WO2012014747A1 - 吸水性樹脂の製造方法 - Google Patents
吸水性樹脂の製造方法 Download PDFInfo
- Publication number
- WO2012014747A1 WO2012014747A1 PCT/JP2011/066453 JP2011066453W WO2012014747A1 WO 2012014747 A1 WO2012014747 A1 WO 2012014747A1 JP 2011066453 W JP2011066453 W JP 2011066453W WO 2012014747 A1 WO2012014747 A1 WO 2012014747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- aqueous solution
- polymerization
- total
- nozzle
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/18—Suspension polymerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
- C08F2/10—Aqueous solvent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/32—Polymerisation in water-in-oil emulsions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/04—Acids, Metal salts or ammonium salts thereof
- C08F20/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/14—Water soluble or water swellable polymers, e.g. aqueous gels
Definitions
- the present invention relates to a method for producing a water-absorbent resin by a reverse-phase suspension polymerization method, and a method for producing a water-absorbent resin with reduced odor derived from raw material components, in particular, petroleum hydrocarbon dispersion media, and thereby obtained. It relates to a water-absorbent resin.
- Water-absorbing resin is widely used in sanitary materials such as disposable diapers and sanitary napkins, daily necessaries such as pet sheets, industrial materials such as water-absorbing sheets for food and water-stopping materials for cables, and water retention agents for greening / agriculture / horticulture. ing.
- Sanitary materials such as disposable diapers and sanitary napkins are generally composed of top sheets, back sheets, hot melt adhesives, stretch materials, water absorbent resins, pulp fibers, etc., and many synthetic resins and modifiers are used. Odor derived from the raw material components may be felt. Since these sanitary materials are worn on the human body, even if they have a slight odor, they give unpleasant feeling to the user, so that no bromide is desired.
- the water-absorbing resin also has a slight odor derived from substances used in its production process, and is likely to be emitted when absorbed, so it is considered desirable to reduce the odor.
- water-absorbing resins used in sanitary materials include polyacrylic acid partial neutralized products, starch-acrylic acid graft polymer neutralized products, starch-acrylonitrile graft polymer hydrolysates, and vinyl acetate-acrylic acid esters.
- a saponified product of a copolymer is known.
- aqueous solution polymerization method As a method for producing such a water absorbent resin, an aqueous solution polymerization method, a reverse phase suspension polymerization method, and the like are known.
- a water-absorbent resin produced by a legal method it is considered that the main cause of the odor is derived from the dispersion medium.
- an internal cross-linking agent for an ⁇ , ⁇ -unsaturated carboxylic acid and an alkali metal salt aqueous solution thereof in a petroleum hydrocarbon solvent using a radical polymerization initiator is used.
- a method for producing a water-absorbing resin characterized by using a sucrose fatty acid ester as a protective colloid agent see Patent Document 1
- a radical polymerization initiator In the case where an aqueous solution of 25% by mass or more of an ⁇ , ⁇ -unsaturated carboxylic acid and an alkali metal salt thereof is polymerized in a hydrocarbon solvent in the presence or absence of an internal crosslinking agent, HLB 2-16 is used as a surfactant.
- Manufacturing methods characterized by the use of polyglycerin fatty acid esters (see Patent Document 2) and the like are known. The odor of the obtained water-absorbent resin was not sufficiently low.
- An object of the present invention is a method for producing a water-absorbent resin by a reverse phase suspension polymerization method, a method for producing a water-absorbent resin with reduced odor derived from raw material components, particularly petroleum-based hydrocarbon dispersion medium, and It is in providing the water-absorbent resin obtained by this.
- this invention relates to the manufacturing method of the water absorbing resin shown below, and the water absorbing resin obtained by it.
- Item 1 A method for producing a water-absorbing resin comprising reverse-phase suspension polymerization of a water-soluble ethylenically unsaturated monomer using a surfactant in a petroleum hydrocarbon dispersion medium, comprising a water-soluble ethylenically unsaturated monomer aqueous solution
- the following conditions are applied to the charging speed when dispersing in the dispersion medium:
- (A) In introducing the water-soluble ethylenically unsaturated monomer aqueous solution into the polymerization tank, the following formula (I):
- V i F i ⁇ A i / T [Where, i: nozzle number (1 to n), n: number of nozzles (1 ⁇ n ⁇ 10), V i : addition rate [min ⁇ 1 ], F i : average linear flow velocity from nozzle [m / min],
- a method for producing a water-absorbing resin comprising reverse-phase suspension polymerization of a water-soluble ethylenically unsaturated monomer using a surfactant in a petroleum hydrocarbon dispersion medium, comprising a water-soluble ethylenically unsaturated monomer aqueous solution
- the following conditions are applied to the charging speed when dispersing in the dispersion medium:
- V total V 1 ]
- a method for producing a water-absorbent resin characterized in that the total addition rate V total defined by the formula ( 1 ) satisfies 0.08 [min ⁇ 1 ] or more.
- Item 3. Item 3. The method for producing a water absorbent resin according to Item 1 or 2, wherein n is 2 ⁇ n ⁇ 10.
- Item 4. In reverse phase suspension polymerization, a water-soluble ethylenically unsaturated monomer aqueous solution is dispersed in a petroleum hydrocarbon dispersion medium using a surfactant before polymerization, and then a water-soluble radical initiator is used.
- Item 4. The method for producing a water absorbent resin according to any one of Items 1 to 3, wherein polymerization is performed.
- Item 5. Item 5. A water-absorbent resin obtained by the production method according to any one of Items 1 to 4.
- the present invention refers to a water-soluble ethylenically unsaturated monomer aqueous solution (hereinafter referred to as “monomer aqueous solution” means “water-soluble ethylenically unsaturated monomer aqueous solution” unless otherwise specified).
- Reverse phase suspension polymerization is carried out in the presence of a surfactant in a dispersion medium (hereinafter referred to as “dispersion medium” refers to “petroleum hydrocarbon dispersion medium” unless otherwise specified), and this is followed by a monomer aqueous solution.
- dispensersion medium refers to “petroleum hydrocarbon dispersion medium” unless otherwise specified
- the cause of the odor at the time of water absorption of the water absorbent resin obtained by reverse phase suspension polymerization is mainly the dispersion medium remaining in the water absorbent resin particles.
- the dispersion medium that is the oil phase is incorporated into the droplets of the aqueous monomer solution.
- O / W / O (oil / water / oil) type droplets are generated, and the O / W / O droplets are polymerized while being stabilized, so that the dispersion medium is included.
- the O / W type liquid droplet is an abbreviation of Oil in Water and refers to a state in which the oil phase liquid droplets are dispersed in the water phase.
- the O / W / O type liquid droplet is an abbreviation of (Oil in Water) in Oil, in which fine droplets of the oil phase are dispersed in the water phase droplets, and the water phase droplets further The state dispersed in the oil phase. This is formed from the innermost oil phase / intermediate aqueous phase / outermost oil phase.
- aqueous monomer solution aqueous phase
- Oil phase dispersion medium
- V i F i ⁇ A i / T [Where, i: nozzle number (1 to n), n: number of nozzles (1 ⁇ n ⁇ 10), V i : addition rate [min ⁇ 1 ], F i : average linear flow velocity from nozzle [m / min], A i : Cross-sectional area of nozzle [m 2 ], T: Total amount of monomer aqueous solution [m 3 ] charged into the polymerization reaction tank. ]
- F i (average linear flow velocity from nozzle number i) is an index of how much the monomer aqueous solution to be injected is ejected at the inlet, that is, nozzle number i. If the monomer aqueous solution is charged from the charging nozzle at a high speed, the amount of the residual dispersion medium in the resulting water-absorbent resin increases, so that it is considered that the residual of the dispersion medium is affected as described later. When a pump or the like is used, the value calculated from the flow rate (the volume flow rate is divided by the cross-sectional area of the nozzle outlet) is defined as the average linear flow velocity F i from the nozzle.
- the average volume flow rate is obtained by dividing the monomer aqueous solution amount (volume) to be charged by the time required for charging, and the average linear flow velocity F i is calculated.
- a i cross-sectional area of nozzle number i
- a i cross-sectional area of nozzle number i
- the linear flow rate of the monomer aqueous solution is slow, if the liquid mass (droplet) when injected into the dispersion medium is large, the amount of the residual dispersion medium of the resulting water-absorbent resin will increase, so that the dispersion as described later It is considered to affect the remaining of the medium.
- T total amount of monomer aqueous solution charged into the polymerization reaction tank
- V i addition speed of nozzle number i
- F i [m / min] linear flow velocity
- the addition rate By providing a plurality of nozzles for introducing the monomer aqueous solution into the polymerization reaction tank of 0.30 [min ⁇ 1 ] or less, the addition rate of the monomer aqueous solution to the dispersion medium is ensured as the entire polymerization reaction tank.
- a water-absorbent resin of the present invention which comprises reverse-phase suspension polymerization of a water-soluble ethylenically unsaturated monomer using a surfactant in a petroleum hydrocarbon dispersion medium
- the addition rate of the ethylenically unsaturated monomer aqueous solution (a) the addition rate V i of each nozzle is 0.30 [min ⁇ 1 ] or less, and (b) the total addition of all the nozzles described above. It is necessary to satisfy the condition that the speed V total is 0.04 [min ⁇ 1 ] or more. In other words, if the addition rate V i from each nozzle is 0.30 [min ⁇ 1 ] or less, V total may be 0.3 [min ⁇ 1 ] or more.
- the plurality of nozzles in the present invention is not limited to the installation method as long as the above-described addition rate condition is satisfied, and a single flow path is branched into a plurality in the vicinity of the polymerization reaction tank, and a nozzle is provided at the tip thereof. Even if it installs, you may install a some flow path from a supply tank.
- V i is represented by the product of two factors as in the above formula (I), and the factor is (1) an average line representing the momentum of the monomer aqueous solution discharged from the nozzle.
- the flow velocity is F i
- the cross-sectional area of the nozzle related to the size of the droplet of the monomer aqueous solution discharged from the nozzle is A i .
- the generated O / W type droplets are further stirred and dispersed in the dispersion medium, so that it is considered that O / W / O type droplets are formed.
- the O / W / O type droplets are polymerized in the shape, water-absorbing resin particles enclosing the dispersion medium are obtained, and the encapsulated dispersion medium is detected as the remaining dispersion medium. It is assumed that by controlling the factors (1) and (2) to be small, the generation amount of O / W / O type droplets is suppressed, and as a result, the amount of residual dispersion medium is reduced.
- the maximum number of nozzles is actually preferably 10 and more preferably 4 or less. Further, from the viewpoint of suppressing the generation of a rich region of the monomer aqueous solution in the dispersion, V total is preferably 1.0 [min ⁇ 1 ] or less, and preferably 0.5 [min ⁇ 1 ] or less. It is considered more preferable.
- the O / W type liquid droplet is an abbreviation of Oil in Water, and means a state in which the oil phase liquid droplets are dispersed in the water phase.
- the O / W / O type liquid droplet is an abbreviation of (Oil in Water) in Oil, in which fine droplets of the oil phase are dispersed in the water phase droplets, and the water phase droplets further The state dispersed in the oil phase. This is formed from the innermost oil phase, the intermediate water phase, and the outermost oil phase.
- aqueous monomer solution aqueous phase
- the dispersion medium oil phase
- (meth) acrylic acid ““(meth) acryl” means “acryl” and “methacryl”.
- monomers having an acid group such as 2- (meth) acrylamide-2-methylpropanesulfonic acid and maleic acid, and salts thereof; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2 Nonionic unsaturated monomers such as hydroxyethyl (meth) acrylate and N-methylol (meth) acrylamide; amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate and diethylaminopropyl (meth) acrylate and the like And the like. These may be used alone or in combination of two or more.
- compounds such as lithium, sodium, potassium, ammonium
- alkaline compound used when neutralizing the monomer which has an acid group, and making it a salt. More specifically, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, ammonium carbonate and the like can be mentioned.
- the water-soluble ethylenically unsaturated monomers preferred are (meth) acrylic acid and salts thereof from the viewpoint of easy industrial availability.
- the degree of neutralization is preferably 30 to 90 mol% of the acid group of the water-soluble ethylenically unsaturated monomer.
- the degree of neutralization is lower than 30 mol%, the acid groups are not easily ionized and the water absorption ability may be lowered, which is not preferable.
- the degree of neutralization exceeds 90 mol%, there is a possibility that a safety problem may occur when used as a sanitary material.
- the water-soluble ethylenically unsaturated monomer is used as an aqueous solution.
- the monomer concentration of the water-soluble ethylenically unsaturated monomer aqueous solution is preferably 20% by mass to saturated concentration.
- the monomer aqueous solution may contain a chain transfer agent, a thickener and the like as necessary.
- chain transfer agent include compounds such as thiols, thiolic acids, secondary alcohols, hypophosphorous acid, and phosphorous acid. These may be used alone or in combination of two or more.
- the thickener include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polyethylene glycol, polyacrylic acid, polyacrylic acid neutralized product, polyacrylamide and the like.
- Examples of petroleum hydrocarbon dispersion media include n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane.
- 8 aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane, etc.
- Examples include alicyclic hydrocarbons, aromatic hydrocarbons such as benzene, toluene, and xylene.
- n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, n-octane and the like having 6 to 8 carbon atoms.
- Aliphatic hydrocarbons C6-C8 alicyclic hydrocarbons such as cyclohexane, methylcyclopentane, and methylcyclohexane are more preferably used.
- These hydrocarbon dispersion media may be used independently and may use 2 or more types together.
- the state of W / O type reverse phase suspension in the present invention is good, a suitable particle size is easily obtained, industrial availability is easy, and the quality is stable.
- n-heptane and cyclohexane are preferably used.
- a suitable result can be obtained by using commercially available Exol heptane (manufactured by ExxonMobil Co., Ltd .: containing n-heptane and isomeric hydrocarbons of 75 to 85%).
- the amount of the petroleum hydrocarbon dispersion medium used is usually 50 to 600 parts by mass with respect to 100 parts by mass of the monomer aqueous solution from the viewpoint of uniformly dispersing the monomer aqueous solution and facilitating control of the polymerization temperature. It is preferably 50 to 400 parts by mass, more preferably 50 to 200 parts by mass.
- an aqueous monomer solution is dispersed in a dispersion medium, and thus a surfactant and, if necessary, a hydrophobic polymer dispersant are used.
- the surfactant or the hydrophobic polymer dispersant is present before the monomer aqueous solution is polymerized, and the monomer aqueous solution is sufficiently contained in the dispersion medium.
- the timing of addition is not particularly limited.
- surfactants and hydrophobic polymer dispersants are dissolved or dispersed in a petroleum hydrocarbon dispersion medium in advance before adding an aqueous monomer solution. It is common.
- the surfactant used for maintaining dispersion stability during polymerization include, for example, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, sucrose fatty acid ester, sorbitol fatty acid ester, Polyoxyethylene sorbitol fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropyl alkyl ether , Polyethylene glycol fatty acid ester, alkyl glucoside, N-alky
- the addition amount of the surfactant used is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer aqueous solution.
- the addition amount of the surfactant is less than 0.01 parts by mass, the dispersion stability of the aqueous monomer solution is lowered, and this is not preferable.
- a hydrophobic polymer dispersant may be used in combination with a surfactant.
- the hydrophobic polymer dispersant is preferably selected from those that dissolve or disperse in the petroleum hydrocarbon dispersion medium to be used.
- the viscosity average molecular weight is 20,000 or less, preferably 10,000 or less, more preferably 5,000 or less.
- maleic anhydride modified polyethylene maleic anhydride modified polypropylene, maleic anhydride modified ethylene / propylene copolymer, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / Ethylene / propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propylene copolymer, ethylene / acrylic acid copolymer, ethyl cellulose, anhydrous maleated polybutadiene, Examples thereof include anhydrous maleated EPDM (ethylene / propylene / diene terpolymer).
- EPDM ethylene / propylene / diene terpolymer
- maleic anhydride modified polyethylene maleic anhydride modified polypropylene, maleic anhydride modified ethylene / propylene copolymer, maleic anhydride / ethylene copolymer, maleic anhydride / propylene copolymer, maleic anhydride / ethylene -At least one selected from the group consisting of propylene copolymer, polyethylene, polypropylene, ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene and oxidized ethylene / propylene copolymer is preferable.
- the addition amount of the hydrophobic polymer dispersant is preferably 0 to 5 parts by mass, more preferably 0.01 to 3 parts by mass, with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer aqueous solution. More preferred is ⁇ 2 parts by mass.
- the amount of the hydrophobic polymer dispersant added is more than 5 parts by mass, it is not economical because it is not economical.
- the stirring conditions vary depending on the desired dispersed droplet size, so they are generally determined. It is not possible.
- the dispersed droplet diameter can be adjusted by the type of the stirring blade, the blade diameter, the rotational speed, and the like.
- the stirring blade include a propeller blade, a paddle blade, an anchor blade, a turbine blade, a fiddler blade, a ribbon blade, a full zone blade (manufactured by Shinko Pantech Co., Ltd.), and a max blend blade (manufactured by Sumitomo Heavy Industries, Ltd.).
- Supermix (produced by Satake Chemical Machinery Co., Ltd.) can be used.
- the water-soluble ethylenically unsaturated monomer aqueous solution in which the components are adjusted and mixed is added to one or more nozzles. Therefore, the addition rate from each nozzle is taken care of to be 0.30 [min ⁇ 1 ] or less, and the addition rate is 0.04 [min ⁇ 1 ] or more as the total addition rate. What must be done is as described above.
- aqueous monomer solution added at the aforementioned addition rate is sufficiently stirred and dispersed in the dispersion medium in the presence of a surfactant to stabilize the droplets, and at the same time, the system is sufficiently purged with nitrogen. Then, reverse-phase suspension polymerization is performed with a water-soluble radical polymerization initiator in the presence of an internal crosslinking agent as necessary to obtain a suspension of a hydrogel crosslinked polymer.
- water-soluble radical polymerization initiator examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; peroxides such as hydrogen peroxide; 2,2′-azobis (2- Amidinopropane) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropiondiamine] tetrahydrate, 2,2′-azobis (1-imino-1-pyrrolidino-2- And azo compounds such as 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide] and the like.
- persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate
- peroxides such as hydrogen peroxide
- 2,2′-azobis (2- Amidinopropane) dihydrochloride 2,2′-azobis [N- (2-carboxyethyl) -2
- the water-soluble radical polymerization initiator may be used as a redox polymerization initiator in combination with a reducing agent such as sulfite or ascorbic acid.
- the amount of the water-soluble radical polymerization initiator used is usually 0.01 to 1 part by mass per 100 parts by mass of the water-soluble ethylenically unsaturated monomer. When the amount is less than 0.01 parts by mass, the polymerization rate is low.
- the addition timing of the water-soluble radical polymerization initiator is not particularly limited, but it is preferably added in advance to the water-soluble ethylenically unsaturated monomer aqueous solution.
- (poly) ethylene glycol ““(poly)” means with or without the prefix “poly”. The same shall apply hereinafter), polyols such as 1,4-butanediol, glycerin, trimethylolpropane, etc., and a polymer having two or more vinyl groups obtained by reacting a polyol with an unsaturated acid such as acrylic acid or methacrylic acid.
- Unsaturated esters bisacrylamides such as N, N'-methylenebisacrylamide, (poly) ethylene glycol diglycidyl ether, (poly) ethylene glycol triglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin tri Examples thereof include polyglycidyl compounds containing two or more glycidyl groups such as glycidyl ether, (poly) propylene glycol polyglycidyl ether, and (poly) glycerol polyglycidyl ether. These may be used alone or in combination of two or more.
- the addition amount of the internal crosslinking agent is preferably 0 to 3 parts by mass, more preferably 0 to 1 part by mass, and 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer. Is more preferable. When the addition amount exceeds 3 parts by mass, the crosslinking becomes excessive and the water absorption performance becomes too low, which is not preferable.
- the internal cross-linking agent is preferably added in advance to the water-soluble ethylenically unsaturated monomer aqueous solution.
- the reaction temperature in the reverse phase suspension polymerization in the present invention varies depending on the kind and amount of the polymerization initiator used, and thus cannot be determined unconditionally, but is preferably 30 to 100 ° C., more preferably 40 to 90. ° C.
- the reaction temperature is lower than 30 ° C, the polymerization rate may be lowered, and when the reaction temperature is higher than 100 ° C, a rapid polymerization reaction occurs, which is not preferable.
- the obtained polymerization reaction solution (suspension of the hydrogel-like crosslinked polymer) after the reverse phase suspension polymerization was used as the first stage polymerization, and thereafter the monomer aqueous solution was added several times.
- the size of the particles obtained by the polymerization of the water-soluble ethylenically unsaturated monomer in the first stage is preferably a median particle diameter of 20 to 200 ⁇ m, from the viewpoint of obtaining an appropriate aggregated particle diameter in the multistage polymerization. 150 ⁇ m is more preferable, and 40 to 100 ⁇ m is even more preferable.
- the median particle size of the first stage polymer particles can be measured by dehydration and drying after the completion of the first stage polymerization. (The measurement method is as described later.)
- the particles obtained by the first-stage polymerization can be aggregated to obtain a water-absorbing resin having a relatively large average particle size suitable for sanitary material applications.
- the aggregated particles can be obtained by cooling after completion of the first stage polymerization and adding the aqueous monomer solution for the second stage polymerization at a temperature at which at least a part of the surfactant is precipitated.
- the method is not limited to the above method as long as aggregated particles can be obtained by adding a monomer aqueous solution for the second stage polymerization.
- the residual amount of the dispersion medium in the water-absorbent resin is further reduced by adding the aqueous monomer solution for the second-stage polymerization after reducing the surfactant activity of the surfactant as described above. be able to.
- the surfactant activity of the surfactant the generation of independent droplets is suppressed as described above, and the second-stage monomer aqueous solution forms O / W / O droplets. It is presumed that the stabilization is also suppressed. (It is generally known that the surfactant action of surfactants stabilizes O / W / O droplets.)
- water-soluble ethylenically unsaturated monomer for the second stage polymerization those similar to those exemplified as the water-soluble ethylenically unsaturated monomer for the first stage polymerization can be used.
- the degree of neutralization, neutralized salt and monomer aqueous solution concentration may be the same as or different from the water-soluble ethylenically unsaturated monomer of the first stage polymerization.
- the polymerization initiator added to the water-soluble ethylenically unsaturated monomer aqueous solution for the second stage polymerization should also be selected from those exemplified as the water-soluble ethylenically unsaturated monomer for the first stage polymerization. Can do.
- an internal cross-linking agent, a chain transfer agent, etc. may be added to the water-soluble ethylenically unsaturated monomer aqueous solution for the second stage polymerization, if necessary. It can select and use from what was illustrated as a saturated monomer.
- the addition amount of the water-soluble ethylenically unsaturated monomer in the second stage polymerization to 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage polymerization is from 50 to 300 masses from the viewpoint of obtaining appropriate aggregated particles. Part is preferable, 100 to 200 parts by weight is more preferable, and 120 to 160 parts by weight is most preferable.
- the stirring in the second-stage reversed-phase suspension polymerization may be performed as long as the whole is uniformly mixed.
- the agglomerated particle size can be changed depending on the precipitation state of the surfactant and the amount of the ethylenically unsaturated monomer in the second stage polymerization relative to the ethylenically unsaturated monomer in the first stage polymerization.
- the rate of addition of the aqueous monomer solution of the second stage polymerization to the first stage polymerization reaction liquid the action of the surfactant is reduced as described above, and independent particles are not generated. Since it is almost absorbed by the particles, it hardly affects the amount of the residual dispersion medium, but in order to achieve both uniform formation of aggregated particles and maintenance of productivity, the addition rate from the nozzle per nozzle is 0.30 [ Min ⁇ 1 ] or less and a total addition rate of 0.04 [min ⁇ 1 ] or more are preferable.
- the aggregated particle diameter of the water-absorbent resin suitable for hygiene materials is preferably 200 to 600 ⁇ m, more preferably 250 to 500 ⁇ m, and most preferably 300 to 450 ⁇ m.
- the reaction temperature in the second-stage reversed-phase suspension polymerization also varies depending on the type and amount of the polymerization initiator and cannot be determined unconditionally, but is preferably 30 to 100 ° C, more preferably 40 to 90 ° C. is there. In the case of performing multistage polymerization of two or more stages, the second stage polymerization can be replaced with the third and fourth stages.
- the end of the reverse phase suspension polymerization in the first stage, or after the end of the reverse phase suspension polymerization in the second stage or more, and before or during the drying step it is derived from the water-soluble ethylenically unsaturated monomer. It is preferable to add a post-crosslinking agent containing two or more functional groups having reactivity with the functional group.
- a cross-linking agent By adding a cross-linking agent and reacting after polymerization, the cross-linking density of the surface layer of the water-absorbent resin particles can be increased, and various performances such as water absorption capacity under pressure, water absorption speed, gel strength, etc. can be improved. Performance is added.
- the post-crosslinking agent used for the crosslinking reaction is not particularly limited as long as it can react with the functional group derived from the water-soluble ethylenically unsaturated monomer used for the polymerization.
- post-crosslinking agent examples include, for example, polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; (poly) Polyethylene such as ethylene glycol diglycidyl ether, (poly) ethylene glycol triglycidyl ether, (poly) glycerin diglycidyl ether, (poly) glycerin triglycidyl ether, (poly) propylene glycol polyglycidyl ether, (poly) glycerol polyglycidyl ether Glycidyl compounds; haloepoxy compounds such as epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin; 2,4-tolylene diisocyanate, hexa Compounds having two or more reactive functional groups
- the post-crosslinking agent is added in an amount of preferably 0.01 to 5 parts by mass, more preferably 0.02 to 3 parts per 100 parts by mass of the total amount of water-soluble ethylenically unsaturated monomers subjected to polymerization. Part by mass.
- the addition amount of the post-crosslinking agent is less than 0.01 parts by mass, it is not possible to improve various performances such as water absorption capacity under pressure, water absorption rate, gel strength, etc. of the resulting water absorbent resin. This is not preferable because the water absorption capacity is too low.
- the post-crosslinking agent may be added as it is or as an aqueous solution, but if necessary, it may be added as a solution using a hydrophilic organic solvent as a solvent.
- a hydrophilic organic solvent include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, and propylene glycol, ketones such as acetone and methyl ethyl ketone, and ethers such as diethyl ether, dioxane, and tetrahydrofuran. Amides such as N, N-dimethylformamide, and sulfoxides such as dimethyl sulfoxide. These hydrophilic organic solvents may be used alone or in combination of two or more.
- the addition time of the post-crosslinking agent is not particularly limited as long as it is after the completion of polymerization.
- the post-crosslinking reaction is preferably carried out in the drying step after polymerization in the presence of water in the range of 1 to 200 parts by weight with respect to 100 parts by weight of the water-absorbent resin. More preferably, it is carried out in the presence of 10 to 50 parts by weight of water, and even more preferably.
- the temperature in the post-crosslinking reaction is preferably 50 to 250 ° C, more preferably 60 to 180 ° C, still more preferably 60 to 140 ° C, and most preferably 70 to 120 ° C.
- the drying step may be performed under normal pressure or reduced pressure, and may be performed under an air stream such as nitrogen in order to increase drying efficiency.
- the drying step is at normal pressure, dehydration can be promoted by refluxing only the dispersion medium and water distilled out of the system by azeotropic distillation.
- the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 180 ° C, further preferably 80 to 140 ° C, and most preferably 90 to 130 ° C.
- the drying temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C.
- the water content of the water-absorbent resin after drying is 20% by mass or less, and preferably 10% by mass or less from the viewpoint of imparting fluidity.
- amorphous silica powder may be added.
- the median particle diameter, water content, and amount of residual dispersion medium (amount of petroleum-based hydrocarbon dispersion medium remaining inside the water-absorbent resin particles) of the water-absorbent resins obtained in the examples and comparative examples are as follows. It was evaluated by.
- Median particle diameter 50 g of a water-absorbing resin is passed through a JIS standard sieve with a sieve opening of 250 ⁇ m, and when the amount remaining on the sieve is 50% by mass or more, a combination of ⁇ > sieves In the case of less than 50% by mass, the median particle diameter was measured using a combination of ⁇ > sieves.
- the mass of the water-absorbent resin remaining on each sieve is calculated as a percentage by mass with respect to the total amount, and the mass of the water-absorbent resin remaining on the sieve opening and the sieve is calculated by integrating in order from the larger particle size.
- the relationship between percentage and integrated value was plotted on a logarithmic probability paper. By connecting the plots on the logarithmic probability paper with a straight line, the particle diameter corresponding to an integrated mass percentage of 50 mass% was defined as the median particle diameter.
- Amount of residual dispersion medium The amount of petroleum hydrocarbon dispersion medium remaining in the water-absorbent resin was measured using a headspace gas chromatograph.
- DMF dimethylformamide
- the vial was heated at 110 ° C. for 2 hours, and 1 ml of the gas phase was sampled so as not to cool and injected into a gas chromatograph to obtain a chromatogram. (Uses a headspace autosampler) Based on the charged amount, the concentration of the standard sample solution was determined, the charged amount of the dispersion medium in each vial was calculated, and a calibration curve was created from the charged amount and the peak area of the chromatogram. In addition, when a mixture of petroleum hydrocarbons was used as the dispersion medium, a plurality of peaks appeared, so a calibration curve was created using the total area value and the charged amount.
- the vial was heated at 110 ° C. for 2 hours, and 1 ml of the gas phase was sampled so as not to cool and injected into a gas chromatograph to obtain a chromatogram. (Uses a headspace autosampler) Based on the peak area of the obtained chromatogram, the amount of dispersion medium contained in the charged sample amount (actually measured value of 0.10 g) is calculated from the calibration curve created earlier, and the amount of dispersion medium contained per gram of sample is calculated. Converted to [ppm].
- the conditions of the gas chromatograph used for the measurement of the residual dispersion medium amount in the present invention are as follows. Model: GC-14A + HSS2B (headspace autosampler) manufactured by Shimadzu Corporation Filler: Squalane 25% Shimalite (NAW) (101) 80-100 mesh Column: 3.2mm ⁇ ⁇ 2.1m Column temperature: 80 ° C Inlet temperature: 180 ° C Detector temperature: 180 ° C Detector: FID Gas carrier: Nitrogen gas Vial heating temperature: 110 ° C Syringe set temperature: 110 ° C
- Comparative Example 1 A 500 mL Erlenmeyer flask was charged with 92.0 g of an 80 wt% acrylic acid aqueous solution, and neutralized by dropwise addition of 102.2 g of 30 wt% sodium hydroxide while stirring the flask from the outside. To this, 0.11 g of potassium persulfate, 8.3 mg of ethylene glycol diglycidyl ether and 43.6 g of ion-exchanged water were added to prepare a water-soluble ethylenically unsaturated monomer aqueous solution (hereinafter referred to as “monomer aqueous solution”). did.
- monomer aqueous solution a water-soluble ethylenically unsaturated monomer aqueous solution
- round bottom flask 2L six-necked separable cover and cylindrical round bottom separable flask equipped with a stirrer equipped with a single-stage inclined paddle blade, reflux condenser, nitrogen gas inlet tube and ball plug (hereinafter referred to as “round bottom flask”) 342 g of n-heptane was poured into the mixture, 0.92 g of a sucrose fatty acid ester (Mitsubishi Chemical Foods, Inc., trade name: S-370) as a surfactant, and maleic anhydride-modified polyethylene (Mitsui) as a hydrophobic polymer dispersant. Chemical Co., Ltd., trade name: HI-WAX1105A) 0.92 g was added and dissolved by heating to an internal temperature of 80 ° C., and then the internal temperature was adjusted to 60 ° C. by air cooling.
- a sucrose fatty acid ester Mitsubishi Chemical Foods, Inc., trade name: S-370
- the monomer aqueous solution was poured all at once into the heptane that was being stirred at 500 rpm.
- the time required from the start of the addition of the monomer aqueous solution to the end of the addition was 12 seconds as measured by a stopwatch.
- the system was purged with nitrogen gas at a flow rate of 200 ml / min for 30 minutes while maintaining the internal temperature at around 40 ° C. with stirring at 500 rpm, and then the round bottom flask was heated in a 70 ° C. hot water bath for 1 hour to carry out the polymerization reaction. I did it.
- the mixture was heated using an oil bath at 120 ° C., and 114 g of water was removed from the system by refluxing n-heptane by azeotropic distillation to obtain a dehydrated polymer.
- Example 1 A 500 mL Erlenmeyer flask was charged with 92.0 g of an 80 wt% acrylic acid aqueous solution, and neutralized by dropwise addition of 102.2 g of 30 wt% sodium hydroxide while stirring the flask from the outside. To this, 0.11 g of potassium persulfate, 8.3 mg of ethylene glycol diglycidyl ether and 43.6 g of ion-exchanged water were added to prepare a water-soluble ethylenically unsaturated monomer aqueous solution.
- n-heptane 342 g was poured into a 2 L six-necked separable cover and round bottom flask equipped with a stirrer equipped with a single-stage inclined paddle blade, a reflux condenser, a nitrogen gas inlet tube, and a ball stopper, and a surfactant.
- sucrose fatty acid ester Mitsubishi Chemical Foods, Inc., trade name: S-370
- maleic anhydride-modified polyethylene Mitsubishi Chemicals, trade name: HI-WAX1105A
- the system was purged with nitrogen gas at a flow rate of 200 ml / min for 30 minutes while maintaining the internal temperature at around 40 ° C. with stirring at 500 rpm, and then the round bottom flask was heated in a 70 ° C. hot water bath for 1 hour to carry out the polymerization reaction. I did it.
- the mixture was heated using an oil bath at 120 ° C., and 114 g of water was removed from the system by refluxing n-heptane by azeotropic distillation to obtain a dehydrated polymer.
- Example 2 In Example 1, the same operation as in Example 1 was performed except that the addition rate of the aqueous monomer solution was changed to 21 ml / min by a tube pump instead of the pump flow rate of 42 ml / min. The addition rate was 0.10 [min ⁇ 1 ]. (It took about 600 seconds to add the whole amount of the monomer aqueous solution.) As a result, 92 g of water absorbent resin was obtained. The median particle diameter of this water-absorbent resin was 59 ⁇ m and the moisture content was 3%.
- Example 2 In Example 1, the same operation as in Example 1 was performed, except that the addition rate of the aqueous monomer solution was changed to 166 ml / min instead of the pump flow rate of 42 ml / min with a tube pump. The addition rate was 0.80 [min ⁇ 1 ]. (It took about 75 seconds to add the entire amount of the monomer aqueous solution.) As a result, 91 g of a water absorbent resin was obtained. The median particle diameter of this water-absorbent resin was 58 ⁇ m and the moisture content was 3%.
- Example 3 In Example 1, the same operation as in Example 1 was performed except that the addition rate of the aqueous monomer solution was changed to 83 ml / min instead of the pump flow rate of 42 ml / min with a tube pump. (It took about 150 seconds to add the entire amount of the monomer aqueous solution.) As a result, 91 g of a water absorbent resin was obtained. The median particle diameter of this water-absorbent resin was 61 ⁇ m and the moisture content was 2%.
- Example 3 In Example 1, two sets of tube pumps and 1 mm ⁇ nozzles each for adding an aqueous monomer solution at 42 ml / min were prepared, and the nozzles were fixed to two substantially diagonal ports of the separa cover, and simultaneously from two locations. The same operation as in Example 1 was performed except that the aqueous monomer solution was added.
- Comparative Example 4 In Comparative Example 3, two sets of tube pumps and 1 mm ⁇ nozzles each for adding an aqueous monomer solution at 83 ml / min were prepared, and the nozzles were fixed to two substantially diagonal ports of the separa cover, and simultaneously from two locations. The same operation as in Example 1 was performed except that the aqueous monomer solution was added.
- Example 4 In Example 2, four sets of tube pumps and 1 mm ⁇ nozzles for adding an aqueous monomer solution at 21 ml / min were prepared, and four nozzles were fixed to the mouth of the Separa cover, and the aqueous monomer solution from the nozzle was a heptane solution. Taking care not to intersect on the surface, the same operation as in Example 1 was performed except that the monomer aqueous solution was added simultaneously from four locations.
- Example 5 Cover the tip of the SUS funnel with an inner diameter of 8 mm ⁇ used in Comparative Example 1 with a cap with one hole with an inner diameter of 1 mm ⁇ at the tip (the liquid poured into the funnel passes through this 1 mm ⁇ hole).
- the liquid poured into the funnel passes through this 1 mm ⁇ hole.
- it was confirmed that it was added to heptane under the funnel and the same operation as in Comparative Example 1 was performed except that the monomer aqueous solution was charged all at once into heptane.
- Comparative Example 5 In Comparative Example 3, the same operation as in Comparative Example 3 was performed except that the nozzle of the tube pump was changed from 1 mm ⁇ to 2 mm ⁇ .
- a 1 ⁇ 207 [ ml] 0.40 [min ⁇ 1 ].
- Example 6 A 500 mL Erlenmeyer flask was charged with 92.0 g of an 80 wt% acrylic acid aqueous solution, and neutralized by dropwise addition of 102.2 g of 30 wt% sodium hydroxide while stirring the flask from the outside. To this, 0.11 g of potassium persulfate, 8.3 mg of ethylene glycol diglycidyl ether and 43.6 g of ion-exchanged water were added to prepare a water-soluble ethylenically unsaturated monomer aqueous solution.
- n-heptane 342 g was poured into a 2 L six-necked separable cover and round bottom flask equipped with a stirrer equipped with a single-stage inclined paddle blade, a reflux condenser, a nitrogen gas inlet tube, and a ball stopper, and a surfactant.
- sucrose fatty acid ester Mitsubishi Chemical Foods, Inc., trade name: S-370
- maleic anhydride-modified polyethylene Mitsubishi Chemicals, trade name: HI-WAX1105A
- the system was purged with nitrogen gas at a flow rate of 200 ml / min for 30 minutes while maintaining the internal temperature at around 40 ° C. with stirring at 500 rpm, and then the round bottom flask was heated in a 70 ° C. hot water bath for 1 hour to carry out the polymerization reaction. I did it.
- the mixture was heated using an oil bath at 120 ° C., and 113 g of water was removed from the system by refluxing n-heptane by azeotropic distillation to obtain a dehydrated polymer.
- a dehydrated polymer 4.6 g of a 2% ethylene glycol diglycidyl ether aqueous solution was added as a post-crosslinking agent, and a post-crosslinking reaction was performed at 83 ° C. for 2 hours.
- the mixture was heated using an oil bath at 120 ° C., n-heptane and water were removed from the system by distillation, and then dried under a nitrogen stream to obtain 93 g of a water-absorbing resin that passed through a 850 ⁇ m sieve.
- the median particle diameter of this water-absorbent resin was 60 ⁇ m, and the water content was 4%.
- Example 7 Example 2 was used as the first stage polymerization, and the second stage polymerization was performed.
- a 500 mL Erlenmeyer flask was charged with 92.0 g of an 80 wt% acrylic acid aqueous solution, and neutralized by dropwise addition of 102.2 g of 30 wt% sodium hydroxide while stirring the flask from the outside.
- 0.11 g of potassium persulfate, 8.3 mg of ethylene glycol diglycidyl ether and 43.6 g of ion-exchanged water were added to prepare a water-soluble ethylenically unsaturated monomer aqueous solution.
- n-heptane 342 g was poured into a 2 L six-necked separable cover and round bottom flask equipped with a stirrer equipped with a single-stage inclined paddle blade, a reflux condenser, a nitrogen gas inlet tube, and a ball stopper, and a surfactant.
- sucrose fatty acid ester Mitsubishi Chemical Foods, Inc., trade name: S-370
- maleic anhydride-modified polyethylene Mitsubishi Chemicals, trade name: HI-WAX1105A
- the system was purged with nitrogen gas at a flow rate of 200 ml / min for 30 minutes while maintaining the internal temperature at around 40 ° C. while stirring at 500 rpm, and then the round bottom flask was heated in a 70 ° C. hot water bath for 1 hour.
- the polymerization reaction was carried out. After completion of the first stage polymerization, the stirring speed was increased to 1000 rpm, the internal temperature was cooled to around 25 ° C., and at least a part of the surfactant was precipitated.
- a nozzle with an inner diameter of 1 mm ⁇ (made with a fluororesin tube with an inner diameter of 1 mm ⁇ ) is attached to the tip of the tube of a tube pump (MASTERFLEX L / S series) prepared in advance. Fix to the open mouth of the six mouths of the separa cover, and apply the water-soluble ethylenically unsaturated monomer aqueous solution described above to the polymerization solution stirred at 1000 rpm (so that the monomer aqueous solution does not hit the wall surface). Were added at a pump flow rate of 30 ml / min (separately measured).
- the system was sufficiently purged with nitrogen while maintaining the internal temperature of the round bottom flask containing the dispersion at about room temperature, and then heated for 1 hour using a 70 ° C. hot water bath to perform radical polymerization reaction. .
- heating was performed using an oil bath at 120 ° C., and dehydration dispersed in heptane by removing 260 g of water out of the system by refluxing n-heptane into the flask by azeotropic distillation. A polymer was obtained.
- heptane-dispersed dehydrated polymer 8.2 g of a 2% ethylene glycol diglycidyl ether aqueous solution was added as a post-crosslinking agent, and a post-crosslinking reaction was performed at 83 ° C. for 2 hours. Thereafter, heating is performed using an oil bath at 120 ° C., n-heptane and water are removed from the system by distillation, dried under a nitrogen stream, passed through a 850 ⁇ m sieve, and water-absorbing in the form of aggregated spherical particles 238 g of resin was obtained. The median particle diameter of this water absorbent resin was 367 ⁇ m, and the moisture content was 6%.
- the addition rate of the monomer aqueous solution to the polymerization system is such that the addition rate V i of each charging nozzle is 0.30 [min ⁇ 1 ] or less and the total addition rate V total is 0.04 [ In the case of min ⁇ 1 ] or more, it was possible to achieve a reduction in the amount of the residual dispersion medium as compared with the comparative example.
- the remaining amount of the petroleum hydrocarbon dispersion medium used in the reverse phase suspension polymerization contained in the water-absorbent resin is small, and the odor derived from the petroleum hydrocarbon dispersion medium is reduced.
- a suitable water absorbent resin is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
項1. 水溶性エチレン性不飽和単量体を石油系炭化水素分散媒中で界面活性剤を用いて逆相懸濁重合する吸水性樹脂の製造方法であって、水溶性エチレン性不飽和単量体水溶液を前記分散媒中に分散させる際のその投入速度につき、以下の条件:
(a)重合槽に水溶性エチレン性不飽和単量体水溶液を投入するに当たり、次式(I):
Vi=Fi・Ai/T
[式中、i:ノズル番号(1~n)、n:ノズルの本数(1≦n≦10)、Vi:添加速度[min-1]、Fi:ノズルからの平均線流速[m/min]、Ai:ノズルの断面積[m2]、T:重合反応槽へ仕込む単量体水溶液全量[m3]を示す]
で定義される、前記水溶液の添加速度Viが0.30[min-1]以下であること;および
(b)重合槽系内に投入される水溶性エチレン性不飽和単量体水溶液の次式(II):
Vtotal=ΣVi (i=1~n)
[式中、Vtotal:総添加速度[min-1]、Vi:各ノズルの添加速度[min-1]を示し、i及びnは前記式(I)における定義に同じ。ただし、ノズルが1本の重合装置(n=1)の場合、Vtotal=V1である]
で定義される総添加速度Vtotalが0.04[min-1]以上であること
を満たすことを特徴とする、吸水性樹脂の製造方法。
項2. 水溶性エチレン性不飽和単量体を石油系炭化水素分散媒中で界面活性剤を用いて逆相懸濁重合する吸水性樹脂の製造方法であって、水溶性エチレン性不飽和単量体水溶液を前記分散媒中に分散させる際のその投入速度につき、以下の条件:
(a)重合槽に水溶性エチレン性不飽和単量体水溶液を投入するに当たり、次式(I):
Vi=Fi・Ai/T
[式中、i:ノズル番号(1~n)、n:ノズルの本数(1≦n≦10)、Vi:添加速度[min-1]、Fi:ノズルからの平均線流速[m/min]、Ai:ノズルの断面積[m2]、T:重合反応槽へ仕込む単量体水溶液全量[m3]を示す]
で定義される、前記水溶液の添加速度Viが0.30[min-1]以下であること;および
(b)重合槽系内に投入される水溶性エチレン性不飽和単量体水溶液の次式(II):
Vtotal=ΣVi (i=1~n)
[式中、Vtotal:総添加速度[min-1]、Vi:各ノズルの添加速度[min-1]を示し、iおよびnは前記式(I)における定義に同じ。ただし、ノズルが1本の重合装置(n=1)の場合、Vtotal=V1である]
で定義される総添加速度Vtotalが0.08[min-1]以上であること
を満たすことを特徴とする、吸水性樹脂の製造方法。
項3. nが、2≦n≦10であることを特徴とする項1または2に記載の吸水性樹脂の製造方法。
項4. 逆相懸濁重合を行うにあたり、重合前に界面活性剤を用いて石油系炭化水素分散媒中で水溶性エチレン性不飽和単量体水溶液を分散させた後に、水溶性ラジカル開始剤を用いて重合を行う、項1~3のいずれか1項に記載の吸水性樹脂の製造方法。
項5. 項1~4のいずれか1項に記載の製造方法により得られる吸水性樹脂。
逆相懸濁重合により得られる吸水性樹脂の吸水時の臭気の原因は、主に吸水性樹脂粒子内に残存した分散媒である。分散媒が吸水性樹脂粒子に残存するメカニズムとしては、単量体水溶液を分散媒へ攪拌等により分散させる際に、油相である分散媒が単量体水溶液の液滴内に取り込まれた形状の液滴、すなわちO/W/O(油/水/油)型の液滴が発生し、このO/W/O液滴が安定化されたまま重合することにより、分散媒を内包したいわばカプセル状の吸水性樹脂粒子が発生していることに起因していることを本発明者らは見出した。
ここでO/W型液滴とは、Oil in Waterの略記であり、油相液滴が水相中に分散している状態をいう。また、O/W/O型液滴とは、(Oil in Water) in Oilの略記であり、油相の微細液滴が水相液滴中に分散しており、その水相液滴が更に油相に分散している状態をいう。これは、最内油相/中間水相/最外油相より形成されており、本願では、分散媒中(油相)に存在する、単量体水溶液(水相)の液滴の中に、更に小さな分散媒(油相)の液滴が含まれている状態を示している。
[式中、i:ノズル番号(1~n)、n:ノズルの本数(1≦n≦10)、Vi:添加速度[min-1]、Fi:ノズルからの平均線流速[m/min]、Ai:ノズルの断面積[m2]、T:重合反応槽へ仕込む単量体水溶液全量[m3]を示す。]
Ai(ノズル番号iの断面積)は、投入される単量体水溶液の液塊(液滴)の大きさに関与する。単量体水溶液の線流速が遅くとも、分散媒中に投入される際の液塊(液滴)が大きいと、得られる吸水性樹脂の残存分散媒量が多くなることから、後述のように分散媒の残存に影響を与えると考察される。
T(重合反応槽へ仕込む単量体水溶液全量)は、重合反応槽の大きさや重合条件によって決まる単量体仕込量である。
Vi(ノズル番号iの添加速度)は、前記式(I)により算出され、単量体水溶液投入の勢いの指標の線流速Fi[m/min]と、投入液塊(液滴)に関係するノズルの断面積Ai[m2]の積算値に対し、それぞれの反応器スケールによって決まる「重合反応槽へ仕込む単量体水溶液の全量:T[m3]」を基準として除すことで、添加速度へのスケールファクターの影響が排除されている。
ここで(1)ノズルにおける単量体水溶液の平均線流速が速いと、分散媒と単量体水溶液が接触する領域が、攪拌翼により攪拌される以上に強攪拌される、すなわち必要以上に強攪拌されるため、O/W/O型液滴の発生が促進されると推察される。また、(2)ノズルの断面積が大きいと、ノズルから添加される液滴径が大きくなり、局所的に分散媒に対し単量体水溶液がリッチな領域が発生し、それが攪拌翼で攪拌されると分散媒が単量体水溶液中に内包されたO/W型液滴が発生する可能性が高くなると考えられる。そして発生したO/W型液滴が更に分散媒中に攪拌・分散されることで、O/W/O型液滴が形成されると考えられる。先述のように、O/W/O型液滴が、その形状のまま重合することで、分散媒を内包した吸水性樹脂粒子となり、内包された分散媒が残存分散媒として検出されることから、これら(1)(2)それぞれのファクターを小さく制御することで、O/W/O型の液滴の発生量が抑制され、その結果、残存分散媒量が低減すると推察する。
ただし、設置ノズル数が多くなりすぎると、設置場所の確保が困難になるだけでなく、設置コストが高くなり、かつ添加時に隣のノズルとの間隔が近くなることから、局所的に単量体水溶液がリッチな領域の発生を抑制する効果は薄くなると考えられることから、実際はノズルの本数は最大で10本が好ましく、4本以下がより好ましいと考えられる。
また、分散系内の単量体水溶液のリッチな領域の発生を抑えるという観点から、Vtotalは1.0[min-1]以下が好ましく、0.5[min-1]以下であることがより好ましいと考えられる。
なお、酸基を有する単量体を中和して塩とする場合に用いられるアルカリ性化合物としては、リチウム、ナトリウム、カリウム、アンモニウム等の化合物が挙げられる。より詳しくは、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸アンモニウム等が挙げられる。
なお、酸基を有する単量体を中和する場合、その中和度は、水溶性エチレン性不飽和単量体の酸基の30~90モル%であることが好ましい。中和度が30モル%より低い場合、酸基がイオン化されにくく、吸水能が低くなる可能性があるため好ましくない。中和度が90モル%を超えると、衛生材料として使用される場合、安全性等に問題が生ずる可能性があるため好ましくない。
本発明において、水溶性エチレン性不飽和単量体は、水溶液として使用される。水溶性エチレン性不飽和単量体水溶液の単量体濃度は、20質量%~飽和濃度であることが好ましい。
連鎖移動剤としては、例えば、チオール類、チオール酸類、第2級アルコール類、次亜リン酸、亜リン酸等の化合物が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
増粘剤としては、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリエチレングリコール、ポリアクリル酸、ポリアクリル酸中和物、ポリアクリルアミド等が挙げられる。
さらに、これらの炭化水素分散媒のなかでも、本発明におけるW/O型逆相懸濁の状態が良好で、好適な粒子径が得られやすく、工業的に入手が容易かつ品質が安定している観点から、n-ヘプタン、シクロヘキサンが好適に用いられる。また、上記炭化水素の混合物の例として、市販されているエクソールヘプタン(エクソンモービル社製:n-ヘプタンおよび異性体の炭化水素75~85%含有)などを用いても好適な結果が得られる。
石油系炭化水素分散媒の使用量は、単量体水溶液を均一に分散し、重合温度の制御を容易にする観点から、通常、単量体水溶液100質量部に対して、50~600質量部が好ましく、50~400質量部がより好ましく、50~200質量部がさらに好ましい。
重合時の分散安定性を保つため用いる界面活性剤としては、例えば、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、およびポリオキシエチレンアルキルアミン等のノニオン系界面活性剤、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸およびその塩、ポリオキシエチレンアルキルフェニルエーテルリン酸およびその塩、ポリオキシエチレンアルキルエーテルリン酸およびその塩等のアニオン系界面活性剤が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。
使用される界面活性剤の添加量は、水溶性エチレン性不飽和単量体水溶液100質量部に対して0.01~5質量部が好ましく、0.05~3質量部がより好ましい。界面活性剤の添加量が0.01質量部よりも少ない場合、単量体水溶液の分散安定性が低くなるため好ましくなく、5質量部よりも多い場合、経済的でないので好ましくない。
これらの中では無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレンおよび酸化型エチレン・プロピレン共重合体からなる群より選ばれた少なくとも1種が好ましい。
疎水性高分子系分散剤の添加量は、水溶性エチレン性不飽和単量体水溶液100質量部に対して0~5質量部が好ましく、0.01~3質量部がより好ましく、0.05~2質量部がさらに好ましい。疎水性高分子系分散剤の添加量が5質量部よりも多い場合、経済的でないので好ましくない。
分散液滴径は、攪拌翼の種類、翼径、回転数等により調節することができる。
攪拌翼としては、例えば、プロペラ翼、パドル翼、アンカー翼、タービン翼、ファウドラー翼、リボン翼、フルゾーン翼(神鋼パンテック(株)製)、マックスブレンド翼(住友重機械工業(株)製)、スーパーミックス(サタケ化学機械工業(株)製)等を使用することが可能である。
本願で使用される水溶性ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;過酸化水素等の過酸化物;2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンジアミン]四水塩、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)二塩酸塩、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]等のアゾ化合物等が挙げられる。
これらの中では、入手が容易で取り扱いやすいという観点から、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウムおよび2,2’-アゾビス(2-アミジノプロパン)二塩酸塩が好ましい。
なお、水溶性ラジカル重合開始剤は、亜硫酸塩、アスコルビン酸等の還元剤と併用してレドックス重合開始剤として用いてもよい。
水溶性ラジカル重合開始剤の使用量は、通常、水溶性エチレン性不飽和単量体100質量部あたり、0.01~1質量部である。0.01質量部より少ない場合、重合率が低くなり、1質量部より多い場合、急激な重合反応が起こるため好ましくない。
水溶性ラジカル重合開始剤の添加時期は特に制限されないが、あらかじめ水溶性エチレン性不飽和単量体水溶液に添加しておくのが好ましい。
内部架橋剤の添加量は、水溶性エチレン性不飽和単量体100質量部に対して、0~3質量部が好ましく、0~1質量部がより好ましく、0.001~0.1質量部がさらに好ましい。添加量が3質量部を超えると、架橋が過度になり、吸水性能が低くなりすぎるため好ましくない。
内部架橋剤は、あらかじめ水溶性エチレン性不飽和単量体水溶液に添加しておくのが好ましい。
1段目の水溶性エチレン性不飽和単量体の重合で得られる粒子の大きさは、多段重合において、適度な凝集粒径を得る観点から、中位粒子径20~200μmが好ましく、30~150μmがより好ましく、40~100μmがさらに好ましい。なお、1段目の重合粒子の中位粒子径は、前記1段目の重合が終了した後、脱水、乾燥することで測定できる。(測定方法は後述のとおり。)
このとき、2段目重合に用いられる単量体水溶液が、独立した液滴を形成しないよう界面活性剤の作用を低下させる必要がある。例えば、1段目の重合終了後に冷却し、界面活性剤が少なくとも一部析出する温度で2段目重合の単量体水溶液を添加することにより、前記凝集した粒子を得ることができる。
なお、2段目重合の単量体水溶液の添加により、凝集粒子が得られる方法であれば、前記方法に限定されるものでない。
2段目重合の水溶性エチレン性不飽和単量体水溶液に添加される重合開始剤についても、1段目重合の水溶性エチレン性不飽和単量体として例示したものから選択して使用することができる。
1段目重合の水溶性エチレン性不飽和単量体100質量部に対する2段目重合の水溶性エチレン性不飽和単量体の添加量は、適度な凝集粒子を得る観点から、50~300質量部が好ましく、100~200質量部がより好ましく、120~160質量部が最も好ましい。
2段目の逆相懸濁重合における攪拌は、全体が均一に混合されていればよい。凝集粒子径は、界面活性剤の析出状態や1段目重合のエチレン性不飽和単量体に対する2段目重合のエチレン性不飽和単量体の量によって、変更できる。
なお、衛生材料用途に好適な吸水性樹脂の凝集粒子径としては、200~600μmが好ましく、250~500μmがさらに好ましく、300~450μmが最も好ましい。
2段目の逆相懸濁重合における反応温度についても、重合開始剤の種類や量によって異なるので一概には決定することができないが、好ましくは30~100℃、より好ましくは40~90℃である。
2段以上の多段重合を行う場合、以後2段目重合を3段目、4段目と読み換えて実行することができる。
前記架橋反応に用いられる後架橋剤としては、重合に用いた水溶性エチレン性不飽和単量体由来の官能基と反応しうるものであれば特に限定されない。
前記後架橋剤の添加量は、重合に付された水溶性エチレン性不飽和単量体の総量100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.02~3質量部である。
後架橋剤の添加量が0.01質量部未満の場合、得られる吸水性樹脂の加圧下吸水能、吸水速度、ゲル強度等の諸性能を高めることができず、5質量部を超える場合、吸水能が低くなりすぎるため好ましくない。
後架橋反応における温度は、50~250℃が好ましく、60~180℃がより好ましく、60~140℃がさらに好ましく、70~120℃が最も好ましい。
乾燥後の吸水性樹脂の水分率は、流動性を持たせる観点から20質量%以下であり、通常は10質量%以下であることが好ましい。また、流動性を向上させるために、非晶質シリカ粉末を添加してもよい。
吸水性樹脂50gを、JIS標準篩の目開き250μmの篩を用いて通過させ、篩上に残る量がその50質量%以上の場合には<α>の篩の組み合わせを、50質量%未満の場合には<β>の篩の組み合わせを、用いて中位粒子径を測定した。
<α>JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩および受け皿の順に組み合わせた。
<β>JIS標準篩を上から、目開き425μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩、目開き45μmの篩および受け皿の順に組み合わせた。
組み合わせた最上の篩に、前記吸水性樹脂約50gを入れ、ロータップ式振とう器を用いて20分間振とうさせて分級した。
分級後、各篩上に残った吸水性樹脂の質量を全量に対する質量百分率として計算し、粒子径の大きい方から順に積算することにより、篩の目開きと篩上に残った吸水性樹脂の質量百分率の積算値との関係を対数確率紙にプロットした。対数確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。
吸水性樹脂約2.5gをアルミカップに精秤し(Xg)、105℃の熱風乾燥機を用いて2時間乾燥後、乾燥した吸水性樹脂の質量(Yg)を測定して、下記式より水分率を算出した。なお、アルミカップの乾燥前後の風袋質量は一定とした。
水分率(%)=(X-Y)÷X×100
吸水性樹脂に残存する石油系炭化水素系分散媒の量をヘッドスペース・ガスクロマトグラフを用いて測定した。
(a)検量線の作成
残存分散媒を測定するサンプルの重合に使用した石油系炭化水素分散媒(以後「分散媒」と表記)を10g程度スクリュー瓶等に入れ、氷水浴にて冷却した。同様に測定に使用するDMF(ジメチルフォルムアミド)80gと25質量%リン酸水溶液60gも氷水浴で冷却した。(仕込中の分散媒の蒸散抑制のため、充分冷却の後に仕込を行う。)
50ml容スクリュー瓶に上記分散媒を0.2g精秤し、そこに上記冷却したDMFを加え、合計20gにして精秤し、スターラチップで撹拌して標準試料液とした。この標準試料液も氷水浴により冷却をした。
20ml容のバイアル瓶(マルエム社製、No.5)に上記標準試料液より、0.01、0.05、0.1、および0.5gをそれぞれ精秤し、そこに冷却したDMFを加え、各バイアル瓶の内容量を計3.8g(4mL)とした。更に各バイアルに上記冷却した25質量%リン酸水溶液5mLを加え、セプタムゴム、アルミキャップで栓をして締め付けた後、瓶を振って攪拌した。
なお、20ml容のバイアルへの試料の仕込から栓の締め付けまではすばやく行い、分散媒がバイアルから蒸散するのを極力防ぐように留意した。また、DMFと25質量%リン酸水溶液の混合時の発熱で分散媒が蒸散しないように、両試薬の冷却を充分行っておき、アルミキャップ等で密栓状態にしてから、充分混合を行うようにも留意した。
仕込量を基に上記標準試料液の濃度を求め、各バイアル瓶中の分散媒の仕込量を算出し、その仕込量とクロマトグラムのピーク面積より、検量線を作成した。なお、分散媒として石油系炭化水素の混合物を用いた場合、複数のピークが表れるため、その面積の総和値と仕込量で検量線を作成した。
測定するサンプル約2gをアルミカップに入れ、105℃の熱風乾燥機にて2時間乾燥させ、含有する水分量を調整した。
測定に使用するDMFと25質量%リン酸水溶液も必要量スクリュー瓶に入れ氷水浴で冷却した。
20ml容のバイアル瓶(マルエム社製、No.5)に上記サンプルを0.10g精秤し、バイアル瓶底部を氷浴に漬け、バイアル瓶と吸水性樹脂を冷却した。このバイアル瓶内に、前述の冷却したDMFを4mL加え、更に前述の冷却した25質量%リン酸水溶液5mLを加え、セプタムゴム、アルミキャップで栓をしてすばやく締め付けた後、軽くバイアル瓶を振り混合した。10分静置後、中の吸水性樹脂が膨潤していることを確認し、同バイアル瓶を激しく振り混ぜ内部を強撹拌した。このバイアル瓶を110℃で2時間予備加熱し、加熱後再度強攪拌を行った。
なお、20ml容のバイアルへの仕込から栓の締め付けまでは、すばやく行い、分散媒がバイアルから蒸散するのを極力防ぐように留意した。
得られたクロマトグラムのピーク面積を基に、先に作成した検量線から、仕込サンプル量(0.10gの実測値)に含まれる分散媒量を算出し、サンプル1gあたりに含まれる分散媒量[ppm]に換算した。
機種:島津製作所製 GC-14A+HSS2B(ヘッドスペースオートサンプラ)
充填剤:Squalane 25% Shimalite(NAW)(101)
80-100mesh
カラム:3.2mmφ×2.1m
カラム温度:80℃
注入口温度:180℃
検出器温度:180℃
検出器:FID
ガスキャリア:窒素ガス
バイアル瓶加熱温度:110℃
シリンジ設定温度:110℃
500mL容の三角フラスコに、80重量%アクリル酸水溶液92.0gを仕込み、フラスコを外部から冷却しつつ、攪拌しながら30重量%水酸化ナトリウム102.2gを滴下して中和を行なった。これに過硫酸カリウム0.11gとエチレングリコールジグリシジルエーテル8.3mg、イオン交換水43.6gを加え、水溶性エチレン性不飽和単量体水溶液(以後「単量体水溶液」と記載)を調製した。
1段の傾斜パドル翼を備えた攪拌機、還流冷却器、窒素ガス導入管、玉栓を備えた2L容の六ツ口セパラブルカバーと円筒形丸底セパラブルフラスコ(以後「丸底フラスコ」)に、n-ヘプタン342gを注ぎ、界面活性剤のショ糖脂肪酸エステル(三菱化学フーズ株式会社、商品名:S-370)0.92gと疎水性高分子系分散剤として無水マレイン酸変性ポリエチレン(三井化学株式会社、商品名:HI-WAX1105A)0.92gを加えて内温80℃まで加温溶解した後、空冷により内温60℃とした。
重合反応後、120℃の油浴を用いて加熱し、共沸蒸留により、n-ヘプタンを還流しながら、水114gを系外に除去することにより脱水重合体を得た。得られた脱水重合体に後架橋剤として2%エチレングリコールジグリシジルエーテル水溶液4.6gを添加し、83℃で2時間、後架橋反応を行なった。
その後、120℃の油浴を用いて加熱し、n-ヘプタンと水を蒸留により系外へ除去後、窒素気流下で乾燥し、吸水性樹脂91gを得た。この吸水性樹脂の中位粒子径は56μmで水分率は3%であった。
500mL容の三角フラスコに、80重量%アクリル酸水溶液92.0gを仕込み、フラスコを外部から冷却しつつ、攪拌しながら30重量%水酸化ナトリウム102.2gを滴下して中和を行なった。これに過硫酸カリウム0.11gとエチレングリコールジグリシジルエーテル8.3mg、イオン交換水43.6gを加え、水溶性エチレン性不飽和単量体水溶液を調製した。
1段の傾斜パドル翼を備えた攪拌機、還流冷却器、窒素ガス導入管、玉栓を備えた2L容の六ツ口セパラブルカバーと丸底フラスコに、n-ヘプタン342gを注ぎ、界面活性剤のショ糖脂肪酸エステル(三菱化学フーズ株式会社、商品名:S-370)0.92gと疎水性高分子系分散剤として無水マレイン酸変性ポリエチレン(三井化学株式会社、商品名:HI-WAX1105A)0.92gを加えて内温80℃まで加温溶解した後、空冷により内温60℃とした。
重合反応後、120℃の油浴を用いて加熱し、共沸蒸留により、n-ヘプタンを還流しながら、水114gを系外に除去することにより脱水重合体を得た。得られた脱水重合体に後架橋剤として2%エチレングリコールジグリシジルエーテル水溶液4.6gを添加し、83℃で2時間、後架橋反応を行なった。
その後、120℃の油浴を用いて加熱し、n-ヘプタンと水を蒸留により系外へ除去後、窒素気流下で乾燥し、850μmの篩を通過した吸水性樹脂92gを得た。この吸水性樹脂の中位粒子径は61μmで水分率は3%であった。
実施例1において、チューブポンプで単量体水溶液の添加速度をポンプ流量42ml/minに代えて21ml/minとした以外は、実施例1と同様の操作を行った。添加速度は0.10[min-1]であった。(前記単量体水溶液全量投入には約600秒を要した。)
その結果、吸水性樹脂92gを得た。この吸水性樹脂の中位粒子径は59μmで水分率は3%であった。
実施例1において、チューブポンプで単量体水溶液の添加速度をポンプ流量42ml/minに代えて166ml/minとした以外は、実施例1と同様の操作を行った。添加速度は0.80[min-1]であった。(前記単量体水溶液全量投入には約75秒を要した。)
その結果、吸水性樹脂91gを得た。この吸水性樹脂の中位粒子径は58μmで水分率は3%であった。
実施例1において、チューブポンプで単量体水溶液の添加速度をポンプ流量42ml/minに代えて83ml/minとした以外は、実施例1と同様の操作を行った。(前記単量体水溶液全量投入には約150秒を要した。)
その結果、吸水性樹脂91gを得た。この吸水性樹脂の中位粒子径は61μmで水分率は2%であった。
実施例1において、単量体水溶液を42ml/minで添加するチューブポンプと1mmφノズルをそれぞれ2組用意し、セパラカバーのほぼ対角の2つの口にそれぞれのノズルを固定して、2箇所から同時に単量体水溶液を添加した以外は、実施例1と同様の操作を行った。このとき、両ノズルの断面積A1=A2=π/4×0.1×0.1=7.85×10-3[cm2]、線流速F1=F2=42[ml/min]÷(7.85×10-3[cm2])×0.01[m/cm]=53.5[m/min]より、各ノズルの添加速度はV1=F1×100[cm/m]×A1÷207[ml]=0.20[min-1]、V2=V1より、総添加速度Vtotal=V1+V2=0.40[min-1](前記単量体水溶液全量投入には約150秒を要した。)
その結果、吸水性樹脂93gを得た。この吸水性樹脂の中位粒子径は58μmで水分率は4%であった。
比較例3において、単量体水溶液を83ml/minで添加するチューブポンプと1mmφノズルをそれぞれ2組用意し、セパラカバーのほぼ対角の2つの口にそれぞれのノズルを固定して、2箇所から同時に単量体水溶液を添加した以外は、実施例1と同様の操作を行った。このとき、両ノズルの断面積A1=A2=π/4×0.1×0.1=7.85×10-3[cm2]、線流速F1=F2=83[ml/min]÷(7.85×10-3[cm2])×0.01[m/cm]=105.73[m/min]より、各ノズルの添加速度はV1=F1×100[cm/m]×A1÷207[ml]=0.40[min-1]、V2=V1より、総添加速度Vtotal=V1+V2=0.80[min-1]であった。(前記単量体水溶液全量投入には約75秒を要した。)
その結果、吸水性樹脂92gを得た。この吸水性樹脂の中位粒子径は58μmで水分率は3%であった。
実施例2において、単量体水溶液を21ml/minで添加するチューブポンプと1mmφノズルをそれぞれ4組用意し、セパラカバーの口に4つのノズルを固定し、ノズルからでる単量体水溶液がヘプタンの液面上で交差しないように留意して、4箇所から同時に単量体水溶液を添加した以外は、実施例1と同様の操作を行った。このとき各ノズルの断面積A1=A2=A3=A4=π/4×0.1×0.1=7.85×10-3[cm2]、各線流速F1=F2=F3=F4=21[ml/min]÷(7.85×10-3[cm2])×0.01[m/cm]=26.75[m/min]より、各ノズルの添加速度はV1=F1×100[cm/m]×A1÷207[ml]=0.10[min-1]、V4=V3=V2=V1より、総添加速度Vtotal=Σ(V1~V4)=0.40であった。(前記単量体水溶液全量投入には約150秒を要した。)
その結果、吸水性樹脂91gを得た。この吸水性樹脂の中位粒子径は58μmで水分率は2%であった。
比較例1において用いた先端の開孔部が内径8mmφのSUS製ロートの先端に、先端に内径1mmφの孔が一つ開いたキャップをかぶせ、(ロートに注いだ液がこの1mmφの孔をとおしてのみ、ロート下のヘプタン中に添加されることを確認済)、ヘプタン中へ上記単量体水溶液を一括で投入した以外は、比較例1と同様の操作を行った。
なお、単量体水溶液の入れ始めから、入れ終わりまでの所要時間をストップウォッチで計測したところ260秒であった。単量体水溶液238gを比重1.15g/mlで換算し、207mlを260secで除して投入時の平均容積流速0.80ml/secより、この時の断面積A1=π/4×0.1×0.1=7.85×10-3[cm2]線流速F1=0.80[ml/sec]÷(7.85×10-3[cm2])×0.01[m/cm]×60[sec/min]=61.15[m/min]から添加速度V1=Vtotal=F1×100[cm/m]×A1÷207=0.23[min-1]であった。
その結果、吸水性樹脂92gを得た。この吸水性樹脂の中位粒子径は60μmで水分率は3%であった。
比較例3において、チューブポンプの先のノズルを、内径1mmφから2mmφに取り替えた以外は比較例3と同様の操作を行った。断面積A1=π/4×0.2×0.2=3.14×10-2[cm2]、線流速F1=83[ml/min]÷(3.14×10-2[cm2])×0.01[m/cm]=26.43[m/min]より、この時の添加速度V1=Vtotal=F1×100[cm/m]×A1÷207[ml]=0.40[min-1]であった。(線流速は実施例2と同程度であるが、添加速度は比較例3と同じであり、前記単量体水溶液全量投入には約150秒を要した。)
その結果、吸水性樹脂91gを得た。この吸水性樹脂の中位粒子径は56μmで水分率は2%であった。
500mL容の三角フラスコに、80重量%アクリル酸水溶液92.0gを仕込み、フラスコを外部から冷却しつつ、攪拌しながら30重量%水酸化ナトリウム102.2gを滴下して中和を行なった。これに過硫酸カリウム0.11gとエチレングリコールジグリシジルエーテル8.3mg、イオン交換水43.6gを加え、水溶性エチレン性不飽和単量体水溶液を調製した。
1段の傾斜パドル翼を備えた攪拌機、還流冷却器、窒素ガス導入管、玉栓を備えた2L容の六ツ口セパラブルカバーと丸底フラスコに、n-ヘプタン342gを注ぎ、界面活性剤のショ糖脂肪酸エステル(三菱化学フーズ株式会社、商品名:S-370)0.92gと疎水性高分子系分散剤として無水マレイン酸変性ポリエチレン(三井化学株式会社、商品名:HI-WAX1105A)0.92gを加えて内温80℃まで加温溶解した後、空冷により内温60℃とした。
あらかじめ用意しておいたチューブポンプ(MASTERFLEX L/Sシリーズ)のチューブの先に内径1mmφのノズル(内径1mmφのフッ素樹脂製チューブにて作成)を取り付け、そのノズルをセパラカバーの六ツ口部の開いている口に固定し、先述の水溶性エチレン性不飽和単量体水溶液を、500rpmで攪拌されている上記ヘプタン中に(単量体水溶液が壁面に当たらないように配慮しながら)、ポンプ流量11ml/min(別途実測)にて添加をした。(前記単量体水溶液全量投入には約1150秒を要した。)断面積A1=π/4×0.1×0.1=7.85×10-3[cm2]、線流速F1=11[ml/min]÷(7.85×10-3[cm2])×0.01[m/cm]=14.0[m/min]より、この時の添加速度V1=Vtotal=F1×100[cm/m]×A1÷207[ml]≒0.05[min-1]であった。
500rpmで攪拌しながら内温40℃前後に保ったまま系内を30分間200ml/minの流量で窒素ガス置換した後、70℃の湯浴で丸底フラスコを1時間加温し、重合反応を行なった。
その後、120℃の油浴を用いて加熱し、n-ヘプタンと水を蒸留により系外へ除去後、窒素気流下で乾燥し、850μmの篩を通過した吸水性樹脂93gを得た。この吸水性樹脂の中位粒子径は60μmで水分率は4%であった。
実施例2を1段目重合として、2段重合を行った。
500mL容の三角フラスコに、80重量%アクリル酸水溶液92.0gを仕込み、フラスコを外部から冷却しつつ、攪拌しながら30重量%水酸化ナトリウム102.2gを滴下して中和を行なった。これに過硫酸カリウム0.11gとエチレングリコールジグリシジルエーテル8.3mg、イオン交換水43.6gを加え、水溶性エチレン性不飽和単量体水溶液を調製した。
1段の傾斜パドル翼を備えた攪拌機、還流冷却器、窒素ガス導入管、玉栓を備えた2L容の六ツ口セパラブルカバーと丸底フラスコに、n-ヘプタン342gを注ぎ、界面活性剤のショ糖脂肪酸エステル(三菱化学フーズ株式会社、商品名:S-370)0.92gと疎水性高分子系分散剤として無水マレイン酸変性ポリエチレン(三井化学株式会社、商品名:HI-WAX1105A)0.92gを加えて内温80℃まで加温溶解した後、空冷により内温60℃とした。
1段目重合終了後、撹拌速度を1000rpmに増速し、内温を25℃付近まで冷却し、界面活性剤を少なくとも一部析出させた。
次に前記分散液を含む丸底フラスコの内温を室温程度に保持しながら系内を充分に窒素置換した後、70℃の湯浴を用いて1時間加温し、ラジカル重合反応を行なった。
2段目の重合反応後、120℃の油浴を用いて加熱し、共沸蒸留により、n-ヘプタンをフラスコに還流しながら260gの水を系外に除去することによりヘプタンに分散された脱水重合体を得た。得られたヘプタン分散脱水重合体に、後架橋剤として2%エチレングリコールジグリシジルエーテル水溶液8.2gを添加し、83℃で2時間、後架橋反応を行なった。
その後、120℃の油浴を用いて加熱し、n-ヘプタンと水を蒸留により系外へ除去後、窒素気流下で乾燥し、850μmの篩を通過させ、球状粒子が凝集した形状の吸水性樹脂238gを得た。この吸水性樹脂の中位粒子径は367μmで、水分率は6%であった。
Claims (5)
- 水溶性エチレン性不飽和単量体を石油系炭化水素分散媒中で界面活性剤を用いて逆相懸濁重合する吸水性樹脂の製造方法であって、水溶性エチレン性不飽和単量体水溶液を前記分散媒中に分散させる際のその投入速度につき、以下の条件:
(a)重合槽に水溶性エチレン性不飽和単量体水溶液を投入するに当たり、次式(I):
Vi=Fi・Ai/T
[式中、i:ノズル番号(1~n)、n:ノズルの本数(1≦n≦10)、Vi:添加速度[min-1]、Fi:ノズルからの平均線流速[m/min]、Ai:ノズルの断面積[m2]、T:重合反応槽へ仕込む単量体水溶液全量[m3]を示す]
で定義される、前記水溶液の添加速度Viが0.30[min-1]以下であること;および
(b)重合槽系内に投入される水溶性エチレン性不飽和単量体水溶液の次式(II):
Vtotal=ΣVi (i=1~n)
[式中、Vtotal:総添加速度[min-1]、Vi:各ノズルの添加速度[min-1]を示し、iおよびnは前記式(I)における定義に同じ。ただし、ノズルが1本の重合装置(n=1)の場合、Vtotal=V1である]
で定義される総添加速度Vtotalが0.04[min-1]以上であること
を満たすことを特徴とする、吸水性樹脂の製造方法。 - 水溶性エチレン性不飽和単量体を石油系炭化水素分散媒中で界面活性剤を用いて逆相懸濁重合する吸水性樹脂の製造方法であって、水溶性エチレン性不飽和単量体水溶液を前記分散媒中に分散させる際のその投入速度につき、以下の条件:
(a)重合槽に水溶性エチレン性不飽和単量体水溶液を投入するに当たり、次式(I):
Vi=Fi・Ai/T
[式中、i:ノズル番号(1~n)、n:ノズルの本数(1≦n≦10)、Vi:添加速度[min-1]、Fi:ノズルからの平均線流速[m/min]、Ai:ノズルの断面積[m2]、T:重合反応槽へ仕込む単量体水溶液全量[m3]を示す]
で定義される、前記水溶液の添加速度Viが0.30[min-1]以下であること;および
(b)重合槽系内に投入される水溶性エチレン性不飽和単量体水溶液の次式(II):
Vtotal=ΣVi (i=1~n)
[式中、Vtotal:総添加速度[min-1]、Vi:各ノズルの添加速度[min-1]を示し、iおよびnは前記式(I)における定義に同じ。ただし、ノズルが1本の重合装置(n=1)の場合、Vtotal=V1である]
で定義される総添加速度Vtotalが0.08[min-1]以上であること
を満たすことを特徴とする、吸水性樹脂の製造方法。 - nが、2≦n≦10であることを特徴とする請求項1または2に記載の吸水性樹脂の製造方法。
- 逆相懸濁重合を行うにあたり、重合前に界面活性剤を用いて石油系炭化水素分散媒中で水溶性エチレン性不飽和単量体水溶液を分散させた後に、水溶性ラジカル開始剤を用いて重合を行う、請求項1~3のいずれか1項に記載の吸水性樹脂の製造方法。
- 請求項1~4のいずれか1項に記載の製造方法により得られる吸水性樹脂。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180036988.1A CN103003312B (zh) | 2010-07-28 | 2011-07-20 | 吸水性树脂的制造方法 |
KR1020177021078A KR101819877B1 (ko) | 2010-07-28 | 2011-07-20 | 흡수성 수지의 제조 방법 |
US13/812,612 US8841395B2 (en) | 2010-07-28 | 2011-07-20 | Method for producing a water-absorbent resin |
KR1020137002265A KR20130131288A (ko) | 2010-07-28 | 2011-07-20 | 흡수성 수지의 제조 방법 |
BR112013003645-1A BR112013003645B1 (pt) | 2010-07-28 | 2011-07-20 | método para produzir uma resina absorvente de água |
JP2012526447A JP5777620B2 (ja) | 2010-07-28 | 2011-07-20 | 吸水性樹脂の製造方法 |
EP11812338.9A EP2599794B1 (en) | 2010-07-28 | 2011-07-20 | Production method for water absorbent resin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-169680 | 2010-07-28 | ||
JP2010169680 | 2010-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012014747A1 true WO2012014747A1 (ja) | 2012-02-02 |
Family
ID=45529962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066453 WO2012014747A1 (ja) | 2010-07-28 | 2011-07-20 | 吸水性樹脂の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US8841395B2 (ja) |
EP (1) | EP2599794B1 (ja) |
JP (1) | JP5777620B2 (ja) |
KR (2) | KR101819877B1 (ja) |
CN (1) | CN103003312B (ja) |
BR (1) | BR112013003645B1 (ja) |
SA (1) | SA111320654B1 (ja) |
TW (1) | TWI499595B (ja) |
WO (1) | WO2012014747A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014034897A1 (ja) | 2012-08-30 | 2014-03-06 | 株式会社日本触媒 | 粒子状吸水剤及びその製造方法 |
WO2015133440A1 (ja) * | 2014-03-03 | 2015-09-11 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法 |
WO2023189679A1 (ja) * | 2022-03-29 | 2023-10-05 | 住友精化株式会社 | 吸水性樹脂粒子 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187702A (ja) | 1984-10-05 | 1986-05-06 | Seitetsu Kagaku Co Ltd | 吸水性樹脂の製造方法 |
JPS62172006A (ja) | 1986-01-25 | 1987-07-29 | Seitetsu Kagaku Co Ltd | 吸水性樹脂の製造法 |
JPH03195713A (ja) * | 1989-12-25 | 1991-08-27 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
JPH03195709A (ja) * | 1989-12-25 | 1991-08-27 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
WO2007126002A1 (ja) * | 2006-04-27 | 2007-11-08 | Sumitomo Seika Chemicals Co., Ltd. | 吸水性樹脂の製造方法 |
WO2009025235A1 (ja) * | 2007-08-23 | 2009-02-26 | Sumitomo Seika Chemicals Co., Ltd. | 衛生材用途に適した吸水性樹脂 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0912613A (ja) | 1995-06-28 | 1997-01-14 | Mitsubishi Chem Corp | 吸水性樹脂の製造方法 |
US6107358A (en) * | 1996-08-23 | 2000-08-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and method for production thereof |
KR100504592B1 (ko) * | 2001-12-19 | 2005-08-03 | 니폰 쇼쿠바이 컴파니 리미티드 | 수흡수성 수지 및 그의 제조방법 |
WO2004101628A1 (ja) | 2003-05-13 | 2004-11-25 | Sumitomo Seika Chemicals Co., Ltd. | 吸水性樹脂の製造方法 |
SG155191A1 (en) | 2004-08-06 | 2009-09-30 | Nippon Catalytic Chem Ind | Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article |
JP2006089525A (ja) | 2004-09-21 | 2006-04-06 | Sumitomo Seika Chem Co Ltd | 吸水性樹脂粒子の製造方法 |
JP4721780B2 (ja) | 2005-06-10 | 2011-07-13 | 住友精化株式会社 | 多孔質吸水性ポリマー粒子の製造法 |
CA2648010C (en) | 2006-03-31 | 2011-08-23 | Asahi Kasei Chemicals Corporation | Water absorbing resin particle agglomerates and a manufacturing method of the same |
EP2011803B1 (en) | 2006-04-24 | 2011-09-07 | Sumitomo Seika Chemicals Co., Ltd. | Process for production of water-absorbent resin particles, and water-absorbent resin particles produced by the process |
KR101778339B1 (ko) * | 2010-07-28 | 2017-09-13 | 스미토모 세이카 가부시키가이샤 | 흡수성 수지의 제조 방법 |
-
2011
- 2011-07-20 JP JP2012526447A patent/JP5777620B2/ja active Active
- 2011-07-20 CN CN201180036988.1A patent/CN103003312B/zh active Active
- 2011-07-20 BR BR112013003645-1A patent/BR112013003645B1/pt active IP Right Grant
- 2011-07-20 KR KR1020177021078A patent/KR101819877B1/ko active IP Right Grant
- 2011-07-20 EP EP11812338.9A patent/EP2599794B1/en active Active
- 2011-07-20 US US13/812,612 patent/US8841395B2/en active Active
- 2011-07-20 WO PCT/JP2011/066453 patent/WO2012014747A1/ja active Application Filing
- 2011-07-20 KR KR1020137002265A patent/KR20130131288A/ko not_active Application Discontinuation
- 2011-07-26 TW TW100126320A patent/TWI499595B/zh active
- 2011-07-27 SA SA111320654A patent/SA111320654B1/ar unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6187702A (ja) | 1984-10-05 | 1986-05-06 | Seitetsu Kagaku Co Ltd | 吸水性樹脂の製造方法 |
JPS62172006A (ja) | 1986-01-25 | 1987-07-29 | Seitetsu Kagaku Co Ltd | 吸水性樹脂の製造法 |
JPH03195713A (ja) * | 1989-12-25 | 1991-08-27 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
JPH03195709A (ja) * | 1989-12-25 | 1991-08-27 | Mitsubishi Petrochem Co Ltd | 高吸水性ポリマーの製造法 |
WO2007126002A1 (ja) * | 2006-04-27 | 2007-11-08 | Sumitomo Seika Chemicals Co., Ltd. | 吸水性樹脂の製造方法 |
WO2009025235A1 (ja) * | 2007-08-23 | 2009-02-26 | Sumitomo Seika Chemicals Co., Ltd. | 衛生材用途に適した吸水性樹脂 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014034897A1 (ja) | 2012-08-30 | 2014-03-06 | 株式会社日本触媒 | 粒子状吸水剤及びその製造方法 |
WO2015133440A1 (ja) * | 2014-03-03 | 2015-09-11 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法 |
JPWO2015133440A1 (ja) * | 2014-03-03 | 2017-04-06 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂の製造方法 |
US9896529B2 (en) | 2014-03-03 | 2018-02-20 | Nippon Shokubai Co., Ltd. | Method for producing polyacrylic acid (salt)-based water-absorbable resin |
WO2023189679A1 (ja) * | 2022-03-29 | 2023-10-05 | 住友精化株式会社 | 吸水性樹脂粒子 |
Also Published As
Publication number | Publication date |
---|---|
BR112013003645A2 (pt) | 2016-09-06 |
CN103003312A (zh) | 2013-03-27 |
US8841395B2 (en) | 2014-09-23 |
EP2599794A1 (en) | 2013-06-05 |
TW201213348A (en) | 2012-04-01 |
TWI499595B (zh) | 2015-09-11 |
CN103003312B (zh) | 2015-05-13 |
JP5777620B2 (ja) | 2015-09-09 |
KR101819877B1 (ko) | 2018-01-17 |
JPWO2012014747A1 (ja) | 2013-09-12 |
EP2599794A4 (en) | 2015-02-11 |
SA111320654B1 (ar) | 2014-06-29 |
US20130123454A1 (en) | 2013-05-16 |
BR112013003645B1 (pt) | 2020-10-27 |
KR20170090524A (ko) | 2017-08-07 |
KR20130131288A (ko) | 2013-12-03 |
EP2599794B1 (en) | 2019-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5805640B2 (ja) | 吸水性樹脂の製造方法 | |
JP5805639B2 (ja) | 吸水性樹脂の製造方法 | |
JP5439179B2 (ja) | 衛生材用途に適した吸水性樹脂 | |
JP5916725B2 (ja) | 吸水性樹脂の製造方法 | |
JP5378790B2 (ja) | 吸水性樹脂の製造方法 | |
JP6313280B2 (ja) | 吸水性樹脂組成物の製造方法 | |
JP5805641B2 (ja) | 吸水性樹脂の製造方法 | |
WO2012108253A1 (ja) | 吸水性樹脂の製造方法 | |
WO2017169246A1 (ja) | 吸水性樹脂粒子の製造装置 | |
WO2013128978A1 (ja) | 吸水性樹脂粒子の製造方法 | |
JP5777620B2 (ja) | 吸水性樹脂の製造方法 | |
WO2013125279A1 (ja) | 吸水性樹脂粒子の製造方法 | |
WO2013051417A1 (ja) | 吸水性樹脂粒子の製造方法 | |
WO2016136761A1 (ja) | 吸水性樹脂製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11812338 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012526447 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011812338 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137002265 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13812612 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013003645 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013003645 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130128 |