[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012144599A1 - ダイレクトエステル交換油脂の製造方法 - Google Patents

ダイレクトエステル交換油脂の製造方法 Download PDF

Info

Publication number
WO2012144599A1
WO2012144599A1 PCT/JP2012/060718 JP2012060718W WO2012144599A1 WO 2012144599 A1 WO2012144599 A1 WO 2012144599A1 JP 2012060718 W JP2012060718 W JP 2012060718W WO 2012144599 A1 WO2012144599 A1 WO 2012144599A1
Authority
WO
WIPO (PCT)
Prior art keywords
fat
oil
enzyme catalyst
reaction
direct
Prior art date
Application number
PCT/JP2012/060718
Other languages
English (en)
French (fr)
Inventor
晃生 榊
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2013511057A priority Critical patent/JPWO2012144599A1/ja
Priority to CN201280019208.7A priority patent/CN103492581A/zh
Publication of WO2012144599A1 publication Critical patent/WO2012144599A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters

Definitions

  • the present invention relates to a method for producing fats and oils using a direct transesterification reaction.
  • the direct transesterification reaction is a reaction in which a high melting point component such as trisaturated acid glyceride in fats and oils is precipitated as crystals, and the transesterification reaction is performed. ) Can be increased to produce fats and oils having a characteristic composition.
  • Non-Patent Document 1 There are mainly two direct transesterification methods.
  • the first method is a method using a column on which an enzyme catalyst having a transesterification function is immobilized, and a tank for generating and separating crystals.
  • This method is a method in which a catalyst is dispersed in fats and oils as described in Patent Document 1, and the reaction proceeds while crystals are generated.
  • the first method using a column and a tank is a method in which liquid fats and oils as raw materials are passed through a column having a transesterification reaction function by immobilizing a catalyst, and the generated high melting point component is stored in the tank.
  • the direct transesterification reaction can be continuously carried out by repeating the operation of crystallizing the liquid oil and the liquid oil / fat as the low melting point component through the column again.
  • the present inventors have confirmed that it is difficult to completely separate the crystals (SSS) generated in the tank and the liquid fats and oils by this method, and liquid oils and fats containing crystals that could not be separated are removed.
  • SSS crystals
  • the catalyst is dispersed in the raw liquid oil and fat and the direct transesterification reaction proceeds while generating crystals
  • the catalyst is dispersed in the crystal and liquid oil and fat. Therefore, it is not necessary to separate the crystal and the liquid oil and fat, and the direct transesterification reaction can proceed efficiently.
  • the catalysts that can be used in the direct transesterification reaction are roughly classified into two types: chemical catalysts such as sodium methylate and enzyme catalysts.
  • the chemical catalyst is widely used because of its low cost and high activity.
  • a chemical catalyst is used for the direct transesterification reaction, a substance that is not good for the body such as a dialkyl ketone is generated. This is particularly a problem when the oils and fats used are used for food (Patent Document 2).
  • an enzyme catalyst is used in the direct transesterification reaction, a substance such as a dialkyl ketone is not generated as in the case where a chemical catalyst is used.
  • Patent Document 1 when an enzyme catalyst is dispersed in a liquid oil or fat as a raw material and a direct transesterification reaction is performed while generating crystals, the reaction oil or fat is generated during the direct transesterification reaction. Crystals, liquid oil and enzyme catalyst are mixed. Next, when the enzyme catalyst is separated from the mixed state of the crystal, liquid oil and fat, and the enzyme catalyst after the reaction is completed, it is difficult to separate only the enzyme catalyst because the crystal is solid. In Patent Document 1, it was described that the enzyme was removed by filtration, so when the present inventors actually tried, it was practically impossible to completely separate the solid crystal and the enzyme catalyst by filtration. Yes, the amount of the direct transesterification oil and fat containing almost no enzyme catalyst is considerably reduced.
  • the only way to separate the enzyme catalyst from the crystal is to melt the crystal.
  • the crystal is unintentionally transesterified by the enzyme catalyst when the crystal is melted. It is expected that.
  • the enzyme catalyst is dispersed in oil and fat and the direct transesterification reaction is performed while generating crystals
  • the enzyme catalyst is efficiently separated from the obtained crystals while generating crystals.
  • the present invention provides a method for efficiently obtaining the direct transesterified oil and fat by separating the produced direct transesterified fat and enzyme when the enzyme catalyst is dispersed in the raw oil and fat and the direct transesterification reaction is performed.
  • the purpose is to provide.
  • the present inventors paid attention to the fact that there is a specific gravity difference between the enzyme catalyst and the solid fat crystals produced by the direct transesterification reaction.
  • the enzyme catalyst and crystals were separated by using the enzyme catalyst to precipitate in the reaction oil.
  • the present invention has been completed based on the above findings.
  • the enzyme catalyst in a direct transesterification reaction using an enzyme catalyst, the enzyme catalyst is present in a flowable state in the raw oil and fat in the reaction system, and the crystals produced by the reaction are not melted.
  • the present invention relates to a method for producing a direct transesterified oil and fat characterized in that an enzyme catalyst is precipitated in a reaction oil and fat using a difference in specific gravity between the enzyme catalyst and the enzyme catalyst to separate crystals and enzyme catalyst.
  • a preferred embodiment relates to the method for producing a direct transesterified oil and fat described above, wherein the enzyme catalyst is precipitated by centrifugation.
  • a preferred embodiment relates to the method for producing a direct transesterified oil and fat as described above, wherein the specific gravity of the enzyme catalyst is 1.2 times or more the specific gravity of the crystal. Furthermore, a preferred embodiment relates to the method for producing a direct transesterified oil / fat as described above, wherein the amount of the enzyme catalyst having a particle size of 50 ⁇ m or less is less than 1 part by weight based on 100 parts by weight of the raw material fat / oil. Furthermore, a preferred embodiment relates to the method for producing a direct transesterified oil / fat as described above, wherein the reaction oil / fat before the enzyme catalyst is precipitated has a viscosity of 500,000 cP or less.
  • the direct transesterification fat / oil production method of the present invention (hereinafter also referred to as the production method of the present invention) is in a state in which the enzyme catalyst can flow in the raw oil / fat in the reaction system.
  • the present invention is characterized in that, without melting the crystals produced by the reaction, the enzyme catalyst is precipitated in the reaction fat and oil using the specific gravity difference between the crystal and the enzyme catalyst, and the crystal and the enzyme catalyst are separated. To do.
  • the raw fat / oil used in the present invention may be an edible fat / oil.
  • the raw material fats and oils include palm oils and fats.
  • the palm oil and fat is not particularly limited as long as it is derived from palm. Palm refined oil, unrefined crude oil, fractioned oil such as palm olein obtained by one or more fractionation, palm kernel oil, and more These hardened oils, transesterified oils and the like are exemplified.
  • the raw oils and fats other than the above-mentioned palm oils include soybean oil, rapeseed oil, sunflower oil, olive oil, sesame oil, canola oil, cottonseed oil, rice bran oil, safflower oil, palm oil, shea oil, monkey fat, lippe Fats, cocoa butter, beef tallow, pork tallow, milk fat, fractionated fats of these fats, hardened oils, transesterified oils, and the like.
  • the content of saturated fatty acids in the total constituent fatty acids of the raw material fats and oils is preferably 70% by weight or less, more preferably 3 to 70% by weight, and further preferably 3 to 52% by weight.
  • the saturated fatty acid content is more than 70% by weight, the solid fat is excessively increased in the reaction fat and oil obtained by the direct transesterification reaction, and the viscosity becomes high. Therefore, it may be difficult to separate the enzyme catalyst and the fat and oil.
  • the enzyme catalyst used in the present invention is not particularly limited as long as it is a lipase having transesterification ability with respect to the raw material fats and oils, and even transesterification enzyme having 1,3-position specificity even with random transesterification enzyme having no positional specificity. Enzymes may be used. However, depending on the desired amount of palmitic acid at the 2-position, it is preferable to use either a random transesterification reaction or a regiospecific transesterification reaction.
  • a powdery material in which an enzyme is immobilized on a desired carrier can also be used.
  • the carrier may be any material that does not dissolve in the raw oil and fat and can exist in a powder form, such as cyclodextrin, diatomaceous earth, alumina, celite, cellulose and other cellulose derivatives, porous glass, glass fiber, and silicic acid. Gels, florisil, ion exchange resins, titanium dioxide, kaolinite, pearlite, silica and the like can be mentioned, but the component is not particularly limited as long as it has a function of capturing lipase molecules.
  • the enzyme catalyst may be in the form of a powder, but if the particle diameter is in the range of 100 to 2000 ⁇ m, it is easy to handle and the intended direct transesterification can be performed efficiently. In addition, what is necessary is just to measure a median diameter as said particle diameter as described in the below-mentioned Example.
  • the enzyme catalyst can be separated from the direct transesterified oil and fat containing crystals by using a catalyst having a specific gravity higher than the specific gravity of the crystals obtained by the direct transesterification reaction.
  • the specific gravity of the enzyme catalyst is preferably 1.2 times or more the specific gravity of the crystal, from the viewpoint of allowing the enzyme catalyst to settle and performing separation quickly. The above is more preferable, 1.5 times or more is more preferable, and 2 times or more is particularly preferable.
  • the specific gravity of the enzyme catalyst and the crystal is measured using an electronic hydrometer (manufactured by Alpha Mirage Co., Ltd.).
  • the amount of the enzyme catalyst used is not particularly limited as long as the direct transesterification reaction proceeds, but is preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the raw material fats and oils from the viewpoint of reaction efficiency and economy.
  • the amount of enzyme catalyst having a particle size of 50 ⁇ m or less is less than 1 part by weight with respect to 100 parts by weight of the raw oil and fat. Can be obtained within 20 minutes without obtaining a random transesterification reaction.
  • the enzyme catalyst is present in a flowable state in the raw oil and fat in the reaction system.
  • the enzyme catalyst is present in a flowable state in the oil and fat undergoing the direct transesterification reaction and also in the reaction oil and fat obtained after completion.
  • an enzyme catalyst is added to a liquid raw material fat or oil, or an enzyme catalyst is added to a heated raw material fat and oil, which is then stirred and mixed, pumped into a reaction tube, etc. It can be made to flow by applying an external pressure to pass oils and fats, or letting it fall naturally from a high place.
  • oil and fat to be reacted are flowed using an apparatus such as a tank having a stirring blade or a pin machine, and external oil is passed through the reaction tube by a pump or the like by means such as a static mixer.
  • the enzyme catalyst may be dispersed in the raw oil.
  • the flowable state is different from the immobilized state, which is one of the conventional methods.
  • the enzyme catalyst is dispersed in the raw material fat in the reaction system, and the raw material fat is In the case of stirring, the enzyme catalyst is also stirred, and the enzyme catalyst may be in a state where the enzyme catalyst is settled when the raw material fat is allowed to stand.
  • the direct transesterification method in the production method of the present invention may be a batch type or a continuous type.
  • the direct transesterification reaction temperature in the case of using the enzyme catalyst is not particularly limited as long as it is a temperature at which the high melting point glyceride is crystallized, but at the start of the reaction, the catalytic activity becomes the highest in order to perform the reaction efficiently. Temperature is preferred. Specifically, 50 ° C. to 70 ° C. is preferable. From the viewpoint of conducting the reaction efficiently, the direct transesterification reaction temperature is preferably 0 ° C. to 40 ° C., more preferably 10 ° C. to 40 ° C. 3 to 18 hours after the start of the reaction.
  • the final reaction temperature is the direct transesterification reaction temperature. For example, when the reaction is carried out by adjusting the temperature to two stages, the second stage temperature is set as the reaction temperature.
  • a dehydration treatment is performed to reduce the water content in the mixture (substantially raw material fat) of the raw material fat and enzyme catalyst, thereby performing the reaction efficiently.
  • the water content in the raw oil and fat is preferably 0.1% by weight or less.
  • stirring when stirring, stirring is performed at a speed of 1000 rpm (r / min) or less from the viewpoint of imparting fluidity to the raw oil and fat and generating crystals having good separability. It is preferably 600 rpm (r / min) or less, more preferably 300 to 1 rpm (r / min).
  • the amount of crystals immediately before the separation of the crystals and the enzyme catalyst may be controlled by the reaction temperature and reaction time. For example, direct transesterification at 0 to 40 ° C., preferably 10 to 40 ° C. It is preferable to perform for hours.
  • the amount of crystals is preferably 3 to 60% by weight, more preferably 5 to 40% by weight, based on the total reaction fat.
  • the amount of crystals can be confirmed by measuring the SFC (solid fat content) of the reaction oil and fat immediately before separating the crystals and the enzyme catalyst.
  • reaction fats and oils means the fats and oils obtained by direct transesterification, and the thing mixed solid fat, liquid fats, raw material fats, etc. means.
  • the viscosity of the reaction fat / oil before precipitating the enzyme catalyst is 500,000 cP (mPa ⁇ s) or less, so that the content of the produced crystals and liquid fat / fat is large, and the enzyme described later It can be adjusted so that the catalyst can be precipitated with good operability.
  • the viscosity is preferably 15000 cP (mPa ⁇ s) or less, more preferably 10000 cP (mPa ⁇ s) or less, further preferably 8000 cP (mPa ⁇ s) or less, particularly preferably 5000 cP (mPa ⁇ s) or less, and 4000 cP (mPa ⁇ s). S) or less is very preferable, and 3000 cP (mPa ⁇ s) or less is most preferable.
  • the viscosity of the reaction fat / oil can be measured as described in Examples below.
  • the direct transesterification reaction continues, the amount of unreacted raw oil and fat decreases and the crystal (SSS) content in the reaction fat and oil increases, so the solid fat increases in the reaction system and the viscosity increases. It becomes difficult to separate from the catalyst. Therefore, from the viewpoint of fractionation efficiency, it is preferable to stop the reaction without the SSS content in the reaction fat or oil exceeding 50% by weight, and it is more preferable to stop the reaction without the SSS content exceeding 31% by weight, It is further preferred that the reaction is stopped when the SSS content is 1 to 31% by weight, more preferably 1 to 25% by weight, particularly preferably 1 to 20% by weight, and most preferably 1 to 15% by weight.
  • the direct transesterification reaction is stopped by separating the enzyme catalyst when the desired amount of crystals is obtained after the reaction is performed under the above conditions and the amount of crystals is confirmed.
  • the enzyme catalyst is precipitated in the reaction oil and fat without melting the produced crystals. Specifically, the stirring of the reaction oil and fat and the enzyme catalyst is stopped, and the reaction oil and fat are allowed to stand under temperature conditions where the crystals do not melt, and the enzyme catalyst is removed from the reaction oil and fat by utilizing the difference in specific gravity between the crystals and the enzyme catalyst. Allow to settle.
  • the temperature condition cannot be generally limited by the melting point of the target crystal, but may be a temperature range where the reverse transesterification reaction does not occur, that is, the generated crystal does not melt, such as 10 to 40 ° C.
  • sedimentation of the enzyme catalyst can be performed quickly by performing centrifugation.
  • the temperature at the time of centrifugation may be adjusted to a temperature range in which the reverse transesterification reaction does not occur as in the case of 10 to 40 ° C., that is, the generated crystals do not melt.
  • the centrifugal force may be 1 G or more. If the centrifugal force is too high, crystals are precipitated and the yield of the crystals is deteriorated.
  • the supernatant is directly transesterified oil and fat, so that the crystals and the enzyme catalyst can be separated, does not contain the enzyme catalyst, and the enzyme catalyst is random.
  • the transesterification reaction can also be prevented or almost prevented.
  • the enzyme catalyst separated from the direct transesterified oil / fat can be continuously produced by using it directly in the next direct transesterification reaction.
  • the direct transesterified oil and fat obtained by the production method of the present invention contains solid fat such as trisaturated acid glyceride (SSS) and liquid fat and oil such as triunsaturated acid glyceride (UUU). It is preferable to separate these fats and oils.
  • solid fat such as trisaturated acid glyceride (SSS)
  • liquid fat and oil such as triunsaturated acid glyceride (UUU). It is preferable to separate these fats and oils.
  • solvent fractionation or dry fractionation may be used.
  • solvent fractionation requires equipment costs and running costs due to the use of the solvent
  • dry fractionation without using a solvent is preferable.
  • the fractionation temperature in the dry fractionation is preferably 0 ° C. to 30 ° C., more preferably 20 ° C. or less, and more preferably 0 ° C. to 10 ° C. in view of the yield, in order to obtain liquid oil with sufficient liquidity.
  • the fractionation temperature is increased and the fractionation is again performed at 40 ° C to 60 ° C.
  • the solid fat obtained in the present invention can be used as a raw material for processed oil and fat products such as cream, margarine, shortening, and chocolate, or can be used as it is as a base material for microcapsules.
  • the solid fat of the present invention can be used as a raw material for OPO (2-palmitoyl-1,3-dioleyl triglyceride) structure oil and a PPO (1,2-dipalmitoyl-3-dioleyl triglyceride) structure oil. It can also be used.
  • liquid fat obtained in the present invention can be used in a method used in general liquid fat such as soybean oil and rapeseed oil, and mainly used for dressing, mayonnaise, cream, margarine, shortening, etc. It can be used as a raw material for processed oil products or as it is as salad oil, frying oil, or the like.
  • the mixture of solid fat and liquid fat obtained in the present invention can be used as a raw material for processed fat products such as cream, margarine, shortening and chocolate.
  • ⁇ Median diameter of enzyme catalyst> The median diameter of the enzyme catalyst was measured using a laser diffraction / scattering particle size distribution analyzer “LA-920 HORIBA”.
  • ⁇ Amount of enzyme catalyst having a particle size of 50 ⁇ m or less> A sieve of 400 mesh (mesh diameter: 50 ⁇ m) was applied to 100 g of the enzyme catalyst, the weight of the passed enzyme catalyst was measured, and the amount of the enzyme catalyst having a particle diameter of 50 ⁇ m or less was obtained.
  • Viscosity> The viscosity of the reaction oil / fat is measured by the method described in 2.2.1.5-1996 Viscosity (Brookfield Method) of “Standard Oil Analysis Method” (issue year: 1996) edited by Japan Oil Chemical Association. Went.
  • Example 1 Standing method Palm olein (iodine value: 64, specific gravity 0.91, the same in the following examples) 5000 g is put into a separable flask (four necks, capacity 5 L, the same in the following examples), After vacuum dehydration at 90 ° C. with stirring at 100 rpm, the temperature was lowered to 50 ° C. and 500 g of lipase (enzyme catalyst, “Lipozyme TL IM” manufactured by Novozymes, specific gravity 2.1, the same in the following examples) was added.
  • enzyme catalyst “Lipozyme TL IM” manufactured by Novozymes, specific gravity 2.1, the same in the following examples
  • Example 2 Centrifugation method (89G) After putting 5000 g of palm olein into a separable flask and performing vacuum dehydration at 90 ° C. while stirring at 100 rpm, the temperature was lowered to 50 ° C. and 500 g of lipase was added, and the lipase was allowed to flow in palm olein at 50 ° C. The mixture was cooled for 4 hours and then cooled down and stirred to maintain the fluidity of the lipase. The direct transesterification reaction was carried out at 36 ° C. for 38 hours, and then 100 g of the resulting reaction fat / oil was adjusted to 36 ° C.
  • the lipase was precipitated by centrifuging at 89 G for 10 minutes in a machine (KUBOTA 5922, rotor ST-410M, the same in the following examples). Thereafter, the supernatant reaction oil was collected and the amount of enzyme catalyst was measured.
  • Example 3 Direct transesterification was carried out at 36 ° C for 15 hours and at 32 ° C for 20 hours, and the supernatant reaction oil was collected and the amount of enzyme catalyst was measured in the same manner as in Example 2 except that the temperature of the centrifuge was adjusted to 32 ° C. did.
  • Example 4 Centrifugation Method (800G) After putting 5000 g of palm olein into a separable flask and performing vacuum dehydration at 90 ° C. while stirring at 100 rpm, the temperature was lowered to 50 ° C. and 500 g of lipase was added, and the lipase was allowed to flow in palm olein at 50 ° C. The mixture was cooled for 4 hours and then cooled down and stirred to maintain the fluidity of the lipase. The direct transesterification reaction was carried out at 32 ° C. for 29 hours, and then 100 g of the resulting reaction fat / oil was adjusted to 32 ° C. The lipase was precipitated by centrifugation at 800 G for 10 minutes. Thereafter, the supernatant reaction oil was collected and the amount of enzyme catalyst was measured.
  • Example 5 Centrifugation method (2000G) After putting 5000 g of palm olein into a separable flask and performing vacuum dehydration at 90 ° C. while stirring at 100 rpm, the temperature was lowered to 50 ° C. and 500 g of lipase was added, and the lipase was allowed to flow in palm olein at 50 ° C. The mixture was cooled for 4 hours and then cooled down and stirred to maintain the fluidity of the lipase. The direct transesterification reaction was carried out at 32 ° C. for 29 hours, and then 100 g of the resulting reaction fat / oil was adjusted to 32 ° C. The lipase was sedimented by centrifugation at 2000 G for 10 minutes. Thereafter, the supernatant reaction oil was collected and the amount of enzyme catalyst was measured.
  • 2000G Centrifugation method
  • Example 6 Direct transesterification was carried out at 30 ° C. for 24 hours, and the supernatant reaction oil was collected in the same manner as in Example 4 except that the temperature of the centrifuge was adjusted to 30 ° C., and the amount of enzyme catalyst was measured.
  • Example 7 The supernatant reaction oil was collected and the amount of enzyme catalyst was measured in the same manner as in Example 4 except that the direct transesterification reaction was performed at 29 ° C. for 24 hours and the temperature of the centrifuge was adjusted to 29 ° C.
  • Table 1 summarizes the measurement results of the enzyme catalyst amounts of the reaction fats and oils obtained in Examples 1 to 7. From the results in Table 1, it can be seen that the amount of enzyme catalyst in the reaction fats and oils obtained in Examples 1 to 7 is significantly reduced to less than 1%. Moreover, when the yield of the obtained reaction fat / oil ((recovered supernatant reaction fat / fat amount / total reaction fat / fat amount) ⁇ 100) was calculated, it was 78% or more, and the yield was high from the raw material fat. It can be seen that the oil and fat is obtained.
  • Example 1 since the viscosity of the reaction fats and oils before sedimentation of an enzyme catalyst was as low as 2000 cP, it turns out that the amount of enzyme catalysts with respect to the fats and oils after isolation
  • Example 8 The enzyme catalyst separated from the reaction fat after the direct ester reaction in Example 1 was mixed with the newly prepared raw oil and fat and subjected to the direct ester reaction under the same conditions as in Example 1. As a result, almost the same as in Example 1. A reaction oil of composition was obtained. Therefore, it was confirmed that the enzyme catalyst can be used for continuous production.
  • Comparative Example 2 Except for changing the mesh size of the filter of the suction filter to 250 ⁇ m, the reaction fats and oils were collected in the same manner as in Comparative Example 1, and the amount of the enzyme catalyst for the separated fats and oils was measured. The results are shown in Table 1. As shown in Table 1, in Comparative Example 2, compared with the result of Example 1, the amount of enzyme catalyst for the separated oil and fat was about 1.7 times, but the yield of the reaction oil and fat was about 0.00. Since it is 24 times less, it can be said that the method of Comparative Example 1 has significantly lower reaction efficiency than the method of Example 1.
  • Comparative Example 3 Except for changing the mesh size of the filter of the suction filter to 45 ⁇ m, an attempt was made to collect the reaction fats and oils in the same manner as in Comparative Example 1, but the reaction fats and oils were clogged and the enzyme catalyst was removed. There wasn't.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

 酵素触媒を原料の油脂中に分散させてダイレクトエステル交換反応を行った場合に、生成したダイレクトエステル交換油脂と酵素とを分離して、前記ダイレクトエステル交換油脂を効率よく得る方法に関する。具体的には、酵素触媒を用いるダイレクトエステル交換反応において、酵素触媒が、反応系中の原料油脂中で流動可能な状態で存在し、前記反応により生成される結晶を融解せずに、結晶と酵素触媒との比重差を利用して反応油脂中で酵素触媒を沈降させ、結晶と酵素触媒とを分離することを特徴とするダイレクトエステル交換油脂の製造方法を提供する。

Description

ダイレクトエステル交換油脂の製造方法
 本発明は、ダイレクトエステル交換反応を用いる油脂の製造方法に関する。
 ダイレクトエステル交換反応は油脂中のトリ飽和酸グリセライドなどの高融点成分を結晶として析出させながらエステル交換反応を行なう反応であり、油脂中のトリ飽和酸グリセライド(SSS)とトリ不飽和酸グリセライド(UUU)を増加させることで、特徴のある組成を持つ油脂を作製することができる。
 前記ダイレクトエステル交換反応の方法は主に2つある。第1の方法は、非特許文献1に記載されるように、エステル交換反応機能を有する酵素触媒が固定化されたカラムと、結晶の発生および分離を行うタンクとを用いる方法であり、第2の方法は、特許文献1に記載されるように油脂中に触媒を分散させ、結晶を発生させながら反応を進行させる方法である。
 前記第1の方法であるカラムとタンクとを用いた方法は、触媒が固定化されることでエステル交換反応機能を備えたカラムに原料である液状油脂を通過させ、発生した高融点成分をタンク内で結晶化させ、残った低融点成分である液状油脂を再び、カラムへ通過させる操作を繰り返すことでダイレクトエステル交換反応を連続的に進行させることができる。しかし、本発明者らが確認したところ、この方法ではタンク内で発生した結晶(SSS)と液状油脂を完全に分離することは困難であり、また、分離できなかった結晶を含んだ液状油脂を融解させ、カラムへ通過させた場合、ダイレクトエステル交換反応の反応効率が悪くなり、場合によってはダイレクトエステル交換反応が進行しなくなるという問題があった。
 一方、前記第2の方法である、原料である液状油脂中に触媒を分散させ、結晶を発生させながらダイレクトエステル交換反応を進行させる方法では、結晶と液状油脂との中に触媒を分散させるため、結晶と液状油脂を分離する必要がなく、効率的にダイレクトエステル交換反応を進行させることができる。
 前記ダイレクトエステル交換反応で使用できる触媒は、大きく分けて、ナトリウムメチラートなどの化学触媒と酵素触媒との2種類がある。前記化学触媒は低コスト且つ高活性であるため、広く利用されているが、ダイレクトエステル交換反応に化学触媒を用いるとジアルキルケトンなどの体に良くないとされる物質が発生してしまうため、得られる油脂を食用に用いる場合には特に問題である(特許文献2)。一方、ダイレクトエステル交換反応に酵素触媒を用いると化学触媒を用いた場合のようなジアルキルケトンなどの物質が発生しないため、酵素触媒の利用が広がっている。
 例えば、特許文献1に記載されるように、酵素触媒を原料である液状油脂中に分散させて、結晶を発生させながらダイレクトエステル交換反応を行うと、反応油脂はダイレクトエステル交換反応中に発生する結晶と液状油脂と酵素触媒とが混在した状態になる。次に、前記反応終了後に、結晶と液状油脂と酵素触媒との混合状態から酵素触媒を分離しようとすると、結晶が固体であるため、酵素触媒のみを分離する事は困難である。前記特許文献1では、ろ過により酵素を除去したと記載されていたので本発明者らが実際に試みたところ、固体である結晶と酵素触媒をろ過で完全に分離する事は実質、不可能であり、得られる酵素触媒を殆ど含まないダイレクトエステル交換反応油脂の量はかなり少なくなる。
 また、酵素触媒を分離するために結晶を融解すると、ランダムエステル交換反応が進行してしまうため、結晶を融解することはできない。
 また、酵素触媒を結晶と共に濾別したとしても、結晶から酵素触媒を分離するには結晶を融解するしかなく、この場合も結晶の融解時に酵素触媒によって結晶が意図しないエステル交換が行われてしまうことが予想される。
 このように、酵素触媒を油脂中に分散して、結晶を発生させながらダイレクトエステル交換反応を行う方法には、結晶の生成を図りながら、得られた結晶から酵素触媒を効率的に分離することが困難であるという大きな問題があった。
特開昭60-078586号公報 国際公開第2009/012982号
Enzyme and Microbial Technology 27(2000)302-311頁
 本発明は、酵素触媒を原料の油脂中に分散させてダイレクトエステル交換反応を行った場合に、生成したダイレクトエステル交換油脂と酵素とを分離して、前記ダイレクトエステル交換油脂を効率よく得る方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、酵素触媒とダイレクトエステル交換反応で生じる固体脂の結晶との間に比重差があることに着目し、この比重差を利用して反応油脂中で酵素触媒を沈降させることで、酵素触媒と結晶とを分離することに初めて成功した。
 本発明は、上記のような知見に基づき、完成されたものである。
 即ち、本発明は、酵素触媒を用いるダイレクトエステル交換反応において、酵素触媒が、反応系中の原料油脂中で流動可能な状態で存在し、前記反応により生成される結晶を融解せずに、結晶と酵素触媒との比重差を利用して反応油脂中で酵素触媒を沈降させ、結晶と酵素触媒とを分離することを特徴とするダイレクトエステル交換油脂の製造方法に関する。
 好ましい実施態様は、酵素触媒の沈降を、遠心分離で行う上記記載のダイレクトエステル交換油脂の製造方法に関する。
 さらに、好ましい実施態様は、酵素触媒の比重が、結晶の比重の1.2倍以上である上記記載のダイレクトエステル交換油脂の製造方法に関する。
 さらに、好ましい実施態様は、50μm以下の粒子径の酵素触媒量が、原料油脂100重量部に対して1重量部未満である上記記載のダイレクトエステル交換油脂の製造方法に関する。
 さらに、好ましい実施態様は、酵素触媒を沈降させる前の反応油脂の粘度が500000cP以下である上記記載のダイレクトエステル交換油脂の製造方法に関する。
 本発明に従えば、酵素触媒の含有量が顕著に低減されたダイレクトエステル交換油脂を効率よく得ることができる。
 また、本発明では、前記ダイレクトエステル交換油脂と分離した酵素触媒を新たに原料油脂と混合することで、連続的な製造を行うことができる。
 以下、本発明につき、更に詳細に説明する。
 本発明のダイレクトエステル交換油脂の製造方法(以下、本発明の製造方法ともいう)は、酵素触媒を用いるダイレクトエステル交換反応において、酵素触媒が、反応系中の原料油脂中で流動可能な状態で存在し、前記反応により生成される結晶を融解せずに、結晶と酵素触媒との比重差を利用して反応油脂中で酵素触媒を沈降させ、結晶と酵素触媒とを分離することを特徴とする。
(原料油脂)
 本発明で使用される原料油脂は、食用油脂であればよい。
 原料油脂は、例えば、パーム系油脂が挙げられる。前記パーム系油脂としては、パーム由来であれば特に限定はなく、パーム精製油、未精製のクルード油、一回以上の分別によって得られたパームオレイン、パーム核油などの分画油、さらにはこれらの硬化油、エステル交換油などが例示される。また、前記パーム系油脂以外の原料油脂としては、大豆油、ナタネ油、ひまわり油、オリーブ油、ごま油、キャノーラ油、綿実油、こめ油、サフラワー油、やし油、シア油、サル脂、イリッぺ脂、カカオ脂、牛脂、豚脂、乳脂、これらの油脂の分別脂、硬化油、エステル交換油などが挙げられる。
 前記原料油脂の構成脂肪酸全体中の飽和脂肪酸含量は70重量%以下であることが好ましく、より好ましくは3~70重量%、更に好ましくは3~52重量%である。飽和脂肪酸含量が70重量%より多いと、ダイレクトエステル交換反応で得られる反応油脂中に固体脂が多くなり過ぎ、粘度が高くなるため、酵素触媒と油脂の分離が困難な場合がある。
(酵素触媒)
 本発明で用いる酵素触媒は、前記原料油脂に対してエステル交換能を有するリパーゼであれば特に限定されず、位置特異性が全くないランダムエステル交換酵素でも、1,3位特異性を有するエステル交換酵素でも良い。但し、所望の2位のパルミチン酸量によっては、ランダムエステル交換反応を行うか、位置特異的エステル交換反応を行うかは、使い分けたほうが好ましい。
 前記酵素触媒としては、酵素を所望の担体に固定させた粉末状のものも使用することができる。前記担体としては、前記原料油脂中で溶解せず、粉末状で存在できるものであればよく、シクロデキストリン、珪藻土、アルミナ、セライト、セルロースおよびその他のセルロース誘導体、多孔性ガラス、ガラス繊維、ケイ酸ゲル、フロリジル、イオン交換樹脂、二酸化チタン、カオリナイト、パーライト、シリカなどが挙げられるがリパーゼ分子を捉えておく機能があれば、その成分は特には限定はない。
 前記酵素触媒は粉末状であればよいが、その粒子径としては、100~2000μmの範囲であれば、取り扱い性がよく、また、目的のダイレクトエステル交換反応も効率よく行うことができる。なお、前記粒子径としては、後述の実施例に記載のようにメジアン径を測定すればよい。
 前記酵素触媒としては、ダイレクトエステル交換反応により得られる結晶の比重よりも大きなものを使用することで、結晶などを含むダイレクトエステル交換油脂との分離を行うことができる。
 具体的には、前記酵素触媒の比重は、前記酵素触媒を沈降させて分離を速やかに行うことができる観点から、前記結晶の比重の1.2倍以上であることが好ましく、1.3倍以上がより好ましく、1.5倍以上がさらに好ましく、2倍以上が特に好ましい。
 なお、本発明において、酵素触媒および結晶の比重は、電子比重計(アルファーミラージュ(株)製)を用いて測定する。
 前記酵素触媒の使用量はダイレクトエステル交換反応が進行する量であれば良く特に限定されないが、反応効率と経済性から原料油脂100重量部に対して0.5重量部~20重量部が好ましい。
 中でも、本発明の製造方法では、50μm以下の粒子径の酵素触媒量が、原料油脂100重量部に対して1重量部未満であることで、結晶を融解しても、残存した酵素をろ過などで20分以内に分離すれば、ランダムエステル交換反応させずに、目的の組成の油脂を得ることができる。
 本発明の製造方法では、前記酵素触媒は、反応系中の原料油脂中で流動可能な状態で存在する。また、前記酵素触媒は、ダイレクトエステル交換反応を行っている油脂中、さらには終了して得られる反応油脂中でも流動可能な状態で存在する。具体的には、液状の原料油脂中に酵素触媒を添加したり、または固体状の原料油脂を加温して融解したものに酵素触媒を添加した後で、攪拌混合や反応管などにポンプなどにより外圧をかけて油脂を通したり、高所から自然落下させる方法などで流動させることができる。また、撹拌に関しては攪拌翼を有しているタンクやピンマシンなどの装置を用いて反応させる油脂を流動させ、反応管などにポンプなどにより外圧をかけて油脂を通すにはスタティックミキサーなどの手段で、原料油脂中に酵素触媒を分散させた状態とすればよい。
 なお、本発明において流動可能な状態とは、従来法の一つである固定化された状態とは異なることをいい、反応系中の原料油脂中で酵素触媒が分散しており、原料油脂を攪拌した場合に酵素触媒も攪拌され、原料油脂を静置すると酵素触媒が沈降するような状態であればよい。
(ダイレクトエステル交換反応)
 本発明の製造方法におけるダイレクトエステル交換反応の方法はバッチ式、連続式を問わない。
 また、前記酵素触媒を使用する場合のダイレクトエステル交換反応温度は、高融点グリセライドが結晶化する温度であれば特に限定されないが、反応開始時は効率良く反応を行なうために触媒活性が最も高くなる温度が好ましい。具体的には、50℃~70℃が好ましい。また、効率良く反応を行う観点から、反応開始から3~18時間後に、ダイレクトエステル交換反応温度を0℃~40℃にすることが好ましく、更には10℃~40℃にすることがより好ましい。なお、本発明では、最終的な反応温度をダイレクトエステル交換反応温度とする。例えば、2段階の温度に調整して反応させた場合には、2段階目の温度を反応温度とする。
 また、前記ダイレクトエステル交換反応の前に、脱水処理を行って、原料油脂と酵素触媒との混合物(実質的には原料油脂)中の水分含有量を低減させることで、反応を効率よく行うことができる。
 前記原料油脂中の水分含有量としては、0.1重量%以下であることが好ましい。
 本発明の製造方法におけるダイレクトエステル交換反応において、攪拌する場合は、原料油脂に流動性を与え、また分離性の良い結晶を生成させる観点から、1000rpm(r/min)以下の速度で攪拌を行うことが好ましく、より好ましくは600rpm(r/min)以下、更に好ましくは300~1rpm(r/min)である。
 結晶と酵素触媒とを分離する直前の結晶量は、反応温度および反応時間でコントロールすればよく、例えば、0~40℃、好ましくは10℃~40℃でのダイレクトエステル交換反応を、3~120時間行うことが好ましい。前記結晶量は、反応油脂全体中3~60重量%が好ましく、より好ましくは5~40重量%である。
 この結晶量については、結晶と酵素触媒とを分離する直前の反応油脂のSFC(固体脂含量)を測定することで確認することができる。
 なお、本発明において、反応油脂とは、ダイレクトエステル交換反応して得られる油脂をいい、固体脂、液状油脂、原料油脂などが混合されたものをいう。
 また、本発明の製造方法では、酵素触媒を沈降させる前の反応油脂の粘度が500000cP(mPa・s)以下であることで、生成された結晶や液体油脂の含有量が多く、しかも後述の酵素触媒の沈殿を操作性よく行えるように調節できる。前記粘度は、15000cP(mPa・s)以下が好ましく、10000cP(mPa・s)以下がより好ましく、8000cP(mPa・s)以下がさらに好ましく、5000cP(mPa・s)以下が特に好ましく、4000cP(mPa・s)以下が極めて好ましく、3000cP(mPa・s)以下が最も好ましい。
 前記反応油脂の粘度は、後述の実施例に記載のように測定することができる。
 なお、ダイレクトエステル交換反応を続けるほど未反応の原料油脂が低減して、反応油脂中の結晶(SSS)含量が増えてゆくため、反応系中に固体脂が増えすぎて粘度が高くなり、酵素触媒との分別がしにくくなる。従って、分別効率の観点からは、反応油脂中のSSS含量が50重量%を越えることなく反応を停止することが好ましく、SSS含量が31重量%を越えることなく反応を停止することがより好ましく、SSS含量が1~31重量%の間で反応を停止することが更に好ましく、1~25重量%がより好ましく、1~20重量%が特に好ましく、1~15重量%が最も好ましい。
 前記ダイレクトエステル交換反応は、前記条件で反応を行って、結晶量を確認後、所望の結晶量になっていたら、酵素触媒の分離をすることで停止される。
(酵素触媒の沈降)
 本発明の製造方法では、前記のダイレクトエステル交換反応後、生成される結晶を融解せずに、反応油脂中で酵素触媒を沈降させる。具体的には、前記反応油脂と酵素触媒との攪拌を止めて、結晶が融解しない温度条件下で静置し、結晶と酵素触媒との比重差を利用して、反応油脂中で酵素触媒を沈降させる。前記温度条件としては、目的の結晶の融点により一概に限定できないが、10~40℃のように逆エステル交換反応が起こらない、即ち生成した結晶が融解しない温度範囲であればよい。この静置法では、沈降作業の省力化を図ることができるが、酵素触媒の沈降には3~24時間程度が必要となる。なお、酵素触媒を沈降させる前の反応油脂の粘度が4000cP以下であると、生産性を考慮しても好適に沈降できる。
 そこで、別の方法として、遠心分離を行うことにより、速やかに酵素触媒の沈降を行うことができる。遠心分離時の温度は、10~40℃のように逆エステル交換反応が起こらない、即ち生成した結晶が融解しない温度範囲に調整しておけばよい。また、遠心力は、1G以上であればよく、遠心力が高すぎると結晶まで沈殿してしまい、結晶の収率が悪くなるため、1~10000Gが好ましい。
 本発明では、上記のようにして酵素触媒を沈降させた後、上澄みであるダイレクトエステル交換油脂を回収することで、結晶と酵素触媒を分離でき、酵素触媒を含有せず、しかも酵素触媒のランダムエステル交換反応も生じないかほとんど防ぐことができる。
 また、前記ダイレクトエステル交換油脂から分離された酵素触媒は、そのまま次のダイレクトエステル交換反応に利用することで、連続的な製造を行うことができる。
(後処理)
 本発明の製造方法で得られるダイレクトエステル交換油脂には、トリ飽和酸グリセライド(SSS)のような固体脂と、トリ不飽和酸グリセライド(UUU)のような液状油脂とが含有されているため、これらの油脂を分別することが好ましい。
 前記分別方法としては、溶剤分別、乾式分別を問わないが、溶剤分別は溶剤の使用により設備費やランニングコストがかかるため、溶剤を使用しない乾式分別が好ましい。
 溶剤を使用する場合は、ヘキサン、アセトンなどを用いることができる。乾式分別の分別温度は、液状油脂を十分な液状性で得るためには0℃~30℃が好ましく、20℃以下がより好ましく、収率の観点も含めると0℃~10℃が更に好ましい。
 また、固体脂中における、2位にパルミチン酸を有するグリセライドの含有量を高めるためには、一旦前記乾式分別を行った後、分別温度を上昇させて、40℃~60℃で再度分別することが好ましく、2位にパルミチン酸を有するグリセライドの含有量と収率を考慮すると45℃~55℃で再度分別することがより好ましい。
 本発明で得られる固体脂は、クリーム、マーガリン、ショートニング、チョコレートなどの加工油脂製品の原料に利用したり、そのままマイクロカプセルの基材などに利用したりすることができる。また、本発明の固体脂は、OPO(2-パルミトイル-1,3-ジオレイルトリグリセライド)構造油脂の原料や、PPO(1,2-ジパルミトイル-3-ジオレイルトリグリセライド)構造油脂の原料などに利用することもできる。
 また、本発明で得られる液状油脂は、大豆油やナタネ油の様に一般的な液状油脂で利用されている方法で利用することができ、主にドレッシング、マヨネーズ、クリーム、マーガリン、ショートニングなどの加工油脂製品の原料として、或いはそのまま、サラダ油、フライ油などとして利用することができる。
 本発明で得られる固体脂と液状油脂の混合物は、クリーム、マーガリン、ショートニング、チョコレートなどの加工油脂製品の原料として利用することができる。
 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例において「部」や「%」は重量基準である。
<分離した反応油脂中の酵素触媒含量の測定>
 遠心分離した反応油脂の重量を測定し、80℃に加熱して前記油脂を完全に融解した。前記油脂に対して2倍量のヘキサンを加え、混合後、ブフナーロートによりろ過した。ろ別した酵素触媒をヘキサンにより数回洗浄を行い、40℃で乾燥させた後、酵素触媒の重量を測定した。
<酵素触媒のメジアン径>
 レーザ回折/散乱式粒度分布測定装置「LA-920 HORIBA」を用いて酵素触媒のメジアン径を測定した。
<粒子径50μm以下の酵素触媒量>
 酵素触媒100gに対して400メッシュ(メッシュ径:50μm)の篩にかけ、パスした酵素触媒の重量を測定し、粒子径50μm以下の酵素触媒量とした。
<粘度>
 反応油脂の粘度は、社団法人日本油化学協会編「基準油脂分析法」(発行年:1996年)の2.2.10.5-1996粘度(ブルックフィールド法)に記載された方法により、測定を行った。
(実施例1)静置法
 パームオレイン(ヨウ素価:64、比重0.91、以下の実施例も同じ)5000gをセパラブルフラスコ(四口、容量5L、以下の実施例も同じ)に入れ、100rpmで攪拌しながら90℃で真空脱水を行なった後、50℃に降温してリパーゼ(酵素触媒、ノボザイムズ社製「Lipozyme TL IM」:比重 2.1、以下の実施例も同じ)を500g加え、前記リパーゼがパームオレイン中で流動可能な状態で50℃で4時間保持した後降温し、攪拌をして前記リパーゼの流動性を保持させつつ36℃でダイレクトエステル交換反応を38時間行なった後、撹拌を停止し、3時間静置して、反応油脂中でリパーゼを沈降させた。その後、上澄みの反応油脂を回収し、酵素触媒量を測定した。
(実施例2)遠心分離法(89G)
 パームオレイン5000gをセパラブルフラスコに入れ、100rpmで攪拌しながら90℃で真空脱水を行なった後、50℃に降温してリパーゼを500g加え、前記リパーゼがパームオレイン中で流動可能な状態で50℃で4時間保持した後降温し、攪拌をして前記リパーゼの流動性を保持させつつ36℃でダイレクトエステル交換反応を38時間行なった後、得られた反応油脂100gを36℃に温調した遠心機(KUBOTA 5922、ローターST-410M、以下の実施例も同じ)で10分間、89Gで遠心分離を行って、リパーゼを沈降させた。その後、上澄みの反応油脂を回収し、酵素触媒量を測定した。
(実施例3)
 ダイレクトエステル交換反応を36℃で15時間、32℃で20時間行い、遠心機を32℃に温調した以外は、実施例2と同様にして上澄みの反応油脂を回収し、酵素触媒量を測定した。
(実施例4)遠心分離法(800G)
 パームオレイン5000gをセパラブルフラスコに入れ、100rpmで攪拌しながら90℃で真空脱水を行なった後、50℃に降温してリパーゼを500g加え、前記リパーゼがパームオレイン中で流動可能な状態で50℃で4時間保持した後降温し、攪拌をして前記リパーゼの流動性を保持させつつ32℃でダイレクトエステル交換反応を29時間行なった後、得られた反応油脂100gを32℃に温調した遠心機で10分間、800Gで遠心分離を行ってリパーゼを沈降させた。その後、上澄みの反応油脂を回収し、酵素触媒量を測定した。
(実施例5)遠心分離法(2000G)
 パームオレイン5000gをセパラブルフラスコに入れ、100rpmで攪拌しながら90℃で真空脱水を行なった後、50℃に降温してリパーゼを500g加え、前記リパーゼがパームオレイン中で流動可能な状態で50℃で4時間保持した後降温し、攪拌をして前記リパーゼの流動性を保持させつつ32℃でダイレクトエステル交換反応を29時間行なった後、得られた反応油脂100gを32℃に温調した遠心機で10分間、2000Gで遠心分離を行ってリパーゼを沈降させた。その後、上澄みの反応油脂を回収し、酵素触媒量を測定した。
(実施例6)
 ダイレクトエステル交換反応を30℃で24時間行い、遠心機を30℃に温調した以外は、実施例4と同様にして上澄みの反応油脂を回収し、酵素触媒量を測定した。
(実施例7)
 ダイレクトエステル交換反応を29℃で24時間行い、遠心機を29℃に温調した以外は、実施例4と同様にして上澄みの反応油脂を回収し、酵素触媒量を測定した。
 実施例1~7で得られた反応油脂の酵素触媒量の測定結果を表1にまとめる。表1の結果から、実施例1~7で得られた反応油脂中の酵素触媒量は1%未満と顕著に低減されていることがわかる。
 また、得られた反応油脂の収率((回収した上澄みの反応油脂量/反応油脂全体量)×100)を算出したところ、78%以上となっており、原料油脂からの高収率で目的の油脂が得られていることがわかる。
 また、実施例1では、酵素触媒を沈降させる前の反応油脂の粘度が2000cPと低かったことから、静置するだけで、時間はかかるものの分離後の油脂に対する酵素触媒量を低減できることがわかる。一方、実施例6、7のように高粘度の反応油脂でも、遠心分離を用いることで、酵素触媒を効率よく分離できることがわかる。
Figure JPOXMLDOC01-appb-T000001
(実施例8)
 実施例1でのダイレクトエステル反応後に反応油脂から分離した酵素触媒を、新たに用意した原料油脂中に混合して実施例1と同じ条件でダイレクトエステル反応を行ったところ、実施例1とほぼ同じ組成の反応油脂が得られた。したがって、酵素触媒を連続的な製造に使用できることが確認された。
(比較例1)
 パームオレイン(ヨウ素価:64、比重0.91)5000gをセパラブルフラスコ(四口、容量5L、以下の比較例も同じ)に入れ、100rpmで攪拌しながら90℃で真空脱水を行った後、50℃に降温してリパーゼ(酵素触媒、ノボザイムズ社製「Lipozyme TL IM」、比重:2.1)を500g加え、前記リパーゼがパームオレイン中で流動可能な状態で50℃で4時間保持した後降温し、攪拌をして前記リパーゼの流動性を保持させつつ36℃でダイレクトエステル交換反応を38時間行った後、100gを36℃に温調した吸引ろ過機(Millipore社製:90mmディスクフィルター)に860μm径のメッシュをセットし、60分間、吸引ろ過を行い、酵素触媒を分離した。その後、ろ液の反応油脂を回収し、分離後の油脂に対する酵素触媒量を測定した。その結果を表1に示す。
 表1に示すように、比較例1では、実施例1の結果と比べると、分離後の油脂に対する酵素触媒量は約5.5倍と多く、一方、反応油脂の収率は約0.47倍と少ないことから、比較例1の方法は、実施例1の方法に比べて酵素触媒の反応効率は有意に悪く、特に酵素触媒の分離性が悪いことから、副生成物が生じる可能性も高く、ロスの大きな方法であるといえる。
(比較例2)
 吸引ろ過機のフィルターのメッシュサイズを250μmにした以外は、比較例1と同様にして反応油脂を回収し、分離後の油脂に対する酵素触媒量を測定した。その結果を表1に示す。
 表1に示すように、比較例2では、実施例1の結果と比べると、分離後の油脂に対する酵素触媒量は約1.7倍程度であったが、反応油脂の収率は約0.24倍と少ないことから、比較例1の方法は、実施例1の方法に比べて反応効率は有意に悪いといえる。
(比較例3)
 吸引ろ過機のフィルターのメッシュサイズを45μmにした以外は、比較例1と同様にして反応油脂を回収しようとしたが、目詰まりしてしまい、酵素触媒を除去した反応油脂を回収することができなかった。

Claims (5)

  1.  酵素触媒を用いるダイレクトエステル交換反応において、酵素触媒が、反応系中の原料油脂中で流動可能な状態で存在し、前記反応により生成される結晶を融解せずに、結晶と酵素触媒との比重差を利用して反応油脂中で酵素触媒を沈降させ、結晶と酵素触媒とを分離することを特徴とするダイレクトエステル交換油脂の製造方法。
  2.  酵素触媒の沈降を、遠心分離で行う請求項1に記載のダイレクトエステル交換油脂の製造方法。
  3.  酵素触媒の比重が、結晶の比重の1.2倍以上である請求項1または2に記載のダイレクトエステル交換油脂の製造方法。
  4.  50μm以下の粒子径の酵素触媒量が、原料油脂100重量部に対して1重量部未満である請求項1~3のいずれかに記載のダイレクトエステル交換油脂の製造方法。
  5.  酵素触媒を沈降させる前の反応油脂の粘度が500000cP以下である請求項1~4のいずれかに記載のダイレクトエステル交換油脂の製造方法。
PCT/JP2012/060718 2011-04-21 2012-04-20 ダイレクトエステル交換油脂の製造方法 WO2012144599A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013511057A JPWO2012144599A1 (ja) 2011-04-21 2012-04-20 ダイレクトエステル交換油脂の製造方法
CN201280019208.7A CN103492581A (zh) 2011-04-21 2012-04-20 直接酯交换油脂的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-095543 2011-04-21
JP2011095543 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144599A1 true WO2012144599A1 (ja) 2012-10-26

Family

ID=47041703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060718 WO2012144599A1 (ja) 2011-04-21 2012-04-20 ダイレクトエステル交換油脂の製造方法

Country Status (3)

Country Link
JP (1) JPWO2012144599A1 (ja)
CN (1) CN103492581A (ja)
WO (1) WO2012144599A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062110A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ ホイップドクリーム用起泡性水中油型乳化油脂組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6154091B1 (ja) * 2015-12-02 2017-06-28 日清オイリオグループ株式会社 被覆用油脂組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078586A (ja) * 1983-10-05 1985-05-04 Lion Corp 液体油脂の製造方法
JPH0779789A (ja) * 1993-09-17 1995-03-28 Nisshin Oil Mills Ltd:The リパーゼ粉末を用いたエステル交換法
JP2006246808A (ja) * 2005-03-11 2006-09-21 Adeka Corp 油脂のエステル交換方法
JP2010068750A (ja) * 2008-09-18 2010-04-02 Fuji Oil Co Ltd リパーゼ粉末製剤及びその製造法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101461423A (zh) * 2009-01-15 2009-06-24 江南大学 酯交换法制备无颗粒晶体产生的起酥油或人造奶油的基料油的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078586A (ja) * 1983-10-05 1985-05-04 Lion Corp 液体油脂の製造方法
JPH0779789A (ja) * 1993-09-17 1995-03-28 Nisshin Oil Mills Ltd:The リパーゼ粉末を用いたエステル交換法
JP2006246808A (ja) * 2005-03-11 2006-09-21 Adeka Corp 油脂のエステル交換方法
JP2010068750A (ja) * 2008-09-18 2010-04-02 Fuji Oil Co Ltd リパーゼ粉末製剤及びその製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062110A1 (ja) * 2011-10-26 2013-05-02 株式会社カネカ ホイップドクリーム用起泡性水中油型乳化油脂組成物

Also Published As

Publication number Publication date
CN103492581A (zh) 2014-01-01
JPWO2012144599A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP4930660B2 (ja) 液状油脂とその製造法
JP5929763B2 (ja) 油脂の乾式分別法
CN102504950B (zh) 一种茶籽油的脱色方法
JP4682848B2 (ja) 油脂の乾式分別法
WO2012144599A1 (ja) ダイレクトエステル交換油脂の製造方法
JP5576513B2 (ja) 油脂の製造方法
JP4091099B1 (ja) 乾式分別法、これを用いた高液状性パーム油および油脂組成物
JPH11106782A (ja) 脂肪酸類からの飽和脂肪酸の低減方法
US10472590B2 (en) Dry-mode oil/fat separation method
KR102343454B1 (ko) 트리테르펜 에스테르의 농축
JP6534512B2 (ja) ハードバターの製造方法
JP2015512961A (ja) グリセリド油を精製し、このプロセスで得られるトリグリセリド油を純化するプロセス
JP2000204389A (ja) ラ―ドの分別方法
JP2005281462A (ja) 油脂類の分別方法、それに用いるシード及び分別油脂
JP2014520193A (ja) 油組成物を製造する方法
JP4410699B2 (ja) 油脂組成物及び油脂組成物の製造方法
JP2002030295A (ja) 食用油脂の分別法
JPS62179598A (ja) 油脂の抽出方法
EP2787062B1 (en) A process for fractionating crude triglyceride oil
JP2001098293A (ja) シア脂からの不鹸化物分離法
JP2024140375A (ja) 油脂の製造方法
JPWO2009028295A1 (ja) 油脂の乾式分別法
JP2014141539A (ja) 油脂の乾式分別法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774779

Country of ref document: EP

Kind code of ref document: A1