WO2012172997A1 - マルチコア増幅光ファイバ - Google Patents
マルチコア増幅光ファイバ Download PDFInfo
- Publication number
- WO2012172997A1 WO2012172997A1 PCT/JP2012/064171 JP2012064171W WO2012172997A1 WO 2012172997 A1 WO2012172997 A1 WO 2012172997A1 JP 2012064171 W JP2012064171 W JP 2012064171W WO 2012172997 A1 WO2012172997 A1 WO 2012172997A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- optical fiber
- amplification optical
- refractive index
- hole
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02042—Multicore optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0283—Graded index region external to the central core segment, e.g. sloping layer or triangular or trapezoidal layer
- G02B6/0285—Graded index layer adjacent to the central core segment and ending at the outer cladding index
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/032—Optical fibres with cladding with or without a coating with non solid core or cladding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03622—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
- H01S3/06737—Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06725—Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
- H01S3/06733—Fibre having more than one cladding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
- H01S3/06741—Photonic crystal fibre, i.e. the fibre having a photonic bandgap
Definitions
- the present invention relates to a multi-core amplification optical fiber.
- Patent Document 1 discloses a multi-core amplification optical fiber for an optical fiber laser in which a plurality of rare earth-added core portions are arranged in a clad.
- Patent Document 2 discloses a multicore optical fiber amplifier for collectively amplifying signal light propagated through a multicore optical transmission line.
- some of the conventional rare earth-doped amplification optical fibers in which one core is disposed near the central axis of the optical fiber employ a double clad structure.
- a component (skew component) of the excitation light that does not contribute to excitation because it does not reach the core portion is generated, so that the excitation efficiency is poor. It has been. Therefore, in order to disturb the skew component and efficiently absorb the skew component, a method is used in which the cross-sectional shape of the inner cladding is a flower shape, a polygonal shape, or a D shape (see Patent Document 3).
- the amount of light that excites a plurality of existing core portions varies due to the influence of a skew component or the like, and thus there is a problem that the light amplification characteristics of each core portion also vary.
- the present invention has been made in view of the above, and an object of the present invention is to provide a multi-core amplification optical fiber in which variations in optical amplification characteristics of each core part are suppressed.
- a multi-core amplification optical fiber according to the present invention is provided with a plurality of core portions to which a rare earth element is added and the outer periphery of the plurality of core portions, An inner clad part having a lower refractive index than the core part and having a first hole, and a refractive index located on the outer periphery of the inner clad part and lower than the refractive index of the inner clad part And an outer cladding layer having a rate.
- the multi-core amplification optical fiber according to the present invention has a plurality of core portions to which rare earth elements are added and an outer periphery of the plurality of core portions, and has a refractive index lower than that of the plurality of core portions.
- the first hole is disposed in a region surrounded by the plurality of core portions in a cross section of the multi-core amplification optical fiber.
- the multi-core amplification optical fiber according to the present invention is characterized in that, in the above-mentioned invention, the plurality of core portions are arranged at positions shifted from lattice points of the triangular lattice in the cross section of the multi-core amplification optical fiber.
- FIG. 1 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the first embodiment.
- FIG. 2 is a diagram illustrating a state of a skew component of pumping light in the multi-core amplification optical fiber illustrated in FIG.
- FIG. 3 is a schematic cross-sectional view of a multi-core amplification optical fiber according to a modification of the first embodiment.
- FIG. 4 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the second embodiment.
- FIG. 5 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the third embodiment.
- FIG. 6 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the fourth embodiment.
- FIG. 7 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the fifth embodiment.
- FIG. 1 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the first embodiment.
- the multi-core amplification optical fiber 10 includes a core part 11 located near the central axis, six core parts 12 arranged so as to surround the core part 11, and outer periphery of the core parts 11 and 12.
- the inner clad part 13 located and the outer clad layer 14 located in the outer periphery of the inner clad part 13 are provided.
- a plurality of holes 15 that are first holes are formed in the inner cladding portion 13.
- the inner cladding portion 13 has a refractive index lower than that of the core portions 11 and 12.
- the outer cladding layer 14 has a refractive index lower than that of the inner cladding portion 13.
- the core portions 11 and 12 are made of quartz glass to which a dopant for increasing the refractive index such as germanium (Ge) is added.
- the inner cladding part 13 is made of, for example, pure quartz glass to which a dopant for adjusting the refractive index is not added.
- the outer cladding layer 14 is made of, for example, an optical resin.
- the refractive index of the optical resin is, for example, 1.1 to 1.1.42.
- the 7 core parts 11 and 12 are added with rare earth elements.
- the rare earth element added is erbium (Er), ytterbium (Yb), neodymium (Nd), thulium (Tm), or the like.
- the amount of rare earth element added is, for example, 50 ppm to 2000 ppm in the case of Er.
- the core portions 11 and 12 have a core diameter of 1 ⁇ m to 5 ⁇ m and a relative refractive index difference with respect to the inner cladding portion 13 of 0.5% to 2.0%.
- the core diameters and relative refractive index differences of the core portions 11 and 12 may be the same or different.
- the six core portions 12 are arranged so as to form a substantially regular hexagon centered on the core portion 11.
- the core parts 11 and 12 are arranged on the lattice points of a triangular lattice.
- the distance between adjacent cores of the core portions 11 and 12 is such a distance that light crosstalk between the cores does not adversely affect the optical characteristics of the core portions 11 and 12, for example, the extinction ratio is ⁇ 30 dB or less.
- the distance between the cores is set as follows. When the core parts 11 and 12 have a core diameter of 1 ⁇ m to 5 ⁇ m as described above and the relative refractive index difference with respect to the inner cladding part 13 is 0.5% to 2.0%, the distance between the cores is 30 ⁇ m or more. preferable. Further, it is preferable that the distance between the cores is 60 ⁇ m or less because the outer diameter of the fiber is not so large and the outer diameter of the inner cladding portion 13 can be about 125 ⁇ m to 250 ⁇ m.
- the six holes 15 have a circular cross section, for example, a hole diameter of 1 ⁇ m to 15 ⁇ m, and are arranged so as to form a regular hexagon in the region S1 surrounded by the core part 12.
- the hole diameters of the holes 15 may be equal to or different from each other.
- the multi-core amplification optical fiber 10 has a double clad structure, and propagates signal light having a wavelength of a rare earth element optical amplification band (for example, 1.5 ⁇ m band in the case of Er) to the core portions 11 and 12,
- a rare earth element optical amplification band for example, 1.5 ⁇ m band in the case of Er
- excitation light having a wavelength of a rare earth element excitation band for example, 0.98 ⁇ m band or 1.48 ⁇ m band in the case of Er
- the rare earth element added to the parts 11 and 12 is excited.
- the rare earth element exhibits an optical amplification effect and amplifies the light propagating through the core portions 11 and 12.
- FIG. 2 is a diagram illustrating a state of a skew component of pumping light in the multi-core amplification optical fiber illustrated in FIG.
- the skew component SL included in the excitation light propagating through the inner cladding portion 13 travels along an optical path that does not reach the central core portion 11 when the hole 15 does not exist. As a result, the optical path is disturbed to reach the central core portion 11.
- the optical path of the skew component is disturbed by the presence of each hole 15, so that the excitation light that excites each core part 11, 12 than the case where each hole 15 does not exist.
- the variation in the amount of is suppressed.
- variations in the optical amplification characteristics of the core portions 11 and 12 are suppressed.
- the optical amplification characteristics of the core portions 11 and 12 are made more uniform.
- FIG. 3 is a schematic cross-sectional view of a multi-core amplification optical fiber according to a modification of the first embodiment.
- the multi-core amplification optical fiber 10 ⁇ / b> A has a hole 15 ⁇ / b> A having the same hole diameter as the hole 15 instead of the hole 15 as compared with the multi-core amplification optical fiber 10 according to the first embodiment.
- positioned at the inner clad part 13 so that a regular hexagon may be formed differs.
- the holes 15A may be disposed outside the region S1 surrounded by the core portion 12.
- FIG. 4 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the second embodiment.
- the multi-core amplification optical fiber 20 includes three core portions 22, an inner cladding portion 23 located on the outer periphery of the core portion 22, and an outer cladding layer 24 located on the outer periphery of the inner cladding portion 23. I have. A plurality of holes 25 that are first holes are formed in the inner cladding portion 23.
- the three core portions 22 are arranged on the lattice points of the triangular lattice so as to form a substantially equilateral triangle.
- the air hole 25 is disposed substantially at the center in the region S ⁇ b> 2 surrounded by the core portion 22.
- hole 25, for example, the relationship of a constituent material, a size, the distance between cores, or a refractive index, etc. is the element corresponding to Embodiment 1. It is the same.
- the optical path of the skew component is disturbed by the presence of the holes 25, so that each core portion 22 is excited as compared with the case where the holes 25 do not exist. Variations in the amount of excitation light are suppressed. As a result, the optical amplification characteristics of the core portions 22 are made more uniform.
- FIG. 5 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the third embodiment.
- the multi-core amplification optical fiber 30 includes seven core portions 31, 32, an inner cladding portion 33 positioned on the outer periphery of the core portions 31, 32, and an outer cladding positioned on the outer periphery of the inner cladding portion 33.
- the inner cladding portion 33 is formed with a hole 35 which is a first hole.
- the six core portions 32 are arranged so as to form a substantially regular hexagon with the core portion 31 as the center.
- the core portions 31 and 32 are arranged on lattice points of a triangular lattice.
- the characteristics of the core portions 31, 32, the inner cladding portion 33, the outer cladding layer 34, and the air holes 35 correspond to those in the first embodiment. Same as element.
- the air holes 35 are arranged in a spiral shape extending from the inside to the outside of the region S3 surrounded by the core portion 32.
- the arrangement of the holes is not limited to the regular hexagonal shape, and can be arranged in various regular or irregular shapes.
- the number of holes is not particularly limited and can be one or more. The arrangement shape and number of the holes are preferably set as appropriate so as to cause the skew component to be disturbed so as to suppress the variation in the optical amplification characteristics of the core portions.
- FIG. 6 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the fourth embodiment.
- the multi-core amplification optical fiber 40 includes seven core parts 41, 42, an inner cladding part 43 positioned on the outer periphery of the core parts 41, 42, and an outer cladding positioned on the outer periphery of the inner cladding part 43.
- Layer 44 A hole 45 that is a first hole is formed in the inner cladding portion 43.
- Each characteristic of the core portions 41 and 42, the inner cladding portion 43, the outer cladding layer 44, and the holes 45 correspond to the corresponding elements in the first embodiment. It is the same.
- the seven core portions 41 and 42 are arranged at positions shifted from the lattice points LP of the triangular lattice L. Further, the six holes 45 are arranged so as to form a regular hexagon in a region surrounded by the core portion 42.
- the core part does not necessarily have to be arranged on the lattice points of the triangular lattice, and may be displaced.
- the difference in distance between the core portions is preferably 0.5 ⁇ m to 10 ⁇ m.
- a method of manufacturing a multi-core amplification optical fiber in which the position of the core portion deviates from the triangular lattice point in this way for example, a method using play of a glass rod or a glass tube to be stacked in a known stack and draw method, There are methods using glass rods and glass tubes having different diameters.
- FIG. 7 is a schematic cross-sectional view of a multi-core amplification optical fiber according to the fifth embodiment.
- the multi-core amplification optical fiber 50 includes a core portion 52 and a clad portion 53 located on the outer periphery of the core portion 52.
- holes 55a and 55b which are first holes, are formed.
- the clad portion 53 is formed with a plurality of holes 56 that are second holes arranged so as to surround the core portion 52 and the holes 55a and 55b.
- the air holes 56 are elliptical and are bent in an arc shape.
- the excitation light is confined and propagated in the inner region 53a of the clad part 53 surrounded by the holes 56 by a plurality of holes 56 functioning as an air cladding.
- the three core portions 52 are arranged on the lattice points of the triangular lattice so as to form a substantially equilateral triangle.
- the hole 55a has a triangular cross section, and is disposed substantially at the center in the region S5 surrounded by the core portion 52.
- the holes 55b have a circular cross section and are arranged so as to form a substantially equilateral triangle outside the region S5.
- the first hole is not limited to a circular cross section, and may have an elliptical shape or a polygonal cross section such as a triangle.
- the characteristics of the core portion 52 and the cladding portion 53 are the same as the corresponding elements of the first embodiment.
- the cross-sectional area of the holes 55a and 55b is approximately the same as the cross-sectional area of a circular hole having a hole diameter of 1 ⁇ m to 15 ⁇ m.
- the skew component of the pumping light generated in the inner region 53a disturbs the optical path by the holes 55a and 55b, so that the optical amplification characteristics of the core portions 52 are made more uniform.
- the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention.
- the core portion may be shifted from the triangular lattice point. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
- the multi-core amplification optical fiber according to the present invention is suitable mainly for use in optical communication.
- Multi-core amplification optical fiber 11 12, 22, 31, 32, 41, 42, 52 Core part 13, 23, 33, 43 Inner cladding part 14, 24, 34, 44 External Cladding layer 15, 15A, 25, 35, 45, 55a, 55b, 56 Hole 53 Cladding portion 53a Internal region L Triangular lattice LP Lattice point S1, S2, S3, S5 region SL Skew component
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Lasers (AREA)
Abstract
Description
図1は、実施の形態1に係るマルチコア増幅光ファイバの模式的な断面図である。図1に示すように、マルチコア増幅光ファイバ10は、中心軸付近に位置するコア部11と、コア部11を囲むように配置された6つのコア部12と、コア部11、12の外周に位置する内部クラッド部13と、内部クラッド部13の外周に位置する外部クラッド層14とを備えている。内部クラッド部13には第1の空孔である複数の空孔15が形成されている。
図3は、実施の形態1の変形例に係るマルチコア増幅光ファイバの模式的な断面図である。図3に示すように、マルチコア増幅光ファイバ10Aは、実施の形態1に係るマルチコア増幅光ファイバ10と比較して、空孔15に代えて、空孔15と同様の空孔径の空孔15Aが、正六角形を形成するように内部クラッド部13に配置されている点が異なる。
図4は、実施の形態2に係るマルチコア増幅光ファイバの模式的な断面図である。図4に示すように、マルチコア増幅光ファイバ20は、3つのコア部22と、コア部22の外周に位置する内部クラッド部23と、内部クラッド部23の外周に位置する外部クラッド層24とを備えている。内部クラッド部23には第1の空孔である複数の空孔25が形成されている。
図5は、実施の形態3に係るマルチコア増幅光ファイバの模式的な断面図である。図5に示すように、マルチコア増幅光ファイバ30は、7つのコア部31、32と、コア部31、32の外周に位置する内部クラッド部33と、内部クラッド部33の外周に位置する外部クラッド層34とを備えている。内部クラッド部33には第1の空孔である空孔35が形成されている。
図6は、実施の形態4に係るマルチコア増幅光ファイバの模式的な断面図である。図6に示すように、マルチコア増幅光ファイバ40は、7つのコア部41、42と、コア部41、42の外周に位置する内部クラッド部43と、内部クラッド部43の外周に位置する外部クラッド層44とを備えている。内部クラッド部43には第1の空孔である空孔45が形成されている。
図7は、実施の形態5に係るマルチコア増幅光ファイバの模式的な断面図である。図7に示すように、マルチコア増幅光ファイバ50は、コア部52と、コア部52の外周に位置するクラッド部53とを備えている。
11、12、22、31、32、41、42、52 コア部
13、23、33、43 内部クラッド部
14、24、34、44 外部クラッド層
15、15A、25、35、45、55a、55b、56 空孔
53 クラッド部
53a 内部領域
L 三角格子
LP 格子点
S1、S2、S3、S5 領域
SL スキュー成分
Claims (4)
- 希土類元素が添加された複数のコア部と、
前記複数のコア部の外周に位置し、該複数のコア部の屈折率よりも低い屈折率を有し、かつ第1の空孔が形成された内部クラッド部と、
前記内部クラッド部の外周に位置し、該内部クラッド部の屈折率よりも低い屈折率を有する外部クラッド層と、
を備えることを特徴とするマルチコア増幅光ファイバ。 - 希土類元素が添加された複数のコア部と、
前記複数のコア部の外周に位置し、該複数のコア部の屈折率よりも低い屈折率を有し、かつ第1の空孔と、前記複数のコア部と前記第1の空孔とを囲むように配置された複数の第2の空孔と、が形成されたクラッド部と、
を備えることを特徴とするマルチコア増幅光ファイバ。 - 前記第1の空孔は、当該マルチコア増幅光ファイバの断面において、前記複数のコア部が囲む領域内に配置されていることを特徴とする請求項1または2に記載のマルチコア増幅光ファイバ。
- 前記複数のコア部は、当該マルチコア増幅光ファイバの断面において、三角格子の格子点からずれた位置に配置されていることを特徴とする請求項1~3のいずれか一つに記載のマルチコア増幅光ファイバ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12799722.9A EP2722943A4 (en) | 2011-06-16 | 2012-05-31 | OPTICAL FIBER WITH MULTIC UR AMPLIFICATION |
JP2013500281A JP5356626B2 (ja) | 2011-06-16 | 2012-05-31 | マルチコア増幅光ファイバ |
US14/106,338 US9423559B2 (en) | 2011-06-16 | 2013-12-13 | Multi-core amplification optical fiber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161497784P | 2011-06-16 | 2011-06-16 | |
US61/497,784 | 2011-06-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/106,338 Continuation US9423559B2 (en) | 2011-06-16 | 2013-12-13 | Multi-core amplification optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012172997A1 true WO2012172997A1 (ja) | 2012-12-20 |
Family
ID=47356988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064171 WO2012172997A1 (ja) | 2011-06-16 | 2012-05-31 | マルチコア増幅光ファイバ |
Country Status (4)
Country | Link |
---|---|
US (1) | US9423559B2 (ja) |
EP (1) | EP2722943A4 (ja) |
JP (1) | JP5356626B2 (ja) |
WO (1) | WO2012172997A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103698840A (zh) * | 2013-11-26 | 2014-04-02 | 长飞光纤光缆有限公司 | 一种多芯非线性光纤 |
JP5635654B1 (ja) * | 2013-06-28 | 2014-12-03 | 日本電信電話株式会社 | マルチコアファイバ接続部品 |
KR20160100360A (ko) * | 2013-12-15 | 2016-08-23 | 인포테크 에스피. 오. 오. | 미세구조형 다중코어 광섬유(mmof), 및 미세구조형 다중코어 광섬유의 코어를 독립적으로 어드레싱하기 위한 장치 및 이러한 장치의 제작 방법 |
JPWO2016027896A1 (ja) * | 2014-08-22 | 2017-06-15 | 住友電気工業株式会社 | 光ファイバ |
CN112198586A (zh) * | 2020-09-25 | 2021-01-08 | 北京邮电大学 | 一种多芯光纤 |
JPWO2019146750A1 (ja) * | 2018-01-25 | 2021-01-28 | 古河電気工業株式会社 | マルチコアファイバ及びその製造方法 |
WO2021193305A1 (ja) * | 2020-03-24 | 2021-09-30 | 古河電気工業株式会社 | 光増幅ファイバ、光ファイバ増幅器および光通信システム |
JPWO2022044088A1 (ja) * | 2020-08-24 | 2022-03-03 | ||
JP2022052465A (ja) * | 2020-09-23 | 2022-04-04 | 日本電信電話株式会社 | 結合型マルチコア光ファイバ |
WO2024195031A1 (ja) * | 2023-03-22 | 2024-09-26 | 日本電信電話株式会社 | 光ファイバ及び光増幅器 |
WO2024201650A1 (ja) * | 2023-03-27 | 2024-10-03 | 日本電信電話株式会社 | 光ファイバ及び光増幅器 |
WO2024224614A1 (ja) * | 2023-04-28 | 2024-10-31 | 日本電信電話株式会社 | 光ファイバ、光増幅器、及び、伝送システム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013033863A (ja) * | 2011-08-02 | 2013-02-14 | Mitsubishi Cable Ind Ltd | 光ファイバ、光ファイバの製造方法及び光増幅器 |
JP2013033865A (ja) * | 2011-08-02 | 2013-02-14 | Mitsubishi Cable Ind Ltd | 光ファイバおよび光ファイバの製造方法 |
WO2013051655A1 (ja) | 2011-10-04 | 2013-04-11 | 古河電気工業株式会社 | マルチコア増幅光ファイバおよびマルチコア光ファイバ増幅器 |
CN106458697B (zh) * | 2014-01-30 | 2020-06-30 | 恩耐公司 | 旋转的圆形芯部光纤 |
CN104701721B (zh) * | 2015-02-14 | 2018-04-17 | 苏州国科华东医疗器械有限公司 | 一种大功率光纤激光前列腺治疗系统 |
WO2016157639A1 (ja) * | 2015-03-30 | 2016-10-06 | 住友電気工業株式会社 | 光ファイバの漏洩損失測定方法 |
JP6236638B2 (ja) * | 2015-08-21 | 2017-11-29 | 株式会社フジクラ | マルチコアファイバ及び光ケーブル |
JP7528703B2 (ja) * | 2020-10-09 | 2024-08-06 | 住友電気工業株式会社 | マルチコア光ファイバおよびマルチコア光ファイバケーブル |
DE102020127432A1 (de) | 2020-10-19 | 2022-04-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Gepulster oder kontinuierlicher Faserlaser oder -verstärker mit speziell dotierter aktiver Faser |
US20230204851A1 (en) * | 2021-12-28 | 2023-06-29 | Sterlite Technologies Limited | Multi-core optical fiber |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040208464A1 (en) * | 2001-07-12 | 2004-10-21 | Hong Po | Optical fiber |
JP2005500583A (ja) * | 2001-08-30 | 2005-01-06 | クリスタル ファイバー アクティーゼルスカブ | 高開口数の光ファイバー、その製造方法並びにその使用法 |
JP2005019539A (ja) * | 2003-06-24 | 2005-01-20 | Fujikura Ltd | 希土類添加ファイバおよびこれを用いた光ファイバレーザ |
WO2008133242A1 (ja) * | 2007-04-25 | 2008-11-06 | Fujikura Ltd. | 希土類添加コア光ファイバ |
WO2009107414A1 (ja) * | 2008-02-27 | 2009-09-03 | 古河電気工業株式会社 | 光伝送システムおよびマルチコア光ファイバ |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5566196A (en) * | 1994-10-27 | 1996-10-15 | Sdl, Inc. | Multiple core fiber laser and optical amplifier |
FR2727398B1 (fr) * | 1994-11-24 | 1996-12-27 | Alcatel Fibres Optiques | Procede de fabrication d'une fibre optique multicoeurs, preforme multicoeurs et fibre optique multicoeurs obtenues par ce procede |
JPH10125988A (ja) | 1996-10-16 | 1998-05-15 | Nippon Telegr & Teleph Corp <Ntt> | 光ファイバ一括増幅器 |
US6031850A (en) * | 1997-12-22 | 2000-02-29 | Pc Photonics Corporation | Clad pumped, eye-safe and multi-core phase-locked fiber lasers |
US6301420B1 (en) * | 1998-05-01 | 2001-10-09 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Multicore optical fibre |
EP1381894A1 (en) * | 2001-04-11 | 2004-01-21 | Crystal Fibre A/S | Dual core photonic crystal fibers (pcf) with special dispersion properties |
US6611648B2 (en) * | 2001-05-09 | 2003-08-26 | Corning Incorporated | Optical fibers having cores with different propagation constants, and methods of manufacturing same |
US7590323B2 (en) * | 2001-08-30 | 2009-09-15 | Crystal Fibre A/S | Optical fibre with high numerical aperture, method of its production, and use thereof |
JP3863025B2 (ja) | 2002-02-04 | 2006-12-27 | 三菱電線工業株式会社 | ダブルクラッドファイバの製造方法 |
US7027699B2 (en) * | 2003-05-21 | 2006-04-11 | The Hong Kong Polytechnic University | Optical fiber and optical fiber sensors |
US7280730B2 (en) * | 2004-01-16 | 2007-10-09 | Imra America, Inc. | Large core holey fibers |
US7787729B2 (en) * | 2005-05-20 | 2010-08-31 | Imra America, Inc. | Single mode propagation in fibers and rods with large leakage channels |
US7391561B2 (en) * | 2005-07-29 | 2008-06-24 | Aculight Corporation | Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method |
US7430352B2 (en) * | 2005-07-29 | 2008-09-30 | Aculight Corporation | Multi-segment photonic-crystal-rod waveguides for amplification of high-power pulsed optical radiation and associated method |
JP2007072433A (ja) * | 2005-08-11 | 2007-03-22 | Ricoh Co Ltd | 光集積素子及び光制御素子 |
US7142757B1 (en) * | 2005-09-20 | 2006-11-28 | The United States Of America As Represented By The Secretary Of The Air Force | Large flattened mode tuned cladding photonic crystal fiber laser and amplifier |
US7900481B2 (en) * | 2006-05-19 | 2011-03-08 | Corning Incorporated | Method of making an optical fiber |
US7876495B1 (en) * | 2007-07-31 | 2011-01-25 | Lockheed Martin Corporation | Apparatus and method for compensating for and using mode-profile distortions caused by bending optical fibers |
EP2248233B1 (en) * | 2008-02-07 | 2018-04-04 | Imra America, Inc. | High power parallel fiber arrays |
CN102282488B (zh) * | 2009-01-19 | 2014-04-23 | 住友电气工业株式会社 | 多芯光纤 |
EP2209029B1 (en) * | 2009-01-19 | 2015-03-11 | Sumitomo Electric Industries, Ltd. | Optical fiber |
DK2209031T3 (da) * | 2009-01-20 | 2020-04-06 | Sumitomo Electric Industries | Anordningsomformer |
US7580600B1 (en) * | 2009-02-11 | 2009-08-25 | Ipg Photonics Corporation | Free space high power fiber coupler |
JPWO2011024808A1 (ja) | 2009-08-28 | 2013-01-31 | 株式会社フジクラ | マルチコアファイバ |
JP5708015B2 (ja) * | 2010-02-26 | 2015-04-30 | 住友電気工業株式会社 | 光ファイバケーブル |
US8737792B2 (en) * | 2010-03-10 | 2014-05-27 | Ofs Fitel, Llc | Multicore fibers and associated structures and techniques |
JP2011209702A (ja) * | 2010-03-10 | 2011-10-20 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
JPWO2011114795A1 (ja) * | 2010-03-16 | 2013-06-27 | 古河電気工業株式会社 | マルチコア光ファイバおよびその製造方法 |
US20110280517A1 (en) * | 2010-03-16 | 2011-11-17 | Ofs Fitel, Llc | Techniques and devices for low-loss, modefield matched coupling to a multicore fiber |
JP2011237782A (ja) * | 2010-04-13 | 2011-11-24 | Sumitomo Electric Ind Ltd | 光分岐素子及びそれを含む光通信システム |
JP5855351B2 (ja) * | 2010-11-08 | 2016-02-09 | 株式会社フジクラ | マルチコアファイバ |
RU2489741C2 (ru) * | 2011-01-19 | 2013-08-10 | Учреждение Российской академии наук Научный центр волоконной оптики РАН (НЦВО РАН) | Многосердцевинный волоконный световод (варианты) |
CN103415795B (zh) * | 2011-03-02 | 2014-12-10 | 株式会社藤仓 | 多芯光纤 |
-
2012
- 2012-05-31 WO PCT/JP2012/064171 patent/WO2012172997A1/ja active Application Filing
- 2012-05-31 EP EP12799722.9A patent/EP2722943A4/en not_active Withdrawn
- 2012-05-31 JP JP2013500281A patent/JP5356626B2/ja active Active
-
2013
- 2013-12-13 US US14/106,338 patent/US9423559B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040208464A1 (en) * | 2001-07-12 | 2004-10-21 | Hong Po | Optical fiber |
JP2005500583A (ja) * | 2001-08-30 | 2005-01-06 | クリスタル ファイバー アクティーゼルスカブ | 高開口数の光ファイバー、その製造方法並びにその使用法 |
JP2005019539A (ja) * | 2003-06-24 | 2005-01-20 | Fujikura Ltd | 希土類添加ファイバおよびこれを用いた光ファイバレーザ |
WO2008133242A1 (ja) * | 2007-04-25 | 2008-11-06 | Fujikura Ltd. | 希土類添加コア光ファイバ |
WO2009107414A1 (ja) * | 2008-02-27 | 2009-09-03 | 古河電気工業株式会社 | 光伝送システムおよびマルチコア光ファイバ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2722943A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5635654B1 (ja) * | 2013-06-28 | 2014-12-03 | 日本電信電話株式会社 | マルチコアファイバ接続部品 |
JP2015012152A (ja) * | 2013-06-28 | 2015-01-19 | 日本電信電話株式会社 | マルチコアファイバ接続部品 |
CN103698840A (zh) * | 2013-11-26 | 2014-04-02 | 长飞光纤光缆有限公司 | 一种多芯非线性光纤 |
KR102426375B1 (ko) * | 2013-12-15 | 2022-07-27 | 인포테크 에스피. 제트 오. 오. | 미세구조형 다중코어 광섬유(mmof), 및 미세구조형 다중코어 광섬유의 코어를 독립적으로 어드레싱하기 위한 장치 및 이러한 장치의 제작 방법 |
KR20160100360A (ko) * | 2013-12-15 | 2016-08-23 | 인포테크 에스피. 오. 오. | 미세구조형 다중코어 광섬유(mmof), 및 미세구조형 다중코어 광섬유의 코어를 독립적으로 어드레싱하기 위한 장치 및 이러한 장치의 제작 방법 |
JP2017504053A (ja) * | 2013-12-15 | 2017-02-02 | インフォテック エスピー.オー.オー.Inphotech Sp. O. O. | 微細構造マルチコア光ファイバ(mmof)、及び微細構造マルチコア光ファイバのコアを個別に指定するための装置、及びこの装置の製造方法 |
JPWO2016027896A1 (ja) * | 2014-08-22 | 2017-06-15 | 住友電気工業株式会社 | 光ファイバ |
JP7335817B2 (ja) | 2018-01-25 | 2023-08-30 | 古河電気工業株式会社 | マルチコアファイバ及びその製造方法 |
JPWO2019146750A1 (ja) * | 2018-01-25 | 2021-01-28 | 古河電気工業株式会社 | マルチコアファイバ及びその製造方法 |
US11555957B2 (en) | 2018-01-25 | 2023-01-17 | Furukawa Electric Co., Ltd. | Multicore fiber and method of manufacture therefor |
JP7575215B2 (ja) | 2020-03-24 | 2024-10-29 | 古河電気工業株式会社 | 光増幅ファイバ、光ファイバ増幅器および光通信システム |
WO2021193305A1 (ja) * | 2020-03-24 | 2021-09-30 | 古河電気工業株式会社 | 光増幅ファイバ、光ファイバ増幅器および光通信システム |
JP7420265B2 (ja) | 2020-08-24 | 2024-01-23 | 日本電信電話株式会社 | 希土類添加ファイバ及び光ファイバ増幅器 |
JPWO2022044088A1 (ja) * | 2020-08-24 | 2022-03-03 | ||
WO2022044088A1 (ja) * | 2020-08-24 | 2022-03-03 | 日本電信電話株式会社 | 希土類添加ファイバ及び光ファイバ増幅器 |
JP7320788B2 (ja) | 2020-09-23 | 2023-08-04 | 日本電信電話株式会社 | 結合型マルチコア光ファイバ |
JP2022052465A (ja) * | 2020-09-23 | 2022-04-04 | 日本電信電話株式会社 | 結合型マルチコア光ファイバ |
CN112198586A (zh) * | 2020-09-25 | 2021-01-08 | 北京邮电大学 | 一种多芯光纤 |
WO2024195031A1 (ja) * | 2023-03-22 | 2024-09-26 | 日本電信電話株式会社 | 光ファイバ及び光増幅器 |
WO2024201650A1 (ja) * | 2023-03-27 | 2024-10-03 | 日本電信電話株式会社 | 光ファイバ及び光増幅器 |
WO2024224614A1 (ja) * | 2023-04-28 | 2024-10-31 | 日本電信電話株式会社 | 光ファイバ、光増幅器、及び、伝送システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012172997A1 (ja) | 2015-02-23 |
JP5356626B2 (ja) | 2013-12-04 |
US20150316714A1 (en) | 2015-11-05 |
EP2722943A4 (en) | 2014-11-05 |
US9423559B2 (en) | 2016-08-23 |
EP2722943A1 (en) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5356626B2 (ja) | マルチコア増幅光ファイバ | |
WO2012172996A1 (ja) | マルチコア増幅光ファイバ | |
US6990282B2 (en) | Photonic crystal fibers | |
JP5238509B2 (ja) | フォトニックバンドギャップファイバ | |
JP5674725B2 (ja) | 光ファイバ増幅器 | |
JP4612583B2 (ja) | 増幅された自然放射光の抑制用光ファイバフィルタ | |
US20090207483A1 (en) | Photonic bandgap fiber and fiber amplifier | |
US8031999B2 (en) | Photonic band-gap fiber | |
JP2013535032A5 (ja) | ||
JPWO2009028614A1 (ja) | 希土類添加コアマルチクラッドファイバ、ファイバ増幅器及びファイバレーザ | |
JP6571745B2 (ja) | ラージモードフィールド直径における伝搬をサポートする偏波保持ファイバ装置 | |
JP6979956B2 (ja) | ファイバレーザおよび増幅器におけるライン選択のための導波路設計 | |
JP2007316526A (ja) | フォトニックバンドギャップファイバ及びファイバレーザ | |
JP2013033865A (ja) | 光ファイバおよび光ファイバの製造方法 | |
US20100150507A1 (en) | Holey fiber | |
WO2014141766A1 (ja) | フォトニックバンドギャップファイバ、及び、それを用いたファイバレーザ装置 | |
US20100254669A1 (en) | Photonic bandgap fiber | |
JPWO2008108404A1 (ja) | フォトニックバンドギャップファイバ | |
US20090181842A1 (en) | Polarization-maintaining optical fiber and method for manufacturing the same | |
JP3640943B2 (ja) | フォトニッククリスタルファイバ | |
JP2006041191A (ja) | ホーリーファイバ | |
JP2005140857A (ja) | 分散フラットファイバ | |
WO2013175886A1 (ja) | ホーリーファイバおよびその製造方法 | |
JP2010197976A (ja) | 光ファイバ | |
JP2002277647A (ja) | ダブルクラッドファイバの製造方法及びダブルクラッドファイバ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013500281 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12799722 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012799722 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012799722 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |