二電極13、及び第二基板18が、この順に配置されている。第一電極11と第二電極13の間には、第一絶縁部14、及び第二補助電極16が、第一電極11側からこの順に形成されている。さらに、第一電極11と第二電極13の間であって、第一絶縁部14、及び第二補助電極16が形成されていない位置に、第一補助電極15、及び第二絶縁部17が、第一電極11側からこの順に形成されている。
なお、第一実施形態の説明において、上下左右の方向を示す場合は、図1の断面図のように、第一基板10を下に、第二基板18を上にした場合に基づいているものとする。
第一基板10は、第一電極11などを支持するための平滑な板状の部材である。
第一実施形態では、第一基板10を透光性の透明基板とし、第一基板10側から有機化合物層12からの光を取り出すことができるようにしている。そのため、第一基板10の可視領域(400nm以上700nm以下)の光の透過率は、50%以上であることが好ましい。
第一基板10としては、ガラス板、ポリマー板などが挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英などが挙げられる。またポリマー板としては、ポリカーボネート系樹脂、アクリル系樹脂、ポリエチレンテレフタレート系樹脂、ポリエーテルサルファイド系樹脂、ポリサルフォン系樹脂などを原料として成形されたものを挙げることができる。有機EL素子1がフレキシブル性を必要とする用途に用いられる場合は、第一基板10の材料としては、可撓性のある材料が好ましく、例えば、ポリマー板が好ましい。
第一電極11は、有機EL素子1における陽極として、正孔を有機化合物層12に注入する役割を担うものであり、4.5eV以上の仕事関数を有することが効果的である。
第一電極11は、第一基板10上に形成されている。このとき、第一電極11は、第一電極取出部10A上まで至る。第一電極取出部10A上における第一電極11にて外部と電気的接続がなされる。
有機EL素子1では、有機化合物層12からの発光を第一基板10側から取り出すため、第一電極11は、透明電極であることが好ましい。この場合、第一電極11の可視領域の光の透過率は、10%より大きいことが好ましい。透明電極用の材料としては、例えば、ITOやIZOが用いられる。
また、第一電極11のシート抵抗は、数百Ω/□(Ω/sq。オーム・パー・スクウェア。)以下であることが好ましい。
第一電極11の厚さ寸法は、用いる材料にもよるが、通常10nm以上1μm以下、好ましくは10nm以上200nm以下の範囲で選択される。
第一補助電極15は、第一電極11に用いる材料よりも小さい電気抵抗率を有する材料で構成され、第一電極11の電気抵抗による電圧降下を防ぐ。
第一補助電極15は、第一電極11上に形成されており、第一補助電極15と第一電極11とが導通されている。第一補助電極15は、例えば、ストライプ状やくし歯状に形成される。また、第一補助電極15は、第一電極取出部10Aまで至るように形成し、この第一補助電極15にて外部と電気的接続がなされるようにしてもよい。
第一補助電極15は、第二絶縁部17で覆われており、有機化合物層12、及び第二電極13と第一補助電極15とが電気的に絶縁されている。
第二補助電極16は、第一絶縁部14の上に形成されており、第二電極13と第二補助電極16とが導通されている。第二補助電極16は、例えば、ストライプ状やくし歯状に形成される。
第二補助電極16と第一電極11との間には、第一絶縁部14が形成されており、第一電極11と第二補助電極16とが電気的に絶縁されている。また、第二補助電極16は、有機化合物層12と電気的に接続しないように、第一絶縁部14上に形成されており、有機化合物層12とも電気的に絶縁されている。
また、第一補助電極15、及び第二補助電極16は、これらの金属や合金とバインダとを含む材料で構成されてもよく、具体的には、これらを含む導電性のペースト材料を用いて形成されることが好ましい。バインダとしては、樹脂材料や無機材料が用いられる。バインダ用の樹脂材料としては、アクリル樹脂やPET(ポリエチレンテレフタレート)などが挙げられる。また、バインダ用の無機材料としては、ガラスフリットなどが挙げられる。導電性のペースト材料は、その他、ペースト状にするために粘度調整用の有機溶剤などを含有してもよい。導電性のペースト材料としては、銀ペーストが好ましい。導電性のペースト材料を用いる場合、第一補助電極15、及び第二補助電極16の厚さ寸法は、1μm以上50μm以下とするのが好ましい。
第一絶縁部14は、第一電極11上に形成されている。この第一絶縁部14上には、第二補助電極16が形成され、第一電極11と第二補助電極16とが電気的に絶縁されている。
第二絶縁部17は、第一補助電極15を覆うように第一補助電極15上に形成されている。そのため、第一補助電極15と第二電極13とが電気的に絶縁され、第一補助電極15と有機化合物層12とが電気的に絶縁されている。
有機化合物層12の厚さ寸法は、一般的には、1μm以下に形成されるので、第一絶縁部14の厚さ寸法は、1μmを超え、50μm以下であることが好ましい。このような厚さ寸法とすることで、有機化合物層12と第二補助電極16との電気的接続が防止される。その結果、第二補助電極16から有機化合物層12へ電子が直接注入されることが防止され、輝度ムラが抑制される。
また、第二絶縁部17は、第一補助電極15と異なる材料を用いて形成してもよいし、第一補助電極15の表面に対して処理を施して第一補助電極15を構成する導電性の材料を絶縁性の材料(金属酸化膜など)に変質させて形成してもよい。
有機化合物層12は、有機化合物で構成される層を少なくとも一層含む。なお、有機化合物層12は、無機化合物を含んでいてもよい。
有機化合物層12は、第一電極11上に形成されている。有機化合物層12は、前述のとおり、第一補助電極15、及び第二補助電極16と電気的に絶縁されている。
発光層は、蛍光発光性であっても燐光発光性であってもよい。
発光層の厚さ寸法は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。5nm未満では発光層形成が困難となり、色度の調整が困難となるおそれがあり、50nmを超えると素子の駆動電圧が上昇するおそれがある。
有機化合物層12に含まれるこれらの層の厚さ寸法は、上述した中で特に規定したものを除いて、特に制限されないが、一般に層厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μm程度の範囲が好ましい。
第二電極13は、有機EL素子1における陰極として、電子を有機化合物層12に注入する役割を担うものであり、仕事関数の小さい材料が好ましい。
第二電極13は、有機化合物層12、第二補助電極16、及び第二絶縁部17上に形成されている。
第二電極13は、第二電極取出部10B側で第二補助電極16と電気的に接続されており、この第二補助電極16が第二電極取出部10Bまで至る。そして、この第二補助電極16にて外部と電気的接続がなされる。
また、第二電極13のシート抵抗は、数百Ω/□(Ω/sq。オーム・パー・スクウェア。)以下であることが好ましい。
第二電極13の厚さ寸法は、用いる材料にもよるが、通常10nm以上1μm以下、好ましくは10nm以上200nm以下の範囲で選択される。
透明電極としては、例えば、ITOやIZOが用いられる。
第二基板18は、第一基板10に対向して配置され、図示しない接合部材によって、互いに接合される。そして、互いに接合された第二基板18と第一基板10との間に有機化合物層12が収容されることで、有機化合物層12が封止される。
ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英などが挙げられる。
ポリマー板としては、ポリカーボネート系樹脂、アクリル系樹脂、ポリエチレンテレフタレート系樹脂、ポリエーテルサルファイド系樹脂、ポリサルフォン系樹脂などを原料として用いてなるものを挙げることができる。ポリマーフィルムとしては、これらの樹脂を原料として用いてなるものを挙げることができる。
なお、第二基板18は、本実施形態では板状の部材を用いているが、例えば、シート状物あるいはフィルム状物であってもよい。
有機EL素子1がフレキシブル性を必要とする用途に用いられる場合は、第二基板18の材料としては、可撓性のある材料が好ましく、例えば、ポリマー板やポリマーフィルムが好ましい。
また、ガラス板やガラスフィルムは、水分、及び酸素バリア性に優れるので好ましい。
第二基板18の寸法としては、複数の有機EL素子1を隣接配置させて照明の光源とする場合には、例えば、縦の長さ寸法がおよそ80mmから100mmまで、横の長さ寸法がおよそ80mmから100mmまで、厚さ寸法が0.1mmから5mmまでの板材を用いることができる。厚さ寸法が0.1mm以下であると、空気の透過率が上昇し密封性能が低下する。
なお、大型の基板材料から複数枚の第二基板18を切り出して用いてもよい。
次に、有機EL素子1の製造方法を図に基づいて説明する。
第一電極11の形成方法としては、スパッタリング法により成膜し、その後フォトリソグラフィ工程によりパターンニングする方法やマスク蒸着法などが挙げられる。
第一補助電極15の形成方法としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法やスクリーン印刷法、インクジェット印刷法、スピンコーティング法、ディッピング法、フローコーティング法などの湿式成膜法などの公知の方法が挙げられる。
有機EL素子1においては、導電性のペースト材料として銀ペーストを用いたスクリーン印刷法で第一補助電極15を形成する。具体的には、銀ペーストをスクリーン印刷法で第一電極11上の所定位置に塗布した後、当該ペースト材料を乾燥させて第一補助電極15を形成する。
有機EL素子1においては、第一絶縁部14、及び第二絶縁部17を同じ材料で形成する。そのため、電気絶縁性材料として電気絶縁性の樹脂を含むポジ型のフォトレジスト材料を用い、湿式成膜法で第一絶縁部14、及び第二絶縁部17を形成する。
まず、図2Cに示すように、第一電極11、及び第一補助電極15の上に、ペースト状の上記フォトレジスト材料を湿式成膜法で塗布する。
塗布後、所定形状のマスクを用い、第一絶縁部14、及び第二絶縁部17を形成する部分以外に光を照射する(露光)。この露光の後、現像液によって現像すると、光が照射されなかった部分に上記フォトレジスト材料が残り、図2Dに示すように、第一絶縁部14、及び第二絶縁部17が形成される。
第二補助電極16の形成方法としては、第一補助電極15と同様の方法が挙げられる。
有機EL素子1においては、第一補助電極15と同様に、銀ペーストを用いたスクリーン印刷法で第二補助電極16を形成する。
有機化合物層12の形成方法としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法やスピンコーティング法、ディッピング法、フローコーティング法、インクジェット法などの湿式成膜法などの公知の方法を採用することができる。この際、有機化合物層12が、所定の位置に形成されるように、特に第二補助電極16と接触しないように、マスキング手段を施して層形成を行うのが好ましい。
第二電極13の形成方法としては、第一電極11と同様の方法が挙げられる。
このようにして、有機EL素子1が製造される。
以上のような第一実施形態によれば、次のような作用効果を奏する。
(1) 有機EL素子1において、第一補助電極15、及び第二補助電極16がそれぞれ第一電極11、及び第二電極13と導通している。そして、第一補助電極15、及び第二補助電極16は、第一電極11、及び第二電極13よりも電気抵抗率の低い導電性の材料で形成されている。そのため、透明電極である第一電極11、及び第二電極13における電圧降下が小さくなり、有機EL素子1の輝度ムラを抑制できる。
よって、有機EL素子1は、第一基板10側、及び第二基板18側の両面で発光し、しかも、上記作用効果(1)に示したように輝度ムラの抑制された有機EL素子である。
次に本発明に係る第二実施形態について、図面に基づいて説明する。
ここで、第二実施形態の説明において第一実施形態と同一の構成要素は同一符号を付して説明を省略もしくは簡略にする。
有機EL素子2は、第一実施形態に係る有機EL素子1と、第一補助電極15、及び第二補助電極16が形成されている位置が異なる。すなわち、有機EL素子1では、図1に示すように、第一基板10の面に沿って、第一補助電極15、及び第二補助電極16が交互に配置されているのに対し、有機EL素子2では、図4に示すように、第一補助電極15、及び第二補助電極16が第一絶縁部14を挟んで互いに対向する位置に形成されている。その他の点については、有機EL素子2は、有機EL素子1と同様の材料や部材等を用い、同様に構成される。
次に、有機EL素子2の製造方法を図に基づいて説明する。有機EL素子2の製造方法も、有機EL素子1とほぼ同様であるので、説明を省略または簡略にし、有機EL素子1と特に異なる点について詳述する。
次に、図5Bに示すように、第一補助電極15を第一電極11上に形成する。
そして、図5Cに示すように、第一絶縁部14を第一電極11、及び第一補助電極15の上に形成する。有機EL素子2においては、第二絶縁部17に相当する絶縁部を形成しないので、第一補助電極15を覆う位置に対応する所定形状のマスクを用い、第一絶縁部14を形成する以外の部分に光を照射する(露光)。この露光の後、現像液によって現像すると、光が照射されなかった部分に上記フォトレジスト材料が残り、図5Dに示すように、第一絶縁部14が形成される。
続いて、図6Bに示すように、第二補助電極16を第一絶縁部14上に形成する。このとき、第二補助電極16の一部を第二電極取出部10B上にも形成する。
その後、図6Cに示すように、第二電極13を有機化合物層12、第二補助電極16、及び第一絶縁部14の上に形成する。
次に、第一基板10と第二基板18とを接合する。
このようにして、有機EL素子2が製造される。
(8) 有機EL素子2において、第一補助電極15、及び第二補助電極16が第一絶縁部14を挟んで互いに対向する位置に形成されている。つまり、有機EL素子2を第一基板10の厚み方向で平面視した際に、第一補助電極15、及び第二補助電極16が重なった位置に形成されている。そのため、第一電極11、及び第二電極13に対して、有機EL素子1のように各補助電極15,16を交互に形成する場合と比べて、有機EL素子2の開口率を向上させることができる。
(9) 有機EL素子2において、有機化合物層12が、第一絶縁部14によって第二補助電極16、及び第一補助電極15と絶縁されている。つまり、有機化合物層12が、電気抵抗率の低い第一補助電極15、及び第二補助電極16と直接、電気的に接続されていないので、有機EL素子2の輝度ムラを抑制できる。
次に本発明に係る第三実施形態について、図面に基づいて説明する。
ここで、第三実施形態の説明において第一実施形態と同一の構成要素は、説明を省略もしくは簡略にする。
有機EL素子3は、第一実施形態に係る有機EL素子1と、第二電極と導通する第二補助電極が形成されている位置において異なる。すなわち、有機EL素子1では、図1に示すように、第二補助電極16が第一電極11と第二電極13との間に形成されているのに対し、有機EL素子3では、図7に示すように、第二補助電極36が、第一基板30上に形成されている。その他の点については、有機EL素子3は、有機EL素子1と同様の材料や部材等を用い、同様に構成される。確認的に記載すると、以下に説明する有機EL素子3の第一基板30、第一電極31、有機化合物層32、第二電極33、第一絶縁部34、第二補助電極36、及び第二基板38には、それぞれ対応する、有機EL素子1の第一基板10、第一電極11、有機化合物層12、第二電極13、第一絶縁部14、第二補助電極16、及び第二基板18と同様の材料等が用いられる。
第二補助電極36は、第二電極33よりも電気抵抗率の低い材料で形成されている。有機EL素子3においては、導電性のペースト材料を用いて印刷法や塗布法などの方法によって形成されている。
なお、有機EL素子3においては、有機EL素子1における第一補助電極15に相当する補助電極、及び第二絶縁部17に相当する絶縁部が形成されていないが、有機EL素子1と同様に、第一電極31上に補助電極を形成し、この補助電極を覆うように絶縁部を形成してもよい。
(12) 有機EL素子3において、第二補助電極36が第一電極31上ではなく、第一基板30上に形成される。そのため、導電性のペースト材料を用いて印刷法や塗布法で第二補助電極36を形成する際の圧力が、第一電極31に対して加わらない。その結果、第一電極31の損傷が防止されるので、有機EL素子3をより均一に発光させることができる。
次に本発明に係る第四実施形態について、図面に基づいて説明する。
ここで、第四実施形態の説明において第一実施形態と同一の構成要素は、説明を省略もしくは簡略にする。
有機EL素子4は、第一実施形態に係る有機EL素子1と、第一基板の形状が異なるとともに、第一電極と導通する第一補助電極、及び第二電極と導通する第二補助電極が形成されている位置において異なる。
すなわち、有機EL素子1では、図1に示すように、平板状の第一基板10であるのに対し、有機EL素子4では、図8に示すように、第一基板40は、段差を有する。
また、有機EL素子1では、図1に示すように、第一補助電極15、及び第二補助電極16は、第一電極11と第二電極13との間に形成されているのに対し、有機EL素子4では、図8に示すように、第一補助電極45、及び第二補助電極46は、第一基板40の当該段差の下側の段に形成されている。その他の点については、有機EL素子4は、有機EL素子1と同様の材料や部材等を用い、同様に構成される。確認的に記載すると、以下に説明する有機EL素子4の第一基板40、第一電極41、有機化合物層42、第二電極43、絶縁部44、第一補助電極45、第二補助電極46、及び第二基板48には、それぞれ対応する、有機EL素子1の第一基板10、第一電極11、有機化合物層12、第二電極13、第一絶縁部14、第一補助電極15、第二補助電極16、及び第二基板18と同様の材料等が用いられる。
突出部40bの部材は、本体部40aの部材よりも小さいサイズのものを用い、両部材を接合した際に後述する第一補助電極45等を形成するための面を確保する。両部材の厚さ寸法は、第一補助電極45の高さを突出部40bの高さより大きくし、突出部40bと第一補助電極45とを近接させるか、密着させると、第一補助電極45と第一電極41との接続が確実になるので好ましい。
突出部40bの部材としてはポリマー材、無機ペースト材が挙げられる。このような部材であれば、各種の印刷法や塗布方法を用いることができるので好ましい。より好ましいポリマー材は、アクリレート、ポリカーボネート、ポリスチレン、ポリオレフィン、ポリイミド、ポリサルホンポリエステル、エポキシ樹脂、フェノール樹脂、シリコン樹脂、フッ素樹脂ある。これらは、無機微粒子や無機ナノ粒子、無機フィラーなどを含有する複合ポリマー材としても良い。前記、無機ペースト材は、複合ポリマー材を含む場合もあり得るし、焼成後、有機分が微小になった材質を意味する場合も含まれる。
第一補助電極45は、第一電極41よりも電気抵抗率の低い材料で形成されている。有機EL素子4においては、導電性のペースト材料を用いて印刷法や塗布法などの方法によって形成されている。
第一補助電極45は、第一電極41と導通する。有機EL素子4においては、図8に示すように、第一電極41は、突出部40b上から、第一補助電極45が形成されている本体部40aの面上まで延長して形成されている。第一補助電極45は、この第一電極41の延長部分の一部を覆うように形成されている。
第二補助電極46は、第二電極43と導通する。
第二補助電極46も、第一補助電極45と同様に形成される。また、第一補助電極45、及び第二補助電極46を同時に形成してもよい。
また、絶縁部44は、第二補助電極46と第一電極41との間、第二補助電極46と有機化合物層42との間、並びに第一電極41と第二電極43との間にも形成され、それぞれの間を絶縁している。
第二電極43は、第二補助電極46と導通する。
(16) 有機EL素子4において、第一補助電極45、及び第二補助電極46が第一電極41上ではなく、第一基板40の本体部40a上に形成される。そのため、導電性のペースト材料を用いて印刷法や塗布法で第一補助電極45、及び第二補助電極46を形成する際の圧力が、第一電極41に対して加わらない。その結果、第一電極41の損傷が防止されるので、有機EL素子4をより均一に発光させることができる。
特に、第一電極41が形成される突出部40bと、第一補助電極45、及び第二補助電極46が形成される本体部40aとが段差を介して離れているので、第一電極41に対して圧力が加わることを、より確実に防止できる。
次に本発明に係る第五実施形態について、図面に基づいて説明する。
ここで、第五実施形態の説明において第一実施形態と同一の構成要素は、説明を省略もしくは簡略にする。
有機EL素子5は、第一実施形態に係る有機EL素子1と、第一補助電極、及び第二補助電極が形成されている位置が異なる。さらに、第一電極が形成されている位置が異なる。
すなわち、前者の相違については、有機EL素子1では、図1に示すように、第一補助電極15、及び第二補助電極16が第一電極11と第二電極13との間に形成されているのに対し、有機EL素子5では、図9に示すように、第一補助電極55、及び第二補助電極56が、第一基板50上に形成されている。
後者の相違については、有機EL素子1では、図1に示すように、第一電極11が第一基板10上に形成されているのに対し、有機EL素子5では、図9に示すように、第一基板50上に第一絶縁部54が形成され、この第一絶縁部54上に第一電極51が形成されている。
その他の点については、有機EL素子5は、有機EL素子1と同様の材料や部材等を用い、同様に構成される。つまり、確認的に記載すると、以下に説明する有機EL素子5の第一基板50、第一電極51、有機化合物層52、第二電極53、第一絶縁部54、第一補助電極55、第二補助電極56、第二絶縁部57、及び第二基板58には、それぞれ対応する、有機EL素子1の第一基板10、第一電極11、有機化合物層12、第二電極13、第一絶縁部14、第一補助電極15、第二補助電極16、第二絶縁部17、及び第二基板18と同様の材料等が用いられる。
このとき、第一絶縁部54は、第一基板50上の一面に渡って形成されておらず、図9に示すように、第一基板50上で所定の間隔を有して形成されている。具体的には、第一絶縁部54は、第一基板50上に形成される第一補助電極55、及び第二補助電極56に対して第一電極51、及び第二電極53をそれぞれ導通させるためのスペースを設けて形成されている。
第一絶縁部54の厚さ寸法は、第一補助電極55、及び第二補助電極56の厚さ寸法よりも大きく形成されている。
第一補助電極55、及び第二補助電極56は、第一電極51、及び第二電極53よりも電気抵抗率の低い材料で形成されている。有機EL素子5においては、導電性のペースト材料を用いて印刷法や塗布法などの方法によって形成されている。
なお、有機EL素子5においては、第一基板50上に、第一補助電極55、及び第二補助電極56を形成した後、第一絶縁部54を形成しているため、図9に示すように、第一絶縁部54の一部が、第一補助電極55、及び第二補助電極56の上の一部を覆っている。
第一部分57aは、図9に示すように、第二電極53が第二補助電極56と導通するために延長されて形成されている途中に設けられている。
第二部分57bは、図9に示すように、第一電極51が第一補助電極55と導通する箇所に設けられている。ここで、第一絶縁部54が所定の間隔を有して形成されているため、図9に示すように、第一絶縁部54同士の間は、谷状になっている。第二部分57bは、この谷状の部分を埋めるように形成されている。第二電極53は、この第二部分57bを伝って隣接する第一絶縁部54上に形成されている第二電極53とも電気的に接続している。
(20) 有機EL素子5において、第一補助電極55、及び第二補助電極56が第一電極51上ではなく、第一基板50上に形成される。そのため、導電性のペースト材料を用いて印刷法や塗布法で第一補助電極55、及び第二補助電極56を形成する際の圧力が、第一電極51に対して加わらない。その結果、第一電極51の損傷が防止されるので、有機EL素子5をより均一に発光させることができる。
次に本発明に係る第六実施形態について、図面に基づいて説明する。
ここで、第六実施形態の説明において第一実施形態、第四実施形態と同一の構成要素は、説明を省略もしくは簡略にする。
有機EL素子6は、第四実施形態に係る有機EL素子4と、第一基板の突出部の構成が異なる。有機EL素子6の第一基板60は、有機EL素子4の第一基板40と同様に段差を有し、本体部60aと突出部60bとを有する。本実施形態において、この突出部60bは、平板状の本体部60aの上に、光取り出し層として形成されている。
光取り出し層としての突出部60bは、屈折率の高い材料で形成されていることが好ましい。突出部60bの屈折率としては、1.5以上2.5以下とするのが好ましい。
有機EL素子6の第一基板60には、図10に示すように、突出部60b上に第一電極取出部60Cが形成され、本体部60a上に第二電極取出部60Dが形成されている。
突出部60bの表面は、平坦に成膜することが好ましい。突出部60bの上には、第一電極41、有機化合物層42、及び第二電極43を積層形成するため、下地となる突出部60b表面を平坦に形成すると、電極間の短絡を防止できる。突出部60bの成膜は、湿式成膜法などにより行う。具体的には、例えば、溶媒でインク化した高屈折材料を、スピンコーティング法により本体部60a表面に塗布し、その後、溶媒を蒸発乾燥させて成膜する。
第一基板60の突出部60bを光取り出し層とすることで、有機化合物層42で生じた放射光を第一基板60外部へ効率的に取り出すことができる。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。例えば、本発明の目的を達成できる範囲で以下に示される変形をも含むものである。
10,30,40,50,60…第一基板
11,31,41,51…第一電極
12,32,42,52…有機化合物層
13,33,43,53…第二電極
40a,60a …本体部
40b,60b …突出部
14,34,44,54…第一絶縁部(絶縁部)
15,45,55 …第一補助電極
16,36,46,56…第二補助電極
17,57 …第二絶縁部
18,38,48,58…第二基板
Claims (14)
- 第一基板、第一電極、有機化合物層、及び第二電極が、この順に配置される有機エレクトロルミネッセンス素子であって、
前記第一電極と前記第二電極との間に、第一絶縁部、及び第二補助電極が、前記第一電極側からこの順に形成され、
前記第二電極と前記第二補助電極とが導通し、
前記第一電極、及び前記有機化合物層が、前記第一絶縁部によって前記第二補助電極と絶縁されている
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項1に記載の有機エレクトロルミネッセンス素子において、
前記第一電極と前記第一絶縁部との間に第一補助電極が形成され、
前記第一電極と前記第一補助電極とが導通し、
前記有機化合物層が、前記第一絶縁部によって前記第一補助電極と絶縁されている
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項1に記載の有機エレクトロルミネッセンス素子において、
前記第一電極と前記第二電極との間であって、前記第一絶縁部、及び前記第二補助電極が形成されていない位置に、第一補助電極、及び第二絶縁部が、前記第一電極側からこの順に形成され、
前記第一電極と前記第一補助電極とが導通し、
前記有機化合物層が、前記第二絶縁部によって前記第一補助電極と絶縁されている
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項3に記載の有機エレクトロルミネッセンス素子において、
前記第一絶縁部、及び前記第二絶縁部が同じ材料で形成されている
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
前記第二補助電極と前記第一電極との距離が、前記有機化合物層の厚さ寸法よりも大きい
ことを特徴とする有機エレクトロルミネッセンス素子。 - 第一基板と、前記第一基板上に形成された第一電極と、前記第一電極上に形成された有機化合物層と、前記有機化合物層上に形成された第二電極とを備えた有機エレクトロルミネッセンス素子であって、
前記第一基板上には、前記第二電極と導通する第二補助電極が形成されている
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項6に記載の有機エレクトロルミネッセンス素子において、
前記第一電極と前記第二補助電極との間、並びに前記有機化合物層と前記第二補助電極との間には、絶縁部が形成され、
前記第一電極、及び前記有機化合物層が、前記絶縁部によって前記第二補助電極と絶縁されている
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項6に記載の有機エレクトロルミネッセンス素子において、
前記第一基板は、平板状の本体部と前記本体部面から垂直方向に突出する突出部とを有し、
前記突出部上には、前記第一電極、前記有機化合物層、及び前記第二電極が形成され、
前記本体部上には、前記第二補助電極が形成されている
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項8に記載の有機エレクトロルミネッセンス素子において、
前記本体部上には、前記第一電極と導通する第一補助電極が形成され、
前記第一補助電極と前記第二補助電極との間には、絶縁部が形成され、
前記第一補助電極が、前記絶縁部によって前記第二補助電極と絶縁されている
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項8又は請求項9に記載の有機エレクトロルミネッセンス素子において、
前記本体部と前記突出部とが異なる部材からなる
ことを特徴とする有機エレクトロルミネッセンス素子。 - 第一基板と、前記第一基板上に形成された絶縁部と、前記絶縁部上に形成された第一電極と、前記第一電極上に形成された有機化合物層と、前記有機化合物層上に形成された第二電極とを備えた有機エレクトロルミネッセンス素子であって、
前記第一基板上には、前記第一電極と導通する第一補助電極、及び前記第二電極と導通する第二補助電極が前記絶縁部を介して形成され、
前記第一補助電極と前記第二補助電極とが前記絶縁部によって絶縁され、
前記有機エレクトロルミネッセンス素子を前記第一基板の厚さ方向断面で見た場合に、前記絶縁部の厚さ寸法は、前記第一補助電極、及び前記第二補助電極の厚さ寸法よりも大きい
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
第二基板が、前記有機化合物層、及び前記第二電極を介して前記第一基板と対向して配置され、
前記第一基板、及び前記第二基板が透明基板であり、
前記第一電極、及び前記第二電極が透明電極である
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項1から請求項12までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
前記第一補助電極、及び前記第二補助電極の少なくともいずれかが、銀、金、タングステン、アルミニウム、及びニッケルの少なくともいずれかとバインダとを含む
ことを特徴とする有機エレクトロルミネッセンス素子。 - 請求項1から請求項13までのいずれか一項に記載の有機エレクトロルミネッセンス素子を備えることを特徴とする照明装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012554802A JPWO2012102268A1 (ja) | 2011-01-25 | 2012-01-24 | 有機エレクトロルミネッセンス素子、及び照明装置 |
US13/981,602 US9099672B2 (en) | 2011-01-25 | 2012-01-24 | Organic electroluminescent element and illumination device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011013059 | 2011-01-25 | ||
JP2011-013059 | 2011-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012102268A1 true WO2012102268A1 (ja) | 2012-08-02 |
Family
ID=46580834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051438 WO2012102268A1 (ja) | 2011-01-25 | 2012-01-24 | 有機エレクトロルミネッセンス素子、及び照明装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9099672B2 (ja) |
JP (1) | JPWO2012102268A1 (ja) |
WO (1) | WO2012102268A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014150030A (ja) * | 2013-02-04 | 2014-08-21 | Mitsubishi Chemicals Corp | 有機elデバイス |
WO2015008431A1 (ja) * | 2013-07-19 | 2015-01-22 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
CN104982092A (zh) * | 2013-02-07 | 2015-10-14 | 松下知识产权经营株式会社 | 有机电致发光元件以及照明装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345185A (ja) * | 2000-03-27 | 2001-12-14 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
JP2003017251A (ja) * | 2001-06-28 | 2003-01-17 | Canon Electronics Inc | 有機エレクトロルミネセンス表示装置の製造方法 |
JP2003257663A (ja) * | 2002-03-04 | 2003-09-12 | Rohm Co Ltd | 有機el表示パネルおよびその製造方法 |
JP2003288994A (ja) * | 2002-01-24 | 2003-10-10 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
JP2006059796A (ja) * | 2004-07-22 | 2006-03-02 | Sharp Corp | 有機発光素子、それを備えた表示装置、及び有機発光素子の製造方法 |
JP2009237508A (ja) * | 2008-03-28 | 2009-10-15 | Sony Corp | 表示装置 |
WO2010041611A1 (ja) * | 2008-10-06 | 2010-04-15 | 旭硝子株式会社 | 電子デバイス用基板、その製造方法、これを用いた電子デバイス、その製造方法及び有機led素子用基板 |
JP2011034931A (ja) * | 2009-08-06 | 2011-02-17 | Canon Inc | 有機el表示装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010243A (ja) | 2006-06-28 | 2008-01-17 | Harison Toshiba Lighting Corp | 有機el素子およびその製造方法 |
KR100811473B1 (ko) | 2006-10-17 | 2008-03-07 | 엘지전자 주식회사 | 전계발광패널 및 그를 포함하는 광원장치 |
JP5058251B2 (ja) | 2007-03-30 | 2012-10-24 | パイオニア株式会社 | 発光装置 |
-
2012
- 2012-01-24 JP JP2012554802A patent/JPWO2012102268A1/ja active Pending
- 2012-01-24 WO PCT/JP2012/051438 patent/WO2012102268A1/ja active Application Filing
- 2012-01-24 US US13/981,602 patent/US9099672B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001345185A (ja) * | 2000-03-27 | 2001-12-14 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
JP2003017251A (ja) * | 2001-06-28 | 2003-01-17 | Canon Electronics Inc | 有機エレクトロルミネセンス表示装置の製造方法 |
JP2003288994A (ja) * | 2002-01-24 | 2003-10-10 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
JP2003257663A (ja) * | 2002-03-04 | 2003-09-12 | Rohm Co Ltd | 有機el表示パネルおよびその製造方法 |
JP2006059796A (ja) * | 2004-07-22 | 2006-03-02 | Sharp Corp | 有機発光素子、それを備えた表示装置、及び有機発光素子の製造方法 |
JP2009237508A (ja) * | 2008-03-28 | 2009-10-15 | Sony Corp | 表示装置 |
WO2010041611A1 (ja) * | 2008-10-06 | 2010-04-15 | 旭硝子株式会社 | 電子デバイス用基板、その製造方法、これを用いた電子デバイス、その製造方法及び有機led素子用基板 |
JP2011034931A (ja) * | 2009-08-06 | 2011-02-17 | Canon Inc | 有機el表示装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014150030A (ja) * | 2013-02-04 | 2014-08-21 | Mitsubishi Chemicals Corp | 有機elデバイス |
CN104982092A (zh) * | 2013-02-07 | 2015-10-14 | 松下知识产权经营株式会社 | 有机电致发光元件以及照明装置 |
WO2015008431A1 (ja) * | 2013-07-19 | 2015-01-22 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
US9583733B2 (en) | 2013-07-19 | 2017-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Organic electroluminescent element and illumination device |
JPWO2015008431A1 (ja) * | 2013-07-19 | 2017-03-02 | パナソニックIpマネジメント株式会社 | 有機エレクトロルミネッセンス素子及び照明装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012102268A1 (ja) | 2014-06-30 |
US9099672B2 (en) | 2015-08-04 |
US20130299812A1 (en) | 2013-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6336569B2 (ja) | 有機発光素子およびその製造方法 | |
JP5421218B2 (ja) | 光電変換装置、及び光電変換装置の製造方法 | |
JP4338144B2 (ja) | 有機el発光装置およびその製造方法 | |
US8890136B2 (en) | Planar light emitting device | |
JP6431107B2 (ja) | 発光装置 | |
US20140197403A1 (en) | Light emission device | |
JP2015158981A (ja) | 有機エレクトロルミネッセンス素子及び照明装置 | |
JP2005338419A (ja) | 面発光装置用封止体及び面発光装置 | |
EP3428990B1 (en) | Lighting panel and method of fabricating the same | |
WO2013042784A1 (ja) | 発光装置 | |
US20130334958A1 (en) | Planar light emitting device and manufacturing method thereof | |
WO2012102268A1 (ja) | 有機エレクトロルミネッセンス素子、及び照明装置 | |
WO2012102269A1 (ja) | 有機エレクトロルミネッセンス素子、及び照明装置 | |
US9853234B2 (en) | Organic EL device and method for producing the same | |
JP2003051380A (ja) | 有機電界発光素子を用いた線状光源及びその製造方法 | |
TWI460852B (zh) | 面狀發光裝置 | |
JP2015115191A (ja) | 有機エレクトロルミネッセンス素子、その製造方法及び照明装置 | |
JP6617024B2 (ja) | 発光装置 | |
KR102234829B1 (ko) | 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법 | |
US10068958B2 (en) | Organic light-emitting component and method for producing an organic light-emitting component | |
JP6329177B2 (ja) | 発光装置 | |
KR20130033645A (ko) | 투명 전극을 포함하는 기재 및 그 제조방법 | |
WO2016031130A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP6294071B2 (ja) | 発光装置 | |
WO2023103000A1 (zh) | 显示面板及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12738752 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012554802 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13981602 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12738752 Country of ref document: EP Kind code of ref document: A1 |