[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012177073A2 - 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 - Google Patents

상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 Download PDF

Info

Publication number
WO2012177073A2
WO2012177073A2 PCT/KR2012/004938 KR2012004938W WO2012177073A2 WO 2012177073 A2 WO2012177073 A2 WO 2012177073A2 KR 2012004938 W KR2012004938 W KR 2012004938W WO 2012177073 A2 WO2012177073 A2 WO 2012177073A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
pucch
ack
resource
nack
Prior art date
Application number
PCT/KR2012/004938
Other languages
English (en)
French (fr)
Other versions
WO2012177073A3 (ko
Inventor
김학성
김기준
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020137030360A priority Critical patent/KR101925031B1/ko
Priority to US14/123,067 priority patent/US9246656B2/en
Publication of WO2012177073A2 publication Critical patent/WO2012177073A2/ko
Publication of WO2012177073A3 publication Critical patent/WO2012177073A3/ko
Priority to US14/973,426 priority patent/US9602264B2/en
Priority to US15/428,796 priority patent/US9871638B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a wireless communication system. Specifically, the present invention relates to a method and apparatus for transmitting an uplink signal and a method and apparatus for receiving an uplink signal.
  • M2M smartphone-to-machine communication
  • smart phones and tablet PCs which require high data transmission rates
  • M2M smartphone-to-machine communication
  • the amount of data required to be processed in a cellular network is growing very quickly.
  • carrier aggregation technology, cognitive radio technology, etc. to efficiently use more frequency bands, and increase the data capacity transmitted within a limited frequency Multi-antenna technology, multi-base station cooperation technology, and the like are developing.
  • the communication environment is evolving in the direction of increasing density of nodes that users can access from the periphery.
  • a communication system with a high density of nodes can provide higher performance communication services to users by cooperation between nodes.
  • the present invention provides a method and apparatus for efficiently transmitting / receiving an uplink signal.
  • the user equipment transmits an uplink signal to a base station in a wireless communication system
  • the user equipment is used for transmitting ACK / NACK (ACKnowledgement / Negative ACK) associated with a first physical downlink control channel (PDCCH)
  • PDCCH physical downlink control channel
  • Receive the first PDCCH from the base station
  • the ACK / NACK information corresponding to the first PDCCH is transmitted to the base station by using a PUCCH resource determined among the first PUCCH resources based on the index of the resource included in the first PDCCH and the first offset information.
  • the first PDCCH is received in a data region of a downlink subframe, and the first offset information is user device specific information.
  • a user equipment in the wireless communication system in transmitting an uplink signal to a base station, comprising: a radio frequency (RF) unit; And a processor configured to control the RF unit, wherein the processor is a first physical uplink control available for transmission of an ACK / NACK (ACKnowledgement / Negative ACK) associated with a first physical downlink control channel (PDCCH) from the base station.
  • RF radio frequency
  • PDCCH physical downlink control channel
  • the RF unit controlling the RF unit to receive first offset information indicating resources, controlling the RF unit to receive the first PDCCH from the base station, and an index of the resource included in the first PDCCH and the first
  • the RF unit is controlled to transmit ACK / NACK information corresponding to the first PDCCH to the base station by using a PUCCH resource determined among the first PUCCH resources based on 1 offset information, and the first PDCCH is downlink.
  • the first offset information is provided, the user equipment is user equipment specific information.
  • ACK / NACK ACKnowledgement / Negative ACK
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • a base station receives an uplink signal from a user equipment, the radio frequency unit comprising: a radio frequency (RF) unit; And a processor configured to control the RF unit, wherein the processor is a first physical uplink available for transmission of an ACK / NACK (ACKnowledgement / Negative ACK) associated with a first physical downlink control channel (PDCCH) to the user equipment.
  • RF radio frequency
  • Control channel controlling the RF unit to transmit first offset information indicating resources, controlling the RF unit to transmit the first PDCCH to the user equipment, an index of a resource included in the first PDCCH, and
  • the RF unit is controlled to receive, from the user equipment, ACK / NACK information corresponding to the first PDCCH using a PUCCH resource determined among the first PUCCH resources based on the first offset information, wherein the first PDCCH Is received in a data region of a downlink subframe, and the first offset information is user equipment specific information.
  • second offset information which is cell-specific information indicating second PUCCH resources available for ACK / NACK transmission associated with a second PDCCH received in a control region of a downlink subframe, is received from the base station. Can be transmitted to the user device. ACK / NACK information corresponding to the second PDCCH is to be transmitted from the user equipment to the base station using a PUCCH resource determined among the second PUCCH resources based on the index of the resource included in the second PDCCH and the second offset information. Can be.
  • a scrambling identifier or antenna port information for the first PDCCH may be transmitted from the base station to the user equipment.
  • the PUCCH resource used to transmit ACK / NACK information corresponding to the first PDCCH may be determined based on the scrambling identifier or antenna port information.
  • the first PDCCH is received in a search space, consisting of a plurality of resource units, comprising a plurality of first PDCCH candidate positions according to aggregation levels.
  • Each of the first PUCCH resources may be mapped to a candidate location having the lowest aggregation level among first PDCCH candidate locations that share one resource unit among the plurality of resource units in the search space.
  • the efficiency of uplink resource usage is increased.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG 3 illustrates a downlink subframe structure used in a 3GPP LTE (-A) system.
  • Figure 4 shows an example of an uplink subframe structure used in the 3GPP LTE (-A) system.
  • FIG. 5 shows an example of determining a PUCCH resource for ACK / NACK in a 3GPP LTE- (A) system.
  • FIG. 6 illustrates a method of mapping a virtual resource block to a physical resource block.
  • Type 7 illustrate control information formats for Type 0 Resource Allocation (RA), Type 1 RA, and Type 2 RA, and corresponding resource allocation examples.
  • RA Resource Allocation
  • Type 1 RA Type 1 RA
  • Type 2 RA resource allocation examples
  • FIG. 10 shows an example in which a base station transmits a signal to an RN using a specific subframe.
  • FIG. 11 is a diagram illustrating a concept of an embedded PDCCH (e-PDCCH).
  • FIG. 13 illustrates a mapping concept of R-PDCCH and PRB for configuring a search space of R-PDCCH.
  • FIG. 14 illustrates an embodiment of the present invention for allocating ACK / NACK resources for an e-PDCCH.
  • 15 is a diagram for explaining another embodiment of the present invention for allocating ACK / NACK resources for an e-PDCCH.
  • 16 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • the techniques, devices, and systems described below may be applied to various wireless multiple access systems.
  • 3GPP LTE 3GPP LTE
  • the technical features of the present invention are not limited thereto.
  • the following detailed description is described based on the mobile communication system corresponding to the 3GPP LTE (-A) system, any other mobile communication except for the matters specific to 3GPP LTE (-A) Applicable to the system as well.
  • a user equipment may be fixed or mobile, and various devices which communicate with the BS to transmit and receive user data and / or various control information belong to the same.
  • the UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like.
  • a base station generally refers to a fixed station for communicating with a UE and / or another BS, and communicates various data and control information by communicating with the UE and another BS. do.
  • the BS may be referred to in other terms such as ABS (Advanced Base Station), NB (Node-B), eNB (evolved-NodeB), BTS (Base Transceiver System), Access Point (Access Point), and Processing Server (PS).
  • ABS Advanced Base Station
  • NB Node-B
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • Access Point Access Point
  • PS Processing Server
  • Physical Downlink Control CHannel PDCCH
  • Physical Control Format Indicator CHannel PCFICH
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • PUSCH Physical Uplink Shared CHannel
  • UCI uplink control information
  • PDCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • the expression that the UE transmits PUCCH / PUSCH is used in the same sense as transmitting uplink control information / uplink data / random access signal on the PUSCH / PUCCH, respectively.
  • the expression that the PDCCH / PCFICH / PHICH / PDSCH is transmitted is used in the same sense as transmitting downlink data / control information on the PDCCH / PCFICH / PHICH / PDSCH, respectively.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 1 (a) illustrates a radio frame structure that can be used for FDD in 3GPP LTE (-A)
  • FIG. 1 (b) illustrates a radio frame structure that can be used for TDD in 3GPP LTE (-A). It is illustrated.
  • a radio frame used in 3GPP LTE has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes. Numbers may be assigned to 10 subframes in one radio frame.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink (DL) transmission and uplink (UL) transmission are divided by frequency, a radio frame is a downlink subframe or a UL subframe for a predetermined frequency band operating at a predetermined carrier frequency. Includes only one of them. Since the DL transmission and the UL transmission in the TDD mode are separated by time, a radio frame includes both a downlink subframe and an UL subframe for a predetermined frequency band operating at a predetermined carrier frequency.
  • DL downlink
  • UL uplink
  • Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
  • D denotes a downlink subframe
  • U denotes an UL subframe
  • S denotes a special subframe.
  • the singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS is a time interval reserved for DL transmission
  • UpPTS is a time interval reserved for UL transmission.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG. 2 shows a structure of a resource grid of a 3GPP LTE (-A) system. There is one resource grid per antenna port.
  • -A 3GPP LTE
  • the slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • An OFDM symbol may mean a symbol period.
  • a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB * N RB sc subcarriers and N DL / UL symb OFDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB and N UL RB depend on DL transmission bandwidth and UL transmission bandwidth, respectively.
  • N DL symb represents the number of OFDM symbols in the downlink slot
  • N UL symb represents the number of OFDM symbols in the UL slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • An OFDM symbol may be called an OFDM symbol, an SC-FDM symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may be variously changed according to the channel bandwidth and the length of the CP. For example, one slot includes seven OFDM symbols in the case of a normal CP, but one slot includes six OFDM symbols in the case of an extended CP.
  • FIG. 2 illustrates a subframe in which one slot consists of 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner. Referring to FIG. 2, each OFDM symbol includes N DL / UL RB * N RB sc subcarriers in the frequency domain.
  • the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard bands, and DC components.
  • the null subcarrier for the DC component is a subcarrier left unused and is mapped to a carrier frequency (carrier freqeuncy, f 0 ) in the OFDM signal generation process or the frequency upconversion process.
  • the carrier frequency is also called the center frequency.
  • One RB is defined as N DL / UL symb (e.g., seven) consecutive OFDM symbols in the time domain and is defined by N RB sc (e.g., twelve) consecutive subcarriers in the frequency domain. Is defined.
  • N DL / UL symb e.g., seven
  • N RB sc e.g., twelve
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of N DL / UL symb * N RB sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot.
  • k is an index given from 0 to N DL / UL RB * N RB sc ⁇ 1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
  • PRB physical resource block
  • Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
  • FIG 3 illustrates a downlink subframe structure used in a 3GPP LTE (-A) system.
  • the DL subframe is divided into a control region and a data region in the time domain.
  • up to three (or four) OFDM symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHance (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared CHance
  • a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region.
  • Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal in response to the UL transmission.
  • DCI downlink control information
  • DCI includes resource allocation information and other control information for the UE or UE group.
  • the DCI includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), and a paging channel. channel, paging information on PCH), system information on DL-SCH, resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual UEs in UE group, Tx power Control command, activation instruction information of Voice over IP (VoIP), and the like.
  • the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • a plurality of PDCCHs may be transmitted in the PDCCH region of the DL subframe.
  • the UE may monitor the plurality of PDCCHs.
  • the BS determines the DCI format according to the DCI to be transmitted to the UE, and adds a cyclic redundancy check (CRC) to the DCI.
  • CRC cyclic redundancy check
  • the CRC is masked (or scrambled) with an identifier (eg, a radio network temporary identifier (RNTI)) depending on the owner or purpose of use of the PDCCH.
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
  • Four QPSK symbols are mapped to each REG.
  • the resource element RE occupied by the reference signal RS is not included in the REG.
  • the REG concept is also used for other DL control channels (ie, PDFICH and PHICH).
  • the DCI format and the number of DCI bits are determined according to the number of CCEs.
  • CCEs are numbered and used consecutively, and to simplify the decoding process, a PDCCH having a format consisting of n CCEs can be started only in a CCE having a number corresponding to a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH, that is, the CCE aggregation level is determined by the BS according to the channel state. For example, one CCE may be sufficient for a PDCCH for a UE having a good DL channel (eg, adjacent to a BS). However, in case of a PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
  • Four QPSK symbols are mapped to each REG.
  • the resource element RE occupied by the reference signal RS is not included in the REG.
  • the REG concept is also used for other downlink control channels (ie, PDFICH and PHICH).
  • the DCI format and the number of DCI bits are determined according to the number of CCEs. For example, four DCI formats are supported as shown in Table 2.
  • CCEs are numbered consecutively, and to simplify the decoding process, a PDCCH having a format consisting of n CCEs can only be started in a CCE having a number corresponding to a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the BS according to the channel state. For example, in case of PDCCH for a UE having a good downlink channel (eg, adjacent to a BS), one CCE may be sufficient. However, in case of a PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • the power level of the PDCCH may be adjusted according to the channel state.
  • a CCE set in which a PDCCH can be located is defined for each UE.
  • the set of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS).
  • An individual resource to which a PDCCH can be transmitted in a search space is referred to as a PDCCH candidate.
  • the collection of PDCCH candidates to be monitored by the UE is defined as a search space.
  • One PDCCH candidate corresponds to 1, 2, 4 or 8 CCEs depending on the CCE aggregation level.
  • the BS sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI). Specifically, the UE attempts blind decoding on the PDCCH candidates in the search space.
  • DCI actual PDCCH
  • a search space for each PDCCH format may have a different size, and a dedicated search space and a common search space are defined.
  • the dedicated search space is a UE-specific search space and is configured for each individual UE.
  • the common search space is configured for a plurality of UEs. Table 3 illustrates the aggregation levels that define the search spaces.
  • the UE By monitoring the corresponding search space at each aggregation level, the UE detecting its own PDCCH decodes and / or uplink subframes in the PDSCH region of the downlink subframe based on the DCI carried by the detected PDCCH.
  • the PUSCH is transmitted in the data region of.
  • Figure 4 shows an example of an uplink subframe structure used in the 3GPP LTE (-A) system.
  • the UL subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
  • the control region and data region in the UL subframe may also be called a PUCCH region and a PUSCH region, respectively.
  • a sounding reference signal (SRS) may be allocated to the data area.
  • the SRS is transmitted in the OFDM symbol located at the end of the UL subframe in the time domain and in the data transmission band of the UL subframe, that is, in the data domain, in the frequency domain.
  • SRSs of several UEs transmitted / received in the last OFDM symbol of the same subframe may be distinguished according to frequency location / sequence.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion.
  • the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
  • the UCI carried by one PUCCH is different in size and use according to the PUCCH format, and may vary in size according to a coding rate.
  • the following PUCCH format may be defined.
  • the PUCCH format 1 series and the PUCCH format 3 series are mainly used to transmit ACK / NACK information
  • the PUCCH format 2 series is mainly channel state information (CSI) such as CQI / PMI / RI. Used to carry).
  • CSI channel state information
  • the UE is allocated a PUCCH resource for transmission of the UCI from the BS by a higher layer signal or a dynamic control signal or an implicit method.
  • the physical resources used for the PUCCH depend on two parameters given by higher layers, N (2) RB and N (1) cs .
  • the variable N (2) RB ⁇ 0 represents the bandwidth available for PUCCH format 2 / 2a / 2b transmission in each slot and is expressed as N RB sc integer multiples.
  • the variable N (1) cs represents the number of cyclic shifts used for the PUCCH format 1 / 1a / 1b in the resource block used for mixing the formats 1 / 1a / 1b and 2 / 2a / 2b.
  • N (1) cs becomes an integer multiple of ⁇ PUCCH shift within the range of ⁇ 0, 1, ..., 7 ⁇ .
  • PUCCH format 1 / 1a / 1b, 2 / 2a / 2b and the resources used for transmission of the third are the integer indices non-negative n (1, p) PUCCH, n (2, p) by an antenna port p PUCCH ⁇ N (2) RB N RB sc + ceil (N (1) cs / 8). (N RB sc -N (1) cs -2) and n (2, p) PUCCH , respectively.
  • an orthogonal sequence and / or cyclic shift to be applied to a corresponding UCI is determined from a PUCCH resource index and resource indexes of two resource blocks in a subframe to which a PUCCH is mapped are given.
  • a PRB for transmission of a PUCCH in slot n s is given as follows.
  • Equation 1 the variable m depends on the PUCCH format, and is given to the PUCCH format 1 / 1a / 1b, the PUCCH format 2 / 2a / 2b, and the PUCCH format 3 by Equation 2, Equation 3, and Equation 4, respectively.
  • n (1, p) PUCCH is a PUCCH resource index of antenna port p for PUCCH format 1 / 1a / 1b, and in the case of ACK / NACK PUCCH, the first CCE index of PDCCH carrying scheduling information of the corresponding PDSCH This is an implicit value.
  • PUCCH is a PUCCH resource index of antenna port p for PUCCH format 2 / 2a / 2b, and is a value transmitted from BS to UE by higher layer signaling.
  • PUCCH is a PUCCH resource index of antenna port p for PUCCH format 2 / 2a / 2b, which is a value transmitted from BS to UE by higher layer signaling.
  • N PUCCH SF, 0 represents a spreading factor for the first slot of a subframe.
  • N PUCCH for all within two slot sub-frame using a common PUCCH Format 3 SF, 0 to 5, and, N PUCCH for the first slot and the second slot from using a reduced PUCCH Format 3 sub-frames SF, 0 Are 5 and 4, respectively.
  • the PUCCH resources for ACK / NACK is not previously allocated to each UE, the plurality of PUCCH resources are used by each of the plurality of UEs in the cell divided at each time point. Specifically, the PUCCH resources used by the UE to transmit ACK / NACK are dynamically determined based on the PDCCH carrying scheduling information for the PDSCH carrying corresponding downlink data.
  • the entire region in which the PDCCH is transmitted in each DL subframe consists of a plurality of control channel elements (CCEs), and the PDCCH transmitted to the UE consists of one or more CCEs.
  • CCEs control channel elements
  • the UE transmits ACK / NACK through a PUCCH resource linked to a specific CCE (for example, the first CCE) among the CCEs constituting the PDCCH received by the UE.
  • a PUCCH resource dynamically determined in association with a PDCCH is specifically called an ACK / NACK PUCCH resource.
  • FIG. 5 shows an example of determining a PUCCH resource for ACK / NACK in a 3GPP LTE- (A) system.
  • FIG. 5 illustrates a case in which up to M CCEs exist in the DL and up to M PUCCH resources are reserved in the UL.
  • each PUCCH resource index corresponds to a PUCCH resource for ACK / NACK.
  • the UE configures the PDCCH.
  • the ACK / NACK is transmitted to the BS through the PUCCH resource corresponding to the fourth CCE.
  • the PUCCH resource index for transmission by two antenna ports p 0 and p 1 in 3GPP LTE (-A) system is determined as follows.
  • N (1) PUCCH represents a signaling value received from a higher layer.
  • n CCE corresponds to the smallest value among the CCE indexes used for PDCCH transmission. For example, when the CCE aggregation level is 2 or more, the first CCE index among the indexes of the plurality of CCEs aggregated for PDCCH transmission is used for determining the ACK / NACK PUCCH resource.
  • PRBs Physical Resource Blocks
  • VRBs Virtual Resource Blocks
  • the PRB is the same as that illustrated in FIG. That is, PRB is defined as N DL symb contiguous OFDM symbols in the time domain and N RB sc contiguous subcarriers in the frequency domain. PRBs are numbered 0-N DL RB- 1 in the frequency domain.
  • the relation between the PRB number n PRB and the resource element ( k, l ) in the slot is as follows.
  • VRB is a kind of logical resource allocation unit introduced for resource allocation.
  • VRB has the same size as PRB.
  • a VRB is classified into a localized VRB (Localized VRB, LVRB) and a distributed type VRB (Distributed VRB, DVRB).
  • a pair of resource blocks are allocated together by a single VRB number n VRB across two slots in a subframe.
  • Two PRBs, one located in two slots of a subframe and having the same VRB number, are called VRB pairs.
  • FIG. 6 illustrates a method of mapping a virtual resource block to a physical resource block.
  • DVRBs are mapped to PRBs through interleaving. Therefore, DVRBs having the same VRB number may be mapped to PRBs having different numbers in the first slot and the second slot. Specifically, the DVRB may be mapped to the PRB as shown in Table 5. Table 5 illustrates the RB gap values.
  • N gap represents the frequency interval (eg, PRB unit) when the VRBs of the same number are mapped to the PRBs of the first slot and the second slot.
  • N gap N gap, 1
  • two gap values N gap, 1 and N gap, 2 are defined.
  • min (A, B) represents the smaller of A or B, and floor (x) represents the largest integer not greater than x.
  • VRB number interleaving of each interleaving unit may be performed using four columns and N row rows.
  • P denotes the size of a resource block group (RBG).
  • RBG is defined as P consecutive resource blocks.
  • VRB numbers are written row-by-row in a matrix and read out as column-by-column.
  • N null nulls are inserted into the last N null / 2 rows of the second and fourth columns, to be. Null values are ignored on read.
  • the UE interprets the resource allocation field based on the detected PDCCH DCI format.
  • the resource allocation field in each PDCCH includes two parts of a resource allocation header field and actual resource block allocation information.
  • PDCCH DCI formats 1, 2, and 2A for type 0 and type 1 resource allocation are distinguished from each other through a single bit resource allocation header field having the same format and existing according to a downlink system band. Specifically, type 0 RA is indicated as 0 and type 1 RA is indicated as 1.
  • PDCCH DCI formats 1, 2 and 2A are used for type 0 or type 1 RAs, while PDCCH DCI formats 1A, 1B, 1C and 1D are used for type 2 RAs.
  • PDCCH DCI format with Type 2 RA does not have a resource allocation header field.
  • the resource allocation field indicates the PRB set of the first slot.
  • the PRB set of the second slot is determined by the slot hopping rule.
  • the resource block allocation information in a type 0 RA includes a bitmap indicating a resource block group (RBG) allocated to the terminal.
  • RBG is a set of consecutive PRBs.
  • RBG size (P) depends on the system band as shown in Table 6.
  • N RBG ceil (N DL RB / P)
  • floor (N DL RB / P) RBGs have a size P
  • N DL RB mod P> 0 one of the RBGs is N DL RB -P ⁇ floor (N DL RB / P).
  • ceil (x) represents the smallest integer not less than x, and mod represents the modulo operation.
  • the size of the bitmap is N RBG and each bit corresponds to one RBG.
  • the total RBG is indexed from 0 to N RBG -1 in the frequency increasing direction, and RBG 0 to RBG N RBG -1 is mapped from the most significant bit (MSB) of the bitmap to the least significant bit (LSB).
  • resource block allocation information of size N RBG in a type 1 RA indicates a scheduled UE to resources in an RBG subset in PRB units.
  • RBG subset p (0 ⁇ p ⁇ P) consists of every P th RBG starting from RBG p.
  • Resource block allocation information is composed of three fields. The first field is the ceil ⁇ log 2 (P) ⁇ bits, and instructs the RBG subset selected from the P RBG subsets. The second field is 1 bit and indicates shift of resource allocation span within a subset. If the bit value is 1, the shift is triggered and vice versa.
  • the third field contains a bitmap, each bit indicating one PRB in the selected RBG set.
  • the bitmap portion used to indicate the PRB in the selected RBG subset is N TYPE1 RB in size and is defined as follows.
  • the addressable PRB number in the selected RBG subset may start from the offset ( ⁇ shift (p)) for the smallest PRB number in the selected RBG subset and map to the MSB of the bitmap.
  • the offset is expressed in number of PRBs and applied within the selected RBG subset.
  • ⁇ shift (p) 0.
  • N RBGsubset RB (p) represents the number of PRBs in RBG subset p and can be obtained according to the following.
  • resource block allocation information indicates a set of LVRBs or DVRBs continuously allocated to a scheduled UE.
  • a 1-bit flag indicates whether LVRB or DVRB is allocated (eg, 0 indicates LVRB allocation and 1 indicates DVRB allocation).
  • PDCCH DCI format 1C only DVRB is always allocated.
  • the type 2 resource allocation field includes a resource indication value (RIV), and the RIV corresponds to a start resource block RB start and a length. The length represents the number of resource blocks allocated virtually consecutively.
  • FIG. 10 shows an example in which a base station transmits a signal to an RN using a specific subframe.
  • RN means to expand the service area of the BS or installed in the shadow area to smoothly service the BS service and / or the branch.
  • the RN may be called other terms such as a relay node (RN) and a relay station (RS). From the UE's point of view, the RN is part of the radio access network and operates like a BS, with a few exceptions.
  • a BS that sends a signal to or receives a signal from an RN is called a donor BS.
  • the RN is wirelessly connected to the donor BS.
  • the RN behaves like a UE, with some exceptions (e.g., downlink control information is transmitted via relay PDCCH (R-PDCCH) rather than PDCCH).
  • R-PDCCH relay PDCCH
  • the RN includes both the physical layer entity used for communication with the UE and the physical layer entity used for communication with the donor BS.
  • BS to RN transmission hereinafter, BS-to-RN transmission, occurs in a downlink subframe
  • RN to BS transmission, RN-to-BS transmission occurs in an uplink subframe.
  • BS-to-RN transmission and RN-to-BS transmission occur in the downlink frequency band
  • RN-to-BS transmission and UE-to-RN transmission occur in the uplink frequency band.
  • an RN or UE may communicate with a network to which the one or more BSs belong via one or more BSs.
  • FIG. 10 illustrates communication using a general subframe from RN to UE and communication using a multimedia broadcast single frequency network (MBSFN) subframe from BS to RN.
  • MMSFN multimedia broadcast single frequency network
  • the RN In in-band relay mode operating in the same frequency band as the BS-RN link (ie backhaul link) and the RN-UE link (ie RN access link), the RN receives signals from the BS and sends signals to the UE. Or vice versa, the RN's transmitter and receiver cause interference with each other.
  • the RN may be configured not to communicate with UEs in a time interval in which the RN receives data from a BS. The time period during which UEs do not expect any RN transmission, i.e., a transmission gap, can be generated by constructing an MBSFN subframe.
  • the RN or BS may set any subframe as an MBSFN subframe and set up a backhaul link in the MBSFN subframe (fake MBSFN method).
  • the RN may configure a backhaul link using the PDSCH region of the subframe.
  • the RN may receive a signal from the BS in a specific subframe (eg, MBSFN subframe) and transmit data received from the BS to the UE in another subframe.
  • the R-PDCCH carries downlink control information. That is, the R-PDCCH carries a DCI for RNs.
  • R-PDCCH is transmitted / received in PDSCH region unlike normal 3GPP LTE PDCCH, and DL R-PDCCH (i.e., R-PDCCH carrying DL grant) has UL R-PDCCH (i.e. carrying UL grant in the first slot).
  • R-PDCCH is transmitted / received in the second slot.
  • FIG. 11 is a diagram illustrating a concept of an embedded PDCCH (e-PDCCH).
  • a new remote radio head is being discussed.
  • a method of transmitting UL / DL grants for other CCs in a serving CC having a good channel situation is discussed.
  • this is called cross-carrier scheduling.
  • the RRH technique, the cross-carrier scheduling technique, and the like are introduced, the amount of PDCCH to be transmitted by the BS is gradually increased.
  • a PDCCH according to the existing 3GPP LTE (-A) standard may be allocated to a PDCCH region of a DL subframe, and a PDCCH may be additionally or separately allocated using some resources of the PDSCH region.
  • the conventional PDCCH transmitted in the PDCCH region is transmitted using resources that span a wide frequency band in the frequency domain, whereas the PDCCH transmitted in the PDSCH region is usually transmitted using only a narrow frequency band.
  • the PDCCH transmitted in the latter OFDM symbols (PDSCH region) of the DL subframe is embedded PDCCH (e-PDCCH). It is called).
  • the e-PDCCH may also be called an enhanced PDCCH (E-PDCCH) or an advanced PDCCH (A-PDCCH), and the R-PDCCH is also a kind of e-PDCCH.
  • E-PDCCH enhanced PDCCH
  • A-PDCCH advanced PDCCH
  • the R-PDCCH is also a kind of e-PDCCH.
  • PDSCH / PUSCH scheduled by e-PDCCH is also called e-PDSCH / e-PUSCH.
  • ACK / determined by PUCCH resources (cyclic shift, CS) and orthogonal cover sequence (OC) used for transmission of PUCCH carrying PDSCH transmission success or failure
  • a NACK or SR (scheduling request resource) is configured by a higher layer signal (eg, an RRC signal). If the PUCCH resource is configured by the RRC signal, it is difficult to change the resource configuration at any time. For this reason, in a wireless communication system including an RN system in which PUCCH resources are configured by higher layer signals, it is difficult to efficiently operate the PUCCH resources.
  • the PDCCH resource carrying the e-PDCCH including the R-PDCCH is operated using an index separate from the CCE index applied to the normal PDCCH. That is, the PDCCH and the e-PDCCH are managed by different CCE indexes.
  • a CCE associated with a PDCCH is referred to as a PDCCH CCE
  • a CCE associated with an e-PDCCH is referred to as an e-PDCCH CCE
  • the REs that can be used for e-PDCCH transmission in the PDSCH region are collected and grouped in units of CCE, so that the CCE index is sequentially. Suppose that is given by.
  • the UE transmits an ACK / NACK for the e-PDCCH or the PDSCH corresponding to the e-PDCCH using the PUCCH resource associated with the CCE index 2; Since the CCE index 2 is only one of the local CCE indexes assigned to the e-PDCCH CCEs available for e-PDCCH transmission, the UE may use the PDCCH CCEs and e-P available for PDCCH transmission in a specific cell. It is unknown whether the second CCE corresponds to which index among common CCE indices assigned to all e-PDCCH CCEs available for PDCCH transmission.
  • the UE does not know clearly which PRB the corresponding e-PDCCH CCE is mapped to. That is, even though the PDCCH and the e-PDCCH are transmitted on a CCE having the same CCE index, since the CCE of the PDCCH and the CCE of the e-PDCCH mean different CCEs, the dynamic allocation of PUCCH resources using the resources of the e-PDCCH There is a problem that it is difficult to integrate and operate in the existing rules that link the CCE index of the PDCCH to the ACK / NACK resources.
  • an embodiment of the present invention that solves such a problem while dynamically allocating ACK / NACK resources using an e-PDCCH will be described with reference to FIG. 12.
  • PUCCH resources for CSI PUCCH resources for semi-persistent scheduling (SPS) ACK / NACK and SR
  • PUCCH resources for dynamic ACK / NACK PUCCH resources linked to PDCCH and dynamically allocated.
  • BS may transmit the N PUCCH offset indicating that the PUCCH resources sequentially logical indices which logical indexes dynamic ACK / used NACK resources from among given to the UE by higher-layer signal have.
  • N (1) PUCCH in Equations 5 and 6 may be an N PUCCH offset .
  • N PUCCH offset may be determined / indicated by N (2) RB transmitted as a higher layer signal.
  • the present invention corresponds to an offset N e-PUCCH offset or N e-PUCCH offset indicating a starting position of ACK / NACK PUCCH resource for e-PDCCH.
  • the BS may transmit information indicating the N e-PUCCH offset by the higher layer signal to the UE.
  • PUCCH resources starting from N PUCCH offset and up to N e-PUCCH offset may be linked with PDCCH CCEs.
  • N e-PUCCH offset sufficiently far from N PUCCH offset should be set, when less dynamic ACK / NACK resources associated with PDCCH are used, as shown in FIG. 12 (b), N PUCCH Unused resources among the ACK / NACK PUCCH resources set by the offset and the N e-PUCCH offset are wasted.
  • the present invention proposes another method for pre-reserving a limited number of PUCCH resources by RRC signal and dynamically allocating PUCCH resources within the limits of the reserved resources.
  • embodiments related thereto in the form of performance improvement for R-PDCCH will be described, but embodiments of the method described below are not only R-PDCCH but also all kinds of embedded and transmitted in PDSCH region.
  • FIG. 13 illustrates a mapping concept of R-PDCCH and PRB for configuring a search space of R-PDCCH.
  • FIG. 13 illustrates a mapping relationship between a VRB number (n VRB ) and a PRB number (n PRB ) defined in the R-PDCCH transmission process to explain the proposed method of the present invention.
  • a collection of N R-PDCCH VRB VRBs for potential R-PDCCH transmission may be configured by higher layer signals using Type 0, 1 or 2 RA, described in FIGS. have.
  • VRBs numbered n R-PDCCH VRB N R-PDCCH VRB -1, the largest VRB number n PRB is displayed.
  • a resource allocation (RA) bitmap composed of K-bits, as described with reference to FIGS. 6 through 9, informs N R-PDCCH VRB which is the number of VRBs for the R-PDCCH. . That is, the RA bitmap indicates which PRBs belong to the R-PDCCH search space. Furthermore, RA n bitmap is R-PDCCH VRB informs the rules are mapped to n VRB, if n n VRB is mapped are allocated to the localized type to PRB or informs with assignment of the distributed type it was.
  • Each RN monitors a reserved R-PDCCH resource region, i.e., an R-PDCCH search space (N R-PDCCH VRB VRB collections) to check whether its own R-PDCCH exists. Monitoring the R-PDCCH resources includes blind decoding the R-PDCCH candidates.
  • each RN detects an R-PDCCH indicated to it, each RN performs operations (eg, downlink reception and uplink transmission) according to the DCI of the R-PDCCH.
  • the DCI (eg, DL grant, UL grant) transmitted on the R-PDCCH is cross-interleaved and mapped to the R-PDCCH resource or to the R-PDCCH resource without cross-interleaving.
  • DCI eg, DL grant, UL grant
  • the DCI is mapped to R-PDCCH resources without cross-interleaving, only one R-PDCCH is transmitted on one or more RBs.
  • a plurality of R-PDCCHs may be transmitted together on one or more RBs.
  • the BS signals to the RN whether to cross-interleave the R-PDCCH using a higher layer signal.
  • the R-PDCCH candidate is defined differently depending on whether cross-interleaving is performed.
  • i 0, 1, ..., ⁇ -1 and M ( ⁇ ) is given by
  • the process of determining the R-PDCCH allocation by the RN depends on the process of determining the PDCCH allocation by the UE.
  • a collection of CCEs corresponding to the R-PDCCH candidates of the search space S ( ⁇ ) n, j in the slot j ⁇ ⁇ 0,1 ⁇ of the subframe n is given by the following equation.
  • j is for potential R-PDCCH transmission.
  • n R-PDCCH VRB is a parameter for mapping R-PDCCH to PRB, which plays a role similar to that of PDCCH CCE index.
  • n- R-PDCCH VRB cannot be used as a common index for determining the PUCCH resource associated with the e-PDCCH.
  • the first embodiment of the present invention signals a separate offset value for each RN or for each RN group.
  • the starting index of the ACK / NACK PUCCH resource for the RN or the RN group may be transmitted from the BS to the UE as the N e-PDCCH offset .
  • a plurality of RNs form the same group (eg, RN group #n) and the same search space is configured.
  • the PUCCH resource index corresponding to the R-PDCCH in the same group is an index of a unit configured based on the R-PDCCH aggregation level 1 (for example, 36 REs and 9 REGs) (a concept corresponding to the CCE index of the UE). Determined by location That is, according to the first embodiment of the present invention, the n R-PDCCH VRB value may be implemented to be mapped 1: 1 to the PUCCH resource, and RN / UE is n R-PDCCH VRB + RN / UE specific offset value. By using the unique PUCCH resource can be obtained. N PUCCH offset and N e-PUCCH offset described in FIG.
  • N e-PUCCH offset is provided UE / RN specific or UE / RN group specific.
  • the offset value is transmitted per UE (or By differently setting each UE group, the actual PUCCH resource index to which the n R-PDCCH VRB value is mapped may be signaled.
  • At least four PUCCH resources start with the N e-PUCCH offset provided for a specific RN and the four VRBs and n Rs. -Can be linked by PDCCH VRB .
  • the specific RN detects an R-PDCCH and BS ACK / NACK for the PDSCH scheduled by the R-PDCCH or the R-PDCCH using a PUCCH resource linked to the R-PDCCH VRB index n R-PDCCH VRB . Can be sent to.
  • the present invention proposes a second embodiment of dynamically allocating an ACK / NACK PUCCH resource for an R-PDCCH using n VRB or n PRB , which has a cell common index. do. That is, by being mapped to the R-PDCCH VRB index (n R-PDCCH VRB) is n or n VRB PRB configured by n or n VRB PRB may be used as an index for a PUCCH resource allocation.
  • PUCCH resources are reserved as many as the number of RBs configured for potential PUCCH transmission.
  • a plurality of n VRBs or n PRBs may correspond to one PUCCH resource. That is, one aspect of the second embodiment of the present invention is to reduce the number of reserved resources by maintaining an N: 1 mapping form, so that N VRBs or PRBs are mapped to one PUCCH resource.
  • N may be configured in advance or may be configured according to a communication situation.
  • ACK / NACK resources need to be reserved. If there is no predetermined rule, there may be more than one R-PDCCH in the RBG, thereby causing multiple RNs to use the same ACK / NACK resource, resulting in a collision.
  • the PHICH grouping method used when mapping an uplink RB index and a PHICH index in 3GPP LTE (-A) system may be applied to PUCCH resources associated with R-PDCCH.
  • the present invention proposes a third embodiment of collecting and newly numbering the set of signaled search spaces.
  • all RNs each constitute an R-PDCCH VRB index n R-PDCCH VRB index, and apply the offset values received by each of the RN R-PDCCH VRB indexes and RNs configured as described above.
  • Common indexes The RN knows a PUCCH resource index mapped to the common index by using a common index corresponding to n R-PDCCH VRB from which the R-PDCCH is detected, and may dynamically use the index.
  • an RRC signal is required that indicates the lowest index or size (ie, offset value) of the search space in units of RN.
  • the wireless system may be implemented such that only one of the PDCCH and the e-PDCCH is exclusively used in one downlink subframe.
  • the present invention proposes the following method.
  • FIG. 14 illustrates an embodiment of the present invention for allocating ACK / NACK resources for an e-PDCCH.
  • PUCCH resources may be dynamically allocated using N PUCCH offsets .
  • the present invention proposes a fourth embodiment in which PUCCH resources reserved by N PUCCH offset are used as PUCCH resources for the e-PDCCH in a subframe in which only an e-PDCCH (eg R-PDCCH) exists.
  • the same PUCCH resources may be used for TDM (Time) for ACK / NACK transmission associated with PDCCH and ACK / NACK transmission associated with e-PDCCH. Division Multiplexing).
  • the BS may inform the UE of a signal indicating whether there is only a PDCCH in a subframe or only an e-PDCCH in a subframe through a higher layer signal such as an RRC.
  • the BS may signal another UE by setting a different N PUCCH offset value for each subframe. If the number of e-PDCCH is small, and thus the reserved e-PUCCH resource is small and waste is negligible, independent PUCCH resources may be configured for the e-PDCCH.
  • the PUCCH resource index Embodiments of a method of constructing common indices that may be linked with one another are described.
  • the first to fourth embodiments of the present invention are PUCCH resources for CSI, SPS ACK / NACK and SR transmission among PUCCH resources, that is, logical PUCCH resource index 0 to N PUCCH offset ⁇ 1
  • the BS configures a search space for the e-PDCCH of a specific RN / UE in the data region of the downlink subframe according to any one of the first to fourth embodiments described above, and in the configured search space for the e-PDCCH.
  • Offset information which is information indicating an index of a starting PUCCH resource among the associated PUCCH resources or the size of PUCCH resources associated with a configured search space for e-PDCCH, or the amount of bandwidth available to PUCCH resources associated with a configured search space for e-PDCCH. May be provided to the UE.
  • RN / UE is based on the index (eg, CCE index, VRB index, etc.) of the resources included in the e-PDCCH among the PUCCH resources reserved for the search space of the e-PDCCH for itself based on the offset information
  • a PUCCH resource for ACK / NACK corresponding to the corresponding e-PDCCH may be determined.
  • the number of ACK / NACK resources and / or mapping rules that are linked according to candidate positions and / or aggregation levels of the e-PDCCH are differently set in a single search space constructed according to the first to fourth embodiments described above.
  • a fifth embodiment of the present invention will be described.
  • 15 is a diagram for explaining another embodiment of the present invention for allocating ACK / NACK resources for an e-PDCCH.
  • the BS configures a search space consisting of 16 RBs, 6 candidate positions having an aggregation level of 1 using 6 RBs, and 6 candidates having an aggregation level of 2 using 12 RBs.
  • the positions can be configured using two RBs having an aggregation level of four using eight RBs, and two candidate positions having an aggregation level of eight using sixteen RBs.
  • candidate positions of each aggregation level are used in order from the smallest RB index among the configured RB sets.
  • FIG. 15 (a) shows a case where one ACK / NACK resource is mapped to each RB.
  • a total of 16 ACK / NACK resources should be reserved.
  • this causes somewhat excessive ACK / NACK resource reservation.
  • two candidate positions of aggregation level 1 are defined for each candidate position. Therefore, when configuring one candidate position of aggregation level 2, a total of two ACK / NACK resources should be reserved, one for each of two RBs.
  • the BS can reserve less than a predetermined number of PUCCH resources for ACK / NACK transmission for the e-PDCCH.
  • the BS may transmit information indicating the number and / or location of the reserved PUCCH resources to the corresponding RN / UE according to any one of the first to fourth embodiments described above.
  • the fifth embodiment of the present invention provides the lowest aggregation level among candidate positions sharing a specific RB in a given search space (or more specifically, among candidate positions sharing a specific RB as the starting RB of an aggregated RB).
  • One ACK / NACK resource is mapped to the candidate position. Accordingly, fewer ACK / NACK resources are reserved than the number of RBs in the corresponding search space.
  • the case where the aggregation unit of the search space is an RB is taken as an example.
  • the aggregation unit of the search space may be a CCE. It is also possible for an aggregation unit to be set.
  • one or more R-PDCCH / e-PDCCH may exist in the same RB or RBG, and thus PUCCH resource collision is expected.
  • the BS may differently set a scrambling ID or antenna port used for decoding the R-PDCCH / e-PDCCH, and use the information for PUCCH resource allocation.
  • the scrambling ID or antenna port used for decoding of the R-PDCCH / e-PDCCH may be dynamically indicated using a DCI format after a candidate is configured and provided to the UE in advance.
  • mapping between each e-PDCCH CCE and an antenna port may be defined in one PRB.
  • the mapping relationship between the e-PDCCH CCEs and the antenna ports in one PRB may be defined in one pattern, and when several patterns are defined, pattern information may be signaled to the RN / UE.
  • the ACK / NACK PUCCH resource is determined in association with only the PDCCH CCE index, whereas according to the present embodiment, the ACK / NACK PUCCH resource is determined in association with a scrambling ID or an antenna port as well as the PDCCH CCE index.
  • This embodiment may be applied together with any one of the first to fifth embodiments of the present invention described above or may be applied separately.
  • 16 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
  • the apparatus 12 is operatively connected to components such as the memory 12 and 22, the RF unit 13 and 23, and the memory 12 and 22, which store various kinds of information related to communication, and controls the components so that the apparatus is controlled.
  • a processor 11, 21 configured to control the memory 12, 22 and / or the RF units 13, 23, respectively, to perform at least one of the embodiments of the invention described above.
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
  • the memories 12 and 22 may be utilized as buffers.
  • the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • application specific integrated circuits ASICs
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software when implementing the present invention using firmware or software, may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
  • the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13.
  • the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also referred to as a codeword and is equivalent to a transport block, which is a data block provided by a medium access control (MAC) layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the RF unit 13 may include an oscillator for frequency upconversion.
  • the RF unit 13 may include N t transmit antennas, where N t is a positive integer.
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
  • the RF unit 23 may include N r reception antennas (N r is a positive integer), and the RF unit 23 performs frequency down conversion on each of the signals received through the reception antennas (frequency down). -convert) Restore to baseband signal.
  • the RF unit 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
  • the RF units 13, 23 have one or more antennas.
  • the antenna transmits a signal processed by the RF units 13 and 23 to the outside or receives a radio signal from the outside according to an embodiment of the present invention under the control of the processors 11 and 21. , 23).
  • Antennas are also called antenna ports.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the perspective of the receiver 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna.
  • RS reference signal
  • the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
  • the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
  • MIMO multi-input multi-output
  • the UE or RN operates as the transmitter 10 in the uplink and operates as the receiver 20 in the downlink.
  • the BS operates as the receiving device 20 in the uplink and the transmitting device 10 in the downlink.
  • the UE or RN is collectively referred to as a UE.
  • the processor, memory, and RF unit included in the BS are referred to as BS processor, BS memory, and BS RF unit, respectively, and the processor, memory, and RF unit included in the UE are referred to as UE processor, UE memory, and UE RF unit. Examples of the will be described.
  • the BS processor may be a processor located in the BS, or may be a BS controller configured to control the BS by being connected to the BS by a cable or a dedicated line.
  • the BS processor reserves a limited number of ACK / NACK PUCCH resources in advance by the RRC signal for the e-PDCCH and dynamically allocates the ACK / NACK PUCCH resources within the limits of the reserved resources.
  • the BS processor configures an e-PDCCH search space for transmitting an e-PDCCH, and transmits information about the e-PDCCH search space to a corresponding UE by controlling a BS RF unit.
  • the RA bitmap may be used as information about the e-PDCCH search space.
  • the BS processor sets a separate offset value for each UE or for each UE group in order to make n e-PDCCH VRB a common index that can be commonly used in the entire cell. Control the BS RF unit to send the offset value.
  • the offset value is a UE specific value, not a cell specific value, and is a value related to a start position of PUCCH resources available for ACK / NACK transmission associated with an e-PDCCH of a corresponding UE, the number of PUCCH resources, or a bandwidth.
  • the UE RF unit may receive information about the offset value and the e-PDCCH search space from the BS and transmit the information to the UE processor.
  • the UE processor may perform blind decoding in the e-PDCCH search space to detect a corresponding e-PDCCH in a data region of a downlink subframe, and may indicate an index of a resource included in the e-PDCCH (n e-PDCCH VRB). ) And the offset value may determine a unique PUCCH resource to be used for transmission of the ACK / NACK associated with the corresponding e-PDCCH.
  • the UE processor controls the UE RF unit to transmit an ACK / NACK corresponding to the e-PDCCH to the BS using the determined PUCCH resource.
  • n e-PDCCH VRB n VRB or n PRB is configured by n VRB or n PRB index for a PUCCH resource allocation Used as.
  • the BS processor may reserve PUCCH resources by the number of RBs configured for potential PUCCH transmission. Since the e-PDCCH resource unit index is mapped to n VRB or n PRB , the UE may know the PUCCH resource associated with the corresponding n e-PDCCH VRB without additional information indicating the PUCCH resource. Meanwhile, the BS processor may reserve N PUBCH resources less than the number of resource units constituting the search space by mapping N VRBs or PRBs to one PUCCH resource.
  • the UE processor may configure a common index to classify PUCCH resources by collecting and renumbering the search space sets signaled by the BS.
  • each UE processor configures an e-PDCCH resource unit index (eg, n e-PDCCH VRB index), and each of the UE-specific e-PDCCH resource unit indexes and the UE are configured as described above.
  • Common indexes are constructed by applying the offset value received.
  • the UE processor may know the PUCCH resource index mapped to the common index using a common index corresponding to the e-PDCCH resource unit index from which the e-PDCCH is detected.
  • the BS processor transmits an RRC signal indicating the lowest index or size (i.e., offset value) of the search space in units of UEs.
  • the UE processor controls the UE RF unit to transmit an ACK / NACK corresponding to the e-PDCCH to the BS using the determined PUCCH resource.
  • the BS processor When only one of the PDCCH and the e-PDCCH is exclusively used in one downlink subframe, the BS processor according to the fourth embodiment of the present invention dynamically uses the PUCCH offset in the subframe in which only the PDCCH exists.
  • PUCCH resources for the e-PDCCH may be allocated using PUCCH resources reserved by N PUCCH offset .
  • the UE processor uses the PUCCH resource linked to the resource index where the (e-) PDCCH is detected, regardless of whether it is an e-PDCCH or a PDCCH.
  • the UE RF unit may be controlled to transmit ACK / NACK information for the PDSCH scheduled by the corresponding (e-) PDCCH.
  • ACK / NACK resources may be configured differently according to candidate positions and / or aggregation levels of an e-PDCCH in a single search space.
  • the BS processor configures a discovery space consisting of a total of 16 RBs, but instead of reserving 16 ACK / ANCK resources corresponding to the total 16 RBs one-to-one, the discovery space Reserve one ACK / NACK resource to a candidate location having the lowest aggregation level among candidate positions sharing a specific RB (or more specifically, among candidate positions sharing a specific RB as a starting RB of an aggregated RB) within the candidate positions.
  • the discovery space Reserve one ACK / NACK resource to a candidate location having the lowest aggregation level among candidate positions sharing a specific RB (or more specifically, among candidate positions sharing a specific RB as a starting RB of an aggregated RB) within the candidate positions.
  • candidate positions where a BS processor shares a specific RB for example, candidate position 3 of aggregation level 2, candidate position 1 of aggregation level 4 and candidate position of aggregation level 8
  • the UE processor detects the corresponding e-PDCCH at any one of these candidate positions.
  • the UE processor ACK / NACK for the e-PDCCH regardless of whether the detected e-PDCCH is candidate position 3 of aggregation level 2, candidate position 1 of aggregation level 4 and candidate position 0 of aggregation level 8 Control the UE RF unit to transmit to the BS using the same ACK / NACK resource.
  • the BS processor sets the scrambling ID or antenna port to be used for decoding the e-PDCCH differently, and transmits the information on the set scrambling ID or antenna port to the UE.
  • the RF unit can be controlled.
  • the UE processor may determine the PUCCH resource to be used for ACK / NACK transmission associated with the e-PDCCH using information on the scrambling ID or the antenna port as well as the index of the resource unit where the e-PDCCH is detected.
  • the UE processor controls the UE RF unit to transmit an ACK / NACK corresponding to the e-PDCCH to the BS using the determined PUCCH resource.
  • the UE RF unit may receive a PDCCH discovery region for detecting a PDCCH transmitted in a control region of a downlink subframe and an offset value indicating ACK / NACK PUCCH resources associated with the PDCCH discovery space, and the UE processor Detects its own PDCCH by performing blind decoding in the PDCCH search region, and uses the first CCE index and the offset value (eg, N PDCCH offset ) in the PDCCH to use for ACK / NACK transmission corresponding to the PDCCH.
  • PUCCH resources may be determined.
  • the UE processor controls the UE RF unit to transmit an ACK / NACK corresponding to the PDCCH to the BS using the determined PUCCH resource.
  • the BS processor ACKs an ACK for the PDSCH scheduled by the e-PDCCH or the e-PDCCH using a certain PUCCH resource based on a resource index and an offset value (N e-PDCCH offset ) included in the e-PDCCH. It is possible to know whether to transmit / NACK information. Accordingly, the BS processor is configured to receive the ACK / NACK information from the UE by using the PUCCH resource determined based on the resource index and the offset value (N e-PDCCH offset ) included in the e-PDCCH transmitted to the UE. Can be controlled.
  • the PUCCH resources for the e-PDCCH can be efficiently operated.
  • Embodiments of the present invention may be used in base station, RN or user equipment, and other equipment in a wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 하향링크 서브프레임의 데이터 영역에서 전송되는 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 사용자기기 특정적 오프셋 정보가 기지국에 의해 사용자기기로 제공된다. 하향링크 서브프레임의 데이터 영역에서 PDCCH를 수신한 사용자기기는 상기 오프셋 정보 및 상기 PDCCH에 포함된 자원의 인덱스를 기반으로 PUCCH 자원을 결정하고 상기 PUCCH 자원을 이용하여 상기 PDCCH에 대응한 ACK/NACK 정보를 상기 기지국으로 전송한다.

Description

상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 상향링크 신호를 전송하는 방법 및 장치와 상향링크 신호를 수신하는 방법 및 장치에 관한 것이다.
기기간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다. 또한, 사용자가 주변에서 엑세스할 수 있는 노드의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 사용자에게 제공할 수 있다.
새로운 무선 통신 기술의 도입에 따라, 기지국이 소정 자원영역에서 서비스를 제공해야 하는 사용자기기들의 개수가 증가할 뿐만 아니라, 상기 기지국이 서비스를 제공하는 사용자기기들로부터 수신해야 하는 상향링크 데이터와 상향링크 제어정보의 양이 증가하고 있다. 기지국이 사용자기기(들)과의 통신에 이용가능한 무선 자원의 양은 유한하므로, 기지국이 유한한 무선 자원을 이용하여 상향링크 데이터 및/또는 상향링크 제어정보를 사용자기기(들)를 효율적으로 수신하기 위한 새로운 방안이 요구된다.
따라서, 본 발명은 상향링크 신호를 효율적으로 전송/수신하는 방법 및 장치를 제공한다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 사용자기기가 기지국으로 상향링크 신호를 전송함에 있어서, 상기 기지국으로부터 제1 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK(ACKnowledgement/Negative ACK) 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 제1오프셋 정보를 수신하고; 상기 기지국으로부터 상기 제1 PDCCH를 수신하고; 상기 제1 PDCCH에 포함된 자원의 인덱스 및 상기 제1오프셋 정보를 기반으로 상기 제1 PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제1 PDCCH에 대응하는 ACK/NACK 정보를 상기 기지국으로 전송하되, 상기 제1 PDCCH는 하향링크 서브프레임의 데이터 영역에서 수신되고, 상기 제1오프셋 정보는 사용자기기 특정적 정보인, 상향링크 제어정보 전송방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에서 사용자기기가 기지국으로 상향링크 신호를 전송함에 있어서, 무선 주파수(radio frequency, RF) 유닛; 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 상기 기지국으로부터 제1 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK(ACKnowledgement/Negative ACK) 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 제1오프셋 정보를 수신하도록 상기 RF 유닛을 제어하고, 상기 기지국으로부터 상기 제1 PDCCH를 수신하도록 상기 RF 유닛을 제어하며, 상기 제1 PDCCH에 포함된 자원의 인덱스 및 상기 제1오프셋 정보를 기반으로 상기 제1 PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제1 PDCCH에 대응하는 ACK/NACK 정보를 상기 기지국으로 전송하도록 상기 RF 유닛을 제어하고, 상기 제1 PDCCH는 하향링크 서브프레임의 데이터 영역에서 수신되고, 상기 제1오프셋 정보는 사용자기기 특정적 정보인, 사용자기기가 제공된다.
본 발명의 또 다른 양상으로, 무선 통신 시스템에서 기지국이 사용자기기로부터 상향링크 신호를 수신함에 있어서, 상기 사용자기기로 제1 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK(ACKnowledgement/Negative ACK) 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 제1오프셋 정보를 전송하고; 상기 사용자기기로 상기 제1 PDCCH를 전송하고; 상기 제1 PDCCH에 포함된 자원의 인덱스 및 상기 제1오프셋 정보를 기반으로 상기 제1 PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제1 PDCCH에 대응하는 ACK/NACK 정보를 상기 사용자기기로부터 수신하되, 상기 제1 PDCCH는 하향링크 서브프레임의 데이터 영역에서 수신되고, 상기 제1오프셋 정보는 사용자기기 특정적 정보인, 상향링크 제어정보 수신방법이 제공된다.
본 발명의 또 다른 양상으로, 본 발명의 또 다른 양상으로, 무선 통신 시스템에서 기지국이 사용자기기로부터 상향링크 신호를 수신함에 있어서, 무선 주파수(radio frequency, RF) 유닛; 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 상기 사용자기기로 제1 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK(ACKnowledgement/Negative ACK) 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 제1오프셋 정보를 전송하도록 상기 RF 유닛을 제어하고, 상기 사용자기기로 상기 제1 PDCCH를 전송하도록 상기 RF 유닛을 제어하며, 상기 제1 PDCCH에 포함된 자원의 인덱스 및 상기 제1오프셋 정보를 기반으로 상기 제1 PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제1 PDCCH에 대응하는 ACK/NACK 정보를 상기 사용자기기로부터 수신하도록 상기 RF 유닛을 제어하되, 상기 제1 PDCCH는 하향링크 서브프레임의 데이터 영역에서 수신되고, 상기 제1오프셋 정보는 사용자기기 특정적 정보인, 기지국이 제공된다.
본 발명의 각 양상에 있어서, 하향링크 서브프레임의 제어영역에서 수신되는 제2PDCCH와 연관된 ACK/NACK 전송에 이용가능한 제2PUCCH 자원들을 지시하는 셀-특정적 정보인 제2오프셋 정보가 상기 기지국으로부터 상기 사용자기기에 전송될 수 있다. 상기 제2PDCCH에 대응하는 ACK/NACK 정보는 상기 제2PDCCH에 포함된 자원의 인덱스 및 상기 제2오프셋 정보를 기반으로 상기 제2PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 사용자기기로부터 상기 기지국으로 전송될 수 있다.
본 발명의 각 양상에 있어서, 상기 제1 PDCCH를 위한 스크램블링 식별자 또는 안테나 포트 정보가 상기 기지국으로부터 상기 사용자기기에게 전송될 수 있다. 상기 제1 PDCCH에 대응하는 ACK/NACK 정보의 전송에 이용되는 상기 PUCCH 자원은 상기 스크램블링 식별자 또는 안테나 포트 정보를 기반으로 결정될 수 있다.
본 발명의 각 양상에 있어서, 상기 제1 PDCCH는 집성 레벨들에 따른 복수의 제1 PDCCH 후보 위치들을 포함하는, 복수의 자원 유닛들로 구성된, 탐색 공간에서 수신된다. 상기 제1 PUCCH 자원들 각각은 상기 탐색 공간 내 상기 복수의 자원 유닛들 중 일 자원 유닛을 공유하는 제1 PDCCH 후보 위치들 중 집성 레벨이 가장 낮은 후보 위치에 맵핑될 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 의하면, 상향링크 자원 사용의 효율성이 높아진다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다.
도 3은 3GPP LTE(-A) 시스템에서 사용되는 하향링크 서브프레임 구조를 예시한 것이다.
도 4는 3GPP LTE(-A) 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 5는 3GPP LTE-(A) 시스템에서 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸 것이다.
도 6은 가상 자원블록을 물리 자원블록으로 맵핑하는 방법을 예시한다.
도 7, 도 8 및 도 9는 각각 타입 0 RA(Resource Allocation), 타입 1 RA 및 타입 2 RA를 위한 제어 정보 포맷 및 그에 따른 자원 할당 예를 나타낸다.
도 10은 특정 서브프레임을 이용하여 기지국이 RN로 신호 전송을 수행하는 예를 나타낸다.
도 11은 임베드된 PDCCH(e-PDCCH)의 개념을 설명하는 도면이다.
도 12는 PUCCH 자원들의 논리적 배열을 예시한 것이다.
도 13은 R-PDCCH의 탐색 공간 구성을 위한 R-PDCCH와 PRB의 맵핑 개념을 나타낸 것이다.
도 14는 e-PDCCH를 위한 ACK/NACK 자원을 할당하는 본 발명의 일 실시예를 설명하기 위한 도면이다.
도 15는 e-PDCCH를 위한 ACK/NACK 자원을 할당하는 본 발명의 다른 실시예를 설명하기 위한 도면이다.
도 16은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
또한, 이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE(-A)에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE(-A) 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE(-A)에 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에 있어서, 사용자기기(UE: User Equipment)는 고정되거나 이동성을 가질 수 있으며, BS와 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, 기지국(Base Station, BS)은 일반적으로 UE 및/또는 다른 BS와 통신하는 고정된 지점(fixed station)을 말하며, UE 및 타 BS과 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 모음(set) 혹은 자원요소의 모음을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)은 각각 UCI(Uplink Control Information)/상향링크 데이터를 나르는 시간-주파수 자원의 모음 혹은 자원요소의 모음을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH 시간-주파수 자원이라고 칭한다. 따라서, 본 발명에서 UE가 PUCCH/PUSCH를 전송한다는 표현은, 각각, PUSCH/PUCCH 상에서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, 본 발명에서 BS가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다. 특히, 도 1(a)는 3GPP LTE(-A)에서 FDD에 사용될 수 있는 무선 프레임 구조를 예시한 것이고, 도 1(b)는 3GPP LTE(-A)에서 TDD에 사용될 수 있는 무선 프레임 구조를 예시한 것이다.
도 1을 참조하면, 3GPP LTE(-A)에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(TTI: transmission time interval)로 정의된다. 시간 자원은 무선프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
무선 프레임은 듀플렉스(duplex) 모드에 따라 다르게 구성될 수 있다. 예를 들어, FDD 모드에서, 하향링크(DL) 전송 및 상향링크(UL) 전송은 주파수에 의해 구분되므로, 무선 프레임은 소정 반송파 주파수에서 동작하는 소정 주파수 대역에 대해 하향링크 서브프레임 또는 UL 서브프레임 중 하나만을 포함한다. TDD 모드에서 DL 전송 및 UL 전송은 시간에 의해 구분되므로, 소정 반송파 주파수에서 동작하는 소정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 UL 서브프레임을 모두 포함한다.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 구성을 예시한 것이다.
표 1
DL-UL configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
표 1에서, D는 하향링크 서브프레임을, U는 UL 서브프레임을, S는 특이(special) 서브프레임을 나타낸다. 특이 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 DL 전송용으로 유보되는 시간 구간이며, UpPTS는 UL 전송용으로 유보되는 시간 구간이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 2는 3GPP LTE(-A) 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
슬롯은 시간 도메인에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는 NDL/UL RB*NRB sc개의 부반송파(subcarrier)와 NDL/UL symb개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL RB은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, NUL RB은 UL 슬롯에서의 RB의 개수를 나타낸다. NDL RB와 NUL RB은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다. NDL symb은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, NUL symb은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다. NRB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 표준(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서, NDL/UL RB*NRB sc개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 DC 성분을 위한 널 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인 채 남겨지는 부반송파로서, OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier freqeuncy, f0)로 맵핑된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다.
일 RB는 시간 도메인에서 NDL/UL symb개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 따라서, 하나의 RB는 NDL/UL symb*NRB sc개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL/UL RB*NRB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL/UL symb-1까지 부여되는 인덱스이다.
일 서브프레임에서 NRB sc개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 물리자원블록(physical resource block, PRB) 쌍이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스라고도 함)를 갖는다.
도 3은 3GPP LTE(-A) 시스템에서 사용되는 하향링크 서브프레임 구조를 예시한 것이다.
DL 서브프레임은 시간 도메인에서 제어영역과 데이터영역으로 구분된다. 도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용가능한 자원영역을 PDCCH 영역이라 칭한다. 제어영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용가능한 자원영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송의 응답으로 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, UE 그룹 내의 개별 UE들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 포함한다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다.
복수의 PDCCH가 DL 서브프레임의 PDCCH 영역 내에서 전송될 수 있다. UE는 복수의 PDCCH를 모니터링 할 수 있다. BS는 UE에게 전송될 DCI에 따라 DCI 포맷을 결정하고, DCI에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹(또는 스크램블)된다. 예를 들어, PDCCH가 특정 UE을 위한 것일 경우, 해당 UE의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIB))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다. CRC 마스킹(또는 스크램블)은 예를 들어 비트 레벨에서 CRC와 RNTI를 XOR 연산하는 것을 포함한다.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 4개의 RE에 대응한다. 4개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조신호(RS)에 의해 점유된 자원요소(RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 RS의 존재 여부에 따라 달라진다. REG 개념은 다른 DL 제어채널(즉, PDFICH 및 PHICH)에도 사용된다. DCI 포맷 및 DCI 비트의 개수는 CCE의 개수에 따라 결정된다.
CCE들은 번호가 매겨져 연속적으로 사용되고, 복호(decoding) 프로세스를 간단히 하기 위해, n개 CCE들로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수, 다시 말해, CCE 집성 레벨은 채널 상태에 따라 BS에 의해 결정된다. 예를 들어, 좋은 DL 채널을 가지는 UE(예, BS에 인접함)를 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 UE(예, 셀 경계에 근처에 존재)를 위한 PDCCH의 경우 충분한 로버스트(robustness)를 얻기 위해서는 8개의 CCE가 요구될 수 있다.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 4개의 RE에 대응한다. 4개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조신호(RS)에 의해 점유된 자원요소(RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 RS의 존재 여부에 따라 달라진다. REG 개념은 다른 하향링크 제어채널(즉, PDFICH 및 PHICH)에도 사용된다. DCI 포맷 및 DCI 비트의 개수는 CCE의 개수에 따라 결정된다. 예를 들어, 표 2와 같이 4개의 DCI 포맷이 지원된다.
표 2
DCI format Number of CCEs (n) Number of REGs Number of DCI bits
0 1 0 72
1 2 18 144
2 3 36 288
3 4 72 576
CCE들은 번호가 매겨져 연속적으로 사용되고, 복호 프로세스를 간단히 하기 위해, n개 CCE들로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수는 채널 상태에 따라 BS에 의해 결정된다. 예를 들어, 좋은 하향링크 채널을 가지는 UE(예, BS에 인접함)를 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 UE(예, 셀 경계에 근처에 존재)를 위한 PDCCH의 경우 충분한 로버스트(robustness)를 얻기 위해서는 8개의 CCE가 요구될 수 있다. 또한, PDCCH의 파워 레벨은 채널 상태에 맞춰 조정될 수 있다.
3GPP LTE 시스템의 경우, 각각의 UE을 위해 PDCCH가 위치할 수 있는 CCE 세트를 정의하였다. UE가 자신의 PDCCH를 발견할 수 있는 CCE 세트를 PDCCH 탐색 공간, 간단히 탐색 공간(Search Space, SS)라고 지칭한다. 탐색 공간 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보라고 지칭한다. UE가 모니터할 PDCCH 후보들의 모음은 탐색 공간으로 정의된다. 하나의 PDCCH 후보는 CCE 집성 레벨에 따라 1, 2, 4 또는 8개의 CCE에 대응한다. BS는 탐색 공간 내의 임의의 PDCCH 후보 상에서 실제 PDCCH (DCI)를 전송하고, UE는 PDCCH (DCI)를 찾기 위해 탐색 공간을 모니터링한다. 구체적으로, UE는 탐색 공간 내의 PDCCH 후보들에 대해 블라인드 복호(blind decoding)를 시도한다.
3GPP LTE 시스템에서 각각의 PDCCH 포맷을 위한 탐색 공간은 다른 크기를 가질 수 있으며, 전용(dedicated) 탐색 공간과 공통(common) 탐색 공간이 정의되어 있다. 전용 탐색 공간은 UE-특정 탐색 공간이며, 각각의 개별 UE을 위해 구성된다. 공통 탐색 공간은 복수의 UE들을 위해 구성된다. 표 3은 탐색 공간들을 정의하는 집성 레벨들을 예시한 것이다.
표 3
Search Space Number of PDCCH candidates M(L)
Type Aggregation level L Size [in CCEs]
UE-specific 1 6 6
2 12 6
4 8 2
8 16 2
Common 4 16 4
8 16 2
각 집성 레벨로 해당 탐색 공간을 모니터하여, 자신의 PDCCH를 검출(detect)한 UE는 상기 검출된 PDCCH가 나르는 DCI를 기반으로 하향링크 서브프레임의 PDSCH 영역에서 PDSCH를 복호 및/또는 상향링크 서브프레임의 데이터영역에서 PUSCH를 전송한다.
도 4는 3GPP LTE(-A) 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 4를 참조하면, UL 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 UCI(uplink control information)를 나르기 위해, 상기 제어영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터영역에 할당될 수 있다. UL 서브프레임 내 제어영역과 데이터영역은 PUCCH 영역과 PUSCH 영역으로 각각 불리기도 한다. 상기 데이터영역에는 사운딩 참조신호(sounding reference signal, SRS)가 할당될 수도 있다. SRS는 시간 도메인에서는 UL 서브프레임의 가장 마지막에 위치하는 OFDM 심볼, 주파수 도메인에서는 상기 UL 서브프레임의 데이터 전송 대역, 즉, 데이터영역 상에서 전송된다. 동일한 서브프레임의 마지막 OFDM 심볼에서 전송/수신되는 여러 UE들의 SRS들은 주파수 위치/시퀀스에 따라 구분이 가능하다.
UE가 UL 전송에 SC-FDMA 방식을 채택하는 경우, 단일 반송파 특성을 유지하기 위해, 3GPP LTE 릴리즈(release) 8 혹은 릴리즈 9 시스템에서는, 일 반송파 상에서는 PUCCH와 PUSCH를 동시에 전송할 수 없다. 3GPP LTE 릴리즈 10 시스템에서는, PUCCH와 PUSCH의 동시 전송 지원 여부가 상위 계층에서 지시될 수 있다.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로, 주파수 상향변환 과정에서 반송파 주파수 f0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.
일 PUCCH가 나르는 UCI는 PUCCH 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다. 예를 들어, 다음과 같은 PUCCH 포맷이 정의될 수 있다.
표 4
PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
1 N/A N/A (exist or absent) SR (Scheduling Request)
1a BPSK 1 ACK/NACK orSR + ACK/NACK One codeword
1b QPSK 2 ACK/NACK orSR + ACK/NACK Two codeword
2 QPSK 20 CQI/PMI/RI Joint coding ACK/NACK (extended CP)
2a QPSK+BPSK 21 CQI/PMI/RI + ACK/NACK Normal CP only
2b QPSK+QPSK 22 CQI/PMI/RI + ACK/NACK Normal CP only
3 QPSK 48 ACK/NACK orSR + ACK/NACK orCQI/PMI/RI + ACK/NACK
표 4를 참조하면, PUCCH 포맷 1 계열과 PUCCH 포맷 3 계열은 주로 ACK/NACK 정보를 전송하는 데 사용되며, PUCCH 포맷 2 계열은 주로 CQI/PMI/RI 등의 채널상태정보(channel state information, CSI)를 나르는 데 사용된다.
UE는 상위 계층 신호 혹은 동적제어신호 혹은 암묵적 방식에 의해 BS로부터 UCI의 전송을 위한 PUCCH 자원을 할당받는다. PUCCH를 위해 사용되는 물리자원들은 상위 계층에 의해 주어지는 2개의 파라미터, N(2) RB 및 N(1) cs에 의존한다. 변수 N(2) RB≥0은 각 슬롯에서 PUCCH 포맷 2/2a/2b 전송에 이용가능한 대역폭을 나타내며, NRB sc개의 정수배로 표현된다. 변수 N(1) cs는 포맷 1/1a/1b 및 2/2a/2b의 혼합을 위해 사용되는 자원블록에서 PUCCH 포맷 1/1a/1b를 위해 사용된 순환쉬프트의 개수를 나타낸다. N(1) cs의 값은 {0, 1,..., 7}의 범위 내에서 △PUCCH shift의 정수배가 된다. △PUCCH shift는 상위 계층에 의해 제공된다. N(1) cs=0이면 혼합된 자원블록이 없게 되며, 각 슬롯에서 많아야 1개 자원블록이 포맷 1/1a/1b 및 2/2a/2b의 혼합을 지원한다. 안테나 포트 p에 의해 PUCCH 포맷 1/1a/1b, 2/2a/2b 및 3의 전송을 위해 사용되는 자원들은 음이 아닌 정수 인덱스인 n(1,p) PUCCH, n(2,p) PUCCH < N(2) RBNRB sc + ceil(N(1) cs/8)·(NRB sc - N(1) cs - 2) 및 n(2,p) PUCCH에 의해 각각 표현된다.
구체적으로, PUCCH 포맷별로 기정의된 특정 규칙에 따라, PUCCH 자원 인덱스로부터 해당 UCI에 적용될 직교시퀀스 및/또는 순환쉬프트가 결정되며 PUCCH가 맵핑될, 서브프레임 내 2개 자원블록들의 자원 인덱스들이 주어진다. 예를 들어, 슬롯 ns에서 PUCCH의 전송을 위한 PRB가 다음과 같이 주어진다.
수학식 1
Figure PCTKR2012004938-appb-M000001
수학식 1에서, 변수 m은 PUCCH 포맷에 의존하며, PUCCH 포맷 1/1a/1b, PUCCH 포맷 2/2a/2b 및 PUCCH 포맷 3에 수학식 2, 수학식 3, 수학식 4와 같이 각각 주어진다.
수학식 2
Figure PCTKR2012004938-appb-M000002
수학식 2에서, n(1,p) PUCCH는 PUCCH 포맷 1/1a/1b을 위한 안테나 포트 p의 PUCCH 자원 인덱스로서, ACK/NACK PUCCH의 경우, 해당 PDSCH의 스케줄링 정보를 나르는 PDCCH의 첫번째 CCE 인덱스에 의해 암묵적으로 정해지는 값이다.
수학식 3
Figure PCTKR2012004938-appb-M000003
n(2) PUCCH는 PUCCH 포맷 2/2a/2b을 위한 안테나 포트 p의 PUCCH 자원 인덱스로서, 상위 레이어 시그널링에 의해 BS로부터 UE에 전송되는 값이다.
수학식 4
Figure PCTKR2012004938-appb-M000004
n(3) PUCCH는 PUCCH 포맷 2/2a/2b을 위한 안테나 포트 p의 PUCCH 자원 인덱스로서, 상위 계층 시그널링에 의해 BS로부터 UE에 전송되는 값이다. NPUCCH SF,0는 서브프레임의 첫 번째 슬롯을 위한 확장인자(spreading factor)를 나타낸다. 일반 PUCCH 포맷 3를 사용하는 서브프레임 내 2개 슬롯 모두에 대해 NPUCCH SF,0는 5이며, 축소된 PUCCH 포맷 3를 사용하는 서브프레임에서 첫 번째 슬롯 및 두 번째 슬롯에 대해 NPUCCH SF,0는 각각 5와 4이다.
수학식 2를 참조하면, ACK/NACK을 위한 PUCCH 자원은 각 UE에 미리 할당되어 있지 않고, 복수의 PUCCH 자원을 셀 내의 복수의 UE들이 매 시점마다 나눠서 사용한다. 구체적으로, UE가 ACK/NACK을 전송하는 데 사용하는 PUCCH 자원은 해당 하향링크 데이터를 나르는 PDSCH에 대한 스케줄링 정보를 나르는 PDCCH를 기반으로 동적으로 결정된다. 각각의 DL 서브프레임에서 PDCCH가 전송되는 전체 영역은 복수의 CCE(Control Channel Element)로 구성되고, UE에게 전송되는 PDCCH는 하나 이상의 CCE로 구성된다. UE는 자신이 수신한 PDCCH를 구성하는 CCE들 중 특정 CCE(예를 들어, 첫 번째 CCE)에 링크된 PUCCH 자원을 통해 ACK/NACK을 전송한다. 이하, ACK/NACK 전송을 위해, PDCCH와 연관되어 동적으로 결정되는 PUCCH 자원을 특히 ACK/NACK PUCCH 자원이라 칭한다.
도 5는 3GPP LTE-(A) 시스템에서 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸 것이다. 특히, 도 5는 DL에 최대 M개의 CCE가 존재하고, UL에 최대 M개의 PUCCH 자원이 예약되는 경우를 예시한 것이다.
도 5는 참조하면, 각각의 PUCCH 자원 인덱스는 ACK/NACK을 위한 PUCCH 자원에 대응된다. 도 5에서와 같이, 4~6번 CCE로 구성된 PDCCH를 통해 PDSCH에 대한 스케줄링 정보가 UE에 전송되고, 4번 CCE가 PUCCH 자원 인덱스 4에 링킹된다고 가정할 경우, 상기 UE는 상기 PDCCH를 구성하는 4번 CCE에 대응하는 4번 PUCCH 자원을 통해 ACK/NACK을 BS에 전송한다. 구체적으로, 3GPP LTE(-A) 시스템에서 2개 안테나 포트(p0 및 p1)에 의한 전송을 위한 PUCCH 자원 인덱스는 다음과 같이 정해진다.
수학식 5
Figure PCTKR2012004938-appb-M000005
수학식 6
Figure PCTKR2012004938-appb-M000006
여기서, n(1,p=p0) PUCCH는 안테나 포트 p0가 사용할 ACK/NACK PUCCH 자원의 인덱스(즉, 번호)를 나타내고, n(1,p=p1) PUCCH는 안테나 포트 p1이 사용할 ACK/NACK PUCCH 자원 인덱스를 나타내며, N(1) PUCCH는 상위 계층으로부터 전달받는 시그널링 값을 나타낸다. nCCE는 PDCCH 전송에 사용된 CCE 인덱스들 중에서 가장 작은 값에 해당한다. 예를 들어, CCE 집성 레벨이 2이상인 경우에는 PDCCH 전송을 위해 집성된 복수의 CCE들의 인덱스들 중 첫 번째 CCE 인덱스가 ACK/NACK PUCCH 자원의 결정에 사용된다.
이하, 자원블록 맵핑에 대해서 설명한다. 물리자원블록(Physical Resource Block, PRB)과 가상자원블록(Virtual Resource Block, VRB)이 정의된다. PRB는 도 2에서 예시한 것과 동일하다. 즉, PRB는 시간 도메인에서 NDL symb개의 연속된 OFDM 심볼과 주파수 영역에서 NRB sc개의 연속된 부반송파로 정의된다. PRB는 주파수 도메인에서 0~NDL RB-1로 번호가 주어진다. PRB 번호(nPRB)와 슬롯에서 자원요소 (k,l)의 관계는 다음과 같다.
수학식 7
Figure PCTKR2012004938-appb-M000007
VRB는 자원할당을 위해 도입된 일종의 논리적 자원할당 단위이다. VRB는 PRB와 동일한 크기를 갖는다. VRB를 PRB로 맵핑하는 방식에 따라, VRB는 로컬라이즈(localized) 타입의 VRB(Localized VRB, LVRB)와 분산(distributed) 타입의 VRB(Distributed VRB, DVRB)로 구분된다. VRB의 타입과 관계 없이, 서브프레임에서 두 개의 슬롯에 걸쳐 한 쌍의 자원블록이 단일 VRB 번호(nVRB)에 의해 함께 할당된다. 서브프레임의 두 슬롯에 1개씩 위치하며 동일한 VRB 번호를 갖는 2개의 PRB를 VRB 쌍이라 칭한다.
도 6은 가상 자원블록을 물리 자원블록으로 맵핑하는 방법을 예시한다.
도 6을 참조하면, LVRB들은 PRB들에 바로 맵핑되어, VRB 번호(VRB 인덱스라고도 함)가 PRB 번호에 바로 대응된다. 즉, nPRB=nVRB가 된다. LVRB들에는 0부터 NDL VRB-1 순으로 번호가 부여되며, NDL VRB=NDL RB이다. 따라서, 로컬라이즈 맵핑 방식에 의하면, 동일한 VRB 번호를 갖는 VRB가 첫 번째 슬롯과 두 번째 슬롯에서, 동일 PRB 번호의 PRB에 맵핑된다. 반면, DVRB는 인터리빙을 거쳐 PRB에 맵핑된다. 따라서, 동일한 VRB 번호를 갖는 DVRB는 첫 번째 슬롯과 두 번째 슬롯에서 서로 다른 번호의 PRB에 맵핑될 수 있다. 구체적으로, DVRB는 PRB에 표 5과 같이 맵핑될 수 있다. 표 5는 RB 갭 값을 예시한다.
표 5
System BW (NDL RB) Gap (Ngap)
1st Gap (Ngap,1) 1nd Gap (Ngap,2)
6-10
Figure PCTKR2012004938-appb-I000001
N/A
11 4 N/A
12-19 8 N/A
20-26 12 N/A
27-44 18 N/A
45-49 27 N/A
50-63 27 9
64-79 32 16
80-110 48 16
Ngap은 동일 번호의 VRB가 첫 번째 슬롯과 두 번째 슬롯의 PRB에 맵핑될 때의 주파수 간격(예, PRB 단위)을 나타낸다. 6≤NDL RB≤49의 경우, 하나의 갭 값만이 정의된다(Ngap=Ngap,1). 50≤NDL RB≤110의 경우, 두 개의 갭 값(Ngap,1 및 Ngap,2)이 정의된다. Ngap=Ngap,1 또는 Ngap=Ngap,2는 하향링크 스케줄링을 통해 시그널링 된다. DVRB는 0~NDL VRB-1로 번호가 주어지며, Ngap=Ngap,1에 대해 NDL VRB=NDL VRB,gap1=2·min(Ngap, NDL RB - Ngap)이고, Ngap=Ngap,2에 대해 NDL VRB=NDL VRB,gap2=floor(NDL RB/2·Ngap)·2·Ngap이다. min(A,B)은 A 또는 B 중에서 작은 값을 나타내며, floor(x)는 x보다 크지 않은 최대 정수를 나타낸다.
연속된
Figure PCTKR2012004938-appb-I000002
개의 VRB 번호들은 VRB 번호 인터리빙을 위한 단위를 구성한다. Ngap=Ngap,1인 경우에는
Figure PCTKR2012004938-appb-I000003
이며, Ngap=Ngap,2인 경우에는
Figure PCTKR2012004938-appb-I000004
이다. 각 인터리빙 유닛의 VRB 번호 인터리빙은 4개의 열과 Nrow개의 행을 이용해 수행될 수 있다.
Figure PCTKR2012004938-appb-I000005
이고, P는 자원블록 그룹(Resource Block Group, RBG) 크기를 나타낸다. RBG는 P개의 연속된 자원블록으로 정의된다. VRB 번호는 행렬에 행-바이-행(row-by-row)으로 기록되고 열-바이-열(column-by-column)로 독출된다. Nnull개의 널(null)이 두 번째 및 네 번째 열의 마지막 Nnull/2개의 행에 삽입되고,
Figure PCTKR2012004938-appb-I000006
이다. 널 값은 독출 시에 무시된다.
이하, 도면을 참조하여 기존의 LTE에 정의된 자원 할당에 대해 설명한다. 도 7, 도 8 및 도 9는 각각 타입 0 RA(Resource Allocation), 타입 1 RA 및 타입 2 RA를 위한 제어 정보 포맷 및 그에 따른 자원 할당 예를 나타낸다.
UE는 검출된 PDCCH DCI 포맷에 기초해서 자원 할당 필드를 해석한다. 각각의 PDCCH 내의 자원 할당 필드는 자원 할당 헤더 필드와 실제 자원블록 할당 정보의 두 부분(part)을 포함한다. 타입 0 및 타입 1 자원 할당을 위한 PDCCH DCI 포맷 1, 2 및 2A는 동일한 포맷을 갖고 하향링크 시스템 대역에 따라 존재하는 단일 비트 자원 할당 헤더 필드를 통해 서로 구분된다. 구체적으로, 타입 0 RA는 0으로 지시되고 타입 1 RA는 1로 지시된다. PDCCH DCI 포맷 1, 2 및 2A가 타입 0 또는 타입 1 RA에 사용되는 반면, PDCCH DCI 포맷 1A, 1B, 1C 및 1D는 타입 2 RA에 사용된다. 타입 2 RA를 갖는 PDCCH DCI 포맷은 자원 할당 헤더 필드를 갖지 않는다. 자원 할당 필드는 첫 번째 슬롯의 PRB 세트를 지시한다. 뒤에서 설명하겠지만, 자원 할당 타입 0, 1, 2-LVRB의 경우 첫 번째 슬롯과 두 번째 슬롯간의 슬롯 호핑이 없으므로, 두 번째 슬롯에서는 첫 번째 슬롯과 동일한 PRB 세트가 할당된다(즉, PRB 인덱스(첫 번째 슬롯)=PRB 인덱스(두 번째 슬롯)). 반면, 자원 할당 타입 2-DVRB의 경우, 첫 번째 슬롯의 PRB 세트가 주어지면, 두 번째 슬롯의 PRB 세트는 슬롯 호핑 규칙에 의해 결정된다.
도 7을 참조하면, 타입 0 RA에서 자원블록 할당 정보는 단말에게 할당된 자원블록 그룹(Resource Block Group, RBG)을 지시하는 비트맵을 포함한다. RBG는 연속된 PRB의 세트이다. RBG 크기(P)는 표 6과 같이 시스템 대역에 의존한다.
표 6
System BandwidthNDL RB RBG size(P)
≤10 1
11-26 2
27-63 3
64-110 4
NDL RB개의 PRB를 갖는 하향링크 시스템 대역에서 RBG의 총 개수(NRBG)는 NRBG=ceil(NDL RB/P)로 주어지고, floor(NDL RB/P)개의 RBG는 크기가 P이며, NDL RB mod P > 0인 경우, RBG 중 하나는 크기가 NDL RB-P·floor(NDL RB/P)가 된다. ceil(x)는 x보다 작지 않은 최소 정수를 나타내며, mod는 모듈로(modulo) 연산을 나타낸다. 비트맵의 크기는 NRBG이고 각각의 비트는 하나의 RBG에 대응한다. 전체 RBG는 주파수 증가 방향으로 0 ~ NRBG-1로 인덱싱 되고, RBG 0 ~ RBG NRBG-1은 비트맵의 MSB(most significant bit)에서 LSB(least significant bit)로 맵핑된다.
도 8을 참조하면, 타입 1 RA에서 NRBG 크기의 자원블록 할당 정보는 스케줄링 된 UE에게 RBG 서브세트 내의 자원을 PRB 단위로 지시한다. RBG 서브세트 p (0≤p<P)는 RBG p로부터 시작해서 매 P번째 RBG로 구성된다. 자원블록 할당 정보는 세 개의 필드로 구성된다. 첫 번째 필드는 ceil{log2(P)}개의 비트이고, P개의 RBG 서브세트 중에서 선택된 RBG 서브세트를 지시한다. 두 번째 필드는 1 비트이고 서브세트 내에서 자원 할당 스팬(span)의 쉬프트를 지시한다. 비트 값이 1인 경우 쉬프트가 트리거링되고 반대의 경우 트리거링되지 않는다. 세 번째 필드는 비트맵을 포함하고, 각각의 비트는 선택된 RBG 세트 내에서 하나의 PRB를 지시한다. 선택된 RBG 서브세트 내에서 PRB를 지시하는데 사용되는 비트맵 부분은 크기가 NTYPE1 RB이고, 다음과 같이 정의된다.
수학식 8
Figure PCTKR2012004938-appb-M000008
선택된 RBG 서브세트에서 어드레스 가능한(addressable) PRB 번호는 선택된 RBG 서브세트 내에서 가장 작은 PRB 번호에 대한 오프셋(△shift(p))으로부터 시작하고 비트맵의 MSB에 맵핑될 수 있다. 오프셋은 PRB의 개수로 표현되고 선택된 RBG 서브세트 내에서 적용된다. 자원 할당 스팬의 쉬프트를 위한 두 번째 필드 내의 비트 값이 0으로 세팅된 경우 RBG 서브세트 p를 위한 오프셋은 △shift(p)=0으로 주어진다. 그 외의 경우, RBG 서브세트 p를 위한 오프셋은 △shift(p)=NRBGsubset RB(p)-NTYPE1 RB로 주어진다. NRBGsubset RB(p)는 RBG 서브세트 p 내에서의 PRB의 개수를 나타내고 다음에 따라 구할 수 있다.
수학식 9
Figure PCTKR2012004938-appb-M000009
도 9를 참조하면, 타입 2 RA에서 자원블록 할당 정보는 스케줄링 된 UE에게 연속적으로 할당된 LVRB 또는 DVRB의 세트를 지시한다. PDCCH DCI 포맷 1A, 1B 또는 1D로 자원 할당을 시그널링 한 경우, 1-비트 플래그가 LVRB 또는 DVRB가 할당되는지 지시한다(예, 0은 LVRB 할당을 나타내고, 1은 DVRB 할당을 나타낸다). 반면, PDCCH DCI 포맷 1C로 자원 할당을 시그널링 할 경우 항상 DVRB만이 할당된다. 타입 2 자원 할당 필드는 자원 지시 값(Resource Indication Value, RIV)을 포함하고, RIV는 시작 자원블록(RBstart) 및 길이에 대응한다. 길이는 가상적으로 연속되게 할당된 자원블록의 개수를 나타낸다.
도 10은 특정 서브프레임을 이용하여 기지국이 RN로 신호 전송을 수행하는 예를 나타낸다.
RN(Relay)라 함은 BS의 서비스 영역을 확장하거나, 음영 지역에 설치되어 BS의 서비스를 원활하게 기기 및/또는 지점을 의미한다. RN는 RN(Relay Node), RS(Relay Station) 등 다른 용어로 불릴 수 있다. UE의 관점에서 RN은 무선 엑세스 네트워크의 일부이며, 몇몇 예외를 제외하고, BS처럼 동작한다. RN에 신호를 전송하거나 상기 RN으로부터 신호를 수신하는 BS를 도너(donor) BS라고 한다. RN은 도너 BS에 무선으로 연결된다. BS의 관점에서 RN은, 몇몇 예외(예를 들어, 하향링크 제어정보가 PDCCH가 아닌 R-PDCCH(relay PDCCH)를 통해 전송됨)를 제외하고, UE처럼 동작한다. 따라서, RN은 UE와의 통신에 사용되는 물리 레이어 엔터티와 도너 BS와의 통신에 사용되는 물리 레이어 엔터티를 모두 포함한다. BS에서 RN으로의 전송, 이하, BS-to-RN 전송은 하향링크 서브프레임에서 일어나며, RN에서 BS로의 전송, 이하, RN-to-BS 전송은 상향링크 서브프레임에서 일어난다. 한편, BS-to-RN 전송 및 RN-to-BS 전송은 하향링크 주파수 대역에서 일어나며, RN-to-BS 전송 및 UE-to-RN 전송은 상향링크 주파수 대역에서 일어난다. 본 발명에서, RN 또는 UE는 하나 이상의 BS를 통해 상기 하나 이상의 BS가 속한 네트워크(network)와 통신할 수 있다.
특히, 도 10은 RN에서 UE로의 일반 서브프레임을 사용한 통신과, BS에서 RN으로의 MBSFN(Multimedia Broadcast Single Frequency Network) 서브프레임을 이용한 통신을 예시한 것이다.
BS-RN 링크(즉, 백홀 링크)와 RN-UE 링크(즉, RN 엑세스 링크)와 동일한 주파수 대역에서 동작하는 인-밴드 중계 모드의 경우, RN이 BS로부터 신호를 수신하면서 UE로 신호를 전송하는 경우 또는 반대의 경우에 RN의 송신기와 수신기는 서로 간섭을 유발한다. 상기 간섭 문제를 해결하기 위해, RN은 상기 RN이 BS로부터 데이터를 전송 받는 시간 구간에서는 UE들과 통신을 수행하지 않도록 구성될 수 있다. UE들이 어떠한 RN 전송도 기대하지 않는 상기 시간 구간, 즉, 전송 갭은 MBSFN 서브프레임을 구성함으로써 생성될 수 있다. 즉, RN 또는 BS는 임의의 서브프레임을 MBSFN 서브프레임으로 설정하고, 상기 MBSFN 서브프레임에서 백홀 링크를 설정할 수 있다(fake MBSFN 방법). 임의의 서브프레임이 MBSFN 서브프레임인 것으로 시그널링된 경우, UE는 해당 서브프레임의 PDCCH 영역에서만 하향링크 신호를 검출하므로, RN은 해당 서브프레임의 PDSCH 영역을 이용해 백홀 링크를 구성할 수 있다. RN은 특정 서브프레임(예를 들어, MBSFN 서브프레임)에서는 BS로부터 신호를 전송 받고, 또 다른 서브프레임에서는 상기 BS로부터 받은 데이터를 UE에게 전송할 수 있다.
RN 동작(operation)에 관한 3GPP TS 36.216에 따르면, BS-RN 링크(백홀)에서는 R-PDCCH가 하향링크 제어정보를 나른다. 즉, R-PDCCH는 RN들을 위한 DCI를 나른다. R-PDCCH는 보통의 3GPP LTE PDCCH와 달리 PDSCH 영역에서 전송/수신되며, DL R-PDCCH(즉, DL 그랜트를 나르는 R-PDCCH)는 첫 번째 슬롯에서 UL R-PDCCH(즉, UL 그랜트를 나르는 R-PDCCH)는 두 번째 슬롯에서 전송/수신된다.
도 11은 임베드된 PDCCH(e-PDCCH)의 개념을 설명하는 도면이다.
시스템의 성능 향상을 위해 새로이 RRH (remote radio head)의 도입이 논의되고 있다. 또한, 반송파 집성 상황 하에서는 일 UE에 복수의 서빙 CC가 구성(configure)될 수 있으므로, 채널상황이 좋은 서빙 CC에서 다른 CC를 위한 UL/DL 그랜트를 전송하는 방안이 논의되고 있다. 이와 같이, 스케줄링 정보인 UL/DL 그랜트를 나르는 CC와 UL/DL 그랜트에 대응하는 UL/DL 전송이 수행되는 CC가 다른 경우, 이를 크로스-반송파 스케줄링이라 한다. RRH 기술, 크로스-반송파 스케줄링 기술 등이 도입되면, BS가 전송해야 할 PDCCH의 양이 점점 늘어나게 된다. 그러나, PDCCH가 전송될 수 있는 제어영역의 크기는 종전과 동일하므로, PDCCH 전송이 시스템 성능의 보틀넥(bottleneck)으로 작용하게 된다. 따라서, PDCCH 전송이 시스템 성능을 제약하는 것을 방지하기 위하여, DL 서브프레임의 PDSCH 영역을 이용하여 PDCCH 전송을 수행하려는 논의가 있다. 도 11을 참조하면, DL 서브프레임의 PDCCH 영역에는 기존 3GPP LTE(-A) 표준에 따른 PDCCH가 할당될 수 있으며, PDSCH 영역의 일부 자원을 이용하여 PDCCH가 추가 혹은 별도로 할당될 수 있다. PDCCH 영역에서 전송되는 기존의 PDCCH는 주파수 도메인에서 넓은 주파수 대역에 걸쳐 있는 자원들을 이용하여 전송됨에 반하여, PDSCH 영역에서 전송되는 PDCCH는 통상 좁은 주파수 대역만을 이용하여 전송된다. 이하, DL 서브프레임의 선두 OFDM 심볼(들)에서 전송되는 기존의 PDCCH와의 구분을 위하여, DL 서브프레임의 후반 OFDM 심볼들(PDSCH 영역)에서 전송되는 PDCCH를 임베드된 PDCCH(embedded PDCCH, e-PDCCH)라고 칭한다. e-PDCCH는 E-PDCCH(enhanced PDCCH) 혹은 A-PDCCH(advanced PDCCH)라 칭해지기도 하며, R-PDCCH 역시 e-PDCCH의 일종이다. e-PDCCH에 의해 스케줄링된 PDSCH/PUSCH는 e-PDSCH/e-PUSCH라고 불리기도 한다.
3GPP TS 36.216에 따른 RN 시스템의 경우, PDSCH 전송 성공 여부를 나르는 PUCCH의 전송에 사용되는 PUCCH 자원(순환쉬프트(cyclic shift, CS)와 직교커버시퀀스(orthogonal cover sequence, OC)에 의해서 결정되는 ACK/NACK 또는 SR(scheduling request) 자원)은 상위계층신호(예를 들어, RRC 신호)에 의해서 구성(configure)된다. PUCCH 자원이 RRC 신호에 의해서 구성되면 자원구성을 수시로 변경하기가 어렵다. 이 때문에, PUCCH 자원이 상위계층신호에 의해 구성되는 RN 시스템을 포함하는 무선 통신 시스템에서는 PUCCH 자원이 효율적으로 운용되기 어렵다. 이와 같은 문제점을 해결하기 위하여, PDCCH의 CCE 인덱스와 링크되어 PUCCH 자원이 암묵적으로 결정되는, PUCCH 자원의 동적 운용이 고려될 수 있다. 그러나, R-PDCCH를 포함한 e-PDCCH를 나르는 PDCCH 자원은, 보통의 PDCCH에 적용되는 CCE 인덱스와는 별도의 인덱스를 이용하여 운용된다. 즉, PDCCH와 e-PDCCH는 서로 다른 서로 다른 CCE 인덱스에 의해 관리된다. 예를 들어, PDCCH와 연관된 CCE를 PDCCH CCE라 칭하고, e-PDCCH와 연관된 CCE를 e-PDCCH CCE라 칭하고, PDSCH 영역에서 e-PDCCH 전송에 사용될 수 있는 RE들을 모아 CCE 단위로 묶어 CCE 인덱스가 순차적으로 부여된다고 가정하자. UE가 PDSCH 영역에서 검출한 e-PDCCH의 CCE 인덱스가 2라고 하면 UE는 2번 CCE 인덱스와 연결된 PUCCH 자원을 이용하여 상기 e-PDCCH 혹은 상기 e-PDCCH에 대응하는 PDSCH에 대한 ACK/NACK을 전송해야 하는데, 상기 2번 CCE 인덱스는 e-PDCCH 전송에 이용가능한 e-PDCCH CCE들에 부여된 로컬 CCE 인덱스들 중 하나일 뿐이므로, UE는 특정 셀에서 PDCCH 전송에 이용가능한 PDCCH CCE들 및 e-PDCCH 전송에 이용가능한 e-PDCCH CCE들 전체에 부여된 공통 CCE 인덱스들 중에서 어떤 인덱스에 상기 2번 CCE가 해당하는지는 알 수 없다. 결국, UE는 해당 e-PDCCH CCE가 어떤 PRB에 맵핑되는지 명확히 알지 못하게 된다. 즉, PDCCH와 e-PDCCH가 동일한 CCE 인덱스를 갖는 CCE 상에서 전송된다고 하더라도, PDCCH의 CCE와 e-PDCCH의 CCE는 서로 다른 CCE를 의미하게 되기 때문에, e-PDCCH의 자원을 이용한 PUCCH 자원의 동적 할당은 PDCCH의 CCE 인덱스를 ACK/NACK 자원으로 연결시키는 기존 규칙에 통합되어 운영되기 어렵다는 문제가 있다. 이하, e-PDCCH를 이용하여 ACK/NACK 자원을 동적으로 할당하면서, 이와 같은 문제점을 해결할 수 있는 본 발명의 일 실시예를 도 12를 참조하여 설명한다.
도 12는 PUCCH 자원들의 논리적 배열을 예시한 것이다.
도 12를 참조하면, PUCCH를 위해 사용되는 자원들을 모으면 CSI를 위한 PUCCH 자원들, SPS(semi-persistent scheduling) ACK/NACK 및 SR을 위한 PUCCH 자원들, 동적 ACK/NACK을 위한 PUCCH 자원들(즉, PDCCH와 링킹되어 동적으로 할당되는 PUCCH 자원) 순으로 배열된다.
도 12(a)를 참조하면, BS는 PUCCH 자원들에 순차적으로 부여되는 논리 인덱스들 중 어떤 논리 인덱스부터 동적 ACK/NACK 자원으로 사용되는지를 나타내는 NPUCCH offset을 상위 계층 신호에 의해 UE에게 전송할 수 있다. 예를 들어, 수학식 5 및 수학식 6의 N(1) PUCCH가 NPUCCH offset가 될 수 있다. 3GPP LTE(-A) 시스템에서는, NPUCCH offset부터 시작하여 적어도 CCE 인덱스의 개수만큼의 PUCCH 자원이 동적 ACK/NACK 자원으로 활용될 수 있다. 3GPP LTE(-A) 시스템에서는 상위 계층 신호로서 전송되는 N(2) RB에 의해 NPUCCH offset가 결정/지시될 수 있다. e-PDCCH를 이용한, ACK/NACK 자원의 동적 할당을 위해서, 본 발명은 e-PDCCH용 ACK/NACK PUCCH 자원의 시작위치를 알려주는 오프셋 Ne-PUCCH offset 혹은 Ne-PUCCH offset에 상응하여 이를 나타낼 수 있는 다른 값을 제공한다. BS는 UE에게 상위 계층 신호에 의해 Ne-PUCCH offset를 나타내는 정보를 전송할 수 있다. 이 경우, NPUCCH offset부터 시작하여 Ne-PUCCH offset 전까지의 PUCCH 자원들이 PDCCH CCE들과 링크될 수 있다. 본 방법에 의하면, PDCCH CCE에 연결된 자원이 동적으로 변하기 때문에, PUCCH 자원이 동적으로 변하더라도 문제가 발생하지 않도록 충분한 개수의 ACK/NACK PUCCH 자원이 유보되어야 한다. 이 점을 고려하면, NPUCCH offset부터 충분히 먼 Ne-PUCCH offset가 설정되어야 하므로, PDCCH와 연결된 동적 ACK/NACK 자원이 적게 사용되는 경우에는, 도 12(b)에 도시된 바와 같이, NPUCCH offset와 Ne-PUCCH offset에 의해서 설정된, ACK/NACK PUCCH 자원들 중에서 미사용되는 자원들은 낭비되게 된다.
R-PDCCH를 위한 ACK/NACK 자원을 RRC 시그널링 기반으로 할당하는 기존 방법의 문제점 및 앞서 설명한 Ne-PDCCH offset을 이용한 e-PDCCH를 위한 ACK/NACK 자원 할당 방법의 문제점을 해결하기 위하여, 앞서 설명한 본 발명의 방법과는 별도로, 본 발명은 제한된 개수의 PUCCH 자원을 RRC 신호에 의해 사전에 예약하고 상기 예약된 자원들의 한도 내에서 동적으로 PUCCH 자원을 할당할 수 있는 또 다른 방법을 제안한다. 이하, 설명의 편의를 위하여, R-PDCCH에 대한 성능 개선 형태로 이와 연관된 실시예들을 설명하나, 이하 설명되는 본 방법의 실시예들은 R-PDCCH뿐만 아니라, PDSCH 영역에 임베드되어 전송되는 모든 종류의 PDCCH의 변형(A-PDCCH, E-PDCCH,...)에도 적용될 수 있다. 이하에 설명에서 R-PDCCH를 e-PDCCH로 교체하고 RN을 UE로 교체하면, e-PDCCH에 관한 본 발명의 실시예들에 관한 설명이 된다.
도 13은 R-PDCCH의 탐색 공간 구성을 위한 R-PDCCH와 PRB의 맵핑(mapping) 개념을 나타낸 것이다. 특히, 도 13은 본 발명의 제안 방법을 설명하기 위하여 R-PDCCH 전송 과정에서 정의된 VRB 번호(nVRB) 및 PRB 번호(nPRB)에 대한 맵핑 관계를 예시한 것이다.
주파수 도메인에서, 잠재적(potential) R-PDCCH 전송을 위해 NR-PDCCH VRB개의 VRB 모음이, 도 7부터 도 9에서 설명한, 타입 0, 1 또는 2 RA를 이용하여 상위 계층 신호에 의해 구성될 수 있다. 예를 들어, 타입 2 RA를 위해, VRB의 PRB로의 맵핑은 상위 계층에 의해 구성되며, 구성된 VRB들은 nR-PDCCH VRB = 0, 1,..., NR-PDCCH VRB-1의 번호를 연속적으로 부여받아, nR-PDCCH VRB = 0으로 번호가 부여된 VRB는 가장 작은 VRB 번호 nPRB를 나타내고, nR-PDCCH VRB = NR-PDCCH VRB-1으로 번호가 부여된 VRB는 가장 큰 VRB 번호 nPRB를 나타내게 된다.
도 13을 참조하면, K-비트로 구성된 자원할당(resource allocation, RA) 비트맵은, 도 6에서 도 9에서 설명한 바와 같이, 그 자체가 R-PDCCH를 위한 VRB 개수인 NR-PDCCH VRB를 알려준다. 즉, RA 비트맵은 어떤 PRB들이 R-PDCCH 탐색 공간에 속하는지를 알려준다. 또한, RA 비트맵 nR-PDCCH VRB가 nVRB로 맵핑되는 규칙을 알려주며, nVRB가 nPRB로의 맵핑이 로컬라이즈 타입으로 할당인지 아니면 분산 타입의 할당인지도 함께 알려준다.
각 RN은 자신의 R-PDCCH가 있는지 여부를 확인하기 위해 예약된 R-PDCCH 자원 영역, 즉, R-PDCCH 탐색 공간(NR-PDCCH VRB개의 VRB 모음)을 모니터링한다. R-PDCCH 자원을 모니터링 하는 것은 R-PDCCH 후보를 블라인드 복호하는 것을 포함한다. 각 RN은 자신에게 지시된 R-PDCCH를 검출한 경우, R-PDCCH의 DCI에 따른 동작(예, 하향링크 수신, 상향링크 전송)을 수행한다.
R-PDCCH 상에서 전송되는 DCI(예, DL 그랜트, UL 그랜트)는 크로스-인터리빙되어 R-PDCCH 자원에 맵핑되거나 크로스-인터리빙없이 R-PDCCH 자원에 맵핑된다. DCI가 크로스-인터리빙없이 R-PDCCH 자원에 맵핑되는 경우, 하나 이상의 RB 상에서 하나의 R-PDCCH만이 전송된다. DCI 크로스-인터리빙되어 R-PDCCH 자원에 맵핑되는 경우, 복수의 R-PDCCH가 하나 이상의 RB 상에서 함께 전송될 수 있다. BS는 상위 계층 신호를 이용하여 R-PDCCH의 크로스-인터리빙 여부를 RN에 시그널링한다. R-PDCCH 탐색 공간에서 R-PDCCH 후보는 크로스-인터리빙 여부에 따라 다르게 정의된다. 예를 들어, 상위 계층이 R-PDCCH가 크로스-인터리빙되지 않도록 구성하는 경우, 각 슬롯에서 집성 레벨 Λ의 R-PDCCH 후보 m=0,1,...,M(Λ)-1은 nR-PDCCH VRB = (Λ·m + i)modNR-PDCCH VRB의 번호가 부여된 VRB를 포함한다. 여기서, i = 0,1,...,Λ-1이고 M(Λ)은 다음과 같이 주어진다.
표 7
Aggregation level Λ Number of R-PDCCH candidates M(Λ)
1 6
2 6
4 2
8 2
예를 들어, 상위 계층이 R-PDCCH가 크로스-인터리빙되도록 구성하는 경우, RN이 R-PDCCH 할당을 결정하는 과정은 UE가 PDCCH 할당을 결정하는 과정에 따른다. 다만, 서브프레임 n의 슬롯 j∈{0,1} 내 탐색 공간 S(Λ) n,j의 R-PDCCH 후보에 대응하는 CCE들의 모음은 다음식에 의해 주어진다.
수학식 10
Figure PCTKR2012004938-appb-M000010
여기서, i=0,1,...,Λ-1이고, m=0,1,...,M(Λ)-1이며, NR-PDCCH CCE,j는 잠재적 R-PDCCH 전송을 위해 구성된 RB들의 모음에 포함된 CCE들의 총 개수이다.
■ 제1실시예
nR-PDCCH VRB는 R-PDCCH의 PRB로의 맵핑을 위한 파라미터이며, 이는 PDCCH CCE 인덱스와 유사한 역할을 수행한다. 다만, RN이 R-PDCCH의 검출을 시도하는 R-PDCCH 탐색 공간은 RN 특정적으로 설정되기 때문에 nR-PDCCH VRB는 e-PDCCH와 연관된 PUCCH 자원의 결정을 위한 공통 인덱스로 사용될 수 없다. nR-PDCCH VRB를 셀 전체에서 공통적으로 사용될 수 있는 공통 인덱스로 만들기 위해서, 본 발명의 제1실시예는 RN별 혹은 RN 그룹별로 별도의 오프셋 값을 시그널링한다. 즉, 해당 RN 혹은 해당 RN 그룹에 할당된 NR-PDCCH VRB개의 VRB들이 PUCCH 자원들의 실제 논리 인덱스들에 맵핑될 수 있도록 하기 위하여, 해당 RN 혹은 해당 RN 그룹을 위한 ACK/NACK PUCCH 자원의 시작 인덱스, 또는 해당 RN 혹은 해당 RN 그룹의 ACK/NACK 전송에 이용가능한 대역폭을 나타내는 값이 Ne-PDCCH offset로서 BS로부터 UE에게 전송될 수 있다. 이때, 다수의 RN들이 동일한 그룹(예를 들어, RN 그룹 #n)을 이루고 동일한 탐색 공간이 구성된다고 가정된다. 동일한 그룹 내에서 R-PDCCH에 대응되는 PUCCH 자원 인덱스는 R-PDCCH 집성 레벨 1(예를 들어, 36개 RE, 9개 REG)을 기준으로 구성된 단위의 인덱스(UE의 CCE 인덱스에 해당하는 개념) 위치에 의해서 결정된다. 즉, 본 발명의 제1실시예에 의하면, nR-PDCCH VRB 값이 PUCCH 자원에 1:1로 맵핑되도록 구현될 수 있으며, RN/UE는 nR-PDCCH VRB + RN/UE 특정적 오프셋 값을 이용하여 고유의 PUCCH 자원을 얻을 수 있다. 도 12에서 설명된 NPUCCH offset와 Ne-PUCCH offset은 셀 특정적으로 제공되는 값으로서, 모든 RN 혹은 UE에게 동일한 Ne-PUCCH offset이 제공됨에 반하여, 본 발명의 제1실시예에 의하면, Ne-PUCCH offset이 UE/RN 특정적 혹은 UE/RN 그룹 특정적으로 제공된다. 구체적으로, 도 12에서는 BS가 RRC 전용(dedicated) 오프셋 시그널링을 이용하여 모든 UE에게 동일한 NPUCCH offset 및/또는 Ne-PUCCH offset을 전송했다면, 본 제1실시예에서는 오프셋 값을 UE마다(혹은 UE 그룹마다) 다르게 설정함으로써 nR-PDCCH VRB 값이 맵핑되는 실제 PUCCH 자원 인덱스를 시그널링할 수 있다.
예를 들어, 도 13을 참조하면, 4개 VRB가 잠재적 R-PDCCH 전송을 위해 구성된 경우, 특정 RN을 위해 제공된 Ne-PUCCH offset부터 시작하여 최소 4개 PUCCH 자원들이 상기 4개 VRB와 nR-PDCCH VRB에 의해 링크될 수 있다. 상기 특정 RN은 R-PDCCH를 검출하고 상기 R-PDCCH VRB 인덱스 nR-PDCCH VRB에 링크된 PUCCH 자원을 이용하여 상기 R-PDCCH 혹은 상기 R-PDCCH에 의해 스케줄링된 PDSCH에 대한 ACK/NACK을 BS로 전송할 수 있다.
■ 제2실시예
본 발명의 또 다른 실시예로, 본 발명은 이미 셀 공통 인덱스의 특성을 가지고 있는 nVRB 혹은 nPRB를 이용하여 R-PDCCH를 위한 ACK/NACK PUCCH 자원을 동적으로 할당하는 제2실시예를 제안한다. 즉, nVRB 혹은 nPRB에 의해서 구성된 R-PDCCH VRB 인덱스(nR-PDCCH VRB)가 nVRB 혹은 nPRB에 맵핑됨으로써 PUCCH 자원 할당을 위한 인덱스로 사용될 수 있다. 다시 말해, 본 발명의 제2실시예는 nVRB 혹은 nPRB를 PUCCH 자원과 1:1 로 맵핑하는 것으로서, 이 경우, PUCCH 자원에서 가장 낮은 인덱스 (또는 가장 높은 인덱스)는 nVRB = 0 혹은 nPRB = 0에 대응되고, 가장 높은 인덱스(또는 가장 낮은 인덱스)는 nVRB = NR-PDCCH VRB-1 혹은 nVRB = NR-PDCCH VRB-1에 대응된다. 1:1 맵핑을 하는 경우, 잠재적 PUCCH 전송을 위해 구성된 RB의 개수만큼 PUCCH 자원이 예약되게 된다. 예약되는 PUCCH 자원의 개수를 줄이기 위하여, 본 발명의 제2실시예의 일 양태는 복수의 nVRB 혹은 nPRB가 하나의 PUCCH 자원에 대응시킬 수 있다. 즉, 본 발명의 제2실시예의 일 양태는 N:1 맵핑 형태를 유지하여, 예약자원의 수를 줄이는 것으로서, N개 VRB 혹은 PRB를 1개의 PUCCH 자원에 대응시키는 것이다. 여기서, N은 사전에 구성되거나, 통신 상황에 따라 구성될 수 있다. N 값은 RBG를 고려하여, 예를 들면, N = 4, 3, 2가 되도록 구성할 수 있다. RBG가 4인 경우, RBG내 R-PDCCH가 하나만 할당되도록 사전에 약속을 정해둔다면, RBG당 하나의 ACK/NACK 자원만 예약되면 된다. 예를 들어, 하나의 RBG가 4 RB로 구성되는 100 RB 시스템에서는 25 개의 ACK/NACK 자원이 예약되면 된다. 사전에 정해진 규칙이 없다면, RBG 내 하나 이상의 R-PDCCH가 존재하고 그로 인해서 동일한 ACK/NACK 자원을 여러 RN이 사용하게 되어 충돌이 발생할 수 있다. 이러한 충돌을 최소화 하기 위하여, 3GPP LTE(-A) 시스템에서 상향링크 RB 인덱스와 PHICH인덱스를 맵핑할 때 사용되는 PHICH 그룹핑 방법이 R-PDCCH와 연관된 PUCCH 자원들에도 적용될 수 있다.
■ 제3실시예
본 발명은 또 다른 실시예로서, 시그널링된 탐색 공간 세트들을 모아서 새로이 번호를 부여하는 제3실시예를 제안한다. 본 발명의 제3실시예에 의하면, 모든 RN은 각각 R-PDCCH VRB 인덱스 nR-PDCCH VRB 인덱스를 구성하고, 이와 같이 구성된 RN별 R-PDCCH VRB 인덱스들과 RN 각자가 수신한 오프셋 값을 적용하여 공통 인덱스들을 구성한다. RN은 R-PDCCH가 검출된 nR-PDCCH VRB에 대응되는 공통 인덱스를 이용하여 상기 공통 인덱스에 맵핑되는 PUCCH 자원 인덱스를 알고, 이를 동적으로 사용할 수 있다. 본 발명의 제3실시예를 위하여, 전술한 제1실시예에서와 같이, RN 단위로 탐색 공간의 가장 낮은 인덱스 또는 크기(즉, 오프셋 값)을 알려주는 RRC 신호가 요구된다.
■ 제4실시예
PDCCH만 사용되는 서브프레임과 e-PDCCH만 사용되는 서브프레임과 같이, 일 하향링크 서브프레임에서 PDCCH와 e-PDCCH가 배타적으로 둘 중 하나만 사용되도록 무선 시스템이 구현될 수도 있다. 이와 같이, 일 하향링크 서브프레임에서 PDCCH와 e-PDCCH가 동시에 사용될 수 없도록 시스템이 정의되는 경우를 위하여, 본 발명은 다음과 같은 방법을 제안한다.
도 14는 e-PDCCH를 위한 ACK/NACK 자원을 할당하는 본 발명의 일 실시예를 설명하기 위한 도면이다.
PDCCH만 존재하는 서브프레임에서 PUCCH 자원은 NPUCCH offset을 이용하여 동적으로 할당될 수 있다. 본 발명은 e-PDCCH(e.g. R-PDCCH)만 존재하는 서브프레임에서는 NPUCCH offset에 의해 예약되었던 PUCCH 자원들을 상기 e-PDCCH를 위한 PUCCH 자원들로 사용하는 제4실시예를 제안한다. 도 14를 참조하면, 본 발명의 제4실시예에 의하면, PDCCH나 e-PDCCH에 상관없이 동일한 PUCCH 자원들이 PDCCH와 연관된 ACK/NACK 전송과 e-PDCCH와 연관된 ACK/NACK 전송을 위해 TDM(Time Division Multiplexing) 방식으로 공유된다. 본 발명의 제4실시예에 의하면, 배타적인 두 영역에 자원을 불필요하게 예약하는 낭비를 막을 수 있다. 본 발명의 제4실시예의 구현을 위해서, BS는 UE에게 어떤 서브프레임에서 PDCCH만 존재하는지 혹은 어떤 서브프레임에서 e-PDCCH만 존재하는지를 알리는 신호를 RRC와 같은 상위 계층 신호를 통해서 알릴 수 있다. 또는, BS는 서브프레임 별로 다른 NPUCCH offset 값을 설정하여 UE에게 시그널링할 수도 있다. e-PDCCH의 수가 적고, 이에 따른 예약된 e-PUCCH 자원도 적어서 낭비가 무시할만 하다면, e-PDCCH를 위해 독립적인 PUCCH 자원이 구성되는 것도 가능하다.
전술한 본 발명의 제1실시예 내지 제4실시예는, 제한된 개수의 PUCCH 자원을 RRC 신호에 의해 사전에 예약하고 상기 예약된 자원들의 한도 내에서 동적으로 PUCCH 자원을 할당하기 위하여, PUCCH 자원 인덱스들과 링크될 수 있는 공통 인덱스들을 구성하는 방법에 관한 실시예들이다. 다시 말해, 본 발명의 제1실시예 내지 제4실시예는 PUCCH 자원들 중 CSI, SPS ACK/NACK 및 SR 전송을 위한 PUCCH 자원들, 즉, 논리 PUCCH 자원 인덱스 0부터 NPUCCH offset-1까지의 PUCCH 자원들을 제외한 나머지 PUCCH 자원들에 링크될 공통 인덱스들을 구성하는 방법에 관한 실시예들이라고 할 수 있다.
BS는 특정 RN/UE의 e-PDCCH를 위한 탐색 공간을 하향링크 서브프레임의 데이터 영역에 전술한 제1실시예 내지 제4실시예 중 어느 하나에 따라 구성하고, 구성된 e-PDCCH용 탐색 공간에 연관된 PUCCH 자원들 중 시작 PUCCH 자원의 인덱스 혹은 구성된 e-PDCCH용 탐색 공간에 연관된 PUCCH 자원들의 크기, 혹은 구성된 e-PDCCH용 탐색 공간에 연관된 PUCCH 자원들에 이용가능한 대역폭의 크기를 나타내는 정보인 오프셋 정보를 UE에게 제공할 수 있다. RN/UE는 상기 오프셋 정보를 기반으로 자신을 위한 e-PDCCH의 탐색 공간을 위해 예약된 PUCCH 자원들 중에서 해당 e-PDCCH에 포함된 자원의 인덱스(예로, CCE 인덱스, VRB 인덱스 등)를 기반으로 상기 해당 e-PDCCH에 대응하는 ACK/NACK을 위한 PUCCH 자원을 결정할 수 있다.
이하에서는 전술한 제1실시예 내지 제4실시예에 따라 구성된 단일 탐색 공간 상에서 e-PDCCH의 후보 위치 및/또는 집성 레벨에 따라서 연동되는 ACK/NACK 자원의 개수 및/또는 맵핑 규칙을 다르게 설정하는 본 발명의 제5실시예를 설명한다.
■ 제5실시예
도 15는 e-PDCCH를 위한 ACK/NACK 자원을 할당하는 본 발명의 다른 실시예를 설명하기 위한 도면이다.
도 15를 참조하면, 예를 들어, 하나의 탐색 공간에 집성 레벨 1, 2, 4, 8의 e-PDCCH의 후보 위치가 각각 6, 6, 2, 2개씩 있다고 가정하자. 이 경우, BS는 총 16개의 RB로 구성되는 탐색 공간을 구성하고, 이 중 6개의 RB를 이용해서 집성 레벨이 1인 6개의 후보 위치를, 12개의 RB를 이용해서 집성 레벨 2인 6개의 후보 위치를, 8개의 RB를 이용해서 집성 레벨이 4인 2개의 후보 위치를, 16개의 RB를 이용해서 집성 레벨이 8인 2개의 후보 위치를 구성할 수 있다. 이때, 각 집성 레벨의 후보 위치는 구성된 RB 세트 중 RB 인덱스가 작은 것부터 순서대로 사용된다고 가정된다.
도 15(a)은 각 RB마다 하나씩의 ACK/NACK 자원이 맵핑되는 경우를 나타낸 것으로, 도 15(a)에서는 총 16개의 ACK/NACK 자원이 예약되어야 한다. 그러나, 이는 다소 과도한 ACK/NACK 자원 예약을 유발하게 된다. 예를 들어, 집성 레벨 2의 후보 위치 0, 1, 2에 해당하는 RB들에서는 각 후보 위치별로 집성 레벨 1의 후보 위치가 2개씩 정의된다. 따라서, 집성 레벨 2인 후보 위치를 1개 구성하는 경우, 2개의 RB 각각에 1개씩, 총 2개의 ACK/NACK 자원이 예약되어야 한다.
반면, 집성 레벨 2의 후보 위치 3, 4, 5에 해당하는 RB들에서는 집성 레벨 l 1의 후보 위치가 정의되지 않으므로 각각 하나의 ACK/NACK 자원이 예약되는 것으로 충분하게 된다. 그 결과, 도 15(b)를 참조하면, 총 9개의 ACK/NACK 자원이 예약되더라도, 해당 탐색 공간 상에서 정의되는 e-PDCCH 후보는 독자적인 ACK/NACK 자원을 보장받게 되어 예약되는 ACK/NACK 자원의 양을 줄일 수 있게 된다. 즉, 탐색 공간이 소정 개수의 자원 유닛으로 구성되더라도, BS는 소정 개수보다 적은 양의 PUCCH 자원을 e-PDCCH를 위한 ACK/NACK 전송용으로 예약할 수 있다. 상기 BS는 상기 예약된 PUCCH 자원들의 개수 및/또는 위치를 나타내는 정보를 전술한 제1실시예 내지 제4실시예 중 어느 하나에 따라 해당 RN/UE에게 전송할 수 있다.
본 발명의 제5실시예는, 주어진 탐색 공간 내에서 특정 RB를 공유하는 후보 위치들 중에서 (혹은 보다 구체화해서 특정 RB를 집성된 RB의 시작 RB로서 공유하는 후보 위치들 중에서) 집성 레벨이 가장 낮은 후보 위치에 하나의 ACK/NACK 자원을 맵핑한다. 이에 따라, 해당 탐색 공간에 속한 RB의 개수보다 적은 개수의 ACK/NACK 자원이 예약되게 된다.
전술한 본 발명의 제5실시예에 관한 설명에서는 탐색 공간의 집성 단위가 RB인 경우를 예로 들었으나, 기존 PDCCH에서와 같이 탐색 공간의 집성 단위가 CCE가 될 수 있으며, 다른 크기의 자원 유닛으로 집성 단위가 설정되는 것도 가능하다.
■ 제6실시예
한편, MIMO(Multiple Input Multiple Output) 기법이 사용되는 경우, 동일 RB 또는 RBG에 하나 이상의 R-PDCCH/e-PDCCH가 존재할 수 있으며 이로 인해서 PUCCH 자원 충돌이 예상된다. 이 경우, BS는 R-PDCCH/e-PDCCH의 복호(decoding)에 사용되는 스크램블링 ID 또는 안테나 포트 등을 다르게 설정하고, 이들 정보를 PUCCH 자원 할당에 이용할 수 있다. R-PDCCH/e-PDCCH의 복호(decoding)에 사용되는 스크램블링 ID 또는 안테나 포트는 사전에 후보가 구성되어 UE에게 제공된 후, DCI 포맷을 이용하여 동적으로 지시될 수 있다. 혹은, 1개 PRB 내에서 각 e-PDCCH CCE와 안테나 포트와의 맵핑이 기정의될 수도 있다. 1개 PRB 내 e-PDCCH CCE들과 안테나 포트들과의 맵핑 관계는 1가지 패턴으로 기정의될 수도 있고, 여러 패턴들이 정의된 경우에는 패턴 정보가 RN/UE에게 시그널링될 수도 있다. 기존에는 ACK/NACK PUCCH 자원이 PDCCH CCE 인덱스에만 연계되어 결정되던 것에 반하여, 본 실시예에 의하면, ACK/NACK PUCCH 자원이 PDCCH CCE 인덱스뿐만 아니라 스크램블링 ID 혹은 안테나 포트와 연계되어 결정된다. 본 실시예는 앞서 설명한 본 발명의 제1실시예 내지 제5실시예 중 어느 하나와 함께 적용될 수도 있고 따로 적용될 수도 있다.
도 16은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22)등의 구성요소와 동작적으로 연결되고, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13,23)을 제어하도록 구성된 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC(medium access control) 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)는 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 계층의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 Nt개(Nt는 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 Nr개(Nr은 양의 정수)의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 다수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명의 실시예들에 있어서, UE 또는 RN은 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, BS는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다. 이하에서는 설명의 편의를 위하여, UE 또는 RN은 UE로 통칭한다. 또한, BS에 구비된 프로세서, 메모리, RF 유닛을 BS 프로세서, BS 메모리, BS RF 유닛이라 각각 칭하고, UE에 구비된 프로세서, 메모리, RF 유닛을 UE 프로세서, UE 메모리, UE RF 유닛이라 칭하여 본 발명의 실시예들을 설명한다. 본 발명에서 BS 프로세서는 BS에 위치한 프로세서일 수도 있고, BS와 케이블 혹은 전용 회선으로 연결되어 상기 BS를 제어하도록 구성된 BS 컨트롤러일 수도 있다.
이하에서는 도 16을 참조하여, 전술한 본 발명의 실시예들을 다시 설명한다.
본 발명에 따른 BS 프로세서는 e-PDCCH를 위해 제한된 개수의 ACK/NACK PUCCH 자원을 RRC 신호에 의해 사전에 예약하고 상기 예약된 자원들의 한도 내에서 동적으로 ACK/NACK PUCCH 자원을 할당한다. 상기 BS 프로세서는 e-PDCCH를 전송할 e-PDCCH 탐색 공간을 구성하고, 상기 e-PDCCH 탐색 공간에 관한 정보를 BS RF 유닛을 제어하여 해당 UE에게 전송한다. RA 비트맵이 상기 e-PDCCH 탐색 공간에 관한 정보로서 이용될 수 있다.
본 발명의 제1실시예에 따른 BS 프로세서는 ne-PDCCH VRB를 셀 전체에서 공통적으로 사용될 수 있는 공통 인덱스로 만들기 위해서, UE별 혹은 UE 그룹별로 별도의 오프셋 값을 설정하고, 해당 UE에 상기 오프셋 값을 전송하도록 BS RF 유닛을 제어한다. 상기 오프셋 값은 셀 특정적 값이 아닌 UE 특정적 값으로서, 해당 UE의 e-PDCCH와 연관된 ACK/NACK 전송에 이용가능한 PUCCH 자원들의 시작 위치, PUCCH 자원들의 개수 혹은 대역폭에 연관된 값이다. UE RF 유닛은 상기 BS로부터 상기 오프셋 값, 상기 e-PDCCH 탐색 공간에 관한 정보를 수신하여 UE 프로세서에 전달할 수 있다. UE 프로세서는 상기 e-PDCCH 탐색 공간에서 블라인드 복호를 수행하여, 하향링크 서브프레임의 데이터 영역에서 해당 e-PDCCH를 검출할 수 있으며, 상기 e-PDCCH에 포함된 자원의 인덱스(ne-PDCCH VRB) 및 상기 오프셋 값을 이용하여 해당 e-PDCCH에 연관된 ACK/NACK의 전송에 이용할 고유의 PUCCH 자원을 결정할 수 있다. 상기 UE 프로세서는 상기 결정된 PUCCH 자원을 이용하여 상기 e-PDCCH에 대응한 ACK/NACK을 상기 BS로 전송하도록 UE RF 유닛을 제어한다.
본 발명의 제2실시예에 따른 BS 프로세서와 UE 프로세서는 nVRB 혹은 nPRB에 의해서 구성된 e-PDCCH VRB 인덱스(ne-PDCCH VRB)가 nVRB 혹은 nPRB에 맵핑됨으로써 PUCCH 자원 할당을 위한 인덱스로 사용한다. 상기 BS 프로세서는 잠재적 PUCCH 전송을 위해 구성된 RB의 개수만큼 PUCCH 자원을 예약할 수 있다. e-PDCCH 자원 유닛 인덱스가 nVRB 혹은 nPRB에 맵핑되므로, UE는 PUCCH 자원을 지시하는 추가적인 정보 없이 해당 ne-PDCCH VRB와 연관된 PUCCH 자원을 알 수 있다. 한편, 상기 BS 프로세서는 N개 VRB 혹은 PRB를 1개의 PUCCH 자원에 대응시켜 탐색 공간을 구성하는 자원 유닛의 개수보다 적은 개수의 PUCCH 자원을 예약할 수도 있다.
본 발명은 제3실시예에 따른 UE 프로세서는 BS에 의해 시그널링된 탐색 공간 세트들을 모아서 새로이 번호를 부여하여 PUCCH 자원들을 구분할 공통 인덱스를 구성할 수 있다. 본 발명의 제3실시예에 의하면, 각 UE 프로세서는 e-PDCCH 자원 유닛 인덱스(예, ne-PDCCH VRB 인덱스)를 구성하고, 이와 같이 구성된 UE별 e-PDCCH 자원 유닛 인덱스들과 UE 각자가 수신한 오프셋 값을 적용하여 공통 인덱스들을 구성한다. UE 프로세서는 e-PDCCH가 검출된 e-PDCCH 자원 유닛 인덱스에 대응되는 공통 인덱스를 이용하여 상기 공통 인덱스에 맵핑되는 PUCCH 자원 인덱스를 알 수 있다. 본 발명의 제3실시예를 위하여, 전술한 제1실시예에서와 같이, BS 프로세서는 UE 단위로 탐색 공간의 가장 낮은 인덱스 또는 크기(즉, 오프셋 값)을 알려주는 RRC 신호를 전송하도록 BS RF 유닛을 제어할 수 있다 .상기 UE 프로세서는 상기 결정된 PUCCH 자원을 이용하여 상기 e-PDCCH에 대응한 ACK/NACK을 상기 BS로 전송하도록 UE RF 유닛을 제어한다.
일 하향링크 서브프레임에서 PDCCH와 e-PDCCH가 배타적으로 둘 중 하나만 사용되는 경우, 본 발명의 제4실시예에 따른 BS 프로세서는 PDCCH만 존재하는 서브프레임에서 PUCCH 자원은 NPUCCH offset을 이용하여 동적으로 할당하고, e-PDCCH만 존재하는 서브프레임에서는 NPUCCH offset에 의해 예약되었던 PUCCH 자원들을 이용하여 상기 e-PDCCH를 위한 PUCCH 자원을 할당할 수 있다. 본 발명의 제4실시예에 따른 UE 프로세서는 e-PDCCH인지 PDCCH인지 여부와 관계없이 해당 (e-)PDCCH가 검출된 자원 인덱스에 링크된 PUCCH 자원을 이용하여 상기 해당 (e-)PDCCH 또는 상기 해당 (e-)PDCCH에 의해 스케줄링된 PDSCH에 대한 ACK/NACK 정보를 전송하도록 UE RF 유닛을 제어할 수 있다.
본 발명의 제5실시예에 따른 단일 탐색 공간 상에서 e-PDCCH의 후보 위치 및/또는 집성 레벨에 따라서 연동되는 ACK/NACK 자원들을 다르게 구성할 수 있다. 예를 들어, 도 15를 참조하면, BS 프로세서는 총 16개의 RB로 구성되는 탐색 공간을 구성하되, 상기 총 16개의 RB에 일대일로 대응하는 16개의 ACK/ANCK 자원을 예약하는 대신, 상기 탐색 공간 내에서 특정 RB를 공유하는 후보 위치들 중에서 (혹은 보다 구체화해서 특정 RB를 집성된 RB의 시작 RB로서 공유하는 후보 위치들 중에서) 집성 레벨이 가장 낮은 후보 위치에 하나의 ACK/NACK 자원을 예약할 수 있다. 이에 따라, BS 프로세서가 특정 RB를 공유하는 후보 위치들, 예를 들어, 도 15(b)를 참조하면, 집성 레벨 2의 후보 위치 3, 집성 레벨 4의 후보 위치 1 및 집성 레벨 8의 후보 위치 0 중 하나에서 UE를 위한 e-PDCCH를 할당한 경우, UE 프로세서는 이들 후보 위치들 중 어느 하나에서 해당 e-PDCCH를 검출하게 된다. 이때, 상기 UE 프로세서는 상기 검출된 e-PDCCH가 집성 레벨 2의 후보 위치 3, 집성 레벨 4의 후보 위치 1 및 집성 레벨 8의 후보 위치 0 중 어느 것인지에 관계없이 상기 e-PDCCH에 대한 ACK/NACK을 동일한 ACK/NACK 자원을 이용하여 상기 BS에 전송하도록 UE RF 유닛을 제어한다.
본 발명의 제6실시예에 따른 BS 프로세서는 e-PDCCH의 복호(decoding)에 사용되는 스크램블링 ID 또는 안테나 포트 등을 다르게 설정하고, 상기 설정된 스크램블링 ID 또는 안테나 포트에 관한 정보를 UE에게 전송하도록 BS RF 유닛을 제어할 수 있다. UE 프로세서는 e-PDCCH가 검출된 자원 유닛의 인덱스뿐만 아니라 스크램블링 ID 또는 안테나 포트에 관한 정보를 이용하여 상기 e-PDCCH에 연관된 ACK/NACK 전송에 이용할 PUCCH 자원을 결정할 수 있다. 상기 UE 프로세서는 상기 결정된 PUCCH 자원을 이용하여 상기 e-PDCCH에 대응한 ACK/NACK을 상기 BS로 전송하도록 UE RF 유닛을 제어한다.
한편, 상기 UE RF 유닛은 하향링크 서브프레임의 제어영역에서 전송되는 PDCCH를 검출할 PDCCH 탐색 영역 및 상기 PDCCH 탐색 공간과 연관된 ACK/NACK PUCCH 자원들을 지시하는 오프셋 값을 수신할 수 있으며, 상기 UE 프로세서는 상기 PDCCH 탐색 영역에서 블라인드 복호를 수행하여 자신의 PDCCH를 검출하고, 상기 PDCCH 내 첫 번째 CCE 인덱스 및 상기 오프셋 값(예, NPDCCH offset)을 이용하여 상기 PDCCH에 대응한 ACK/NACK 전송에 이용할 PUCCH 자원을 결정할 수 있다. 상기 UE 프로세서는 상기 결정된 PUCCH 자원을 이용하여 상기 PDCCH에 대응한 ACK/NACK을 상기 BS로 전송하도록 UE RF 유닛을 제어한다.
상기 BS 프로세서는 e-PDCCH에 포함된 자원 인덱스 및 오프셋 값(Ne-PDCCH offset)을 기반으로 UE가 어떤 PUCCH 자원을 이용하여 상기 e-PDCCH 혹은 상기 e-PDCCH에 의해 스케줄링된 PDSCH에 대한 ACK/NACK 정보를 전송할지를 알 수 있다. 따라서, 상기 BS 프로세서는 UE에게 전송된 e-PDCCH에 포함된 자원 인덱스 및 오프셋 값(Ne-PDCCH offset)을 기반으로 결정된 PUCCH 자원을 이용하여 상기 UE로부터 ACK/NACK 정보를 수신하도록 BS RF 유닛을 제어할 수 있다.
전술한 본 발명의 실시예들에 따르면, e-PDCCH를 위한 PUCCH 자원이 효율적으로 운용될 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국, RN 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.

Claims (10)

  1. 무선 통신 시스템에서 사용자기기가 기지국으로 상향링크 신호를 전송함에 있어서,
    상기 기지국으로부터 제1 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK(ACKnowledgement/Negative ACK) 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 제1오프셋 정보를 수신하고;
    상기 기지국으로부터 상기 제1 PDCCH를 수신하고;
    상기 제1 PDCCH에 포함된 자원의 인덱스 및 상기 제1오프셋 정보를 기반으로 상기 제1 PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제1 PDCCH에 대응하는 ACK/NACK 정보를 상기 기지국으로 전송하되,
    상기 제1 PDCCH는 하향링크 서브프레임의 데이터 영역에서 수신되고, 상기 제1오프셋 정보는 사용자기기 특정적 정보인,
    상향링크 제어정보 전송방법.
  2. 제1항에 있어서,
    상기 기지국으로부터 제2PDCCH와 연관된 ACK/NACK 전송에 이용가능한 제2PUCCH 자원들을 지시하는 제2오프셋 정보를 수신하고;
    상기 기지국으로부터 상기 제2PDCCH를 수신하며,
    상기 제2PDCCH에 포함된 자원의 인덱스 및 상기 제2오프셋 정보를 기반으로 상기 제2PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제2PDCCH에 대응하는 ACK/NACK 정보를 상기 기지국으로 전송하되,
    상기 제2PDCCH는 상기 하향링크 서브프레임의 제어영역에서 수신되고, 상기 제2오프셋 정보는 셀 특정적 정보인,
    상향링크 제어정보 전송방법.
  3. 제2항에 있어서,
    상기 기지국으로부터 상기 제1 PDCCH를 위한 스크램블링 식별자 또는 안테나 포트 정보를 수신하고,
    상기 제1 PDCCH에 대응하는 ACK/NACK 정보의 전송에 이용되는 상기 PUCCH 자원은 상기 스크램블링 식별자 또는 안테나 포트 정보를 기반으로 결정되는,
    상향링크 제어정보 전송방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 제1 PDCCH는 집성 레벨들에 따른 복수의 제1 PDCCH 후보 위치들을 포함하는, 복수의 자원 유닛들로 구성된, 탐색 공간에서 수신되고,
    상기 제1 PUCCH 자원들 각각은 상기 탐색 공간 내 상기 복수의 자원 유닛들 중 일 자원 유닛을 공유하는 제1 PDCCH 후보 위치들 중 집성 레벨이 가장 낮은 후보 위치에 맵핑되는,
    상향링크 제어정보 전송방법.
  5. 무선 통신 시스템에서 사용자기기가 기지국으로 상향링크 신호를 전송함에 있어서,
    무선 주파수(radio frequency, RF) 유닛; 및
    상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 상기 기지국으로부터 제1 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK(ACKnowledgement/Negative ACK) 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 제1오프셋 정보를 수신하도록 상기 RF 유닛을 제어하고, 상기 기지국으로부터 상기 제1 PDCCH를 수신하도록 상기 RF 유닛을 제어하며, 상기 제1 PDCCH에 포함된 자원의 인덱스 및 상기 제1오프셋 정보를 기반으로 상기 제1 PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제1 PDCCH에 대응하는 ACK/NACK 정보를 상기 기지국으로 전송하도록 상기 RF 유닛을 제어하고,
    상기 제1 PDCCH는 하향링크 서브프레임의 데이터 영역에서 수신되고, 상기 제1오프셋 정보는 사용자기기 특정적 정보인,
    사용자기기.
  6. 제5항에 있어서,
    상기 프로세서는 상기 기지국으로부터 제2PDCCH와 연관된 ACK/NACK 전송에 이용가능한 제2PUCCH 자원들을 지시하는 제2오프셋 정보를 수신하도록 상기 RF 유닛을 제어하고, 상기 기지국으로부터 상기 제2PDCCH를 수신하도록 상기 RF 유닛을 제어하며, 상기 제2PDCCH에 포함된 자원의 인덱스 및 상기 제2오프셋 정보를 기반으로 상기 제2PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제2PDCCH에 대응하는 ACK/NACK 정보를 상기 기지국으로 전송하도록 상기 RF 유닛을 제어하고,
    상기 제2PDCCH는 상기 하향링크 서브프레임의 제어영역에서 수신되고, 상기 제2오프셋 정보는 셀 특정적 정보인,
    사용자기기.
  7. 제6항에 있어서,
    상기 프로세서는 상기 기지국으로부터 상기 제1 PDCCH를 위한 스크램블링 식별자 또는 안테나 포트 정보를 수신하도록 상기 RF 유닛을 제어하고, 상기 제1 PDCCH에 대응하는 ACK/NACK 정보의 전송에 이용되는 상기 PUCCH 자원은 상기 스크램블링 식별자 또는 안테나 포트 정보를 기반으로 결정하도록 구성된,
    사용자기기.
  8. 제5항 내지 제7항 중 어느 한 항에 있어서,
    상기 프로세서는 집성 레벨들에 따른 복수의 제1 PDCCH 후보 위치들을 포함하는, 복수의 자원 유닛들로 구성된, 탐색 공간에서 상기 제1 PDCCH를 수신하도록 상기 RF 유닛을 제어하되,
    상기 제1 PUCCH 자원들 각각은 상기 탐색 공간 내 상기 복수의 자원 유닛들 중 일 자원 유닛을 공유하는 제1 PDCCH 후보 위치들 중 집성 레벨이 가장 낮은 후보 위치에 맵핑되는,
    사용자기기.
  9. 무선 통신 시스템에서 기지국이 사용자기기로부터 상향링크 신호를 수신함에 있어서,
    상기 사용자기기로 제1 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK(ACKnowledgement/Negative ACK) 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 제1오프셋 정보를 전송하고;
    상기 사용자기기로 상기 제1 PDCCH를 전송하고;
    상기 제1 PDCCH에 포함된 자원의 인덱스 및 상기 제1오프셋 정보를 기반으로 상기 제1 PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제1 PDCCH에 대응하는 ACK/NACK 정보를 상기 사용자기기로부터 수신하되,
    상기 제1 PDCCH는 하향링크 서브프레임의 데이터 영역에서 수신되고, 상기 제1오프셋 정보는 사용자기기 특정적 정보인,
    상향링크 제어정보 수신방법.
  10. 무선 통신 시스템에서 기지국이 사용자기기로부터 상향링크 신호를 수신함에 있어서,
    무선 주파수(radio frequency, RF) 유닛; 및
    상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 상기 사용자기기로 제1 PDCCH(Physical Downlink Control Channel)와 연관된 ACK/NACK(ACKnowledgement/Negative ACK) 전송에 이용가능한 제1 PUCCH(Physical Uplink Control Channel) 자원들을 지시하는 제1오프셋 정보를 전송하도록 상기 RF 유닛을 제어하고, 상기 사용자기기로 상기 제1 PDCCH를 전송하도록 상기 RF 유닛을 제어하며, 상기 제1 PDCCH에 포함된 자원의 인덱스 및 상기 제1오프셋 정보를 기반으로 상기 제1 PUCCH 자원들 중에서 결정된 PUCCH 자원을 이용하여 상기 제1 PDCCH에 대응하는 ACK/NACK 정보를 상기 사용자기기로부터 수신하도록 상기 RF 유닛을 제어하되,
    상기 제1 PDCCH는 하향링크 서브프레임의 데이터 영역에서 수신되고, 상기 제1오프셋 정보는 사용자기기 특정적 정보인,
    기지국.
PCT/KR2012/004938 2011-06-24 2012-06-22 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 WO2012177073A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137030360A KR101925031B1 (ko) 2011-06-24 2012-06-22 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
US14/123,067 US9246656B2 (en) 2011-06-24 2012-06-22 Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
US14/973,426 US9602264B2 (en) 2011-06-24 2015-12-17 Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
US15/428,796 US9871638B2 (en) 2011-06-24 2017-02-09 Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161500620P 2011-06-24 2011-06-24
US61/500,620 2011-06-24
US201161512383P 2011-07-27 2011-07-27
US61/512,383 2011-07-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/123,067 A-371-Of-International US9246656B2 (en) 2011-06-24 2012-06-22 Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
US14/973,426 Continuation US9602264B2 (en) 2011-06-24 2015-12-17 Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station

Publications (2)

Publication Number Publication Date
WO2012177073A2 true WO2012177073A2 (ko) 2012-12-27
WO2012177073A3 WO2012177073A3 (ko) 2013-02-28

Family

ID=47423100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004938 WO2012177073A2 (ko) 2011-06-24 2012-06-22 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국

Country Status (3)

Country Link
US (3) US9246656B2 (ko)
KR (1) KR101925031B1 (ko)
WO (1) WO2012177073A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969642A (zh) * 2013-05-10 2015-10-07 华为技术有限公司 一种确定控制信道资源的方法、用户终端和基站
CN113572590A (zh) * 2021-08-17 2021-10-29 杭州红岭通信息科技有限公司 一种pucch资源复用及分配方法
CN113595699A (zh) * 2014-08-01 2021-11-02 苹果公司 用于窄带部署的pdcch设计

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172513B2 (en) * 2010-10-11 2015-10-27 Qualcomm Incorporated Resource assignments for uplink control channel
WO2013006379A1 (en) 2011-07-01 2013-01-10 Dinan Esmael Hejazi Synchronization signal and control messages in multicarrier ofdm
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
JP5895388B2 (ja) * 2011-07-22 2016-03-30 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
CN106658732B (zh) * 2011-08-15 2020-04-14 华为技术有限公司 控制信道资源的分配方法及装置
US8446844B1 (en) 2011-12-04 2013-05-21 Ofinno Technologies, Llc Handover in multicarrier wireless networks
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
US10111248B2 (en) * 2012-06-29 2018-10-23 Blackberry Limited Method and system for cross-subframe scheduling during carrier aggregation
US9854571B2 (en) * 2012-07-23 2017-12-26 Lg Electronics Inc. Method and apparatus for acquiring diversity gain according to distributed resource allocation for downlink control channel in wireless communication system
US9155089B2 (en) 2012-08-10 2015-10-06 Qualcomm Incorporated Cell ID and antenna port configurations for EPDCCH
CN103716121B (zh) * 2012-09-28 2019-03-08 上海诺基亚贝尔股份有限公司 一种用于确定基于ePDCCH的下行控制信息的方法和设备
US9031021B2 (en) * 2012-09-28 2015-05-12 Alcatel Lucent Method and apparatus for indicating physical resource block pairs for EPDCCH
CN103858500B (zh) * 2012-09-29 2018-02-06 华为技术有限公司 控制信息发送方法、接收方法和设备
WO2015000113A1 (zh) * 2013-07-01 2015-01-08 华为技术有限公司 一种载波状态指示方法及设备
US9462627B2 (en) * 2013-09-25 2016-10-04 Apple Inc. Uplink and downlink semi-persistent scheduling alignment
JP6443890B2 (ja) * 2014-01-31 2018-12-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末、基地局、送信方法及び受信方法
US10674487B2 (en) * 2014-03-12 2020-06-02 Lg Electronics Inc. Method for transmitting uplink control channel in wireless communication system that supports use change of radio resources, and apparatus therefor
US9800387B2 (en) * 2014-11-06 2017-10-24 Intel IP Corporation Computing apparatus with cross-subframe scheduling
MX2017007786A (es) * 2014-12-15 2017-10-02 ERICSSON TELEFON AB L M (publ) Programacion de recursos de enlaces ascendentes en multiples instantes de tiempos.
JP6542899B2 (ja) * 2015-01-26 2019-07-10 華為技術有限公司Huawei Technologies Co.,Ltd. ランダムアクセス方法、端末、および基地局
CN106162888B (zh) * 2015-04-10 2022-11-08 夏普株式会社 载波聚合中的pucch资源配置方法及其设备
CN106549738B (zh) 2015-09-17 2020-02-14 华为技术有限公司 一种物理下行控制信道的传输方法及装置
US10129859B2 (en) * 2015-10-15 2018-11-13 Qualcomm Incorporated Uplink control channel for low latency communications
WO2017119921A1 (en) * 2016-01-04 2017-07-13 Intel IP Corporation Determination of an advanced physical uplink channel resource
US10433283B2 (en) * 2016-01-26 2019-10-01 Huawei Technologies Co., Ltd. System and method for bandwidth division and resource block allocation
WO2017134954A1 (ja) 2016-02-03 2017-08-10 ソニー株式会社 端末装置、基地局装置および通信方法
US10477520B2 (en) 2016-03-14 2019-11-12 Qualcomm Incorporated Feedback resource allocation for multiple carriers
JP6744436B2 (ja) * 2016-07-01 2020-08-19 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける基地局と端末との間の上りリンク信号の送受信方法及びそれを支援する装置
WO2018010077A1 (zh) * 2016-07-11 2018-01-18 广东欧珀移动通信有限公司 传输数据的方法和终端设备
WO2018084211A1 (ja) * 2016-11-02 2018-05-11 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109964441B (zh) * 2016-12-16 2022-10-25 苹果公司 基带电路、ue和基站
CN110121910B (zh) * 2017-01-05 2022-03-29 华为技术有限公司 一种发送上行控制信息的方法、网络设备及终端
RU2736779C1 (ru) 2017-01-05 2020-11-20 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ для передачи управляющего канала восходящей линии связи, сетевое устройство и терминальное устройство
CN108282881B (zh) * 2017-01-06 2020-12-15 华为技术有限公司 一种资源配置方法及装置
US11337182B2 (en) * 2017-03-24 2022-05-17 Motorola Mobility Llc Indication for a portion of a time interval
WO2018194363A1 (ko) * 2017-04-18 2018-10-25 엘지전자 (주) 무선 통신 시스템에서의 레이트 매칭 방법및 이를 위한 장치
KR101950995B1 (ko) * 2017-06-08 2019-02-22 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치
CN110460555B (zh) * 2017-06-16 2020-10-27 华为技术有限公司 一种确定资源块组大小的方法及装置
CN112636886B (zh) * 2017-08-11 2022-06-14 华为技术有限公司 无线通信的方法、芯片和通信装置
CN109600835B (zh) 2017-09-30 2020-11-10 电信科学技术研究院 确定资源分配、指示资源分配的方法、终端及网络侧设备
KR102581454B1 (ko) * 2017-11-10 2023-09-22 삼성전자주식회사 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
JP7130005B6 (ja) * 2017-11-16 2022-10-04 オッポ広東移動通信有限公司 リソース指示方法、ユーザー装置、ネットワーク機器及びコンピュータ記憶媒体
CN109803380B (zh) * 2017-11-16 2022-06-24 北京紫光展锐通信技术有限公司 资源分配方法以及通信基站
US10849123B2 (en) * 2017-11-17 2020-11-24 Qualcomm Incorporated Techniques and apparatuses for slot-based and non-slot-based scheduling in 5G
KR101954433B1 (ko) 2018-01-11 2019-03-05 엘지전자 주식회사 무선 통신 시스템에서 단말의 하향링크 신호 수신 방법 및 상기 방법을 이용하는 단말
US10448388B2 (en) * 2018-01-11 2019-10-15 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same
US10608669B2 (en) 2018-02-16 2020-03-31 At&T Intellectual Property I, L.P. Performance of data channel using polar codes for a wireless communication system
SG11202013089PA (en) 2018-06-29 2021-02-25 Guangdong Oppo Mobile Telecommunications Corp Ltd Method for configuring pdcch detection and related device
EP4173395A4 (en) 2020-06-24 2023-12-06 NEC Corporation METHODS, DEVICES AND COMPUTER READABLE MEDIUM RELATED TO COMMUNICATION

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010056078A2 (ko) * 2008-11-14 2010-05-20 엘지전자주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2010110598A2 (en) * 2009-03-25 2010-09-30 Lg Electronics Inc. Method and apparatus of transmitting ack/nack
KR20100108423A (ko) * 2008-02-04 2010-10-06 삼성전자주식회사 상향링크 ack/nack채널 할당 방법
US20110128931A1 (en) * 2008-05-29 2011-06-02 Ntt Docomo, Inc. Mobile communication method, mobile station, and radio base station

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572095B2 (ja) 2004-07-15 2010-10-27 Nec液晶テクノロジー株式会社 液晶表示装置、携帯機器及び液晶表示装置の駆動方法
KR101646249B1 (ko) 2008-08-11 2016-08-16 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2010053984A2 (en) 2008-11-04 2010-05-14 Nortel Networks Limited Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier
AU2010298857B2 (en) 2009-09-28 2013-11-28 Samsung Electronics Co., Ltd. Extending physical downlink control channels
US8718003B2 (en) * 2011-06-20 2014-05-06 Samsung Electronics Co., Ltd. System and method for an uplink control signal in wireless communication systems
AU2013228185B2 (en) * 2012-03-05 2016-11-03 Samsung Electronics Co., Ltd. HARQ-ACK signal transmission in response to detection of control channel type in case of multiple control channel types
WO2014025140A1 (en) * 2012-08-06 2014-02-13 Kt Corporation Control information transmission and uplink control channel resource mapping
US9655087B2 (en) * 2012-08-16 2017-05-16 Kt Corporation Configuration and mapping of uplink control channel resource
AU2012391149B2 (en) * 2012-09-28 2017-09-28 Nokia Solutions And Networks Oy PUCCH resource allocation for E-PDCCH in communications system
EP2912881B1 (en) * 2012-10-26 2017-09-06 Intel Corporation Reporting of user plane congestion
US11245507B2 (en) * 2012-11-02 2022-02-08 Texas Instruments Incorporated Efficient allocation of uplink HARQ-ACK resources for LTE enhanced control channel
US9473289B2 (en) * 2013-09-27 2016-10-18 Nokia Solutions And Networks Oy PUCCH resource allocation and use
KR20150051063A (ko) * 2013-11-01 2015-05-11 주식회사 아이티엘 하향링크 harq-ack와 sr동시 전송 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100108423A (ko) * 2008-02-04 2010-10-06 삼성전자주식회사 상향링크 ack/nack채널 할당 방법
US20110128931A1 (en) * 2008-05-29 2011-06-02 Ntt Docomo, Inc. Mobile communication method, mobile station, and radio base station
WO2010056078A2 (ko) * 2008-11-14 2010-05-20 엘지전자주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2010110598A2 (en) * 2009-03-25 2010-09-30 Lg Electronics Inc. Method and apparatus of transmitting ack/nack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969642A (zh) * 2013-05-10 2015-10-07 华为技术有限公司 一种确定控制信道资源的方法、用户终端和基站
CN104969642B (zh) * 2013-05-10 2019-05-24 华为技术有限公司 一种确定控制信道资源的方法、用户终端和基站
CN113595699A (zh) * 2014-08-01 2021-11-02 苹果公司 用于窄带部署的pdcch设计
CN113572590A (zh) * 2021-08-17 2021-10-29 杭州红岭通信息科技有限公司 一种pucch资源复用及分配方法
CN113572590B (zh) * 2021-08-17 2024-02-02 杭州红岭通信息科技有限公司 一种pucch资源复用及分配方法

Also Published As

Publication number Publication date
WO2012177073A3 (ko) 2013-02-28
US20140105155A1 (en) 2014-04-17
US9246656B2 (en) 2016-01-26
US9602264B2 (en) 2017-03-21
US9871638B2 (en) 2018-01-16
KR101925031B1 (ko) 2018-12-04
US20160105268A1 (en) 2016-04-14
KR20140031901A (ko) 2014-03-13
US20170155489A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2012177073A2 (ko) 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
WO2012169753A2 (ko) 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
WO2020096438A1 (ko) 무선 통신 시스템의 harq-ack 코드북 생성 방법 및 이를 이용하는 장치
WO2012150822A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2019216729A1 (ko) 무선 통신 시스템의 상향 링크 제어 정보 멀티플렉싱 방법 및 이를 이용하는 장치
WO2013032202A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2012150823A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2013122384A1 (ko) 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치
WO2016159656A1 (en) Method and apparatus for designing downlink control information in wireless communication system
WO2013105832A1 (ko) 하향링크 제어 신호 수신 방법 및 사용자기기와, 하향링크 제어 신호 전송 방법 및 기지국
WO2013025086A2 (ko) 제어 채널의 할당 방법 및 이를 위한 장치
WO2013141594A1 (ko) Ack/nack 신호 전송 또는 수신 방법
WO2018182383A1 (ko) 무선 통신 시스템에서 짧은 전송 시간 간격을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2017010798A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2013125871A1 (ko) 사용자기기의 통신 방법 및 사용자기기와, 기지국의 통신 방법 및 기지국
WO2016182391A1 (en) Method and apparatus for performing initial access procedure for low cost user equipment in wireless communication system
WO2013009089A2 (en) Method for transmitting or receiving pdcch and user equipment or base station for the method
WO2011068358A2 (ko) 경쟁기반 물리 상향링크 데이터 채널을 통한 데이터의 송수신 방법 및 이를 위한 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2017150942A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013015637A2 (ko) 상향링크 신호 전송방법 및 사용자기기, 상향링크 신호 수신방법 및 기지국
WO2013015632A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2016153290A1 (ko) 상향링크 데이터 전송 방법 및 사용자기기와, 상향링크 데이터 수신 방법 및 기지국
WO2016056876A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2011053056A2 (ko) 복수의 캐리어를 지원하는 통신 시스템에서 상향링크 전송 파워 제어 정보를 송수신하기 위한 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802811

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20137030360

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802811

Country of ref document: EP

Kind code of ref document: A2