[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012169660A1 - 光触媒塗膜、及びその製造方法 - Google Patents

光触媒塗膜、及びその製造方法 Download PDF

Info

Publication number
WO2012169660A1
WO2012169660A1 PCT/JP2012/065066 JP2012065066W WO2012169660A1 WO 2012169660 A1 WO2012169660 A1 WO 2012169660A1 JP 2012065066 W JP2012065066 W JP 2012065066W WO 2012169660 A1 WO2012169660 A1 WO 2012169660A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
coating film
photocatalyst
transition metal
Prior art date
Application number
PCT/JP2012/065066
Other languages
English (en)
French (fr)
Inventor
徹 中井
舩木 克典
中村 敏和
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2013519556A priority Critical patent/JP6053676B2/ja
Priority to EP12796151.4A priority patent/EP2719456A4/en
Priority to CN201280026480.8A priority patent/CN103582526B/zh
Priority to KR1020137031611A priority patent/KR101868192B1/ko
Priority to US14/124,292 priority patent/US9517459B2/en
Publication of WO2012169660A1 publication Critical patent/WO2012169660A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to a photocatalyst coating film containing a titanium oxide photocatalyst and capable of expressing air purification, deodorization, water purification, antibacterial effect, antifouling effect and the like by light irradiation, and a method for producing the same.
  • the titanium oxide photocatalyst can exhibit a strong oxidizing action when absorbing ultraviolet rays, it has recently been used for various applications described below.
  • Air purification by removing environmental pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) emitted from automobile exhaust gas, etc.
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • Deodorization 3 by removing the substances to become, purified water 4 by decomposing and removing organochlorine compounds such as tetrachloroethylene and trihalomethane, antibacterial 5 by sterilizing and further decomposing the dead bodies, decomposing the oil, sand to the oil Antifouling to prevent dirt caused by dirt
  • the titanium oxide photocatalyst may be used in a state of being suspended in a solution or in a state of being supported on a substrate.
  • the former is more active, but the latter is often adopted from the viewpoint of practicality.
  • a method is generally employed in which the titanium oxide photocatalyst is adhered to the substrate using a binder component.
  • the binder component is decomposed by the oxidizing action of the titanium oxide particles over time and loses its adhesive property, so that it is peeled off from the base material surface. It was a problem that it was difficult to ensure the property.
  • Cited Document 1 a granular anatase type titanium oxide is used as a photocatalyst, and a titanium oxide that is not decomposed by the titanium oxide is mixed as a binder component, whereby a photocatalyst coating that can exhibit excellent adhesion over a long period of time. It is described that a film can be formed. However, since the titanium oxide particles are buried in the binder component and the photocatalytic performance is reduced, it is preferable to make the film thickness very thin in order to expose the titanium oxide particles on the coating film surface, Otherwise, there is a problem that the adhesiveness is insufficient and cannot be brought into close contact with the substrate surface, that is, it is difficult to combine excellent adhesiveness and excellent photocatalytic ability.
  • an object of the present invention is to provide a photocatalyst coating film that can exhibit excellent photocatalytic ability and can exhibit excellent adhesion to the surface of an adherend.
  • Another object of the present invention is to provide a photocatalyst coating excellent in durability, capable of exhibiting excellent photocatalytic activity and capable of exhibiting excellent adhesiveness over a long period of time on the surface of the adherend. It is to provide a membrane.
  • Still another object of the present invention is to respond to a wide wavelength range from the ultraviolet region to the visible light region, and exhibit high catalytic activity even under a light source in a normal living space such as sunlight, incandescent lamp, fluorescent lamp, etc.
  • Another object of the present invention is to provide a photocatalyst coating film excellent in durability that can be applied to the adherend surface over a long period of time.
  • the present inventors As a result of intensive studies to solve the above-mentioned problems, the present inventors, as the photocatalytic reaction proceeds by light irradiation, only the photocatalyst exposed on the coating film surface can exhibit its catalytic ability. However, since the photocatalyst coating film obtained by using rod-like or needle-like titanium oxide particles as the photocatalyst has a bulky shape, the photocatalyst is not buried in the binder component even when mixed with the binder component.
  • a photocatalytic coating material containing at least rod-like or needle-like titanium oxide particles and a binder component is applied and dried so that the content of the titanium oxide particles is 0.5 g / m 2 or more.
  • a photocatalytic coating film wherein the content of the titanium oxide particles per unit volume (thickness 1 ⁇ m ⁇ 1 m 2 ) is less than 3.0 g.
  • the aspect ratio [ratio of long side / short side (length)] of the titanium oxide particles is preferably 1.5 or more.
  • the mixing ratio of the titanium oxide particles and the binder component is preferably 1: 6 to 30: 1.
  • titanium oxide particles rutile type titanium oxide particles are preferable, and transition metal compound-supported titanium oxide particles are preferable.
  • the transition metal compound is preferably an iron compound.
  • the transition metal compound is preferably selectively supported on the oxidation reaction surface of the exposed crystal planes of the titanium oxide particles, and in particular, the (001) plane, the (111) plane and the exposed crystal plane of the titanium oxide particles. It is preferable to be selectively supported on at least one surface selected from the (011) surfaces.
  • the binder component it is preferable to contain a compound selected from titanium peroxide, a silicon compound, and a fluorine resin, and it is particularly preferable to contain at least titanium peroxide.
  • the present invention also relates to a method for producing the photocatalytic coating film, wherein the photocatalytic coating film containing at least rod-like or needle-like titanium oxide particles and a binder component is applied and dried. Provide a method.
  • a step of obtaining a rod-like or needle-like transition metal compound-supported titanium oxide particle by carrying a transition metal compound on a rod-like or needle-like titanium oxide particle under irradiation of excitation light is preferable to have.
  • the present invention further provides a photocatalyst-coated body comprising the photocatalyst coating film and a substrate.
  • the substrate is preferably a substrate formed of a plastic material.
  • the photocatalyst contained in the photocatalyst coating material since rod-like or needle-like titanium oxide particles are used as the photocatalyst contained in the photocatalyst coating material, the specific shape of the titanium oxide particles makes it easy to fix with a binder component, and a small amount of binder component causes adhesion. It is possible to form an excellent coating film. And since the photocatalyst coating film which concerns on this invention has a large surface area and many photocatalysts are exposed to the coating-film surface, it can exhibit the very outstanding photocatalytic ability.
  • the binder component which contains at least titanium peroxide since the binder component itself is not decomposed
  • transition metal compound-supported titanium oxide particles in which transition metal compounds are supported on rod-like or needle-like titanium oxide particles as a photocatalyst are used, there is responsiveness over a wide wavelength range from the ultraviolet region to the visible light region.
  • a photocatalytic coating film that can exhibit high catalytic activity even under a light source in a normal living space such as sunlight, incandescent lamp, fluorescent lamp, and the like.
  • Example 1 SEM photograph showing a cross section of the photocatalyst coating film (1) obtained in Example 1 [(a) magnification: 20000 times, white scale: 1 ⁇ m, (b) magnification: 50000 times, white scale: 100 nm, (c) magnification : 100000 times, white scale: 100 nm, (d) magnification: 200000 times, white scale: 100 nm]. It is a SEM photograph [(a) magnification: 100000 times, white scale: 100 nm, (b) magnification: 200000 times, white scale: 100 nm] which shows the section of photocatalyst coat (11) obtained by comparative example 1.
  • the titanium oxide particles of the present invention are characterized by having a rod shape or needle shape, and the aspect ratio [ratio of long side / short side (length)] is, for example, 1.5 or more, preferably It is about 1.5 to 100, particularly preferably 2.0 to 20, and most preferably 5.0 to 15.
  • the aspect ratio of the titanium oxide particles can be determined from, for example, an SEM photograph.
  • the aspect ratio is below the above range (that is, when the shape of the titanium oxide particles becomes more spherical)
  • the titanium oxide particles when mixed with the binder component, the titanium oxide particles are densely packed to close the pores, and thus the photocatalyst obtained
  • the surface area of the coating film decreases and the amount of photocatalyst exposed to the coating film surface decreases, the photocatalytic ability tends to decrease.
  • titanium oxide particles examples include rutile type, anatase type, brookite type titanium oxide particles, and the like.
  • rutile-type titanium oxide particles are particularly preferable in that they have a shape with a large aspect ratio.
  • titanium oxide particles carrying transition metal compounds (transition metal compound-carrying titanium oxide particles).
  • the transition metal compound is supported in the state of, for example, a transition metal ion, a transition metal simple substance, a transition metal salt, a transition metal oxide, a transition metal hydroxide, or a transition metal complex.
  • the transition metal compound is selectively supported on a specific surface (for example, a specific one surface or two surfaces) among all exposed crystal surfaces of the titanium oxide particles.
  • a specific surface for example, a specific one surface or two surfaces
  • the reaction field of the reduction reaction can be separated more spatially, thereby improving the separation of excited electrons and holes, and suppressing the recombination of excited electrons and holes and the progress of reverse reaction to a very low level. It is preferable in that it can exhibit higher photocatalytic activity.
  • “selectively supporting the transition metal compound on a specific surface” means an amount exceeding 50% of the transition metal compound supported on the titanium oxide particles having an exposed crystal surface (preferably 70% or more, Particularly preferably, 80% or more) is supported on a specific surface (for example, one specific surface or two surfaces), not all of the two or more exposed crystal surfaces.
  • the loading of the transition metal compound can be determined by confirming a signal derived from the transition metal compound on the exposed crystal plane using a transmission electron microscope (TEM) or an energy dispersive X-ray fluorescence spectrometer (EDX).
  • Any transition metal compound may be used as long as it has an absorption spectrum in the visible light region and can inject electrons into the conduction band in an excited state, such as Group 3 to Group 11 element compounds in the periodic table.
  • Periodic table Group 8 to Group 11 element compounds are preferred, and trivalent iron compounds (Fe 3+ ) are particularly preferred.
  • trivalent iron compounds (Fe 3+ ) are easy to adsorb and divalent iron compounds (Fe 2+ ) are difficult to adsorb. This is because surface selectivity can be easily imparted.
  • Examples of main exposed crystal planes of rutile-type titanium oxide particles include (110) (001) (111) (011) planes and the like.
  • Examples of the rutile type titanium oxide particles in the present invention include, for example, rutile type titanium oxide particles having a (110) (111) plane, rutile type titanium oxide particles having a (110) (011) plane, (001) (110) ( And rutile type titanium oxide particles having a (111) plane.
  • the reaction fields of the oxidation reaction and the reduction reaction can be separated more spatially, and the recombination of excited electrons and holes and the progress of the reverse reaction can be suppressed (001).
  • Rutile-type titanium oxide particles having (110) (111) faces are preferred.
  • the oxidation reaction surfaces of rutile type titanium oxide having (001) (110) (111) planes are (111) plane and (001) plane.
  • transition metal compound-supported titanium oxide particles in the present invention a transition metal compound is selectively used on the (001) (111) face of rutile titanium oxide particles having (001) (110) (111) faces.
  • the one supported on is preferable.
  • titanium oxide particles for example, rutile type titanium oxide particles having (001) (110) (111) planes, a titanium compound and a structure control agent in the presence of a hydrophilic polymer (for example, polyvinylpyrrolidone, polyvinyl alcohol), Synthesis by hydrothermal treatment [for example, 100 to 200 ° C., 3 to 48 hours (preferably 6 to 12 hours)] in an aqueous medium (for example, water or a mixture of water and a water-soluble organic solvent).
  • a hydrophilic polymer for example, polyvinylpyrrolidone, polyvinyl alcohol
  • titanium compound examples include a trivalent titanium compound and a tetravalent titanium compound.
  • examples of the trivalent titanium compound include titanium trihalides such as titanium trichloride and titanium tribromide.
  • titanium trichloride TiCl 3
  • TiCl 3 titanium trichloride
  • the tetravalent titanium compound in this invention can mention the compound etc. which are represented by following formula (1), for example.
  • formula (1) Ti (OR) t X 4-t (1)
  • R represents a hydrocarbon group
  • X represents a halogen atom
  • t represents an integer of 0 to 3
  • hydrocarbon group for R examples include C 1-4 aliphatic hydrocarbon groups such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, and tert-butyl.
  • halogen atom in X examples include chlorine, bromine and iodine.
  • titanium tetrahalides such as TiCl 4 , TiBr 4 , and Til 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , and Ti (OC 4).
  • Trihalogenated alkoxytitanium such as H 9 ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , Ti (OC 4 H 9 ) Br 3 ; Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Dihalogenated dialkoxytitanium such as Cl 2 , Ti (OC 4 H 9 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Br 2 ; Ti (OCH 3 ) 3 Cl, Ti (OC 2 H 5 ) 3 Cl, Examples thereof include monohalogenated trialkoxytitanium such as Ti (OC 4 H 9 ) 3 Cl and Ti (OC 2 H 5 ) 3 Br.
  • titanium tetrahalide is preferable and titanium tetrachloride (TiCl 4 ) is particularly preferable because it is inexpensive and easily available.
  • the reaction temperature is 110 to 220 ° C. (preferably 150 ° C. to 220 ° C.) without adding a hydrophilic polymer as a structure control agent.
  • the rutile-type titanium oxide having (001) (110) (111) face is obtained by converting rutile-type titanium oxide particles having (110) (111) face into sulfuric acid (preferably sulfuric acid having a high concentration of 50% by weight or more, In particular, it is also possible to synthesize (dissolve) the ridges or apexes of the titanium oxide particles by adding them into concentrated sulfuric acid) and stirring them under heating.
  • the rutile-type titanium oxide particles having a (110) (111) surface are obtained by hydrothermal treatment of a titanium compound in an aqueous medium (for example, water or a mixture of water and a water-soluble organic solvent) [for example, 100 to 200 ° C., 3 to 48 hours (preferably 6 to 12 hours)]. In the hydrothermal treatment, it is preferable to add a halide because the size and surface area of the obtained particles can be adjusted.
  • the specific surface area of the titanium oxide particles in the present invention is, for example, 20 to 100 m 2 / g, preferably 40 to 90 m 2 / g, particularly preferably 50 to 85 m 2 / g.
  • the specific surface area of the titanium oxide particles is below the above range, the adsorption capacity of the reactants tends to be reduced and the photocatalytic performance tends to be reduced.
  • the specific surface area of the titanium oxide particles exceeds the above range, excited electrons and holes There is a tendency that the separability of the photocatalyst decreases and the photocatalytic ability decreases.
  • the transition metal compound can be supported on the titanium oxide particles by an impregnation method in which the transition metal compound is impregnated into the titanium oxide particles.
  • the impregnation can be performed by dispersing and immersing titanium oxide particles in an aqueous solution and adding a transition metal compound while stirring.
  • a trivalent iron compound When Fe 3+ ) is used, it can be carried out by adding an iron compound (for example, iron (III) nitrate, iron (III) sulfate, iron (III) chloride, etc.).
  • the addition amount of the transition metal compound is, for example, about 0.01 to 3.0% by weight, preferably 0.05 to 1.0% by weight with respect to the titanium oxide particles.
  • the immersion time is, for example, about 30 minutes to 24 hours, preferably 1 to 10 hours.
  • irradiate excitation light when impregnating a transition metal compound to a titanium oxide particle, it is preferable to irradiate excitation light.
  • the electrons in the valence band of the titanium oxide particles are excited in the conduction band, holes are generated in the valence band, and excited electrons are generated in the conduction band, which are diffused to the particle surface. Excited electrons and holes are separated according to the characteristics to form an oxidation reaction surface and a reduction reaction surface.
  • the trivalent iron compound (Fe 3+ ) when a trivalent iron compound is impregnated as a transition metal compound, the trivalent iron compound (Fe 3+ ) is adsorbed on the oxidation reaction surface, but on the reduction reaction surface, the trivalent iron compound (Fe 3+ ) is reduced to a divalent iron compound (Fe 2+ ), and the divalent iron compound (Fe 2+ ) has a characteristic that it is difficult to adsorb, so that it elutes into the solution, and as a result, the iron compound ( Transition metal compound-supported titanium oxide particles supporting Fe 3+ ) can be obtained.
  • the excitation light As a method for irradiating the excitation light, it is only necessary to irradiate light having energy equal to or higher than the band gap energy. For example, it can be performed by irradiating ultraviolet rays.
  • the ultraviolet irradiation means for example, an ultraviolet exposure apparatus using a light source that efficiently generates ultraviolet rays such as a medium / high pressure mercury lamp, a UV laser, a UV-LED, and a black light can be used.
  • the irradiation amount of the excitation light is, for example, about 0.1 to 300 mW / cm 2 , preferably 0.5 to 100 mW / cm 2 , and most preferably 1 to 5 mW / cm 2 .
  • the irradiation time of the excitation light is, for example, about 1 minute to 72 hours, preferably 30 minutes to 48 hours.
  • a sacrificial agent may be added during the impregnation.
  • the transition metal compound can be supported on the surface of the titanium oxide particles with a higher selectivity on the specific exposed crystal plane.
  • the sacrificial agent it is preferable to use an organic compound that easily emits electrons.
  • alcohols such as methanol and ethanol
  • carboxylic acids such as acetic acid
  • EDTA ethylenediaminetetraacetic acid
  • TAA triethanolamine
  • the addition amount of the sacrificial agent can be appropriately adjusted, and is, for example, about 0.5 to 5.0% by weight, preferably 1.0 to 2.0% by weight of the titanium oxide solution. An excessive amount of the sacrificial agent may be used.
  • the transition metal compound-supported titanium oxide particles obtained by the above method can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a combination means combining these. .
  • the binder component of the present invention has a function of fixing the titanium oxide particles, and examples thereof include titanium peroxide, silicon compounds, and fluorine resins.
  • silicon compounds include tetrabromosilane, tetrachlorosilane, tribromosilane, trichlorosilane, dibromosilane, dichlorosilane, monobromosilane, monochlorosilane, dichlorodimethylsilane, dichlorodiethylsilane, dichloromethylsilane, and dichloroethylsilane.
  • Halogenated silane compounds such as chlorotrimethylsilane, chlorotriethylsilane, chlorodimethylsilane, chlorodiethylsilane, chloromethylsilane, chloroethylsilane, t-butylchlorodimethylsilane, t-butylchlorodiethylsilane; tetramethoxysilane, tetra Ethoxysilane, trimethoxysilane, triethoxysilane, dimethoxysilane, diethoxysilane, methoxysilane, ethoxysilane, dimethoxymethylsilane DEMS, dimethoxyethyl silane, diethoxy ethyl silane, methoxy dimethylsilane, ethoxy dimethyl silane, methoxy diethyl silane, can be mentioned alkoxysilane compounds such as ethoxy diethyl silane.
  • fluorine-based resin examples include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, and ethylene-chlorotrifluoroethylene copolymer.
  • the binder component in the present invention preferably contains at least titanium peroxide, and it is preferable to use titanium peroxide alone, or a combination of titanium peroxide and a silicon compound or a fluorine resin. Titanium peroxide has high film-forming properties, and can be quickly formed into a coating film having excellent adhesiveness by coating and drying, and in addition, it can be decomposed by the photocatalytic action of titanium oxide particles. This is because it is excellent in durability and can fix titanium oxide particles over a long period of time.
  • Titanium peroxide can be synthesized, for example, by adding hydrogen peroxide to an aqueous solution of a titanium compound such as TiCl 4 in the presence of a basic substance (eg, aqueous ammonia, sodium hydroxide, etc.).
  • a basic substance eg, aqueous ammonia, sodium hydroxide, etc.
  • the photocatalyst coating material of the present invention contains at least rod-like or needle-like titanium oxide particles as a photocatalyst and a binder component.
  • the method for preparing the photocatalyst coating is not particularly limited, and it is only necessary to mix the titanium oxide particles and the binder component.
  • the titanium oxide particles and the binder component may be mixed in the dispersion medium, Titanium particles and a binder component may be separately mixed with a dispersion medium to form a sol, and the sol-state titanium oxide particles and the sol-state binder component may be mixed.
  • the titanium oxide sol can be prepared by dispersing titanium oxide particles in a dispersion medium (for example, water, ethanol, etc.) using a well-known and common dispersing apparatus such as a wet medium stirring mill.
  • the titanium oxide particle content in the titanium oxide sol is, for example, about 1.0 to 10.0% by weight.
  • the titanium peroxide content in the titanium peroxide sol is, for example, about 1.00 to 1.60% by weight.
  • a commercial product such as “Tio Sky Coat C” (manufactured by Tio Techno Co., Ltd.) may be used.
  • the blending ratio of the titanium oxide particles and the binder component in the photocatalyst paint is, for example, the blending ratio of the titanium oxide particles and the binder component [the former: the latter (weight ratio)] is about 1: 6 to 30: 1, preferably 1: It is preferable to blend so as to be 1 to 15: 1, particularly preferably 1.5: 1 to 13: 1.
  • the blending amount of the titanium oxide particles is below the above range, the photocatalytic ability tends to decrease.
  • the blending amount of the titanium oxide particles exceeds the above range, adhesion to the adherend and prevention of deterioration of the adherend are caused. Tend to decrease.
  • the photocatalyst paint according to the present invention can be appropriately mixed with a compound that is usually blended in the photocatalyst paint as necessary,
  • examples of other components include coating aids.
  • the blending amount of the other components may be within a range that does not impair the effects of the present invention. % By weight).
  • the photocatalyst coating film of the present invention is a photocatalyst coating containing at least the rod-like or needle-like titanium oxide particles and the binder component, and the rod-like or needle-like titanium oxide particle content is 0.5 g / m 2 or more. It is a photocatalytic coating film obtained by coating and drying so that the content of the rod-like or needle-like titanium oxide particles per unit volume (thickness 1 ⁇ m ⁇ 1 m 2 ) is less than 3.0 g. It is characterized by.
  • the photocatalyst coating film of the present invention is produced through at least the following steps.
  • Step 1 A step of preparing a photocatalyst coating material containing at least rod-like or needle-like titanium oxide particles and a binder component
  • Step 2 A content of rod-like or needle-like titanium oxide particles is 0.5 g / m 2. The process of evenly spreading and drying to achieve the above
  • the photocatalyst paint can be uniformly spread by using, for example, spray, brush, roller, gravure printing or the like. After spreading, the coating film can be formed quickly by drying (evaporating the dispersion medium). As a drying method, it may be dried at room temperature or may be dried by heating.
  • transition metal compound-supported titanium oxide particles it is preferable to use transition metal compound-supported titanium oxide particles as the titanium oxide particles because the visible light responsiveness can be imparted to the photocatalyst coating film.
  • the rod-like or needle-like transition metal compound is supported on the rod-like or needle-like titanium oxide particles under the excitation light irradiation before the step 1 described above. It is preferable to provide a step of obtaining supported titanium oxide particles.
  • the coating amount of the photocatalytic coating is such that the content of the rod-like or needle-like titanium oxide particles is 0.5 g / m 2 or more (for example, about 0.5 to 5.0 g / m 2 , preferably 0.5 to 3.0 g). / M 2 ).
  • the photocatalytic ability tends to be lowered.
  • the surface is rough and has a porous structure, so that the surface area is remarkably wide and the photocatalyst is applied without being buried inside the coating film. It has a structure that is exposed on the surface of the film, and can exhibit extremely excellent photocatalytic activity (see FIG. 1).
  • the photocatalytic coating film formed by the above method can exhibit extremely high photocatalytic activity, and can decompose harmful chemical substances into water and carbon dioxide by light irradiation. Therefore, it can be used for various applications such as antibacterial and antifungal, deodorization, air purification, water purification, and antifouling. Furthermore, since it is excellent in adhesion and durability to the adherend surface, it can exhibit excellent photocatalytic activity over a long period of time.
  • the conventional photocatalyst coating film did not sufficiently function in a room with little ultraviolet light, and its application to indoor applications did not progress very easily.
  • a rod-like or needle-like transition metal compound-supported oxidation was particularly used as a photocatalyst.
  • titanium particles When titanium particles are used, they have responsiveness over a wide wavelength range from the ultraviolet range to the visible light range, and absorb light in normal living spaces such as sunlight, incandescent lamps, and fluorescent lamps, and have high catalytic activity. It exhibits high gas decomposition performance and antibacterial action even in low-light environments such as indoors, cleans the environment in homes, hospitals, schools, and other public facilities, home appliances It can be applied to a wide range of functions such as
  • the photocatalyst-coated body of the present invention includes the photocatalyst coating film and a substrate.
  • a photocatalyst paint is applied to the surface of a substrate so that the content of rod-like or needle-like titanium oxide particles is 0.5 g / m 2 or more, and dried. Obtained by coating and drying so that the content of rod-like or needle-like titanium oxide particles is 0.5 g / m 2 or more on another substrate.
  • the method etc. which manufacture by sticking a photocatalyst coating film on the substrate surface are mentioned.
  • the photocatalyst paint When applying the photocatalyst paint to the substrate surface, the photocatalyst paint may be applied directly to the substrate surface, and by applying a coating agent containing a binder component (particularly titanium peroxide) to the substrate surface in advance, an undercoat layer And a photocatalyst paint may be applied thereon.
  • a coating agent containing a binder component particularly titanium peroxide
  • an undercoat layer When an undercoat layer is provided, the base material and the photocatalytic coating film are completely separated from each other by the undercoat layer. Therefore, even if a base material made of an organic material is used as the base material, the undercoat layer completely blocks the photocatalytic action. Further, it is possible to prevent the base material from being damaged by the oxidizing action of the titanium oxide particles.
  • the thickness is, for example, about 0.1 to 1.0 ⁇ m, preferably 0.2 to 0.5 ⁇ m.
  • the base material constituting the photocatalyst-coated body is not particularly limited, and various plastic materials [for example, polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, ethylene-vinyl acetate copolymer).
  • various plastic materials for example, polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, ethylene-vinyl acetate copolymer.
  • Olefin resins containing ⁇ -olefin as a monomer component such as polymer (EVA); Polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT); PVC); vinyl acetate resin; polyphenylene sulfide (PPS); amide resin such as polyamide (nylon), wholly aromatic polyamide (aramid); polyimide resin; polyether ether ketone (PEEK) etc.], rubber material (for example, , Natural rubber, synthetic rubber, silico Rubber, etc.), metal materials (eg, aluminum, copper, iron, stainless steel, etc.), paper materials (eg, paper, paper-like substances, etc.), wood materials (eg, wood, wood boards such as MDF, plywood, etc.), fibers Examples include various materials such as materials (for example, non-woven fabrics, woven fabrics), leather materials, inorganic materials (for example, stone, concrete), glass materials, porcelain materials. As a base material
  • the base material there are no particular restrictions on the base material from the viewpoint of use, for example, lenses (for example, glasses and camera lenses), prisms, vehicle members such as automobiles and railway vehicles (window glass, lamp covers, rearview mirrors, etc.) ), Building materials (for example, outer wall materials, inner wall materials, window frames, window glass, etc.), machine components, various display devices such as traffic signs, advertising towers, sound insulation walls (for roads, railroads, etc.), bridges, guardrails, Tunnels, insulators, solar battery covers, solar water heater heat collection covers, lighting fixtures, bathroom accessories, bathroom components (eg mirrors, bathtubs, etc.), kitchen appliances, kitchen components (eg kitchen panels, sinks, range hoods, ventilation fans, etc.) ), Anti-bacterial and anti-fungal such as air-conditioning, toilet articles and toilet members (for example, toilets), deodorizing, air purification, water purification, anti-fouling effects, and for attaching to the article surface Mention may be made of Irumu, a sheet,
  • the photocatalyst-coated body of the present invention has the photocatalyst coating film, it is possible to decompose harmful chemical substances into water and carbon dioxide by light irradiation. Therefore, excellent antibacterial and antifungal effects, deodorization, air purification, water purification, antifouling and the like can be exhibited. Furthermore, since the photocatalyst-coated body of the present invention has a photocatalyst coating film having excellent adhesion to the substrate and excellent durability, it can exhibit excellent photocatalytic performance over a long period of time.
  • the photocatalyst when a photocatalyst coating film containing rod-like or needle-like transition metal compound-supported titanium oxide particles is provided as a photocatalyst, the photocatalyst has responsiveness over a wide wavelength range from the ultraviolet region to the visible light region, so Excellent antibacterial, antifungal, deodorizing, air purification, water purification, antifouling, etc. can be exhibited even in a low-light environment of a normal living space such as a lamp or a fluorescent lamp.
  • the adhesiveness of the photocatalyst coating film obtained in the examples and comparative examples was evaluated according to JIS K 5400 (cross cut test method).
  • Photocatalytic ability (particularly, catalytic ability by irradiation with visible light) was evaluated by the following two methods. 1. In accordance with JIS R 1703-2 (Fine Ceramics-Photocatalyst Material Self-Cleaning Performance Test Method), the light source was evaluated using a fluorescent lamp instead of the ultraviolet light irradiation device (self-cleaning performance test). 2.
  • Decomposition amount (%) of methyl mercaptan was obtained by putting the photocatalyst coating film (5 cm ⁇ 10 cm) obtained in Examples and Comparative Examples into a reaction vessel (Tedlar bag, material: vinyl fluoride resin), and 70 ppm methyl mercaptan gas.
  • Preparation Example 1 (Preparation of rod-shaped titanium oxide) At room temperature (25 ° C.), a commercially available TiCl 4 aqueous solution (for reagent chemistry manufactured by Wako Pure Chemical Industries, Ltd., about 16.5 wt% Ti-containing dilute hydrochloric acid solution) is used so that the Ti concentration becomes 5.4 wt%. Diluted with ion-exchanged water. 56 g of diluted TiCl 4 aqueous solution is put into a 100 ml autoclave coated with Teflon (registered trademark), sealed and put into an oil bath, and the temperature of the TiCl 4 aqueous solution in the autoclave is raised to 180 ° C. over 30 minutes. Warm up.
  • Teflon registered trademark
  • reaction temperature 180 degreeC and reaction pressure 1.0MPa the autoclave was cooled with ice water. Three minutes later, after confirming that the temperature of the TiCl 4 aqueous solution in the autoclave was 30 ° C. or lower, the autoclave was opened, and the reaction product was taken out. The reaction product obtained was centrifuged at 10 ° C., rinsed with deionized water, and dried under reduced pressure for 12 hours in a vacuum dryer (vacuum oven) with an internal temperature of 65 ° C. to give 5.2 kg of titanium oxide particles. (1) was obtained.
  • titanium oxide particles (1) were confirmed with a scanning electron microscope (SEM), they were rod-shaped rutile titanium oxide particles having crystal faces (001) (110) (111) (aspect ratio: 9. 0, specific surface area: 76 m 2 / g, see FIG. 2).
  • the obtained titanium oxide particles (1) are dispersed in ion-exchanged water, and an iron compound is added to the titanium oxide particles (1) while stirring under light irradiation of a high-pressure mercury lamp adjusted to 1.0 mW / cm 2.
  • An aqueous iron (III) nitrate solution prepared to 0.10% by weight was added. After 6 hours, the particles were collected by centrifugation, washed with ion-exchanged water until the ion conductivity was 6 ⁇ S / cm 2 or less, and vacuum-dried to obtain iron compound-supported titanium oxide particles (1) ( Iron compounds).
  • iron compound-supported titanium oxide particles (1) were confirmed with a scanning electron microscope (SEM), an energy dispersive X-ray fluorescence spectrometer (EDX), and a transmission electron microscope (TEM), (001) ( 110)
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray fluorescence spectrometer
  • TEM transmission electron microscope
  • the iron compound (III) was selectively supported on the (001) and (111) faces of rod-shaped rutile-type titanium oxide particles having a (111) face (see FIG. 3).
  • Preparation Example 2 (Method for producing titanium oxide sol)
  • the iron compound-supported titanium oxide particles (1) obtained in Preparation Example 1 are mixed with water as a dispersion medium, and a wet medium stirring mill (trade name “Ultra Apec Mill UAM-015”, manufactured by Kotobuki Industries Co., Ltd.) is used. It was used and dispersed to obtain a titanium oxide sol (1) having a titanium oxide concentration of 5% by weight.
  • Example 1 60 g of titanium oxide sol (1) obtained in Preparation Example 2 and 40 g of titanium peroxide sol (trade name “Tio Sky Coat C”, manufactured by Tio Techno Co., Ltd., titanium peroxide concentration: 1 wt%) were mixed to oxidize.
  • a photocatalyst coating material (1) with titanium / titanium peroxide (compounding ratio) 3 wt% / 0.4 wt% was obtained.
  • the obtained photocatalyst paint (1) was applied in 50 g / m 2 using a spray gun divided into several times, dried at room temperature, and photocatalyst coating film (1) (content of titanium oxide particles: 1.5 g / m). m 2 , 1.5 g / ⁇ m ⁇ m 2 ).
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 4.7.
  • the film thickness was 1.0 ⁇ m (see FIG. 4).
  • Example 2 Except for changing the coating amount of the photocatalyst coating material (1) to 35 g / m 2 in the same manner as in Example 1, the photocatalytic coating (2) (titanium oxide particle content: 1.05g / m 2, 1.31g / ⁇ m ⁇ m 2 ) was obtained. In the cross cut test, adhesion was 100/100. The activity value of the self-cleaning performance test was 4.2. The film thickness was 0.8 ⁇ m.
  • Example 3 Except for changing the coating amount of the photocatalyst coating material (1) to 20 g / m 2 in the same manner as in Example 1, the photocatalytic coating (2) (titanium oxide particle content: 0.6g / m 2, 1.0g / ⁇ m ⁇ m 2 ) was obtained. In the cross cut test, adhesion was 100/100. The activity value of the self-cleaning performance test was 3.8. The film thickness was 0.6 ⁇ m.
  • Example 4 70 g of the titanium oxide sol (1) obtained in Preparation Example 2 and 30 g of titanium peroxide sol (trade name “Tio Sky Coat C”, manufactured by Tio Techno Co., Ltd., titanium peroxide concentration: 1 wt%) were mixed to oxidize.
  • a photocatalyst coating material (2) with titanium / titanium peroxide 3.5 wt% / 0.3 wt% was obtained.
  • the obtained photocatalyst paint (2) was applied in 43 g / m 2 using a spray gun divided into several times, dried at room temperature, and photocatalyst coating film (4) (content of titanium oxide particles: 1.5 g / m). m 2 , 1.5 g / ⁇ m ⁇ m 2 ).
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 5.2.
  • the film thickness was 1.0 ⁇ m.
  • the obtained photocatalyst paint (4) was applied in 30 g / m 2 using a spray gun in several batches and dried at room temperature to obtain a photocatalyst coating film (6) (content of titanium oxide particles: 1.35 g / m 2 , 1.13 g / ⁇ m ⁇ m 2 ).
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 3.2.
  • the film thickness was 1.2 ⁇ m.
  • the obtained photocatalyst paint (5) was applied in a spray gun several times, applied at 28 g / m 2 , dried at room temperature, and photocatalyst coating film (7) (content of titanium oxide particles: 1.33 g / m 2 , 1.02 g / ⁇ m ⁇ m 2 ).
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 3.5.
  • the film thickness was 1.3 ⁇ m.
  • the photocatalyst coating material (6) which became a weight% / 1.5 weight% was obtained.
  • the obtained photocatalyst paint (6) was applied at 40 g / m 2 using a spray gun divided into several times, dried at room temperature, and photocatalyst coating film (8) (content of titanium oxide particles: 1.4 g / m 2 , 0.93 g / ⁇ m ⁇ m 2 ).
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 3.5.
  • the film thickness was 1.5 ⁇ m.
  • the photocatalyst coating material (7) which became a weight% / 1.0 weight% was obtained.
  • the obtained photocatalyst paint (7) was applied in 35 g / m 2 using a spray gun in several batches and dried at room temperature to obtain a photocatalyst coating film (9) (content of titanium oxide particles: 1.4 g / m 2 , 1.08 g / ⁇ m ⁇ m 2 ).
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 3.8.
  • the film thickness was 1.3 ⁇ m.
  • a photocatalyst paint (8) was obtained.
  • the obtained photocatalyst paint (8) was applied at 50 g / m 2 using a spray gun divided into several times, dried at room temperature, and photocatalyst coating film (10) (content of titanium oxide particles: 1.5 g / m). m 2 , 1.25 g / ⁇ m ⁇ m 2 ). In the cross cut test, adhesion was 100/100. The activity value of the self-cleaning performance test was 4.7. The film thickness was 1.2 ⁇ m.
  • Comparative Example 1 Visible light responsive titanium oxide (trade name “TPS-201”, manufactured by Sumitomo Chemical Co., Ltd., aspect ratio: 1.0) is mixed with water as a dispersion medium, and a wet medium agitation mill (trade name “Ultra Apec”). Mill UAM-015 "(manufactured by Kotobuki Industries Co., Ltd.) was used to obtain a titanium oxide sol (2) having a titanium oxide concentration of 5% by weight.
  • the photocatalyst coating film (11) titanium oxide particle content: 1.5 g / in
  • Example 1 the photocatalyst coating film (11) (titanium oxide particle content: 1.5 g / in) was used in the same manner as in Example 1 except that the titanium oxide sol (2) was used.
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 2.0.
  • the film thickness was 0.5 ⁇ m (see FIG. 5).
  • the photocatalyst coating film (12) (titanium oxide particle content: 0.6 g / in) was used in the same manner as in Example 3 except that the titanium oxide sol (2) was used.
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 1.9.
  • the film thickness was 0.2 ⁇ m.
  • Comparative Example 3 Visible light responsive titanium oxide (trade name “MPT-623”, manufactured by Ishihara Sangyo Co., Ltd., aspect ratio: 1.0) is mixed with water as a dispersion medium, and a wet medium agitation mill (trade name “Ultra Apec”). Mill UAM-015 ”(manufactured by Kotobuki Industries Co., Ltd.) was used to obtain a titanium oxide sol (3) having a titanium oxide concentration of 5% by weight.
  • the photocatalyst coating film (13) content of titanium oxide particles: 1.5 g / wt
  • Example 1 the photocatalyst coating film (13) was used in the same manner as in Example 1 except that the titanium oxide sol (3) was used.
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 0.5.
  • the film thickness was 0.5 ⁇ m (see FIG. 6).
  • Comparative Example 4 instead of the titanium oxide sol (1) obtained in Preparation Example 2, the photocatalyst coating film (14) (titanium oxide particle content: 0.6 g / in) was used in the same manner as in Example 3 except that the titanium oxide sol (3) was used. m 2 , 3.0 g / ⁇ m ⁇ m 2 ). In the cross cut test, adhesion was 100/100. The activity value of the self-cleaning performance test was 0.4. The film thickness was 0.2 ⁇ m.
  • a photocatalyst coating material (9) having a ratio of /0.26 wt% / 0.5 wt% was obtained.
  • a plastic substrate with a photocatalyst coating film (1) was obtained.
  • the titanium oxide particle content of the photocatalyst coating film in the obtained plastic substrate with a photocatalyst coating film (1) was 0.6 g / m 2 , 1.5 g / ⁇ m ⁇ m 2 , and the film thickness was 0.3 ⁇ m.
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 4.4.
  • the degradation amount (%) after 24 hours was 100%.
  • Example 12 A plastic substrate (2) with a photocatalyst coating film was obtained in the same manner as in Example 11 except that the wire bar (winding No. # 20) was used instead of the wire bar (winding No. # 10).
  • the titanium oxide particle content of the photocatalyst coating film in the obtained plastic substrate with a photocatalyst coating film (2) was 1.2 g / m 2 , 1.7 g / ⁇ m ⁇ m 2 , and the film thickness was 0.6 ⁇ m.
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 4.6.
  • the degradation amount (%) after 24 hours was 100%.
  • Comparative Example 5 A plastic substrate (3) with a photocatalyst coating film was obtained in the same manner as in Example 11 except that the titanium oxide sol (2) obtained in Comparative Example 1 was used in place of the titanium oxide sol (1) obtained in Preparation Example 2. It was.
  • the titanium oxide particle content of the photocatalyst coating film in the obtained plastic substrate with a photocatalyst coating film (3) was 0.8 g / m 2 , 3.5 g / ⁇ m ⁇ m 2 , and the film thickness was 0.3 ⁇ m.
  • adhesion was 100/100.
  • the activity value of the self-cleaning performance test was 1.7.
  • the degradation amount (%) after 24 hours was 55%.
  • the photocatalyst coating film and the photocatalyst-coated body according to the present invention have both excellent photocatalytic ability and excellent adhesion to the adherend surface.
  • the photocatalyst coating film using titanium oxide particles having an aspect ratio of less than 1.5 as the photocatalyst has a thickness capable of ensuring the adhesion to the adherend surface, it was found that the photocatalytic ability is remarkably inferior.
  • the photocatalyst coating film of the present invention is excellent in adhesion to the adherend surface, has a large surface area, and a large amount of the photocatalyst is exposed on the coating film surface, so that it can exhibit extremely excellent photocatalytic ability. And when using the binder component which contains at least titanium peroxide as a binder component, the extremely outstanding photocatalytic ability and the outstanding adhesiveness with respect to a to-be-adhered body can be hold
  • transition metal compound-supported titanium oxide particles in which transition metal compounds are supported on rod-like or needle-like titanium oxide particles as a photocatalyst
  • a light source in a normal living space such as sunlight, incandescent lamp, fluorescent lamp, etc. It is possible to form a photocatalytic coating film that can exhibit a high catalytic activity even under the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)

Abstract

 優れた光触媒能を発現することができ、且つ、被着体表面に対し優れた接着性を発揮することができる光触媒塗膜を提供する。 本発明の光触媒塗料は、棒状或いは針状の酸化チタン粒子とバインダー成分とを少なくとも含有する光触媒塗料を、前記酸化チタン粒子の含有量が0.5g/m以上となるように塗布、乾燥して得られる光触媒塗膜であって、単位体積(厚さ1μm×1m)当たりの前記酸化チタン粒子の含有量が3.0g未満であることを特徴とする。酸化チタン粒子のアスペクト比[長辺/短辺(長さ)の比率]としては、1.5以上が好ましく、酸化チタン粒子とバインダー成分の配合比[前者:後者(重量比)]としては1:6~30:1が好ましい。

Description

光触媒塗膜、及びその製造方法
 本発明は、酸化チタン光触媒を含有し、光照射により大気浄化、脱臭、浄水、抗菌、防汚効果等を発現することができる光触媒塗膜、及びその製造方法に関する。
 酸化チタン光触媒は紫外線を吸収すると強い酸化作用を発揮することができるため、近年、下記の様々な用途に利用されている。
1、自動車の排気ガス等から排出される窒素酸化物(NOx)や硫黄酸化物(SOx)等の環境汚染物質の除去による大気浄化
2、アンモニア、アセトアルデヒド、硫化水素、メチルメルカプタン等の悪臭の原因となる物質の除去による脱臭
3、テトラクロロエチレンやトリハロメタン等の有機塩素化合物を分解除去することによる浄水
4、殺菌し、更にその死骸を分解することによる抗菌
5、油分を分解することにより、油分に砂や垢が付着して生じる汚れを防止する防汚
 酸化チタン光触媒は溶液に懸濁させて用いる場合と、基材に担持した状態で用いる場合がある。一般的に、その表面積の大きさが光触媒能に比例するため、前者の方がより活性が高いが、実用性の観点から、後者が採用される場合が多い。後者を採用する場合、一般的に、酸化チタン光触媒をバインダー成分を使用して基材に密着させる方法が採用される。
 しかし、酸化チタン光触媒をバインダー成分を使用して基材に密着させる場合、時間と共にバインダー成分が酸化チタン粒子の酸化作用により分解されて接着性を喪失し、基材表面から剥がれ落ちてしまうため耐久性を確保することが困難であることが問題であった。
 引用文献1には、光触媒として粒状のアナターゼ型酸化チタンを使用し、前記酸化チタンにより分解されない過酸化チタンをバインダー成分として混合することにより、長期間に亘って優れた接着性を発揮できる光触媒塗膜を形成することができると記載されている。しかし、バインダー成分に酸化チタン粒子が埋もれてしまい、光触媒能が低減されるため、塗膜表面に酸化チタン粒子を露出させるためには膜厚を極めて薄くすることが好ましいが、ある程度の膜厚がないと接着性が不足し基材表面に密着させることができないこと、すなわち、優れた接着性と優れた光触媒能を兼ね備えることが困難であることが問題であった。
特開平9−262481号公報
 従って、本発明の目的は、優れた光触媒能を発現することができ、且つ、被着体表面に対し優れた接着性を発揮することができる光触媒塗膜を提供することにある。
 本発明の他の目的は、優れた光触媒能を発現することができ、且つ、被着体表面に対し、長期間に亘り優れた接着性を発揮することができる、耐久性に優れた光触媒塗膜を提供することにある。
 本発明のさらに他の目的は、紫外線域から可視光線域までの広い波長範囲に応答性を有し、太陽光や白熱灯、蛍光灯等の通常の生活空間における光源下でも高い触媒活性を発揮することができ、且つ、被着体表面に対し長期間に亘り優れた接着性を発揮することができる、耐久性に優れた光触媒塗膜を提供することにある。
 本発明者等は、上記課題を解決するため鋭意検討した結果、光触媒反応は光照射により進行するため、塗膜表面に露出している光触媒のみがその触媒能を発揮することができるものであるところ、光触媒として棒状或いは針状の酸化チタン粒子を使用して得られた光触媒塗膜は、光触媒が嵩高い形状を有するためバインダー成分と混合しても光触媒がバインダー成分に埋もれてしまうことがなく(細孔が塞がれることがなく)、多孔性を有し、表面が粗く、著しく表面積の広い塗膜を形成することができ、それによって、塗膜表面への光触媒の露出量を飛躍的に向上させることができ、接着性を確保するのに十分な膜厚を有していても、極めて高い光触媒能を発揮することができる光触媒塗膜を形成することができることを見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、棒状或いは針状の酸化チタン粒子とバインダー成分とを少なくとも含有する光触媒塗料を、前記酸化チタン粒子の含有量が0.5g/m以上となるように塗布、乾燥して得られる光触媒塗膜であって、単位体積(厚さ1μm×1m)当たりの前記酸化チタン粒子の含有量が3.0g未満であることを特徴とする光触媒塗膜を提供する。
 酸化チタン粒子のアスペクト比[長辺/短辺(長さ)の比率]としては1.5以上が好ましい。
 酸化チタン粒子とバインダー成分の配合比[前者:後者(重量比)]としては、1:6~30:1が好ましい。
 酸化チタン粒子としては、ルチル型酸化チタン粒子が好ましく、遷移金属化合物担持酸化チタン粒子が好ましい。
 遷移金属化合物としては鉄化合物が好ましい。
 遷移金属化合物は、酸化チタン粒子の露出結晶面のうち酸化反応面に選択的に担持されていることが好ましく、特に、酸化チタン粒子の露出結晶面のうち(001)面、(111)面及び(011)面から選択される少なくとも1つの面に選択的に担持されていることが好ましい。
 バインダー成分としては、過酸化チタン、ケイ素系化合物、フッ素系樹脂から選択される化合物を含有することが好ましく、特に、少なくとも過酸化チタンを含有することが好ましい。
 本発明は、また、上記光触媒塗膜の製造方法であって、棒状或いは針状の酸化チタン粒子とバインダー成分とを少なくとも含有する光触媒塗料を塗布、乾燥することを特徴とする光触媒塗膜の製造方法を提供する。
 前記光触媒塗膜の製造方法においては、特に、励起光照射下、棒状或いは針状の酸化チタン粒子に遷移金属化合物を担持させて、棒状或いは針状の遷移金属化合物担持酸化チタン粒子を得る工程を有することが好ましい。
 本発明は、更に、上記光触媒塗膜と基材を備えた光触媒塗装体を提供する。前記基材としてはプラスチック材料で形成された基材が好ましい。
 本発明においては、光触媒塗料に含有する光触媒として棒状或いは針状の酸化チタン粒子を使用するため、前記酸化チタン粒子の特定の形状により、バインダー成分によって固定しやすく、少量のバインダー成分によって、接着性に優れた塗膜の形成が可能である。そして、本発明に係る光触媒塗膜は表面積が広く、光触媒が塗膜表面に多く露出するため、極めて優れた光触媒能を発揮することができる。
 そして、バインダー成分として少なくとも過酸化チタンを含有するバインダー成分を使用する場合は、バインダー成分自体が酸化チタン粒子の酸化作用によって分解されることがないため、極めて優れた光触媒能、及び被着体に対する優れた接着性を長期間に亘って保持することができる。
 また、特に、光触媒として棒状或いは針状の酸化チタン粒子に遷移金属化合物を担持した遷移金属化合物担持酸化チタン粒子を使用する場合は、紫外線域から可視光線域までの広い波長範囲に応答性を有し、太陽光や白熱灯、蛍光灯等の通常の生活空間における光源下でも高い触媒活性を発揮することができる光触媒塗膜を形成することができる。
アスペクト比が1.5以上の酸化チタン粒子を使用した光触媒塗膜の断面を示すSEM写真(a)、及びアスペクト比が1.5未満の酸化チタン粒子を使用した光触媒塗膜の断面を示すSEM写真(b)である。 (001)(110)(111)面を有する棒状ルチル型酸化チタン粒子のSEM写真[倍率:200000倍、白色スケール:100nm]である。 (001)(110)(111)面を有する棒状ルチル型酸化チタン粒子の(001)面と(111)面に鉄化合物(III)が選択的に担持されていることを示すTEM写真である。 実施例1で得られた光触媒塗膜(1)の断面を示すSEM写真[(a)倍率:20000倍、白色スケール:1μm、(b)倍率:50000倍、白色スケール:100nm、(c)倍率:100000倍、白色スケール:100nm、(d)倍率:200000倍、白色スケール:100nm]である。 比較例1で得られた光触媒塗膜(11)の断面を示すSEM写真[(a)倍率:100000倍、白色スケール:100nm、(b)倍率:200000倍、白色スケール:100nm]である。 比較例3で得られた光触媒塗膜(13)の断面を示すSEM写真[(a)倍率:200000倍、白色スケール:100nm、(b)倍率:100000倍、白色スケール:100nm]である。
 [酸化チタン粒子]
 本発明の酸化チタン粒子は、棒状或いは針状形状を有していることを特徴とし、そのアスペクト比[長辺/短辺(長さ)の比率]としては、例えば1.5以上、好ましくは1.5~100程度、特に好ましくは2.0~20、最も好ましくは5.0~15である。酸化チタン粒子のアスペクト比は、例えば、SEM写真から求めることができる。アスペクト比が上記範囲を下回ると(すなわち、酸化チタン粒子の形状がより球形に近くなると)、バインダー成分と混合した際に、酸化チタン粒子が密に充填されて細孔を塞ぐため、得られる光触媒塗膜の表面積が低下し、塗膜表面への光触媒の露出量が低下する結果、光触媒能が低下する傾向がある。
 酸化チタン粒子としては、例えば、ルチル型、アナターゼ型、ブルッカイト型酸化チタン粒子等を挙げることができる。本発明においては、なかでも、アスペクト比が大きい形状を有する点でルチル型酸化チタン粒子が好ましい。
 また、本発明においては、紫外線域から可視光線域までの広い波長範囲に応答性を有し、太陽光や白熱灯、蛍光灯等の通常の生活空間における光源下でも高い触媒活性を発揮することができる点で、遷移金属化合物を担持した酸化チタン粒子(遷移金属化合物担持酸化チタン粒子)を使用することが好ましい。遷移金属化合物は、例えば、遷移金属イオン、遷移金属単体、遷移金属塩、遷移金属酸化物、遷移金属水酸化物又は遷移金属錯体の状態で担持される。
 更に、前記遷移金属化合物は、酸化チタン粒子の露出結晶面のうち、全ての面でなく特定の面(例えば、特定の1面又は2面等)に選択的に担持されることが、酸化反応と還元反応の反応場を空間的により大きく引き離すことができ、それにより励起電子とホールの分離性を高め、励起電子とホールの再結合及び逆反応の進行を極めて低いレベルにまで抑制することができ、より高い光触媒活性を発揮することができる点で好ましい。
 尚、本発明において、「遷移金属化合物を特定の面に選択的に担持」とは、露出結晶面を有する酸化チタン粒子に担持する遷移金属化合物の50%を超える量(好ましくは70%以上、特に好ましくは80%以上)が2面以上の露出結晶面のうち、全ての面ではなく特定の面(例えば、特定の1面又は2面等)に担持されていることをいう。遷移金属化合物の担持は、透過型電子顕微鏡(TEM)やエネルギー分散型蛍光X線分析装置(EDX)を使用し、露出結晶面上の遷移金属化合物由来のシグナルを確認することで判定できる。
 遷移金属化合物としては、可視光領域に吸収スペクトルを有し、励起状態で伝導帯に電子を注入することができるものであればよく、例えば、周期表第3~第11族元素化合物、なかでも周期表第8~第11族元素化合物が好ましく、特に、三価の鉄化合物(Fe3+)が好ましい。鉄化合物の酸化チタン粒子への担持においては、三価の鉄化合物(Fe3+)は吸着しやすく、二価の鉄化合物(Fe2+)は吸着しにくい特性を有するため、その特性を利用することにより容易に面選択性を付与することができるからである。
 ルチル型酸化チタン粒子の主な露出結晶面としては、例えば、(110)(001)(111)(011)面等を挙げることができる。本発明におけるルチル型酸化チタン粒子としては、例えば、(110)(111)面を有するルチル型酸化チタン粒子、(110)(011)面を有するルチル型酸化チタン粒子、(001)(110)(111)面を有するルチル型酸化チタン粒子等を挙げることができる。本発明においては、なかでも、酸化反応と還元反応の反応場を空間的により大きく引き離すことができ、励起電子とホールとの再結合及び逆反応の進行を抑制することができる点で、(001)(110)(111)面を有するルチル型酸化チタン粒子が好ましい。(001)(110)(111)面を有するルチル型酸化チタンの酸化反応面は、(111)面と(001)面である。
 従って、本発明における遷移金属化合物担持酸化チタン粒子としては、なかでも、(001)(110)(111)面を有するルチル型酸化チタン粒子の(001)(111)面に遷移金属化合物が選択的に担持されているものが好ましい。
 酸化チタン粒子として、例えば、(001)(110)(111)面を有するルチル型酸化チタン粒子は、チタン化合物を、構造制御剤として親水性ポリマー(例えば、ポリビニルピロリドン、ポリビニルアルコール)の存在下、水性媒体(例えば、水、又は水と水溶性有機溶媒との混合液)中で水熱処理[例えば、100~200℃、3~48時間(好ましくは6~12時間)]することにより合成することができる。
 前記チタン化合物としては、3価のチタン化合物、4価のチタン化合物を挙げることができる。3価のチタン化合物としては、例えば、三塩化チタンや三臭化チタン等のトリハロゲン化チタン等を挙げることができる。本発明における3価のチタン化合物としては、なかでも安価で、入手が容易な点で三塩化チタン(TiCl)が好ましい。
 また、本発明における4価のチタン化合物は、例えば、下記式(1)で表される化合物等を挙げることができる。
 Ti(OR)4−t   (1)
(式中、Rは炭化水素基を示し、Xはハロゲン原子を示す。tは0~3の整数を示す)
 Rにおける炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、n−ブチル、sec−ブチル、tert−ブチル等のC1−4脂肪族炭化水素基等を挙げることができる。
 Xにおけるハロゲン原子としては、塩素、臭素、ヨウ素等を挙げることができる。
 このような4価のチタン化合物としては、例えば、TiCl、TiBr、Til等のテトラハロゲン化チタン;Ti(OCH)Cl、Ti(OC)Cl、Ti(OC)Cl、Ti(OC)Br、Ti(OC)Br等のトリハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(OCCl、Ti(OCBr等のジハロゲン化ジアルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(OCCl、Ti(OCBr等のモノハロゲン化トリアルコキシチタン等を挙げることができる。本発明における4価のチタン化合物としては、なかでも安価で、入手が容易な点で、テトラハロゲン化チタンが好ましく、特に四塩化チタン(TiCl)が好ましい。
 特に、前記チタン化合物として4価のチタン化合物を使用する場合は、構造制御剤として親水性ポリマーを添加しなくとも、反応温度110~220℃(好ましくは150℃~220℃)、その反応温度における飽和蒸気圧以上の圧力下、水性媒体中で2時間以上(好ましくは5~15時間)水熱処理を施すことにより(001)(110)(111)面を有するルチル型酸化チタン粒子を合成することができる。
 その他、(001)(110)(111)面を有するルチル型酸化チタンは、(110)(111)面を有するルチル型酸化チタン粒子を硫酸(好ましくは、50重量%以上の高濃度の硫酸、特に好ましくは濃硫酸)中に投入し、加熱下で撹拌することにより、酸化チタン粒子の稜又は頂点の部位を浸食(溶解)して合成することもできる。(110)(111)面を有するルチル型酸化チタン粒子は、チタン化合物を水性媒体(例えば、水、又は水と水溶性有機溶媒との混合液)中で水熱処理[例えば、100~200℃、3~48時間(好ましくは6~12時間)]することにより合成することができる。水熱処理の際には、ハロゲン化物を添加することが、得られる粒子のサイズ及び表面積を調整することができる点で好ましい。
 本発明における酸化チタン粒子の比表面積としては、例えば20~100m/g、好ましくは40~90m/g、特に好ましくは50~85m/gである。酸化チタン粒子の比表面積が上記範囲を下回ると、反応物質の吸着能力が低下して光触媒能が低下する傾向があり、一方、酸化チタン粒子の比表面積が上記範囲を上回ると、励起電子とホールの分離性が低下し、光触媒能が低下する傾向がある。
 遷移金属化合物の酸化チタン粒子への担持は、酸化チタン粒子に遷移金属化合物を含浸する含浸法により行うことができる。
 含浸は、具体的には、酸化チタン粒子を水溶液中に分散して浸漬し、撹拌しながら、遷移金属化合物を添加することにより行うことができ、例えば、遷移金属化合物として三価の鉄化合物(Fe3+)を使用する場合は、鉄化合物(例えば、硝酸鉄(III)、硫酸鉄(III)、塩化鉄(III)等)を添加することにより行うことができる。
 遷移金属化合物の添加量としては、例えば、酸化チタン粒子に対して0.01~3.0重量%程度、好ましくは0.05~1.0重量%である。遷移金属化合物の添加量が上記範囲を下回ると、酸化チタン粒子表面における遷移金属化合物の担持量が低下し、光触媒活性が低下する傾向があり、一方、遷移金属化合物の添加量が上記範囲を上回ると、注入電子の逆電子移動等により励起電子が有効に作用せず、光触媒活性が低下する傾向がある。浸漬時間としては、例えば、30分から24時間程度、好ましくは1~10時間である。
 そして、本発明においては、酸化チタン粒子に遷移金属化合物を含浸する際に励起光を照射することが好ましい。励起光を照射すると、酸化チタン粒子の価電子帯の電子が伝導帯に励起し、価電子帯にホール、伝導帯に励起電子が生成し、これらは粒子表面へ拡散し、各露出結晶面の特性に従って励起電子とホールとが分離されて酸化反応面と還元反応面とを形成する。この状態で遷移金属化合物として、例えば三価の鉄化合物の含浸を行うと、三価の鉄化合物(Fe3+)は酸化反応面には吸着するが、還元反応面では三価の鉄化合物(Fe3+)は二価の鉄化合物(Fe2+)に還元され、二価の鉄化合物(Fe2+)は吸着しにくい特性を有するため、溶液中に溶出し、結果として酸化反応面にのみ鉄化合物(Fe3+)が担持された遷移金属化合物担持酸化チタン粒子を得ることができる。
 励起光の照射方法としては、バンドギャップエネルギー以上のエネルギーを有する光を照射することができればよく、例えば、紫外線を照射することにより行うことができる。紫外線照射手段としては、例えば、中・高圧水銀灯、UVレーザー、UV−LED、ブラックライト等の紫外線を効率よく生成する光源を使用した紫外線露光装置等を使用することができる。励起光の照射量としては、例えば0.1~300mW/cm程度、好ましくは0.5~100mW/cm、最も好ましくは1~5mW/cmである。励起光の照射時間としては、例えば1分から72時間程度、好ましくは30分から48時間である。
 さらに、本発明においては、含浸の際に犠牲剤を添加してもよい。犠牲剤を添加することにより、酸化チタン粒子表面において、特定の露出結晶面により高い選択率で遷移金属化合物を担持させることができる。犠牲剤としては、それ自体が電子を放出しやすい有機化合物を使用することが好ましく、例えば、メタノール、エタノール等のアルコール;酢酸等のカルボン酸;エチレンジアミン四酢酸(EDTA)、トリエタノールアミン(TEA)等のアミン等を挙げることができる。
 犠牲剤の添加量としては、適宜調整することができ、例えば、酸化チタン溶液の0.5~5.0重量%程度、好ましくは1.0~2.0重量%である。犠牲剤は過剰量を使用してもよい。
 上記方法により得られた遷移金属化合物担持酸化チタン粒子は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
 [バインダー成分]
 本発明のバインダー成分は、上記酸化チタン粒子を固定する働きを有するものであり、例えば、過酸化チタン、ケイ素系化合物、フッ素系樹脂等を挙げることができる。
 ケイ素系化合物としては、例えば、テトラブロモシラン、テトラクロロシラン、トリブロモシラン、トリクロロシラン、ジブロモシラン、ジクロロシラン、モノブロモシラン、モノクロロシラン、ジクロロジメチルシラン、ジクロロジエチルシラン、ジクロロメチルシラン、ジクロロエチルシラン、クロロトリメチルシラン、クロロトリエチルシラン、クロロジメチルシラン、クロロジエチルシラン、クロロメチルシラン、クロロエチルシラン、t−ブチルクロロジメチルシラン、t−ブチルクロロジエチルシラン等のハロゲン化シラン化合物;テトラメトキシシラン、テトラエトキシシラン、トリメトキシシラン、トリエトキシシラン、ジメトキシシラン、ジエトキシシラン、メトキシシラン、エトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシエチルシラン、ジエトキシエチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、メトキシジエチルシラン、エトキシジエチルシラン等のアルコキシシラン化合物等を挙げることができる。
 フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー、エチレン−テトラフルオロエチレンコポリマー、エチレン−クロロトリフルオロエチレンコポリマー、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマー、パーフルオロシクロポリマー、ビニルエーテル−フルオロオレフィンコポリマー、ビニルエステル−フルオロオレフィンコポリマー、テトラフルオロエチレン−ビニルエーテルコポリマー、クロロトリフルオロエチレン−ビニルエーテルコポリマー、テトラフルオロエチレンウレタン架橋体、テトラフルオロエチレンエポキシ架橋体、テトラフルオロエチレンアクリル架橋体、テトラフルオロエチレンメラミン架橋体等を挙げることができる。
 本発明におけるバインダー成分としては、少なくとも過酸化チタンを含有することが好ましく、過酸化チタン単独、又は過酸化チタンとケイ素系化合物若しくはフッ素系樹脂を併用することが好ましい。過酸化チタンは、成膜性が高く、塗布、乾燥することにより、優れた接着性を有する塗膜を速やかに形成することができ、その上、酸化チタン粒子の光触媒作用によって分解されることがないため、耐久性に優れ、長期に亘って酸化チタン粒子を固定することができるからである。
 過酸化チタンは、例えば、塩基性物質(例えば、アンモニア水、水酸化ナトリウム等)の存在下で、TiCl等のチタン化合物の水溶液に過酸化水素水を添加することにより合成することができる。
 [光触媒塗料]
 本発明の光触媒塗料は、光触媒としての棒状或いは針状の酸化チタン粒子とバインダー成分とを少なくとも含有する。
 光触媒塗料の調製方法としては、特に限定されることがなく、酸化チタン粒子とバインダー成分とを混合すればよく、例えば、酸化チタン粒子とバインダー成分とを分散媒中で混合してもよく、酸化チタン粒子とバインダー成分とをそれぞれ別個に分散媒と混合してゾル状態とし、ゾル状態の酸化チタン粒子とゾル状態のバインダー成分とを混合してもよい。例えば、酸化チタンゾルは、湿式媒体撹拌ミル等の周知慣用の分散装置を使用して、酸化チタン粒子を分散媒(例えば、水、エタノール等)に分散させることにより調製することができる。酸化チタンゾル中の酸化チタン粒子含有量としては、例えば1.0~10.0重量%程度である。また、過酸化チタンゾル中の過酸化チタン含有量としては、例えば1.00~1.60重量%程度である。過酸化チタンゾルとしては、例えば、商品名「ティオスカイコートC」((株)ティオテクノ製)等の市販品を使用してもよい。
 光触媒塗料中の酸化チタン粒子とバインダー成分の配合比率は、例えば、酸化チタン粒子とバインダー成分の配合比率[前者:後者(重量比)]が、1:6~30:1程度、好ましくは1:1~15:1、特に好ましくは1.5:1~13:1となるように配合することが好ましい。酸化チタン粒子の配合量が上記範囲を下回ると、光触媒能が低下する傾向があり、一方、酸化チタン粒子の配合量が上記範囲を上回ると、被着体に対する接着性、被着体の劣化防止性が低下する傾向がある。
 また、本発明に係る光触媒塗料には、上記酸化チタン粒子、バインダー成分、及び分散媒以外にも、他の成分として通常光触媒塗料に配合される化合物を必要に応じて適宜配合することができる、他の成分としては、例えば、塗布助剤等を挙げることができる。他の成分の配合量としては、本発明の効果を損なわない範囲内であればよく、例えば、光触媒塗料全量(100重量%)に対して、10重量%以下程度(例えば、0.01~10重量%)である。
 [光触媒塗膜]
 本発明の光触媒塗膜は、上記棒状或いは針状の酸化チタン粒子と上記バインダー成分とを少なくとも含有する光触媒塗料を、上記棒状或いは針状の酸化チタン粒子の含有量が0.5g/m以上となるように塗布、乾燥して得られる光触媒塗膜であって、単位体積(厚さ1μm×1m)当たりの上記棒状或いは針状の酸化チタン粒子の含有量が3.0g未満であることを特徴とする。
 本発明の光触媒塗膜は、少なくとも下記工程を経て製造される。
 工程1:棒状或いは針状の酸化チタン粒子とバインダー成分とを少なくとも含有する光触媒塗料を調製する工程
 工程2:光触媒塗料を、棒状或いは針状の酸化チタン粒子の含有量が0.5g/m以上となるように均一に塗り広げ、乾燥する工程
 光触媒塗料は、例えば、スプレー、刷毛、ローラー、グラビア印刷等を使用することにより均一に塗り広げることができる。塗り広げた後は、乾燥(分散媒を蒸発)させることよって、速やかに塗膜を形成することができる。乾燥方法としては、室温で乾燥させてもよく、加熱して乾燥させてもよい。
 本発明においては、酸化チタン粒子として遷移金属化合物担持酸化チタン粒子を使用することが、光触媒塗膜に可視光応答性を付与することができる点で好ましい。遷移金属化合物担持酸化チタン粒子を使用する場合は、上記工程1の前に、励起光照射下、棒状或いは針状の酸化チタン粒子に遷移金属化合物を担持させて、棒状或いは針状の遷移金属化合物担持酸化チタン粒子を得る工程を設けることが好ましい。
 光触媒塗料の塗布量は、上記棒状或いは針状の酸化チタン粒子の含有量が0.5g/m以上(例えば0.5~5.0g/m程度、好ましくは0.5~3.0g/m)となる量である。光触媒塗料の塗布量が上記範囲を下回ると、光触媒能が低下する傾向がある。
 本発明の光触媒塗膜の単位体積(厚さ1μm×1m)当たりの上記棒状或いは針状の酸化チタン粒子の含有量は、3.0g未満(例えば0.5g以上、3.0g未満程度、好ましくは0.5~2.5g、特に好ましくは0.7~2.0g)である。本発明の光触媒塗膜は、上記棒状或いは針状の酸化チタン粒子を含有するため、粒状の(=アスペクト比が1.5未満の)酸化チタン粒子を使用する場合と比べて、バインダー成分と混合した場合の充填率が低く、空隙率が大きい光触媒塗膜を形成することができ、結果として、表面が粗く、多孔性構造を有するため著しく表面積が広く、光触媒が塗膜内部に埋もれることなく塗膜表面に多く露出した構造を有し、極めて優れた光触媒能を発揮することができる(図1参照)。
 上記方法により形成された光触媒塗膜は極めて高い光触媒能を発揮することができ、光の照射によって有害化学物質を水や二酸化炭素にまで分解することが可能である。そのため、抗菌防カビ、脱臭、大気浄化、水質浄化、防汚等様々な用途に使用することができる。さらに、被着体表面に対する接着性及び耐久性に優れるため、優れた光触媒能を長期に亘って発揮することができる。
 また、従来の光触媒塗膜は紫外線の少ない室内では機能が充分に発揮できず、室内用途への応用はなかなか進まなかったが、本発明において、特に光触媒として棒状或いは針状の遷移金属化合物担持酸化チタン粒子を使用する場合は、紫外線域から可視光線域までの広い波長範囲に応答性を有し、太陽光や白熱灯、蛍光灯等の通常の生活空間における光を吸収して、高い触媒活性を発揮することができるため、室内等の低照度環境でも高いガス分解性能や抗菌作用を示し、室内の壁紙や家具をはじめ家庭内や病院、学校等の公共施設内での環境浄化、家電製品の高機能化等、広範囲への応用が可能である。
 [光触媒塗装体]
 本発明の光触媒塗装体は、上記光触媒塗膜と基材を備えていることを特徴とする。
 本発明の光触媒塗装体の製造方法としては、例えば、基材表面に光触媒塗料を、棒状或いは針状の酸化チタン粒子の含有量が0.5g/m以上となるように塗布し、乾燥して光触媒塗膜を形成して製造する方法や、他の基材上に棒状或いは針状の酸化チタン粒子の含有量が0.5g/m以上となるように塗布、乾燥して得られた光触媒塗膜を基材表面に貼り合わせることにより製造する方法等が挙げられる。
 基材表面に光触媒塗料を塗布する際、光触媒塗料を基材表面に直接塗布してもよく、基材表面に予めバインダー成分(特に、過酸化チタン)を含むコーティング剤を塗布することにより下塗り層を設け、その上に光触媒塗料を塗布してもよい。下塗り層を設けた場合、基材と光触媒塗膜とが下塗り層により完全に隔てられるため、基材として有機素材から成る基材を使用しても、前記下塗り層が光触媒作用を完全にブロックし、酸化チタン粒子の酸化作用により基材が損傷するのを防止することができる。基材表面に下塗り層を設ける場合、その厚みとしては、例えば0.1~1.0μm程度、好ましくは0.2~0.5μmである。
 前記光触媒塗装体を構成する基材の素材としては、特に限定されることがなく、各種プラスチック材料[例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体(EVA)等のα−オレフィンをモノマー成分とするオレフィン系樹脂;ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタラート(PBT)等のポリエステル系樹脂;ポリ塩化ビニル(PVC);酢酸ビニル系樹脂;ポリフェニレンスルフィド(PPS);ポリアミド(ナイロン)、全芳香族ポリアミド(アラミド)等のアミド系樹脂;ポリイミド系樹脂;ポリエーテルエーテルケトン(PEEK)等]、ゴム材料(例えば、天然ゴム、合成ゴム、シリコンゴム等)、金属材料(例えば、アルミニウム、銅、鉄、ステンレス等)、紙質材料(例えば、紙、紙類似物質等)、木質材料(例えば、木材、MDF等の木質ボード、合板等)、繊維材料(例えば、不織布、織布等)、革材料、無機材料(例えば、石、コンクリート等)、ガラス材料、磁器材料等の各種の素材を挙げることができる。本発明の光触媒塗装体を構成する基材としては、なかでも、プラスチック材料で形成された基材が好ましい。
 用途からみた基材としては特に制限されることがなく、例えば、レンズ(例えば、眼鏡やカメラのレンズ等)、プリズム、自動車や鉄道車両等の乗物部材(窓ガラス、照明灯カバー、バックミラー等)、建築部材(例えば、外壁材、内壁材、窓枠、窓ガラス等)、機械構成部材、交通標識等の各種表示装置、広告塔、遮音壁(道路用、鉄道用等)、橋梁、ガードレール、トンネル、碍子、太陽電池カバー、太陽熱温水器集熱カバー、照明器具、浴室用品、浴室部材(例えば、鏡、浴槽等)、台所用品、台所部材(例えば、キッチンパネル、流し台、レンジフード、換気扇等)、空調、トイレ用品、トイレ部材(例えば、便器等)等の抗菌防カビ、脱臭、大気浄化、水質浄化、防汚効果が期待される物品や、前記物品表面に貼着させるためのフィルム、シート、シール等を挙げることができる。
 本発明の光触媒塗装体は上記光触媒塗膜を有するため、光の照射によって有害化学物質を水や二酸化炭素にまで分解することが可能である。そのため、優れた抗菌防カビ、脱臭、大気浄化、水質浄化、防汚等の効果を発揮することができる。さらに、本発明の光触媒塗装体は基材に対して優れた接着性を有し、耐久性に優れる光触媒塗膜を備えるため、優れた光触媒能を長期に亘って発揮することができる。
 また、特に光触媒として棒状或いは針状の遷移金属化合物担持酸化チタン粒子を含有する光触媒塗膜を備える場合は、紫外線域から可視光線域までの広い波長範囲に応答性を有し、太陽光や白熱灯、蛍光灯等の通常の生活空間の低照度環境でも優れた抗菌防カビ、脱臭、大気浄化、水質浄化、防汚等の効果を発揮することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
 実施例及び比較例で得られた光触媒塗膜の接着性は、JIS K 5400(碁盤目試験方法)に準じて評価した。光触媒能(特に、可視光照射による触媒能)は、下記2つの方法にて評価した。
 1.JIS R 1703−2(ファインセラミックス−光触媒材料のセルフクリーニング性能試験方法)に準じ、光源として紫外光照射装置に代えて蛍光灯を使用して評価した(セルフクリーニング性能試験)。
 2.光触媒塗膜に光照射することで気相中のメチルメルカプタンを分解し、その分解量(%)から光触媒性能を評価した(メチルメルカプタンの分解能評価)。
 メチルメルカプタンの分解量(%)は、実施例及び比較例で得られた光触媒塗膜(5cm×10cm)を反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、70ppmのメチルメルカプタンガス1Lを反応容器内に吹き込み、室温(25℃)で光照射(蛍光灯、1000ルクス)を行い、光照射開始から24時間後の反応容器内のメチルメルカプタン残量を炎光光度検出器付きガスクロマトグラフ(商品名「GC−2010」、(株)島津製作所製)を使用して測定し、初期メチルメルカプタン濃度との差から分解量(%)を算出した。
 調製例1(棒状酸化チタンの調製)
 室温(25℃)にて、市販のTiCl水溶液(和光純薬工業(株)製試薬化学用、約16.5重量%Ti含有希塩酸溶液)を、Ti濃度が5.4重量%になるようにイオン交換水で希釈した。希釈後のTiCl水溶液56gをテフロン(登録商標)塗装された容量100mlのオートクレーブに入れ、密閉してオイルバスに投入し、30分間かけて、オートクレーブ内におけるTiCl水溶液の温度を180℃まで昇温した。その後、反応温度180℃、反応圧力1.0MPaの条件で10時間保持した後、オートクレーブを氷水で冷却した。3分後、オートクレーブ内におけるTiCl水溶液の温度が30℃以下になったことを確認した後、オートクレーブを開封し、反応物を取り出した。
 10℃にて、得られた反応物を遠心分離した後、脱イオン水でリンスし、内温65℃の真空乾燥機(バキュームオーブン)で12時間減圧乾燥して、5.2kgの酸化チタン粒子(1)を得た。得られた酸化チタン粒子(1)を走査型電子顕微鏡(SEM)で確認したところ、結晶面(001)(110)(111)を有する棒状ルチル型酸化チタン粒子であった(アスペクト比:9.0、比表面積:76m/g、図2参照)。
 得られた酸化チタン粒子(1)をイオン交換水に分散させ、1.0mW/cmに調節された高圧水銀ランプの光照射下で、撹拌しながら酸化チタン粒子(1)に対し鉄化合物が0.10重量%になるように調製された硝酸鉄(III)水溶液を加えた。6時間後、粒子を遠心分離により回収し、イオン交換水でイオン伝導度が6μS/cm以下になるまで洗浄し、真空乾燥することにより、鉄化合物担持酸化チタン粒子(1)を得た(鉄化合物)。得られた鉄化合物担持酸化チタン粒子(1)を走査型電子顕微鏡(SEM)、エネルギー分散型蛍光X線分析装置(EDX)、及び透過型電子顕微鏡(TEM)で確認したところ、(001)(110)(111)面を有する棒状ルチル型酸化チタン粒子の(001)と(111)面に鉄化合物(III)が選択的に担持されていた(図3参照)。
 調製例2(酸化チタンゾルの作製方法)
 調製例1で得られた鉄化合物担持酸化チタン粒子(1)を、分散媒としての水と混合し、湿式媒体撹拌ミル(商品名「ウルトラアペックミル UAM−015」、寿工業株式会社製)を使用して分散させ、酸化チタン濃度5重量%の酸化チタンゾル(1)を得た。
 実施例1
 調製例2で得られた酸化チタンゾル(1)60gと過酸化チタンゾル(商品名「ティオスカイコートC」、(株)ティオテクノ製、過酸化チタン濃度:1重量%)40gを混合して、酸化チタン/過酸化チタン(配合比)=3重量%/0.4重量%となる光触媒塗料(1)を得た。
 得られた光触媒塗料(1)をスプレーガンを数回に分けて使用して、50g/m塗布し、室温乾燥して、光触媒塗膜(1)(酸化チタン粒子含有量:1.5g/m、1.5g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は4.7であった。膜厚は1.0μmであった(図4参照)。
 実施例2
 光触媒塗料(1)の塗布量を35g/mに変更した以外は実施例1と同様にして、光触媒塗膜(2)(酸化チタン粒子含有量:1.05g/m、1.31g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は4.2であった。膜厚は0.8μmであった。
 実施例3
 光触媒塗料(1)の塗布量を20g/mに変更した以外は実施例1と同様にして、光触媒塗膜(2)(酸化チタン粒子含有量:0.6g/m、1.0g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は3.8であった。膜厚は0.6μmであった。
 実施例4
 調製例2で得られた酸化チタンゾル(1)70gと過酸化チタンゾル(商品名「ティオスカイコートC」、(株)ティオテクノ製、過酸化チタン濃度:1重量%)30gを混合して、酸化チタン/過酸化チタン=3.5重量%/0.3重量%となる光触媒塗料(2)を得た。
 得られた光触媒塗料(2)をスプレーガンを数回に分けて使用して、43g/m塗布し、室温乾燥して、光触媒塗膜(4)(酸化チタン粒子含有量:1.5g/m、1.5g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は5.2であった。膜厚は1.0μmであった。
 実施例5
 調製例2で得られた酸化チタンゾル(1)75gと過酸化チタンゾル(商品名「ティオスカイコートC」、(株)ティオテクノ製、過酸化チタン濃度:1重量%)25gを混合して、酸化チタン/過酸化チタン=3.75重量%/0.25重量%となる光触媒塗料(3)を得た。
 得られた光触媒塗料(3)をスプレーガンを数回に分けて使用して、30g/m塗布し、室温乾燥後、光触媒塗膜(5)(酸化チタン粒子含有量:1.05g/m、1.31g/μm×m)を作製した。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は5.0であった。膜厚は0.8μmであった。
 実施例6
 調製例2で得られた酸化チタンゾル(1)90gにテトラエトキシシラン2gとエタノール8gを混合して、酸化チタン/テトラエトキシシラン=4.5重量%/2重量%となる光触媒塗料(4)を得た。
 得られた光触媒塗料(4)をスプレーガンを数回に分けて使用して、30g/m塗布し、室温乾燥して、光触媒塗膜(6)(酸化チタン粒子含有量:1.35g/m、1.13g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は3.2であった。膜厚は1.2μmであった。
 実施例7
 調製例2で得られた酸化チタンゾル(1)95gにテトラエトキシシラン1gとエタノール4gを混合して、酸化チタン/テトラエトキシシラン=4.75重量%/1重量%となる光触媒塗料(5)を得た。
 得られた光触媒塗料(5)をスプレーガンを数回に分けて使用して、28g/m塗布し、室温乾燥して、光触媒塗膜(7)(酸化チタン粒子含有量:1.33g/m、1.02g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は3.5であった。膜厚は1.3μmであった。
 実施例8
 調製例2で得られた酸化チタンゾル(1)70gにフッ素系樹脂(商品名「nafion」、デュポン製)を5重量%含有する水溶液30gを混合して、酸化チタン/フッ素系樹脂=3.5重量%/1.5重量%となる光触媒塗料(6)を得た。
 得られた光触媒塗料(6)をスプレーガンを数回に分けて使用して、40g/m塗布し、室温乾燥して、光触媒塗膜(8)(酸化チタン粒子含有量:1.4g/m、0.93g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は3.5であった。膜厚は1.5μmであった。
 実施例9
 調製例2で得られた酸化チタンゾル(1)80gにフッ素系樹脂(商品名「nafion」、デュポン製)を5重量%含有する水溶液20gを混合して、酸化チタン/フッ素系樹脂=4.0重量%/1.0重量%となる光触媒塗料(7)を得た。
 得られた光触媒塗料(7)をスプレーガンを数回に分けて使用して、35g/m塗布し、室温乾燥して、光触媒塗膜(9)(酸化チタン粒子含有量:1.4g/m、1.08g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は3.8であった。膜厚は1.3μmであった。
 実施例10
 調製例2で得られた酸化チタンゾル(1)60g、過酸化チタンゾル(商品名「ティオスカイコートC」、(株)ティオテクノ製、過酸化チタン濃度:1重量%)10g、及びフッ素系樹脂(商品名「nafion」、デュポン製)を5重量%含有する水溶液30gを混合して、酸化チタン/過酸化チタン/フッ素系樹脂=3重量%/1.6重量%/1.5重量%となる光触媒塗料(8)を得た。
 得られた光触媒塗料(8)をスプレーガンを数回に分けて使用して、50g/m塗布し、室温乾燥して、光触媒塗膜(10)(酸化チタン粒子含有量:1.5g/m、1.25g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は4.7であった。膜厚は1.2μmであった。
 比較例1
 可視光応答型酸化チタン(商品名「TPS−201」、住友化学(株)製、アスペクト比:1.0)を、分散媒としての水と混合し、湿式媒体撹拌ミル(商品名「ウルトラアペックミル UAM−015」、寿工業株式会社製)を使用して分散させ、酸化チタン濃度5重量%の酸化チタンゾル(2)を得た。
 調製例2で得られた酸化チタンゾル(1)に代えて、酸化チタンゾル(2)を使用した以外は実施例1と同様にして光触媒塗膜(11)(酸化チタン粒子含有量:1.5g/m、3.0g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は2.0であった。膜厚は0.5μmであった(図5参照)。
 比較例2
 調製例2で得られた酸化チタンゾル(1)に代えて、酸化チタンゾル(2)を使用した以外は実施例3と同様にして光触媒塗膜(12)(酸化チタン粒子含有量:0.6g/m、3.0g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は1.9であった。膜厚は0.2μmであった。
 比較例3
 可視光応答型酸化チタン(商品名「MPT−623」、石原産業(株)製、アスペクト比:1.0)を、分散媒としての水と混合し、湿式媒体撹拌ミル(商品名「ウルトラアペックミル UAM−015」、寿工業株式会社製)を使用して分散させ、酸化チタン濃度5重量%の酸化チタンゾル(3)を得た。
 調製例2で得られた酸化チタンゾル(1)に代えて、酸化チタンゾル(3)を使用した以外は実施例1と同様にして光触媒塗膜(13)(酸化チタン粒子含有量:1.5g/m、3.0g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は0.5であった。膜厚は0.5μmであった(図6参照)。
 比較例4
 調製例2で得られた酸化チタンゾル(1)に代えて、酸化チタンゾル(3)を使用した以外は実施例3と同様にして光触媒塗膜(14)(酸化チタン粒子含有量:0.6g/m、3.0g/μm×m)を得た。碁盤目試験では、100/100で接着していた。セルフクリーニング性能試験の活性値は0.4であった。膜厚は0.2μmであった。
 上記結果を下記表にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 実施例11
 調製例2で得られた過酸化チタンゾル(1)69.4gと過酸化チタンゾル(商品名「ティオテクノスカイコートC」、(株)ティオテクノ製、過酸化チタン濃度:1重量%)30.1gとフッ素系界面活性剤(商品名「FC−4330」、住友スリーエム(株)製)0.58gを混合して、酸化チタン/過酸化チタン/フッソ系界面活性剤(配合比)=3重量%/0.26重量%/0.5重量%となる光触媒塗料(9)を得た。これをワイヤーバー(巻線No.#10)を用いてコロナ処理を施した透明PET表面に塗布することにより光触媒塗膜付きプラッスチック基板(1)を得た。得られた光触媒塗膜付きプラッスチック基板(1)における光触媒塗膜の酸化チタン粒子含有量は0.6g/m、1.5g/μm×m、膜厚は0.3μmであった。碁盤目試験では100/100で接着していた。セルフクリーニング性能試験の活性値は4.4であった。メチルメルカプタンの分解能評価においては、24時間後の分解量(%)は100%であった。
 実施例12
 ワイヤーバー(巻線No.#10)に代えて、ワイヤバー(巻線No#20)を使用した以外は実施例11と同様にして、光触媒塗膜付きプラスチック基板(2)を得た。得られた光触媒塗膜付きプラッスチック基板(2)における光触媒塗膜の酸化チタン粒子含有量は1.2g/m、1.7g/μm×m、膜厚は0.6μmであった。碁盤目試験では100/100で接着していた。セルフクリーニング性能試験の活性値は4.6であった。メチルメルカプタンの分解能評価においては、24時間後の分解量(%)は100%であった。
 比較例5
 調製例2で得られた酸化チタンゾル(1)に代えて比較例1で得られた酸化チタンゾル(2)を使用した以外は実施例11と同様にして光触媒塗膜付きプラスチック基板(3)を得た。得られた光触媒塗膜付きプラッスチック基板(3)における光触媒塗膜の酸化チタン粒子含有量は0.8g/m、3.5g/μm×m、膜厚は0.3μmであった。碁盤目試験では100/100で接着していた。セルフクリーニング性能試験の活性値は1.7であった。メチルメルカプタンの分解能評価においては、24時間後の分解量(%)は55%であった。
 上記実施例及び比較例より、本発明に係る光触媒塗膜、及び光触媒塗装体は、優れた光触媒能と被着体表面に対する優れた接着性を併せ持つことが分かった。一方、光触媒としてアスペクト比が1.5未満の酸化チタン粒子を使用した光触媒塗膜は、被着体表面に対する接着性を担保できる厚みを有する場合、光触媒能が著しく劣ることが分かった。
 本発明の光触媒塗膜は被着体表面に対する接着性に優れ、且つ、表面積が広く、光触媒が塗膜表面に多く露出するため、極めて優れた光触媒能を発揮することができる。そして、バインダー成分として少なくとも過酸化チタンを含有するバインダー成分を使用する場合は、極めて優れた光触媒能、及び被着体に対する優れた接着性を長期間に亘って保持することができる。また、特に、光触媒として棒状或いは針状の酸化チタン粒子に遷移金属化合物を担持した遷移金属化合物担持酸化チタン粒子を使用する場合は、太陽光や白熱灯、蛍光灯等の通常の生活空間における光源下でも高い触媒活性を発揮することができる光触媒塗膜を形成することができる。

Claims (14)

  1.  棒状或いは針状の酸化チタン粒子とバインダー成分とを少なくとも含有する光触媒塗料を、前記酸化チタン粒子の含有量が0.5g/m以上となるように塗布、乾燥して得られる光触媒塗膜であって、単位体積(厚さ1μm×1m)当たりの前記酸化チタン粒子の含有量が3.0g未満であることを特徴とする光触媒塗膜。
  2.  酸化チタン粒子のアスペクト比[長辺/短辺(長さ)の比率]が1.5以上である請求項1に記載の光触媒塗膜。
  3.  酸化チタン粒子とバインダー成分の配合比[前者:後者(重量比)]が1:6~30:1である請求項1又は2に記載の光触媒塗膜。
  4.  酸化チタン粒子が、ルチル型酸化チタン粒子である請求項1~3の何れかの項に記載の光触媒塗膜。
  5.  酸化チタン粒子が、遷移金属化合物担持酸化チタン粒子である請求項1~4の何れかの項に記載の光触媒塗膜。
  6.  遷移金属化合物が鉄化合物である請求項5に記載の光触媒塗膜。
  7.  遷移金属化合物が、酸化チタン粒子の露出結晶面のうち酸化反応面に選択的に担持されている請求項5又は6に記載の光触媒塗膜。
  8.  遷移金属化合物が、酸化チタン粒子の露出結晶面のうち(001)面、(111)面及び(011)面から選択される少なくとも1つの面に選択的に担持されている請求項5~7の何れかの項に記載の光触媒塗膜。
  9.  バインダー成分が過酸化チタン、ケイ素系化合物、フッ素系樹脂から選択される化合物を含有する請求項1~8の何れかの項に記載の光触媒塗膜。
  10.  バインダー成分が少なくとも過酸化チタンを含有する請求項1~8の何れかの項に記載の光触媒塗膜。
  11.  請求項1~10の何れかの項に記載の光触媒塗膜の製造方法であって、棒状或いは針状の酸化チタン粒子とバインダー成分とを少なくとも含有する光触媒塗料を塗布、乾燥することを特徴とする光触媒塗膜の製造方法。
  12.  励起光照射下、棒状或いは針状の酸化チタン粒子に遷移金属化合物を担持させて、棒状或いは針状の遷移金属化合物担持酸化チタン粒子を得る工程を有する請求項11に記載の光触媒塗膜の製造方法。
  13.  請求項1~10の何れかの項に記載の光触媒塗膜と基材を備えた光触媒塗装体。
  14.  基材がプラスチック材料で形成された基材である請求項13に記載の光触媒塗装体。
PCT/JP2012/065066 2011-06-07 2012-06-06 光触媒塗膜、及びその製造方法 WO2012169660A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013519556A JP6053676B2 (ja) 2011-06-07 2012-06-06 光触媒塗膜、及びその製造方法
EP12796151.4A EP2719456A4 (en) 2011-06-07 2012-06-06 PHOTOCATALYTIC COMPOSITE FILM AND METHOD OF MANUFACTURING THEREOF
CN201280026480.8A CN103582526B (zh) 2011-06-07 2012-06-06 光触媒涂膜及其制造方法
KR1020137031611A KR101868192B1 (ko) 2011-06-07 2012-06-06 광 촉매 도막 및 그의 제조 방법
US14/124,292 US9517459B2 (en) 2011-06-07 2012-06-06 Photocatalytic coating film and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011127063 2011-06-07
JP2011-127063 2011-06-07

Publications (1)

Publication Number Publication Date
WO2012169660A1 true WO2012169660A1 (ja) 2012-12-13

Family

ID=47296206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065066 WO2012169660A1 (ja) 2011-06-07 2012-06-06 光触媒塗膜、及びその製造方法

Country Status (7)

Country Link
US (1) US9517459B2 (ja)
EP (1) EP2719456A4 (ja)
JP (1) JP6053676B2 (ja)
KR (1) KR101868192B1 (ja)
CN (1) CN103582526B (ja)
TW (1) TWI547311B (ja)
WO (1) WO2012169660A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657621A (zh) * 2013-11-29 2014-03-26 杭州电子科技大学 一种{111}面暴露高活性TiO2纳米光催化剂的制备方法
JP2014208319A (ja) * 2013-04-16 2014-11-06 株式会社ダイセル 光触媒塗布体
JP2016108267A (ja) * 2014-12-05 2016-06-20 株式会社ダイセル 抗微生物剤
JP2019520203A (ja) * 2016-06-13 2019-07-18 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 光触媒機能性フィルター
JP2019126785A (ja) * 2018-01-25 2019-08-01 富士ゼロックス株式会社 酸化チタン膜、酸化チタン膜の製造方法、及び構造体
CN110465294A (zh) * 2019-08-28 2019-11-19 青岛理工大学 纳米铁/介孔(001)面复合-花型晶体包覆型TiO2单晶的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150119755A (ko) * 2014-04-16 2015-10-26 삼성전자주식회사 항균커버 및 이를 구비한 전자장치
JP6010718B1 (ja) * 2016-07-01 2016-10-19 株式会社ダイセル 鉄化合物担持酸化チタン光触媒
US10827747B2 (en) * 2016-08-08 2020-11-10 Universiti Brunei Darussalam Anti-bacterial and anti-fungal photocatalytic coating film and method for producing thereof
JP6825877B2 (ja) * 2016-10-25 2021-02-03 シャープ株式会社 光触媒担持磁性体及びその製造方法、それを用いた水の浄化方法
JP2022078384A (ja) * 2019-03-29 2022-05-25 日本電産株式会社 光学部材及びその製造方法
US20220403184A1 (en) * 2019-11-29 2022-12-22 Ishihara Sangyo Kaisha, Ltd. Dispersion of titanium dioxide microparticles in organic solvent, method for producing same, and use of same
CN113265198B (zh) * 2021-05-12 2022-10-28 华中师范大学 一种易固着的催化净化涂料及其制备方法和应用
JP7044442B1 (ja) * 2021-08-18 2022-03-30 株式会社三井E&Sマシナリー 触媒塗膜形成材料が形成されたステンレス金属シート、ステンレス金属配管及び尿素scr排ガス処理装置
KR20240147185A (ko) * 2023-03-31 2024-10-08 삼성전자주식회사 광촉매 및 이의 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784393A (ja) * 1993-07-20 1995-03-31 Sharp Corp 電子写真感光体及びその製造方法
JPH09262481A (ja) 1996-03-29 1997-10-07 Tao:Kk 光触媒体及びその製造法
JP2000354761A (ja) * 1999-06-14 2000-12-26 Mitsubishi Alum Co Ltd 光触媒プレコート成形材料および光触媒プレコート成形体と光触媒プレコートフィン
JP2004051644A (ja) * 2001-08-30 2004-02-19 Toto Ltd 光触媒性コーティング剤及び光触媒性複合材並びにその製造方法
JP2004315356A (ja) * 2003-03-28 2004-11-11 Osaka Prefecture 針状酸化チタン微粒子、その製造方法及びその用途
JP2006224084A (ja) * 2004-03-30 2006-08-31 Toto Ltd 光触媒性材料および光触媒性部材
JP2009227515A (ja) * 2008-03-24 2009-10-08 Teruhisa Yokono 酸化チタン粒子の製造方法及び酸化チタン粒子
WO2011016329A1 (ja) * 2009-08-05 2011-02-10 ダイセル化学工業株式会社 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法
JP2011225422A (ja) * 2010-01-09 2011-11-10 Daicel Chemical Industries Ltd 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JPH09310039A (ja) * 1996-05-21 1997-12-02 Nippon Soda Co Ltd 光触媒コーティング剤
CN1081490C (zh) * 1995-06-19 2002-03-27 日本曹达株式会社 载有光催化剂的构件和光催化剂涂敷材料
JP3791901B2 (ja) * 2001-07-16 2006-06-28 株式会社ノリタケカンパニーリミテド 光触媒保持体およびその製造方法
KR100986860B1 (ko) 2002-05-30 2010-10-08 토토 가부시키가이샤 광촉매성 코팅제, 광촉매성 복합재와 그의 제조방법 및자기 정화성 수성 도료조성물 및 자기 정화성 부재
US7255831B2 (en) * 2003-05-30 2007-08-14 Carrier Corporation Tungsten oxide/titanium dioxide photocatalyst for improving indoor air quality
JP5196710B2 (ja) * 2004-04-26 2013-05-15 昭和電工株式会社 コーティング材とその用途
US7833340B2 (en) * 2004-04-26 2010-11-16 Showa Denko K.K. Coating material and use thereof
JP4686536B2 (ja) * 2005-02-15 2011-05-25 三井化学株式会社 光触媒、その製造方法、光触媒を含有する分散液および光触媒塗料組成物
JP5473324B2 (ja) * 2006-03-14 2014-04-16 石原産業株式会社 可視光応答型光触媒及びその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体
US20080223713A1 (en) * 2007-03-14 2008-09-18 Huifang Xu Photocatalyst Having Improved Quantum Efficiency and Method for Use in Photocatalytic and Photosynthetic
US7858552B2 (en) * 2007-09-04 2010-12-28 Wayland Baptist University Composite catalytic material and process for manufacture of such material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784393A (ja) * 1993-07-20 1995-03-31 Sharp Corp 電子写真感光体及びその製造方法
JPH09262481A (ja) 1996-03-29 1997-10-07 Tao:Kk 光触媒体及びその製造法
JP2000354761A (ja) * 1999-06-14 2000-12-26 Mitsubishi Alum Co Ltd 光触媒プレコート成形材料および光触媒プレコート成形体と光触媒プレコートフィン
JP2004051644A (ja) * 2001-08-30 2004-02-19 Toto Ltd 光触媒性コーティング剤及び光触媒性複合材並びにその製造方法
JP2004315356A (ja) * 2003-03-28 2004-11-11 Osaka Prefecture 針状酸化チタン微粒子、その製造方法及びその用途
JP2006224084A (ja) * 2004-03-30 2006-08-31 Toto Ltd 光触媒性材料および光触媒性部材
JP2009227515A (ja) * 2008-03-24 2009-10-08 Teruhisa Yokono 酸化チタン粒子の製造方法及び酸化チタン粒子
WO2011016329A1 (ja) * 2009-08-05 2011-02-10 ダイセル化学工業株式会社 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法
JP2011225422A (ja) * 2010-01-09 2011-11-10 Daicel Chemical Industries Ltd 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAE, E. ET AL.: "Exposed crystal surface- controlled Ti02 nanorods having rutile phase from TiCl3 under hydrothermal conditions", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 300, no. 1-2, 8 November 2008 (2008-11-08), pages 72 - 79, XP026626178 *
MURAKAMI, N. ET AL.: "Development of a visible- light-responsive rutile rod by site-selective modification of iron(III) ion on {111} exposed crystal faces", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 97, no. 1-2, 30 March 2010 (2010-03-30), pages 115 - 119, XP027057403 *
See also references of EP2719456A4
TERUHISA ONO ET AL.: "Nano Level de Kozo Seigyo sareta Hikari Shokubai no Kaihatsu", PHOTOCATALYSIS, vol. 29, 15 July 2009 (2009-07-15), pages 54 - 63, XP008172555 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208319A (ja) * 2013-04-16 2014-11-06 株式会社ダイセル 光触媒塗布体
CN103657621A (zh) * 2013-11-29 2014-03-26 杭州电子科技大学 一种{111}面暴露高活性TiO2纳米光催化剂的制备方法
JP2016108267A (ja) * 2014-12-05 2016-06-20 株式会社ダイセル 抗微生物剤
JP2019520203A (ja) * 2016-06-13 2019-07-18 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 光触媒機能性フィルター
JP2019126785A (ja) * 2018-01-25 2019-08-01 富士ゼロックス株式会社 酸化チタン膜、酸化チタン膜の製造方法、及び構造体
JP7167445B2 (ja) 2018-01-25 2022-11-09 富士フイルムビジネスイノベーション株式会社 酸化チタン膜の製造方法
CN110465294A (zh) * 2019-08-28 2019-11-19 青岛理工大学 纳米铁/介孔(001)面复合-花型晶体包覆型TiO2单晶的制备方法

Also Published As

Publication number Publication date
KR101868192B1 (ko) 2018-06-15
EP2719456A4 (en) 2015-03-04
KR20140027359A (ko) 2014-03-06
TWI547311B (zh) 2016-09-01
US9517459B2 (en) 2016-12-13
CN103582526A (zh) 2014-02-12
US20140106961A1 (en) 2014-04-17
EP2719456A1 (en) 2014-04-16
TW201302303A (zh) 2013-01-16
JPWO2012169660A1 (ja) 2015-02-23
JP6053676B2 (ja) 2016-12-27
CN103582526B (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
JP6053676B2 (ja) 光触媒塗膜、及びその製造方法
JP6231550B2 (ja) 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
TWI627999B (zh) Titanium oxide carrying a transition metal compound
JP2000273355A (ja) 光触媒塗料とその製造方法および用途
JP6143168B2 (ja) 光触媒塗布体
JP6010718B1 (ja) 鉄化合物担持酸化チタン光触媒
JP6046732B2 (ja) 遷移金属化合物担持酸化チタン懸濁液の製造方法、及び遷移金属化合物担持酸化チタンの製造方法
CN108067269B (zh) 担载有铁化合物的氧化钛光催化剂
JP2014177384A (ja) 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
JP2006136758A (ja) 光触媒組成物、および光触媒部材
JP5919019B2 (ja) 可視光応答型光触媒部材及び装置
JP5869846B2 (ja) 酸化チタン塗布液
JP2008043848A (ja) 光半導体微粒子
JP2005349313A (ja) 複合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280026480.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519556

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137031611

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14124292

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012796151

Country of ref document: EP