WO2012033088A1 - 含フッ素化合物からの水分除去方法 - Google Patents
含フッ素化合物からの水分除去方法 Download PDFInfo
- Publication number
- WO2012033088A1 WO2012033088A1 PCT/JP2011/070253 JP2011070253W WO2012033088A1 WO 2012033088 A1 WO2012033088 A1 WO 2012033088A1 JP 2011070253 W JP2011070253 W JP 2011070253W WO 2012033088 A1 WO2012033088 A1 WO 2012033088A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- moisture
- containing compound
- metal salt
- aqueous solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/263—Drying gases or vapours by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/28—Selection of materials for use as drying agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/30—Alkali metal compounds
- B01D2251/302—Alkali metal compounds of lithium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/402—Alkaline earth metal or magnesium compounds of magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/404—Alkaline earth metal or magnesium compounds of calcium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/60—Inorganic bases or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/10—Inorganic absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/10—Inorganic absorbents
- B01D2252/103—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/26—Halogens or halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
- C07C17/389—Separation; Purification; Stabilisation; Use of additives by adsorption on solids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
- Y02P20/155—Perfluorocarbons [PFC]; Hydrofluorocarbons [HFC]; Hydrochlorofluorocarbons [HCFC]; Chlorofluorocarbons [CFC]
Definitions
- the present invention relates to a method for removing water from a fluorine-containing compound.
- Hydrofluorocarbons such as pentafluoroethane (HFC-125) and difluoromethane (HFC-32) are important alternatives to chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) that can destroy the ozone layer.
- CFCs chlorofluorocarbons
- HCFCs hydrochlorofluorocarbons
- Hydrofluoroolefin is a general term for unsaturated hydrocarbons containing hydrogen and fluorine, and is often obtained by a dehydrohalogenation reaction of a corresponding alkane.
- a typical method for producing 2,3,3,3-tetrafluoropropene (HFO-1234yf), which is an example of a hydrofluoroolefin is 1,1,1,2,3-pentafluoropropane (HFC- 245eb) and 1,1,1,2,2-pentafluoropropane (HFC-245cb) by deHF are known.
- HF since the obtained HFO-1234yf becomes a mixture with HF, HF must be removed by some method.
- the simplest method for removing the acid from the mixed gas of hydrofluoroolefin and acid is to absorb the acid with water.
- water for mist and vapor pressure is always mixed in the hydrofluoroolefin.
- sources of water such as moisture contained in the raw material, moisture generated from the catalyst, and moisture remaining in the facility.
- Moisture contained in the hydrofluoroolefin product is one of the most important factors in quality control because it affects its stability, the corrosiveness of the equipment, and its ability as a refrigerant. Is a particularly important technology.
- Patent Document 1 describes a method in which a fluid of fluoropropene such as HFO-1234yf is passed through zeolite to be dried.
- a large packed tower is required, and there is a disadvantage that the treatment efficiency is poor.
- the method using the adsorbent has problems such as poor productivity because it is necessary to periodically stop and regenerate and replace the adsorbent, and further, it is necessary to make two systems of equipment. .
- the present invention has been made in view of the current state of the prior art described above, and its main purpose is to continuously and efficiently remove moisture for various fluorine-containing compounds such as hydrofluoroolefin, Moreover, it is an industrially advantageous water removal method that generates less waste and the like.
- the inventor has conducted intensive research to achieve the above-described purpose. As a result, it has been found that moisture can be continuously and efficiently removed from a fluorine-containing compound by bringing the fluorine-containing compound containing moisture into contact with a high-concentration metal salt aqueous solution. According to this method, the aqueous metal salt solution used for the dehydration treatment is economically advantageous because it can be repeatedly used by reducing the amount of water, and further, no waste is generated. It has been found that this is an industrially excellent method with little load.
- the amount of water contained in the fluorine-containing compound can be greatly reduced by a simple method, Moreover, it has been found that the life of the moisture adsorbent and the time until regeneration can be extended.
- the present invention has been completed as a result of further research based on these findings.
- the present invention provides the following water removal method for fluorine-containing compounds.
- a method for removing moisture from a fluorine-containing compound comprising contacting a fluorine-containing compound containing moisture with an aqueous solution containing a metal salt.
- the fluorine-containing compound is at least one compound selected from the group consisting of hydrofluoroolefins, hydrochlorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons.
- Item 3 The method according to Item 2, wherein the fluorine-containing compound is a hydrofluoroolefin. 4).
- a method for removing moisture from a fluorine-containing compound comprising the steps of: removing moisture from the fluorine-containing compound by any one of the above items 1 to 8;
- the object to be treated is a fluorine-containing compound, and the type thereof is not particularly limited.
- the moisture is efficiently removed. This is a useful method in that a product with a reduced amount can be obtained.
- hydrofluoroolefins to be treated in the present invention include compounds represented by the following chemical formula.
- hydrochlorocarbons include CCl 3 CHClCH 2 Cl (HCC-240db).
- hydrochlorofluorocarbons include CCl 2 FCHClCH 2 Cl (HCFC-241db), CClF 2 CHClCH 2 Cl (HCFC-242dc), CF 3 CHClCH 2 Cl (HCFC-243db), CF 3 CHClCH 2 F (HCFC-244db), CF 3 CClFCH 3 (HCFC-244bb), etc.
- fluorocarbons include CF 3 CHFCHF 2 (HFC-236ea), CF 3 CF 2 CH 3 (HFC-245cb), CF 3 CH 2 CHF 2 (HFC-245fa), CF 3 CHFCH 2 F (HFC- 245eb).
- Water removal method for a fluorine-containing compound of the present invention it is necessary to contact a fluorine-containing compound containing water, which is an object to be treated, with an aqueous solution containing a metal salt. Thereby, the water
- the method for bringing the fluorine-containing compound containing water into contact with the aqueous solution containing the metal salt is not particularly limited.
- the fluorine-containing compound is a gas
- the fluorine-containing compound is added to the aqueous solution containing the metal salt.
- the method of introducing and bubbling can be applied.
- a method of contacting a fluorine-containing compound can also be applied.
- an aqueous solution containing a metal salt is sprayed from the top of the tower, a gaseous fluorine-containing compound is introduced from the bottom of the tower, and is extracted from the top of the tower. Can be reduced. At this time, it is possible to efficiently bring the fluorine-containing compound and the aqueous solution containing the metal salt into contact with each other by placing a spherical or granular packing that does not react with either the fluorine-containing compound or the metal salt in the moisture absorption tower. It becomes possible.
- the treatment temperature, the treatment pressure, and the like are not particularly limited, and it is only necessary to select conditions in which the fluorine-containing compound exists as a gas and can efficiently absorb moisture. Usually, it is only necessary to slightly pressurize the fluorine-containing compound under the conditions necessary for introducing the fluorine-containing compound into the moisture absorption tower and supply it to the moisture absorption tower.
- a metal salt having a hygroscopic property that can be used as a desiccant or the like can be used as the metal salt.
- a metal salt an alkali metal halide, an alkaline earth metal halide, or the like can be used.
- the alkali metal include Li, Na, and K
- examples of the alkaline earth metal include Ca and Mg.
- examples of the halide include chloride and bromide.
- preferred metal salts include lithium chloride (LiCl), calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), lithium bromide (LiBr) and the like. It is preferable in that it can be absorbed.
- the concentration of the metal salt is preferably as high as possible in order to absorb moisture efficiently. However, if the concentration is too high, the metal salt is easily crystallized. About a specific concentration range, what is necessary is just to make it as high as possible in the range which a metal salt does not crystallize according to the kind of metal salt to be used. For example, when LiCl is used, the concentration is usually preferably about 20 to 50% by weight, more preferably about 36 to 42% by weight.
- a water-absorbing agent such as concentrated sulfuric acid, glycerin or triethylene glycol is used, or these water-absorbing agents are used in combination with the above-described aqueous solution containing the metal salt.
- the amount of water in the fluorine-containing compound can be reduced.
- the moisture content is further reduced by performing dehydration treatment using a moisture adsorbent such as molecular sieve as necessary. Can do. Thereby, a high-quality fluorine-containing compound with a smaller water content can be easily obtained. Further, according to this method, the life of the moisture adsorbent and the time until regeneration can be extended, and the fluorine-containing compound can be dehydrated under industrially advantageous conditions.
- a known water adsorbent can be used as the water adsorbent.
- a moisture adsorbent include molecular sieves such as zeolite, silica gel, silica alumina, and the like.
- the dehydration treatment with the moisture adsorbent can be performed according to a known method. For example, a fluorine-containing compound that has been dehydrated with an aqueous solution containing a metal salt may be supplied to a dehydrating apparatus filled with a moisture adsorbent and passed through the apparatus.
- the amount of moisture can be continuously and efficiently reduced by a simple treatment method for various fluorine-containing compounds such as hydrofluoroolefins containing moisture.
- the aqueous metal salt solution used for the dehydration process is economically advantageous because it can be used repeatedly by reducing the amount of water, and since it does not generate waste, it has little environmental impact and is industrially useful. It is possible to reduce the amount of water in the fluorine-containing compound under favorable conditions.
- FIG. 3 is a flowchart showing a dehydration process of HFO-1234yf in Example 1.
- Example 1 The water contained in 2,3,3,3-tetrafluoropropene (HFO-1234yf) was removed by the following method. This method will be described based on the flowchart shown in FIG.
- HFO-1234yf having a water content of 2000 ppm by weight was continuously supplied from the bottom of the tower at a rate of 13.8 kg / hr (S11).
- an aqueous lithium chloride solution having a concentration of 42% by weight was supplied from the top of the tower and dispersed in the tower (S13).
- the pressure of HFO-1234yf when fed into the column was 0.05 MPaG, and the column top temperature was 25 ° C.
- the HFO-1234yf supplied from the tower bottom was extracted from the tower top and sent to the next step (S12).
- HFO-1234yf containing moisture supplied from the bottom of the column was sufficiently brought into contact with the lithium chloride aqueous solution, and HFO-1234yf having a reduced amount of moisture could be obtained from the top of the column.
- the lithium chloride aqueous solution supplied from the top of the tower was extracted from the bottom of the tower and circulated to the top of the tower (S13).
- a part of the extracted aqueous solution of lithium chloride was sent to a dehydration tank V11 and subjected to a heat vacuum dehydration treatment.
- the water generated by the dehydration treatment was discharged (S15), and an aqueous lithium chloride solution with a reduced water concentration was charged in the lower part of the water absorption tower T11 (S14). Thereby, the concentration of the circulating lithium chloride aqueous solution was kept constant.
- Table 1 shows the component composition in each of the above steps.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Drying Of Gases (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
1. 水分を含む含フッ素化合物を、金属塩を含有する水溶液に接触させることを特徴とする、含フッ素化合物の水分除去方法。
2. 含フッ素化合物が、ハイドロフルオロオレフィン類、ハイドロクロロカーボン類、ハイドロクロロフルオロカーボン類及びハイドロフルオロカーボン類からなる群から選ばれた少なくとも一種の化合物である上記項1に記載の方法。
3. 含フッ素化合物がハイドロフルオロオレフィン類である上記項2に記載の方法。
4. 含フッ素化合物が、2,3,3,3-テトラフルオロプロペンである上記項3に記載の方法。
5. 金属塩が、塩化リチウム、塩化カルシウム、塩化マグネシウム及び臭化リチウムからなる群から選ばれた少なくとも一種である上記項1~4のいずれかに記載の方法。
6. 金属塩が塩化リチウムである上記項5に記載の方法。
7. 金属塩を含有する水溶液の濃度が20~50重量%である上記項1~6のいずれかに記載の方法。
8. 上記項1~7のいずれかの方法で用いた金属塩を含有する水溶液の水分量を減少させた後、含フッ素化合物の水分除去に再利用する工程を含む請求項1~7のいずれかに記載の方法。
9. 上記項1~8のいずれかの方法によって含フッ素化合物の水分を除去した後、処理後の含フッ素化合物を、更に、水分吸着剤に接触させる工程を含む、含フッ素化合物の水分除去方法。
本発明では、処理対象物は、含フッ素化合物であり、その種類については特に限定はない。特に、製造時に水分が混入する可能性があるハイドロフルオロオレフィン類や、その中間体であるハイドロクロロカーボン類、ハイドロクロロフルオロカーボン類、ハイドロフルオロカーボン類等を処理対象物とする場合には、効率よく水分量の低減した製品を得ることができる点で有用な方法である。
CF3CF=CF2(HFO-1216yc)、CF3CF=CHF(HFO-1225ye)、
CF3CF=CH2(HFO-1234yf)、CF3CH=CHF(HFO-1234ze)、
CF3CH=CH2(HFO-1243zf)、CF3CCl=CH2(HCFO-1233xf)、
CF2ClCCl=CH2(HCFO-1232xf)、CF3CH=CHCl(HCFO-1233zd)、
CF3CCl=CHCl(HCFO-1223xd)、CClF2CCl=CHCl(HCFO-1222xd)、CFCl2CCl=CH2(HCFO-1231xf)、CH2ClCCl=CCl2(HCO-1230xa)。
本発明の含フッ素化合物の水分除去方法では、処理対象物である水分を含む含フッ素化合物を、金属塩を含有する水溶液に接触させることが必要である。これにより、含フッ素化合物に含まれる水分が金属塩を含有する水溶液に吸収されて、含フッ素化合物に含まれる水分量を低減させることができる。
下記の方法で2,3,3,3-テトラフルオロプロペン(HFO-1234yf)に含まれる水分を除去した。この方法について、図1に示すフロー図に基づいて説明する。
Claims (9)
- 水分を含む含フッ素化合物を、金属塩を含有する水溶液に接触させることを特徴とする、含フッ素化合物の水分除去方法。
- 含フッ素化合物が、ハイドロフルオロオレフィン類、ハイドロクロロカーボン類、ハイドロクロロフルオロカーボン類及びハイドロフルオロカーボン類からなる群から選ばれた少なくとも一種の化合物である請求項1に記載の方法。
- 含フッ素化合物がハイドロフルオロオレフィン類である請求項2に記載の方法。
- 含フッ素化合物が、2,3,3,3-テトラフルオロプロペンである請求項3に記載の方法。
- 金属塩が、塩化リチウム、塩化カルシウム、塩化マグネシウム及び臭化リチウムからなる群から選ばれた少なくとも一種である請求項1~4のいずれかに記載の方法。
- 金属塩が塩化リチウムである請求項5に記載の方法。
- 金属塩を含有する水溶液の濃度が20~50重量%である請求項1~6のいずれかに記載の方法。
- 請求項1~7のいずれかの方法で用いた金属塩を含有する水溶液の水分量を減少させた後、含フッ素化合物の水分除去に再利用する工程を含む請求項1~7のいずれかに記載の方法。
- 請求項1~8のいずれかの方法によって含フッ素化合物の水分を除去した後、処理後の含フッ素化合物を、更に、水分吸着剤に接触させる工程を含む、含フッ素化合物の水分除去方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/819,910 US9156753B2 (en) | 2010-09-07 | 2011-09-06 | Method for removing moisture from fluorine-containing compounds |
CN201180042921.9A CN103108852B (zh) | 2010-09-07 | 2011-09-06 | 从含氟化合物中的水分除去方法 |
EP11823563.9A EP2615079B1 (en) | 2010-09-07 | 2011-09-06 | Method for removing moisture from hydrofluoroolefine compounds |
KR1020137007922A KR101524385B1 (ko) | 2010-09-07 | 2011-09-06 | 함불소 화합물로부터의 수분 제거 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010200218A JP4952834B2 (ja) | 2010-09-07 | 2010-09-07 | 含フッ素化合物からの水分除去方法 |
JP2010-200218 | 2010-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012033088A1 true WO2012033088A1 (ja) | 2012-03-15 |
Family
ID=45810686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070253 WO2012033088A1 (ja) | 2010-09-07 | 2011-09-06 | 含フッ素化合物からの水分除去方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9156753B2 (ja) |
EP (1) | EP2615079B1 (ja) |
JP (1) | JP4952834B2 (ja) |
KR (1) | KR101524385B1 (ja) |
CN (1) | CN103108852B (ja) |
WO (1) | WO2012033088A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016047298A1 (ja) * | 2014-09-26 | 2016-03-31 | ダイキン工業株式会社 | ハロオレフィン類組成物 |
JP2018508550A (ja) * | 2015-03-19 | 2018-03-29 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | HCFO−1233zdを乾燥する方法 |
US10301236B2 (en) | 2015-05-21 | 2019-05-28 | The Chemours Company Fc, Llc | Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase |
US10731065B2 (en) | 2014-09-26 | 2020-08-04 | Daikin Industries, Ltd. | Haloolefin-based composition and use thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9926244B2 (en) | 2008-10-28 | 2018-03-27 | Honeywell International Inc. | Process for drying HCFO-1233zd |
CN103524292B (zh) * | 2013-10-11 | 2015-01-21 | 太仓中化环保化工有限公司 | 一种1,1,1,2-四氟乙烷粗品的脱水系统 |
KR101941214B1 (ko) * | 2014-03-08 | 2019-01-23 | 주식회사 제우스 | 기판의 건조 방법 |
EP3245658A1 (en) * | 2015-01-13 | 2017-11-22 | ABB Schweiz AG | Apparatus containing a dielectric insulation gas comprising an organofluorine compound |
US9938213B2 (en) * | 2015-08-19 | 2018-04-10 | Honeywell International Inc. | Methods for removing acidic impurities from halogenated propenes |
JP6323540B1 (ja) | 2016-11-28 | 2018-05-16 | セントラル硝子株式会社 | ドライエッチング剤組成物及びドライエッチング方法 |
FR3067347B1 (fr) | 2017-06-09 | 2020-07-24 | Arkema France | 1,1,1,2,3,3-hexafluoropropane de haute purete, son procede de fabrication et utilisation |
JP7485666B2 (ja) | 2018-11-15 | 2024-05-16 | アーケマ・インコーポレイテッド | ヒドロクロロフルオロオレフィンを含む粗製ストリームを精製する方法 |
US20220136715A1 (en) * | 2019-02-05 | 2022-05-05 | Drupps Group Ab | Device for Continuous and Efficient Water Absorption and Regeneratation of Desiccant, an Air Cooler, and a Method for Controlling Such a Device |
WO2020218155A1 (ja) * | 2019-04-23 | 2020-10-29 | シャープ株式会社 | 調湿装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5012405B1 (ja) * | 1970-12-25 | 1975-05-12 | ||
WO2007144632A1 (en) | 2006-06-14 | 2007-12-21 | Ineos Fluor Holdings Limited | Process for drying a gas stream comprising a fluoropropene |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1075590B (de) * | 1955-11-21 | 1960-02-18 | Columbia Southern Chemical Cor poration, Pittsburgh, Pa (V St A) | Ver fahren zur Entfernung von Wasser aus halogenieren, vorzugsweise ungesättigten Kohlenwasserstoffen |
JPS5419925B2 (ja) * | 1973-06-05 | 1979-07-19 | ||
JPS62170409A (ja) * | 1986-01-21 | 1987-07-27 | Kobe Steel Ltd | 溶銑の予備処理方法 |
CA2137279C (en) * | 1992-06-05 | 2001-08-21 | Hirokazu Aoyama | Method for manufacturing 1,1,1,2,3-pentafluoropropene 1,1,1,2,3-pentafluoropropane |
US5723702A (en) * | 1993-12-09 | 1998-03-03 | Korea Institute Of Science And Technology | Method for removing moisture from chlorodifluoro-methane |
BR9711969A (pt) * | 1996-08-27 | 1999-08-24 | Daikin Ind Ltd | Processo para prepara-Æo de difluormetano |
US6559096B1 (en) * | 2000-10-18 | 2003-05-06 | Nanopore, Inc. | Desiccant composition |
US8067649B2 (en) * | 2004-04-29 | 2011-11-29 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
JP5012405B2 (ja) * | 2007-10-22 | 2012-08-29 | 栗田工業株式会社 | 地中浄化構造物およびその工法 |
-
2010
- 2010-09-07 JP JP2010200218A patent/JP4952834B2/ja active Active
-
2011
- 2011-09-06 KR KR1020137007922A patent/KR101524385B1/ko active IP Right Grant
- 2011-09-06 WO PCT/JP2011/070253 patent/WO2012033088A1/ja active Application Filing
- 2011-09-06 CN CN201180042921.9A patent/CN103108852B/zh active Active
- 2011-09-06 US US13/819,910 patent/US9156753B2/en active Active
- 2011-09-06 EP EP11823563.9A patent/EP2615079B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5012405B1 (ja) * | 1970-12-25 | 1975-05-12 | ||
WO2007144632A1 (en) | 2006-06-14 | 2007-12-21 | Ineos Fluor Holdings Limited | Process for drying a gas stream comprising a fluoropropene |
JP2009539598A (ja) * | 2006-06-14 | 2009-11-19 | イネオス、フラウアー、ホールディングス、リミテッド | フルオロプロペンを含んでなるガス流の乾燥方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2615079A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10968378B2 (en) | 2014-09-26 | 2021-04-06 | Daikin Industries, Ltd. | Haloolefin-based composition |
JP2016069634A (ja) * | 2014-09-26 | 2016-05-09 | ダイキン工業株式会社 | ハロオレフィン類組成物 |
WO2016047298A1 (ja) * | 2014-09-26 | 2016-03-31 | ダイキン工業株式会社 | ハロオレフィン類組成物 |
EP3040326B1 (en) | 2014-09-26 | 2020-01-08 | Daikin Industries, Ltd. | Haloolefin-based composition |
US10669464B2 (en) | 2014-09-26 | 2020-06-02 | Daikin Industries, Ltd. | Haloolefin-based composition |
US10731065B2 (en) | 2014-09-26 | 2020-08-04 | Daikin Industries, Ltd. | Haloolefin-based composition and use thereof |
US10913881B2 (en) | 2014-09-26 | 2021-02-09 | Daikin Industries, Ltd. | Method of stabilization of a haloolefin-based composition |
JP2018508550A (ja) * | 2015-03-19 | 2018-03-29 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | HCFO−1233zdを乾燥する方法 |
US10301236B2 (en) | 2015-05-21 | 2019-05-28 | The Chemours Company Fc, Llc | Hydrofluorination of a halogenated olefin with SbF5 in the liquid phase |
US10988422B2 (en) | 2015-05-21 | 2021-04-27 | The Chemours Company Fc, Llc | Hydrofluoroalkane composition |
US11008267B2 (en) | 2015-05-21 | 2021-05-18 | The Chemours Company Fc, Llc | Hydrofluoroalkane composition |
US11572326B2 (en) | 2015-05-21 | 2023-02-07 | The Chemours Company Fc, Llc | Method for preparing 1,1,1,2,2-pentafluoropropane |
US12006274B2 (en) | 2015-05-21 | 2024-06-11 | The Chemours Company Fc, Llc | Compositions including olefin and hydrofluoroalkane |
Also Published As
Publication number | Publication date |
---|---|
US9156753B2 (en) | 2015-10-13 |
JP2012056866A (ja) | 2012-03-22 |
CN103108852B (zh) | 2015-10-21 |
CN103108852A (zh) | 2013-05-15 |
EP2615079A1 (en) | 2013-07-17 |
EP2615079B1 (en) | 2019-11-27 |
US20130158305A1 (en) | 2013-06-20 |
EP2615079A4 (en) | 2015-07-15 |
KR101524385B1 (ko) | 2015-05-29 |
KR20130048265A (ko) | 2013-05-09 |
JP4952834B2 (ja) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4952834B2 (ja) | 含フッ素化合物からの水分除去方法 | |
ES2784741T3 (es) | Proceso para la purificación de (hidro)fluoroalquenos | |
EP3109225B1 (en) | Method for purifying fluid that includes trifluoroethylene, and method for producing trifluoroethylene | |
JP6107466B2 (ja) | トランス−1,3,3,3−テトラフルオロプロペンの精製方法 | |
CN108368011B (zh) | 氢氟烯烃的制造方法 | |
CN108137448B (zh) | 从卤代丙烯中除去酸性杂质的方法 | |
CN102884031A (zh) | 用于形成四氟烯烃的五氟烷的脱氟化氢作用 | |
CN108026003B (zh) | 纯化和干燥氢氟烯烃物流的方法 | |
JP7548692B2 (ja) | 1,1,1,3,3-ペンタフルオロプロパンを含む組成物 | |
CN110741061B (zh) | 含有五氟丙烷和水的共沸或类共沸组合物以及五氟丙烷的制造方法 | |
WO2013115048A1 (ja) | (e)-1-クロロ-3,3,3-トリフルオロプロペンの精製方法 | |
KR20180065035A (ko) | 1230xa 공정을 통한 1234yf 중 부산물인 무수 또는 수성 염산으로부터의 플루오르화 유기물의 제거 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180042921.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823563 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13819910 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011823563 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137007922 Country of ref document: KR Kind code of ref document: A |