[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012005145A1 - 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路 - Google Patents

移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路 Download PDF

Info

Publication number
WO2012005145A1
WO2012005145A1 PCT/JP2011/064824 JP2011064824W WO2012005145A1 WO 2012005145 A1 WO2012005145 A1 WO 2012005145A1 JP 2011064824 W JP2011064824 W JP 2011064824W WO 2012005145 A1 WO2012005145 A1 WO 2012005145A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
nack
station apparatus
mobile station
encoded bits
Prior art date
Application number
PCT/JP2011/064824
Other languages
English (en)
French (fr)
Inventor
翔一 鈴木
陽介 秋元
立志 相羽
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180032827.5A priority Critical patent/CN102972064B/zh
Priority to US13/808,454 priority patent/US9215695B2/en
Priority to JP2011551723A priority patent/JP5044047B2/ja
Publication of WO2012005145A1 publication Critical patent/WO2012005145A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to a mobile station device, a base station device, a wireless communication system, a wireless communication method, and an integrated circuit.
  • the third generation partnership project is the evolution of wireless access methods and wireless networks for cellular mobile communications (hereinafter referred to as "Long Term Evolution (LTE)” or “Evolved Universal Terrestrial Radio Access (EUTRA)”).
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • OFDM Orthogonal frequency division multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • ACK Acknowledgement
  • NACK Negative Acknowledgement indicating whether the mobile station apparatus has successfully decoded downlink data received on a physical downlink shared channel
  • PUCCH Physical-Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the mobile station apparatus does not have PUSCH radio resources assigned when transmitting ACK / NACK, ACK / NACK is transmitted on PUCCH. If the mobile station apparatus is allocated PUSCH radio resources when transmitting ACK / NACK, ACK / NACK is transmitted on PUSCH.
  • LTE-A Long ⁇ Term Evolution-Advanced
  • A-EUTRA Advanced Evolved Universal Terrestrial Radio
  • LTE-A base station apparatus performs radio communication simultaneously with both LTE-A and LTE mobile station apparatuses
  • LTE-A mobile station apparatus performs radio communication with both LTE-A and LTE base station apparatuses.
  • LTE-A uses the same channel structure as LTE.
  • LTE-A uses a plurality of frequency bands having the same channel structure as LTE (hereinafter referred to as “carrier element (Carrier—Component: CC)” or “component carrier (Component—Carrier: CC))”.
  • carrier element Carrier—Component: CC
  • Component carrier Component—Carrier: CC
  • Techniques used as frequency bands (broadband frequency bands) (frequency band aggregation: also called “spectrum aggregation, carrier aggregation, frequency aggregation, etc.) have been proposed.
  • frequency band aggregation also called “spectrum aggregation, carrier aggregation, frequency aggregation, etc.) have been proposed.
  • the base station device arranges one PDSCH for each downlink component carrier (Downlink Component Carrier: DL CC), and simultaneously transmits a plurality of PDSCHs to the mobile station device.
  • one primary cell Primary cell: Pcell
  • one or more secondary cells Secondary cell: Scell
  • the primary cell is a cell provided by a downlink primary component carrier (Downlink Primary Component Carrier: DL PCC) and an uplink primary component carrier (Uplink Primary Component Carrier: UL PCC).
  • the primary cell is a cell having the same function as the LTE cell.
  • One DL PCC and one ULCPCC are set for each mobile station apparatus.
  • the secondary cell is a cell provided by a downlink secondary component carrier (Downlink Secondary Component Carrier: DL SCC) and an uplink secondary component carrier (Uplink Secondary Component Carrier: UL SCC).
  • the secondary cell may be provided only by DL-SCC.
  • the secondary cell is a cell whose function is limited more than the primary cell. All DL CCs except DL PCC are DL SCC. All uplink component carriers (Uplink Component (Carrier:) UL CC) except UL PCC are UL SCC.
  • Non-Patent Document 1 when transmitting a plurality of ACK / NACK for each of a plurality of PDSCHs simultaneously received by the mobile station apparatus to the base station apparatus, an uplink is performed using one PUSCH among the plurality of PUSCHs transmitted by the mobile station apparatus. Transmission of link data (information channel in higher layer) (Uplink Shared Channel: UL-SCH) and a plurality of ACKs / NACKs together is being studied (Non-Patent Document 1).
  • Non-Patent Document 2 discloses a method of encoding all ACK / NACK together when transmitting a plurality of ACK / NACKs for a plurality of PDSCHs on the same PUSCH, and a cell (DL CC) corresponding to the ACK / NACK. It is described that encoding is performed every time. Further, in Non-Patent Document 2, even when a mobile station apparatus is assigned a plurality of DL CCs, the mobile station device only provides downlink control information (Downlink Control Information: DCI) indicating the PDSCH assignment of the primary cell. When received, the mobile station apparatus transmits both uplink data and ACK / NACK using PUSCH using the LTE transmission method. The downlink control information indicating the PDSCH assignment is referred to as downlink assignment (DL assignment).
  • DCI Downlink Control Information
  • uplink data is transmitted with a spatial multiplexing number of 2 or more (hereinafter referred to as rank or Rank).
  • Non-Patent Document 3 proposes assigning a bit string after channel coding to each layer as a method for creating a copy of control information.
  • the mobile station apparatus when the mobile station apparatus transmits ACK / NACK for a plurality of PDSCHs received by a plurality of DL CCs on one physical uplink channel, the mobile station apparatus efficiently encodes ACK / NACK. There is a problem that it cannot be transmitted in the form of a computer.
  • the mobile station apparatus transmits ACK / NACK for a plurality of PDSCHs received by a plurality of DL-CCs on one physical uplink channel
  • the mobile station apparatus Mobile station apparatus, base station apparatus, radio communication system, and radio communication method capable of efficiently encoding and transmitting ACK / NACK and allowing base station apparatus to receive ACK / NACK transmitted by mobile station apparatus And it aims at providing an integrated circuit.
  • the mobile station apparatus provides a first ACK / NACK in a mobile station apparatus that transmits a plurality of ACK / NACKs for transport blocks transmitted by a base station apparatus using a plurality of component carriers to the base station apparatus.
  • the second ACK / NACK are encoded separately, and the first ACK / NACK coded bits are repeatedly processed until the number of coded bits of the first ACK / NACK reaches the first value.
  • the second ACK / NACK coded bits are repeatedly processed until the number of coded bits of the second ACK / NACK reaches a second value, and the first ACK subjected to the repeated processing is executed.
  • the physical uplink channel is a physical uplink shared channel, and the first value and the second value are used in the physical uplink shared channel. It is characterized by being a positive integer multiple of the modulation order.
  • the iterative process may be performed when the first ACK / NACK encoded bit is smaller than the first value. This is characterized in that it is a process of repeatedly connecting encoded bits from the beginning.
  • the iterative process is performed when the second ACK / NACK encoded bit is smaller than the second value, and the second ACK / NACK is This is characterized in that the encoded bits are repeatedly connected from the beginning.
  • the iterative process is performed when the coded bit of the first ACK / NACK is larger than the first value. This is characterized in that it is a process of cutting encoded bits from the beginning to the first value.
  • the iterative process may be performed when the second ACK / NACK encoded bit is larger than the second value. This is characterized in that it is a process of cutting the encoded bits from the beginning to the second value.
  • the base station apparatus of the present invention separately encodes the base station apparatus that receives a plurality of ACKs / NACKs for the transport blocks transmitted from the mobile station apparatus to the mobile station apparatus using a plurality of component carriers.
  • the received first ACK / NACK and second ACK / NACK are received from the mobile station apparatus using one physical uplink channel, and the encoded bits of the first ACK / NACK are the mobile
  • the station apparatus repeatedly performs the process until the number of coded bits of the first ACK / NACK reaches a first value, and the coded bits of the second ACK / NACK are Iterative processing is executed until the number of encoded ACK / NACK bits reaches a second value, and the first ACK / N for which the iterative processing has been executed.
  • the second coded bits ACK / NACK to the repetitive processing encoded bit CK is performed, it is characterized by being connected by the mobile station apparatus.
  • the physical uplink channel is a physical uplink shared channel, and the first value and the second value are used in the physical uplink shared channel. It is characterized by being a positive integer multiple of the modulation order.
  • the iterative process may be performed when the first ACK / NACK encoded bit is smaller than the first value. This is characterized in that it is a process of repeatedly connecting encoded bits from the beginning.
  • the iterative process may be performed when the second ACK / NACK encoded bit is smaller than the second value, and the second ACK / NACK is This is characterized in that the encoded bits are repeatedly connected from the beginning.
  • the iterative process may be performed when the first ACK / NACK encoded bit is larger than the first value. This is characterized in that it is a process of cutting encoded bits from the beginning to the first value.
  • the iterative process is performed when the second ACK / NACK coded bit is larger than the second value, This is characterized in that it is a process of cutting the encoded bits from the beginning to the second value.
  • the mobile station apparatus transmits a plurality of ACK / NACKs for the transport block transmitted by the base station apparatus using a plurality of component carriers to the base station apparatus.
  • the mobile station apparatus separately encodes the first ACK / NACK and the second ACK / NACK, and the first ACK / NACK is encoded until the number of encoded bits of the first ACK / NACK becomes a first value.
  • the base station apparatus Iterates on one ACK / NACK coded bit and repeats on the second ACK / NACK coded bit until the number of coded bits on the second ACK / NACK reaches a second value And the coded bit of the first ACK / NACK that has performed the repetition process and the second ACK / NAC that has performed the repetition process And the first ACK / NACK and the second ACK / NACK are transmitted to the base station apparatus using one physical uplink channel, and the base station apparatus The first ACK / NACK and the second ACK / NACK are received from the mobile station apparatus using the one physical uplink channel.
  • the radio communication method of the present invention is a radio communication used for a mobile station apparatus that transmits a plurality of ACKs / NACKs for transport blocks transmitted by a base station apparatus using a plurality of component carriers to the base station apparatus.
  • the first ACK / NACK and the second ACK / NACK are separately encoded, and the first ACK / NACK is encoded until the number of encoded bits of the first ACK / NACK becomes a first value.
  • the physical uplink channel is a physical uplink shared channel, and the first value and the second value are used in the physical uplink shared channel. It is characterized by being a positive integer multiple of the modulation order.
  • the radio communication method of the present invention is a radio communication used for a base station apparatus that receives a plurality of ACK / NACKs for transport blocks transmitted from a plurality of component carriers to the base station apparatus from the mobile station apparatus.
  • the method separately encoded first ACK / NACK and second ACK / NACK are received from the mobile station device using one physical uplink channel, and the first ACK / NACK code is received.
  • the encoded bits are repeatedly processed by the mobile station apparatus until the number of encoded bits of the first ACK / NACK reaches a first value, and the encoded bits of the second ACK / NACK are The iterative process is executed by the station apparatus until the number of encoded bits of the second ACK / NACK reaches a second value, and the iterative process A second ACK / NACK coding bits of the repetitive processing and coded bits of the first ACK / NACK executed is executed, it is characterized by being connected by the mobile station apparatus.
  • the physical uplink channel is a physical uplink shared channel, and the first value and the second value are used in the physical uplink shared channel. It is characterized by being a positive integer multiple of the modulation order.
  • An integrated circuit according to the present invention is an integrated circuit used in a mobile station apparatus that transmits a plurality of ACK / NACKs for transport blocks transmitted by a base station apparatus using a plurality of component carriers to the base station apparatus.
  • a first ACK / NACK encoded bit that has been subjected to the iterative process and a second ACK / NACK that has been subjected to the iterative process A series of functions including a function of concatenating coded bits and a function of transmitting the first ACK / NACK and the second ACK / NACK to the base station apparatus using one physical uplink channel In the mobile station apparatus.
  • the physical uplink channel is a physical uplink shared channel, and the first value and the second value are used in the physical uplink shared channel. It is characterized by being a positive integer multiple of the modulation order.
  • An integrated circuit according to the present invention is an integrated circuit used in a base station apparatus that receives a plurality of ACK / NACKs for a transport block transmitted from a mobile station apparatus to a mobile station apparatus using a plurality of component carriers. , Causing the base station device to function to receive separately encoded first ACK / NACK and second ACK / NACK from the mobile station device using one physical uplink channel, and The coded bits of one ACK / NACK are repeatedly processed by the mobile station apparatus until the number of coded bits of the first ACK / NACK reaches a first value, and the second ACK / NACK The coded bits are repeatedly processed by the mobile station apparatus until the number of coded bits of the second ACK / NACK reaches a second value. The coded bits of the first ACK / NACK for which the iterative processing has been performed and the coded bits of the second ACK / NACK for which the iterative processing has been performed are connected by the mobile station apparatus. It is a feature.
  • the physical uplink channel is a physical uplink shared channel, and the first value and the second value are used in the physical uplink shared channel. It is characterized by being a positive integer multiple of the modulation order.
  • the mobile station apparatus when the mobile station apparatus transmits ACK / NACK for a plurality of PDSCHs received by a plurality of DL CCs on one physical uplink channel, the mobile station apparatus efficiently encodes the ACK / NACK. Can be sent.
  • FIG. 1 is a conceptual diagram of the wireless communication system of the present invention.
  • the radio communication system includes mobile station apparatuses 1 A to 1 C and a base station apparatus 3.
  • FIG. 1 shows a synchronization signal (Synchronization signal: SS), downlink reference signal (Downlink Signal: DL RS), physical broadcast channel in wireless communication (downlink) from the base station device 3 to the mobile station devices 1A to 1C.
  • SS Synchronization signal
  • DL RS downlink reference signal
  • downlink downlink Signal
  • Physical Broadcast Channel PBCH
  • Physical Downlink Control Channel Physical Downlink Control Channel: PDCCH
  • Physical Downlink Shared Channel Physical Downlink Shared Channel
  • Physical Multicast Channel Physical Multicast Channel
  • PCFICH Physical Control Indicator Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • FIG. 1 shows uplink reference signals (Uplink Reference Signal: UL RS), physical uplink control channel (Physical Uplink Control Channel: PUCCH) in wireless communication (uplink) from the mobile station devices 1A to 1C to the base station device 3. ), A physical uplink shared channel (Physical Uplink Shared Channel: PUSCH), and a physical random access channel (Physical Random Access Channel: PRACH).
  • UL RS Uplink Reference Signal
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • the synchronization signal is a signal used for the mobile station apparatus 1 to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used by the mobile station apparatus 1 to synchronize the downlink frequency domain and time domain, the mobile station apparatus 1 is used to measure downlink reception quality, or the mobile station This is a signal used by the device 1 to perform PDSCH or PDCCH propagation path correction.
  • PBCH is a physical channel used for broadcasting control parameters (system information) (Broadcast Channel: BCH) commonly used in the mobile station apparatus 1.
  • BCH Broadcast Channel
  • PBCH is transmitted at intervals of 40 ms.
  • the mobile station apparatus 1 performs blind detection (blind detection) at 40 ms intervals.
  • the PDCCH is a physical channel used for transmitting downlink control information (Downlink Control Information: DCCI) such as downlink assignment (also referred to as downlink assignment or downlink grant) and uplink grant (uplink grant).
  • DCCI Downlink Control Information
  • the downlink assignment includes information on modulation scheme and coding rate for PDSCH (Modulation & Coding Scheme: MCS), information indicating radio resource allocation, and the like.
  • MCS Modulation & Coding Scheme
  • the uplink grant is composed of information on a modulation scheme and a coding rate for PUSCH (channel for uplink data transmission), information indicating radio resource allocation, and the like.
  • the format of the downlink control information is called a DCI format (DCIDformat).
  • the DCI format of the downlink assignment is a DCI format 1A used when the base station apparatus 3 transmits the PDSCH using one transmission antenna port or transmission diversity, and the base station apparatus 3 transmits MIMO SM (Multiple Input Multiple to the PDSCH.
  • DCI format 2 used when transmitting a plurality of downlink data using (Output ⁇ ⁇ Spatial Multiplexing) is prepared.
  • MIMO SM is a technology in which a plurality of signals are multiplexed and transmitted / received on a plurality of spatial dimension channels realized by a plurality of transmission antenna ports and a plurality of reception antenna ports.
  • the antenna port indicates a logical antenna used for signal processing, and one antenna port may be configured by one physical antenna or may be configured by a plurality of physical antennas. Also good.
  • a process (referred to as precoding) for forming an appropriate spatial channel is performed for a plurality of signals, and the plurality of signals subjected to the precoding process are processed. Are transmitted using a plurality of transmission antennas.
  • processing for appropriately separating signals multiplexed on a spatial dimension channel from a plurality of signals received using a plurality of receiving antennas is performed.
  • PDSCH is a physical channel that is not broadcast on paging information (Paging Channel: PCH) or PBCH, that is, used to transmit system information other than BCH and downlink data (Downlink Shared Channel: DL-SCH).
  • the PMCH is a physical channel used for transmitting information (Multicast Channel: MCH) related to MBMS (Multimedia Broadcast and Multicast Service).
  • PCFICH is a physical channel used for transmitting information indicating an area where the PDCCH is arranged.
  • the PHICH is a physical channel used for transmitting a HARQ indicator that indicates success or failure of decoding of uplink data (Uplink Shared Channel: -UL-SCH) received by the base station apparatus 3.
  • Uplink Shared Channel: -UL-SCH Uplink Shared Channel
  • the HARQ indicator indicates ACK (ACKnowledgement), and the base station apparatus 3 decodes at least one uplink data included in the PUSCH. If it fails, the HARQ indicator indicates NACK (Negative ACKnowledgement).
  • ACK acknowledgement
  • NACK Negative ACKnowledgement
  • the uplink reference signal is used for the base station device 3 to synchronize the uplink time domain, the base station device 3 is used to measure uplink reception quality, or the base station device 3 It is a signal used to perform propagation channel correction for PUSCH and PUCCH.
  • the uplink reference signal is subjected to code spreading using a CAZAC (Constant-Amplitude-and-Zero-Auto-Correlation) sequence in radio resources divided assuming SC-FDMA.
  • CAZAC Constant-Amplitude-and-Zero-Auto-Correlation
  • the CAZAC sequence is a sequence having a constant amplitude and excellent autocorrelation characteristics in the time domain and the frequency domain. Since the amplitude is constant in the time domain, it is possible to keep PAPR (Peak to Average Power to Ratio) low.
  • a cyclic delay is applied to the DMRS in the time domain. This cyclic delay in the time domain is called a cyclic shift.
  • the cyclic shift corresponds to the phase rotation of the CAZAC sequence in sub-carrier units in the frequency domain.
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • OCC OrthogonCover Code
  • the PUCCH includes channel quality information (Channel Quality Information) indicating downlink channel quality, a scheduling request (Scheduling Request: SR) indicating a request for allocation of uplink radio resources, and downlink data received by the mobile station apparatus 1. It is a physical channel used for transmitting uplink control information (Uplink Control Information: UCI) that is information used for communication control, such as ACK / NACK indicating success or failure of decoding.
  • Channel Quality Information Channel Quality Information
  • SR scheduling request
  • UCI Uplink Control Information
  • the PUSCH is a physical channel used for transmitting uplink data and uplink control information.
  • the uplink control information is transmitted on PUCCH. If the mobile station apparatus is assigned radio resources for PUSCH when transmitting uplink control information, the uplink control information is transmitted using PUSCH. In addition, when the radio
  • PRACH is a physical channel used to transmit a random access preamble.
  • the PRACH is mainly used for the mobile station apparatus 1 to synchronize with the base station apparatus 3 in the time domain, and is also used for initial access, handover, reconnection request, and uplink radio resource allocation request. It is done.
  • FIG. 2 is a diagram showing an example of the frequency band aggregation processing of the present invention.
  • the horizontal axis represents the frequency domain
  • the vertical axis represents the time domain.
  • the downlink subframe D1 includes four downlink component carriers (DL CC-1; Downlink Component Carrier-1, DL CC-2, DL CC-3, DL) having a bandwidth of 20 MHz. It is composed of DL CC-4) subframes.
  • PHICH, PCFICH, and PDCCH are frequency multiplexed and / or time multiplexed.
  • the region where PHICH, PCFICH and PDCCH are frequency multiplexed and / or time multiplexed and the region where PDSCH is arranged are time multiplexed.
  • the uplink subframe U1 includes three uplink component carriers (UL-CC-1; Uplink Component-Carrier-1, UL-CC-2, UL-CC-3) having a bandwidth of 20 MHz.
  • Each UL-CC subframe is frequency-multiplexed with a region where a PUCCH indicated by a region hatched with a right-down diagonal line is arranged and a region where a PUSCH indicated by a region hatched with a horizontal line is arranged. .
  • the mobile station apparatus 1 first performs initial access with the base station apparatus 3 using either one of the DL CC and UL CC.
  • the base station device 3 uses the RRC signal (Radio Resource Control signal) transmitted using the PD SC of the DL CC that the mobile station apparatus 1 has initially accessed, and sets the DL CC and UL CC that are set for the mobile station apparatus 1.
  • RRC signal Radio Resource Control signal
  • configured (uplink / downlink) component carrier referred to as configured (downlink / uplink) component carrier
  • the base station apparatus 3 activates a DL CC used for downlink communication from the set DL CC and / or an UL command indicating an UL CC used for uplink communication from the set UL CC. Is notified using PDCCH or MAC (Medium Access Control) CE (Control Element).
  • activating the CC Informing the mobile station device 1 that the CC is used for communication by the activation command by the base station device 3 is referred to as activating the CC. Notifying the mobile station device 1 that the CC is not used for communication by the activation command is referred to as deactivating the CC.
  • the base station device 3 sets one downlink primary component carrier (DownlinkDownPrimary Component Carrier: DL PCC) (first downlink component carrier) from the set DL CC for each mobile station device 1.
  • DL PCC DownlinkDownPrimary Component Carrier
  • ULPCC Uplink Primary Component Carrier
  • DL CC other than DL PCC is a downlink secondary component carrier (Downlink Secondary Component Carrier: DL DL SCC) (second downlink component carrier).
  • UL CC other than UL PCC is an uplink secondary component carrier (Uplink Secondary Component Carrier: UL SCC).
  • Pcell Primary cell
  • Scell secondary cell
  • the primary cell is a cell provided by one DL-PCC and one UL-PCC.
  • the primary cell is a cell having the same function as the LTE cell.
  • the secondary cell is a cell provided by one DL SCC and one UL SCC.
  • the secondary cell may be provided only by DL-SCC.
  • the secondary cell is a cell whose function is limited more than the primary cell.
  • the uplink control information is transmitted on the UL-PCC PUCCH and / or one of the set UL-CC PUSCHs.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of a downlink radio frame according to the present invention.
  • the horizontal axis is the time domain
  • the vertical axis is the frequency domain.
  • a DL-CC radio frame is composed of a plurality of downlink physical resource block (Physical Resource Block; PRB) pairs (for example, an area surrounded by a broken line in FIG. 3).
  • PRB Physical Resource Block
  • One downlink physical resource block pair is composed of two downlink physical resource blocks (PRB bandwidth ⁇ slot) that are continuous in the time domain.
  • One downlink physical resource block (unit surrounded by a thick line in FIG. 3) is composed of 12 subcarriers (15 kHz) in the frequency domain, and 7 OFDMs (Orthogonal Frequency Division) in the time domain. Multiplexing) symbol (71 ⁇ s).
  • a slot (0.5 ms) composed of 7 OFDM symbols (71 ⁇ s), a subframe (1 ms) composed of 2 slots, and a radio frame (10 ms composed of 10 subframes) ) 1 ms which is the same time interval as the subframe is also referred to as a transmission time interval (TransmitTransTime Interval: TTI).
  • TTI TransmissionTransTime Interval
  • a plurality of downlink physical resource blocks are arranged according to the bandwidth of DL-CC.
  • a unit composed of one subcarrier and one OFDM symbol is referred to as a downlink resource element.
  • each downlink subframe PDCCH, PCFICH, PHICH, PDSCH, a downlink reference signal, and the like are arranged.
  • the PDCCH is arranged from the first OFDM symbol of the subframe (the area hatched with a left oblique line in FIG. 3).
  • the number of OFDM symbols in which the PDCCH is arranged is different for each subframe, and information indicating the number of OFDM symbols in which the PDCCH is arranged is broadcast by PCFICH.
  • a plurality of PDCCHs are frequency multiplexed and time multiplexed.
  • PCFICH is arranged in the first OFDM symbol of the subframe and is frequency-multiplexed with PDCCH.
  • the PHICH is frequency-multiplexed within the same OFDM symbol as the PDCCH (the area hatched with a mesh line in FIG. 3).
  • the PHICH may be arranged only in the first OFDM symbol of the subframe, or may be arranged dispersed in a plurality of OFDM symbols in which the PDCCH is arranged.
  • a plurality of PHICHs are frequency multiplexed and code multiplexed.
  • the mobile station apparatus 1 receives HARQ feedback for this PUSCH in a PHICH of a downlink subframe after a predetermined time (for example, 4 ms, 4 subframes, and 4 TTIs) after transmitting the PUSCH.
  • a predetermined time for example, 4 ms, 4 subframes, and 4 TTIs
  • PDSCH is arranged in an OFDM symbol other than the OFDM symbol in which PDCCH, PCFICH, and PHICH are arranged in a subframe (in FIG. 3, a region that is not hatched).
  • PDSCH radio resource allocation is indicated to mobile station apparatus 1 using downlink assignment.
  • the radio resources of the PDSCH are arranged in the same downlink subframe as that of the PDCCH including the downlink assignment indicating the PDSCH assignment in the time domain.
  • PDSCH and PDCCH corresponding to this PDSCH are arranged on the same or different downlink component carriers.
  • a subframe of each downlink component carrier a plurality of PDSCHs are frequency-multiplexed and spatially multiplexed.
  • the downlink reference signal is not shown in FIG. 3 for simplicity of explanation, but the downlink reference signal is distributed and arranged in the frequency domain and the time domain.
  • FIG. 4 is a schematic diagram showing an example of the configuration of an uplink radio frame according to the present invention.
  • the horizontal axis is the time domain
  • the vertical axis is the frequency domain.
  • a UL-CC radio frame is composed of a plurality of uplink physical resource block pairs (for example, an area surrounded by a broken line in FIG. 4).
  • One uplink physical resource block pair is composed of two uplink physical resource blocks (PRB bandwidth ⁇ slot) that are continuous in the time domain.
  • One uplink physical resource block (unit surrounded by a thick line in FIG. 4) is composed of 12 subcarriers in the frequency domain, and is composed of 7 SC-FDMA symbols (71 ⁇ s) in the time domain. Composed.
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • 71 ⁇ s slot (0.5 ms)
  • two slot subframes (1 ms)
  • 10 There is a radio frame (10 ms) composed of subframes. 1 ms which is the same time interval as the subframe is also referred to as a transmission time interval (TransmitTransTime Interval: TTI).
  • TTI TransmissionTransTime Interval
  • a plurality of uplink physical resource blocks are arranged according to the UL-CC bandwidth.
  • a unit composed of one subcarrier and one SC-FDMA symbol is referred to as an uplink resource element.
  • PUCCH, PUSCH, PRACH, an uplink reference signal, etc. are arrange
  • the PUCCH is arranged in uplink physical resource blocks (regions hatched with left diagonal lines) at both ends of the uplink band.
  • a plurality of PUCCHs are frequency multiplexed and code multiplexed.
  • the PUSCH is arranged in an uplink physical resource block pair (an area that is not hatched) other than the uplink physical resource block in which the PUCCH is arranged.
  • PUSCH radio resources are allocated using an uplink grant, and after a predetermined time from a downlink subframe in which a PDCCH including the uplink grant is arranged (for example, 4 ms later, 4 subframes later, 4 TTI later) Are arranged in uplink subframes.
  • a plurality of PUSCHs are frequency multiplexed and spatially multiplexed.
  • the uplink reference signal is time-multiplexed with PUCCH and PUSCH.
  • DMRS time-multiplexed with PUSCH is arranged in the fourth and eleventh SC-FDMA symbols in the subframe.
  • the uplink reference signal is time-multiplexed with PUSCH and PUCCH and transmitted.
  • the uplink reference signal is arranged in the same frequency band to which the PUSCH is assigned in the frequency domain, and is assigned to the fourth and eleventh SC-FDMA symbols in the time domain. Be placed.
  • FIG. 5 is a diagram for explaining a method of simultaneously transmitting uplink data and ACK / NACK using the PUSCH of the present invention.
  • the horizontal axis represents the time domain
  • the vertical axis represents the arrangement of modulation symbol sequences to be mapped, and does not correspond to the frequency axis, but is subjected to DFT processing for each SC-FDMA symbol, It is mapped to the resource allocated in.
  • ACK / NACK modulation symbols are arranged in the third, fifth, tenth and twelfth SC-FDMA symbols.
  • ACK / NACK for the PDSCH of DL PCC is the first ACK / NACK (first response information)
  • ACK / NACK for the PDSCH of one or more DL SCC is the second ACK / NACK (second response) Information).
  • the third SC-FDMA symbol the first ACK / NACK modulation symbol, the second ACK / NACK modulation symbol, and the uplink data It shows that the signals are time-multiplexed in the order of modulation symbols, converted into frequency domain signals by DFT processing, and then allocated to the frequency band (physical resource block) allocated by the uplink grant.
  • Uplink data, first ACK / NACK and second ACK / NACK are encoded separately.
  • the ACK / NACK coded bit sequence and uplink data coded bit sequence divided into the number of modulation multi-level bits of the PUSCH modulation scheme are regarded as modulation symbols (coding symbols) as shown in FIG. After being rearranged, it is modulated.
  • the modulation multi-level number is “2” in QPSK modulation, “4” in 16QAM, and “6” in 64QAM.
  • the second ACK / NACK modulation symbol is not arranged, and the second ACK / NACK modulation symbol in FIG. 5 is arranged.
  • modulation symbols for uplink data are arranged.
  • the first ACK / NACK is encoded the same with and without the second ACK / NACK, and is arranged at the same position in FIG.
  • both the first ACK / NACK and the second ACK / NACK are transmitted by the PUSCH. .
  • the first ACK / NACK indicates NACK.
  • the number of ACK / NACK bits used when transmitting ACK / NACK on the PUSCH can be spatially multiplexed on one PDSCH with the number of DL-CCs in which the mobile station apparatus 1 is set in the base station apparatus 3 It is a value obtained by multiplying the maximum number of downlink data.
  • the mobile station apparatus 1 When three DL CCs are set and up to two downlink data can be spatially multiplexed on one PDSCH, the mobile station apparatus 1 generates 6-bit ACK / NACK. That is, one bit of ACK / NACK is generated for each downlink data received by DL-CC.
  • the mobile station apparatus 1 performs communication only in the primary cell (DL PCC and UL PCC) for a long time. Therefore, when the PDSCH is received only in the DL PCC, the DL By not transmitting the ACK / NACK for the SCC, it is not necessary to transmit the ACK / NACK for the DL-SCC even though the PD-SCH is not received by the DL-SCC, thereby efficiently using the PUSCH radio resources. be able to.
  • both the first ACK / NACK and the second ACK / NACK are generated.
  • ACK / NACK encoding or ACK / NACK modulation symbol mapping depending on whether or not a DL PCC PDSCH is received. Therefore, the configuration of the mobile station apparatus 1 can be simplified.
  • the mobile station apparatus 1 when the mobile station apparatus 1 does not receive the PDSCH by the DL-PCC and receives the PDSCH by at least one DL-SCC, only the second ACK / NACK may be generated.
  • the modulation symbol of the uplink data is arranged at the position where the modulation symbol of the first ACK / NACK in FIG. 5 is arranged, and the modulation symbol of the second ACK / NACK is the first ACK / NACK. It is placed at the same position as when there is.
  • the second ACK / NACK modulation symbol is arranged at the same position regardless of whether or not the first ACK / NACK is present. Therefore, even when the mobile station apparatus 1 does not decode the PDSCH transmitted by the base station apparatus 3 using DL ⁇ ⁇ PCC, the base station apparatus 3 can correctly receive the second ACK / NACK.
  • PDSCH is received by at least one DL SCC, but when PDSCH is received only by a part of the set DL CC, the DL that has not received PDSCH among the set DL CC.
  • ACK / NACK is set to a predetermined value.
  • the mobile station apparatus 1 succeeds in decoding the two downlink data received by the first DL SCC without receiving the downlink data by the DL PCC among the three set DL CCs, If the decoding of one downlink data received by the DL-SCC in which is set, the mobile station apparatus 1 sets “00” as the first ACK / NACK sequence and “00” as the second ACK / NACK sequence. “1100” is generated.
  • the bit value is set to 1, and in the case of NACK, the bit value is set to 0.
  • the base station apparatus 3 sets the ACK / NACK bit to a predetermined value so that the base station apparatus 3 ACK / NACK for DL CC that did not transmit downlink data at the same time is set to a predetermined value, so that the reception accuracy of ACK / NACK for downlink data transmitted to the remaining mobile station apparatus 1 is determined. Will improve.
  • the mobile station apparatus 1 arranges the ACK / NACK bits in the order of the DL SCC number set for each DL ⁇ SCC, so that the base station device 3 uses the DL SCC in which the ACK / NACK bit is transmitted. Can be recognized correctly.
  • the number of ACK / NACK bits may be determined from the number of DL-CCs in which the mobile station apparatus 1 is set in the base station apparatus 3 and the maximum number of downlink data that can be spatially multiplexed on the PDSCH for each DL-CC. Good.
  • the mobile station apparatus 1 in which one DL-CC that can spatially multiplex two downlink data on the PDSCH and two DL-CC that can multiplex only one downlink data on the PDSCH has four ACK / NACK bits. Is generated.
  • the number of ACK / NACK bits may be a value obtained by multiplying the number of activated DL-CCs by the maximum number of downlink data that can be spatially multiplexed on one PDSCH.
  • the maximum number of downlink data that can be spatially multiplexed on the PDSCH for each DL-CC is determined by the transmission mode of the downlink data (for example, MIMO-SM, transmission diversity).
  • the number of ACK / NACK bits may be determined from the number of activated DL CCs.
  • the number of ACK / NACK modulation symbols used when transmitting ACK / NACK on the PUSCH is the number of bits of the first ACK / NACK transmitted on the PUSCH, the number of bits of the second ACK / NACK, It is obtained from the amount of radio resources at the time of initial transmission of uplink data, the number of bits of uplink data (transport block size: transport block size), the offset set by the base station apparatus 3, and the like.
  • Expression (1) is an expression for calculating the number of ACK / NACK modulation symbols used when transmitting ACK / NACK on PUSCH.
  • Q ' is the number of modulation symbols of the first ACK / NACK.
  • Q ′′ is the number of modulation symbols of the second ACK / NACK.
  • Q '' ' is the sum of the number of first ACK / NACK modulation symbols and the number of second ACK / NACK modulation symbols transmitted on the PUSCH.
  • O ′ is the number of bits of the first ACK / NACK generated by the mobile station apparatus 1 of the present invention.
  • O ′′ is the number of bits of the second ACK / NACK generated by the mobile station apparatus 1 of the present invention.
  • O ′′ is set to “0”.
  • the offset value set by the base station apparatus 3 is set separately for the first ACK / NACK and the second ACK / NACK.
  • the mobile station device 1 uses the first ACK / NACK offset and the second ACK / NACK offset values set by the base station device 3 to use the first ACK / NACK and the second ACK / NACK. Separately calculate the number of modulation symbols used for transmission of.
  • the first ACK / NACK and second ACK / NACK are used for transmission.
  • the performance of the first ACK / NACK and the second ACK / NACK can be adjusted to be the same.
  • the offset for the first ACK / NACK and the offset for the second ACK / NACK are made common so that the base station apparatus 3 satisfies both the first ACK / NACK and the second ACK / NACK.
  • a common offset may be set for the mobile station apparatus 1 and notified to the mobile station apparatus 1.
  • the amount of PUSCH radio resources used for transmission of the first ACK / NACK and the second ACK / NACK cannot be adjusted separately, but the ACK notified by the base station device 3 to the mobile station device 1 Since the amount of information related to the / NACK offset is reduced, downlink radio resources can be saved.
  • the maximum number of ACK / NACK modulation symbols that can be arranged is in the frequency band allocated to PUSCH. This is four times the number of subcarriers included.
  • Q ′′ ′′ exceeds the maximum number in which modulation symbols for ACK / NACK can be arranged, the number is reduced from the number of resource elements for arranging modulation symbols for ACK / NACK for the PDSCH of DL SCC.
  • Expression (2) is an expression for preventing Q ′ ′′ from exceeding the maximum number in which modulation symbols for ACK / NACK can be arranged.
  • min ( ⁇ ) is a function that outputs the smallest value among a plurality of values in parentheses.
  • Nmax is the maximum number in which modulation symbols of ACK / NACK can be arranged.
  • the number of ACK / NACK modulation symbols for DLNPCC may be reduced.
  • the ACK / NACK for the PDSCH of the DL SCC is given priority over the ACK / NACK of the DL PCC that has only 2 bits.
  • Equations (3) and (4) are used when Q ′ ′′ exceeds the maximum number of ACK / NACK modulation symbols that can be arranged, and is reduced from the number of ACK / NACK modulation symbols arranged for DL PCC. This is an equation for calculating Q ′ and Q ′′.
  • FIG. 6 is a diagram illustrating the uplink data and ACK / NACK encoding method of the present invention.
  • uplink data, first ACK / NACK, and second ACK / NACK are encoded separately (step S100).
  • the second ACK / NACK for a plurality of DL SCCs are encoded together.
  • the uplink data is turbo encoded.
  • the ACK / NACK for the PDSCH of a plurality of DL SCCs is encoded by a Reed-Muller code.
  • the ACK / NACK for the DLCPCC PDSCH is encoded by channel coding using a repetitive code or the like, and a coded bit having a predetermined value is inserted into every two generated coded bits.
  • the number of encoded bits having a predetermined value to be inserted is determined by the PUSCH modulation scheme.
  • PUSCH When the PUSCH is modulated by 16QAM (Quadrature Amplitude Modulation), two encoded bits having a predetermined value are inserted every two generated encoded bits.
  • 16QAM Quadrature Amplitude Modulation
  • 64QAM four encoded bits having a predetermined value are inserted every two generated encoded bits.
  • the ACK / NACK modulation symbol for the DLCPCC PDSCH includes only 2-bit information, and the number of ACK / NACK modulation symbol signal points is limited to four. . Also, the encoded bits and the signal points are associated with each other so that these four signal points become the four signal points having the maximum amplitude of 16QAM or 64QAM.
  • the PUSCH when the PUSCH is modulated by 16QAM, when the sequence of ACK / NACK coding bits for the DL PCC PDSCH is “110110”, the coding bits of a predetermined value (x) are included in this sequence. It is inserted and becomes “11xx01xx10” (x is a predetermined value of 0 or 1). Further, “00xx”, “01xx”, “10xx”, and “11xx” are associated with four signal points having the maximum 16QAM or 64QAM amplitude. Accordingly, even if the mobile station apparatus 1 modulates the ACK / NACK encoded bits with 16QAM or 64QAM, the base station apparatus 3 can handle the modulation symbol of ACK / NACK as QPSK. Hereinafter, this method is referred to as virtual QPSK.
  • the encoded bit sequence of the second ACK / NACK is combined with the encoded bit sequence of the first ACK / NACK. (Multiplexed) (Step S101).
  • FIG. 7 is a diagram illustrating an example of a method of combining the first ACK / NACK and the second ACK / NACK according to the present invention.
  • the ACK / NACK coded bit sequence length P ′ ′′ transmitted on the PUSCH is the product of Q ′′ ′′ and the PUSCH modulation multilevel number m.
  • the sequence length P ′ of the coded bits of the first ACK / NACK transmitted on the PUSCH is the product of Q ′ and the modulation multilevel number m of the PUSCH.
  • the sequence length P ′′ of the encoded bits of the second ACK / NACK transmitted on the PUSCH is a product of Q ′′ and the modulation multilevel number m of the PUSCH.
  • the encoded bit sequence length of the first ACK / NACK encoded in step S100 is shorter than P ′.
  • the first ACK / NACK encoded bits are repeatedly arranged from the head portion until the same number of bits as P ′.
  • the encoded bit sequence length of the second ACK / NACK encoded in step S100 is longer than P ′′.
  • the encoded bits of the second ACK / NACK are cut off from the head part to the number of P ′′. That is, the tail part of the second ACK / NACK encoded bit exceeding P ′′ is not transmitted on the PUSCH.
  • the first ACK / NACK encoded bit and the second ACK / NACK encoded bit that are repeated from the head or cut from the head portion are combined.
  • step S102 the encoded bits of uplink data and the encoded bits of ACK / NACK are rearranged as shown in FIG. 5 (step S102).
  • the encoded bits of the uplink data are arranged in an area other than the DMRS in FIG.
  • the encoded bits of the uplink data arranged in the ACK / NACK area in FIG. 5 are replaced with the encoded bits of the first ACK / NACK and / or the encoded bits of the second ACK / NACK. Go.
  • the PDSCH is received only by the DL PCC, only the encoding process for the first ACK / NACK is performed, and the encoding process for the second ACK / NACK is not performed.
  • FIG. 8 is a schematic block diagram showing the configuration of the mobile station apparatus 1 of the present invention.
  • the mobile station apparatus 1 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, and a transmission / reception antenna 109.
  • the upper layer processing unit 101 includes a radio resource control unit 1011, a HARQ control unit 1013, and an ACK / NACK generation unit 1015.
  • the reception unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, a radio reception unit 1057, and a channel measurement unit 1059.
  • the transmission unit 107 includes an encoding unit 1071, a modulation unit 1073, a multiplexing unit 1075, a radio transmission unit 1077, and an uplink reference signal generation unit 1079.
  • the upper layer processing unit 101 outputs uplink data generated by a user operation or the like to the transmission unit 107.
  • the upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and radio resource control. Process the (Radio Resource Control: RRC) layer. Further, upper layer processing section 101 generates control information for controlling receiving section 105 and transmitting section 107 based on downlink control information received by PDCCH, and outputs the control information to control section 103.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the radio resource control unit 1011 included in the upper layer processing unit 101 manages various setting information of the own device. For example, the radio resource control unit 1011 manages the set CC. Also, the radio resource control unit 1011 generates information arranged in each uplink channel and outputs the information to the transmission unit 107.
  • the HARQ control unit 1013 included in the higher layer processing unit 101 performs HARQ control of downlink data.
  • the HARQ control unit 1013 instructs the ACK / NACK generation unit 1015 to generate an ACK and transmit it to the base station apparatus 3, and fails to decode the received downlink data.
  • the ACK / NACK generation unit 1015 is instructed to generate a NACK and transmit it to the base station apparatus 3.
  • the HARQ control unit 1013 holds the downlink data in the HARQ buffer when the decoding of the downlink data fails, and the retransmission is performed when the downlink data retransmitted by the base station device 3 is received.
  • the decoding process is performed by combining the downlink data and the downlink data held in the HARQ buffer.
  • the ACK / NACK generation unit 1015 included in the higher layer processing unit 101 generates ACK or NACK according to the instruction of the HARQ control unit 1013, and rearranges the ACK / NACK bits.
  • the ACK / NACK generation unit 1015 generates only the first ACK / NACK when the downlink data is received only by DL-PCC, and the first ACK / NACK generation unit 1015 receives the downlink data by at least one DL-SCC. Generate a NACK and a second ACK / NACK.
  • the ACK / NACK generation unit 1015 receives ACK / NACK. NACK is generated as NACK.
  • ACK / NACK generation section 1015 calculates the number of ACK / NACK modulation symbols when transmitting ACK / NACK on PUSCH, generates ACK / NACK modulation symbols of the calculated number of modulation symbols, and transmits ACK / NACK and uplink Control information is generated to control the transmission unit 107 so as to transmit both link data via PUSCH, and is output to the control unit 103.
  • the control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the higher layer processing unit 101. Control unit 103 outputs the generated control signal to receiving unit 105 and transmitting unit 107 to control receiving unit 105 and transmitting unit 107.
  • the receiving unit 105 separates, demodulates, and decodes the received signal received from the base station apparatus 3 via the transmission / reception antenna 109 according to the control signal input from the control unit 103, and sends the decoded information to the upper layer processing unit 101. Output.
  • the radio reception unit 1057 converts the downlink signal received via the transmission / reception antenna 109 into an intermediate frequency (down-conversion: down covert), removes unnecessary frequency components, and maintains the signal level appropriately. Then, the amplification level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the radio reception unit 1057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal, performs a fast Fourier transform (FFT Fourier Transform: FFT) on the signal from which the guard interval is removed, Extract the region signal.
  • GI Guard Interval
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 separates the extracted signals into PHICH, PDCCH, PDSCH, and downlink reference signals. This separation is performed based on radio resource allocation information notified by downlink assignment. Further, demultiplexing section 1055 compensates the propagation path of PHICH, PDCCH, and PDSCH from the estimated propagation path value input from channel measurement section 1059. Also, the demultiplexing unit 1055 outputs the demultiplexed downlink reference signal to the channel measurement unit 1059.
  • the demodulating unit 1053 multiplies the PHICH by a corresponding code and synthesizes the signal, demodulates the synthesized signal using a BPSK (Binary Phase Shift Shift Keying) modulation method, and outputs the demodulated signal to the decoding unit 1051.
  • Decoding section 1051 decodes the PHICH addressed to the own apparatus, and outputs the decoded HARQ indicator to higher layer processing section 101.
  • Demodulation section 1053 demodulates the QPSK modulation scheme for PDCCH and outputs the result to decoding section 1051.
  • Decoding section 1051 attempts blind decoding of PDCCH, and when blind decoding is successful, decodes downlink control information and outputs RNTI included in downlink control information to higher layer processing section 101.
  • the demodulation unit 1053 demodulates the modulation scheme notified by downlink assignment such as QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), 64QAM, and the like, and outputs the result to the decoding unit 1051.
  • Decoding section 1051 performs decoding based on the information regarding the coding rate notified by the downlink control information, and outputs the decoded downlink data (transport block) to higher layer processing section 101.
  • the channel measurement unit 1059 measures the downlink path loss and channel state from the downlink reference signal input from the demultiplexing unit 1055, and outputs the measured path loss and channel state to the upper layer processing unit 101. Also, channel measurement section 1059 calculates an estimated value of the downlink propagation path from the downlink reference signal, and outputs it to demultiplexing section 1055.
  • the transmission unit 107 generates an uplink reference signal according to the control signal input from the control unit 103, encodes and modulates uplink data and uplink control information input from the higher layer processing unit 101, and PUCCH,
  • the PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 3 via the transmission / reception antenna 109.
  • the coding unit 1071 performs coding such as convolution coding and block coding on the uplink control information input from the higher layer processing unit 101, and relates to the coding rate in which the uplink data is notified by the uplink grant. Turbo coding is performed based on the information.
  • encoding section 1071 When transmitting ACK / NACK along with uplink data using PUSCH, encoding section 1071 encodes ACK / NACK and uplink data as shown in FIG. 6 according to the control signal input from control section 103, and transmits ACK / NACK.
  • the encoded bits of NACK and uplink data are rearranged as shown in FIG.
  • the modulation unit 1073 modulates the coded bits input from the coding unit 1071 using a modulation method notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation method predetermined for each channel.
  • Modulation section 1073 transmits using the same PUSCH by using MIMO-SM based on the number of spatially multiplexed sequences notified by the uplink grant and information indicating precoding to be performed on the sequences.
  • a sequence of modulation symbols of a plurality of uplink data is mapped to a plurality of sequences larger than the number of uplink data transmitted on the same PUSCH, and precoding is performed on the sequences.
  • the uplink reference signal generation unit 1079 is notified by a physical cell identifier for identifying the base station device 3 (referred to as physical cell identity: PCI, Cell ⁇ ID, etc.), a bandwidth for arranging the uplink reference signal, and an uplink grant.
  • the base station apparatus 3 generates a known sequence that is determined by a predetermined rule based on the cyclic shift and the like.
  • the multiplexing unit 1075 rearranges the PUSCH modulation symbols in parallel in accordance with the control signal input from the control unit 103, and then performs discrete Fourier transform (Discrete Fourier Transform: DFT) to generate the PUCCH and PUSCH signals and the generated uplink reference The signal is multiplexed for each transmission antenna port.
  • DFT discrete Fourier Transform
  • the radio transmission unit 1077 performs inverse fast Fourier transform (IFFT) on the multiplexed signal, performs SC-FDMA modulation, and adds a guard interval to the SC-FDMA modulated SC-FDMA symbol.
  • IFFT inverse fast Fourier transform
  • Generating a baseband digital signal converting the baseband digital signal to an analog signal, generating an in-phase component and a quadrature component of an intermediate frequency from the analog signal, removing an extra frequency component for the intermediate frequency band,
  • the intermediate frequency signal is converted to a high frequency signal (up-conversion: up convert), an extra frequency component is removed, the power is amplified, and output to the transmission / reception antenna 109 for transmission.
  • FIG. 9 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present invention.
  • the base station apparatus 3 includes an upper layer processing unit 301, a control unit 303, a reception unit 305, a transmission unit 307, and a transmission / reception antenna 309.
  • the higher layer processing unit 301 includes a radio resource control unit 3011, a HARQ control unit 3013, and an ACK / NACK detection unit 3015.
  • the reception unit 305 includes a decoding unit 3051, a demodulation unit 3053, a demultiplexing unit 3055, a wireless reception unit 3057, and a channel measurement unit 3059.
  • the transmission unit 307 includes an encoding unit 3071, a modulation unit 3073, a multiplexing unit 3075, a radio transmission unit 3077, and a downlink reference signal generation unit 3079.
  • the upper layer processing unit 301 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing. Further, upper layer processing section 301 generates control information for controlling receiving section 305 and transmitting section 307 and outputs the control information to control section 303.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource
  • the radio resource control unit 3011 included in the higher layer processing unit 301 generates downlink data, RRC signal, MAC CE (Control Element) arranged in the downlink PDSCH, or obtains it from the upper node, and the HARQ control unit 3013 Output to. Further, the radio resource control unit 3011 manages various setting information of each mobile station apparatus 1. For example, the radio resource control unit 3011 performs management of the CC set in the mobile station apparatus 1.
  • the HARQ control unit 3013 provided in the higher layer processing unit 301 controls HARQ of downlink data.
  • the HARQ control unit 3013 holds the downlink data acquired from the radio resource control unit 3011 in the HARQ buffer, and receives a NACK from the mobile station apparatus 1 for the downlink data held in the HARQ buffer. Outputs the retained downlink data to the transmission unit 307, generates control information for performing control to retransmit, and outputs the control information to the control unit 303.
  • the ACK / NACK detection unit 3015 included in the higher layer processing unit 301 generates control information for controlling the ACK / NACK decoding process of the reception unit 305 and outputs the control information to the control unit 303.
  • the ACK / NACK detection unit 3015 determines the number of ACK / NACK bit sequences transmitted from the mobile station apparatus 1 based on the number of downlink component carriers set in the mobile station apparatus 1 and the ACK / NACK arranged in the PUSCH. Calculate the number of modulation symbols.
  • the ACK / NACK detection unit 3015 When the DL / PCC only transmits downlink data to the mobile station apparatus 1, the ACK / NACK detection unit 3015 includes only the first ACK / NACK in the PUSCH and includes the second ACK / NACK. Judge that it is not. The ACK / NACK detection unit 3015 determines that the ACK / NACK for the DL-CC that has not transmitted downlink data to the mobile station apparatus 1 is set to NACK.
  • the ACK / NACK detection unit 3015 separates the ACK / NACK modulation symbols included in the PUSCH based on the calculated number of ACK / NACK modulation symbols, and separates the first ACK / NACK and the second ACK / NACK.
  • the receiving unit 305 is controlled via the control unit 303 so as to be decoded.
  • the control unit 303 generates a control signal for controlling the reception unit 305 and the transmission unit 307 based on the control information from the higher layer processing unit 301.
  • the control unit 303 outputs the generated control signal to the reception unit 305 and the transmission unit 307 and controls the reception unit 305 and the transmission unit 307.
  • the receiving unit 305 separates, demodulates and decodes the received signal received from the mobile station apparatus 1 via the transmission / reception antenna 309 according to the control signal input from the control unit 303, and outputs the decoded information to the higher layer processing unit 301.
  • the radio reception unit 3057 converts an uplink signal received via the transmission / reception antenna 309 into an intermediate frequency (down-conversion: down covert), removes unnecessary frequency components, and appropriately maintains the signal level. In this way, the amplification level is controlled, and based on the in-phase and quadrature components of the received signal, quadrature demodulation is performed, and the quadrature demodulated analog signal is converted into a digital signal.
  • the wireless receiver 3057 removes a portion corresponding to a guard interval (Guard Interval: GI) from the converted digital signal.
  • the radio reception unit 3057 performs fast Fourier transform (FFT Fourier Transform: ⁇ FFT) on the signal from which the guard interval is removed, extracts a frequency domain signal, and outputs the signal to the demultiplexing unit 3055.
  • FFT Fourier Transform ⁇ FFT
  • the demultiplexing unit 3055 demultiplexes the signal input from the radio receiving unit 3057 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 3011 by the base station device 3 and notified to each mobile station device 1.
  • the demultiplexing unit 3055 compensates for the propagation paths of the PUCCH and the PUSCH from the propagation path estimation value input from the channel measurement unit 3059. Further, the demultiplexing unit 3055 outputs the separated uplink reference signal to the channel measurement unit 3059.
  • the demodulation unit 3053 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) of PUSCH, acquires modulation symbols, and performs BPSK (Binary Shift Keying), QPSK, 16QAM, PUCCH and PUSCH modulation symbols, respectively.
  • IDFT Inverse Discrete Fourier Transform
  • the received signal is demodulated using a predetermined modulation scheme such as 64QAM, or a modulation scheme that the own device has previously notified to each mobile station device 1 using an uplink grant.
  • Demodulation section 3053 separates the modulation symbol of uplink data, the modulation symbol of the first ACK / NACK, and the modulation symbol of the second ACK / NACK included in the PUSCH according to the control signal input from control section 303.
  • Demodulation section 3053 is the same by using MIMO-SM based on the number of spatially multiplexed sequences notified in advance to each mobile station apparatus 1 using an uplink grant and information indicating precoding to be performed on these sequences.
  • the modulation symbols of a plurality of uplink data transmitted on the PUSCH are separated.
  • the decoding unit 3051 outputs the demodulated uplink control information and the encoded bits of the uplink data to the mobile station apparatus 1 using an uplink grant according to a predetermined encoding method or a predetermined encoding method. Decoding is performed at the previously notified coding rate, and the decoded uplink data and uplink control information are output to the upper layer processing section 301. When PUSCH is retransmitted, decoding section 3051 performs decoding using the encoded bits held in the HARQ buffer input from higher layer processing section 301 and the demodulated encoded bits.
  • the decoding unit 3051 separately decodes the encoded bits of the first ACK / NACK and the second ACK / NACK.
  • Channel measurement section 3059 measures an estimated value of the propagation path, channel quality, and the like from the uplink reference signal input from demultiplexing section 3055 and outputs the result to demultiplexing section 3055 and higher layer processing section 301.
  • the transmission unit 307 generates a downlink reference signal according to the control signal input from the control unit 303, encodes and modulates the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 301. Then, the PHICH, PDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the mobile station device 1 via the transmission / reception antenna 309.
  • the encoding unit 3071 is a predetermined encoding method such as block encoding, convolutional encoding, turbo encoding, and the like for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 301 Or is encoded using the encoding method determined by the radio resource control unit 3011.
  • the modulation unit 3073 modulates the coded bits input from the coding unit 3071 with a modulation scheme determined in advance by the radio resource control unit 3011 such as BPSK, QPSK, 16QAM, and 64QAM.
  • the downlink reference signal generation unit 3079 obtains a sequence known by the mobile station device 1 as a downlink reference signal, which is obtained by a predetermined rule based on a physical cell identifier (PCI) for identifying the base station device 3 or the like. Generate.
  • the multiplexing unit 3075 multiplexes the modulated modulation symbol of each channel and the generated downlink reference signal.
  • the wireless transmission unit 3077 performs inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed modulation symbols, etc., performs modulation in the OFDM scheme, adds a guard interval to the OFDM symbol that has been OFDM-modulated, and baseband
  • IFFT inverse Fast Fourier Transform
  • the baseband digital signal is converted to an analog signal, the in-phase and quadrature components of the intermediate frequency are generated from the analog signal, the extra frequency components for the intermediate frequency band are removed, and the intermediate-frequency signal is generated. Is converted to a high-frequency signal (up-conversion: up convert), an extra frequency component is removed, power is amplified, and output to the transmission / reception antenna 309 for transmission.
  • the mobile station apparatus 1 has DL PCC (first downlink component).
  • One or more first ACK / NACKs (first response information) indicating success or failure of decoding of one or more downlink data received on the carrier) are encoded together, and a plurality of DL SCC (second A plurality of second ACK / NACKs (second response information) indicating success / failure of decoding of downlink data received by the downlink component carrier) are encoded together, and the first ACK / NACK and the second ACK / NACK are encoded.
  • the base station apparatus 3 receives the PUSCH, and receives the first ACK / NACK and the second ACK.
  • / NACK decoding processing is performed separately.
  • the mobile station device 1 when the PDSCH is received only by the DL-PCC, the mobile station device 1 generates only the first ACK / NACK and transmits it by the PUSCH.
  • the base station apparatus 3 and the mobile station apparatus 1 perform downlink communication using only the DL-PCC PDSCH, so that the mobile station apparatus 1 performs the second transmission for the DL-SCC PDSCH. Since ACK / NACK is not transmitted on the PUSCH, the radio resources of the PUSCH can be used efficiently for uplink data transmission.
  • the base station apparatus 3 and the mobile station apparatus 1 communicate using a plurality of PDSCHs simultaneously using a DL PCC and a plurality of DL PCSCs.
  • the performance of the second ACK / NACK is improved by encoding the plurality of second ACK / NACKs for the plurality of DL SCCs together with encoding the plurality of second ACK / NACKs separately. To do.
  • the base station device 3 transmits a plurality of PDSCHs to the mobile station device 1 using DL PCC and one or more DL SCCs
  • the mobile station device 1 receives the PDSCH only by the DL PCC only.
  • the base station apparatus 3 since the mobile station apparatus 1 encodes the first ACK / NACK and applies the mapping method in the same manner as when the PD SCCC PDSCH is received, the base station apparatus 3 correctly receives the first ACK / NACK. can do.
  • the radio communication system according to the present embodiment is a radio communication system in which a mobile station apparatus and a base station apparatus perform radio communication using a plurality of component carriers, and the mobile station apparatus is a first downlink component carrier. 1 or a plurality of first response information indicating success or failure of decoding of one or a plurality of downlink data received in step 1 is encoded together to decode downlink data received by a plurality of second downlink component carriers.
  • a plurality of second response information indicating success or failure are encoded together, the first response information and the second response information are transmitted on the same uplink data transmission channel, and the base station apparatus transmits the uplink data The transmission channel is received, and the first response information and the second response information are separately decoded.
  • the base station device sets one first downlink component carrier and a plurality of second downlink component carriers for each mobile station device. It is characterized by.
  • the present embodiment provides the number of encoded bits of first response information that the mobile station apparatus can transmit on the uplink data transmission channel, and the uplink data transmission It is characterized by separately calculating the number of encoded bits of the second response information that can be transmitted on the trusted channel.
  • the number of bits of response information that the mobile station apparatus can transmit on the uplink data transmission channel is set to the first response information and the second response information.
  • the encoded bits of the first response information are preferentially transmitted on the uplink data transmission channel.
  • the number of bits of response information that the mobile station apparatus can transmit on the uplink data transmission channel is set to the first response information and the second response information.
  • the sum of the encoded bits of the response information exceeds the encoded bit of the second response information, it is preferentially transmitted on the uplink data transmission channel.
  • the present embodiment provides the mobile station when the base station apparatus calculates the number of encoded bits of the first response information that can be transmitted on the uplink data transmission channel.
  • the first offset value used by the station device and the second offset used by the mobile station device when calculating the number of encoded bits of the second response information that can be transmitted on the uplink data transmission channel It is characterized in that the value of is set separately.
  • the present embodiment is characterized in that, in the above wireless communication system, the mobile station apparatus transmits the first response information and the second response information using the same SC-FDMA symbol.
  • the mobile station apparatus when the mobile station apparatus receives downlink data only on the first downlink component carrier, only the first response information is the uplink data. It is characterized by transmitting on a transmission channel.
  • the mobile station apparatus when the mobile station apparatus receives downlink data on at least one second downlink component carrier, the first response information and the first response information The second response information is transmitted through the uplink data transmission channel.
  • the mobile station apparatus receives downlink data using at least one second downlink component carrier.
  • the second response information is set to a predetermined value.
  • the mobile station apparatus of the present embodiment is a mobile station apparatus that performs radio communication with a base station apparatus using a plurality of component carriers, and one or a plurality of downlinks received by the first downlink component carrier A plurality of second response information indicating the success or failure of the decoding of the downlink data received by a plurality of second downlink component carriers together with one or more first response information indicating the success or failure of the data decoding And the first response information and the second response information are transmitted on the same uplink data transmission channel.
  • the base station apparatus of the present embodiment is a base station apparatus that performs radio communication with a mobile station apparatus using a plurality of component carriers, and the mobile station apparatus receives the first downlink component carrier 1
  • a plurality of first and second response information indicating success or failure of decoding of one or more downlink data are encoded together to indicate success or failure of decoding of downlink data received by a plurality of second downlink component carriers.
  • the second response information is encoded together, the uplink response transmission channel including the first response information and the second response information is received, and the first response information and the second response information are received.
  • the response information is decrypted separately.
  • the radio communication method of the present embodiment is a radio communication method used for a mobile station apparatus that performs radio communication with a base station apparatus using a plurality of component carriers, and is received by a first downlink component carrier. Encoding one or more first response information indicating success or failure of decoding of one or more downlink data, and success or failure of decoding of downlink data received by a plurality of second downlink component carriers A plurality of second response information indicating the same, and a step of transmitting the first response information and the second response information through the same uplink data transmission channel.
  • the radio communication method is a radio communication method used for a base station apparatus that performs radio communication with a mobile station apparatus using a plurality of component carriers, and the mobile station apparatus includes a first downlink.
  • One or a plurality of first response information indicating success or failure of decoding of one or a plurality of downlink data received by a component carrier is encoded together, and downlink data received by a plurality of second downlink component carriers is encoded.
  • the integrated circuit of the present embodiment is an integrated circuit used in a mobile station apparatus that performs radio communication with a base station apparatus using a plurality of component carriers, and is one or more received by the first downlink component carrier Indicates the success or failure of decoding downlink data received by a plurality of second downlink component carriers, together with a function of encoding one or more first response information indicating success or failure of decoding of a plurality of downlink data.
  • a series of functions including a function of encoding a plurality of second response information together and a function of transmitting the first response information and the second response information through the same uplink data transmission channel It is characterized by having a station device exhibit.
  • the integrated circuit of the present embodiment is an integrated circuit used in a base station apparatus that performs radio communication with a mobile station apparatus using a plurality of component carriers, and the mobile station apparatus includes a first downlink component carrier. 1 or a plurality of first response information indicating success or failure of decoding of one or a plurality of downlink data received in step 1 is encoded together to decode downlink data received by a plurality of second downlink component carriers. A plurality of second response information indicating success or failure, and a function of receiving an uplink data transmission channel transmitted including the first response information and the second response information; and the first response The mobile station apparatus is caused to exhibit a series of functions of separately performing information and a function of separately decoding the second response information.
  • a program that operates in the base station apparatus 3 and the mobile station apparatus 1 related to the present invention is a program (computer functions as a computer) that controls a CPU (Central Processing Unit) so as to realize the functions of the above-described embodiments related to the present invention Program).
  • Information handled by these devices is temporarily stored in RAM (Random Access Memory) during the processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the mobile station apparatus 1 or the base station apparatus 3, and includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • a part or all of the mobile station apparatus 1 and the base station apparatus 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or may be realized as a chip set.
  • Each functional block of the mobile station device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 移動局装置が複数のPDSCHに対するACK/NACKを効率的に符号化して送信する。基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを基地局装置に送信する移動局装置において、第一のACK/NACKと第二のACK/NACKとを別々に符号化し、第一のACK/NACKの符号化ビット数が第一の値になるまで第一のACK/NACKの符号化ビットに繰り返し処理を実行し、第二のACK/NACKの符号化ビット数が第二の値になるまで第二のACK/NACKの符号化ビットに繰り返し処理を実行し、繰り返し処理を実行した第一のACK/NACKの符号化ビットと繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させ、第一のACK/NACKと第二のACK/NACKとを1つの物理上りリンクチャネルを用いて基地局装置に送信する。

Description

移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
 本発明は、移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路に関する。
 セルラー移動通信の無線アクセス方式および無線ネットワークの進化(以下、「Long Term Evolution (LTE)」、または、「Evolved Universal Terrestrial Radio Access(EUTRA)」と称する)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。LTEでは、基地局装置から移動局装置への無線通信(下りリンク)の通信方式として、マルチキャリア送信である直交周波数分割多重(Orthogonal Frequency Division Multiplexing: OFDM)方式が用いられる。また、移動局装置から基地局装置への無線通信(上りリンク)の通信方式として、シングルキャリア送信であるSC-FDMA(Single-Carrier Frequency Division Multiple Access)方式が用いられる。
 LTEでは、移動局装置が物理下りリンク共用チャネル(Physical Downlink Shared Channel: PDSCH)で受信した下りリンクデータの復号に成功したか否かを示すACK(Acknowledgement)/NACK(Negative Acknowledgement)は、物理上りリンク制御チャネル(Physical Uplink Control Channel: PUCCH)または物理上りリンク共用チャネル(Physical Uplink Shared Channel: PUSCH)を用いて送信される。移動局装置がACK/NACKを送信する時にPUSCHの無線リソースを割り当てられていない場合は、ACK/NACKはPUCCHで送信される。移動局装置がACK/NACKを送信する時にPUSCHの無線リソースを割り当てられている場合は、ACK/NACKはPUSCHで送信される。
 LTEより広帯域な周波数帯域を利用して、さらに高速なデータの通信を実現する無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution-Advanced (LTE-A)」、または、「Advanced Evolved Universal Terrestrial Radio Access (A-EUTRA)」と称する)では、LTEとの後方互換性(backward compatibility)を持つことが検討されている。つまり、LTE-Aの基地局装置はLTE-AおよびLTE両方の移動局装置と同時に無線通信を行ない、また、LTE-Aの移動局装置はLTE-AおよびLTE両方の基地局装置と無線通信を行なうことができ、LTE-AはLTEと同一のチャネル構造を用いる。
 LTE-Aでは、LTEと同一のチャネル構造の周波数帯域(以下、「キャリア要素(Carrier Component: CC)」、または、「コンポーネントキャリア(Component Carrier: CC)」と称する)を複数用いて、1つの周波数帯域(広帯域な周波数帯域)として使用する技術(周波数帯域集約: Spectrum aggregation、Carrier aggregation、Frequency aggregation等とも称される)が提案されている。例えば、周波数帯域集約を用いた通信では、基地局装置は下りリンクコンポーネントキャリア(Downlink Component Carrier: DL CC)それぞれに1つのPDSCHを配置し、移動局装置に複数のPDSCHを同時に送信する。
 周波数帯域集約では、1つのプライマリーセル(Primary cell: Pcell)と1つまたは複数のセカンダリーセル(Secondary cell: Scell)が構成される。プライマリーセルは、下りリンクプライマリーコンポーネントキャリア(Downlink Primary Component Carrier: DL PCC)と上りリンクプライマリーコンポーネントキャリア(Uplink Primary Component Carrier: UL PCC)により提供されるセルである。プライマリーセルはLTEのセルと同等の機能を持つセルである。DL PCCとUL PCCは、移動局装置毎に1つずつ設定される。
 セカンダリーセルは、下りリンクセカンダリーコンポーネントキャリア(Downlink Secondary Component Carrier: DL SCC)と上りリンクセカンダリーコンポーネントキャリア(Uplink Secondary Component Carrier: UL SCC)により提供されるセルである。セカンダリーセルは、DL SCCのみで提供されてもよい。セカンダリーセルはプライマリーセルよりも機能が制限されたセルである。DL PCCを除いた全てのDL CCは、DL SCCである。UL PCCを除いた全ての上りリンクコンポーネントキャリア(Uplink Component Carrier: UL CC)は、UL SCCである。
 LTE-Aでは、移動局装置が同時に受信した複数のPDSCHそれぞれに対する複数のACK/NACKを基地局装置に送信する際に、移動局装置が送信する複数のPUSCHのうち1つのPUSCHを用いて上りリンクデータ(上位レイヤにおける情報チャネル)(Uplink Shared Channel: UL-SCH)と複数のACK/NACKをともに送信することが検討されている(非特許文献1)。
 非特許文献2には、複数のPDSCHに対する複数のACK/NACKを同一のPUSCHで送信する際に、全てのACK/NACKをともに符号化する方法および、ACK/NACKが対応するセル(DL CC)毎に符号化することが記載されている。また、非特許文献2には、移動局装置が複数のDL CCを割り当てられていたとしても、移動局装置がプライマリーセルのPDSCHの割り当てを示す下りリンク制御情報(Downlink Control Information: DCI)のみを受信した場合は、移動局装置はLTEの送信方法を利用して上りリンクデータとACK/NACKをともにPUSCHで送信することが記載されている。PDSCHの割り当てを示す下りリンク制御情報を下りリンクアサインメント(DL assignment)と称する。
 LTE-Aの上りリンクでは、LTEからの更なるスループット向上のためMIMO SM(Multiple Input Multiple Output Spatial Multiplexing)による空間多重を利用することが議論されている。つまり、上りリンクデータでは2以上の空間多重数(以下ではランクもしくはRankと呼称する)での送信が実現される。
 それに対し、ACK/NACKやRI(Rank Indicator)などの高い品質が要求される上りリンク制御情報については、空間多重される領域(以下ではレイヤもしくはLayerと呼称する)のすべてに対して送信系列を複製することにより、仮想的にランク1での通信を実現することが提案されている。つまり、ランク2以上の上りリンクデータ通信と、ランク1のACK/NACK、RI送信が混在した通信が行なわれる。これについて、非特許文献3では、制御情報の複製作成方法として、チャネル符号化後のビット列を各レイヤに割り当てることを提案している。
"UCI Transmission in the Presence of UL-SCH Data", 3GPP TSG RAN WG1 Meeting #61, R1-103067, May 10-14, 2010. "ACK/NACK multiplexing schemes on PUSCH", 3GPP TSG RAN WG1 Meeting #61bis, R1-103760, 28 June-2 July, 2010. "Performance evaluation of UCI multiplexing schemes on PUSCH in case of SU-MIMO", 3GPP TSG RAN WG1 Meeting #61, R1-102962, May 10-14, 2010.
 しかしながら、従来の技術では、移動局装置が複数のDL CCで受信した複数のPDSCHに対するACK/NACKを1つの物理上りリンクチャネルで送信する際に、移動局装置が効率的にACK/NACKを符号化して送信することができないという問題がある。
 本発明は上記の点に鑑みてなされたものであり、移動局装置が複数のDL CCで受信した複数のPDSCHに対するACK/NACKを1つの物理上りリンクチャネルで送信する際に、移動局装置が効率的にACK/NACKを符号化して送信し、基地局装置が移動局装置によって送信されたACK/NACKの受信処理を行なうことができる移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の移動局装置は、基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記基地局装置に送信する移動局装置において、第一のACK/NACKと第二のACK/NACKとを別々に符号化し、前記第一のACK/NACKの符号化ビット数が第一の値になるまで前記第一のACK/NACKの符号化ビットに繰り返し処理を実行し、前記第二のACK/NACKの符号化ビット数が第二の値になるまで前記第二のACK/NACKの符号化ビットに繰り返し処理を実行し、前記繰り返し処理を実行した第一のACK/NACKの符号化ビットと前記繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させ、前記第一のACK/NACKと前記第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記基地局装置に送信することを特徴としている。
 (2)また、本発明の移動局装置において、前記物理上りリンクチャネルは物理上りリンク共用チャネルであり、前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴としている。
 (3)また、本発明の移動局装置において、前記繰り返し処理は、前記第一のACK/NACKの符号化ビットが前記第一の値よりも小さい場合には、前記第一のACK/NACKの符号化ビットを、先頭から繰り返して連結する処理であることを特徴としている。
 (4)また、本発明の移動局装置において、前記繰り返し処理は、前記第二のACK/NACKの符号化ビットが、前記第二の値よりも小さい場合には、前記第二のACK/NACKの符号化ビットを、先頭から繰り返して連結する処理であることを特徴としている。
 (5)また、本発明の移動局装置において、前記繰り返し処理は、前記第一のACK/NACKの符号化ビットが前記第一の値よりも大きい場合には、前記第一のACK/NACKの符号化ビットを、先頭から前記第一の値まで切り取る処理であることを特徴としている。
 (6)また、本発明の移動局装置において、前記繰り返し処理は、前記第二のACK/NACKの符号化ビットが前記第二の値よりも大きい場合には、前記第二のACK/NACKの符号化ビットを、先頭から前記第二の値まで切り取る処理であることを特徴としている。
 (7)また、本発明の基地局装置は、移動局装置へ複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記移動局装置から受信する基地局装置において、別々に符号化された第一のACK/NACKと第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記移動局装置から受信し、前記第一のACK/NACKの符号化ビットは、前記移動局装置によって前記第一のACK/NACKの符号化ビット数が第一の値になるまで繰り返し処理が実行され、前記第二のACK/NACKの符号化ビットは、前記移動局装置によって前記第二のACK/NACKの符号化ビット数が第二の値になるまで繰り返し処理が実行され、前記繰り返し処理が実行された第一のACK/NACKの符号化ビットと前記繰り返し処理が実行された第二のACK/NACKの符号化ビットとは、前記移動局装置によって連結されることを特徴としている。
 (8)また、本発明の基地局装置において、前記物理上りリンクチャネルは物理上りリンク共用チャネルであり、前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴としている。
 (9)また、本発明の基地局装置において、前記繰り返し処理は、前記第一のACK/NACKの符号化ビットが前記第一の値よりも小さい場合には、前記第一のACK/NACKの符号化ビットを、先頭から繰り返して連結する処理であることを特徴としている。
 (10)また、本発明の基地局装置において、前記繰り返し処理は、前記第二のACK/NACKの符号化ビットが、前記第二の値よりも小さい場合には、前記第二のACK/NACKの符号化ビットを、先頭から繰り返して連結する処理であることを特徴としている。
 (11)また、本発明の基地局装置において、前記繰り返し処理は、前記第一のACK/NACKの符号化ビットが前記第一の値よりも大きい場合には、前記第一のACK/NACKの符号化ビットを、先頭から前記第一の値まで切り取る処理であることを特徴としている。
 (12)また、本発明の基地局装置において、前記繰り返し処理は、前記第二のACK/NACKの符号化ビットが前記第二の値よりも大きい場合には、前記第二のACK/NACKの符号化ビットを、先頭から前記第二の値まで切り取る処理であることを特徴としている。
 (13)また、本発明の無線通信システムは、移動局装置が、基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記基地局装置に送信する無線通信システムにおいて、前記移動局装置は、第一のACK/NACKと第二のACK/NACKとを別々に符号化し、前記第一のACK/NACKの符号化ビット数が第一の値になるまで前記第一のACK/NACKの符号化ビットに繰り返し処理を実行し、前記第二のACK/NACKの符号化ビット数が第二の値になるまで前記第二のACK/NACKの符号化ビットに繰り返し処理を実行し、前記繰り返し処理を実行した第一のACK/NACKの符号化ビットと前記繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させ、前記第一のACK/NACKと前記第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記基地局装置に送信し、前記基地局装置は、前記第一のACK/NACKと前記第二のACK/NACKとを前記1つの物理上りリンクチャネルを用いて前記移動局装置から受信することを特徴としている。
 (14)また、本発明の無線通信方法は、基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記基地局装置に送信する移動局装置に用いられる無線通信方法において、第一のACK/NACKと第二のACK/NACKとを別々に符号化し、前記第一のACK/NACKの符号化ビット数が第一の値になるまで前記第一のACK/NACKの符号化ビットに繰り返し処理を実行し、前記第二のACK/NACKの符号化ビット数が第二の値になるまで前記第二のACK/NACKの符号化ビットに繰り返し処理を実行し、前記繰り返し処理を実行した第一のACK/NACKの符号化ビットと前記繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させ、前記第一のACK/NACKと前記第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記基地局装置に送信することを特徴としている。
 (15)また、本発明の無線通信方法において、前記物理上りリンクチャネルは、物理上りリンク共用チャネルであり、前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴としている。
 (16)また、本発明の無線通信方法は、基地局装置へ複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記移動局装置から受信する基地局装置に用いられる無線通信方法において、別々に符号化された第一のACK/NACKと第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記移動局装置から受信し、前記第一のACK/NACKの符号化ビットは、前記移動局装置によって前記第一のACK/NACKの符号化ビット数が第一の値になるまで繰り返し処理が実行され、前記第二のACK/NACKの符号化ビットは、前記移動局装置によって前記第二のACK/NACKの符号化ビット数が第二の値になるまで繰り返し処理が実行され、前記繰り返し処理が実行された第一のACK/NACKの符号化ビットと前記繰り返し処理が実行された第二のACK/NACKの符号化ビットとは、前記移動局装置によって連結されることを特徴としている。
 (17)また、本発明の無線通信方法において、前記物理上りリンクチャネルは、物理上りリンク共用チャネルであり、前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴としている。
 (18)また、本発明の集積回路は、基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記基地局装置に送信する移動局装置に用いられる集積回路において、第一のACK/NACKと第二のACK/NACKとを別々に符号化する機能と、前記第一のACK/NACKの符号化ビット数が第一の値になるまで前記第一のACK/NACKの符号化ビットに繰り返し処理を実行する機能と、前記第二のACK/NACKの符号化ビット数が第二の値になるまで前記第二のACK/NACKの符号化ビットに繰り返し処理を実行する機能と、前記繰り返し処理を実行した第一のACK/NACKの符号化ビットと前記繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させる機能と、前記第一のACK/NACKと前記第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記基地局装置に送信する機能と、の一連の機能を、前記移動局装置に発揮させることを特徴としている。
 (19)また、本発明の集積回路において、前記物理上りリンクチャネルは、物理上りリンク共用チャネルであり、前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴としている。
 (20)また、本発明の集積回路は、移動局装置へ複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記移動局装置から受信する基地局装置に用いられる集積回路において、別々に符号化された第一のACK/NACKと第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記移動局装置から受信する機能を前記基地局装置に発揮させ、前記第一のACK/NACKの符号化ビットは、前記移動局装置によって前記第一のACK/NACKの符号化ビット数が第一の値になるまで繰り返し処理が実行され、前記第二のACK/NACKの符号化ビットは、前記移動局装置によって前記第二のACK/NACKの符号化ビット数が第二の値になるまで繰り返し処理が実行され、前記繰り返し処理が実行された第一のACK/NACKの符号化ビットと前記繰り返し処理が実行された第二のACK/NACKの符号化ビットとは、前記移動局装置によって連結されることを特徴としている。
 (21)また、本発明の集積回路において、前記物理上りリンクチャネルは、物理上りリンク共用チャネルであり、前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴としている。
 この発明によれば、移動局装置が複数のDL CCで受信した複数のPDSCHに対するACK/NACKを1つの物理上りリンクチャネルで送信する際に、移動局装置が効率的にACK/NACKを符号化して送信することができる。
本発明の無線通信システムの概念図である。 本発明の周波数帯域集約処理の一例を示す図である。 本発明の下りリンクの無線フレームの構成の一例を示す概略図である。 本発明の上りリンクの無線フレームの構成の一例を示す概略図である。 本発明のPUSCHで上りリンクデータとACK/NACKを同時に送信する方法を説明する図である。 本発明の上りリンクデータとACK/NACKの符号化方法について説明する図である。 本発明の第一のACK/NACKと第二のACK/NACKを結合する方法の一例を示す図である。 本発明の移動局装置1の構成を示す概略ブロック図である。 本発明の基地局装置3の構成を示す概略ブロック図である。
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。
 まず、本発明の物理チャネルについて説明する。
 図1は、本発明の無線通信システムの概念図である。図1において、無線通信システムは、移動局装置1A~1C、および基地局装置3を具備する。図1は、基地局装置3から移動局装置1A~1Cへの無線通信(下りリンク)では、同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)、物理報知チャネル(Physical Broadcast Channel: PBCH)、物理下りリンク制御チャネル(Physical Downlink Control Channel: PDCCH)、物理下りリンク共用チャネル(Physical Downlink Shared Channel: PDSCH)、物理マルチキャストチャネル(Physical Multicast Channel :PMCH)、物理制御フォーマットインディケータチャネル(Physical Control Format Indicator Channel: PCFICH)、物理HARQインディケータチャネル(Physical Hybrid ARQ Indicator Channel: PHICH)が割り当てられることを示す。
 図1は、移動局装置1A~1Cから基地局装置3への無線通信(上りリンク)では、上りリンク参照信号(Uplink Reference Signal: UL RS)、物理上りリンク制御チャネル(Physical Uplink Control Channel: PUCCH)、物理上りリンク共用チャネル(Physical Uplink Shared Channel: PUSCH)、物理ランダムアクセスチャネル(Physical Random Access Channel: PRACH)が割り当てられることを示す。以下、移動局装置1A~1Cを移動局装置1という。
 同期信号は、移動局装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる信号である。下りリンク参照信号は、移動局装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられたり、移動局装置1が下りリンクの受信品質を測定するために用いられたり、移動局装置1がPDSCHやPDCCHの伝搬路補正を行なうために用いられる信号である。
 PBCHは、移動局装置1で共通に用いられる制御パラメータ(システム情報)(Broadcast Channel: BCH)を報知するために用いられる物理チャネルである。PBCHは、40ms間隔で送信される。40ms間隔のタイミングは、移動局装置1においてブラインド検出(blind detection)される。
 PDCCHは、下りリンクアサインメント(downlink assignment、またはdownlink grantとも称する)や上りリンクグラント(uplink grant)などの下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる物理チャネルである。下りリンクアサインメントは、PDSCHに対する変調方式および符号化率に関する情報(Modulation and Coding Scheme: MCS)、無線リソースの割り当てを示す情報などから構成される。上りリンクグラントは、PUSCH(上りリンクデータ送信用チャネル)に対する変調方式および符号化率に関する情報、無線リソースの割り当てを示す情報などから構成される。
 下りリンク制御情報には複数のフォーマットが用いられる。下りリンク制御情報のフォーマットをDCIフォーマット(DCI format)と呼ぶ。下りリンクアサインメントのDCIフォーマットは、基地局装置3がPDSCHを1つの送信アンテナポートまたは送信ダイバーシチを用いて送信する場合に用いられるDCIフォーマット1A、基地局装置3がPDSCHにMIMO SM(Multiple Input Multiple Output Spatial Multiplexing)を用いて複数の下りリンクデータを送信する場合に用いられるDCIフォーマット2などが用意される。
 MIMO SMとは、複数の送信アンテナポートおよび複数の受信アンテナポートにより実現される複数の空間次元のチャネルに対して複数の信号が多重されて送受信が行なわれる技術である。ここで、アンテナポートとは信号処理に用いられる論理的なアンテナのことを示す、1つのアンテナポートは1つの物理的なアンテナにより構成されてもよいし、複数の物理的なアンテナにより構成されてもよい。MIMO SMを用いた送信側では、複数の信号に対して適切な空間チャネルを形成するための処理(プリコーディング(precoding)と称す)が行なわれて、プリコーディングの処理が行なわれた複数の信号を複数の送信アンテナを用いて送信する。MIMO SMを用いた受信側では、複数の受信アンテナを用いて受信された複数の信号に対して空間次元のチャネルで多重された信号を適切に分離するための処理が行なわれる。
 PDSCHは、ページング情報(Paging Channel: PCH)やPBCHで報知されない、つまりBCH以外のシステム情報や下りリンクデータ(Downlink Shared Channel: DL-SCH)を送信するために用いられる物理チャネルである。PMCHは、MBMS(Multimedia Broadcast and Multicast Service)に関する情報(Multicast Channel: MCH)を送信するために用いられる物理チャネルである。
 PCFICHは、PDCCHが配置される領域を示す情報を送信するために用いられる物理チャネルである。PHICHは、基地局装置3が受信した上りリンクデータ(Uplink Shared Channel: UL-SCH)の復号の成否を示すHARQインディケータを送信するために用いられる物理チャネルである。
 基地局装置3がPUSCHに含まれる全ての上りリンクデータの復号に成功した場合は、HARQインディケータはACK(ACKnowledgement)を示し、基地局装置3がPUSCHに含まれる少なくとも1つの上りリンクデータの復号に失敗した場合は、HARQインディケータはNACK(Negative ACKnowledgement)を示す。尚、同一のPUSCHに含まれる複数の上りリンクデータ毎の復号の成否を示す複数のHARQインディケータが、複数のPHICHで送信されるような構成でもよい。
 上りリンク参照信号は、基地局装置3が上りリンクの時間領域の同期をとるために用いられたり、基地局装置3が上りリンクの受信品質を測定するために用いられたり、基地局装置3がPUSCHやPUCCHの伝搬路補正を行なうために用いられる信号である。上りリンク参照信号は、SC-FDMAを想定して分割された無線リソースにおいて、CAZAC(Constant Amplitude and Zero Auto-Correlation)系列を用いた符号拡散が行なわれる。
 CAZAC系列とは、時間領域および周波数領域において一定振幅かつ自己相関特性に優れた系列のことである。時間領域で一定振幅であることからPAPR(Peak to Average Power Ratio)を低く抑えることが可能である。DMRSには、時間領域において巡回遅延が適用される。この時間領域における巡回遅延のことをサイクリックシフトと称する。尚、サイクリックシフトは周波数領域においてCAZAC系列をサブキャリア単位で位相回転することに相当する。
 上りリンク参照信号には、PUSCHまたはPUCCHと時間多重されて送信されPUSCHとPUCCHの伝搬路補償に用いられるDMRS(Demodulation Reference Signal)と、PUSCHおよびPUCCHとは独立して送信される基地局装置3が上りリンクの伝搬路の状況を推定するのに用いられるSRS(Sounding Reference Signal)がある。DMRSには、サイクリックシフトだけでなく時間領域における拡散符号(Orthogonal Cover Code: OCC)も用いられる。
 PUCCHは、下りリンクのチャネル品質を示すチャネル品質情報(Channel Quality Information)、上りリンクの無線リソースの割り当ての要求を示すスケジューリング要求(Scheduling Request: SR)、移動局装置1が受信した下りリンクデータの復号の成否を示すACK/NACKなど、通信の制御に用いられる情報である上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。
 PUSCHは、上りリンクデータや上りリンク制御情報を送信するために用いられる物理チャネルである。移動局装置が上りリンク制御情報を送信する時にPUSCHの無線リソースを割り当てられていない場合は、上りリンク制御情報はPUCCHで送信される。移動局装置が上りリンク制御情報を送信する時にPUSCHの無線リソースを割り当てられている場合は、上りリンク制御情報はPUSCHで送信される。尚、複数のPUSCHの無線リソースを割り当てられている場合は、いずれか1つのPUSCHでのみ上りリンク制御情報を送信する。
 PRACHは、ランダムアクセスプリアンブルを送信するために使用される物理チャネルである。PRACHは、移動局装置1が基地局装置3と時間領域の同期をとることを最大の目的とし、その他に、初期アクセス、ハンドオーバ、再接続要求、および上りリンクの無線リソースの割り当ての要求に用いられる。
 以下、本発明の周波数帯域集約について説明する。
 図2は、本発明の周波数帯域集約処理の一例を示す図である。図2において、横軸は周波数領域、縦軸は時間領域を示す。図2に示すように、下りリンクのサブフレームD1は、20MHzの帯域幅を持った4つの下りリンクコンポーネントキャリア(DL CC-1; Downlink Component Carrier-1、DL CC-2、DL CC-3、DL CC-4)のサブフレームによって構成されている。
 このDL CCのサブフレーム各々には、斜線でハッチングがされた領域が示すPHICHとPCFICHとPDCCHが配置される領域と、網目状にハッチングがされた領域が示すPDSCHが配置される領域がある。PHICHとPCFICHとPDCCHは、周波数多重および/または時間多重される。PHICHとPCFICHとPDCCHが周波数多重および/または時間多重される領域と、PDSCHが配置される領域は時間多重される。
 上りリンクのサブフレームU1は、20MHzの帯域幅を持った3つの上りリンクコンポーネントキャリア(UL CC-1; Uplink Component Carrier-1、UL CC-2、UL CC-3)によって構成されている。このUL CCのサブフレーム各々には、右下がり斜線でハッチングがされた領域が示すPUCCHが配置される領域と、横線でハッチングがされた領域が示すPUSCHが配置される領域とが周波数多重される。
 移動局装置1は、始めにいずれか1組のDL CCとUL CCを用いて基地局装置3との初期アクセスを行なう。基地局装置3は、移動局装置1が初期アクセスを行なったDL CCのPDSCHを用いて送信するRRCシグナル(Radio Resource Control signal)で、移動局装置1に対して設定したDL CCとUL CC(以下、「設定された(上りリンク/下りリンク)コンポーネントキャリア(configured (downlink/uplink)component carrier)」と称する)を通知する。
 基地局装置3は、設定されたDL CCの中から下りリンクの通信に用いるDL CCおよび/または設定されたUL CCの中から上りリンクの通信に用いるUL CCを示すアクティベーションコマンド(activation command)を、PDCCHまたはMAC(Medium Access Control)CE(Control Element)などを用いて通知する。
 基地局装置3が移動局装置1に、アクティベーションコマンドでCCを通信に用いると通知することを、CCをアクティベートする(activate)と称する。基地局装置3が移動局装置1に、アクティベーションコマンドでCCを通信に用いないと通知することを、CCをデアクティベートする(deactivate)と称する。
 基地局装置3は、設定されたDL CCの中から1つの下りリンクプライマリーコンポーネントキャリア(Downlink Primary Component Carrier: DL PCC)(第一の下りリンクコンポーネントキャリア)を移動局装置1毎に設定し、設定されたUL CCの中から上りリンクプライマリーコンポーネントキャリア(Uplink Primary Component Carrier: ULPCC)を移動局装置1毎に設定し、この設定に関する情報を含むRRCシグナルを移動局装置1に通知する。
 DL PCC以外のDL CCは、下りリンクセカンダリーコンポーネントキャリア(Downlink Secondary Component Carrier: DL SCC)(第二の下りリンクコンポーネントキャリア)である。UL PCC以外のUL CCは、上りリンクセカンダリーコンポーネントキャリア(Uplink Secondary Component Carrier: UL SCC)である。周波数帯域集約では、1つのプライマリーセル(Primary cell: Pcell)と1つまたは複数のセカンダリーセル(Secondary cell: Scell)が構成される。プライマリーセルは、1つのDL PCCと1つのUL PCCにより提供されるセルである。プライマリーセルはLTEのセルと同等の機能を持つセルである。
 セカンダリーセルは、1つのDL SCCと1つのUL SCCにより提供されるセルである。セカンダリーセルは、DL SCCのみで提供されてもよい。セカンダリーセルはプライマリーセルよりも機能が制限されたセルである。
 DL PCCおよびUL PCCはデアクティベートされることがない。上りリンク制御情報は、UL PCCのPUCCHおよび/または設定された複数のUL CCのうちいずれか1つのUL CCのPUSCHで送信される。
 以下、本発明の無線フレームの構成について説明する。
 図3は、本発明の下りリンクの無線フレームの構成の一例を示す概略図である。図3において、横軸は時間領域、縦軸は周波数領域である。図3に示すように、DL CCの無線フレームは、複数の下りリンクの物理リソースブロック(Physical Resource Block; PRB)ペア(例えば、図3の破線で囲まれた領域)から構成されている。この下りリンクの物理リソースブロックペアは、無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(PRB帯域幅;180kHz)および時間帯(2個のスロット=1個のサブフレーム;1ms)からなる。
 1個の下りリンクの物理リソースブロックペアは、時間領域で連続する2個の下りリンクの物理リソースブロック(PRB帯域幅×スロット)から構成される。1個の下りリンクの物理リソースブロック(図3において、太線で囲まれている単位)は、周波数領域において12個のサブキャリア(15kHz)から構成され、時間領域において7個のOFDM(Orthogonal Frequency Division Multiplexing)シンボル(71μs)から構成される。
 時間領域においては、7個のOFDMシンボル(71μs)から構成されるスロット(0.5ms)、2個のスロットから構成されるサブフレーム(1ms)、10個のサブフレームから構成される無線フレーム(10ms)がある。サブフレームと同じ時間間隔である1msのことを、送信時間間隔(Transmit Time Interval: TTI)とも称する。周波数領域においては、DL CCの帯域幅に応じて複数の下りリンクの物理リソースブロックが配置される。尚、1個のサブキャリアと1個のOFDMシンボルから構成されるユニットを下りリンクリソースエレメントと称する。
 以下、下りリンクに割り当てられる物理チャネルの配置について説明する。下りリンクの各サブフレームには、PDCCH、PCFICH、PHICH、PDSCH、および下りリンク参照信号などが配置される。PDCCHはサブフレームの先頭のOFDMシンボルから(図3において、左斜線でハッチングがされた領域)配置される。PDCCHが配置されるOFDMシンボルの数はサブフレーム毎に異なり、PDCCHが配置されるOFDMシンボルの数を示す情報はPCFICHで報知される。各サブフレームでは、複数のPDCCHが周波数多重および時間多重される。
 PCFICHはサブフレームの先頭のOFDMシンボルに配置され、PDCCHと周波数多重される。PHICHは、PDCCHと同一のOFDMシンボル内で周波数多重される(図3において、網目状の線でハッチングがされた領域)。PHICHは、サブフレームの先頭のOFDMシンボルのみに配置されてもよいし、PDCCHが配置される複数のOFDMシンボルに分散して配置されてもよい。各サブフレームでは、複数のPHICHが周波数多重および符号多重される。
 移動局装置1は、PUSCHを送信してから所定の時間後(例えば、4ms後、4サブフレーム後、4TTI後)の下りリンクのサブフレームのPHICHで、このPUSCHに対するHARQフィードバックを受信する。
 PDSCHは、サブフレーム内のPDCCHおよびPCFICHおよびPHICHが配置されるOFDMシンボル以外のOFDMシンボル(図3において、ハッチングがされない領域)に配置される。PDSCHの無線リソースの割り当ては、下りリンクアサインメントを用いて移動局装置1に示される。PDSCHの無線リソースは、時間領域において、このPDSCHの割り当てを示す下りリンクアサインメントを含むPDCCHと同一の下りリンクのサブフレームに配置される。
 PDSCHと、このPDSCHに対するPDCCHは同じまたは異なる下りリンクコンポーネントキャリアに配置される。各下りリンクコンポーネントキャリアのサブフレームでは、複数のPDSCHが周波数多重および空間多重される。下りリンク参照信号については、説明の簡略化のため図3において図示を省略するが、下りリンク参照信号は周波数領域と時間領域において分散して配置される。
 図4は、本発明の上りリンクの無線フレームの構成の一例を示す概略図である。図4において、横軸は時間領域、縦軸は周波数領域である。図4に示すように、UL CCの無線フレームは、複数の上りリンクの物理リソースブロックペア(例えば、図4の破線で囲まれた領域)から構成されている。この上りリンクの物理リソースブロックペアは、無線リソースの割り当てなどの単位であり、予め決められた幅の周波数帯(PRB帯域幅;180kHz)および時間帯(2個のスロット=1個のサブフレーム;1ms)からなる。
 1個の上りリンクの物理リソースブロックペアは、時間領域で連続する2個の上りリンクの物理リソースブロック(PRB帯域幅×スロット)から構成される。1個の上りリンクの物理リソースブロック(図4において、太線で囲まれている単位)は、周波数領域において12個のサブキャリアから構成され、時間領域において7個のSC-FDMAシンボル(71μs)から構成される。
 時間領域においては、7個のSC-FDMA(Single-Carrier Frequency Division Multiple Access)シンボル(71μs)から構成されるスロット(0.5ms)、2個のスロットから構成されるサブフレーム(1ms)、10個のサブフレームから構成される無線フレーム(10ms)がある。サブフレームと同じ時間間隔である1msのことを、送信時間間隔(Transmit Time Interval: TTI)とも称する。周波数領域においては、UL CCの帯域幅に応じて複数の上りリンクの物理リソースブロックが配置される。尚、1個のサブキャリアと1個のSC-FDMAシンボルから構成されるユニットを上りリンクリソースエレメントと称する。
 以下、上りリンクの無線フレーム内に割り当てられる物理チャネルについて説明する。上りリンクの各サブフレームには、PUCCH、PUSCH、PRACHおよび上りリンク参照信号などが配置される。PUCCHは、上りリンクの帯域の両端の上りリンクの物理リソースブロック(左斜線でハッチングがされた領域)に配置される。各サブフレームでは、複数のPUCCHが周波数多重および符号多重される。
 PUSCHは、PUCCHが配置される上りリンクの物理リソースブロック以外の上りリンクの物理リソースブロックペア(ハッチングがされない領域)に配置される。PUSCHの無線リソースは、上りリンクグラントを用いて割り当てられ、この上りリンクグラントを含むPDCCHが配置された下りリンクのサブフレームから所定の時間後(例えば、4ms後、4サブフレーム後、4TTI後)の上りリンクのサブフレームに配置される。各サブフレームでは、複数のPUSCHが周波数多重および空間多重される。
 PRACHが配置されるサブフレームおよび上りリンクの物理リソースブロックを示す情報は、基地局装置によって報知される。上りリンク参照信号は、PUCCHやPUSCHと時間多重される。例えば、PUSCHと時間多重されるDMRSは、サブフレーム内の4番目と11番目のSC-FDMAシンボルに配置される。
 上りリンク参照信号は、PUSCHとPUCCHと時間多重されて送信される。PUSCHと上りリンク参照信号が時間多重される場合は、上りリンク参照信号は周波数領域においてPUSCHが割り当てられたのと同じ周波数帯域に配置され、時間領域において4番目と11番目のSC-FDMAシンボルに配置される。
 以下、本発明のPUSCH内の上りリンクデータと上りリンク制御情報の配置について説明する。
 図5は、本発明のPUSCHで上りリンクデータとACK/NACKを同時に送信する方法を説明する図である。図5において、横軸は時間領域であり、縦軸はマッピングする変調シンボル系列の並びを表しており、周波数軸に対応したものではなく、各SC-FDMAシンボルごとにDFT処理され、周波数軸上で割り当てられたリソースにマッピングされる。ACK/NACKの変調シンボルは、3番目と5番目と10番目と12番目のSC-FDMAシンボルに配置される。
 以下、DL PCCのPDSCHに対するACK/NACKを第一のACK/NACK(第一の応答情報)、1つまたは複数のDL SCCのPDSCHに対するACK/NACKを第二のACK/NACK(第二の応答情報)と称する。具体的に3番目のSC-FDMAシンボルに着目すると、3番目のSC-FDMAシンボルの下から順番に第一のACK/NACKの変調シンボル、第二のACK/NACKの変調シンボル、上りリンクデータの変調シンボルの順番に時間多重され、DFT処理によって周波数領域の信号に変換された後に、上りリンクグラントで割り当てられた周波数帯域(物理リソースブロック)に配置されることを示している。
 上りリンクデータ、第一のACK/NACKおよび第二のACK/NACKは別々に符号化される。ACK/NACKの符号化ビット系列および上りリンクデータの符号化ビット系列は、PUSCHの変調方式の変調多値数のビット数に分割したものを変調シンボル(符号化シンボル)とみなされ図5のように並び替えられてから変調される。例えば、変調多値数は、QPSK変調では「2」であり、16QAMでは「4」であり、64QAMでは「6」である。
 尚、移動局装置1がDL PCCでのみPDSCHを受信した場合は、第二のACK/NACKの変調シンボルは配置されず、図5の第二のACK/NACKの変調シンボルが配置されている領域には上りリンクデータの変調シンボルが配置される。第一のACK/NACKは、第二のACK/NACKがあるときとないときで同じ符号化を行ない、図5の同じ位置に並べられる。
 尚、移動局装置1がDL PCCでPDSCHを受信せず、少なくとも1つのDL SCCでPDSCHを受信した場合は、第一のACK/NACKと第二のACK/NACKの両方がPUSCHで送信される。このとき、第一のACK/NACKはNACKを示す。
 以下、本発明のACK/NACKのビット数を算出する方法について説明する。
 本発明では、PUSCHでACK/NACKを送信する際に用いられるACK/NACKのビット数は、基地局装置3に移動局装置1が設定されたDL CCの数と、1つのPDSCHに空間多重できる下りリンクデータの最大数を乗算した値である。3つのDL CCを設定され、1つのPDSCHに2つまでの下りリンクデータを空間多重することができる場合は、移動局装置1は6ビットのACK/NACKを生成する。つまり、DL CCで受信される下りリンクデータそれぞれに対してACK/NACKが1ビットずつ生成される。
 尚、DL PCCでしかPDSCHを受信しなかった場合は、第一のACK/NACKのみを生成し、第二のACK/NACKを生成しない。移動局装置1は複数のDL CCを設定されていても、多くの時間はプライマリーセル(DL PCCとUL PCC)での通信しか行なわないため、DL PCCでしかPDSCHを受信していないときにDL SCCに対するACK/NACKを送信しないようにすることで、DL SCCでPDSCHを受信していないにも係らず、DL SCCに対するACK/NACKを送信する必要がなくなるためPUSCHの無線リソースを効率的に使うことができる。
 尚、移動局装置1がDL PCCでPDSCHを受信せず、少なくとも1つのDL SCCでPDSCHを受信した場合は、第一のACK/NACKと第二のACK/NACKの両方を生成する。これにより、DL PCCのPDSCHで受信したかしないかで、ACK/NACKの符号化や、ACK/NACKの変調シンボルのマッピングを変える必要がないため、移動局装置1の構成が簡略化できる。
 尚、移動局装置1がDL PCCでPDSCHを受信せず、少なくとも1つのDL SCCでPDSCHを受信した場合は、第二のACK/NACKのみ生成してもよい。この場合は、図5の第一のACK/NACKの変調シンボルが配置される位置には上りリンクデータの変調シンボルが配置され、第二のACK/NACKの変調シンボルは、第一のACK/NACKがあるときと同じ位置に配置される。これにより、第二のACK/NACKの変調シンボルが配置される位置が第一のACK/NACKがあるかないかによらず同じ位置に配置される。ゆえに、基地局装置3がDL PCCで送信したPDSCHを移動局装置1が復号処理しなかった場合にも、基地局装置3は第二のACK/NACKを正しく受信することができる。
 尚、少なくとも1つのDL SCCでPDSCHを受信しているが、設定されたDL CCの一部でしかPDSCHを受信しなかった場合は、設定されたDL CCのうち、PDSCHを受信しなかったDL CCに対するACK/NACKをNACKにセットする。また、設定されたDL CCで受信したPDSCHで1つの下りリンクデータしか受信しなかった場合は、この設定されたDL CCに対しては1ビットのACK/NACKのみ生成し、もう1ビットのACK/NACKは予め決められた値にセットする。
 例えば、移動局装置1が3つの設定されたDL CCのうち、DL PCCで下りリンクデータの受信を行なわず、第1のDL SCCで受信した2つの下りリンクデータの復号に成功し、第2の設定されたDL SCCで受信した1つの下りリンクデータの復号に失敗した場合は、移動局装置1は第一のACK/NACKの系列として「00」を、第二のACK/NACKの系列として「1100」を生成する。
 尚、ACKの場合はビットの値を1にセットし、NACKの場合はビットの値を0にセットする。このように移動局装置1が設定されたDL CCで下りリンクデータを受信しなかった場合にACK/NACKのビットを予め決められた値にセットすることで、基地局装置3は移動局装置1に下りリンクデータを送信しなかったDL CCに対するACK/NACKが予め決められた値にセットされていることがわかるため、残りの移動局装置1に送信した下りリンクデータに対するACK/NACKの受信精度が向上する。
 尚、移動局装置1がACK/NACKのビットをDL SCC毎に設定されたDL SCCの番号順に並べることで、基地局装置3はACK/NACKのビットが、どのDL SCCで送信した下りリンクデータに対するものであるかを正しく認識することができる。
 尚、ACK/NACKのビット数を、基地局装置3に移動局装置1が設定されたDL CCの数と、DL CC毎のPDSCHに空間多重できる下りリンクデータの最大数とから決定してもよい。例えば、PDSCHに2つの下りリンクデータを空間多重できる1つのDL CCと、PDSCHで1つの下りリンクデータしか多重できない2つのDL CCを設定された移動局装置1は、4つのACK/NACKのビットを生成する。
 尚、ACK/NACKのビット数を、アクティベートされたDL CCの数と、1つのPDSCHに空間多重できる下りリンクデータの最大数を乗算した値としてもよい。DL CC毎のPDSCHに空間多重できる下りリンクデータの最大数は下りリンクデータの送信モード(例えば、MIMO SM、送信ダイバーシチ)から決まる。尚、ACK/NACKのビット数を、アクティベートされたDL CCの数から決定してもよい。
 以下、本発明のACK/NACKの変調シンボル数を算出する方法について説明する。
 本発明では、PUSCHでACK/NACKを送信する際に用いられるACK/NACKの変調シンボルの数は、PUSCHで送信する第一のACK/NACKのビット数、第二のACK/NACKのビット数、上りリンクデータの初期送信時の無線リソースの量、上りリンクデータのビット数(トランスポートブロックサイズ: transport block size)、基地局装置3によって設定されたオフセットなどから求まる。(1)式は、PUSCHでACK/NACKを送信する際にもちいられるACK/NACKの変調シンボルの数を算出するための式である。
Figure JPOXMLDOC01-appb-M000001
 Q’は第一のACK/NACKの変調シンボルの数である。Q’’は第二のACK/NACKの変調シンボルの数である。Q’’’はPUSCHで送信される第一のACK/NACKの変調シンボルの数と第二のACK/NACKの変調シンボルの数の和である。
 O’は、本発明の移動局装置1が生成した第一のACK/NACKのビット数である。O’’は、本発明の移動局装置1が生成した第二のACK/NACKのビット数である。尚、移動局装置1がDL PCCでのみPDSCHを受信した場合はO’’は「0」とする。
 基地局装置3によって設定されるオフセットの値は、第一のACK/NACKと第二のACK/NACKに対して別々に設定される。移動局装置1は、基地局装置3によって設定された第一のACK/NACKのオフセットと第二のACK/NACKのオフセットの値を用いて、第一のACK/NACKと第二のACK/NACKの送信に用いる変調シンボルの数を別々に計算する。
 これにより、第一のACK/NACKの符号化方法と第二のACK/NACKの符号化方法に性能の差がある場合に、第一のACK/NACKと第二のACK/NACKの送信に用いるPUSCHの無線リソースの量を調整することで、第一のACK/NACKと第二のACK/NACKの性能を同じになるよう調整することができる。
 尚、第一のACK/NACKに対するオフセットと第二のACK/NACKに対するオフセットを共通にし、基地局装置3が第一のACK/NACKと第二のACK/NACKの両方が目標の性能を満たすように共通のオフセットを設定し、移動局装置1に通知してもよい。
 これにより、第一のACK/NACKと第二のACK/NACKの送信に用いるPUSCHの無線リソースの量を別々に調整することができなくなるが、基地局装置3が移動局装置1に通知するACK/NACKのオフセットに関する情報量が減るため、下りリンクの無線リソースを節約することができる。
 図5に示したように、ACK/NACKの変調シンボルは4つのSC-FDMAシンボルのみに配置されるため、ACK/NACKの変調シンボルを配置できる最大の数は、PUSCHに割り当てられた周波数帯域に含まれるサブキャリアの数の4倍である。図5において、Q’’’がACK/NACKの変調シンボルを配置できる最大の数を超えた場合は、DL SCCのPDSCHに対するACK/NACKの変調シンボルを配置するリソースエレメント数から減らしくていく。
 つまり、Q’がACK/NACKの変調シンボルを配置できる最大の数を超えない限り、第一のACK/NACKの変調シンボルの数を減らさない。これにより、DL PCCのPDSCHに対するACK/NACKの性能を保つことができるため、プライマリーセルの下りリンクの通信の品質を保つことができる。(2)式は、Q’’’が、ACK/NACKの変調シンボルを配置できる最大の数を超えないようにするための式である。min(・)は、括弧の中の複数の値のうち最も小さい値を出力する関数である。Nmaxは、ACK/NACKの変調シンボルを配置することができる最大の数である。
Figure JPOXMLDOC01-appb-M000002
 尚、Q’’’がACK/NACKの変調シンボルを配置できる最大の数を超えた場合に、DL PCCに対するACK/NACKの変調シンボルを配置する数から減らしてもよい。DL SCCが4つ設定されている場合は、DL SCCのPDSCHに対するACK/NACKは8ビットあるため、2ビットしかないDL PCCのACK/NACKよりもDL SCCのPDSCHに対するACK/NACKを優先的に配置することで、より多くのPDSCHに対するACK/NACKの性能を落とさずに送信することができる。
 (3)式と(4)式は、Q’’’がACK/NACKの変調シンボルを配置できる最大の数を超えた場合に、DL PCCに対するACK/NACKの変調シンボルを配置する数から減らす場合の、Q’とQ’’を算出するための式である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 以下、本発明のACK/NACKの符号化方法について説明する。
 図6は、本発明の上りリンクデータとACK/NACKの符号化方法について説明する図である。図6において、上りリンクデータと、第一のACK/NACKと、第二のACK/NACKは別々に符号化される(ステップS100)。尚、複数のDL SCCに対する第二のACK/NACKはともに符号化される。
 上りリンクデータは、ターボ符号化が行なわれる。複数のDL SCCのPDSCHに対するACK/NACKは、リードマラー(Reed-Muller)符号による符号化が行なわれる。DL PCCのPDSCHに対するACK/NACKは、反復符号などを用いた通信路符号化によって符号化が行なわれ、生成された符号化ビット2つおきに予め決められた値の符号化ビットを挿入する。挿入される予め決められた値の符号化ビットの数は、PUSCHの変調方式によって決める。
 PUSCHが16QAM(Quadrature Amplitude Modulation)で変調される場合は、生成された符号化ビット2つおきに予め決められた値の符号化ビットを2つずつ挿入する。PUSCHが64QAMで変調される場合は、生成された符号化ビット2つおきに予め決められた値の符号化ビットを4つずつ挿入する。
 これにより、PUSCHの変調方式にかかわらずDL PCCのPDSCHに対するACK/NACKの変調シンボルには、2ビットの情報量しか含まれなくなり、ACK/NACKの変調シンボルの信号点は4つに限定される。また、この4つの信号点は、16QAMや64QAMの振幅が最大である4つの信号点となるように符号化ビットと信号点を対応付ける。
 例えば、PUSCHが16QAMで変調される場合は、DL PCCのPDSCHに対するACK/NACKの符号化ビットの系列が「110110」の場合は、この系列に予め決められた値(x)の符号化ビットが挿入され「11xx01xx10」(xは0または1の予め定められた値)となる。また、「00xx」、「01xx」、「10xx」、「11xx」を16QAMや64QAMの振幅が最大である4つの信号点と対応付けておく。これにより、移動局装置1においてACK/NACK符号化ビットを16QAMや64QAMで変調しても、基地局装置3において、ACK/NACKの変調シンボルをQPSKとして扱うことができる。以下、この方法を仮想QPSKと称する。
 ステップS100で第一のACK/NACKと第二のACK/NACKを符号化した後に、第一のACK/NACKの符号化ビット系列の後ろに、第二のACK/NACKの符号化ビット系列が結合(多重)される(ステップS101)。
 図7は、本発明の第一のACK/NACKと第二のACK/NACKを結合する方法の一例を示す図である。PUSCHで送信するACK/NACKの符号化ビットの系列長P’’’は、Q’’’とPUSCHの変調多値数mの積である。PUSCHで送信する第一のACK/NACKの符号化ビットの系列長P’は、Q’とPUSCHの変調多値数mの積である。PUSCHで送信する第二のACK/NACKの符号化ビットの系列長P’’は、Q’’とPUSCHの変調多値数mの積である。
 図7において、ステップS100で符号化された第一のACK/NACKの符号化ビット系列長は、P’よりも短い。この場合は、P’と同じビット数になるまで第一のACK/NACKの符号化ビットの先頭部分から繰り返し配置される。
 図7において、ステップS100で符号化された第二のACK/NACKの符号化ビット系列長は、P’’よりも長い。この場合は、第二のACK/NACKの符号化ビットは先頭部分からP’’の数までの一部分が切り取られる。つまり、第二のACK/NACKの符号化ビットのP’’を越える末尾部分はPUSCHで送信されない。
 このように先頭から繰り返された、または先頭部分から切り取られた第一のACK/NACKの符号化ビットおよび第二のACK/NACKの符号化ビットが結合される。
 ステップS100とステップS101の後に、上りリンクデータの符号化ビットとACK/NACKの符号化ビットを図5のように並び替える(ステップS102)。最初に、図5のDMRS以外の領域に上りリンクデータの符号化ビットを並べる。次に、図5のACK/NACKの領域に配置された上りリンクデータの符号化ビットを、第一のACK/NACKの符号化ビットおよび/または第二のACK/NACKの符号化ビットに置き換えていく。
 尚、DL PCCでしかPDSCHを受信しなかった場合は、第一のACK/NACKに関する符号化処理のみ行ない、第二のACK/NACKに関する符号化処理は行なわない。
 以下、本発明の移動局装置1の装置構成について説明する。
 図8は、本発明の移動局装置1の構成を示す概略ブロック図である。図示するように、移動局装置1は、上位層処理部101、制御部103、受信部105、送信部107および、送受信アンテナ109を含んで構成される。上位層処理部101は、無線リソース制御部1011、HARQ制御部1013とACK/NACK生成部1015を含んで構成される。受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057とチャネル測定部1059を含んで構成される。送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077と上りリンク参照信号生成部1079を含んで構成される。
 上位層処理部101は、ユーザの操作等により生成された上りリンクデータを、送信部107に出力する。また、上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101はPDCCHで受信された下りリンク制御情報などに基づき、受信部105、および送信部107の制御を行なうために制御情報を生成し、制御部103に出力する。
 上位層処理部101が備える無線リソース制御部1011は、自装置の各種設定情報の管理を行なう。例えば、無線リソース制御部1011は、設定されたCCの管理を行なう。また、無線リソース制御部1011は、上りリンクの各チャネルに配置される情報を生成し、送信部107に出力する。
 上位層処理部101が備えるHARQ制御部1013は、下りリンクデータのHARQの制御を行なう。HARQ制御部1013は、受信した下りリンクデータの復号に成功した場合は、ACK/NACK生成部1015にACKを生成し基地局装置3に送信するよう指示し、受信した下りリンクデータの復号に失敗した場合は、ACK/NACK生成部1015にNACKを生成し基地局装置3に送信するよう指示する。
 HARQ制御部1013は、下りリンクデータの復号に失敗した場合は下りリンクデータをHARQバッファに保持しておき、基地局装置3によって再送信された下りリンクデータを受信した際に、再送信された下りリンクデータとHARQバッファに保持されている下りリンクデータを合成して復号処理を行なう。
 上位層処理部101が備えるACK/NACK生成部1015は、HARQ制御部1013の指示に従ってACKまたはNACKを生成し、ACK/NACKのビットを並べ替える。ACK/NACK生成部1015は、DL PCCでのみ下りリンクデータを受信した場合は第一のACK/NACKのみ生成し、少なくとも1つのDL SCCで下りリンクデータを受信した場合は、第一のACK/NACKと第二のACK/NACKを生成する。
 尚、少なくとも1つのDL SCCで下りリンクデータを受信したが、一部のDL CC(DL PCCやDL SCC)で下りリンクデータを受信しなかった場合は、ACK/NACK生成部1015は、ACK/NACKをNACKとして生成する。
 ACK/NACK生成部1015は、PUSCHでACK/NACKを送信する際のACK/NACKの変調シンボルの数を計算し、計算した変調シンボル数のACK/NACK変調シンボルを生成し、ACK/NACKと上りリンクデータをともにPUSCHで送信するよう、送信部107の制御を行なうために制御情報を生成し、制御部103に出力する。
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105、および送信部107の制御を行なう制御信号を生成する。制御部103は、生成した制御信号を受信部105、および送信部107に出力して受信部105、および送信部107の制御を行なう。
 受信部105は、制御部103から入力された制御信号に従って、送受信アンテナ109を介して基地局装置3から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部101に出力する。
 無線受信部1057は、送受信アンテナ109を介して受信した下りリンクの信号を、中間周波数に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去し、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出する。
 多重分離部1055は、抽出した信号をPHICH、PDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。尚、この分離は、下りリンクアサインメントで通知された無線リソースの割り当て情報などに基づいて行なわれる。また、多重分離部1055は、チャネル測定部1059から入力された伝搬路の推定値から、PHICHとPDCCHとPDSCHの伝搬路の補償を行なう。また、多重分離部1055は、分離した下りリンク参照信号をチャネル測定部1059に出力する。
 復調部1053は、PHICHに対して対応する符号を乗算して合成し、合成した信号に対してBPSK(Binary Phase Shift Keying)変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、自装置宛てのPHICHを復号し、復号したHARQインディケータを上位層処理部101に出力する。復調部1053は、PDCCHに対して、QPSK変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、PDCCHのブラインドデコーディングを試み、ブラインドデコーディングに成功した場合、復号した下りリンク制御情報と下りリンク制御情報に含まれていたRNTIを上位層処理部101に出力する。
 復調部1053は、PDSCHに対して、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM等の下りリンクアサインメントで通知された変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、下りリンク制御情報で通知された符号化率に関する情報に基づいて復号を行ない、復号した下りリンクデータ(トランスポートブロック)を上位層処理部101へ出力する。
 チャネル測定部1059は、多重分離部1055から入力された下りリンク参照信号から下りリンクのパスロスやチャネルの状態を測定し、測定したパスロスやチャネルの状態を上位層処理部101へ出力する。また、チャネル測定部1059は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部1055へ出力する。
 送信部107は、制御部103から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部101から入力された上りリンクデータや上りリンク制御情報を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ109を介して基地局装置3に送信する。
 符号化部1071は、上位層処理部101から入力された上りリンク制御情報を畳込み符号化、ブロック符号化等の符号化を行ない、上りリンクデータを上りリンクグラントで通知された符号化率に関する情報に基づいてターボ符号化を行なう。
 符号化部1071は、ACK/NACKを上りリンクデータとともにPUSCHで送信する場合は、制御部103から入力された制御信号に従って、ACK/NACKと上りリンクデータを図6のように符号化し、ACK/NACKと上りリンクデータの符号化ビットを図5のように並べ替える。
 変調部1073は、符号化部1071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。変調部1073は、上りリンクグラントで通知された空間多重される系列の数と、この系列に対して行なうプリコーディングを指示する情報に基づいて、MIMO SMを用いることにより同一のPUSCHで送信される複数の上りリンクデータの変調シンボルの系列を、同一のPUSCHで送信される上りリンクデータの数よりも多い複数の系列にマッピングし、この系列に対してプレコーディング(precoding)を行なう。
 上りリンク参照信号生成部1079は、基地局装置3を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称する)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフトなどを基に予め定められた規則で求まる、基地局装置3が既知の系列を生成する。多重部1075は、制御部103から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)し、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。
 無線送信部1077は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行ない、SC-FDMA変調されたSC-FDMAシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ109に出力して送信する。
 以下、本発明の基地局装置3の装置構成について説明する。
 図9は、本発明の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部301、制御部303、受信部305、送信部307、および、送受信アンテナ309、を含んで構成される。また、上位層処理部301は、無線リソース制御部3011、HARQ制御部3013とACK/NACK検出部3015を含んで構成される。また、受信部305は、復号化部3051、復調部3053、多重分離部3055、無線受信部3057とチャネル測定部3059を含んで構成される。また、送信部307は、符号化部3071、変調部3073、多重部3075、無線送信部3077と下りリンク参照信号生成部3079を含んで構成される。
 上位層処理部301は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部301は、受信部305、および送信部307の制御を行なうために制御情報を生成し、制御部303に出力する。
 上位層処理部301が備える無線リソース制御部3011は、下りリンクのPDSCHに配置される下りリンクデータ、RRCシグナル、MAC CE(Control Element)を生成し、または上位ノードから取得し、HARQ制御部3013に出力する。また、無線リソース制御部3011は、移動局装置1各々の各種設定情報の管理をする。例えば、無線リソース制御部3011は、移動局装置1に設定したCCの管理などを行なう。
 上位層処理部301が備えるHARQ制御部3013は、下りリンクデータのHARQの制御を行なう。HARQ制御部3013は、無線リソース制御部3011から取得した下りリンクデータをHARQバッファに保持しておき、HARQバッファに保持している下りリンクデータに対して移動局装置1からNACKを受信した場合には、保持している下りリンクデータを送信部307に出力し、再送信するよう制御を行なうために制御情報を生成し、制御部303に出力する。
 上位層処理部301が備えるACK/NACK検出部3015は、受信部305のACK/NACKの復号処理の制御を行なうために制御情報を生成し、制御部303に出力する。ACK/NACK検出部3015は、移動局装置1に設定した下りリンクコンポーネントキャリアの数などから移動局装置1が送信したACK/NACKのビット系列のビット数、およびPUSCHに配置されるACK/NACKの変調シンボル数を計算する。
 ACK/NACK検出部3015は、DL PCCのみで下りリンクデータを移動局装置1に送信した場合には、PUSCHに第一のACK/NACKのみ含まれており、第二のACK/NACKは含まれていないと判断する。ACK/NACK検出部3015は、下りリンクデータを移動局装置1に送信していないDL CCに対するACK/NACKはNACKにセットされていると判断する。
 ACK/NACK検出部3015は、算出したACK/NACKの変調シンボル数にもとづいて、PUSCHに含まれるACK/NACKの変調シンボルを分離し、第一のACK/NACKと第二のACK/NACKを別々に復号するよう、制御部303を介して受信部305を制御する。
 制御部303は、上位層処理部301からの制御情報に基づいて、受信部305、および送信部307の制御を行なう制御信号を生成する。制御部303は、生成した制御信号を受信部305、および送信部307に出力して受信部305、および送信部307の制御を行なう。
 受信部305は、制御部303から入力された制御信号に従って、送受信アンテナ309を介して移動局装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部301に出力する。無線受信部3057は、送受信アンテナ309を介して受信された上りリンクの信号を、中間周波数に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
 無線受信部3057は、変換したディジタル信号からガードインターバル(Guard Interval: GI)に相当する部分を除去する。無線受信部3057は、ガードインターバルを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出し多重分離部3055に出力する。
 多重分離部3055は、無線受信部3057から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。尚、この分離は、予め基地局装置3が無線リソース制御部3011で決定し、各移動局装置1に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。多重分離部3055は、チャネル測定部3059から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部3055は、分離した上りリンク参照信号をチャネル測定部3059に出力する。
 復調部3053は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK(Binary Phase Shift Keying)、QPSK、16QAM、64QAM等の予め定められた、または自装置が移動局装置1各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。復調部3053は、制御部303から入力された制御信号に従って、PUSCHに含まれる上りリンクデータの変調シンボルと第一のACK/NACKの変調シンボルと第二のACK/NACKの変調シンボルを分離する。
 復調部3053は、移動局装置1各々に上りリンクグラントで予め通知した空間多重される系列の数と、この系列に対して行なうプリコーディングを指示する情報に基づいて、MIMO SMを用いることにより同一のPUSCHで送信された複数の上りリンクデータの変調シンボルを分離する。
 復号化部3051は、復調された上りリンク制御情報と上りリンクデータの符号化ビットを、予め定められた符号化方式の、予め定められた、または自装置が移動局装置1に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部301へ出力する。PUSCHが再送信の場合は、復号化部3051は、上位層処理部301から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。
 復号化部3051は、第一のACK/NACKと第二のACK/NACKの符号化ビットを別々に復号する。チャネル測定部3059は、多重分離部3055から入力された上りリンク参照信号から伝搬路の推定値、チャネルの品質などを測定し、多重分離部3055および上位層処理部301に出力する。
 送信部307は、制御部303から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部301から入力されたHARQインディケータ、下りリンク制御情報、下りリンクデータを符号化、および変調し、PHICH、PDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ309を介して移動局装置1に信号を送信する。
 符号化部3071は、上位層処理部301から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳込み符号化、ターボ符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部3011が決定した符号化方式を用いて符号化を行なう。変調部3073は、符号化部3071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の予め定められた、または無線リソース制御部3011が決定した変調方式で変調する。
 下りリンク参照信号生成部3079は、基地局装置3を識別するための物理セル識別子(PCI)などを基に予め定められた規則で求まる、移動局装置1が既知の系列を下りリンク参照信号として生成する。多重部3075は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号を多重する。
 無線送信部3077は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDM方式の変調を行ない、OFDM変調されたOFDMシンボルにガードインターバルを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ309に出力して送信する。
 このように、本発明によれば、複数のCCを用いて移動局装置1と基地局装置3が無線通信を行なう無線通信システムにおいて、移動局装置1は、DL PCC(第一の下りリンクコンポーネントキャリア)で受信した1つまたは複数の下りリンクデータの復号の成否を示す1つまたは複数の第一のACK/NACK(第一の応答情報)をともに符号化し、複数のDL SCC(第二の下りリンクコンポーネントキャリア)で受信した下りリンクデータの復号の成否を示す複数の第二のACK/NACK(第二の応答情報)をともに符号化し、第一のACK/NACKと第二のACK/NACKを同じPUSCH(上りリンクデータ送信用チャネル)で送信し、基地局装置3は、PUSCHを受信し、第一のACK/NACKと第二のACK/NACKの復号処理を別々に行なう。
 また、本発明によれば、移動局装置1は、DL PCCでのみPDSCHを受信した場合に、第一のACK/NACKのみ生成し、PUSCHで送信する。
 これにより、下りリンクデータが少ないときはDL PCCのPDSCHのみを用いて基地局装置3と移動局装置1が下りリンクの通信を行なうことで、移動局装置1はDL SCCのPDSCHに対する第二のACK/NACKをPUSCHで送信しなくなるため、PUSCHの無線リソースを効率的に上りリンクデータの送信のために用いることができる。
 また、下りリンクデータが多いときはDL PCCと複数のDL SCCを用いて複数のPDSCHを同時に用いて基地局装置3と移動局装置1が通信を行なう。このとき、複数のDL SCCに対する複数の第二のACK/NACKをともに符号化することで、複数の第二のACK/NACKを別々に符号化するよりも第二のACK/NACKの性能が向上する。
 また、基地局装置3がDL PCCと1つまたは複数のDL SCCを用いて複数のPDSCHを移動局装置1に送信したが、移動局装置1がDL PCCのみでしかPDSCHを受信しなかった場合に、移動局装置1はDL SCCのPDSCHを受信したときと同じ方法で第一のACK/NACKを符号化し、マッピング方法を適用するため、基地局装置3は第一のACK/NACKを正しく受信することができる。
 また、本実施形態は、以下のような態様を採ることも可能である。すなわち、本実施形態の無線通信システムは、複数のコンポーネントキャリアを用いて移動局装置と基地局装置が無線通信を行なう無線通信システムであって、前記移動局装置は、第一の下りリンクコンポーネントキャリアで受信した1つまたは複数の下りリンクデータの復号の成否を示す1つまたは複数の第一の応答情報をともに符号化し、複数の第二の下りリンクコンポーネントキャリアで受信した下りリンクデータの復号の成否を示す複数の第二の応答情報をともに符号化し、前記第一の応答情報と前記第二の応答情報を同じ上りリンクデータ送信用チャネルで送信し、前記基地局装置は、前記上りリンクデータ送信用チャネルを受信し、前記第一の応答情報と前記第二の応答情報の復号処理を別々に行なうことを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記基地局装置が、移動局装置毎に1つの前記第一の下りリンクコンポーネントキャリアと複数の前記第二の下りリンクコンポーネントキャリアを設定することを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記移動局装置が、前記上りリンクデータ送信用チャネルで送信することができる第一の応答情報の符号化ビット数と、前記上りリンクデータ送信用チャネルで送信することができる第二の応答情報の符号化ビット数を別々に算出することを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記移動局装置が、前記上りリンクデータ送信用チャネルで送信することができる応答情報のビット数を、前記第一の応答情報と前記第二の応答情報の符号化ビットの和が超えてしまった場合に、前記第一の応答情報の符号化ビットを優先的に前記上りリンクデータ送信用チャネルで送信することを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記移動局装置が、前記上りリンクデータ送信用チャネルで送信することができる応答情報のビット数を、前記第一の応答情報と前記第二の応答情報の符号化ビットの和が超えてしまった場合に、前記第二の応答情報の符号化ビットを優先的に前記上りリンクデータ送信用チャネルで送信することを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記基地局装置が、前記上りリンクデータ送信用チャネルで送信することができる第一の応答情報の符号化ビット数を算出する際に前記移動局装置が用いる第一のオフセットの値と、前記上りリンクデータ送信用チャネルで送信することができる第二の応答情報の符号化ビット数を算出する際に前記移動局装置が用いる第二のオフセットの値を別々に設定することを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記移動局装置が、前記第一の応答情報と前記第二の応答情報を同一のSC-FDMAシンボルで送信することを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記移動局装置が、前記第一の下りリンクコンポーネントキャリアでのみ下りリンクデータを受信した場合は、前記第一の応答情報のみ前記上りリンクデータ送信用チャネルで送信することを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記移動局装置が、少なくとも1つの前記第二の下りリンクコンポーネントキャリアで下りリンクデータを受信した場合は、前記第一の応答情報と前記第二の応答情報を前記上りリンクデータ送信用チャネルで送信することを特徴としている。
 また、本実施形態は、上記の無線通信システムにおいて、前記移動局装置が、少なくとも1つの前記第二の下りリンクコンポーネントキャリアで下りリンクデータを受信したが、前記第一の下りリンクコンポーネントキャリアで下りリンクデータを受信しなかった場合は、前記第二の応答情報を予め定められた値にセットすることを特徴としている。
 また、本実施形態の移動局装置は、複数のコンポーネントキャリアを用いて基地局装置と無線通信を行なう移動局装置であって、第一の下りリンクコンポーネントキャリアで受信した1つまたは複数の下りリンクデータの復号の成否を示す1つまたは複数の第一の応答情報をともに符号化し、複数の第二の下りリンクコンポーネントキャリアで受信した下りリンクデータの復号の成否を示す複数の第二の応答情報をともに符号化し、前記第一の応答情報と前記第二の応答情報を同じ上りリンクデータ送信用チャネルで送信することを特徴としている。
 また、本実施形態の基地局装置は、複数のコンポーネントキャリアを用いて移動局装置と無線通信を行なう基地局装置であって、前記移動局装置が、第一の下りリンクコンポーネントキャリアで受信した1つまたは複数の下りリンクデータの復号の成否を示す1つまたは複数の第一の応答情報をともに符号化し、複数の第二の下りリンクコンポーネントキャリアで受信した下りリンクデータの復号の成否を示す複数の第二の応答情報をともに符号化し、前記第一の応答情報と前記第二の応答情報を含めて送信した上りリンクデータ送信用チャネルを受信し、前記第一の応答情報と前記第二の応答情報の復号処理を別々に行なうことを特徴としている。
 また、本実施形態の無線通信方法は、複数のコンポーネントキャリアを用いて基地局装置と無線通信を行なう移動局装置に用いられる無線通信方法であって、第一の下りリンクコンポーネントキャリアで受信した1つまたは複数の下りリンクデータの復号の成否を示す1つまたは複数の第一の応答情報をともに符号化するステップと、複数の第二の下りリンクコンポーネントキャリアで受信した下りリンクデータの復号の成否を示す複数の第二の応答情報をともに符号化するステップと、前記第一の応答情報と前記第二の応答情報を同じ上りリンクデータ送信用チャネルで送信するステップを有することを特徴としている。
 また、本実施形態の無線通信方法は、複数のコンポーネントキャリアを用いて移動局装置と無線通信を行なう基地局装置に用いられる無線通信方法であって、前記移動局装置が、第一の下りリンクコンポーネントキャリアで受信した1つまたは複数の下りリンクデータの復号の成否を示す1つまたは複数の第一の応答情報をともに符号化し、複数の第二の下りリンクコンポーネントキャリアで受信した下りリンクデータの復号の成否を示す複数の第二の応答情報をともに符号化し、前記第一の応答情報と前記第二の応答情報を含めて送信した上りリンクデータ送信用チャネルを受信するステップと、前記第一の応答情報と前記第二の応答情報の復号処理を別々に行なうステップを有することを特徴としている。
 また、本実施形態の集積回路は、複数のコンポーネントキャリアを用いて基地局装置と無線通信を行なう移動局装置に用いられる集積回路であって、第一の下りリンクコンポーネントキャリアで受信した1つまたは複数の下りリンクデータの復号の成否を示す1つまたは複数の第一の応答情報をともに符号化する機能と、複数の第二の下りリンクコンポーネントキャリアで受信した下りリンクデータの復号の成否を示す複数の第二の応答情報をともに符号化する機能と、前記第一の応答情報と前記第二の応答情報を同じ上りリンクデータ送信用チャネルで送信する機能と、の一連の機能を、前記移動局装置に発揮させることを特徴としている。
 また、本実施形態の集積回路は、複数のコンポーネントキャリアを用いて移動局装置と無線通信を行なう基地局装置に用いられる集積回路であって、前記移動局装置が、第一の下りリンクコンポーネントキャリアで受信した1つまたは複数の下りリンクデータの復号の成否を示す1つまたは複数の第一の応答情報をともに符号化し、複数の第二の下りリンクコンポーネントキャリアで受信した下りリンクデータの復号の成否を示す複数の第二の応答情報をともに符号化し、前記第一の応答情報と前記第二の応答情報を含めて送信した上りリンクデータ送信用チャネルを受信する機能と、前記第一の応答情報と前記第二の応答情報の復号処理を別々に行なう機能と、の一連の機能を、前記移動局装置に発揮させることを特徴としている。
 本発明に関わる基地局装置3、および移動局装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
 尚、上述した実施形態における移動局装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 尚、ここでいう「コンピュータシステム」とは、移動局装置1、または基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における移動局装置1、基地局装置3の一部、または全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。移動局装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
1(1A、1B、1C) 移動局装置
3 基地局装置
101 上位層処理部
103 制御部
105 受信部
107 送信部
301 上位層処理部
303 制御部
305 受信部
307 送信部
1011 無線リソース制御部
1013 HARQ制御部
1015 ACK/NACK生成部
3011 無線リソース制御部
3013 HARQ制御部
3015 ACK/NACK検出部

Claims (21)

  1.  基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記基地局装置に送信する移動局装置において、
     第一のACK/NACKと第二のACK/NACKとを別々に符号化し、
     前記第一のACK/NACKの符号化ビット数が第一の値になるまで前記第一のACK/NACKの符号化ビットに繰り返し処理を実行し、
     前記第二のACK/NACKの符号化ビット数が第二の値になるまで前記第二のACK/NACKの符号化ビットに繰り返し処理を実行し、
     前記繰り返し処理を実行した第一のACK/NACKの符号化ビットと前記繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させ、
     前記第一のACK/NACKと前記第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記基地局装置に送信することを特徴とする移動局装置。
  2.  前記物理上りリンクチャネルは物理上りリンク共用チャネルであり、
     前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴とする請求項1に記載の移動局装置。
  3.  前記繰り返し処理は、前記第一のACK/NACKの符号化ビットが前記第一の値よりも小さい場合には、前記第一のACK/NACKの符号化ビットを、先頭から繰り返して連結する処理であることを特徴とする請求項1または請求項2に記載の移動局装置。
  4.  前記繰り返し処理は、前記第二のACK/NACKの符号化ビットが、前記第二の値よりも小さい場合には、前記第二のACK/NACKの符号化ビットを、先頭から繰り返して連結する処理であることを特徴とする請求項1または請求項2に記載の移動局装置。
  5.  前記繰り返し処理は、前記第一のACK/NACKの符号化ビットが前記第一の値よりも大きい場合には、前記第一のACK/NACKの符号化ビットを、先頭から前記第一の値まで切り取る処理であることを特徴とする請求項1または請求項2に記載の移動局装置。
  6.  前記繰り返し処理は、前記第二のACK/NACKの符号化ビットが前記第二の値よりも大きい場合には、前記第二のACK/NACKの符号化ビットを、先頭から前記第二の値まで切り取る処理であることを特徴とする請求項1または請求項2に記載の移動局装置。
  7.  移動局装置へ複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記移動局装置から受信する基地局装置において、
     別々に符号化された第一のACK/NACKと第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記移動局装置から受信し、
     前記第一のACK/NACKの符号化ビットは、前記移動局装置によって前記第一のACK/NACKの符号化ビット数が第一の値になるまで繰り返し処理が実行され、
     前記第二のACK/NACKの符号化ビットは、前記移動局装置によって前記第二のACK/NACKの符号化ビット数が第二の値になるまで繰り返し処理が実行され、
     前記繰り返し処理が実行された第一のACK/NACKの符号化ビットと前記繰り返し処理が実行された第二のACK/NACKの符号化ビットとは、前記移動局装置によって連結されることを特徴とする基地局装置。
  8.  前記物理上りリンクチャネルは物理上りリンク共用チャネルであり、
     前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴とする請求項7に記載の基地局装置。
  9.  前記繰り返し処理は、前記第一のACK/NACKの符号化ビットが前記第一の値よりも小さい場合には、前記第一のACK/NACKの符号化ビットを、先頭から繰り返して連結する処理であることを特徴とする請求項7または請求項8に記載の基地局装置。
  10.  前記繰り返し処理は、前記第二のACK/NACKの符号化ビットが、前記第二の値よりも小さい場合には、前記第二のACK/NACKの符号化ビットを、先頭から繰り返して連結する処理であることを特徴とする請求項7または請求項8に記載の基地局装置。
  11.  前記繰り返し処理は、前記第一のACK/NACKの符号化ビットが前記第一の値よりも大きい場合には、前記第一のACK/NACKの符号化ビットを、先頭から前記第一の値まで切り取る処理であることを特徴とする請求項7または請求項8に記載の基地局装置。
  12.  前記繰り返し処理は、前記第二のACK/NACKの符号化ビットが前記第二の値よりも大きい場合には、前記第二のACK/NACKの符号化ビットを、先頭から前記第二の値まで切り取る処理であることを特徴とする請求項7または請求項8に記載の基地局装置。
  13.  移動局装置が、基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記基地局装置に送信する無線通信システムにおいて、
     前記移動局装置は、
     第一のACK/NACKと第二のACK/NACKとを別々に符号化し、
     前記第一のACK/NACKの符号化ビット数が第一の値になるまで前記第一のACK/NACKの符号化ビットに繰り返し処理を実行し、
     前記第二のACK/NACKの符号化ビット数が第二の値になるまで前記第二のACK/NACKの符号化ビットに繰り返し処理を実行し、
     前記繰り返し処理を実行した第一のACK/NACKの符号化ビットと前記繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させ、
     前記第一のACK/NACKと前記第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記基地局装置に送信し、
     前記基地局装置は、
     前記第一のACK/NACKと前記第二のACK/NACKとを前記1つの物理上りリンクチャネルを用いて前記移動局装置から受信することを特徴とする無線通信システム。
  14.  基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記基地局装置に送信する移動局装置に用いられる無線通信方法において、
     第一のACK/NACKと第二のACK/NACKとを別々に符号化し、
     前記第一のACK/NACKの符号化ビット数が第一の値になるまで前記第一のACK/NACKの符号化ビットに繰り返し処理を実行し、
     前記第二のACK/NACKの符号化ビット数が第二の値になるまで前記第二のACK/NACKの符号化ビットに繰り返し処理を実行し、
     前記繰り返し処理を実行した第一のACK/NACKの符号化ビットと前記繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させ、
     前記第一のACK/NACKと前記第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記基地局装置に送信することを特徴とする無線通信方法。
  15.  前記物理上りリンクチャネルは、物理上りリンク共用チャネルであり、
     前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴とする請求項14に記載の無線通信方法。
  16.  基地局装置へ複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記移動局装置から受信する基地局装置に用いられる無線通信方法において、
     別々に符号化された第一のACK/NACKと第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記移動局装置から受信し、
     前記第一のACK/NACKの符号化ビットは、前記移動局装置によって前記第一のACK/NACKの符号化ビット数が第一の値になるまで繰り返し処理が実行され、
     前記第二のACK/NACKの符号化ビットは、前記移動局装置によって前記第二のACK/NACKの符号化ビット数が第二の値になるまで繰り返し処理が実行され、
     前記繰り返し処理が実行された第一のACK/NACKの符号化ビットと前記繰り返し処理が実行された第二のACK/NACKの符号化ビットとは、前記移動局装置によって連結されることを特徴とする無線通信方法。
  17.  前記物理上りリンクチャネルは、物理上りリンク共用チャネルであり、
     前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴とする請求項16に記載の無線通信方法。
  18.  基地局装置によって複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記基地局装置に送信する移動局装置に用いられる集積回路において、
     第一のACK/NACKと第二のACK/NACKとを別々に符号化する機能と、
     前記第一のACK/NACKの符号化ビット数が第一の値になるまで前記第一のACK/NACKの符号化ビットに繰り返し処理を実行する機能と、
     前記第二のACK/NACKの符号化ビット数が第二の値になるまで前記第二のACK/NACKの符号化ビットに繰り返し処理を実行する機能と、
     前記繰り返し処理を実行した第一のACK/NACKの符号化ビットと前記繰り返し処理を実行した第二のACK/NACKの符号化ビットとを連結させる機能と、
     前記第一のACK/NACKと前記第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記基地局装置に送信する機能と、の一連の機能を、前記移動局装置に発揮させることを特徴とする集積回路。
  19.  前記物理上りリンクチャネルは、物理上りリンク共用チャネルであり、
     前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴とする請求項18に記載の集積回路。
  20.  移動局装置へ複数のコンポーネントキャリアで送信されたトランスポートブロックに対する複数のACK/NACKを前記移動局装置から受信する基地局装置に用いられる集積回路において、
     別々に符号化された第一のACK/NACKと第二のACK/NACKとを1つの物理上りリンクチャネルを用いて前記移動局装置から受信する機能を前記基地局装置に発揮させ、
     前記第一のACK/NACKの符号化ビットは、前記移動局装置によって前記第一のACK/NACKの符号化ビット数が第一の値になるまで繰り返し処理が実行され、
     前記第二のACK/NACKの符号化ビットは、前記移動局装置によって前記第二のACK/NACKの符号化ビット数が第二の値になるまで繰り返し処理が実行され、
     前記繰り返し処理が実行された第一のACK/NACKの符号化ビットと前記繰り返し処理が実行された第二のACK/NACKの符号化ビットとは、前記移動局装置によって連結されることを特徴とする集積回路。
  21.  前記物理上りリンクチャネルは、物理上りリンク共用チャネルであり、
     前記第一の値および前記第二の値は、前記物理上りリンク共用チャネルで使用される変調次数の正の整数倍であることを特徴とする請求項20に記載の集積回路。
PCT/JP2011/064824 2010-07-05 2011-06-28 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路 WO2012005145A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180032827.5A CN102972064B (zh) 2010-07-05 2011-06-28 移动站装置、基站装置、无线通信系统、无线通信方法以及集成电路
US13/808,454 US9215695B2 (en) 2010-07-05 2011-06-28 Mobile station apparatus, base station apparatus, wireless communication system, wireless communication method and integrated circuit
JP2011551723A JP5044047B2 (ja) 2010-07-05 2011-06-28 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010152565 2010-07-05
JP2010-152565 2010-07-05

Publications (1)

Publication Number Publication Date
WO2012005145A1 true WO2012005145A1 (ja) 2012-01-12

Family

ID=45441128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064824 WO2012005145A1 (ja) 2010-07-05 2011-06-28 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路

Country Status (5)

Country Link
US (1) US9215695B2 (ja)
JP (2) JP5044047B2 (ja)
CN (1) CN102972064B (ja)
TW (1) TWI528751B (ja)
WO (1) WO2012005145A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013140448A1 (ja) * 2012-03-21 2015-08-03 富士通株式会社 無線通信システム
JPWO2013179540A1 (ja) * 2012-05-31 2016-01-18 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 端末装置、基地局装置、送信方法及び受信方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163941A1 (en) * 2015-04-10 2016-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Implementation of harq on pusch for multiple carriers
DE112015006784B4 (de) 2015-08-07 2024-10-02 Apple Inc. UCI für die Carrier Aggregation
WO2017116114A1 (en) * 2015-12-27 2017-07-06 Lg Electronics Inc. Method and apparatus for defining basic resource unit for nb-iot user equipment in wireless communication system
JP2019195113A (ja) * 2016-09-02 2019-11-07 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
CN107888364B (zh) 2016-09-30 2020-07-21 电信科学技术研究院 一种参考信号映射方法及装置
WO2018227625A1 (en) * 2017-06-16 2018-12-20 Nokia Technologies Oy Communication apparatus, method and computer program
JP7058087B2 (ja) * 2017-07-03 2022-04-21 シャープ株式会社 端末装置、基地局装置、および、通信方法
US10742379B2 (en) * 2018-01-12 2020-08-11 Mediatek Inc. Uplink control information handling for new radio
CN110875814B (zh) * 2018-09-03 2023-05-02 华为技术有限公司 发送和接收混合自动重传请求确认信息的方法、通信装置
US20240250714A1 (en) * 2023-01-23 2024-07-25 Qualcomm Incorporated Adaptive extended reality transmissions for ultra-wide band communications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050371A1 (ja) * 2008-10-31 2010-05-06 シャープ株式会社 移動通信システム、基地局装置、移動局装置および通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460541B2 (en) * 2004-09-24 2008-12-02 Agilent Technologies, Inc. Method and apparatus to monitor and analyze network information of an inverse multiplexed asynchronous transfer mode network
HUE025654T2 (en) 2007-07-06 2016-04-28 Huawei Tech Co Ltd HARQ communication method, system, base station and mobile station
CN101183918B (zh) * 2007-11-26 2010-11-03 华中科技大学 一种自适应混合自动请求重传方法
CN101359983B (zh) * 2008-10-08 2011-04-20 新邮通信设备有限公司 一种hs-sich的信息承载和编码方法
ES2423656T3 (es) * 2010-03-22 2013-09-23 Samsung Electronics Co., Ltd. Control de multiplexación e información de datos procedentes de un equipo de usuario en un canal físico de datos
US8514956B2 (en) * 2010-05-14 2013-08-20 Qualcomm Incorporated Method and apparatus for facilitating tri-state decoding on a shared uplink channel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050371A1 (ja) * 2008-10-31 2010-05-06 シャープ株式会社 移動通信システム、基地局装置、移動局装置および通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "DAI Design for LTE-A", 3GPP TSG RAN WG1 MEETING #60BIS, R1-101758, April 2010 (2010-04-01), pages 1 - 4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013140448A1 (ja) * 2012-03-21 2015-08-03 富士通株式会社 無線通信システム
US9900874B2 (en) 2012-03-21 2018-02-20 Fujitsu Limited Wireless communication system
JPWO2013179540A1 (ja) * 2012-05-31 2016-01-18 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 端末装置、基地局装置、送信方法及び受信方法

Also Published As

Publication number Publication date
CN102972064B (zh) 2016-02-10
TWI528751B (zh) 2016-04-01
JP2012253781A (ja) 2012-12-20
US9215695B2 (en) 2015-12-15
TW201218676A (en) 2012-05-01
JPWO2012005145A1 (ja) 2013-09-02
CN102972064A (zh) 2013-03-13
JP5044047B2 (ja) 2012-10-10
US20130156011A1 (en) 2013-06-20
JP5816984B2 (ja) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5044047B2 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP5835588B2 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP4928621B2 (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
JP6131458B2 (ja) 移動局装置、基地局装置、および無線通信方法
US9445406B2 (en) Wireless communication of channel state information using a single physical uplink channel
JP5941305B2 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP4927209B1 (ja) 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
JP6041295B2 (ja) 端末装置、基地局装置、および無線通信方法
JP2011223127A (ja) 移動局装置、無線通信方法および集積回路
TW201919436A (zh) 終端裝置、基地台裝置、及通訊方法
EP3113561A1 (en) Terminal device, integrated circuit, and wireless communication method
WO2015008830A1 (ja) 端末装置、基地局装置、集積回路、および無線通信方法
JP2012065126A (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
JP2012129761A (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
JP6385348B2 (ja) 端末装置、基地局装置、集積回路、および、通信方法
JP5469776B2 (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
JP5415572B2 (ja) 移動局装置、基地局装置、無線通信方法、集積回路および無線通信システム
JP2011211495A (ja) 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
WO2011155344A1 (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
JP5850367B2 (ja) 移動局装置、基地局装置、無線通信方法および集積回路
JP2013135249A (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP2012039270A (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032827.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011551723

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803480

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13808454

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11803480

Country of ref document: EP

Kind code of ref document: A1