WO2012161190A1 - 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス - Google Patents
電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス Download PDFInfo
- Publication number
- WO2012161190A1 WO2012161190A1 PCT/JP2012/063056 JP2012063056W WO2012161190A1 WO 2012161190 A1 WO2012161190 A1 WO 2012161190A1 JP 2012063056 W JP2012063056 W JP 2012063056W WO 2012161190 A1 WO2012161190 A1 WO 2012161190A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- mass
- alloy
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/10—Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a secondary battery suitably used for a motor driving power source such as an electric vehicle (EV) and a hybrid electric vehicle (HEV), and a negative electrode active material for an electric device typified by a capacitor. Moreover, it is related with the negative electrode using this, an electric device, and also the lithium ion secondary battery.
- a motor driving power source such as an electric vehicle (EV) and a hybrid electric vehicle (HEV)
- a negative electrode active material for an electric device typified by a capacitor.
- Patent Document 1 discloses a negative electrode active material that can obtain a high capacity and can relieve stress due to expansion and contraction, and the negative electrode active material. Proposals for the batteries used have been made.
- This negative electrode active material contains Si as a first element and Ge as a second element, and at least one of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and ZnNb as a third element. Including species. Further, it is disclosed that the Ge content is 5 to 12 atomic% and the third element content is 0.5 to 10 atomic% with respect to Si.
- An object of the present invention is to provide a negative electrode active material for an electric device such as a lithium ion secondary battery that can improve the cycle life by suppressing the phase transition of amorphous-crystal and has a high capacity. Yes. Moreover, it aims at providing the negative electrode to which such a negative electrode active material is applied, and also the electric device using these, for example, a lithium ion secondary battery.
- the negative electrode active material for an electric device includes 17% by mass or more and less than 90% by mass of Si, more than 10% by mass of less than 83% by mass of Ti, and more than 0% by mass of less than 73% by mass of Ge. It has the alloy which contains and the remainder is an inevitable impurity.
- the negative electrode for electric devices of the present invention comprises the negative electrode active material of the present invention.
- the electrical device of the present invention includes the negative electrode active material of the present invention or the negative electrode of the present invention.
- a representative example of the electric device of the present invention is a lithium ion secondary battery.
- FIG. 1 is a ternary composition diagram plotting the alloy components formed in the examples together with the composition range of the Si—Ge—Ti alloy constituting the negative electrode active material for electric devices of the present invention.
- FIG. 3 is a ternary composition diagram showing a preferred composition range of a Si—Ge—Ti alloy constituting the negative electrode active material for an electric device of the present invention.
- FIG. 3 is a ternary composition diagram showing a more preferable composition range of the Si—Ge—Ti alloy constituting the negative electrode active material for electric devices of the present invention.
- FIG. 4 is a ternary composition diagram showing a more preferable composition range of the Si—Ge—Ti alloy constituting the negative electrode active material for electric devices of the present invention.
- FIG. 1 is a ternary composition diagram plotting the alloy components formed in the examples together with the composition range of the Si—Ge—Ti alloy constituting the negative electrode active material for electric devices of the present invention.
- FIG. 3 is a ternary composition diagram showing
- FIG. 5 is a ternary composition diagram showing the most preferable composition range of the Si—Ge—Ti alloy constituting the negative electrode active material for an electric device of the present invention.
- FIG. 6 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to an embodiment of the present invention.
- the negative electrode active material for an electric device of the present invention will be described in detail by taking a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same as examples.
- “%” represents mass percentage unless otherwise specified.
- the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
- the negative electrode active material for an electric device of the present invention includes 17% by mass or more and less than 90% by mass of Si, more than 10% by mass of less than 83% by mass of Ti, and more than 0% by mass of less than 73% by mass of Ge. And the balance is an inevitable impurity alloy. This numerical range corresponds to the range indicated by the shaded portion in FIG.
- Such a negative electrode active material is used for a negative electrode of an electric device, for example, a lithium ion secondary battery.
- the alloy contained in the negative electrode active material absorbs lithium ions when the battery is charged and releases lithium ions when discharged.
- the negative electrode active material contains appropriate amounts of the first additive element Ge and the second additive element Ti that suppress the amorphous-crystal phase transition and improve the cycle life.
- the Si—Ge—Ti alloy negative electrode active material of the present invention not only exhibits high capacity but also 50 cycles. Thereafter, a high discharge capacity is maintained even after 100 cycles. That is, the Si—Ge—Ti alloy negative electrode active material having a good cycle life is obtained.
- the initial capacity tends to decrease when the Si content is less than 17%.
- the Ti content is 10% or less, there is a tendency that good cycle life is not exhibited.
- the Si content is 17 to 77%, the Ge content is 3 to 63%, Ti, as shown by the shaded portion in FIG.
- the content is preferably in the range of 20 to 80%.
- the Ti content is set to a range of 68% or less.
- the Si content is further set to a range of 50% or less.
- the Ti content is further set to a range of 51% or more.
- the negative electrode active material of the present invention cannot contain impurities derived from raw materials and manufacturing methods.
- the content of such inevitable impurities is preferably less than 0.5% by mass, and more preferably less than 0.1% by mass.
- the alloy contained in the negative electrode active material of the present embodiment includes, as described above, 17 mass% or more and less than 90 mass% Si, more than 10 mass% and less than 83 mass% Ti, and more than 0 mass% and more than 73 mass%.
- the method for producing the negative electrode active material of the present invention that is, the Si—Ge—Ti alloy having the above composition is not particularly limited, and can be produced by utilizing various known production methods. That is, since there is almost no difference in alloy state and characteristics depending on the production method, any conventionally known production method can be applied without any problem.
- a multi-element PVD method sputtering method, resistance heating method, laser ablation method
- multi-element CVD method chemical vapor deposition method
- an alloy in the form of a thin film having the above composition is obtained.
- a sputtering method, a resistance heating method, or a laser ablation method can be employed.
- a chemical vapor deposition method can be employed as the multi-source CVD method.
- Such an alloy thin film can be formed as a negative electrode by being directly formed (film formation) on a current collector. Therefore, it is excellent in that the process can be simplified and simplified.
- the negative electrode active material layer such as a binder other than the alloy or a conductive additive, and the alloy thin film as the negative electrode active material can be used as a negative electrode as it is. Therefore, it is excellent in that high capacity and high energy density satisfying a practical level of use for vehicles can be achieved. It is also suitable for investigating the electrochemical characteristics of active materials.
- a multi-element DC magnetron sputtering apparatus can be used.
- an independently controlled ternary DC magnetron sputtering apparatus is employed.
- Si—Ge—Ti alloy thin films having various alloy compositions and thicknesses can be freely formed on the surface of the substrate (current collector).
- target 1 (Si), target 2 (Ge), and target 3 (Ti) are used.
- the sputtering time is fixed, and for example, the power of the DC power source is changed to Si: 185 W, Ge: 0 to 120 W, Ti: 0 to 150 W, respectively.
- ternary alloy samples having various composition formulas can be obtained.
- the sputtering conditions are different for each sputtering apparatus, it is desirable to grasp a suitable range through preliminary experiments as appropriate for each sputtering apparatus.
- the Si—Ge—Ti alloy thin film can be used for the negative electrode active material layer of the present embodiment.
- the negative electrode active material layer may be a layer containing the Si—Ge—Ti alloy particles as a main component.
- a mechanical alloy method, an arc plasma melting method, or the like can be used as a method for producing an alloy having the above-described composition in such a particle form.
- a slurry is prepared by adding a binder, a conductive aid, a viscosity adjusting solvent, and the like to the alloy particles.
- a negative electrode can be obtained by forming a negative electrode active material layer on the current collector using this slurry. Therefore, it is excellent in that it is easily mass-produced and is easily put into practical use as an actual battery electrode.
- the average particle diameter will not be restrict
- it is preferably in the range of 1 to 20 ⁇ m from the viewpoint of high output.
- the above-described effects can be expressed effectively, it is not limited to such a range, and may be outside the above range.
- the “particle diameter” refers to the outline of active material particles (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It means the maximum distance among any two points.
- the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
- the particle diameters and average particle diameters of other components can be defined in the same manner.
- the negative electrode for an electric device of the present invention uses a negative electrode active material made of the Si—Ge—Ti alloy.
- a typical lithium ion secondary battery as an electric device has at least one unit cell including a negative electrode including a negative electrode active material layer containing the negative electrode active material on a current collector surface, and an electrolyte layer and a positive electrode. It is.
- the configuration and materials of the above-described lithium ion secondary battery will be described.
- FIG. 6 illustrates a lithium ion secondary battery according to an embodiment of the present invention.
- the lithium ion secondary battery 1 of this embodiment has a configuration in which a battery element 10 to which a positive electrode tab 21 and a negative electrode tab 22 are attached is enclosed in an exterior body 30.
- the positive electrode tab 21 and the negative electrode tab 22 are led out in the opposite directions from the inside of the exterior body 30 toward the outside.
- the positive electrode tab and the negative electrode tab may be led out in the same direction from the inside of the exterior body toward the outside.
- such a positive electrode tab and a negative electrode tab can be attached to the positive electrode collector and negative electrode collector which are mentioned later by ultrasonic welding, resistance welding, etc., for example.
- the positive electrode tab 21 and the negative electrode tab 22 are made of materials such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), stainless steel (SUS), and alloys thereof.
- the material is not limited thereto, and a conventionally known material that can be used as a tab for a lithium ion secondary battery can be used.
- the positive electrode tab and the negative electrode tab may be made of the same material or different materials.
- a separately prepared tab may be connected to a positive electrode current collector and a negative electrode current collector described later, and each positive electrode current collector and each negative electrode current collector described later are in a foil shape. In some cases, tabs may be formed by extending each one.
- the said exterior body 30 is formed with the film-shaped exterior material from a viewpoint of size reduction and weight reduction, for example.
- the conventionally well-known material which can be used for the exterior body for lithium ion secondary batteries can be used.
- a polymer-metal composite laminate sheet with excellent thermal conductivity should be used to efficiently transfer heat from the heat source of the automobile and to quickly heat the inside of the battery to the battery operating temperature. Is preferred.
- the battery element 10 in the lithium ion secondary battery 1 of the present embodiment has a configuration in which a plurality of unit cell layers 14 including a positive electrode 11, an electrolyte layer 13, and a negative electrode 12 are stacked. Yes.
- the positive electrode 11 has a configuration in which a positive electrode active material layer 11B is formed on both main surfaces of the positive electrode current collector 11A.
- the negative electrode 12 has a configuration in which a negative electrode active material layer 12B is formed on both main surfaces of the negative electrode current collector 12A.
- the negative electrode active material layer 12 ⁇ / b> B formed on the opposite side is opposed to the electrolyte layer 13.
- a plurality of positive electrodes, electrolyte layers, and negative electrodes are laminated in this order, and the adjacent positive electrode active material layer 11B, electrolyte layer 13, and negative electrode active material layer 12B constitute one single battery layer. That is, the lithium ion secondary battery 1 according to the present embodiment has a configuration in which a plurality of single battery layers 14 are stacked and electrically connected in parallel.
- the negative electrode current collector 12A located on the outermost layer of the battery element 10 has a negative electrode active material layer 12B formed only on one side.
- an insulating layer may be provided on the outer periphery of the unit cell layer 14 in order to insulate between the adjacent positive electrode current collector 11A and negative electrode current collector 12A.
- Such an insulating layer is preferably formed on the outer periphery of the unit cell layer by a material capable of holding the electrolyte contained in the electrolyte layer and preventing electrolyte leakage.
- general-purpose plastics such as polypropylene (PP), polyethylene (PE), polyurethane (PUR), polyamide resin (PA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and polystyrene (PS) Can be used.
- thermoplastic olefin rubber, silicone rubber, etc. can also be used.
- the positive electrode current collector 11A and the negative electrode current collector 12A are made of a conductive material such as foil or mesh aluminum, copper, stainless steel (SUS), for example.
- the material is not limited to these, and a conventionally known material that can be used as a current collector for a lithium ion secondary battery can be used.
- the size of the current collector can be determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
- the thickness of the current collector is usually about 1 to 100 ⁇ m.
- the shape of the current collector is not particularly limited.
- a mesh shape (expanded grid or the like) can be used.
- current collection foil when forming the thin film alloy which is a negative electrode active material directly on the negative electrode collector 12A by sputtering method etc., it is desirable to use current collection foil.
- a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
- the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
- covered on the metal surface may be sufficient.
- aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
- the conductive polymer material examples include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
- Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), polystyrene (PS), and the like.
- PE polyethylene
- HDPE high density polyethylene
- LDPE low density polyethylene
- PP polypropylene
- PET polyethylene terephthalate
- PEN polyether nitrile
- PI polyimide
- PAI polyamideimide
- PA polyamide
- PTFE polyt
- a conductive filler can be added to the conductive polymer material or the non-conductive polymer material as necessary.
- a conductive filler is essential to impart conductivity to the resin.
- the conductive filler can be used without particular limitation as long as it is a substance having conductivity.
- a metal, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion interruption
- the metal is not particularly limited, but includes at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals.
- the conductive carbon is not particularly limited, but preferably acetylene black, Vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, ketjen black (registered trademark), carbon nanotube, carbon nanohorn, carbon It contains at least one selected from the group consisting of nanoballoons and fullerenes.
- the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass of the entire current collector.
- the material is not limited to these, and a conventionally known material used as a current collector for a lithium ion secondary battery can be used.
- the positive electrode 11 has a structure in which a positive electrode active material layer 11B is formed on one or both surfaces of a positive electrode current collector 11A made of a conductive material such as an aluminum foil, a copper foil, a nickel foil, or a stainless steel foil. Is done.
- the thickness of the positive electrode current collector is not particularly limited as described above, and is generally preferably about 1 to 30 ⁇ m.
- the positive electrode active material layer 11B includes any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and includes a conductive auxiliary agent and a binder as necessary. May be. In addition, it is not specifically limited as a compounding ratio of these positive electrode active materials, a conductive support agent, and a binder in a positive electrode active material layer.
- Examples of the positive electrode active material include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, solid solution systems, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. It is done.
- lithium-transition metal composite oxide examples include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , and LiFePO 4. Can be mentioned. In addition, those in which part of the transition metal of these composite oxides is replaced with other elements can also be used.
- Examples of the ternary system include nickel / cobalt / manganese composite cathode materials.
- Examples of the spinel Mn system include LiMn 2 O 4 .
- As the NiMn system include LiNi 0.5 Mn 1.5 O 4 and the like.
- Examples of the NiCo system include Li (NiCo) O 2 .
- two or more positive electrode active materials may be used in combination. From the viewpoint of capacity and output characteristics, a lithium-transition metal composite oxide is preferably used as the positive electrode active material.
- the particle size of the positive electrode active material is not particularly limited, but generally finer is more desirable. In consideration of work efficiency and ease of handling, the average particle diameter may be about 1 to 30 ⁇ m, and more preferably about 5 to 20 ⁇ m. Of course, positive electrode active materials other than those described above can also be employed. In the case where the optimum particle diameter is different for expressing the unique effect of each active material, the optimum particle diameters for expressing the unique effect may be blended. That is, it is not always necessary to make the particle sizes of all the active materials uniform.
- the binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.
- a binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polymethyl acrylate (PMA), Thermosetting resins such as polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP) and polyacrylonitrile (PAN), epoxy resins, polyurethane resins, and urea resins
- rubber-based materials such as styrene butadiene rubber (SBR) can be used.
- the conductive assistant is also referred to as a conductive agent, and refers to a conductive additive that is blended to improve conductivity.
- the conductive auxiliary agent used in the present invention is not particularly limited, and conventionally known ones can be used.
- carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber can be given.
- a conductive additive By containing a conductive additive, an electronic network inside the active material layer is effectively formed, which contributes to improving the output characteristics of the battery and improving reliability by improving the liquid retention of the electrolytic solution.
- the negative electrode 12 is configured by forming a negative electrode active material layer 12B on one or both surfaces of a negative electrode current collector 12A made of the conductive material as described above.
- the negative electrode active material layer 12B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and, if necessary, the above-described positive electrode active material.
- the same conductive assistant and binder may be included. In addition, it is not specifically limited as a compounding ratio of these negative electrode active materials, a conductive support agent, and a binder in a negative electrode active material layer.
- the lithium ion secondary battery which is an electrical device of the present invention, includes a negative electrode active material containing a Si—Ge—Ti alloy having the above-described composition as an essential component.
- the negative electrode active material layer 12B according to the present embodiment may be a thin film made of the Si—Ge—Ti alloy.
- the negative electrode active material layer 12B may be formed of only the Si—Ge—Ti alloy, and a known negative electrode active material capable of reversibly occluding and releasing lithium described later is used in combination. There is no hindrance.
- the negative electrode active material layer 12B may be a layer containing particles of the Si—Ge—Ti alloy as a main component. In this case, you may make the negative electrode active material layer 12B contain the said conductive support agent and binder which can be contained in the positive electrode active material layer 11B as needed.
- the “main component” refers to a component having a content of 50% by mass or more in the negative electrode active material layer 12B.
- Examples of the negative electrode active material used in combination include graphite (natural graphite, artificial graphite, etc.), which is highly crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen black, acetylene black, Channel black, lamp black, oil furnace black, thermal black, etc.), fullerenes, carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon fibrils, and the like.
- the negative electrode active material Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl , C, N, Sb, Bi, O, S, Se, Te, Cl, and the like
- oxides include silicon monoxide (SiO), SiO x (0 ⁇ x ⁇ 2), tin dioxide (SnO 2 ), SnO x (0 ⁇ x ⁇ 2), SnSiO 3 and the like.
- the carbide include silicon carbide (SiC).
- examples of the negative electrode active material include metal materials such as lithium metal and lithium-transition metal composite oxides such as lithium-titanium composite oxide (lithium titanate: Li 4 Ti 5 O 12 ).
- these negative electrode active materials can be used alone or in the form of a mixture of two or more.
- a negative electrode active material layer may be formed by applying a slurry containing a conductive additive and a binder together with the negative electrode active material to the surface of the negative electrode current collector.
- a negative electrode active material alloy thin film directly formed on the surface of the negative electrode current collector by a multi-element PVD method, a CVD method, or the like can be used.
- the positive electrode active material layer and the negative electrode active material layer are formed on one surface or both surfaces of each current collector, as described above.
- the negative electrode active material layer can also be formed on the other surface.
- Such an electrode can be applied to a bipolar battery.
- the electrolyte layer 13 is a layer containing a non-aqueous electrolyte, and the non-aqueous electrolyte functions as a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge.
- the thickness of the electrolyte layer 13 is preferably as thin as possible from the viewpoint of reducing internal resistance, and is usually in the range of about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
- the non-aqueous electrolyte contained in the electrolyte layer 13 is not particularly limited as long as it can function as a lithium ion carrier, and a liquid electrolyte or a polymer electrolyte can be used.
- the liquid electrolyte has a configuration in which a lithium salt (electrolyte salt) is dissolved in an organic solvent.
- organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), And carbonates such as methylpropyl carbonate (MPC).
- the lithium salt Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc.
- a compound that can be added to the electrode active material layer can be used.
- polymer electrolytes are classified into gel polymer electrolytes containing an electrolytic solution (gel electrolytes) and intrinsic polymer electrolytes not containing an electrolytic solution.
- the gel polymer electrolyte preferably has a structure in which the liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
- host polymer made of an ion conductive polymer.
- the use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block ion conduction between the layers.
- the ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited.
- polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVDF), polyvinylidene fluoride and hexafluoropropylene are used.
- the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the active material layer, but is preferably the same.
- the type of the electrolytic solution, that is, the lithium salt and the organic solvent is not particularly limited, and an electrolytic salt such as the lithium salt and an organic solvent such as carbonates are used.
- the intrinsic polymer electrolyte is obtained by dissolving a lithium salt in the matrix polymer and does not contain an organic solvent. Therefore, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability is improved.
- the matrix polymer of the gel polymer electrolyte or the intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure.
- a polymerization treatment may be performed on a polymerizable polymer for forming a polymer electrolyte (for example, PEO or PPO) using an appropriate polymerization initiator.
- a polymerization treatment thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, or the like can be used.
- the nonaqueous electrolyte contained in the electrolyte layer 13 may be a single type consisting of only one type or a mixture of two or more types.
- the electrolyte layer 13 is composed of a liquid electrolyte or a gel polymer electrolyte, it is preferable to use a separator for the electrolyte layer 13.
- the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.
- a lithium ion secondary battery has a structure in which a battery element is housed in a battery case such as a can or a laminate container (packaging body).
- the battery element (electrode structure) is configured by connecting a positive electrode and a negative electrode via an electrolyte layer.
- the battery element is roughly divided into a wound type battery having a structure in which a positive electrode, an electrolyte layer and a negative electrode are wound, and a stacked type battery in which a positive electrode, an electrolyte layer and a negative electrode are stacked.
- it may be called what is called a coin cell, a button battery, a laminate battery, etc. according to the shape and structure of a battery case.
- the Si target, Ge target, and Ti target were used, the sputtering time was fixed at 10 minutes, and the power of the DC power source was changed within the above range. In this manner, an amorphous alloy thin film was formed on the Ni substrate, and negative electrode samples provided with alloy thin films having various compositions were obtained.
- the component compositions of these alloy thin films are shown in Table 1 and FIGS.
- Example 14 the DC power source 1 (Si target) was 185 W, the DC power source 2 (Ge target) was 100 W, and the DC power source 3 (Ti target) was 130 W.
- the DC power source 1 (Si target) was 185 W
- the DC power source 2 (Ge target) was 100 W
- the DC power source 3 (Ti target) was 0 W.
- the DC power source 1 (Si target) was 185 W
- the DC power source 2 (Ge target) was 0 W
- the DC power source 3 (Ti target) was 40 W.
- the obtained alloy thin film was analyzed by the following analysis method and analyzer.
- ethylene carbonate (EC) and diethyl carbonate (DEC) 1 in a mixed nonaqueous solvent were mixed at a volume ratio, the concentration of LiPF 6 a (lithium hexafluorophosphate) 1M What was dissolved so that it might become was used.
- LiPF 6 a lithium hexafluorophosphate
- the discharge capacity is a value calculated per alloy weight, and the “discharge capacity retention rate (%)” in Table 1 is 50 or 100 relative to the discharge capacity at the first cycle.
- the ratio of the discharge capacity at the cycle is shown as follows: (discharge capacity at the 50th cycle or 100th cycle) / (discharge capacity at the first cycle) ⁇ 100.
- the batteries of Examples 1 to 18 including negative electrode active materials having an alloy containing 17% or more and less than 90% Si, more than 10% and less than 83% Ti, and more than 0% and less than 73% Ge. was found to have an initial capacity of 749 mAh / g or more.
- the batteries of these examples were found to exhibit a high discharge capacity retention rate of 83% or more at the 50th cycle and 40% or more at the 100th cycle.
- the negative electrode active material of the present invention includes 17% or more and less than 90% Si, more than 10% and less than 83% Ti, and more than 0% and 73%. It has been found preferable to be composed of an alloy containing less than Ge.
- the lithium ion secondary battery is exemplified as the electric device.
- the present invention is not limited to this, and can be applied to other types of secondary batteries and further to primary batteries. . Further, it can be applied not only to a battery but also to a capacitor.
- the negative electrode for an electric device and the electric device of the present invention are not particularly limited as long as they include a predetermined alloy as a negative electrode active material.
- a battery element in a bipolar battery generally includes a bipolar electrode in which a negative electrode active material layer is formed on one surface of a current collector and a positive electrode active material layer is formed on the other surface, an electrolyte layer, A plurality of layers.
- a Si—Ge—Ti ternary alloy having the above composition range was used as a negative electrode active material for an electric device.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明の実施形態に係るリチウムイオン二次電池用負極活物質について詳細に説明する。
本発明の電気デバイス用負極は、上記Si-Ge-Ti系合金から成る負極活物質を用いたものである。そして、電気デバイスとして代表的なリチウムイオン二次電池は、上記負極活物質を含む負極活物質層を集電体表面に備えた負極を電解質層及び正極と共に備えた少なくとも1つの単電池を有するものである。以下に、上記したリチウムイオン二次電池の構成やその材料などについてそれぞれ説明する。
図6に、本発明の一実施形態に係るリチウムイオン二次電池を例示する。図6に示すように、本実施形態のリチウムイオン二次電池1は、正極タブ21及び負極タブ22が取り付けられた電池要素10が外装体30の内部に封入された構成を有している。そして、本実施形態においては、正極タブ21及び負極タブ22が、外装体30の内部から外部に向かって、それぞれ反対の方向に導出されている。なお、図示しないが、正極タブ及び負極タブが、外装体の内部から外部に向かって、同一方向に導出される構成としてもよい。また、このような正極タブ及び負極タブは、例えば超音波溶接や抵抗溶接などにより後述する正極集電体及び負極集電体に取り付けることができる。
上記正極タブ21及び負極タブ22は、例えば、アルミニウム(Al)や銅(Cu)、チタン(Ti)、ニッケル(Ni)、ステンレス鋼(SUS)、これらの合金などの材料により構成される。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用のタブとして用いることができる従来公知の材料を用いることができる。なお、正極タブ及び負極タブは、同一材質のものを用いてもよく、異なる材質のものを用いてもよい。また、本実施形態のように、別途準備したタブを後述する正極集電体及び負極集電体に接続してもよいし、後述する各正極集電体及び各負極集電体が箔状である場合は、それぞれを延長することによってタブを形成してもよい。
上記外装体30は、例えば、小型化、軽量化の観点から、フィルム状の外装材で形成されたものであることが好ましい。ただし、これに限定されるものではなく、リチウムイオン二次電池用の外装体に使用可能な従来公知の材料で形成されたものを用いることができる。なお、自動車に適用する場合、自動車の熱源から効率よく熱を伝え、電池内部を迅速に電池動作温度まで加熱するために、例えば、熱伝導性に優れた高分子-金属複合ラミネートシートを用いることが好適である。
図6に示すように、本実施形態のリチウムイオン二次電池1における電池要素10は、正極11と、電解質層13と、負極12とからなる単電池層14を複数積層した構成を有している。正極11は、正極集電体11Aの両方の主面上に正極活物質層11Bが形成された構成を有している。また、負極12は、負極集電体12Aの両方の主面上に負極活物質層12Bが形成された構成を有している。
正極集電体11A及び負極集電体12Aは、例えば、箔状又はメッシュ状のアルミニウム、銅、ステンレス(SUS)などの導電性の材料により構成される。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の集電体として使用可能な従来公知の材料を用いることができる。また、集電体の大きさは、電池の使用用途に応じて決定することができる。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図6に示す電池要素10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。なお、スパッタ法等により、負極活物質たる薄膜合金を負極集電体12A上に直接形成する場合には、集電箔を用いるのが望ましい。
リチウムイオン二次電池において、正極11は、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔などの導電性材料からなる正極集電体11Aの片面又は両面に、正極活物質層11Bが形成されて構成される。なお、正極集電体の厚さとしては、前述したように特に限定されず、一般には1~30μm程度であることが好ましい。
一方、負極12は、正極と同様に、上記したような導電性材料からなる負極集電体12Aの片面又は両面に、負極活物質層12Bが形成されて構成される。
電解質層13は非水電解質を含む層であり、その非水電解質は充放電時に正負極間を移動するリチウムイオンのキャリアとしての機能を有する。なお、電解質層13の厚さとしては、内部抵抗を低減させる観点から薄いほどよく、通常1~100μm程度、好ましくは5~50μmの範囲とする。
リチウムイオン二次電池は、電池素子を缶体やラミネート容器(包装体)などの電池ケースに収容した構造を有している。電池素子(電極構造体)は、正極と負極とが電解質層を介して接続されて構成されている。なお、電池素子が正極、電解質層及び負極を巻回した構造を有する巻回型の電池と、正極、電解質層及び負極を積層した積層型の電池に大別され、上述の双極型電池は積層型の構造を有する。また、電池ケースの形状や構造に応じて、いわゆるコインセル、ボタン電池、ラミネート電池などと称されることもある。
スパッタ装置として、独立制御方式の3元DCマグネトロンスパッタ装置(大和機器工業株式会社製、コンビナトリアルスパッタコーティング装置、ガン-サンプル間距離:約100mm)を使用した。そして、厚さ20μmのニッケル箔からなる集電体基板上に、以下の条件のもとで、各組成を有する負極活物質合金の薄膜をそれぞれ成膜した。このようにして、31種の負極サンプルを得た。
(1)ターゲット(株式会社高純度化学研究所製、純度:4N)
Si:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
Ge:50.8mm径、3mm厚さ(厚さ2mmの無酸素銅製バッキングプレート付)
Ti:50.8mm径、5mm厚さ
(2)成膜条件
ベース圧力:~7×10-6
スパッタガス種:Ar(99.9999%以上)
スパッタガス導入量:10sccm
スパッタ圧力:30mTorr
DC電源:Si(185W)、Ge(0~120W)、Ti(0~150W)
プレスパッタ時間:1min.
スパッタ時間:10min.
基板温度:室温
組成分析:SEM・EDX分析(JEOL社)、EPMA分析(JEOL社)
膜厚測定(スパッタレート算出のため):膜厚計(東京インスツルメンツ)
膜状態分析:ラマン分光測定(ブルカー社)
上述のようにして得られた各負極サンプルとリチウム箔から成る対極とをセパレータを介して対向させた後、電解液を注入することによってIEC60086に規定されたCR2032型コインセルをそれぞれ作製した。ここで、リチウム箔は本城金属株式会社製リチウムフォイルを使用し、直径15mm、厚さ200μmに打ち抜いたものを使用した。また、セパレータは、セルガード社製セルガード2400を使用した。なお、上記電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の容積比で混合した混合非水溶媒中に、LiPF6(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させたものを用いた。
上記のようにして得られたそれぞれの電池に対して、次の充放電試験を実施した。すなわち、充放電試験機を使用し、300K(27℃)の温度に設定された恒温槽(中にて、充電及び放電を行った。なお、充放電試験機としては、北斗電工株式会社製HJ0501SM8Aを使用し、恒温槽としては、エスペック株式会社製PFU-3Kを用いた。そして、充電過程、つまり評価対象である負極へのLi挿入過程では、定電流・定電圧モードとして、0.1mAにて2Vから10mVまで充電した。その後、放電過程、つまり上記負極からのLi脱離過程では、定電流モードとし、0.1mA、10mVから2Vまで放電した。以上の充放電サイクルを1サイクルとして、これを100回繰り返した。そして、1サイクル目に対する放電容量維持率を50サイクル目及び100サイクル目について調査した。この結果を表1に併せて示す。なお、放電容量は、合金重量当りで算出した値を示している。また、表1における「放電容量維持率(%)」とは、1サイクル目の放電容量に対する50又は100サイクル目の放電容量の割合を示す。すなわち、(50サイクル目又は100サイクル目の放電容量)/(1サイクル目の放電容量)×100で算出される。
10 電池要素
11 正極
11A 正極集電体
11B 正極活物質層
12 負極
12A 負極集電体
12B 負極活物質層
13 電解質層
14 単電池層
21 正極タブ
22 負極タブ
30 外装体
Claims (9)
- 17質量%以上90質量%未満のSiと、10質量%超83質量%未満のTiと、0質量%超73質量%未満のGeとを含有し、残部が不可避不純物である合金を有することを特徴とする電気デバイス用負極活物質。
- 上記合金のSi含有量が77質量%以下、Ti含有量が20質量%以上、Ge含有量が3質量%以上63質量%以下であることを特徴とする請求項1に記載の電気デバイス用負極活物質。
- 上記合金のTi含有量が68質量%以下であることを特徴とする請求項2に記載の電気デバイス用負極活物質。
- 上記合金のSi含有量が50質量%以下であることを特徴とする請求項3に記載の電気デバイス用負極活物質。
- 上記合金のSi含有量が46質量%以下、Ti含有量が51質量%以上、Ge含有量が32質量%以下であることを特徴とする請求項4に記載の電気デバイス用負極活物質。
- 請求項1~5のいずれか1つの項に記載の負極活物質を備えることを特徴とする電気デバイス用負極。
- 請求項1~5のいずれか1つの項に記載の負極活物質を備えることを特徴とする電気デバイス。
- 請求項6に記載の負極を備えることを特徴とする電気デバイス。
- リチウムイオン二次電池であることを特徴とする請求項7又は8に記載の電気デバイス。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280024661.7A CN103548184B (zh) | 2011-05-25 | 2012-05-22 | 电气设备用负极活性物质、电气设备用负极及电气设备 |
RU2013157603/07A RU2537376C1 (ru) | 2011-05-25 | 2012-05-22 | Активный материал отрицательного электрода для электрического устройства, отрицательный электрод для электрического устройства и электрическое устройство |
KR1020137030187A KR101511895B1 (ko) | 2011-05-25 | 2012-05-22 | 전기 디바이스용 부극 활물질, 전기 디바이스용 부극 및 전기 디바이스 |
MX2013013477A MX2013013477A (es) | 2011-05-25 | 2012-05-22 | Material activo de electrodo negativo para dispositivo electrico, electrodo negativo para dispositivo electrico y dispositivo electrico. |
EP12789284.2A EP2717357B1 (en) | 2011-05-25 | 2012-05-22 | Negative electrode active material for electrical device, negative electrode for electrical device and electrical device |
US14/119,034 US9293764B2 (en) | 2011-05-25 | 2012-05-22 | Negative electrode active material for electric device, negative electrode for electric device and electric device |
BR112013030035A BR112013030035A2 (pt) | 2011-05-25 | 2012-05-22 | material ativo para elétrodos negativos para dispositivo elétrico, elétrodo negativo para dispositivo elétrico e dispositivo elétrico |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011116710A JP5776931B2 (ja) | 2011-05-25 | 2011-05-25 | リチウムイオン二次電池用負極活物質 |
JP2011-116710 | 2011-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012161190A1 true WO2012161190A1 (ja) | 2012-11-29 |
Family
ID=47217266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063056 WO2012161190A1 (ja) | 2011-05-25 | 2012-05-22 | 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス |
Country Status (11)
Country | Link |
---|---|
US (1) | US9293764B2 (ja) |
EP (1) | EP2717357B1 (ja) |
JP (1) | JP5776931B2 (ja) |
KR (1) | KR101511895B1 (ja) |
CN (1) | CN103548184B (ja) |
BR (1) | BR112013030035A2 (ja) |
MX (1) | MX2013013477A (ja) |
MY (1) | MY160823A (ja) |
RU (1) | RU2537376C1 (ja) |
TW (1) | TWI466369B (ja) |
WO (1) | WO2012161190A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014080893A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
WO2014080890A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
WO2014080891A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
WO2014080888A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
WO2015111190A1 (ja) * | 2014-01-24 | 2015-07-30 | 日産自動車株式会社 | 電気デバイス |
WO2015111189A1 (ja) * | 2014-01-24 | 2015-07-30 | 日産自動車株式会社 | 電気デバイス |
US10290855B2 (en) | 2012-11-22 | 2019-05-14 | Nissan Motor Co., Ltd. | Negative electrode for electrical device, and electrical device using the same |
US10367198B2 (en) | 2011-05-25 | 2019-07-30 | Nissan Motor Co., Ltd. | Negative electrode active material for electric device |
US10476101B2 (en) | 2014-01-24 | 2019-11-12 | Nissan Motor Co., Ltd. | Electrical device |
US10566608B2 (en) | 2012-11-22 | 2020-02-18 | Nissan Motor Co., Ltd. | Negative electrode for electric device and electric device using the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015092444A (ja) * | 2013-10-04 | 2015-05-14 | Connexx Systems株式会社 | ハイブリッド蓄電池、ならびにそれを利用するハイブリッド蓄電装置、発蓄電ユニット、電力網システムおよび走行体 |
RU171912U1 (ru) * | 2016-12-28 | 2017-06-21 | Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) | Отрицательный электрод литий-ионного аккумулятора с твердополимерным электролитом в качестве сепаратора |
RU2662454C1 (ru) * | 2017-08-21 | 2018-07-26 | федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный университет имени С.А. Есенина" | Способ изготовления отрицательного электрода литий-ионного аккумулятора |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000017949A1 (fr) * | 1998-09-18 | 2000-03-30 | Canon Kabushiki Kaisha | Materiau electrode pour pole negatif d'une cellule secondaire au lithium, structure d'electrode utilisant ce materiau electrode, cellule secondaire au lithium utilisant cette structure d'electrode, et procede de fabrication de cette structure d'electrode et de cette cellule secondaire au lithium |
JP2000133261A (ja) * | 1998-10-23 | 2000-05-12 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池とその製造法 |
JP2007019027A (ja) * | 2005-07-07 | 2007-01-25 | Samsung Sdi Co Ltd | リチウム二次電池 |
JP2007305424A (ja) | 2006-05-11 | 2007-11-22 | Sony Corp | 負極活物質およびそれを用いた電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3813759A (en) * | 1971-09-09 | 1974-06-04 | English Electric Co Ltd | Method of brazing |
US5523179A (en) * | 1994-11-23 | 1996-06-04 | Polyplus Battery Company | Rechargeable positive electrode |
US5644166A (en) * | 1995-07-17 | 1997-07-01 | Micron Technology, Inc. | Sacrificial CVD germanium layer for formation of high aspect ratio submicron VLSI contacts |
JP3620703B2 (ja) | 1998-09-18 | 2005-02-16 | キヤノン株式会社 | 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法 |
WO2000024070A1 (fr) * | 1998-10-22 | 2000-04-27 | Matsushita Electric Industrial Co., Ltd. | Accumulateur a electrolyte non aqueux |
WO2004086539A1 (en) * | 2003-03-26 | 2004-10-07 | Canon Kabushiki Kaisha | Electrode material for lithium secondary battery and electrode structure having the electrode material |
JP2010177033A (ja) * | 2009-01-29 | 2010-08-12 | Sony Corp | 負極および二次電池 |
WO2011059251A2 (ko) * | 2009-11-12 | 2011-05-19 | 주식회사 엘지화학 | 리튬 이차전지용 음극 활물질 및 이를 구비하는 리튬 이차전지 |
-
2011
- 2011-05-25 JP JP2011116710A patent/JP5776931B2/ja active Active
-
2012
- 2012-05-22 WO PCT/JP2012/063056 patent/WO2012161190A1/ja active Application Filing
- 2012-05-22 MY MYPI2013004218A patent/MY160823A/en unknown
- 2012-05-22 EP EP12789284.2A patent/EP2717357B1/en active Active
- 2012-05-22 CN CN201280024661.7A patent/CN103548184B/zh active Active
- 2012-05-22 KR KR1020137030187A patent/KR101511895B1/ko active IP Right Grant
- 2012-05-22 RU RU2013157603/07A patent/RU2537376C1/ru not_active IP Right Cessation
- 2012-05-22 BR BR112013030035A patent/BR112013030035A2/pt not_active IP Right Cessation
- 2012-05-22 MX MX2013013477A patent/MX2013013477A/es not_active Application Discontinuation
- 2012-05-22 US US14/119,034 patent/US9293764B2/en active Active
- 2012-05-24 TW TW101118512A patent/TWI466369B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000017949A1 (fr) * | 1998-09-18 | 2000-03-30 | Canon Kabushiki Kaisha | Materiau electrode pour pole negatif d'une cellule secondaire au lithium, structure d'electrode utilisant ce materiau electrode, cellule secondaire au lithium utilisant cette structure d'electrode, et procede de fabrication de cette structure d'electrode et de cette cellule secondaire au lithium |
JP2000133261A (ja) * | 1998-10-23 | 2000-05-12 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池とその製造法 |
JP2007019027A (ja) * | 2005-07-07 | 2007-01-25 | Samsung Sdi Co Ltd | リチウム二次電池 |
JP2007305424A (ja) | 2006-05-11 | 2007-11-22 | Sony Corp | 負極活物質およびそれを用いた電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2717357A4 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10367198B2 (en) | 2011-05-25 | 2019-07-30 | Nissan Motor Co., Ltd. | Negative electrode active material for electric device |
US10290855B2 (en) | 2012-11-22 | 2019-05-14 | Nissan Motor Co., Ltd. | Negative electrode for electrical device, and electrical device using the same |
WO2014080890A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
WO2014080891A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
WO2014080888A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
WO2014080893A1 (ja) * | 2012-11-22 | 2014-05-30 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
US10566608B2 (en) | 2012-11-22 | 2020-02-18 | Nissan Motor Co., Ltd. | Negative electrode for electric device and electric device using the same |
JP6020591B2 (ja) * | 2012-11-22 | 2016-11-02 | 日産自動車株式会社 | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 |
JP6024760B2 (ja) * | 2012-11-22 | 2016-11-16 | 日産自動車株式会社 | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 |
JP6032288B2 (ja) * | 2012-11-22 | 2016-11-24 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
JPWO2014080888A1 (ja) * | 2012-11-22 | 2017-01-05 | 日産自動車株式会社 | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 |
JPWO2014080891A1 (ja) * | 2012-11-22 | 2017-01-05 | 日産自動車株式会社 | 電気デバイス用負極、及びこれを用いた電気デバイス |
WO2015111190A1 (ja) * | 2014-01-24 | 2015-07-30 | 日産自動車株式会社 | 電気デバイス |
JPWO2015111189A1 (ja) * | 2014-01-24 | 2017-03-23 | 日産自動車株式会社 | 電気デバイス |
JPWO2015111190A1 (ja) * | 2014-01-24 | 2017-03-23 | 日産自動車株式会社 | 電気デバイス |
US10476101B2 (en) | 2014-01-24 | 2019-11-12 | Nissan Motor Co., Ltd. | Electrical device |
US10535870B2 (en) | 2014-01-24 | 2020-01-14 | Nissan Motor Co., Ltd. | Electrical device |
WO2015111189A1 (ja) * | 2014-01-24 | 2015-07-30 | 日産自動車株式会社 | 電気デバイス |
Also Published As
Publication number | Publication date |
---|---|
KR101511895B1 (ko) | 2015-04-13 |
TWI466369B (zh) | 2014-12-21 |
US9293764B2 (en) | 2016-03-22 |
KR20130139370A (ko) | 2013-12-20 |
BR112013030035A2 (pt) | 2016-09-13 |
JP2012248303A (ja) | 2012-12-13 |
US20140086788A1 (en) | 2014-03-27 |
EP2717357A1 (en) | 2014-04-09 |
EP2717357B1 (en) | 2016-03-02 |
RU2537376C1 (ru) | 2015-01-10 |
EP2717357A4 (en) | 2015-01-14 |
CN103548184B (zh) | 2015-09-16 |
TW201312838A (zh) | 2013-03-16 |
JP5776931B2 (ja) | 2015-09-09 |
CN103548184A (zh) | 2014-01-29 |
MY160823A (en) | 2017-03-31 |
MX2013013477A (es) | 2014-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101625313B1 (ko) | 전기 디바이스용 부극 활물질 | |
WO2012161190A1 (ja) | 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス | |
KR101604176B1 (ko) | 전기 디바이스용 부극 활물질 | |
JP6040996B2 (ja) | リチウムイオン二次電池用負極、及びこれを用いたリチウムイオン二次電池 | |
KR101720832B1 (ko) | 전기 디바이스용 부극 활물질 | |
KR101660100B1 (ko) | 전기 디바이스용 부극 활물질 | |
WO2012121241A1 (ja) | 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス | |
KR101735897B1 (ko) | 전기 디바이스용 부극 활물질 | |
WO2013099440A1 (ja) | 電気デバイス用負極活物質、電気デバイス用負極及び電気デバイス | |
EP2717356B1 (en) | Negative electrode active material for electrical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12789284 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137030187 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/013477 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14119034 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012789284 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013157603 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013030035 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013030035 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131122 |