[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012002243A1 - Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution - Google Patents

Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution Download PDF

Info

Publication number
WO2012002243A1
WO2012002243A1 PCT/JP2011/064370 JP2011064370W WO2012002243A1 WO 2012002243 A1 WO2012002243 A1 WO 2012002243A1 JP 2011064370 W JP2011064370 W JP 2011064370W WO 2012002243 A1 WO2012002243 A1 WO 2012002243A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
protective film
water
repellent protective
group
Prior art date
Application number
PCT/JP2011/064370
Other languages
French (fr)
Japanese (ja)
Inventor
真規 斎藤
崇 齋尾
忍 荒田
公文 創一
七井 秀寿
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011040118A external-priority patent/JP5712670B2/en
Priority claimed from JP2011108634A external-priority patent/JP5716527B2/en
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201180032637.3A priority Critical patent/CN102971836B/en
Priority to SG2012093423A priority patent/SG186761A1/en
Priority to KR1020157004348A priority patent/KR101572583B1/en
Priority to KR1020137002349A priority patent/KR20130046431A/en
Publication of WO2012002243A1 publication Critical patent/WO2012002243A1/en
Priority to US13/667,236 priority patent/US20130146100A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment

Definitions

  • the present invention relates to a substrate wafer cleaning technique in semiconductor device manufacturing or the like.
  • a fine uneven pattern is formed on the surface of a silicon wafer through film formation, lithography, etching, and the like, and then cleaning is performed using water or an organic solvent to clean the wafer surface.
  • the elements are in the direction of miniaturization in order to increase the degree of integration, and the interval between the concavo-convex patterns is becoming increasingly narrow. For this reason, the problem that the concave and convex pattern collapses due to the capillary phenomenon when cleaning with water and drying the water from the wafer surface or when the gas-liquid interface passes through the pattern is becoming more likely to occur.
  • Patent Document 1 discloses a method in which water remaining on the wafer surface is replaced with isopropanol and then dried.
  • Patent Document 2 discloses that a water-repellent protective film is formed on a wafer surface on which a concavo-convex pattern of a silicon-based material is formed using a water-soluble surfactant or a silane coupling agent to reduce capillary force, Disclosed is a cleaning method for preventing the collapse of the wafer, that is, after the wafer surface is washed with water, a water-repellent protective film is formed on the concavo-convex pattern portion containing silicon, and then rinsed with water and then dried. Yes.
  • This protective film is finally removed. Since the pattern portion is rendered water-repellent by the protective film when rinsing with water, the effect of suppressing the collapse of the concavo-convex pattern is produced. This method is said to be effective even for patterns having an aspect ratio of 8 or more.
  • Patent Document 3 discloses a technique for replacing the cleaning liquid from water to 2-propanol before passing through the gas-liquid interface as a technique for suppressing pattern collapse. However, it is said that there is a limit such that the aspect ratio of the pattern that can be handled is 5 or less.
  • Patent Document 4 discloses a technique for a resist pattern as a technique for suppressing pattern collapse. This technique is a technique for suppressing pattern collapse by reducing the capillary force to the limit. However, the disclosed technique is intended for a resist pattern, and modifies the resist itself, and is not applicable to this application. Furthermore, since it can be finally removed together with the resist, it is not necessary to assume a method for removing the treatment agent after drying, and it cannot be applied to this purpose.
  • Patent Documents 5 and 6 disclose a technique for preventing pattern collapse by performing a hydrophobic treatment using a treatment liquid containing a silylating agent such as N, N-dimethylaminotrimethylsilane and a solvent. ing.
  • the present invention relates to a substrate (wafer) cleaning technique for the purpose of improving the manufacturing yield of a device having a fine pattern with a high aspect ratio, particularly in the manufacture of semiconductor devices, and has a concavo-convex pattern on the surface.
  • the present invention relates to a water-repellent chemical solution and the like for the purpose of improving a cleaning process that easily induces a concavo-convex pattern collapse of a wafer.
  • reaction activity such as hydroxyl groups present on the surface of the concavo-convex pattern or the wafer surface It is necessary to bond the point and the compound forming the protective film.
  • the concavo-convex pattern differs in the amount of hydroxyl groups per unit area because the amount of hydroxyl groups is different depending on the type and the ease of formation of hydroxyl groups varies depending on the conditions of surface treatment with water, acid, etc. May occur.
  • wafers having at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on the surface have begun to be used.
  • the concavo-convex pattern differs in the amount of hydroxyl groups per unit area because the amount of the original hydroxyl groups differs depending on the type of material, and the ease of formation of hydroxyl groups varies depending on the surface treatment conditions such as water. There is. Furthermore, the reactivity of the hydroxyl group varies depending on the atom to which the hydroxyl group, which is the reactive site, binds. In the case of a wafer that contains a substance having a small amount of hydroxyl groups on the surface, a substance that hardly forms a hydroxyl group on the surface, or a substance that has a low reactivity of hydroxyl groups present on the surface, as at least a part of the concave / convex pattern surface.
  • the present invention provides a wafer having a concavo-convex pattern formed on the surface thereof, a wafer in which at least a part of the concave surface of the concavo-convex pattern contains silicon element, or at least a part of the concave part surface of the concavo-convex pattern is titanium , A recess surface of a wafer containing at least one substance selected from the group consisting of tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium (hereinafter, these may be collectively referred to simply as “wafer”)
  • a water-repellent protective film forming agent hereinafter sometimes simply referred to as “protective film-forming agent” that forms a water-repellent protective film (hereinafter sometimes simply referred to
  • protective film-forming chemical Providing an aqueous protective film-forming chemical (hereinafter sometimes referred to as “protective film-forming chemical” or simply “chemical”), and using the chemical, Providing a method for cleaning the wafer, which improves a cleaning step that easily induces pattern collapse by reducing the interaction between the liquid held in the recess and the surface of the recess by forming a protective film on the substrate. Is an issue.
  • the pattern collapse occurs when the gas-liquid interface passes through the pattern when the wafer is dried. This is said to be caused by a difference in residual liquid height between a portion where the aspect ratio of the pattern is high and a portion where the aspect ratio is low, thereby causing a difference in capillary force acting on the pattern.
  • the magnitude of the capillary force is the absolute value of P obtained by the following formula. From this formula, it is expected that the capillary force can be reduced by reducing ⁇ or cos ⁇ .
  • the present invention in order to overcome the above problems, attention was paid to the material of the water-repellent protective film formed on the surface of the uneven pattern. That is, the present invention provides an agent that can effectively produce water repellency even if there is a difference in the ease of forming a hydroxyl group depending on the uneven pattern and the type of wafer, that is, a protective film forming agent contained in the chemical solution. By forming a protective film, the range of change in cleaning conditions for each production lot is reduced, and the wafer is cleaned industrially advantageously.
  • the present invention is effective on the surface of the recess even if the wafer includes a substance that hardly forms a hydroxyl group on the surface or a substance that has a low reactivity of the hydroxyl group existing on the surface, at least on a part of the recess surface of the uneven pattern. In particular, it imparts water repellency.
  • the present inventors have intensively studied, and by using a chemical solution containing a silicon compound having a specific hydrophobic group as a protective film forming agent, the number of hydroxyl groups present on the surface of the concave / convex pattern of the wafer or the wafer It has been found that a protective film that produces good water repellency, which is less dependent on the material of the uneven pattern surface, can be formed and the pattern surface can be efficiently cleaned.
  • the hydrophobic group in the present invention refers to an unsubstituted hydrocarbon group or a hydrocarbon group in which a part of the hydrogen element in the hydrocarbon group is substituted with a halogen element.
  • the hydrophobicity of the hydrophobic group increases as the number of carbon atoms in the hydrocarbon group increases. Furthermore, in the case of a hydrocarbon group in which a part of the hydrogen element in the hydrocarbon group is substituted with a halogen element, the hydrophobicity of the hydrophobic group may increase. In particular, if the halogen element to be substituted is a fluorine element, the hydrophobicity of the hydrophobic group becomes stronger. The greater the number of fluorine elements to be substituted, the stronger the hydrophobicity of the hydrophobic group.
  • a wafer having a concavo-convex pattern on the surface and containing a substance containing silicon element on at least the concave surface of the concavo-convex pattern, or at least a part of the concave surface of the concavo-convex pattern is titanium, titanium nitride, tungsten, aluminum, copper, tin ,
  • R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more
  • X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen
  • at least one group selected from the group, a is an integer of 1 to 3.
  • the agent is a water-repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer at the time of cleaning a wafer having a concave / convex pattern on the surface and containing silicon nitride on at least the concave surface of the concave / convex pattern.
  • R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more
  • X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen
  • at least one group selected from the group, a is an integer of 1 to 3.
  • [Invention 3] Cleaning a wafer having a concavo-convex pattern on the surface, and containing at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on at least the concave surface of the concavo-convex pattern
  • it is a water repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer, and the agent is a silicon compound represented by the following general formula [1].
  • R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3.
  • R 3 are each independently a hydrocarbon group in which one or more hydrogen elements having 1 to 18 carbon atoms are substituted with fluorine elements;
  • R 4 are each independently a hydrogen group; Or a hydrocarbon group having 1 to 18 carbon atoms, the total number of carbon atoms contained in R 3 and R 4 of the formula [4] is 6 or more, and
  • X is independently of each other a silicon element At least one group selected from a monovalent functional group in which the element bonded to nitrogen is a monovalent functional group in which the element bonded to the silicon element is oxygen, and a halogen group, and a is 1 to 3
  • An integer, b is an integer of 0-2, and the sum of a and b is 1-3.
  • the water repellent protective film forming agent according to any one of Inventions 1 to 3, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [2].
  • invention 10 The water repellency protective film forming agent according to the invention 8 or 9, wherein the water repellent protective film forming agent is mixed so as to be 0.1 to 50% by mass with respect to 100% by mass of the total amount of the water repellent protective film forming chemical.
  • a wafer containing a substance containing silicon element on at least the concave surface of the concavo-convex pattern, or at least a part of the concave surface of the concavo-convex pattern is titanium, titanium nitride, tungsten, aluminum, copper
  • invention 12 12. The wafer cleaning method according to claim 11, wherein the wafer is a wafer containing silicon nitride on at least a concave surface of the concave / convex pattern.
  • Invention 13 In Invention 11, wherein the wafer includes at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on the concave surface of the concave / convex pattern. The method for cleaning a wafer as described.
  • the water repellent protective film removing step is at least selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer.
  • the water-repellent protective film is a film that lowers the wettability of the wafer surface by being formed on at least the concave surface of the concave / convex pattern, that is, a film that imparts water repellency.
  • the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is.
  • the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.
  • the water-repellent protective film forming agent of the present invention By using the water-repellent protective film forming agent of the present invention, a protective film showing good water repellency is formed in the wafer cleaning process, and it has succeeded in reducing the number dependency of hydroxyl groups present on the surface of the concavo-convex pattern. To do.
  • the present invention it is possible to stably clean the wafer while preventing the concavo-convex pattern from collapsing, and it is possible to reduce changes in cleaning conditions according to production lots.
  • the cleaning step in the method for manufacturing a wafer having a concavo-convex pattern on the surface is improved without lowering the throughput. Therefore, the method for manufacturing a wafer having a concavo-convex pattern on the surface, which is performed using the above chemical solution and the cleaning method in the previous period, has high productivity. In addition, since it is possible to cope with the cleaning of various types of wafers having different surface materials, it is possible to reduce the change of the cleaning condition according to the type of the wafer.
  • FIG. 1 is a schematic plan view of a wafer 1 whose surface is a surface having an uneven pattern 2.
  • FIG. 2 shows a part of the a-a ′ cross section in FIG. 1.
  • the recessed part 4 has shown the schematic diagram of the state holding the chemical
  • the water-repellent protective film forming agent provided in the present invention is a wafer having a concavo-convex pattern formed on a surface thereof, a wafer containing a substance containing a silicon element on at least a concave surface of the concavo-convex pattern, or at least a concave portion of the concavo-convex pattern.
  • a wafer including at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium the surface has water repellency on at least the concave surface of the wafer.
  • It is a water repellent protective film forming agent for forming a protective film, and the agent is a silicon compound represented by the following general formula [1].
  • R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3.
  • the surface of silicon oxide has abundant hydroxyl groups (silanol groups) that are reactive sites, but in general, silicon silicon or polysilicon, or titanium, titanium nitride, tungsten, aluminum, copper, tin, Hydroxyl groups are difficult to form on the surface of materials such as tantalum nitride and ruthenium, and the reactivity of the existing hydroxyl groups is low. It is difficult to impart sufficient water repellency to the surface even if a conventional silane coupling agent is reacted with such a small amount or low reactivity of a hydroxyl group. However, if the hydrophobic group is a group having strong hydrophobicity, excellent water repellency can be imparted.
  • the hydrocarbon group represented by R 1 of the silicon compound is a hydrophobic group, and when a protective film is formed with a large hydrophobic group, the surface of the wafer after processing exhibits good water repellency. If the total carbon number of R 1 is 6 or more, a water-repellent film capable of sufficiently producing water-repellent performance can be formed even if the number of hydroxyl groups per unit area of the wafer is small.
  • Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, and C 7. H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3 ) HSiCl
  • the halogen atom to be substituted is a fluorine atom in consideration of water repellency (that is, represented by the general formula [4]) A compound).
  • silicon compounds substituted with fluorine atoms those containing 5 or more fluorine atoms exhibit excellent hydrophobicity, and therefore, substances that are difficult to form hydroxyl groups on the surface or have low reactivity of hydroxyl groups present on the surface.
  • a wafer is more preferable for a wafer containing a substance such as titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, or ruthenium.
  • the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is nitrogen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine, iodine, etc., as long as it is a functional group composed of, for example, —NHSi (CH 3 ) 3 group, —NHSi (CH 3 ) 2 C 4 H 9 group, —NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) 2 group, —N (C 2 H 5 ) 2 group, —N (C 3 H 7 ) 2 group, —N (CH 3 ) (C 2 H 5 ) group , —NH (C 2 H 5 ) group, —NCO group, imidazole group, acetamide group and the like.
  • the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is oxygen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine and iodine functional groups, such as —OCH 3 group, —OC 2 H 5 group, —OC 3 H 7 group, —OCOCH 3 group, —OCOCF 3 group, etc. Is mentioned.
  • examples of the halogen group represented by X in the general formula [1] include —F group, —Cl group, —Br group, and —I group. Of these, a —Cl group is more preferred.
  • the group represented by X in the general formula [1] reacts with a hydroxyl group on the wafer surface to form a bond between the silicon element in the silicon compound and the wafer surface, thereby forming a protective film. Can be formed.
  • the above silicon silicon and polysilicon may have a small amount of hydroxyl groups present on the surface of the material and may have few reaction sites with the silicon compound.
  • the hydrophobic group represented by R 1 of the present invention is bulky, and if R 1 is a group having excellent hydrophobicity, it is possible to obtain an excellent water-repellent protective film as a result. It is.
  • the hydroxyl group present on the surface of the substance such as titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium has low reactivity with the silicon compound, the hydroxyl group must be completely reacted. May not be possible. Even in such a case, if the hydrophobic group represented by R 1 is bulky, and R 1 is a group having excellent hydrophobicity, an excellent water-repellent protective film can be obtained as a result. Is possible.
  • the substance such as titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium is a simple metal or a nitride
  • the amount of hydroxyl groups present on the surface of the substance is smaller than that of an oxide.
  • the hydrophobic group represented by R 1 is bulky, and R 1 is a group having excellent hydrophobicity, an excellent water-repellent protective film can be obtained as a result. Is possible.
  • a may be an integer of 1 to 3, but when a is 1 or 2, the water repellent protective film forming agent or the chemical solution is stored for a long time. Then, polymerization of the silicon compound may occur due to moisture mixing, and the storage period may be shortened. Considering this, it is preferable that a in Formula [1] and Formula [4] is 3.
  • R 1 is composed of one hydrocarbon group substituted with 4 to 18 carbon atoms or substituted with a halogen atom and two methyl groups (that is,
  • the compound represented by the general formula [3] is preferable because the reaction rate with the hydroxyl group on the uneven pattern surface or wafer surface is increased. This is because the steric hindrance by the hydrophobic group has a great influence on the reaction rate in the reaction of the hydroxyl group on the uneven pattern surface or wafer surface with the silicon compound, and the alkyl chain bonded to the silicon element is one of the longest. This is because the remaining two except for are preferably shorter.
  • the silicon compound in which the sum of a and b in the general formula [4] is 3
  • the silicon compound in which b is 2 and R 4 is both a methyl group reacts with a hydroxyl group on the wafer surface. It is preferable because of its high properties.
  • particularly preferable compounds are C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, and C 6 H. 13 (CH 3 ) 2 SiCl, C 7 H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 2 F 5 C 2 H 4 (CH 3) 2 SiCl, C 3 F 7
  • the water repellent protective film forming agent may contain two or more types of silicon compounds represented by the general formula [1], or the silicon compound represented by the general formula [1]. And a silicon compound other than the silicon compound represented by the general formula [1].
  • the chemical solution only needs to contain at least the water-repellent protective film forming agent, and an organic solvent can be used as the solvent for the chemical solution.
  • the organic solvent only needs to dissolve the protective film forming agent.
  • the group represented by X of the silicon compound is hydrolyzed with water to form a silanol group (Si—OH), and the generated silanol group undergoes a condensation reaction, whereby the silicon
  • Si—OH silanol group
  • the silicon undergoes a condensation reaction, whereby the silicon
  • the dimer Since this dimer has low reactivity with the hydroxyl group on the wafer surface, the wafer surface cannot be made sufficiently water-repellent or the time required for water-repelling becomes longer, so it is preferable to use water as a solvent. Absent.
  • the silicon compound easily reacts with a protic solvent, it is particularly preferable to use an aprotic solvent as the organic solvent because water repellency is easily developed on the wafer surface in a short time.
  • the aprotic solvent is both an aprotic polar solvent and an aprotic apolar solvent.
  • examples of such aprotic solvents include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen-containing compounds having no NH bond. Compound solvents are mentioned.
  • hydrocarbons examples include toluene, benzene, xylene, hexane, heptane, and octane.
  • esters examples include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether.
  • examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.
  • ketones examples include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone.
  • halogen solvent examples include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3-pentafluorobutane, Hydrofluorocarbons such as Kutafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by ZEON CORPORATION), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl perfluoroisobutyl ether Asahi Clin AE-3000 (manufactured by Asahi Glass Co., Ltd.), Novec HFE-7100, Novec HFE-7200, Novec 7300, Novec 7600 (all manufactured by 3M), hydrofluor
  • Hydrochlorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-penta Fluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoro
  • hydrochlorofluorocarbons such as propene, perfluoroethers, perfluoropolyethers, etc.
  • Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of the polyhydric alcohol derivatives having no hydroxyl group include diethylene glycol mono Ethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl Ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, dipropylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, etc.
  • Examples of the nitrogen-containing compound solvent having no N—H bond include N, N-dimethylformamide, N, N-di
  • nonflammable organic solvent because the water repellent protective film-forming chemical solution becomes nonflammable or has a high flash point.
  • many halogen-containing solvents are nonflammable, and the nonflammable halogen-containing solvent can be suitably used as a nonflammable organic solvent.
  • a polar solvent as the organic solvent because the reaction between the silicon compound as the protective film forming agent and the hydroxyl group on the wafer surface easily proceeds.
  • the organic solvent may be present if it is a trace amount of water.
  • the silicon compound may be hydrolyzed by the moisture to reduce the reactivity.
  • the protective film-forming chemical solution is preferably mixed so that the water-repellent protective film-forming agent is 0.1 to 50% by mass in a total amount of 100% by mass of the chemical solution, and more preferably the chemical solution. It is sufficient that 0.3 to 20% by mass is mixed with respect to the total amount of 100% by mass. If the water-repellent protective film forming agent is less than 0.1% by mass, the effect of imparting water repellency tends to be insufficient, and if it exceeds 50% by mass, components derived from the water-repellent protective film forming agent are impurities on the wafer surface after cleaning. As such, there is a concern that it remains as such. Moreover, since the usage-amount of a water repellent protective film formation agent increases, it is unpreferable also from a cost viewpoint.
  • a catalyst may be added to the chemical solution in order to promote the reaction between the silicon compound and the hydroxyl group on the wafer surface.
  • Such catalysts include trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride-free acid, ammonia, etc.
  • Bases such as alkylamine, N, N, N ′, N′-tetramethylethylenediamine, triethylenediamine, dimethylaniline, pyridine, piperazine, N-alkylmorpholine, salts such as ammonium sulfide, potassium acetate, methylhydroxyamine hydrochloride , And metal complexes and metal salts such as tin, aluminum, and titanium are preferably used.
  • acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid does not contain moisture. Is preferred.
  • the catalyst may form a part of the water-repellent protective film by reaction.
  • the reactivity of the silicon compound with respect to the hydroxyl group on the wafer surface may decrease due to steric hindrance.
  • an acid not containing water as a catalyst the reaction between the hydroxyl group on the wafer surface and the silicon compound is promoted, and the decrease in the reaction rate due to the steric hindrance due to the hydrophobic group is compensated. There is a case.
  • the addition amount of the catalyst is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound. If the amount added is small, the catalytic effect is lowered, which is not preferable. Moreover, even if it adds excessively, a catalyst effect will not improve, but when it increases more than a silicon compound, a catalyst effect may fall conversely. Furthermore, there is a concern that the impurities may remain on the wafer surface as impurities. Therefore, the amount of the catalyst added is preferably 0.01 to 100% by mass, more preferably 0.1 to 50% by mass, and still more preferably 0.2 to 20% by mass.
  • the chemical solution of the present invention may be a one-component type in which the silicon compound and the catalyst are mixed from the beginning, or a two-component type in which the silicon compound and the catalyst are mixed. You may do.
  • wafers that are cleaned using the chemical solution of the present invention are often those that have undergone a pretreatment process in which the wafer surface is a surface having an uneven pattern.
  • the method is not limited as long as a pattern can be formed on the wafer surface by the pretreatment step.
  • the resist is exposed through a resist mask, and the exposed resist or the resist having a desired concavo-convex pattern is removed by etching away the unexposed resist. Is made.
  • corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist.
  • the wafer is etched. At this time, the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a concavo-convex pattern is obtained.
  • the wafer used for the cleaning is a wafer containing a substance containing silicon element, or at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium.
  • the wafer is shown.
  • a silicon wafer, a silicon wafer formed with a silicon oxide film by a thermal oxidation method, a CVD method, a sputtering method, or the like, or a nitridation by a CVD method, a sputtering method, or the like is used.
  • a silicon film or a polysilicon film and those silicon nitride film or polysilicon film, or those obtained by natural oxidation of the silicon wafer surface are also included.
  • a wafer composed of a plurality of components including silicon and / or silicon oxide, a silicon carbide wafer, and a wafer in which various films including a silicon element are formed on the wafer can be used as the wafer.
  • various films containing silicon elements may be formed on a wafer not containing silicon elements such as sapphire wafers, various compound semiconductor wafers, and plastic wafers.
  • the chemical solution contains silicon atoms in the wafer surface containing silicon element, the film surface containing silicon element formed on the wafer, and the concavo-convex pattern containing silicon element formed from the wafer or the film.
  • a protective film can be formed on the surface of the part to make it water repellent.
  • a wafer having a silicon oxide film or a silicon oxide portion on its surface has many hydroxyl groups that are reaction active sites on the surface, so that it is easy to impart water repellency.
  • a wafer having a silicon nitride film or a silicon nitride portion on the surface, a wafer having a polysilicon film or a polysilicon portion, or a silicon wafer has few hydroxyl groups on the surface, and the conventional technology provides water repellency. It was difficult to do. However, even with such a wafer, when the chemical solution of the present invention is used, sufficient water repellency can be imparted to the wafer surface, and as a result, the effect of preventing pattern collapse during cleaning can be achieved.
  • a wafer having a silicon oxide film or a silicon oxide portion on the surface but also a wafer having a silicon nitride film or a silicon nitride portion, a wafer having a polysilicon film or a polysilicon portion, or a silicon wafer is used for the chemical solution of the present invention. It is suitable for application and is a preferable base material, and a wafer having many silicon nitride films and silicon nitride portions is particularly preferable.
  • Examples of the wafer containing at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium include a silicon wafer, silicon, and / or silica (SiO 2 ) The surface of wafers, silicon carbide wafers, sapphire wafers, various compound semiconductor wafers, plastic wafers, etc.
  • the protective film can be formed on the surface of the metal-based material even on a wafer composed of a plurality of components including the metal-based material.
  • the metal-based material is formed on the wafer surface, or when a concavo-convex pattern is formed, at least a part of the concavo-convex pattern becomes the metal-based material.
  • the wafer cleaning method of the present invention comprises a silicon element in at least the concave surface of the concave / convex pattern in the wafer having the concave / convex pattern formed on the surface, A water-based cleaning liquid cleaning step for cleaning the wafer surface with a water-based cleaning liquid.
  • aqueous cleaning liquid examples include water or water in which at least one of organic solvents, acids, alkalis, surfactants, hydrogen peroxide, and ozone is mixed in water as a main component (for example, containing water). And a ratio of 50% by mass or more).
  • FIG. 1 is a schematic plan view of a wafer 1 whose surface has a concavo-convex pattern 2.
  • FIG. 2 shows a part of the a-a 'cross section in FIG. As shown in FIG.
  • the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3
  • the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
  • a part made of the above substance a part of the surface is oxidized and a hydroxyl group is formed by contact with the aqueous cleaning solution.
  • the water-repellent protective film forming agent provided in the present invention has a strong hydrophobic group, the water-repellent protective film forming agent that reacts with some hydroxyl groups formed by oxidation Even if the amount is small, an excellent water-repellent protective film can be formed.
  • This oxidation of the wafer surface proceeds even if the aqueous cleaning solution is pure water at room temperature, but it tends to proceed more easily if the aqueous cleaning solution is strongly acidic or the temperature of the aqueous cleaning solution is high.
  • the acid may be added to the aqueous cleaning solution, or the temperature of the aqueous cleaning solution may be increased.
  • hydrogen peroxide or ozone may be added for the purpose of promoting oxidation.
  • the water-repellent protective film forming step from the water-based cleaning solution cleaning step is always held in at least the concave portion of the wafer. It is preferable to carry out in the state.
  • the water-repellent protective film-forming chemical solution held in the concave portion of the wafer is replaced with another liquid after the water-repellent protective film forming step, the liquid is always held in at least the concave portion of the wafer as described above. It is preferable to carry out in the state.
  • the cleaning method of the wafer is not particularly limited as long as the aqueous cleaning liquid, the chemical liquid, and other liquids can be held in at least the concave portions of the concave / convex pattern of the wafer.
  • a wafer cleaning method a wafer cleaning method represented by spin cleaning in which a wafer is cleaned one by one by supplying liquid to the vicinity of the rotation center while rotating the wafer while holding the wafer substantially horizontal, or a plurality of cleaning methods in the cleaning tank.
  • a batch system in which a single wafer is immersed and washed.
  • the form of the chemical liquid or cleaning liquid when supplying the aqueous cleaning liquid, the chemical liquid or other liquid to at least the concave portion of the concave / convex pattern of the wafer is particularly limited as long as it becomes a liquid when held in the concave portion.
  • the transition from the water-based cleaning liquid cleaning step to the water-repellent protective film forming step is to replace the water-based cleaning liquid held in at least the concave portion of the concave / convex pattern of the wafer in the water-based cleaning liquid cleaning step with the chemical solution for forming the water-repellent protective film Done in
  • the replacement of the water-based cleaning liquid with the water-repellent protective film-forming chemical liquid it may be replaced directly or after being replaced once or more by a different cleaning liquid A (hereinafter sometimes simply referred to as “cleaning liquid A”).
  • cleaning liquid A a different cleaning liquid A
  • a chemical solution for forming a water repellent protective film may be substituted.
  • the cleaning liquid A include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant.
  • the organic solvent that is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.
  • FIG. 3 is a schematic view showing a state in which the concave portion 4 holds the chemical solution 8 for forming the water repellent protective film.
  • the wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1.
  • a chemical solution for forming the water repellent protective film is supplied to the wafer 1 on which the concave / convex pattern 2 is formed.
  • the water-repellent protective film-forming chemical solution is held in at least the concave portion 4 as shown in FIG. 3, and the surface of the concave portion 4 is water-repellent.
  • the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.
  • the chemical solution is preferably maintained at 10 to 160 ° C., more preferably 15 to 120 ° C.
  • FIG. 4 shows a schematic diagram in the case where the liquid 9 is held in the recess 4 that has been made water-repellent by the water-repellent protective film forming agent.
  • the wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG.
  • a water repellent protective film 10 is formed on the surface of the recess 4 by a water repellent protective film forming agent.
  • the liquid 9 held in the recess 4 may be the above-described chemical liquid or a liquid (cleaning liquid B) after the chemical liquid is replaced with a different cleaning liquid B (hereinafter sometimes simply referred to as “cleaning liquid B”).
  • a liquid in the middle of substitution (a mixed solution of a chemical solution and a cleaning solution) may be used.
  • the water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.
  • Preferred examples of the cleaning liquid B include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant.
  • examples of the organic solvent that is one of the preferred examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohols, many And derivatives of polyhydric alcohols, nitrogen-containing compound solvents, and the like.
  • the contact angle on the assumption that water is held on the surface is preferably 65 to 115 ° because pattern collapse hardly occurs.
  • the capillary force is preferably 2.1 MN / m 2 or less. It is preferable that the capillary force is 2.1 MN / m 2 or less because pattern collapse hardly occurs.
  • the capillary force is particularly preferably 1.1 MN / m 2 or less. Furthermore, it is ideal to adjust the contact angle with the cleaning liquid to around 90 ° so that the capillary force is as close as possible to 0.0 MN / m 2 .
  • the liquid held in the recess is the chemical liquid, the cleaning liquid B, or a mixed liquid of the chemical liquid and the cleaning liquid B.
  • known drying methods such as natural drying, air drying, N 2 gas drying, spin drying, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, vacuum drying, etc. It is preferable to carry out by.
  • the retained liquid may be drained and removed, and then the remaining liquid may be dried.
  • the water repellent protective film removal step will be described.
  • the method is not particularly limited as long as it can cut the bond, for example, irradiating the wafer surface with light, heating the wafer, exposing the wafer to ozone, irradiating the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.
  • wavelengths shorter than 340 nm and 240 nm which are energy equivalent to 83 kcal / mol and 116 kcal / mol, which are binding energies of C—C bonds and C—F bonds in the protective film. It is preferable to irradiate ultraviolet rays containing.
  • a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used.
  • the protective film when the protective film is removed by light irradiation, if the constituent components of the protective film are decomposed by ultraviolet rays and ozone is generated at the same time, and the constituent components of the protective film are oxidized and volatilized by the ozone, the processing time is shortened. Therefore, it is particularly preferable.
  • a low-pressure mercury lamp, an excimer lamp, or the like may be used. Further, the wafer may be heated while irradiating light.
  • heating the wafer it is preferable to heat the wafer at 400 to 700 ° C., preferably 500 to 700 ° C.
  • the heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes.
  • ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
  • the method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.
  • ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or low-temperature discharge with a high voltage may be provided to the wafer surface.
  • the wafer may be irradiated with light while being exposed to ozone, or may be heated.
  • the protective film on the wafer surface can be efficiently removed by combining the light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge.
  • the capillary force P that causes pattern collapse greatly depends on the contact angle of the cleaning liquid to the wafer surface, that is, the contact angle of the droplets and the surface tension of the cleaning liquid.
  • the contact angle of the droplet and the capillary force acting on the concave portion which can be considered as equivalent to pattern collapse, are correlated.
  • Capillary force can be derived from the evaluation of the contact angle of the droplets of the uneven water-repellent protective film 10. In the examples, water, which is a typical aqueous cleaning solution, was used as the cleaning solution.
  • the contact angle of water droplets is evaluated by dropping several ⁇ l of water droplets on the surface of the sample base material as described in JIS R 3257 “Test method for wettability of substrate glass surface”. Made by measurement.
  • the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases. Therefore, in the case of a wafer having a concavo-convex pattern on the surface, the contact angle of the protective film 10 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.
  • the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed.
  • the film 10 was considered and various evaluations were performed.
  • Example 1 In Example 1, examination regarding the treatment of silicon oxide and silicon nitride was performed. “Silicon wafer with SiO 2 film” (indicated as SiO 2 in the table) having a silicon oxide layer on a silicon wafer having a smooth surface as a wafer having a smooth surface of silicon oxide and silicon nitride, and a smooth surface A “SiN film-attached silicon wafer” (expressed as SiN in the table) having a silicon nitride layer on a silicon wafer was used.
  • X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively.
  • S 0 is an area when the measurement surface is ideally flat, and has a value of (X R ⁇ X L ) ⁇ (Y B ⁇ Y T ).
  • F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
  • Example 1 [Example 1-1] (1) Preparation of chemical solution for forming protective film
  • a protective film forming chemical solution having a concentration of the protective film forming agent with respect to the total amount (hereinafter referred to as “protective film forming agent concentration”) of 1% by mass was obtained.
  • a silicon wafer with a smooth silicon oxide film (a silicon wafer having a thermal oxide film layer having a thickness of 1 ⁇ m on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes and then immersed in pure water for 1 minute. The sample was immersed in 2-propanol for 1 minute. Further, a silicon wafer with a silicon nitride film (a silicon wafer having a silicon nitride layer with a thickness of 50 nm on the surface) produced by LP-CVD is immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes, and then in pure water for 1 minute.
  • Each wafer obtained was evaluated in the manner described in “Method for evaluating wafer provided with chemical for forming protective film”. As shown in Table 1, in silicon wafer with silicon oxide film, initial contact before surface treatment was performed. Although the angle was less than 10 °, the contact angle after the surface treatment was 101 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
  • the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 94 °, indicating an excellent water repellency imparting effect.
  • the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
  • the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
  • Examples 1-2 to 1-3 The surface treatment of the wafer was performed by appropriately changing the organic solvent used in Example 1-1, and the evaluation was further performed. The results are shown in Table 1.
  • CTFP / PGMEA means an organic solvent using 1-chloro-3,3,3-trifluoropropene (CTFP) instead of HFE-7100 of Example 1-1
  • DCTFP / PGMEA means an organic solvent using cis-1,2-dichloro-3,3,3-trifluoropropene (DCTFP) instead of HFE-7100 in Example 1-1.
  • Example 1-4 1 g of butyldimethylsilyldimethylamine [C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 ] as a protective film forming agent; 98.9 g of PGMEA as an organic solvent; and trifluoroacetic acid [CF 3 COOH] as a catalyst
  • a protective film forming chemical was prepared using 0.1 g.
  • the amount of the catalyst added to the total amount of the protective film forming agent of 100% by mass (hereinafter referred to as catalyst concentration) is 10% by mass.
  • the immersion time of each wafer in the chemical solution for forming the protective film was set to 10 minutes. The rest is the same as Example 1-1.
  • the evaluation results of the silicon wafer with a silicon oxide film showed an excellent water repellency imparting effect with a contact angle of 87 ° after the surface treatment. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the evaluation results of the silicon wafer with the silicon nitride film showed a contact angle after the surface treatment of 71 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
  • Example 1-5 to 1-26 Protective film forming agent used in Example 1-4, protective film forming agent concentration, catalyst, catalyst concentration, organic solvent, immersion time of each wafer in protective film forming chemical solution, and protective film forming chemical solution for each wafer The surface temperature of the wafer was changed by appropriately changing the immersion temperature in and evaluated. The results are shown in Table 1.
  • C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 means octyldimethylsilyldimethylamine
  • C 8 H 17 Si [N (CH 3 ) 2 ] 3 denotes octylsilyl tris.
  • Dimethylamine means (CF 3 CO) 2 O means trifluoroacetic anhydride.
  • Example 1-1 All were the same as Example 1-1 except that 1 g of trimethylchlorosilane [(CH 3 ) 3 SiCl]; 1 g was used as the protective film forming agent.
  • the evaluation results of the silicon wafer with a silicon oxide film showed a contact angle after the surface treatment of 71 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • Example 1-2 The same procedure as in Example 1-6 except that 1 g of trimethylsilyldimethylamine [(CH 3 ) 3 SiN (CH 3 ) 2 ]; 1 g was used as the protective film forming agent.
  • the evaluation result of the silicon wafer with the silicon oxide film was 91 ° after the surface treatment, and showed an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
  • the evaluation result of the silicon wafer with the silicon nitride film was that the contact angle after the surface treatment was 60 °, and the water repellency imparting effect was not sufficient.
  • Example 1-3 The same procedure as in Example 1-6 except that 1 g of bistrifluoropropyldimethylsilazane [[CF 3 (CH 2 ) 2 (CH 3 ) 2 Si] 2 NH]; 1 g] was used as the protective film forming agent.
  • the evaluation results of the silicon wafer with a silicon oxide film showed a contact angle after the surface treatment of 96 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
  • Example 2 In Example 2, a study on the treatment of polysilicon was performed. A silicon wafer having a smooth surface was used as the wafer having a smooth polysilicon surface.
  • the method for evaluating a wafer provided with the chemical solution for forming a protective film of the present invention is the same as the method used in Example 1.
  • the following evaluations (1) to (3) were performed as evaluation methods for wafers cleaned using the water-repellent protective film-forming chemical solution of the present invention.
  • S 0 is an area when the measurement surface is ideally flat, and has a value of (X R ⁇ X L ) ⁇ (Y B ⁇ Y T ).
  • F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
  • Example 2-1 (1) Preparation of water-repellent protective film-forming chemical solution Octyldimethylsilyldimethylamine [C8H17 (CH3) 2SiN (CH3) 2] as protective film-forming agent; 3 g, PGMEA as organic solvent; 96.9 g, and trifluoroacetic acid as catalyst [CF3COOH]: 0.1 g was used to prepare a protective film-forming chemical solution.
  • (2) Cleaning of silicon wafer A smooth silicon wafer was immersed in a 1% by mass hydrofluoric acid aqueous solution for 1 minute, and then immersed in pure water for 1 minute as an aqueous cleaning liquid cleaning step.
  • Example 2-2 to 3-4 The surface treatment of the wafer was carried out by appropriately changing the time of the catalyst and protective film forming step used in Example 2-1, and further evaluated.
  • (CF 3 CO) 2 O represents trifluoroacetic anhydride. The results are shown in Table 2.
  • Example 3 In Example 3, a study on the treatment of titanium nitride was performed. As the wafer having a smooth titanium nitride surface, a wafer with a titanium nitride film having a titanium nitride layer on a silicon wafer having a smooth surface (hereinafter sometimes referred to as “TiN wafer”) was used. The following evaluations (1) to (3) were performed as evaluation methods for wafers cleaned using the water-repellent protective film-forming chemical solution of the present invention.
  • S 0 is an area when the measurement surface is ideally flat, and has a value of (X R ⁇ X L ) ⁇ (Y B ⁇ Y T ).
  • F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
  • the Ra value of the wafer surface before forming the protective film and the Ra value of the wafer surface after removing the protective film are measured. If the difference ( ⁇ Ra) is within ⁇ 1 nm, the wafer surface is eroded by cleaning. It was determined that there was no residue of the chemical solution on the wafer surface, and the test was accepted.
  • Example 3-1 (1) Preparation of water repellent protective film forming chemical solution
  • the concentration of the protective film forming agent relative to the total amount of the protective film forming chemical solution (hereinafter referred to as “protective film forming agent concentration”) was 10% by mass.
  • a protective film forming chemical was obtained.
  • a smooth TiN wafer (a silicon wafer having a titanium nitride layer with a thickness of 50 nm on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution for 1 minute, and then washed with pure water as an aqueous cleaning solution cleaning step. Immerse for a minute. Thereafter, the wafer was immersed in 2-propanol (hereinafter sometimes referred to as “iPA”) for 1 minute, and then immersed in propylene glycol monomethyl ether acetate (hereinafter sometimes referred to as “PGMEA”) for 1 minute. did.
  • iPA 2-propanol
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 3-2 to 3-4 The protective film forming agent, organic solvent, protective film forming agent concentration, catalyst, and protective film forming process time used in Example 2-1 were appropriately changed to perform surface treatment of the wafer and further evaluated. The results are shown in Table 3.
  • the catalyst concentration is a mass% concentration based on 100% by mass of the total amount of the protective film forming agent.
  • Example 3-1 The same as Example 2-1 except that N, N-dimethylaminotrimethylsilane [(CH 3 ) 3 SiN (CH 3 ) 2 ]; 10 g, PGMEA; 90 g was used as the protective film forming chemical. It is. As a result, as shown in Table 3, the contact angle of the TiN wafer was 18 °, and the water repellency imparting effect was not obtained.
  • the protective film forming agent of the present invention, the chemical solution for forming the protective film containing the agent, and the wafer cleaning method using the chemical solution are used for cleaning the surface according to the type of wafer in the field of integrated circuits in the electronics industry. Because it can reduce the change of conditions and the addition of processes, it contributes to the improvement of manufacturing efficiency. Particularly efficient production is possible when dealing with several types of wafers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

[Problem] To provide a water-repellent protective film formation agent, a chemical solution that contains the agent and is used for forming a water-repellent protective film, and a cleaning method for wafers that uses the chemical solution, wherein it is possible in the manufacturing of semiconductor devices to efficiently clean wafers while preventing pattern collapse of: wafers (1) in which a substance containing silicon atoms is included on at least the surface of the recesses in an unevenly patterned (2) wafer surface; or wafers (1) in which at least one type of substance selected from a group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium, is included on part of at least the surface of the recesses in an unevenly patterned (2) wafer surface. [Solution] A water-repellent protective film formation agent that is used in wafer cleaning for forming a water-repellent protective film on at least the surface of the recesses of wafers, the agent being a silicon compound represented by the formula [1]. [1] R1 aSiX4-a

Description

撥水性保護膜形成剤、撥水性保護膜形成用薬液と該薬液を用いたウェハの洗浄方法Water-repellent protective film forming agent, water-repellent protective film-forming chemical solution, and wafer cleaning method using the chemical solution
 本発明は、半導体デバイス製造などにおける基板ウェハの洗浄技術に関する。 The present invention relates to a substrate wafer cleaning technique in semiconductor device manufacturing or the like.
 半導体チップの製造では、成膜、リソグラフィやエッチングなどを経てシリコンウェハ表面に微細な凹凸パターンが形成され、その後、ウェハ表面を清浄なものとするために、水や有機溶媒を用いて洗浄がなされる。素子は、集積度を上げるために微細化がなされる方向にあり、凹凸パターンの間隔は益々狭くなってきている。このため、水を用いて洗浄し、水をウェハ表面から乾燥させるとき又は気液界面がパターンを通過するときに毛細管現象により、凹凸パターンが倒れるという問題が生じやすくなってきている。この問題は、特に凹凸のパターン間隔がより狭くなった、例えばラインアンドスペース形状のパターンのウェハの場合、線幅(凹部の幅)が20nm台、10nm台世代の半導体チップにおいてはより顕著になってきている。 In the manufacture of semiconductor chips, a fine uneven pattern is formed on the surface of a silicon wafer through film formation, lithography, etching, and the like, and then cleaning is performed using water or an organic solvent to clean the wafer surface. The The elements are in the direction of miniaturization in order to increase the degree of integration, and the interval between the concavo-convex patterns is becoming increasingly narrow. For this reason, the problem that the concave and convex pattern collapses due to the capillary phenomenon when cleaning with water and drying the water from the wafer surface or when the gas-liquid interface passes through the pattern is becoming more likely to occur. This problem becomes more conspicuous especially in the case of a semiconductor chip having a line width (recess width) of 20 nm or 10 nm generation, in the case of a wafer having a pattern with a concave and convex pattern, for example, a line and space pattern. It is coming.
 パターンの倒れを防止しながらウェハ表面を洗浄する方法として、特許文献1は、ウェハ表面に残っている水をイソプロパノールなどに置換し、その後、乾燥させる方法を開示している。また、特許文献2には、シリコン系材料の凹凸形状パターンを形成したウェハ表面に、水溶性界面活性剤またはシランカップリング剤を用いて撥水性保護膜を形成し、毛細管力を低減し、パターンの倒壊を防止する洗浄方法、すなわち、ウェハ表面を水で洗浄した後、シリコンを含む凹凸パターン部に撥水性の保護膜を形成し、次いで水でリンスしてから乾燥を行う方法を開示している。この保護膜は最終的には除去される。水でリンスを行うときにパターン部が保護膜によって撥水化されているので、凹凸パターンの倒れを抑制することに効果を生じている。この方法はアスペクト比が8以上のパターンに対しても効果があるとされている。 As a method for cleaning the wafer surface while preventing pattern collapse, Patent Document 1 discloses a method in which water remaining on the wafer surface is replaced with isopropanol and then dried. Further, Patent Document 2 discloses that a water-repellent protective film is formed on a wafer surface on which a concavo-convex pattern of a silicon-based material is formed using a water-soluble surfactant or a silane coupling agent to reduce capillary force, Disclosed is a cleaning method for preventing the collapse of the wafer, that is, after the wafer surface is washed with water, a water-repellent protective film is formed on the concavo-convex pattern portion containing silicon, and then rinsed with water and then dried. Yes. This protective film is finally removed. Since the pattern portion is rendered water-repellent by the protective film when rinsing with water, the effect of suppressing the collapse of the concavo-convex pattern is produced. This method is said to be effective even for patterns having an aspect ratio of 8 or more.
 特許文献3には、パターン倒れを抑制する手法として気液界面を通過する前に洗浄液を水から2-プロパノールへ置換する技術が開示されている。しかし、対応できるパターンのアスペクト比が5以下である等、限界があると言われている。 Patent Document 3 discloses a technique for replacing the cleaning liquid from water to 2-propanol before passing through the gas-liquid interface as a technique for suppressing pattern collapse. However, it is said that there is a limit such that the aspect ratio of the pattern that can be handled is 5 or less.
 また、特許文献4には、パターン倒れを抑制する手法として、レジストパターンを対象とする技術が開示されている。この手法は毛細管力を極限まで下げることによって、パターン倒れを抑制する手法である。しかし、この開示された技術はレジストパターンを対象としており、レジスト自体を改質するものであり、本用途に適用できるものではない。さらに、最終的にレジストと共に除去が可能であるため、乾燥後の処理剤の除去方法を想定する必要がなく、本目的には適用できない。 Further, Patent Document 4 discloses a technique for a resist pattern as a technique for suppressing pattern collapse. This technique is a technique for suppressing pattern collapse by reducing the capillary force to the limit. However, the disclosed technique is intended for a resist pattern, and modifies the resist itself, and is not applicable to this application. Furthermore, since it can be finally removed together with the resist, it is not necessary to assume a method for removing the treatment agent after drying, and it cannot be applied to this purpose.
 また、特許文献5、6には、N,N-ジメチルアミノトリメチルシランを始めとするシリル化剤及び溶剤を含む処理液を用いて疎水化処理を行うことにより、パターン倒れを防ぐ技術が開示されている。 Patent Documents 5 and 6 disclose a technique for preventing pattern collapse by performing a hydrophobic treatment using a treatment liquid containing a silylating agent such as N, N-dimethylaminotrimethylsilane and a solvent. ing.
特開2003-45843号公報JP 2003-45843 A 特許第4403202号明細書Japanese Patent No. 4403202 特開2008-198958号公報JP 2008-198958 A 特開平5-299336号公報JP-A-5-299336 特開2010-129932号公報JP 2010-129932 A 国際公開第10/47196号パンフレットInternational Publication No. 10/47196 Pamphlet
本発明は、半導体デバイス製造などにおいて、特に微細でアスペクト比の高いパターンをもつデバイスの製造歩留まりの向上を目的とした基板(ウェハ)の洗浄技術に関するものであり、また、表面に凹凸パターンを有するウェハの凹凸パターン倒れを誘発しやすい洗浄工程を改善することを目的とした撥水性薬液等に関するものである。凹凸パターンの表面を撥水化することでパターン倒れを防止しようとする場合において、凹凸パターン表面に撥水性保護膜を形成するためには、凹凸パターン表面やウェハ表面に存在する水酸基などの反応活性点と、保護膜を形成する化合物とを結合させる必要がある。
しかしながら、凹凸パターンは、その種類に応じて元々の水酸基量が異なることや、水や酸などによる表面処理の条件により水酸基の形成されやすさが異なることから、単位面積あたりの水酸基量に違いが生じることがある。さらに近年はパターンの多様化に伴ってチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を表面に有するウェハが用いられ始めている。
The present invention relates to a substrate (wafer) cleaning technique for the purpose of improving the manufacturing yield of a device having a fine pattern with a high aspect ratio, particularly in the manufacture of semiconductor devices, and has a concavo-convex pattern on the surface. The present invention relates to a water-repellent chemical solution and the like for the purpose of improving a cleaning process that easily induces a concavo-convex pattern collapse of a wafer. In order to prevent pattern collapse by making the surface of the concavo-convex pattern water repellent, in order to form a water-repellent protective film on the surface of the concavo-convex pattern, reaction activity such as hydroxyl groups present on the surface of the concavo-convex pattern or the wafer surface It is necessary to bond the point and the compound forming the protective film.
However, the concavo-convex pattern differs in the amount of hydroxyl groups per unit area because the amount of hydroxyl groups is different depending on the type and the ease of formation of hydroxyl groups varies depending on the conditions of surface treatment with water, acid, etc. May occur. Further, in recent years, with the diversification of patterns, wafers having at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on the surface have begun to be used.
 凹凸パターンは、その材料の種類に応じて元々の水酸基量が異なることや、水などによる表面処理の条件により水酸基の形成されやすさが異なることから、単位面積あたりの水酸基量に違いが生じることがある。さらには、反応活性点である水酸基が結合する原子によっても、水酸基の反応性が異なってくる。前記物質のように、表面の水酸基量が少ない物質、表面に水酸基を形成しにくい物質あるいは表面に存在する水酸基の反応性が低い物質を、凹凸パターンの少なくとも凹部表面の一部に含むウェハの場合、特許文献2,5及び6に記載のいずれの処理液及び処理方法を用いてもパターンの倒壊を防止する撥水性保護膜を形成できないため、パターンの倒壊を防止できないという問題がある。
 そこで本発明は、表面に凹凸パターンを形成されたウェハにおいて、該凹凸パターンの少なくとも凹部表面の一部がケイ素元素を含むウェハ、又は、該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハ(以降、これらを総称して単に「ウェハ」と記載する場合がある)の凹部表面に撥水性保護膜(以降、単に「保護膜」と記載する場合がある)を形成する撥水性保護膜形成剤(以降、単に「保護膜形成剤」と記載する場合がある)を含有する撥水性保護膜形成用薬液(以降、「保護膜形成用薬液」または単に「薬液」と記載する場合がある)を提供すること、及び、前記薬液を用いて凹部表面に保護膜を形成することで、該凹部に保持された液体と該凹部表面との相互作用を低減せしめることによって、パターン倒れを誘発しやすい洗浄工程を改善する前記ウェハの洗浄方法を提供することを課題とする。
The concavo-convex pattern differs in the amount of hydroxyl groups per unit area because the amount of the original hydroxyl groups differs depending on the type of material, and the ease of formation of hydroxyl groups varies depending on the surface treatment conditions such as water. There is. Furthermore, the reactivity of the hydroxyl group varies depending on the atom to which the hydroxyl group, which is the reactive site, binds. In the case of a wafer that contains a substance having a small amount of hydroxyl groups on the surface, a substance that hardly forms a hydroxyl group on the surface, or a substance that has a low reactivity of hydroxyl groups present on the surface, as at least a part of the concave / convex pattern surface. Since any of the treatment liquids and treatment methods described in Patent Documents 2, 5, and 6 cannot be used to form a water-repellent protective film that prevents pattern collapse, there is a problem that pattern collapse cannot be prevented.
Accordingly, the present invention provides a wafer having a concavo-convex pattern formed on the surface thereof, a wafer in which at least a part of the concave surface of the concavo-convex pattern contains silicon element, or at least a part of the concave part surface of the concavo-convex pattern is titanium , A recess surface of a wafer containing at least one substance selected from the group consisting of tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium (hereinafter, these may be collectively referred to simply as “wafer”) A water-repellent protective film forming agent (hereinafter sometimes simply referred to as “protective film-forming agent”) that forms a water-repellent protective film (hereinafter sometimes simply referred to as “protective film”). Providing an aqueous protective film-forming chemical (hereinafter sometimes referred to as “protective film-forming chemical” or simply “chemical”), and using the chemical, Providing a method for cleaning the wafer, which improves a cleaning step that easily induces pattern collapse by reducing the interaction between the liquid held in the recess and the surface of the recess by forming a protective film on the substrate. Is an issue.
 パターン倒れは、ウェハの乾燥時に気液界面がパターンを通過するときに生じる。これは、パターンのアスペクト比が高い部分と低い部分との間において、残液高さの差ができ、それによってパターンに作用する毛細管力に差が生じることが原因と言われている。 The pattern collapse occurs when the gas-liquid interface passes through the pattern when the wafer is dried. This is said to be caused by a difference in residual liquid height between a portion where the aspect ratio of the pattern is high and a portion where the aspect ratio is low, thereby causing a difference in capillary force acting on the pattern.
 このため、毛細管力を小さくすれば、残液高さの違いによる毛細管力の差が低減し、パターン倒れが解消すると期待できる。毛細管力の大きさは、以下に示される式で求められるPの絶対値であり、この式からγ、もしくは、cosθを小さくすれば、毛細管力を低減できると期待される。 Therefore, if the capillary force is reduced, it can be expected that the difference in capillary force due to the difference in residual liquid height will be reduced and the pattern collapse will be eliminated. The magnitude of the capillary force is the absolute value of P obtained by the following formula. From this formula, it is expected that the capillary force can be reduced by reducing γ or cos θ.
           P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
P = 2 × γ × cos θ / S
(Where, γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
 本発明では、上記課題を克服するために、凹凸パターン表面に形成される撥水性保護膜の材料に着目した。つまり、本発明は、凹凸パターンやウェハの種類により、水酸基の形成しやすさに違いがあっても、効果的に撥水性を生じせしめるような剤、すなわち前記薬液中に含まれる保護膜形成剤によって保護膜を形成することで、生産ロット毎の洗浄条件の変更幅を低減し工業的に有利にウェハの洗浄を行うものである。また、本発明は、表面に水酸基を形成しにくい物質あるいは表面に存在する水酸基の反応性が低い物質を、凹凸パターンの少なくとも凹部表面の一部に含むウェハであっても、前記凹部表面に効果的に撥水性を付与するものである。 In the present invention, in order to overcome the above problems, attention was paid to the material of the water-repellent protective film formed on the surface of the uneven pattern. That is, the present invention provides an agent that can effectively produce water repellency even if there is a difference in the ease of forming a hydroxyl group depending on the uneven pattern and the type of wafer, that is, a protective film forming agent contained in the chemical solution. By forming a protective film, the range of change in cleaning conditions for each production lot is reduced, and the wafer is cleaned industrially advantageously. In addition, the present invention is effective on the surface of the recess even if the wafer includes a substance that hardly forms a hydroxyl group on the surface or a substance that has a low reactivity of the hydroxyl group existing on the surface, at least on a part of the recess surface of the uneven pattern. In particular, it imparts water repellency.
本発明者らは鋭意検討を行い、保護膜形成剤として、特定の疎水基を有するケイ素化合物を含有する薬液を用いることで、当該ウェハの凹凸パターン表面上に存在する水酸基の数量又は当該ウェハの凹凸パターン表面の材質に依存しにくく良好な撥水性を生じせしめる保護膜を形成し、パターン表面に効率的に洗浄が行えることを見出した。 The present inventors have intensively studied, and by using a chemical solution containing a silicon compound having a specific hydrophobic group as a protective film forming agent, the number of hydroxyl groups present on the surface of the concave / convex pattern of the wafer or the wafer It has been found that a protective film that produces good water repellency, which is less dependent on the material of the uneven pattern surface, can be formed and the pattern surface can be efficiently cleaned.
 本発明における疎水基とは、無置換の炭化水素基、或いは炭化水素基中の水素元素の一部がハロゲン元素により置換された炭化水素基を示している。疎水基の疎水性は、前記炭化水素基中の炭素数が多いほど強くなる。さらには、炭化水素基中の水素元素の一部がハロゲン元素により置換された炭化水素基の場合、疎水基の疎水性が強くなる場合がある。特に、置換するハロゲン元素がフッ素元素であれば、疎水基の疎水性が強くなり、置換するフッ素元素数が多いほど、疎水基の疎水性が強くなる。 The hydrophobic group in the present invention refers to an unsubstituted hydrocarbon group or a hydrocarbon group in which a part of the hydrogen element in the hydrocarbon group is substituted with a halogen element. The hydrophobicity of the hydrophobic group increases as the number of carbon atoms in the hydrocarbon group increases. Furthermore, in the case of a hydrocarbon group in which a part of the hydrogen element in the hydrocarbon group is substituted with a halogen element, the hydrophobicity of the hydrophobic group may increase. In particular, if the halogen element to be substituted is a fluorine element, the hydrophobicity of the hydrophobic group becomes stronger. The greater the number of fluorine elements to be substituted, the stronger the hydrophobicity of the hydrophobic group.
 すなわち、以下の[発明1]~[発明14]に記載する発明を提供する。 That is, the inventions described in the following [Invention 1] to [Invention 14] are provided.
[発明1]
 表面に凹凸パターンを有し、該凹凸パターンの少なくとも凹部表面にケイ素元素を含む物質を含むウェハ、又は、該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[1]で表されるケイ素化合物である。
Figure JPOXMLDOC01-appb-C000007
[Invention 1]
A wafer having a concavo-convex pattern on the surface and containing a substance containing silicon element on at least the concave surface of the concavo-convex pattern, or at least a part of the concave surface of the concavo-convex pattern is titanium, titanium nitride, tungsten, aluminum, copper, tin , A water repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer when cleaning a wafer containing at least one substance selected from the group consisting of tantalum nitride and ruthenium, It is a silicon compound represented by the following general formula [1].
Figure JPOXMLDOC01-appb-C000007
[式中、R1は、それぞれ互いに独立して、水素基、又は炭素数が1~18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したR1の合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
[発明2]
 表面に凹凸パターンを有し、該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[1]で表されるケイ素化合物である。
Figure JPOXMLDOC01-appb-C000008
[Wherein R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
[Invention 2]
The agent is a water-repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer at the time of cleaning a wafer having a concave / convex pattern on the surface and containing silicon nitride on at least the concave surface of the concave / convex pattern. Is a silicon compound represented by the following general formula [1].
Figure JPOXMLDOC01-appb-C000008
[式中、R1は、それぞれ互いに独立して、水素基、又は炭素数が1~18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したR1の合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
[発明3]
 表面に凹凸パターンを有し、該凹凸パターンの少なくとも凹部表面にチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[1]で表されるケイ素化合物である。
Figure JPOXMLDOC01-appb-C000009
[Wherein R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
[Invention 3]
Cleaning a wafer having a concavo-convex pattern on the surface, and containing at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on at least the concave surface of the concavo-convex pattern Sometimes, it is a water repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer, and the agent is a silicon compound represented by the following general formula [1].
Figure JPOXMLDOC01-appb-C000009
[式中、R1は、それぞれ互いに独立して、水素基、又は炭素数が1~18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したR1の合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
[発明4]
一般式[1]で表されるケイ素化合物が、下記一般式[4]で表される、請求項1乃至請求項3のいずれかに記載の撥水性保護膜形成剤。
Figure JPOXMLDOC01-appb-C000010
[式中、R3は、それぞれ互いに独立して、炭素数が1~18の1以上の水素元素がフッ素元素に置換された炭化水素基、R4は、それぞれ互いに独立して、水素基、又は炭素数が1~18の炭化水素基であり、式[4]のR3、及びR4中に含まれる炭素数の合計が6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数、bは0~2の整数であり、aとbの合計は1~3である。]
[発明5]
 一般式[1]で表されるケイ素化合物が下記一般式[2]で表される、発明1乃至発明3のいずれかに記載の撥水性保護膜形成剤。
Figure JPOXMLDOC01-appb-C000011
[Wherein R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
[Invention 4]
The water repellent protective film forming agent according to any one of claims 1 to 3, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [4].
Figure JPOXMLDOC01-appb-C000010
[In the formula, R 3 are each independently a hydrocarbon group in which one or more hydrogen elements having 1 to 18 carbon atoms are substituted with fluorine elements; R 4 are each independently a hydrogen group; Or a hydrocarbon group having 1 to 18 carbon atoms, the total number of carbon atoms contained in R 3 and R 4 of the formula [4] is 6 or more, and X is independently of each other a silicon element At least one group selected from a monovalent functional group in which the element bonded to nitrogen is a monovalent functional group in which the element bonded to the silicon element is oxygen, and a halogen group, and a is 1 to 3 An integer, b is an integer of 0-2, and the sum of a and b is 1-3. ]
[Invention 5]
The water repellent protective film forming agent according to any one of Inventions 1 to 3, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [2].
Figure JPOXMLDOC01-appb-C000011
[式中、R1、Xはそれぞれ一般式[1]と同様である。]
[発明6]
 一般式[1]で表されるケイ素化合物が下記一般式[3]で表される、発明1乃至発明3のいずれかに記載の撥水性保護膜形成剤。
Figure JPOXMLDOC01-appb-C000012
[Wherein R 1 and X are the same as in general formula [1]. ]
[Invention 6]
The water repellent protective film forming agent according to any one of Inventions 1 to 3, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [3].
Figure JPOXMLDOC01-appb-C000012
[式中、R2は炭素数が4~18の無置換、もしくはハロゲン原子が置換した炭化水素基であり、Xは一般式[1]と同様である。]
[発明7]
前記ケイ素化合物中のR1、R2、またはR3が、5以上のフッ素原子を含有している、発明1乃至発明6のいずれかに記載の撥水性保護膜形成剤。
[発明8]
 発明1乃至発明7のいずれかに記載の撥水性保護膜形成剤を含有する撥水性保護膜形成用薬液。
[Wherein R 2 represents an unsubstituted or substituted hydrocarbon group having 4 to 18 carbon atoms, and X is the same as in general formula [1]. ]
[Invention 7]
The water repellent protective film forming agent according to any one of Inventions 1 to 6, wherein R 1 , R 2 , or R 3 in the silicon compound contains 5 or more fluorine atoms.
[Invention 8]
A chemical solution for forming a water-repellent protective film, comprising the water-repellent protective film-forming agent according to any one of Inventions 1 to 7.
[発明9]
 酸を含有する、発明8に記載の撥水性保護膜形成用薬液。
[Invention 9]
The chemical solution for forming a water-repellent protective film according to Invention 8, which contains an acid.
[発明10]
 前記撥水性保護膜形成剤が、該撥水性保護膜形成用薬液の総量100質量%に対して0.1~50質量%となるように混合されてなる、発明8又は発明9に記載の撥水性保護膜形成用薬液。
[Invention 10]
The water repellency protective film forming agent according to the invention 8 or 9, wherein the water repellent protective film forming agent is mixed so as to be 0.1 to 50% by mass with respect to 100% by mass of the total amount of the water repellent protective film forming chemical. A chemical solution for forming an aqueous protective film.
[発明11]
 表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面にケイ素元素を含む物質を含むウェハ、又は、該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄方法であって、以下に示す工程、
  前記ウェハ表面を水系洗浄液で洗浄する、水系洗浄液洗浄工程、
  前記ウェハの少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
  ウェハ表面の液体を除去する、液体除去工程、
  前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程、
を含み、撥水性保護膜形成工程において発明8乃至発明10のいずれかに記載の撥水性保護膜形成用薬液を用いる。
[Invention 11]
In a wafer having a concavo-convex pattern formed on the surface, a wafer containing a substance containing silicon element on at least the concave surface of the concavo-convex pattern, or at least a part of the concave surface of the concavo-convex pattern is titanium, titanium nitride, tungsten, aluminum, copper A method for cleaning a wafer containing at least one substance selected from the group consisting of tin, tantalum nitride, and ruthenium, comprising:
Cleaning the wafer surface with an aqueous cleaning liquid, an aqueous cleaning liquid cleaning step;
A water-repellent protective film forming step of holding a water-repellent protective film-forming chemical in at least the concave portion of the wafer, and forming a water-repellent protective film on the concave surface;
A liquid removal process for removing liquid on the wafer surface;
Removing the water-repellent protective film from the concave surface, a water-repellent protective film removing step,
In the water-repellent protective film forming step, the water-repellent protective film-forming chemical solution according to any one of Inventions 8 to 10 is used.
[発明12]
 前記ウェハが、該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハである、発明11に記載のウェハの洗浄方法。
[Invention 12]
12. The wafer cleaning method according to claim 11, wherein the wafer is a wafer containing silicon nitride on at least a concave surface of the concave / convex pattern.
[発明13]
 前記ウェハが、該凹凸パターンの少なくとも凹部表面にチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハである、発明11に記載のウェハの洗浄方法。
[Invention 13]
In Invention 11, wherein the wafer includes at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on the concave surface of the concave / convex pattern. The method for cleaning a wafer as described.
[発明14]
撥水性保護膜除去工程が、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハ表面をプラズマ照射すること、ウェハ表面をオゾン曝露すること、及び、ウェハをコロナ放電することから選ばれる少なくとも1つの処理方法で行われる、発明11乃至発明13のいずれかに記載のウェハの洗浄方法。
[Invention 14]
The water repellent protective film removing step is at least selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer. The method for cleaning a wafer according to any one of Inventions 11 to 13, which is performed by one processing method.
 本発明において、撥水性保護膜とは、該凹凸パターンの少なくとも凹部表面に形成されることにより、該ウェハ表面の濡れ性を低くする膜、すなわち撥水性を付与する膜のことである。本発明において撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。 In the present invention, the water-repellent protective film is a film that lowers the wettability of the wafer surface by being formed on at least the concave surface of the concave / convex pattern, that is, a film that imparts water repellency. In the present invention, the water repellency means that the surface energy of the article surface is reduced and the interaction (for example, hydrogen bond, intermolecular force) between water or other liquid and the article surface is reduced. It is. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.
 本発明の撥水性保護膜形成剤を用いることで、ウェハの洗浄過程において、良好な撥水性を示す保護膜が形成され、凹凸パターン表面上に存在する水酸基の数量依存性を低減させることに奏功する。本発明を適用すれば、凹凸パターンの倒れを防止しながらウェハを安定的に洗浄でき、生産ロットに応じた洗浄条件の変更を少なくすることに奏功する。 By using the water-repellent protective film forming agent of the present invention, a protective film showing good water repellency is formed in the wafer cleaning process, and it has succeeded in reducing the number dependency of hydroxyl groups present on the surface of the concavo-convex pattern. To do. By applying the present invention, it is possible to stably clean the wafer while preventing the concavo-convex pattern from collapsing, and it is possible to reduce changes in cleaning conditions according to production lots.
また、本発明の洗浄方法を用いると、表面に凹凸パターンを有するウェハの製造方法中の洗浄工程が、スループットが低下することなく改善される。従って、前期洗浄方法、及び、前記薬液を用いて行われる表面に凹凸パターンを有するウェハの製造方法は、生産性が高いものとなる。また、表面の材質が異なる多品種のウェハの洗浄にも対応できるため、ウェハの種類に応じた洗浄条件の変更を軽減することに奏功する。 Further, when the cleaning method of the present invention is used, the cleaning step in the method for manufacturing a wafer having a concavo-convex pattern on the surface is improved without lowering the throughput. Therefore, the method for manufacturing a wafer having a concavo-convex pattern on the surface, which is performed using the above chemical solution and the cleaning method in the previous period, has high productivity. In addition, since it is possible to cope with the cleaning of various types of wafers having different surface materials, it is possible to reduce the change of the cleaning condition according to the type of the wafer.
表面が凹凸パターン2を有する面とされたウェハ1の概略平面図である。1 is a schematic plan view of a wafer 1 whose surface is a surface having an uneven pattern 2. 図1中のa-a’断面の一部を示したものである。FIG. 2 shows a part of the a-a ′ cross section in FIG. 1. 凹部4が撥水性保護膜形成用薬液8を保持した状態の模式図を示している。The recessed part 4 has shown the schematic diagram of the state holding the chemical | medical solution 8 for water-repellent protective film formation. 撥水性保護膜10が形成された凹部4に液体9が保持された状態の模式図を示す図である。It is a figure which shows the schematic diagram of the state by which the liquid 9 was hold | maintained at the recessed part 4 in which the water-repellent protective film 10 was formed.
 以下、本発明につき説明する。まず、本発明で提供する撥水性保護膜形成剤は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面にケイ素元素を含む物質を含むウェハ、又は、該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に撥水性保護膜を形成するための撥水性保護膜形成剤であり、前記剤は下記一般式[1]で表されるケイ素化合物である。
Figure JPOXMLDOC01-appb-C000013
The present invention will be described below. First, the water-repellent protective film forming agent provided in the present invention is a wafer having a concavo-convex pattern formed on a surface thereof, a wafer containing a substance containing a silicon element on at least a concave surface of the concavo-convex pattern, or at least a concave portion of the concavo-convex pattern. When cleaning a wafer including at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium, the surface has water repellency on at least the concave surface of the wafer. It is a water repellent protective film forming agent for forming a protective film, and the agent is a silicon compound represented by the following general formula [1].
Figure JPOXMLDOC01-appb-C000013
 [式中、R1は、それぞれ互いに独立して、水素基、又は炭素数が1~18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したR1の合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数である。] [Wherein R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
 例えば、酸化ケイ素表面には、反応活性点である水酸基(シラノール基)が豊富に存在するが、一般的に、窒素ケイ素やポリシリコン、或いは、チタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウム等の物質表面には、水酸基が形成しにくく、また、存在する水酸基の反応性が低い。このように量が少ない、あるいは反応性が低い水酸基に対して、従来のシランカップリング剤を反応させても表面に充分な撥水性を付与することは困難である。しかし、疎水性基が、強い疎水性を有する基であれば、優れた撥水性を付与することが可能である。 For example, the surface of silicon oxide has abundant hydroxyl groups (silanol groups) that are reactive sites, but in general, silicon silicon or polysilicon, or titanium, titanium nitride, tungsten, aluminum, copper, tin, Hydroxyl groups are difficult to form on the surface of materials such as tantalum nitride and ruthenium, and the reactivity of the existing hydroxyl groups is low. It is difficult to impart sufficient water repellency to the surface even if a conventional silane coupling agent is reacted with such a small amount or low reactivity of a hydroxyl group. However, if the hydrophobic group is a group having strong hydrophobicity, excellent water repellency can be imparted.
 前記ケイ素化合物のR1で表される炭化水素基は疎水性基であり、疎水性基が大きなもので保護膜を形成すると、処理した後のウェハ表面は良好な撥水性を示す。R1の合計炭素数が、6以上であれば、該ウェハの単位面積あたりの水酸基数量が少なくても、十分に撥水性能を生ぜせしめる撥水膜を形成することができる。 The hydrocarbon group represented by R 1 of the silicon compound is a hydrophobic group, and when a protective film is formed with a large hydrophobic group, the surface of the wafer after processing exhibits good water repellency. If the total carbon number of R 1 is 6 or more, a water-repellent film capable of sufficiently producing water-repellent performance can be formed even if the number of hydroxyl groups per unit area of the wafer is small.
 一般式[1]で示されるケイ素化合物としては、例えば、C49(CH32SiCl、C511(CH32SiCl、C613(CH32SiCl、C715(CH32SiCl、C817(CH32SiCl、C919(CH32SiCl、C1021(CH32SiCl、C1123(CH32SiCl、C1225(CH32SiCl、C1327(CH32SiCl、C1429(CH32SiCl、C1531(CH32SiCl、C1633(CH32SiCl、C1735(CH32SiCl、C1837(CH32SiCl、C511(CH3)HSiCl、C613(CH3)HSiCl、C715(CH3)HSiCl、C817(CH3)HSiCl、C919(CH3)HSiCl、C1021(CH3)HSiCl、C1123(CH3)HSiCl、C1225(CH3)HSiCl、C1327(CH3)HSiCl、C1429(CH3)HSiCl、C1531(CH3)HSiCl、C1633(CH3)HSiCl、C1735(CH3)HSiCl、C1837(CH3)HSiCl、C2524(CH32SiCl、C3724(CH32SiCl、C4924(CH32SiCl、C51124(CH32SiCl、C61324(CH32SiCl、C71524(CH32SiCl、C81724(CH32SiCl、(C253SiCl、C37(C252SiCl、C49(C252SiCl、C511(C252SiCl、C613(C252SiCl、C715(C252SiCl、C817(C252SiCl、C919(C252SiCl、C1021(C252SiCl、C1123(C252SiCl、C1225(C252SiCl、C1327(C252SiCl、C1429(C252SiCl、C1531(C252SiCl、C1633(C252SiCl、C1735(C252SiCl、C1837(C252SiCl、(C493SiCl、C511(C492SiCl、C613(C492SiCl、C715(C492SiCl、C817(C492SiCl、C919(C492SiCl、C1021(C492SiCl、C1123(C492SiCl、C1225(C492SiCl、C1327(C492SiCl、C1429(C492SiCl、C1531(C492SiCl、C1633(C492SiCl、C1735(C492SiCl、C1837(C492SiCl、CF324(C492SiCl、C2524(C492SiCl、C3724(C492SiCl、C4924(C492SiCl、C51124(C492SiCl、C61324(C492SiCl、C71524(C492SiCl、C81724(C492SiCl、C511(CH3)SiCl2、C613(CH3)SiCl2、C715(CH3)SiCl2、C817(CH3)SiCl2、C919(CH3)SiCl2、C1021(CH3)SiCl2、C1123(CH3)SiCl2、C1225(CH3)SiCl2、C1327(CH3)SiCl2、C1429(CH3)SiCl2、C1531(CH3)SiCl2、C1633(CH3)SiCl2、C1735(CH3)SiCl2、C1837(CH3)SiCl2、C3724(CH3)SiCl2、C4924(CH3)SiCl2、C51124(CH3)SiCl2、C61324(CH3)SiCl2、C71524(CH3)SiCl2、C81724(CH3)SiCl2、C613SiCl3、C715SiCl3、C817SiCl3、C919SiCl3、C1021SiCl3、C1123SiCl3、C1225SiCl3、C1327SiCl3、C1429SiCl3、C1531SiCl3、C1633SiCl3、C1735SiCl3、C1837SiCl3、C4924SiCl3、C51124SiCl3、C61324SiCl3、C71524SiCl3、C81724SiCl3などのクロロシラン系化合物が挙げられる。 Examples of the silicon compound represented by the general formula [1] include C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, C 6 H 13 (CH 3 ) 2 SiCl, and C 7. H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) HSiCl, C 6 H 13 (CH 3 ) HSiCl, C 7 H 15 (CH 3) HSiCl, C 8 H 17 (CH 3) HSiCl, C 9 H 19 (CH 3) HSiC l, C 10 H 21 (CH 3) HSiCl, C 11 H 23 (CH 3) HSiCl, C 12 H 25 (CH 3) HSiCl, C 13 H 27 (CH 3) HSiCl, C 14 H 29 (CH 3) HSiCl, C 15 H 31 (CH 3) HSiCl, C 16 H 33 (CH 3) HSiCl, C 17 H 35 (CH 3) HSiCl, C 18 H 37 (CH 3) HSiCl, C 2 F 5 C 2 H 4 (CH 3 ) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3 ) 2 SiCl, C 4 F 9 C 2 H 4 (CH 3 ) 2 SiCl, C 5 F 11 C 2 H 4 (CH 3 ) 2 SiCl, C 6 F 13 C 2 H 4 (CH 3 ) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3 ) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3 ) 2 SiCl, (C 2 H 5) 3 SiCl, C 3 H 7 (C 2 H 5) 2 SiCl, C 4 H 9 (C 2 H 5) 2 SiCl, C 5 H 11 (C 2 H 5) 2 iCl, C 6 H 13 (C 2 H 5) 2 SiCl, C 7 H 15 (C 2 H 5) 2 SiCl, C 8 H 17 (C 2 H 5) 2 SiCl, C 9 H 19 (C 2 H 5 ) 2 SiCl, C 10 H 21 (C 2 H 5 ) 2 SiCl, C 11 H 23 (C 2 H 5 ) 2 SiCl, C 12 H 25 (C 2 H 5 ) 2 SiCl, C 13 H 27 (C 2 H 5 ) 2 SiCl, C 14 H 29 (C 2 H 5 ) 2 SiCl, C 15 H 31 (C 2 H 5 ) 2 SiCl, C 16 H 33 (C 2 H 5 ) 2 SiCl, C 17 H 35 ( C 2 H 5 ) 2 SiCl, C 18 H 37 (C 2 H 5 ) 2 SiCl, (C 4 H 9 ) 3 SiCl, C 5 H 11 (C 4 H 9 ) 2 SiCl, C 6 H 13 (C 4 H 9 ) 2 SiCl, C 7 H 15 (C 4 H 9 ) 2 SiCl, C 8 H 17 (C 4 H 9 ) 2 SiCl, C 9 H 19 (C 4 H 9 ) 2 SiCl, C 10 H 21 ( C 4 H 9 ) 2 SiCl, C 11 H 23 (C 4 H 9 ) 2 SiCl, C 12 H 25 (C 4 H 9 ) 2 SiCl, C 13 H 27 (C 4 H 9 ) 2 SiCl, C 14 H 29 (C 4 H 9 ) 2 SiCl, C 15 H 31 (C 4 H 9 ) 2 SiCl, C 16 H 33 (C 4 H 9 ) 2 SiCl, C 17 H 35 (C 4 H 9 ) 2 SiCl, C 18 H 37 (C 4 H 9 ) 2 SiCl CF 3 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 2 F 5 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 3 F 7 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 4 F 9 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 5 F 11 C 2 H 4 (C 4 H 9 ) 2 SiCl, C 6 F 13 C 2 H 4 (C 4 H 9 ) 2 SiCl , C 7 F 15 C 2 H 4 (C 4 H 9) 2 SiCl, C 8 F 17 C 2 H 4 (C 4 H 9) 2 SiCl, C 5 H 11 (CH 3) SiCl 2, C 6 H 13 (CH 3 ) SiCl 2 , C 7 H 15 (CH 3 ) SiC l 2 , C 8 H 17 (CH 3 ) SiCl 2 , C 9 H 19 (CH 3 ) SiCl 2 , C 10 H 21 (CH 3 ) SiCl 2 , C 11 H 23 (CH 3 ) SiCl 2 , C 12 H 25 (CH 3 ) SiCl 2 , C 13 H 27 (CH 3 ) SiCl 2 , C 14 H 29 (CH 3 ) SiCl 2 , C 15 H 31 (CH 3 ) SiCl 2 , C 16 H 33 (CH 3 ) SiCl 2 , C 17 H 35 (CH 3 ) SiCl 2 , C 18 H 37 (CH 3 ) SiCl 2 , C 3 F 7 C 2 H 4 (CH 3 ) SiCl 2 , C 4 F 9 C 2 H 4 (CH 3 ) SiCl 2 , C 5 F 11 C 2 H 4 (CH 3 ) SiCl 2 , C 6 F 13 C 2 H 4 (CH 3 ) SiCl 2 , C 7 F 15 C 2 H 4 (CH 3 ) SiCl 2 , C 8 F 17 C 2 H 4 (CH 3 ) SiCl 2 , C 6 H 13 SiCl 3 , C 7 H 15 SiCl 3 , C 8 H 17 SiCl 3 , C 9 H 19 SiCl 3 , C 10 H 21 SiCl 3 , C 11 H 23 SiCl 3 , C 12 H 25 SiCl 3 , C 13 H 27 SiCl 3 , C 14 H 29 SiCl 3 , C 15 H 31 SiCl 3 , C 16 H 33 SiCl 3 , C 17 H 35 SiCl 3 , C 18 H 37 SiCl 3 , C 4 F 9 C 2 H 4 SiCl 3 , C 5 F 11 C 2 H 4 SiCl 3 , C 6 F 13 C 2 H 4 SiCl 3 , C 7 F 15 C 2 Examples thereof include chlorosilane compounds such as H 4 SiCl 3 and C 8 F 17 C 2 H 4 SiCl 3 .
 また、例えば、C49(CH32SiOCH3、C511(CH32SiOCH3、C613(CH32SiOCH3、C715(CH32SiOCH3、C817(CH32SiOCH3、C919(CH32SiOCH3、C1021(CH32SiOCH3、C1123(CH32SiOCH3、C1225(CH32SiOCH3、C1327(CH32SiOCH3、C1429(CH32SiOCH3、C1531(CH32SiOCH3、C1633(CH32SiOCH3、C1735(CH32SiOCH3、C1837(CH32SiOCH3、C511(CH3)HSiOCH3、C613(CH3)HSiOCH3、C715(CH3)HSiOCH3、C817(CH3)HSiOCH3、C919(CH3)HSiOCH3、C1021(CH3)HSiOCH3、C1123(CH3)HSiOCH3、C1225(CH3)HSiOCH3、C1327(CH3)HSiOCH3、C1429(CH3)HSiOCH3、C1531(CH3)HSiOCH3、C1633(CH3)HSiOCH3、C1735(CH3)HSiOCH3、C1837(CH3)HSiOCH3、C2524(CH32SiOCH3、C3724(CH32SiOCH3、C4924(CH32SiOCH3、C51124(CH32SiOCH3、C61324(CH32SiOCH3、C71524(CH32SiOCH3、C81724(CH32SiOCH3、(C253SiOCH3、C37(C252SiOCH3、C49(C252SiOCH3、C511(C252SiOCH3、C613(C252SiOCH3、C715(C252SiOCH3、C817(C252SiOCH3、C919(C252SiOCH3、C1021(C252SiOCH3、C1123(C252SiOCH3、C1225(C252SiOCH3、C1327(C252SiOCH3、C1429(C252SiOCH3、C1531(C252SiOCH3、C1633(C252SiOCH3、C1735(C252SiOCH3、C1837(C252SiOCH3、(C493SiOCH3、C511(C492SiOCH3、C613(C492SiOCH3、C715(C492SiOCH3、C817(C492SiOCH3、C919(C492SiOCH3、C1021(C492SiOCH3、C1123(C492SiOCH3、C1225(C492SiOCH3、C1327(C492SiOCH3、C1429(C492SiOCH3、C1531(C492SiOCH3、C1633(C492SiOCH3、C1735(C492SiOCH3、C1837(C492SiOCH3、C511(CH3)Si(OCH32、C613(CH3)Si(OCH32、C715(CH3)Si(OCH32、C817(CH3)Si(OCH32、C919(CH3)Si(OCH32、C1021(CH3)Si(OCH32、C1123(CH3)Si(OCH32、C1225(CH3)Si(OCH32、C1327(CH3)Si(OCH32、C1429(CH3)Si(OCH32、C1531(CH3)Si(OCH32、C1633(CH3)Si(OCH32、C1735(CH3)Si(OCH32、C1837(CH3)Si(OCH32、C3724(CH3)Si(OCH32、C4924(CH3)Si(OCH32、C51124(CH3)Si(OCH32、C61324(CH3)Si(OCH32、C71524(CH3)Si(OCH32、C81724(CH3)Si(OCH32、C613Si(OCH33、C715Si(OCH33、C817Si(OCH33、C919Si(OCH33、C1021Si(OCH33、C1123Si(OCH33、C1225Si(OCH33、C1327Si(OCH33、C1429Si(OCH33、C1531Si(OCH33、C1633Si(OCH33、C1735Si(OCH33、C1837Si(OCH33、C4924Si(OCH33、C51124Si(OCH33、C61324Si(OCH33、C71524Si(OCH33、C81724Si(OCH33、C49(CH32SiOC25、C511(CH32SiOC25、C613(CH32SiOC25、C715(CH32SiOC25、C817(CH32SiOC25、C919(CH32SiOC25、C1021(CH32SiOC25、C11
23(CH32SiOC25、C1225(CH32SiOC25、C1327(CH32SiOC25、C1429(CH32SiOC25、C1531(CH32SiOC25、C1633(CH32SiOC25、C1735(CH32SiOC25、C1837(CH32SiOC25、C2524(CH32SiOC25、C3724(CH32SiOC25、C4924(CH32SiOC25、C51124(CH32SiOC25、C61324(CH32SiOC25、C71524(CH32SiOC25、C81724(CH32SiOC25、(C253SiOC25、C37(C252SiOC25、C49(C252SiOC25、C511(C252SiOC25、C613(C252SiOC25、C715(C252SiOC25、C817(C252SiOC25、C919(C252SiOC25、C1021(C252SiOC25、C1123(C252SiOC25、C1225(C252SiOC25、C1327(C252SiOC25、C1429(C252SiOC25、C1531(C252SiOC25、C1633(C252SiOC25、C1735(C252SiOC25、C1837(C252SiOC25、(C493SiOC25、C511(C492SiOC25、C613(C492SiOC25、C715(C492SiOC25、C817(C492SiOC25、C919(C492SiOC25、C1021(C492SiOC25、C1123(C492SiOC25、C1225(C492SiOC25、C1327(C492SiOC25、C1429(C492SiOC25、C1531(C492SiOC25、C1633(C492SiO25、C1735(C492SiOC25、C1837(C492SiOC25、C511(CH3)Si(OC252、C613(CH3)Si(OC252、C715(CH3)Si(OC252、C817(CH3)Si(OC252、C919(CH3)Si(OC252、C1021(CH3)Si(OC252、C1123(CH3)Si(OC252、C1225(CH3)Si(OC252、C1327(CH3)Si(OC252、C1429(CH3)Si(OC252、C1531(CH3)Si(OC252、C1633(CH3)Si(OC252、C1735(CH3)Si(OC252、C1837(CH3)Si(OC252、C3724(CH3)Si(OC252、C4924(CH3)Si(OC252、C51124(CH3)Si(OC252、C61324(CH3)Si(OC252、C71524(CH3)Si(OC252、C81724(CH3)Si(OC252、C613Si(OC253、C715Si(OC253、C817Si(OC253、C919Si(OC253、C1021Si(OC253、C1123Si(OC253、C1225Si(OC253、C1327Si(OC253、C1429Si(OC253、C1531Si(OC253、C1633Si(OC253、C1735Si(OC253、C1837Si(OC253、C4924Si(OC253、C51124Si(OC253、C61324Si(OC253、C71524Si(OC253、C817
24Si(OC253などのアルコキシシラン系化合物が挙げられる。
Further, for example, C 4 H 9 (CH 3 ) 2 SiOCH 3 , C 5 H 11 (CH 3 ) 2 SiOCH 3 , C 6 H 13 (CH 3 ) 2 SiOCH 3 , C 7 H 15 (CH 3 ) 2 SiOCH 3 , C 8 H 17 (CH 3 ) 2 SiOCH 3 , C 9 H 19 (CH 3 ) 2 SiOCH 3 , C 10 H 21 (CH 3 ) 2 SiOCH 3 , C 11 H 23 (CH 3 ) 2 SiOCH 3 , C 12 H 25 (CH 3 ) 2 SiOCH 3 , C 13 H 27 (CH 3 ) 2 SiOCH 3 , C 14 H 29 (CH 3 ) 2 SiOCH 3 , C 15 H 31 (CH 3 ) 2 SiOCH 3 , C 16 H 33 (CH 3) 2 SiOCH 3, C 17 H 35 (CH 3) 2 SiOCH 3, C 18 H 37 (CH 3) 2 SiOCH 3, C 5 H 11 (CH 3) HSiOCH 3, C 6 H 13 ( CH 3) HSiOCH 3, C 7 H 15 (CH 3) HSiOCH 3, C 8 H 17 (CH 3) HS OCH 3, C 9 H 19 ( CH 3) HSiOCH 3, C 10 H 21 (CH 3) HSiOCH 3, C 11 H 23 (CH 3) HSiOCH 3, C 12 H 25 (CH 3) HSiOCH 3, C 13 H 27 (CH 3 ) HSiOCH 3 , C 14 H 29 (CH 3 ) HSiOCH 3 , C 15 H 31 (CH 3 ) HSiOCH 3 , C 16 H 33 (CH 3 ) HSiOCH 3 , C 17 H 35 (CH 3 ) HSiOCH 3 , C 18 H 37 (CH 3 ) HSiOCH 3 , C 2 F 5 C 2 H 4 (CH 3 ) 2 SiOCH 3 , C 3 F 7 C 2 H 4 (CH 3 ) 2 SiOCH 3 , C 4 F 9 C 2 H 4 (CH 3) 2 SiOCH 3, C 5 F 11 C 2 H 4 (CH 3) 2 SiOCH 3, C 6 F 13 C 2 H 4 (CH 3) 2 SiOCH 3, C 7 F 15 C 2 H 4 (CH 3 ) 2 SiOCH 3 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiOCH 3 , (C 2 H 5) 3 SiOCH 3, C 3 H 7 (C 2 H 5) 2 SiOCH 3, C 4 H 9 (C 2 H 5) 2 SiOCH 3, C 5 H 11 (C 2 H 5) 2 SiOCH 3, C 6 H 13 (C 2 H 5 ) 2 SiOCH 3, C 7 H 15 (C 2 H 5) 2 SiOCH 3, C 8 H 17 (C 2 H 5) 2 SiOCH 3, C 9 H 19 (C 2 H 5 2 SiOCH 3 , C 10 H 21 (C 2 H 5 ) 2 SiOCH 3 , C 11 H 23 (C 2 H 5 ) 2 SiOCH 3 , C 12 H 25 (C 2 H 5 ) 2 SiOCH 3 , C 13 H 27 (C 2 H 5 ) 2 SiOCH 3 , C 14 H 29 (C 2 H 5 ) 2 SiOCH 3 , C 15 H 31 (C 2 H 5 ) 2 SiOCH 3 , C 16 H 33 (C 2 H 5 ) 2 SiOCH 3 , C 17 H 35 (C 2 H 5 ) 2 SiOCH 3 , C 18 H 37 (C 2 H 5 ) 2 SiOCH 3 , (C 4 H 9 ) 3 SiOCH 3 , C 5 H 11 (C 4 H 9 ) 2 S OCH 3, C 6 H 13 ( C 4 H 9) 2 SiOCH 3, C 7 H 15 (C 4 H 9) 2 SiOCH 3, C 8 H 17 (C 4 H 9) 2 SiOCH 3, C 9 H 19 ( C 4 H 9 ) 2 SiOCH 3 , C 10 H 21 (C 4 H 9 ) 2 SiOCH 3 , C 11 H 23 (C 4 H 9 ) 2 SiOCH 3 , C 12 H 25 (C 4 H 9 ) 2 SiOCH 3 , C 13 H 27 (C 4 H 9) 2 SiOCH 3, C 14 H 29 (C 4 H 9) 2 SiOCH 3, C 15 H 31 (C 4 H 9) 2 SiOCH 3, C 16 H 33 (C 4 H 9) 2 SiOCH 3, C 17 H 35 (C 4 H 9) 2 SiOCH 3, C 18 H 37 (C 4 H 9) 2 SiOCH 3, C 5 H 11 (CH 3) Si (OCH 3) 2, C 6 H 13 (CH 3) Si (OCH 3) 2, C 7 H 15 (CH 3) Si (OCH 3) 2, C 8 H 17 (CH 3) Si (OCH 3) 2, C 9 H 19 ( CH 3 Si (OCH 3) 2, C 10 H 21 (CH 3) Si (OCH 3) 2, C 11 H 23 (CH 3) Si (OCH 3) 2, C 12 H 25 (CH 3) Si (OCH 3) 2 , C 13 H 27 (CH 3 ) Si (OCH 3 ) 2 , C 14 H 29 (CH 3 ) Si (OCH 3 ) 2 , C 15 H 31 (CH 3 ) Si (OCH 3 ) 2 , C 16 H 33 (CH 3 ) Si (OCH 3 ) 2 , C 17 H 35 (CH 3 ) Si (OCH 3 ) 2 , C 18 H 37 (CH 3 ) Si (OCH 3 ) 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si (OCH 3 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) Si (OCH 3 ) 2 , C 5 F 11 C 2 H 4 (CH 3 ) Si (OCH 3 ) 2 , C 6 F 13 C 2 H 4 (CH 3 ) Si (OCH 3 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si (OCH 3 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si (OCH 3) 2, C 6 H 13 Si OCH 3) 3, C 7 H 15 Si (OCH 3) 3, C 8 H 17 Si (OCH 3) 3, C 9 H 19 Si (OCH 3) 3, C 10 H 21 Si (OCH 3) 3, C 11 H 23 Si (OCH 3 ) 3 , C 12 H 25 Si (OCH 3 ) 3 , C 13 H 27 Si (OCH 3 ) 3 , C 14 H 29 Si (OCH 3 ) 3 , C 15 H 31 Si (OCH 3 ) 3 , C 16 H 33 Si (OCH 3 ) 3 , C 17 H 35 Si (OCH 3 ) 3 , C 18 H 37 Si (OCH 3 ) 3 , C 4 F 9 C 2 H 4 Si (OCH 3 ) 3 , C 5 F 11 C 2 H 4 Si (OCH 3 ) 3 , C 6 F 13 C 2 H 4 Si (OCH 3 ) 3 , C 7 F 15 C 2 H 4 Si (OCH 3 ) 3 , C 8 F 17 C 2 H 4 Si (OCH 3 ) 3 , C 4 H 9 (CH 3 ) 2 SiOC 2 H 5 , C 5 H 11 (CH 3 ) 2 SiOC 2 H 5 , C 6 H 13 (CH 3 ) 2 SiOC 2 H 5, C 7 H 15 CH 3) 2 SiOC 2 H 5 , C 8 H 17 (CH 3) 2 SiOC 2 H 5, C 9 H 19 (CH 3) 2 SiOC 2 H 5, C 10 H 21 (CH 3) 2 SiOC 2 H 5 , C 11
H 23 (CH 3) 2 SiOC 2 H 5, C 12 H 25 (CH 3) 2 SiOC 2 H 5, C 13 H 27 (CH 3) 2 SiOC 2 H 5, C 14 H 29 (CH 3) 2 SiOC 2 H 5 , C 15 H 31 (CH 3 ) 2 SiOC 2 H 5 , C 16 H 33 (CH 3 ) 2 SiOC 2 H 5 , C 17 H 35 (CH 3 ) 2 SiOC 2 H 5 , C 18 H 37 (CH 3 ) 2 SiOC 2 H 5 , C 2 F 5 C 2 H 4 (CH 3 ) 2 SiOC 2 H 5 , C 3 F 7 C 2 H 4 (CH 3 ) 2 SiOC 2 H 5 , C 4 F 9 C 2 H 4 (CH 3 ) 2 SiOC 2 H 5 , C 5 F 11 C 2 H 4 (CH 3 ) 2 SiOC 2 H 5 , C 6 F 13 C 2 H 4 (CH 3 ) 2 SiOC 2 H 5 , C 7 F 15 C 2 H 4 (CH 3) 2 SiOC 2 H 5, C 8 F 17 C 2 H 4 (CH 3) 2 SiOC 2 H 5, (C 2 H 5) 3 SiOC 2 H 5, C 3 H 7 (C 2 H 5 ) 2 SiOC 2 H 5, C 4 H 9 ( C 2 H 5) 2 SiOC 2 H 5, C 5 H 11 (C 2 H 5) 2 SiOC 2 H 5, C 6 H 13 (C 2 H 5) 2 SiOC 2 H 5 , C 7 H 15 (C 2 H 5) 2 SiOC 2 H 5, C 8 H 17 (C 2 H 5) 2 SiOC 2 H 5, C 9 H 19 (C 2 H 5) 2 SiOC 2 H 5, C 10 H 21 (C 2 H 5 ) 2 SiOC 2 H 5 , C 11 H 23 (C 2 H 5 ) 2 SiOC 2 H 5 , C 12 H 25 (C 2 H 5 ) 2 SiOC 2 H 5 , C 13 H 27 (C 2 H 5 ) 2 SiOC 2 H 5 , C 14 H 29 (C 2 H 5 ) 2 SiOC 2 H 5 , C 15 H 31 (C 2 H 5 ) 2 SiOC 2 H 5 , C 16 H 33 ( C 2 H 5) 2 SiOC 2 H 5, C 17 H 35 (C 2 H 5) 2 SiOC 2 H 5, C 18 H 37 (C 2 H 5) 2 SiOC 2 H 5, (C 4 H 9) 3 SiOC 2 H 5 , C 5 H 11 (C 4 H 9 ) 2 SiOC 2 H 5 , C 6 H 13 (C 4 H 9 ) 2 SiOC 2 H 5 , C 7 H 15 (C 4 H 9 ) 2 SiOC 2 H 5 , C 8 H 17 (C 4 H 9 ) 2 SiOC 2 H 5 , C 9 H 19 ( C 4 H 9) 2 SiOC 2 H 5, C 10 H 21 (C 4 H 9) 2 SiOC 2 H 5, C 11 H 23 (C 4 H 9) 2 SiOC 2 H 5, C 12 H 25 (C 4 H 9 ) 2 SiOC 2 H 5 , C 13 H 27 (C 4 H 9 ) 2 SiOC 2 H 5 , C 14 H 29 (C 4 H 9 ) 2 SiOC 2 H 5 , C 15 H 31 (C 4 H 9 2 SiOC 2 H 5 , C 16 H 33 (C 4 H 9 ) 2 SiO 2 H 5 , C 17 H 35 (C 4 H 9 ) 2 SiOC 2 H 5 , C 18 H 37 (C 4 H 9 ) 2 SiOC 2 H 5 , C 5 H 11 (CH 3 ) Si (OC 2 H 5 ) 2 , C 6 H 13 (CH 3 ) Si (OC 2 H 5 ) 2 , C 7 H 15 (CH 3 ) Si (OC 2 H 5) 2, C 8 H 17 (CH 3) Si (OC 2 H 5) 2, C 9 H 19 (CH 3 ) Si (OC 2 H 5 ) 2 , C 10 H 21 (CH 3 ) Si (OC 2 H 5 ) 2 , C 11 H 23 (CH 3 ) Si (OC 2 H 5 ) 2 , C 12 H 25 (CH 3 ) Si (OC 2 H 5 ) 2 , C 13 H 27 (CH 3 ) Si (OC 2 H 5 ) 2 , C 14 H 29 (CH 3 ) Si (OC 2 H 5 ) 2 , C 15 H 31 (CH 3 ) Si (OC 2 H 5 ) 2 , C 16 H 33 (CH 3 ) Si (OC 2 H 5 ) 2 , C 17 H 35 (CH 3 ) Si (OC 2 H 5 ) 2 C 18 H 37 (CH 3 ) Si (OC 2 H 5 ) 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 5 F 11 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 6 F 13 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si (OC 2 H 5 ) 2 , C 6 H 13 Si (OC 2 H 5 ) 3 , C 7 H 15 Si (OC 2 H 5 ) 3 , C 8 H 17 Si (OC 2 H 5 ) 3 , C 9 H 19 Si (OC 2 H 5 ) 3 , C 10 H 21 Si (OC 2 H 5 ) 3 , C 11 H 23 Si (OC 2 H 5 ) 3 , C 12 H 25 Si (OC 2 H 5 ) 3 , C 13 H 27 Si (OC 2 H 5 ) 3 , C 14 H 29 Si (OC 2 H 5 ) 3 , C 15 H 31 Si (OC 2 H 5 ) 3 , C 16 H 33 Si (OC 2 H 5) 3, C 17 H 35 Si (OC 2 H 5) 3, C 18 H 37 Si (OC 2 H 5) 3, C 4 F 9 C 2 H 4 Si (OC 2 H 5) 3, C 5 F 11 C 2 H 4 Si (OC 2 H 5) 3, C 6 F 13 C 2 H 4 Si (OC 2 H 5) 3, C 7 F 15 C 2 H 4 Si (OC 2 H 5) 3, C 8 F 17
Examples thereof include alkoxysilane compounds such as C 2 H 4 Si (OC 2 H 5 ) 3 .
 また、例えば、C49(CH32SiNCO、C511(CH32SiNCO、C613(CH32SiNCO、C715(CH32SiNCO、C817(CH32SiNCO、C919(CH32SiNCO、C1021(CH32SiNCO、C1123(CH32SiNCO、C1225(CH32SiNCO、C1327(CH32SiNCO、C1429(CH32SiNCO、C1531(CH32SiNCO、C1633(CH32SiNCO、C1735(CH32SiNCO、C1837(CH32SiNCO、C2524(CH32SiNCO、C3724(CH32SiNCO、C4924(CH32SiNCO、C51124(CH32SiNCO、C61324(CH32SiNCO、C71524(CH32SiNCO、C81724(CH32SiNCO、(C253SiNCO、C37(C252SiNCO、C49(C252SiNCO、C511(C252SiNCO、C613(C252SiNCO、C715(C252SiNCO、C817(C252SiNCO、C919(C252SiNCO、C1021(C252SiNCO、C1123(C252SiNCO、C1225(C252SiNCO、C1327(C252SiNCO、C1429(C252SiNCO、C1531(C252SiNCO、C1633(C252SiNCO、C1735(C252SiNCO、C1837(C252SiNCO、(C493SiNCO、C511(C492SiNCO、C613(C492SiNCO、C715(C492SiNCO、C817(C492SiNCO、C919(C492SiNCO、C1021(C492SiNCO、C1123(C492SiNCO、C1225(C492SiNCO、C1327(C492SiNCO、C1429(C492SiNCO、C1531(C492SiNCO、C1633(C492SiNCO、C1735(C492SiNCO、C1837(C492SiNCO、C511(CH3)Si(NCO)2、C613(CH3)Si(NCO)2、C715(CH3)Si(NCO)2、C817(CH3)Si(NCO)2、C919(CH3)Si(NCO)2、C1021(CH3)Si(NCO)2、C1123(CH3)Si(NCO)2、C1225(CH3)Si(NCO)2、C1327(CH3)Si(NCO)2、C1429(CH3)Si(NCO)2、C1531(CH3)Si(NCO)2、C1633(CH3)Si(NCO)2、C1735(CH3)Si(NCO)2、C1837(CH3)Si(NCO)2、C3724(CH3)Si(NCO)2、C4924(CH3)Si(NCO)2、C51124(CH3)Si(NCO)2、C61324(CH3)Si(NCO)2、C71524(CH3)Si(NCO)2、C81724(CH3)Si(NCO)2、C613Si(NCO)3、C715Si(NCO)3、C817Si(NCO)3、C919Si(NCO)3、C1021Si(NCO)3、C1123Si(NCO)3、C1225Si(NCO)3、C1327Si(NCO)3、C1429Si(NCO)3、C1531Si(NCO)3、C1633Si(NCO)3、C1735Si(NCO)3、C1837Si(NCO)3、C4924Si(NCO)3、C51124Si(NCO)3、C61324Si(NCO)3、C71524Si(NCO)3、C81724Si(NCO)3などのイソシアネートシラン系化合物が挙げられる。 Further, for example, C 4 H 9 (CH 3 ) 2 SiNCO, C 5 H 11 (CH 3 ) 2 SiNCO, C 6 H 13 (CH 3 ) 2 SiNCO, C 7 H 15 (CH 3 ) 2 SiNCO, C 8 H 17 (CH 3 ) 2 SiNCO, C 9 H 19 (CH 3 ) 2 SiNCO, C 10 H 21 (CH 3 ) 2 SiNCO, C 11 H 23 (CH 3 ) 2 SiNCO, C 12 H 25 (CH 3 ) 2 SiNCO, C 13 H 27 (CH 3 ) 2 SiNCO, C 14 H 29 (CH 3 ) 2 SiNCO, C 15 H 31 (CH 3 ) 2 SiNCO, C 16 H 33 (CH 3 ) 2 SiNCO, C 17 H 35 (CH 3 ) 2 SiNCO, C 18 H 37 (CH 3 ) 2 SiNCO, C 2 F 5 C 2 H 4 (CH 3 ) 2 SiNCO, C 3 F 7 C 2 H 4 (CH 3 ) 2 SiNCO, C 4 F 9 C 2 H 4 ( CH 3) 2 SiNCO, C 5 F 11 C 2 H 4 (CH 3) 2 SiNC , C 6 F 13 C 2 H 4 (CH 3) 2 SiNCO, C 7 F 15 C 2 H 4 (CH 3) 2 SiNCO, C 8 F 17 C 2 H 4 (CH 3) 2 SiNCO, (C 2 H 5 ) 3 SiNCO, C 3 H 7 (C 2 H 5 ) 2 SiNCO, C 4 H 9 (C 2 H 5 ) 2 SiNCO, C 5 H 11 (C 2 H 5 ) 2 SiNCO, C 6 H 13 (C 2 H 5 ) 2 SiNCO, C 7 H 15 (C 2 H 5 ) 2 SiNCO, C 8 H 17 (C 2 H 5 ) 2 SiNCO, C 9 H 19 (C 2 H 5 ) 2 SiNCO, C 10 H 21 (C 2 H 5 ) 2 SiNCO, C 11 H 23 (C 2 H 5 ) 2 SiNCO, C 12 H 25 (C 2 H 5 ) 2 SiNCO, C 13 H 27 (C 2 H 5 ) 2 SiNCO, C 14 H 29 (C 2 H 5) 2 SiNCO, C 15 H 31 (C 2 H 5) 2 SiNCO, C 16 H 33 (C 2 H 5) 2 SiNCO, C 17 H 35 (C 2 H 5) 2 S NCO, C 18 H 37 (C 2 H 5) 2 SiNCO, (C 4 H 9) 3 SiNCO, C 5 H 11 (C 4 H 9) 2 SiNCO, C 6 H 13 (C 4 H 9) 2 SiNCO, C 7 H 15 (C 4 H 9 ) 2 SiNCO, C 8 H 17 (C 4 H 9 ) 2 SiNCO, C 9 H 19 (C 4 H 9 ) 2 SiNCO, C 10 H 21 (C 4 H 9 ) 2 SiNCO, C 11 H 23 (C 4 H 9 ) 2 SiNCO, C 12 H 25 (C 4 H 9 ) 2 SiNCO, C 13 H 27 (C 4 H 9 ) 2 SiNCO, C 14 H 29 (C 4 H 9 ) 2 SiNCO, C 15 H 31 (C 4 H 9 ) 2 SiNCO, C 16 H 33 (C 4 H 9 ) 2 SiNCO, C 17 H 35 (C 4 H 9 ) 2 SiNCO, C 18 H 37 (C 4 H 9) 2 SiNCO, C 5 H 11 (CH 3) Si (NCO) 2, C 6 H 13 (CH 3) Si (NCO) 2, C 7 H 15 (CH 3) Si (NCO 2, C 8 H 17 (CH 3) Si (NCO) 2, C 9 H 19 (CH 3) Si (NCO) 2, C 10 H 21 (CH 3) Si (NCO) 2, C 11 H 23 (CH 3) Si (NCO) 2, C 12 H 25 (CH 3) Si (NCO) 2, C 13 H 27 (CH 3) Si (NCO) 2, C 14 H 29 (CH 3) Si (NCO) 2, C 15 H 31 (CH 3 ) Si (NCO) 2 , C 16 H 33 (CH 3 ) Si (NCO) 2 , C 17 H 35 (CH 3 ) Si (NCO) 2 , C 18 H 37 (CH 3 ) Si (NCO) 2, C 3 F 7 C 2 H 4 (CH 3) Si (NCO) 2, C 4 F 9 C 2 H 4 (CH 3) Si (NCO) 2, C 5 F 11 C 2 H 4 (CH 3 ) Si (NCO) 2 , C 6 F 13 C 2 H 4 (CH 3 ) Si (NCO) 2 , C 7 F 15 C 2 H 4 (CH 3 ) Si (NCO) 2 , C 8 F 17 C 2 H 4 (CH 3 ) Si (NCO) 2, C 6 H 13 Si (NCO) 3, C 7 H 15 Si (NCO) 3, C 8 H 17 Si (NCO) 3, C 9 H 19 Si (NCO) 3, C 10 H 21 Si (NCO) 3 , C 11 H 23 Si (NCO) 3 , C 12 H 25 Si (NCO) 3 , C 13 H 27 Si (NCO) 3 , C 14 H 29 Si (NCO) 3 , C 15 H 31 Si (NCO) 3 , C 16 H 33 Si (NCO) 3 , C 17 H 35 Si (NCO) 3 , C 18 H 37 Si (NCO) 3 , C 4 F 9 C 2 H 4 Si (NCO) 3 , C 5 F 11 C 2 H 4 Si (NCO) 3 , C 6 F 13 C 2 H 4 Si (NCO) 3 , C 7 F 15 C 2 H 4 Si (NCO) 3 , C 8 F 17 C 2 H 4 Si An isocyanate silane compound such as (NCO) 3 may be mentioned.
 また、例えば、C49(CH32SiNH2、C511(CH32SiNH2、C613(CH32SiNH2、C715(CH32SiNH2、C817(CH32SiNH2、C919(CH32SiNH2、C1021(CH32SiNH2、C1123(CH32SiNH2、C1225(CH32SiNH2、C1327(CH32SiNH2、C1429(CH32SiNH2、C1531(CH32SiNH2、C1633(CH32SiNH2、C1735(CH32SiNH2、C1837(CH32SiNH2、C2524(CH32SiNH2、C3724(CH32SiNH2、C4924(CH32SiNH2、C51124(CH32SiNH2、C61324(CH32SiNH2、C71524(CH32SiNH2、C81724(CH32SiNH2、[C49(CH32Si]2NH、[C511(CH32Si]2NH、[C613(CH32Si]2NH、[C715(CH32Si]2NH、[C817(CH32Si]2NH、[C919(CH32Si]2NH、[C1021(CH32Si]2NH、[C1123(CH32Si]2NH、[C1225(CH32Si]2NH、[C1327(CH32Si]2NH、[C1429(CH32Si]2NH、[C1531(CH32Si]2NH、[C1633(CH32Si]2NH、[C1735(CH32Si]2NH、[C1837(CH32Si]2NH、[C2524(CH32Si]2NH、[C3724(CH32Si]2NH、[C4924(CH32Si]2NH、[C51124(CH32Si]2NH、[C61324(CH32Si]2NH、[C71524(CH32Si]2NH、[C81724(CH32Si]2NH、[(C253Si]2NH、[C37(C252Si]2NH、[C49(C252Si]2NH、[C511(C252Si]2NH、[C613(C252Si]2NH、[C715(C252Si]2NH、[C817(C252Si]2NH、[C919(C252Si]2NH、[C1021(C252Si]2NH、[C1123(C252Si]2NH、[C1225(C252Si]2NH、[C1327(C252Si]2NH、[C1429(C252Si]2NH、[C1531(C252Si]2NH、[C1633(C252Si]2NH、[C1735(C252Si]2NH、[C1837(C252Si]2NH、[C49(CH32Si]3N、[C511(CH32Si]3N、[C613(CH32Si]3N、[C715(CH32Si]3N、[C817(CH32Si]3N、[C919(CH32Si]3N、[C1021(CH32Si]3N、[C1123(CH32Si]3N、[C1225(CH32Si]3N、[C1327(CH32Si]3N、[C1429(CH32Si]3N、[C1531(CH32Si]3N、[C1633(CH32Si]3N、[C1735(CH32Si]3N、[C1837(CH32Si]3N、[C4924(CH32Si]3N、[C51124(CH32Si]3N、[C61324(CH32Si]3N、[C71524(CH32Si]3N、[C81724(CH32Si]3N、C49(CH32SiN(CH32、C511(CH32SiN(CH32、C613(CH32SiN(CH32、C715(CH32SiN(CH32、C817(CH32SiN(CH32、C919(CH32SiN(CH32、C1021(CH32SiN(CH32、C1123(CH32SiN(CH32、C1225(CH32SiN(CH32、C1327(CH32SiN(CH32、C1429(CH32SiN(CH32、C1531(CH32SiN(CH32、C1633(CH32SiN(CH32、C1735(CH32SiN(CH32、C1837(CH32SiN(CH32、C511(CH3)HSiN(CH32、C613(CH3)HSiN(CH32、C715(CH3)HSiN(CH32、C817(CH3)HSiN(CH32、C919(CH3)HSiN(CH32、C1021(CH3)HSiN(CH32、C1123(CH3)HSiN(CH32、C1225(CH3)HSiN(CH32、C1327(CH3)HSiN(CH32、C1429(CH3)HSiN(CH32、C1531(CH3)HSiN(CH32、C1633(CH3
)HSiN(CH32、C1735(CH3)HSiN(CH32、C1837(CH3)HSiN(CH32、C2524(CH32SiN(CH32、C3724(CH32SiN(CH32、C4924(CH32SiN(CH32、C51124(CH32SiN(CH32、C61324(CH32SiN(CH32、C71524(CH32SiN(CH32、C81724(CH32SiN(CH32、(C253SiN(CH32、C37(C252SiN(CH32、C49(C252SiN(CH32、C511(C252SiN(CH32、C613(C252SiN(CH32、C715(C252SiN(CH32、C817(C252SiN(CH32、C919(C252SiN(CH32、C1021(C252SiN(CH32、C1123(C252SiN(CH32、C1225(C252SiN(CH32、C1327(C252SiN(CH32、C1429(C252SiN(CH32、C1531(C252SiN(CH32、C1633(C252SiN(CH32、C1735(C252SiN(CH32、C1837(C252SiN(CH32、(C493SiN(CH32、C511(C492SiN(CH32、C613(C492SiN(CH32、C715(C492SiN(CH32、C817(C492SiN(CH32、C919(C492SiN(CH32、C1021(C492SiN(CH32、C1123(C492SiN(CH32、C1225(C492SiN(CH32、C1327(C492SiN(CH32、C1429(C492SiN(CH32、C1531(C492SiN(CH32、C1633(C492SiN(CH32、C1735(C492SiN(CH32、C1837(C492SiN(CH32、C511(CH3)Si[N(CH322、C613(CH3)Si[N(CH322、C715(CH3)Si[N(CH322、C817(CH3)Si[N(CH322、C919(CH3)Si[N(CH322、C1021(CH3)Si[N(CH322、C1123(CH3)Si[N(CH322、C1225(CH3)Si[N(CH322、C1327(CH3)Si[N(CH322、C1429(CH3)Si[N(CH322、C1531(CH3)Si[N(CH322、C1633(CH3)Si[N(CH322、C1735(CH3)Si[N(CH322、C1837(CH3)Si[N(CH322、C3724(CH3)Si[N(CH322、C4924(CH3)Si[N(CH322、C51124(CH3)Si[N(CH322、C61324(CH3)Si[N(CH322、C71524(CH3)Si[N(CH322、C81724(CH3)Si[N(CH322、C613Si[N(CH323、C715Si[N(CH323、C817Si[N(CH323、C919Si[N(CH323、C1021Si[N(CH323、C1123Si[N(CH323、C1225Si[N(CH323、C1327Si[N(CH323、C1429Si[N(CH323、C1531Si[N(CH323、C1633Si[N(CH323、C1735Si[N(CH323、C1837Si[N(CH323、C4924Si[N(CH323、C51124Si[N(CH323、C61324Si[N(CH323、C71524Si[N(CH323、C81724Si[N(CH323、C49(CH32SiN(C252、C511(CH32SiN(C252、C613(CH32SiN(C252、C715(CH32SiN(C252、C817(CH32SiN(C252、C919(CH32SiN(C252、C1021(CH32SiN(C252、C1123(CH32SiN(C252、C1225(CH32SiN(C252、C1327(CH32SiN(C252、C1429(CH32SiN(C252、C1531(CH32SiN(C252、C1633(CH32SiN(C252、C1735(CH32SiN(C252
、C1837(CH32SiN(C252、C4924(CH32SiN(C252、C4924(CH32SiN(C252、C51124(CH32SiN(C252、C61324(CH32SiN(C252、C71524(CH32SiN(C252、C81724(CH32SiN(C252、(C253SiN(C252、C37(C252SiN(C252、C49(C252SiN(C252、C511(C252SiN(C252、C613(C252SiN(C252、C715(C252SiN(C252、C817(C252SiN(C252、C919(C252SiN(C252、C1021(C252SiN(C252、C1123(C252SiN(C252、C1225(C252SiN(C252、C1327(C252SiN(C252、C1429(C252SiN(C252、C1531(C252SiN(C252、C1633(C252SiN(C252、C1735(C252SiN(C252、C1837(C252SiN(C252、(C493SiN(C252、C511(C492SiN(C252、C613(C492SiN(C252、C715(C492SiN(C252、C817(C492SiN(C252、C919(C492SiN(C252、C1021(C492SiN(C252、C1123(C492SiN(C252、C1225(C492SiN(C252、C1327(C492SiN(C252、C1429(C492SiN(C252、C1531(C492SiN(C252、C1633(C492SiN(C252、C1735(C492SiN(C252、C1837(C492SiN(C252などのアミノシラン系化合物が挙げられる。
Also, for example, C 4 H 9 (CH 3 ) 2 SiNH 2 , C 5 H 11 (CH 3 ) 2 SiNH 2 , C 6 H 13 (CH 3 ) 2 SiNH 2 , C 7 H 15 (CH 3 ) 2 SiNH 2 , C 8 H 17 (CH 3 ) 2 SiNH 2 , C 9 H 19 (CH 3 ) 2 SiNH 2 , C 10 H 21 (CH 3 ) 2 SiNH 2 , C 11 H 23 (CH 3 ) 2 SiNH 2 , C 12 H 25 (CH 3) 2 SiNH 2, C 13 H 27 (CH 3) 2 SiNH 2, C 14 H 29 (CH 3) 2 SiNH 2, C 15 H 31 (CH 3) 2 SiNH 2, C 16 H 33 (CH 3) 2 SiNH 2, C 17 H 35 (CH 3) 2 SiNH 2, C 18 H 37 (CH 3) 2 SiNH 2, C 2 F 5 C 2 H 4 (CH 3) 2 SiNH 2, C 3 F 7 C 2 H 4 (CH 3) 2 SiNH 2, C 4 F 9 C 2 H 4 (CH 3) 2 SiNH 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiNH 2 , C 6 F 13 C 2 H 4 (CH 3 ) 2 SiNH 2 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiNH 2 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiNH 2 , [C 4 H 9 (CH 3 ) 2 Si] 2 NH, [C 5 H 11 (CH 3 ) 2 Si] 2 NH, [C 6 H 13 (CH 3 ) 2 Si] 2 NH, [C 7 H 15 (CH 3 ) 2 Si] 2 NH, [C 8 H 17 (CH 3 ) 2 Si] 2 NH, [C 9 H 19 (CH 3 ) 2 Si] 2 NH, [C 10 H 21 (CH 3 ) 2 Si] 2 NH, [C 11 H 23 (CH 3 ) 2 Si] 2 NH, [C 12 H 25 (CH 3 ) 2 Si] 2 NH, [C 13 H 27 (CH 3 ) 2 Si] 2 NH, [C 14 H 29 (CH 3 ) 2 Si] 2 NH, [C 15 H 31 (CH 3 ) 2 Si] 2 NH, [C 16 H 33 (CH 3 ) 2 Si] 2 NH, [C 17 H 35 (CH 3 ) 2 Si] 2 NH, [C 18 H 37 (CH 3 ) 2 Si] 2 NH, [C 2 F 5 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 3 F 7 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 4 F 9 C 2 H 4 (CH 3 ) 2 Si] 2 NH, [C 5 F 11 C 2 H 4 (CH 3 ) 2 Si] 2 NH, [C 6 F 13 C 2 H 4 (CH 3 ) 2 Si] 2 NH, [C 7 F 15 C 2 H 4 (CH 3) 2 Si] 2 NH, [C 8 F 17 C 2 H 4 (CH 3) 2 Si] 2 NH, [(C 2 H 5) 3 Si] 2 NH [C 3 H 7 (C 2 H 5 ) 2 Si] 2 NH, [C 4 H 9 (C 2 H 5 ) 2 Si] 2 NH, [C 5 H 11 (C 2 H 5 ) 2 Si] 2 NH, [C 6 H 13 (C 2 H 5 ) 2 Si] 2 NH, [C 7 H 15 (C 2 H 5 ) 2 Si] 2 NH, [C 8 H 17 (C 2 H 5 ) 2 Si] 2 NH, [C 9 H 19 (C 2 H 5) 2 Si] 2 NH, [C 10 H 21 (C 2 H 5) 2 Si] 2 NH, [ 11 H 23 (C 2 H 5 ) 2 Si] 2 NH, [C 12 H 25 (C 2 H 5) 2 Si] 2 NH, [C 13 H 27 (C 2 H 5) 2 Si] 2 NH, [ C 14 H 29 (C 2 H 5) 2 Si] 2 NH, [C 15 H 31 (C 2 H 5) 2 Si] 2 NH, [C 16 H 33 (C 2 H 5) 2 Si] 2 NH, [C 17 H 35 (C 2 H 5 ) 2 Si] 2 NH, [C 18 H 37 (C 2 H 5 ) 2 Si] 2 NH, [C 4 H 9 (CH 3 ) 2 Si] 3 N, [ C 5 H 11 (CH 3 ) 2 Si] 3 N, [C 6 H 13 (CH 3 ) 2 Si] 3 N, [C 7 H 15 (CH 3 ) 2 Si] 3 N, [C 8 H 17 ( CH 3 ) 2 Si] 3 N, [C 9 H 19 (CH 3 ) 2 Si] 3 N, [C 10 H 21 (CH 3 ) 2 Si] 3 N, [C 11 H 23 (CH 3 ) 2 Si ] 3 N, [C 12 H 25 (CH 3 ) 2 Si] 3 N, [C 13 H 27 (CH 3 ) 2 Si] 3 N, [C 14 H 29 (CH 3 ) 2 Si] 3 N, [C 15 H 31 (CH 3 ) 2 Si] 3 N, [C 16 H 33 (CH 3 ) 2 Si] 3 N, [C 17 H 35 (CH 3 2 Si] 3 N, [C 18 H 37 (CH 3 ) 2 Si] 3 N, [C 4 F 9 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 5 F 11 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 6 F 13 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 7 F 15 C 2 H 4 (CH 3 ) 2 Si] 3 N, [C 8 F 17 C 2 H 4 (CH 3 ) 2 Si] 3 N, C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3) 2 SiN (CH 3) 2, C 7 H 15 (CH 3) 2 SiN (CH 3) 2, C 8 H 17 (CH 3) 2 SiN (CH 3) 2, C 9 H 19 (CH 3) 2 SiN ( CH 3) 2, C 10 H 21 (CH 3) 2 SiN (CH 3) 2 C 11 H 23 (CH 3) 2 SiN (CH 3) 2, C 12 H 25 (CH 3) 2 SiN (CH 3) 2, C 13 H 27 (CH 3) 2 SiN (CH 3) 2, C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (CH 3 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) HSiN (CH 3 ) 2 , C 6 H 13 (CH 3 ) HSiN (CH 3 ) 2 , C 7 H 15 (CH 3 ) HSiN (CH 3 ) 2 , C 8 H 17 (CH 3 ) HSiN (CH 3 ) 2 , C 9 H 19 (CH 3 ) HSiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) HSiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) HSiN (CH 3 ) 2 , C 12 H 25 (CH 3 ) HSiN (CH 3 ) 2 , C 13 H 2 7 (CH 3 ) HSiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) HSiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) HSiN (CH 3 ) 2 , C 16 H 33 (CH 3
) HSiN (CH 3 ) 2 , C 17 H 35 (CH 3 ) HSiN (CH 3 ) 2 , C 18 H 37 (CH 3 ) HSiN (CH 3 ) 2 , C 2 F 5 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 3 F 7 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 F 11 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 F 13 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , (C 2 H 5 ) 3 SiN (CH 3 ) 2 , C 3 H 7 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 4 H 9 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 10 H 21 ( C 2 H 5) 2 SiN ( CH 3) 2, C 11 H 23 (C 2 H 5) 2 SiN (CH 3) 2, C 12 H 25 (C 2 H 5) 2 SiN (CH 3) 2, C 13 H 27 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (C 2 H 5 ) 2 SiN (CH 3 ) 2 , (C 4 H 9 ) 3 SiN (CH 3 ) 2 , C 5 H 11 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (C 4 H 9 ) 2 SiN (CH 3) 2, C 7 H 15 (C 4 H 9) 2 SiN (CH 3) 2, C 8 17 (C 4 H 9) 2 SiN (CH 3) 2, C 9 H 19 (C 4 H 9) 2 SiN (CH 3) 2, C 10 H 21 (C 4 H 9) 2 SiN (CH 3) 2 , C 11 H 23 (C 4 H 9) 2 SiN (CH 3) 2, C 12 H 25 (C 4 H 9) 2 SiN (CH 3) 2, C 13 H 27 (C 4 H 9) 2 SiN ( CH 3 ) 2 , C 14 H 29 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 16 H 33 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 17 H 35 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 18 H 37 (C 4 H 9 ) 2 SiN (CH 3 ) 2 , C 5 H 11 ( CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 6 H 13 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 7 H 15 (CH 3 ) Si [N (CH 3 ) 2 ] 2, C 8 H 17 (CH 3) Si [N (CH 3) 2] 2, C 9 H 19 (CH 3 Si [N (CH 3) 2 ] 2, C 10 H 21 (CH 3) Si [N (CH 3) 2] 2, C 11 H 23 (CH 3) Si [N (CH 3) 2] 2, C 12 H 25 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 13 H 27 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 14 H 29 (CH 3 ) Si [N (CH 3) 2] 2, C 15 H 31 (CH 3) Si [N (CH 3) 2] 2, C 16 H 33 (CH 3) Si [N (CH 3) 2] 2, C 17 H 35 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 18 H 37 (CH 3 ) Si [N (CH 3 ) 2 ] 2 , C 3 F 7 C 2 H 4 (CH 3 ) Si [N (CH 3 ) 2] 2, C 4 F 9 C 2 H 4 (CH 3) Si [N (CH 3) 2] 2, C 5 F 11 C 2 H 4 (CH 3) Si [N (CH 3) 2] 2 , C 6 F 13 C 2 H 4 (CH 3) Si [N (CH 3) 2] 2, C 7 F 15 C 2 H 4 (C 3) Si [N (CH 3 ) 2] 2, C 8 F 17 C 2 H 4 (CH 3) Si [N (CH 3) 2] 2, C 6 H 13 Si [N (CH 3) 2] 3 C 7 H 15 Si [N (CH 3 ) 2 ] 3 , C 8 H 17 Si [N (CH 3 ) 2 ] 3 , C 9 H 19 Si [N (CH 3 ) 2 ] 3 , C 10 H 21 Si [N (CH 3 ) 2 ] 3 , C 11 H 23 Si [N (CH 3 ) 2 ] 3 , C 12 H 25 Si [N (CH 3 ) 2 ] 3 , C 13 H 27 Si [N (CH 3) 2] 3, C 14 H 29 Si [N (CH 3) 2] 3, C 15 H 31 Si [N (CH 3) 2] 3, C 16 H 33 Si [N (CH 3) 2] 3 C 17 H 35 Si [N (CH 3 ) 2 ] 3 , C 18 H 37 Si [N (CH 3 ) 2 ] 3 , C 4 F 9 C 2 H 4 Si [N (CH 3 ) 2 ] 3 , C 5 F 11 C 2 H 4 Si [N (CH 3) 2] 3, C 6 F 13 C 2 H 4 Si [N (CH 3) 2] 3 C 7 F 15 C 2 H 4 Si [N (CH 3) 2] 3, C 8 F 17 C 2 H 4 Si [N (CH 3) 2] 3, C 4 H 9 (CH 3) 2 SiN (C 2 H 5) 2, C 5 H 11 (CH 3) 2 SiN (C 2 H 5) 2, C 6 H 13 (CH 3) 2 SiN (C 2 H 5) 2, C 7 H 15 (CH 3) 2 SiN (C 2 H 5 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 9 H 19 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 10 H 21 (CH 3) 2 SiN (C 2 H 5) 2, C 11 H 23 (CH 3) 2 SiN (C 2 H 5) 2, C 12 H 25 (CH 3) 2 SiN (C 2 H 5) 2, C 13 H 27 (CH 3) 2 SiN (C 2 H 5) 2, C 14 H 29 (CH 3) 2 SiN (C 2 H 5) 2, C 15 H 31 (CH 3) 2 SiN (C 2 H 5) 2, C 16 H 33 (CH 3) 2 SiN (C 2 H 5) 2, C 17 H 35 (CH 3) 2 iN (C 2 H 5) 2
C 18 H 37 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) 2 SiN (C 2 H 5 ) 2 , C 4 F 9 C 2 H 4 ( CH 3) 2 SiN (C 2 H 5) 2, C 5 F 11 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 6 F 13 C 2 H 4 (CH 3) 2 SiN ( C 2 H 5) 2, C 7 F 15 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2, C 8 F 17 C 2 H 4 (CH 3) 2 SiN (C 2 H 5) 2 , (C 2 H 5 ) 3 SiN (C 2 H 5 ) 2 , C 3 H 7 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 4 H 9 (C 2 H 5 ) 2 SiN ( C 2 H 5) 2, C 5 H 11 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 6 H 13 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 7 H 15 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 8 H 17 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 9 H 19 (C 2 5) 2 SiN (C 2 H 5) 2, C 10 H 21 (C 2 H 5) 2 SiN (C 2 H 5) 2, C 11 H 23 (C 2 H 5) 2 SiN (C 2 H 5) 2 , C 12 H 25 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 14 H 29 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 16 H 33 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 17 H 35 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , C 18 H 37 (C 2 H 5 ) 2 SiN (C 2 H 5 ) 2 , (C 4 H 9 ) 3 SiN (C 2 H 5 ) 2 , C 5 H 11 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 6 H 13 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 7 H 15 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 8 H 17 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 9 H 19 (C 4 9) 2 SiN (C 2 H 5) 2, C 10 H 21 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 11 H 23 (C 4 H 9) 2 SiN (C 2 H 5) 2 , C 12 H 25 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 13 H 27 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 14 H 29 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 15 H 31 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2 , C 16 H 33 (C 4 H 9 ) 2 SiN (C 2 H 5 ) 2, C 17 H 35 (C 4 H 9) 2 SiN (C 2 H 5) 2, C 18 H 37 (C 4 H 9) aminosilane compounds such as 2 SiN (C 2 H 5) 2 and the like.
 これらのケイ素化合物のうち、炭化水素基の水素原子がハロゲン原子で置換される場合、撥水性能を考慮すると置換するハロゲン原子としてはフッ素原子であること(つまり一般式[4]で表される化合物であること)が好ましい。フッ素原子が置換したケイ素化合物の中でも、5つ以上のフッ素原子を含有するものは優れた疎水性を示すため、特に表面に水酸基を形成しにくい物質、あるいは表面に存在する水酸基の反応性が低いような、チタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウムといった物質を含むウェハに対してより好ましい。 Among these silicon compounds, when a hydrogen atom of a hydrocarbon group is substituted with a halogen atom, the halogen atom to be substituted is a fluorine atom in consideration of water repellency (that is, represented by the general formula [4]) A compound). Among silicon compounds substituted with fluorine atoms, those containing 5 or more fluorine atoms exhibit excellent hydrophobicity, and therefore, substances that are difficult to form hydroxyl groups on the surface or have low reactivity of hydroxyl groups present on the surface. Such a wafer is more preferable for a wafer containing a substance such as titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, or ruthenium.
 また、一般式[1]のXで表される、ケイ素元素と結合する元素が窒素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素などから、構成される官能基であれば良く、例えば、-NHSi(CH33基、-NHSi(CH3249基、-NHSi(CH32817基、-N(CH32基、-N(C252基、-N(C372基、-N(CH3)(C25)基、-NH(C25)基、-NCO基、イミダゾール基、アセトアミド基などが挙げられる。 In addition, the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is nitrogen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine, iodine, etc., as long as it is a functional group composed of, for example, —NHSi (CH 3 ) 3 group, —NHSi (CH 3 ) 2 C 4 H 9 group, —NHSi (CH 3 ) 2 C 8 H 17 group, —N (CH 3 ) 2 group, —N (C 2 H 5 ) 2 group, —N (C 3 H 7 ) 2 group, —N (CH 3 ) (C 2 H 5 ) group , —NH (C 2 H 5 ) group, —NCO group, imidazole group, acetamide group and the like.
 さらに、一般式[1]のXで表される、ケイ素元素と結合する元素が酸素である1価の官能基は、炭素、水素、ホウ素、窒素、リン、酸素、硫黄、ケイ素、ゲルマニウム、フッ素、塩素、臭素、ヨウ素の元素から構成される官能基であれば良く、例えば、-OCH3基、-OC25基、-OC37基、-OCOCH3基、-OCOCF3基などが挙げられる。 Furthermore, the monovalent functional group represented by X in the general formula [1] whose element bonded to the silicon element is oxygen is carbon, hydrogen, boron, nitrogen, phosphorus, oxygen, sulfur, silicon, germanium, fluorine , Chlorine, bromine and iodine functional groups, such as —OCH 3 group, —OC 2 H 5 group, —OC 3 H 7 group, —OCOCH 3 group, —OCOCF 3 group, etc. Is mentioned.
 また、一般式[1]のXで表される、ハロゲン基としては-F基、-Cl基、-Br基、-I基などが挙げられる。なかでも-Cl基がより好ましい。 In addition, examples of the halogen group represented by X in the general formula [1] include —F group, —Cl group, —Br group, and —I group. Of these, a —Cl group is more preferred.
 前記一般式[1]のXで表される基は、前記ウェハ表面の水酸基と反応して、該ケイ素化合物中のケイ素元素と該ウェハ表面との間に結合を形成することにより、保護膜を形成することができる。 The group represented by X in the general formula [1] reacts with a hydroxyl group on the wafer surface to form a bond between the silicon element in the silicon compound and the wafer surface, thereby forming a protective film. Can be formed.
特に、前記の窒素ケイ素やポリシリコンは物質表面に存在する水酸基の量が少なく、前記ケイ素化合物との反応部位が少ない場合がある。しかしながら本発明のR1で表される疎水性基が嵩高いものであり、また、R1が優れた疎水性を有する基であれば、結果として優れた撥水性の保護膜を得ることが可能である。 In particular, the above silicon silicon and polysilicon may have a small amount of hydroxyl groups present on the surface of the material and may have few reaction sites with the silicon compound. However, the hydrophobic group represented by R 1 of the present invention is bulky, and if R 1 is a group having excellent hydrophobicity, it is possible to obtain an excellent water-repellent protective film as a result. It is.
 また、前記のチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウムといった物質の表面に存在する水酸基は、前記ケイ素化合物との反応性が低いため、該水酸基を完全に反応させることができない場合がある。そのような場合でも、R1で表される疎水性基が嵩高いものであり、また、R1が優れた疎水性を有する基であれば、結果として優れた撥水性の保護膜を得ることが可能である。 In addition, since the hydroxyl group present on the surface of the substance such as titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium has low reactivity with the silicon compound, the hydroxyl group must be completely reacted. May not be possible. Even in such a case, if the hydrophobic group represented by R 1 is bulky, and R 1 is a group having excellent hydrophobicity, an excellent water-repellent protective film can be obtained as a result. Is possible.
 また、前記のチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、ルテニウムといった物質が金属単体や窒化物の場合、酸化物の場合に比べて、該物質表面に存在する水酸基の量が少ないことがある。そのような場合でも、R1で表される疎水性基が嵩高いものであり、また、R1が優れた疎水性を有する基であれば、結果として優れた撥水性の保護膜を得ることが可能である。 In addition, when the substance such as titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium is a simple metal or a nitride, the amount of hydroxyl groups present on the surface of the substance is smaller than that of an oxide. There are few things. Even in such a case, if the hydrophobic group represented by R 1 is bulky, and R 1 is a group having excellent hydrophobicity, an excellent water-repellent protective film can be obtained as a result. Is possible.
 また、一般式[1]及び一般式[4]のaは1~3の整数であればよいが、aが1又は2である場合、前記撥水性保護膜形成剤、或いは前記薬液を長期保存すると、水分の混入などにより、ケイ素化合物の重合が発生し、保存可能期間が短くなる可能性がある。これを考慮すると、一般式[1]及び一般式[4]のaが3のものが好ましい。 In the general formula [1] and general formula [4], a may be an integer of 1 to 3, but when a is 1 or 2, the water repellent protective film forming agent or the chemical solution is stored for a long time. Then, polymerization of the silicon compound may occur due to moisture mixing, and the storage period may be shortened. Considering this, it is preferable that a in Formula [1] and Formula [4] is 3.
 また、一般式[1]で表されるケイ素化合物のうち、R1が炭素数が4~18の無置換もしくはハロゲン原子が置換した炭化水素基1個とメチル基2個からなるもの(つまり、一般式[3]で表される化合物)は、凹凸パターン表面やウェハ表面の水酸基との反応速度が速くなるので好ましい。これは、凹凸パターン表面やウェハ表面の水酸基と前記ケイ素化合物との反応において、疎水性基による立体障害が反応速度に大きな影響を与えるためであり、ケイ素元素に結合するアルキル鎖は最も長い一つを除く残り二つは短い方が好ましいからである。同様に、前記の一般式[4]のaとbの合計が3のケイ素化合物のうち、bが2であり、R4がいずれもメチル基であるケイ素化合物は、ウェハ表面の水酸基との反応性が高いので好ましい。 Among the silicon compounds represented by the general formula [1], R 1 is composed of one hydrocarbon group substituted with 4 to 18 carbon atoms or substituted with a halogen atom and two methyl groups (that is, The compound represented by the general formula [3] is preferable because the reaction rate with the hydroxyl group on the uneven pattern surface or wafer surface is increased. This is because the steric hindrance by the hydrophobic group has a great influence on the reaction rate in the reaction of the hydroxyl group on the uneven pattern surface or wafer surface with the silicon compound, and the alkyl chain bonded to the silicon element is one of the longest. This is because the remaining two except for are preferably shorter. Similarly, among the silicon compounds in which the sum of a and b in the general formula [4] is 3, the silicon compound in which b is 2 and R 4 is both a methyl group reacts with a hydroxyl group on the wafer surface. It is preferable because of its high properties.
 これらのことから、前述した一般式[1]で示されるケイ素化合物の中でも特に好ましい化合物としては、C49(CH32SiCl、C511(CH32SiCl、C613(CH32SiCl、C715(CH32SiCl、C817(CH32SiCl、C919(CH32SiCl、C1021(CH32SiCl、C1123(CH32SiCl、C1225(CH32SiCl、C1327(CH32SiCl、C1429(CH32SiCl、C1531(CH32SiCl、C1633(CH32SiCl、C1735(CH32SiCl、C1837(CH32SiCl、C2524(CH32SiCl、C3724(CH32SiCl、C4924(CH32SiCl、C51124(CH32SiCl、C61324(CH32SiCl、C71524(CH32SiCl、C81724(CH32SiCl、C49(CH32SiN(CH32、C511(CH32SiN(CH32、C613(CH32SiN(CH32、C715(CH32SiN(CH32、C817(CH32SiN(CH32、C919(CH32SiN(CH32、C1021(CH32SiN(CH32、C1123(CH32SiN(CH32、C1225(CH32SiN(CH32、C1327(CH32SiN(CH32、C1429(CH32SiN(CH32、C1531(CH32SiN(CH32、C1633(CH32SiN(CH32、C1735(CH32SiN(CH32、C1837(CH32SiN(CH32、C2524(CH32SiN(CH32、C3724(CH32SiN(CH32、C4924(CH32SiN(CH32、C51124(CH32SiN(CH32、C61324(CH32SiN(CH32、C71524(CH32SiN(CH32、C81724(CH32SiN(CH32が挙げられる。 Therefore, among the silicon compounds represented by the general formula [1] described above, particularly preferable compounds are C 4 H 9 (CH 3 ) 2 SiCl, C 5 H 11 (CH 3 ) 2 SiCl, and C 6 H. 13 (CH 3 ) 2 SiCl, C 7 H 15 (CH 3 ) 2 SiCl, C 8 H 17 (CH 3 ) 2 SiCl, C 9 H 19 (CH 3 ) 2 SiCl, C 10 H 21 (CH 3 ) 2 SiCl, C 11 H 23 (CH 3 ) 2 SiCl, C 12 H 25 (CH 3 ) 2 SiCl, C 13 H 27 (CH 3 ) 2 SiCl, C 14 H 29 (CH 3 ) 2 SiCl, C 15 H 31 (CH 3 ) 2 SiCl, C 16 H 33 (CH 3 ) 2 SiCl, C 17 H 35 (CH 3 ) 2 SiCl, C 18 H 37 (CH 3 ) 2 SiCl, C 2 F 5 C 2 H 4 (CH 3) 2 SiCl, C 3 F 7 C 2 H 4 (CH 3) 2 SiCl, C 4 F 9 C 2 H 4 (CH 3) 2 iCl, C 5 F 11 C 2 H 4 (CH 3) 2 SiCl, C 6 F 13 C 2 H 4 (CH 3) 2 SiCl, C 7 F 15 C 2 H 4 (CH 3) 2 SiCl, C 8 F 17 C 2 H 4 (CH 3 ) 2 SiCl, C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 H 11 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 H 13 (CH 3 ) 2 SiN (CH 3 ) 2 , C 7 H 15 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 , C 9 H 19 (CH 3 ) 2 SiN (CH 3 ) 2 , C 10 H 21 (CH 3 ) 2 SiN (CH 3 ) 2 , C 11 H 23 (CH 3 ) 2 SiN (CH 3 ) 2 , C 12 H 25 (CH 3 ) 2 SiN (CH 3 ) 2 , C 13 H 27 (CH 3 ) 2 SiN (CH 3 ) 2 , C 14 H 29 (CH 3 ) 2 SiN (CH 3 ) 2 , C 15 H 31 (CH 3 ) 2 SiN (CH 3) 2, C 16 H 33 ( H 3) 2 SiN (CH 3 ) 2, C 17 H 35 (CH 3) 2 SiN (CH 3) 2, C 18 H 37 (CH 3) 2 SiN (CH 3) 2, C 2 F 5 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 3 F 7 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 4 F 9 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 5 F 11 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 6 F 13 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 7 F 15 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 , C 8 F 17 C 2 H 4 (CH 3 ) 2 SiN (CH 3 ) 2 may be mentioned.
 さらには、前記撥水性保護膜形成剤は、前記一般式[1]で表されるケイ素化合物を2種以上含有するものであっても良いし、前記一般式[1]で表されるケイ素化合物と前記一般式[1]で表されるケイ素化合物以外のケイ素化合物を含有するものであっても良い。 Further, the water repellent protective film forming agent may contain two or more types of silicon compounds represented by the general formula [1], or the silicon compound represented by the general formula [1]. And a silicon compound other than the silicon compound represented by the general formula [1].
 次に本発明の撥水性保護膜形成用薬液について説明する。該薬液には、少なくとも前記撥水性保護膜形成剤が含有されていればよく、該薬液には溶媒として有機溶媒を用いることができる。該有機溶媒は、前記保護膜形成剤を溶解するものであれば良く、例えば、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒などが好適に使用される。希釈する溶媒として水を用いた場合、水により前記ケイ素化合物のXで表される基が加水分解してシラノール基(Si-OH)となり、発生したシラノール基同士が縮合反応することにより、前記ケイ素化合物同士が結合して2量体が生成する。この2量体は、ウェハ表面の水酸基との反応性が低いため、ウェハ表面を十分に撥水化できない、または撥水化に要する時間が長くなることから、水を溶媒として使用することは好ましくない。 Next, the water repellent protective film forming chemical solution of the present invention will be described. The chemical solution only needs to contain at least the water-repellent protective film forming agent, and an organic solvent can be used as the solvent for the chemical solution. The organic solvent only needs to dissolve the protective film forming agent. For example, hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives. Nitrogen-containing compound solvents are preferably used. When water is used as the solvent to be diluted, the group represented by X of the silicon compound is hydrolyzed with water to form a silanol group (Si—OH), and the generated silanol group undergoes a condensation reaction, whereby the silicon The compounds combine to form a dimer. Since this dimer has low reactivity with the hydroxyl group on the wafer surface, the wafer surface cannot be made sufficiently water-repellent or the time required for water-repelling becomes longer, so it is preferable to use water as a solvent. Absent.
 さらに、前記ケイ素化合物は、プロトン性溶媒と反応しやすいため、前記有機溶媒として、非プロトン性溶媒を用いると、短時間でウェハ表面に撥水性を発現しやすくなるので特に好ましい。なお、非プロトン性溶媒は、非プロトン性極性溶媒と非プロトン性非極性溶媒の両方のことである。このような非プロトン性溶媒としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、水酸基を持たない多価アルコールの誘導体、N-H結合を持たない含窒素化合物溶媒が挙げられる。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3-ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3-ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン株式会社製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE-3000(旭硝子株式会社製)、Novec HFE-7100、Novec HFE-7200、Novec7300、Novec7600(いずれもスリーエム社製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1-クロロ-3,3,3-トリフルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記水酸基を持たない多価アルコール誘導体の例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールジアセテート、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールジアセテート、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、N-H結合を持たない含窒素化合物溶媒の例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トリエチルアミン、ピリジンなどがある。 Furthermore, since the silicon compound easily reacts with a protic solvent, it is particularly preferable to use an aprotic solvent as the organic solvent because water repellency is easily developed on the wafer surface in a short time. The aprotic solvent is both an aprotic polar solvent and an aprotic apolar solvent. Examples of such aprotic solvents include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen-containing compounds having no NH bond. Compound solvents are mentioned. Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, and dioxane.Examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, and methyl butyl ketone. Examples of the halogen solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, 3, 3-pentafluorobutane, Hydrofluorocarbons such as Kutafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by ZEON CORPORATION), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, ethyl perfluoroisobutyl ether Asahi Clin AE-3000 (manufactured by Asahi Glass Co., Ltd.), Novec HFE-7100, Novec HFE-7200, Novec 7300, Novec 7600 (all manufactured by 3M), hydrofluoroethers such as tetrachloromethane, chlorocarbons such as tetrachloromethane, chloroform, etc. Hydrochlorocarbons, chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-penta Fluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3-trifluoro There are hydrochlorofluorocarbons such as propene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of the polyhydric alcohol derivatives having no hydroxyl group include diethylene glycol mono Ethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl Ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol diacetate, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, dipropylene glycol dimethyl ether, ethylene glycol diacetate, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, etc. Examples of the nitrogen-containing compound solvent having no N—H bond include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, triethylamine, and pyridine.
 さらにまた、前記有機溶媒に不燃性のものを使うと、撥水性保護膜形成薬液が不燃性になる、あるいは、引火点が高くなるので好ましい。含ハロゲン溶媒は不燃性のものが多く、不燃性含ハロゲン溶媒は不燃性有機溶媒として好適に使用できる。 Furthermore, it is preferable to use a nonflammable organic solvent because the water repellent protective film-forming chemical solution becomes nonflammable or has a high flash point. Many halogen-containing solvents are nonflammable, and the nonflammable halogen-containing solvent can be suitably used as a nonflammable organic solvent.
 また、前記有機溶媒に極性溶媒を用いると、前記保護膜形成剤であるケイ素化合物と、ウェハ表面の水酸基との反応が進行し易いので好ましい。 Further, it is preferable to use a polar solvent as the organic solvent because the reaction between the silicon compound as the protective film forming agent and the hydroxyl group on the wafer surface easily proceeds.
 また、有機溶媒には、微量の水分であれば存在してもよい。ただし、この水分が溶媒に大量に含まれると、ケイ素化合物は該水分によって加水分解して反応性が低下することがある。このため、溶媒中の水分量は低くすることが好ましく、該水分量は、前記ケイ素化合物と混合したときに、該ケイ素化合物に対して、モル比で1モル倍未満とすることが好ましく、0.5モル倍未満にすることが特に好ましい。 Also, the organic solvent may be present if it is a trace amount of water. However, when this moisture is contained in a large amount in the solvent, the silicon compound may be hydrolyzed by the moisture to reduce the reactivity. For this reason, it is preferable to reduce the amount of water in the solvent, and the amount of water is preferably less than 1 mole in terms of molar ratio to the silicon compound when mixed with the silicon compound. It is particularly preferable to make it less than 5 mole times.
 前記保護膜形成用薬液は、該薬液の総量100質量%中に、前記撥水性保護膜形成剤が0.1~50質量%となるように混合されていれば好ましく、より好適には該薬液の総量100質量%に対して0.3~20質量%混合されていれば良い。撥水性保護膜形成剤が0.1質量%未満では撥水性付与効果が不十分となる傾向があり、50質量%より多い場合、洗浄後に撥水性保護膜形成剤由来の成分がウェハ表面に不純物として残留する懸念があることから好ましくない。また、撥水性保護膜形成剤の使用量が増すため、コスト的な観点から見ても好ましくない。 The protective film-forming chemical solution is preferably mixed so that the water-repellent protective film-forming agent is 0.1 to 50% by mass in a total amount of 100% by mass of the chemical solution, and more preferably the chemical solution. It is sufficient that 0.3 to 20% by mass is mixed with respect to the total amount of 100% by mass. If the water-repellent protective film forming agent is less than 0.1% by mass, the effect of imparting water repellency tends to be insufficient, and if it exceeds 50% by mass, components derived from the water-repellent protective film forming agent are impurities on the wafer surface after cleaning. As such, there is a concern that it remains as such. Moreover, since the usage-amount of a water repellent protective film formation agent increases, it is unpreferable also from a cost viewpoint.
 また、前記薬液には、前記ケイ素化合物と、ウェハ表面の水酸基との反応を促進させるために、触媒が添加されても良い。このような触媒として、トリフルオロ酢酸、無水トリフルオロ酢酸、ペンタフルオロプロピオン酸、無水ペンタフルオロプロピオン酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの水を含まない酸、アンモニア、アルキルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、トリエチレンジアミン、ジメチルアニリン、ピリジン、ピペラジン、N-アルキルモルホリンなどの塩基、硫化アンモニウム、酢酸カリウム、メチルヒドロキシアミン塩酸塩などの塩、および、スズ、アルミニウム、チタンなどの金属錯体や金属塩が好適に用いられる。特に、触媒効果を考慮すると、トリフルオロ酢酸、トリフルオロ酢酸無水物、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、硫酸、塩化水素などの酸が好ましく、当該の酸は水分を含んでいないことが好ましい。また、上記触媒は反応により撥水性保護膜の一部を形成するものであってもよい。 Further, a catalyst may be added to the chemical solution in order to promote the reaction between the silicon compound and the hydroxyl group on the wafer surface. Such catalysts include trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride-free acid, ammonia, etc. , Bases such as alkylamine, N, N, N ′, N′-tetramethylethylenediamine, triethylenediamine, dimethylaniline, pyridine, piperazine, N-alkylmorpholine, salts such as ammonium sulfide, potassium acetate, methylhydroxyamine hydrochloride , And metal complexes and metal salts such as tin, aluminum, and titanium are preferably used. In particular, considering the catalytic effect, acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, and hydrogen chloride are preferable, and the acid does not contain moisture. Is preferred. The catalyst may form a part of the water-repellent protective film by reaction.
 特に、一般式[1]における疎水性基R1の炭素数が大きくなると、立体障害のためにウェハ表面の水酸基に対する該ケイ素化合物の反応性が低下する場合がある。この場合は、水を含まない酸を触媒として添加することで、ウェハ表面の水酸基と前記ケイ素化合物との反応が促進され、前記のような疎水性基による立体障害による反応速度の低下を補ってくれる場合がある。 In particular, when the number of carbon atoms of the hydrophobic group R 1 in the general formula [1] increases, the reactivity of the silicon compound with respect to the hydroxyl group on the wafer surface may decrease due to steric hindrance. In this case, by adding an acid not containing water as a catalyst, the reaction between the hydroxyl group on the wafer surface and the silicon compound is promoted, and the decrease in the reaction rate due to the steric hindrance due to the hydrophobic group is compensated. There is a case.
 前記触媒の添加量は、前記ケイ素化合物の総量100質量%に対して、0.01~100質量%が好ましい。添加量が少なくなると触媒効果が低下するので好ましくない。また、過剰に添加しても触媒効果は向上せず、ケイ素化合物よりも多くすると、逆に触媒効果が低下する場合もある。さらに、不純物としてウェハ表面に残留する懸念もある。このため、前記触媒添加量は、0.01~100質量%が好ましく、より好ましくは0.1~50質量%、さらに好ましくは0.2~20質量%であるである。 The addition amount of the catalyst is preferably 0.01 to 100% by mass with respect to 100% by mass of the total amount of the silicon compound. If the amount added is small, the catalytic effect is lowered, which is not preferable. Moreover, even if it adds excessively, a catalyst effect will not improve, but when it increases more than a silicon compound, a catalyst effect may fall conversely. Furthermore, there is a concern that the impurities may remain on the wafer surface as impurities. Therefore, the amount of the catalyst added is preferably 0.01 to 100% by mass, more preferably 0.1 to 50% by mass, and still more preferably 0.2 to 20% by mass.
 本発明の薬液は、前記ケイ素化合物と前記触媒が最初から混合されて含まれる1液タイプでもよいし、前記ケイ素化合物を含む液と前記触媒を含む液の2液タイプとして、使用する際に混合するものであってもよい。 The chemical solution of the present invention may be a one-component type in which the silicon compound and the catalyst are mixed from the beginning, or a two-component type in which the silicon compound and the catalyst are mixed. You may do.
 続いて、本発明のウェハの洗浄方法について説明する。 Subsequently, the wafer cleaning method of the present invention will be described.
 本発明の薬液を用いて洗浄するウェハは、一般的には、ウェハ表面を凹凸パターンを有する面とする前処理工程を経たものを用いることが多い。 In general, wafers that are cleaned using the chemical solution of the present invention are often those that have undergone a pretreatment process in which the wafer surface is a surface having an uneven pattern.
 前記前処理工程によって、ウェハ表面にパターンを形成できるのであればその方法は限定されない。一般的方法としては、ウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、または、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分が選択的にエッチングされる。最後に、レジストを剥離すると、凹凸パタ
ーンを有するウェハが得られる。
The method is not limited as long as a pattern can be formed on the wafer surface by the pretreatment step. As a general method, after applying a resist to the wafer surface, the resist is exposed through a resist mask, and the exposed resist or the resist having a desired concavo-convex pattern is removed by etching away the unexposed resist. Is made. Moreover, the resist which has an uneven | corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist. Next, the wafer is etched. At this time, the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a wafer having a concavo-convex pattern is obtained.
 なお、前記洗浄に用いるウェハは、ケイ素元素を含む物質を含むウェハ、又は、チタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハを示している。前記ケイ素元素を含む物質を含むウェハとしては、シリコンウェハや、シリコンウェハ上に熱酸化法やCVD法、スパッタ法などにより酸化ケイ素膜が形成されたもの、あるいは、CVD法やスパッタ法などにより窒化ケイ素膜やポリシリコン膜が形成されたもの、さらにはこれら窒化ケイ素膜やポリシリコン膜、或いはシリコンウェハ表面が自然酸化したものも含まれる。また、シリコンおよび/または酸化ケイ素を含む複数の成分から構成されたウェハ、シリコンカーバイドウェハ、及びウェハ上にケイ素元素を含む各種膜が形成されたものも、ウェハとして用いることができる。さらには、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどケイ素元素を含まないウェハ上に、ケイ素元素を含む各種膜が形成されたものであっても良い。なお、前記薬液はケイ素元素を含むウェハ表面、ウェハ上に形成されたケイ素元素を含む膜表面、及び前記ウェハ、或いは前記膜から形成されたケイ素元素を含む凹凸パターンの中のケイ素原子が存在する部分の表面に保護膜を形成し撥水化することができる。 Note that the wafer used for the cleaning is a wafer containing a substance containing silicon element, or at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium. The wafer is shown. As the wafer containing the substance containing silicon element, a silicon wafer, a silicon wafer formed with a silicon oxide film by a thermal oxidation method, a CVD method, a sputtering method, or the like, or a nitridation by a CVD method, a sputtering method, or the like is used. Those formed with a silicon film or a polysilicon film, and those silicon nitride film or polysilicon film, or those obtained by natural oxidation of the silicon wafer surface are also included. Further, a wafer composed of a plurality of components including silicon and / or silicon oxide, a silicon carbide wafer, and a wafer in which various films including a silicon element are formed on the wafer can be used as the wafer. Furthermore, various films containing silicon elements may be formed on a wafer not containing silicon elements such as sapphire wafers, various compound semiconductor wafers, and plastic wafers. The chemical solution contains silicon atoms in the wafer surface containing silicon element, the film surface containing silicon element formed on the wafer, and the concavo-convex pattern containing silicon element formed from the wafer or the film. A protective film can be formed on the surface of the part to make it water repellent.
 一般的に、表面に酸化ケイ素膜や酸化ケイ素部分を多く有するウェハにおいては該表面に反応活性点である水酸基が多数存在して、撥水性能を付与しやすい。一方、表面に窒化ケイ素膜や窒化ケイ素部分を多く有するウェハやポリシリコン膜やポリシリコン部分を多く有するウェハ、或いはシリコンウェハにおいては、該表面に水酸基が少なく、従来の技術では撥水性能を付与するのが難しかった。しかし、そのようなウェハであっても、本発明の薬液を用いるとウェハ表面に十分な撥水性を付与でき、ひいては洗浄時のパターン倒れを防止する効果を奏する。故に表面に酸化ケイ素膜や酸化ケイ素部分を多く有するウェハはもちろん、窒化ケイ素膜や窒化ケイ素部分を多く有するウェハやポリシリコン膜やポリシリコン部分を多く有するウェハ、或いはシリコンウェハは本発明の薬液を適用するのにふさわしく、好ましい基材であり、中でも窒化ケイ素膜や窒化ケイ素部分を多く有するウェハが特に好ましい。 Generally, a wafer having a silicon oxide film or a silicon oxide portion on its surface has many hydroxyl groups that are reaction active sites on the surface, so that it is easy to impart water repellency. On the other hand, a wafer having a silicon nitride film or a silicon nitride portion on the surface, a wafer having a polysilicon film or a polysilicon portion, or a silicon wafer has few hydroxyl groups on the surface, and the conventional technology provides water repellency. It was difficult to do. However, even with such a wafer, when the chemical solution of the present invention is used, sufficient water repellency can be imparted to the wafer surface, and as a result, the effect of preventing pattern collapse during cleaning can be achieved. Therefore, not only a wafer having a silicon oxide film or a silicon oxide portion on the surface, but also a wafer having a silicon nitride film or a silicon nitride portion, a wafer having a polysilicon film or a polysilicon portion, or a silicon wafer is used for the chemical solution of the present invention. It is suitable for application and is a preferable base material, and a wafer having many silicon nitride films and silicon nitride portions is particularly preferable.
 また、前記のチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハとしては、シリコンウェハ、シリコンおよび/またはシリカ(SiO2)を含む複数の成分から構成されたウェハ、シリコンカーバイドウェハ、サファイアウェハ、各種化合物半導体ウェハ、プラスチックウェハなどの表面をチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムの金属系の物質の層で被覆したもの、またはウェハ上に多層膜を形成し、そのうちの少なくとも1層が前記金属系の物質の層であるもの等が挙げられ、上記の凹凸パターン形成工程は、該金属系の物質の層を含む層において行われる。また、上記凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部が該金属系の物質となるものも含まれる。さらには、ウェハ上に凹凸パターンを形成し、その凹凸パターンの表面に前記金属系の物質の層を形成したものも含む。 Examples of the wafer containing at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium include a silicon wafer, silicon, and / or silica (SiO 2 ) The surface of wafers, silicon carbide wafers, sapphire wafers, various compound semiconductor wafers, plastic wafers, etc. composed of a plurality of components including titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium metal A layer coated with a system material layer, or a multilayer film formed on a wafer, at least one of which is a layer of the metal system material, etc. This is done in a layer containing a layer of metallic material. Moreover, when the said uneven | corrugated pattern is formed, the thing in which at least one part of this uneven | corrugated pattern becomes this metal-type substance is also contained. Furthermore, the thing which formed the uneven | corrugated pattern on the wafer and formed the layer of the said metal-type substance on the surface of the uneven | corrugated pattern is also included.
 また、前記金属系の物質を含む複数の成分から構成されたウェハに対しても、該金属系の物質の表面に前記保護膜を形成することができる。該複数の成分から構成されたウェハとしては、前記金属系の物質がウェハ表面に形成したもの、あるいは、凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部が該金属系の物質となるものも含まれる。なお、本発明の第2の形態に係る薬液で保護膜を形成できるのは前記凹凸パターン中の少なくとも前記金属系の物質部分の表面である。 In addition, the protective film can be formed on the surface of the metal-based material even on a wafer composed of a plurality of components including the metal-based material. As a wafer composed of the plurality of components, the metal-based material is formed on the wafer surface, or when a concavo-convex pattern is formed, at least a part of the concavo-convex pattern becomes the metal-based material. Also included. In addition, it is at least the surface of the said metal-type substance part in the said uneven | corrugated pattern that can form a protective film with the chemical | medical solution which concerns on the 2nd form of this invention.
 本発明のウェハの洗浄方法は、表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面にケイ素元素を含むものであって、
   前記ウェハ表面を水系洗浄液で洗浄する、水系洗浄液洗浄工程
   前記ウェハ表面の少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程
   ウェハ表面の液体を除去する、液体除去工程
   前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程
 を有する。
The wafer cleaning method of the present invention comprises a silicon element in at least the concave surface of the concave / convex pattern in the wafer having the concave / convex pattern formed on the surface,
A water-based cleaning liquid cleaning step for cleaning the wafer surface with a water-based cleaning liquid. A liquid removing step of removing the liquid on the wafer surface; a water repellent protective film removing step of removing the water repellent protective film from the surface of the recess.
 前記水系洗浄液の例としては、水、あるいは、水に有機溶媒、酸、アルカリ、界面活性剤、過酸化水素、オゾンのうち少なくとも1種以上が混合された水を主成分(例えば、水の含有率が50質量%以上)とするものが挙げられる。 Examples of the aqueous cleaning liquid include water or water in which at least one of organic solvents, acids, alkalis, surfactants, hydrogen peroxide, and ozone is mixed in water as a main component (for example, containing water). And a ratio of 50% by mass or more).
 前記水系洗浄液による洗浄において、レジストを除去し、ウェハ表面のパーティクル等を除去した後に、乾燥等により水系洗浄液を除去する際に、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が凹凸パターン2を有する面とされたウェハ1の概略平面図を示し、図2は図1中のa-a’断面の一部を示したものである。凹部の幅5は、図2に示すように凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。洗浄工程でのパターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。 In the cleaning with the aqueous cleaning liquid, after removing the resist and removing particles on the wafer surface, when removing the aqueous cleaning liquid by drying or the like, the pattern collapses if the width of the concave portion is small and the aspect ratio of the convex portion is large. Is likely to occur. The concavo-convex pattern is defined as shown in FIGS. FIG. 1 is a schematic plan view of a wafer 1 whose surface has a concavo-convex pattern 2. FIG. 2 shows a part of the a-a 'cross section in FIG. As shown in FIG. 2, the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3, and the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.
 さらに、水系洗浄液洗浄工程において、水系洗浄液が保持されて接触する、窒化ケイ素、ポリシリコン、チタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質からなる部位では、水系洗浄液との接触により、表面の一部が酸化され、水酸基が形成される。この酸化は物質によってはわずかな場合もあるが、本発明で供する撥水性保護膜形成剤は強い疎水基をもつため、酸化されて形成された一部の水酸基と反応する撥水性保護膜形成剤が少量であっても、優れた撥水性保護膜を形成することが可能である。 Further, at least one selected from the group consisting of silicon nitride, polysilicon, titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium, in which the aqueous cleaning liquid is retained and contacted in the aqueous cleaning liquid cleaning step. In a part made of the above substance, a part of the surface is oxidized and a hydroxyl group is formed by contact with the aqueous cleaning solution. Although this oxidation may be slight depending on the substance, since the water-repellent protective film forming agent provided in the present invention has a strong hydrophobic group, the water-repellent protective film forming agent that reacts with some hydroxyl groups formed by oxidation Even if the amount is small, an excellent water-repellent protective film can be formed.
 このウェハ表面の酸化は、水系洗浄液が室温の純水であっても進行するが、水系洗浄液の酸性が強かったり、水系洗浄液の温度が高かったりすると、より進行しやすいため、酸化を促進させる目的で水系洗浄液に酸を添加したり、水系洗浄液の温度を高くしても良い。さらには、酸化を促進させる目的で、過酸化水素やオゾンなどを添加しても良い。 This oxidation of the wafer surface proceeds even if the aqueous cleaning solution is pure water at room temperature, but it tends to proceed more easily if the aqueous cleaning solution is strongly acidic or the temperature of the aqueous cleaning solution is high. The acid may be added to the aqueous cleaning solution, or the temperature of the aqueous cleaning solution may be increased. Furthermore, hydrogen peroxide or ozone may be added for the purpose of promoting oxidation.
 本発明のウェハの洗浄方法において、パターン倒れを発生させずに効率的に洗浄するためには、前記水系洗浄液洗浄工程から撥水性保護膜形成工程を、ウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。また、撥水性保護膜形成工程の後で、ウェハの凹部に保持された撥水性保護膜形成用薬液をその他の液体に置換する場合も、上記と同様にウェハの少なくとも凹部に常に液体が保持された状態で行うことが好ましい。なお、本発明において、ウェハの凹凸パターンの少なくとも凹部に前記水系洗浄液、前記薬液やその他の液体を保持できるのであれば、該ウェハの洗浄方式は特に限定されない。ウェハの洗浄方式としては、ウェハをほぼ水平に保持して回転させながら回転中心付近に液体を供給してウェハを1枚ずつ洗浄するスピン洗浄に代表される枚葉方式や、洗浄槽内で複数枚のウェハを浸漬し洗浄するバッチ方式が挙げられる。なお、ウェハの凹凸パターンの少なくとも凹部に前記水系洗浄液、前記薬液やその他の液体を供給するときの該薬液や洗浄液の形態としては、該凹部に保持された時に液体になるものであれば特に限定されず、たとえば、液体、蒸気などがある。 In the wafer cleaning method of the present invention, in order to perform efficient cleaning without causing pattern collapse, the water-repellent protective film forming step from the water-based cleaning solution cleaning step is always held in at least the concave portion of the wafer. It is preferable to carry out in the state. In addition, when the water-repellent protective film-forming chemical solution held in the concave portion of the wafer is replaced with another liquid after the water-repellent protective film forming step, the liquid is always held in at least the concave portion of the wafer as described above. It is preferable to carry out in the state. In the present invention, the cleaning method of the wafer is not particularly limited as long as the aqueous cleaning liquid, the chemical liquid, and other liquids can be held in at least the concave portions of the concave / convex pattern of the wafer. As a wafer cleaning method, a wafer cleaning method represented by spin cleaning in which a wafer is cleaned one by one by supplying liquid to the vicinity of the rotation center while rotating the wafer while holding the wafer substantially horizontal, or a plurality of cleaning methods in the cleaning tank. One example is a batch system in which a single wafer is immersed and washed. The form of the chemical liquid or cleaning liquid when supplying the aqueous cleaning liquid, the chemical liquid or other liquid to at least the concave portion of the concave / convex pattern of the wafer is particularly limited as long as it becomes a liquid when held in the concave portion. For example, there are liquid, vapor and the like.
 次に、撥水性保護膜形成工程について説明する。前記水系洗浄液洗浄工程から撥水性保護膜形成工程への移行は、水系洗浄液洗浄工程においてウェハの凹凸パターンの少なくとも凹部に保持されていた水系洗浄液から、撥水性保護膜形成用薬液に置換されることで行われる。この水系洗浄液から撥水性保護膜形成用薬液への置換においては、直接置換されても良いし、異なる洗浄液A(以降、単に「洗浄液A」と記載する場合がある)に一度以上置換された後に、撥水性保護膜形成用薬液に置換されても良い。前記洗浄液Aの好ましい例としては、水、有機溶媒、水と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種以上が混合されたもの等が挙げられる。また、前記洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。 Next, the water repellent protective film forming step will be described. The transition from the water-based cleaning liquid cleaning step to the water-repellent protective film forming step is to replace the water-based cleaning liquid held in at least the concave portion of the concave / convex pattern of the wafer in the water-based cleaning liquid cleaning step with the chemical solution for forming the water-repellent protective film Done in In the replacement of the water-based cleaning liquid with the water-repellent protective film-forming chemical liquid, it may be replaced directly or after being replaced once or more by a different cleaning liquid A (hereinafter sometimes simply referred to as “cleaning liquid A”). Alternatively, a chemical solution for forming a water repellent protective film may be substituted. Preferable examples of the cleaning liquid A include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant. Examples of the organic solvent that is one of the preferred examples of the cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohol derivatives, And nitrogen-containing compound solvents.
 前記撥水性保護膜形成工程における撥水性保護膜の形成は、ウェハの凹凸パターンの少なくとも凹部に撥水性保護膜形成用薬液を保持することにより行われる。図3は、凹部4が撥水性保護膜形成用薬液8を保持した状態の模式図を示している。図3の模式図のウェハは、図1のa-a’断面の一部を示すものである。この撥水性保護膜形成工程の際に、撥水性保護膜形成用薬液が、凹凸パターン2が形成されたウェハ1に供される。この際、撥水性保護膜形成用薬液は図3に示したように少なくとも凹部4に保持された状態となり、凹部4の表面が撥水化される。なお、本発明の保護膜は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。 The formation of the water-repellent protective film in the water-repellent protective film forming step is performed by holding a water-repellent protective film-forming chemical solution in at least the concave portion of the concave-convex pattern of the wafer. FIG. 3 is a schematic view showing a state in which the concave portion 4 holds the chemical solution 8 for forming the water repellent protective film. The wafer shown in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1. In the water repellent protective film forming step, a chemical solution for forming the water repellent protective film is supplied to the wafer 1 on which the concave / convex pattern 2 is formed. At this time, the water-repellent protective film-forming chemical solution is held in at least the concave portion 4 as shown in FIG. 3, and the surface of the concave portion 4 is water-repellent. Note that the protective film of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but because it can impart better water repellency, More preferably, it is uniformly formed.
 また、保護膜形成工程では、薬液の温度を高くすると、より短時間で前記保護膜を形成しやすいが、撥水性保護膜形成用薬液の沸騰や蒸発などにより該薬液の安定性が損なわれる恐れがあるため、前記薬液は10~160℃で保持されることが好ましく、特には15~120℃が好ましい。 Further, in the protective film forming step, if the temperature of the chemical solution is increased, the protective film can be easily formed in a shorter time, but the stability of the chemical solution may be impaired due to boiling or evaporation of the chemical solution for forming the water repellent protective film. Therefore, the chemical solution is preferably maintained at 10 to 160 ° C., more preferably 15 to 120 ° C.
 撥水性保護膜形成剤により撥水化された凹部4に液体9が保持された場合の模式図を図4に示す。図4の模式図のウェハは、図1のa-a’断面の一部を示すものである。凹部4の表面には撥水性保護膜形成剤により撥水性保護膜10が形成されている。このとき凹部4に保持されている液体9は、前記薬液、該薬液から異なる洗浄液B(以降、単に「洗浄液B」と記載する場合がある)に置換した後の液体(洗浄液B)でもよいし、置換途中の液体(薬液と洗浄液の混合液)であってもよい。前記撥水性保護膜10は、液体9が凹部4から除去されるときもウェハ表面に保持されている。 FIG. 4 shows a schematic diagram in the case where the liquid 9 is held in the recess 4 that has been made water-repellent by the water-repellent protective film forming agent. The wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG. A water repellent protective film 10 is formed on the surface of the recess 4 by a water repellent protective film forming agent. At this time, the liquid 9 held in the recess 4 may be the above-described chemical liquid or a liquid (cleaning liquid B) after the chemical liquid is replaced with a different cleaning liquid B (hereinafter sometimes simply referred to as “cleaning liquid B”). , A liquid in the middle of substitution (a mixed solution of a chemical solution and a cleaning solution) may be used. The water repellent protective film 10 is held on the wafer surface even when the liquid 9 is removed from the recess 4.
 前記洗浄液Bの好ましい例としては、水、有機溶媒、水と有機溶媒の混合物、または、それらに酸、アルカリ、界面活性剤のうち少なくとも1種以上が混合されたもの等が挙げられる。また、前記洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコール類、多価アルコール類の誘導体、含窒素化合物溶媒等が挙げられる。 Preferred examples of the cleaning liquid B include water, an organic solvent, a mixture of water and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant. Examples of the organic solvent that is one of the preferred examples of the cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, polyhydric alcohols, many And derivatives of polyhydric alcohols, nitrogen-containing compound solvents, and the like.
 前記凹凸パターンを有するウェハの凹部に液体が保持されると、該凹部に毛細管力が働く。この毛細管力の大きさは、以下に示される式で求められるPの絶対値である。 When a liquid is held in the concave portion of the wafer having the concave / convex pattern, a capillary force acts on the concave portion. The magnitude of this capillary force is the absolute value of P obtained by the following formula.
 P=2×γ×cosθ/S
 (式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
 図4の凹部4のように凹部表面に撥水性保護膜が存在すると、θが増大され、Pの絶対値が低減される。パターン倒れの抑制の観点から、Pの絶対値は小さいほど好ましく、除去される液体との接触角を90°付近に調整して毛細管力を限りなく0.0MN/m2に近づけることが理想的である。
P = 2 × γ × cos θ / S
(Where, γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
If a water-repellent protective film is present on the surface of the recess as in the recess 4 of FIG. 4, θ is increased and the absolute value of P is decreased. From the viewpoint of suppressing pattern collapse, the smaller the absolute value of P, the better. It is ideal to adjust the contact angle with the liquid to be removed to around 90 ° to bring the capillary force as close as possible to 0.0 MN / m 2. It is.
 図4のように、凹部表面に保護膜10が形成されたとき、該表面に水が保持されたと仮定したときの接触角は65~115°であると、パターン倒れが発生し難いため好ましい。接触角は90°に近いほど該凹部に働く毛細管力が小さくなり、パターン倒れが更に発生し難くなるため、70~110°が特に好ましい。また、例えば、線幅(凹部の幅)が45nmのラインアンドスペース形状のパターンのウェハの場合、毛細管力は2.1MN/m2以下であることが好ましい。該毛細管力が2.1MN/m2以下であれば、パターン倒れが発生し難いため好ましい。また、該毛細管力が小さくなると、パターン倒れは更に発生し難くなるため、該毛細管力は1.1MN/m2以下が特に好ましい。さらに、洗浄液との接触角を90°付近に調整して毛細管力を限りなく0.0MN/m2に近づけることが理想的である。 As shown in FIG. 4, when the protective film 10 is formed on the surface of the recess, the contact angle on the assumption that water is held on the surface is preferably 65 to 115 ° because pattern collapse hardly occurs. The closer the contact angle is to 90 °, the smaller the capillary force acting on the recess and the more difficult the pattern collapse occurs, so 70 to 110 ° is particularly preferable. In addition, for example, in the case of a line-and-space pattern wafer having a line width (recessed portion width) of 45 nm, the capillary force is preferably 2.1 MN / m 2 or less. It is preferable that the capillary force is 2.1 MN / m 2 or less because pattern collapse hardly occurs. Further, when the capillary force becomes small, pattern collapse hardly occurs. Therefore, the capillary force is particularly preferably 1.1 MN / m 2 or less. Furthermore, it is ideal to adjust the contact angle with the cleaning liquid to around 90 ° so that the capillary force is as close as possible to 0.0 MN / m 2 .
 続いて、前記液体除去工程について説明する。なお、凹部に保持されている液体は、前記薬液、洗浄液B、または、該薬液と洗浄液Bの混合液である。前記液体を除去する方法として、自然乾燥、エアー乾燥、N2ガス乾燥、スピン乾燥法、IPA(2-プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、温風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。前記液体を効率よく除去するために、保持された液体を排液して除去した後に、残った液体を乾燥させても良い。 Next, the liquid removal process will be described. The liquid held in the recess is the chemical liquid, the cleaning liquid B, or a mixed liquid of the chemical liquid and the cleaning liquid B. As a method for removing the liquid, known drying methods such as natural drying, air drying, N 2 gas drying, spin drying, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, vacuum drying, etc. It is preferable to carry out by. In order to efficiently remove the liquid, the retained liquid may be drained and removed, and then the remaining liquid may be dried.
 最後に、撥水性保護膜除去工程について説明する。前記撥水性保護膜を除去する場合、該保護膜中のC-C結合、C-F結合を切断することが有効である。その方法としては、前記結合を切断できるものであれば特に限定されないが、例えば、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハをオゾン曝露すること、ウェハ表面にプラズマ照射すること、ウェハ表面にコロナ放電すること等が挙げられる。 Finally, the water repellent protective film removal step will be described. When removing the water-repellent protective film, it is effective to cut the C—C bond and C—F bond in the protective film. The method is not particularly limited as long as it can cut the bond, for example, irradiating the wafer surface with light, heating the wafer, exposing the wafer to ozone, irradiating the wafer surface with plasma, For example, corona discharge on the wafer surface may be mentioned.
 光照射で前記保護膜を除去する場合、該保護膜中のC-C結合、C-F結合の結合エネルギーである83kcal/mol、116kcal/molに相当するエネルギーである340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。 When the protective film is removed by light irradiation, wavelengths shorter than 340 nm and 240 nm, which are energy equivalent to 83 kcal / mol and 116 kcal / mol, which are binding energies of C—C bonds and C—F bonds in the protective film. It is preferable to irradiate ultraviolet rays containing. As this light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used.
 また、光照射で前記保護膜を除去する場合、紫外線で前記保護膜の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって前記保護膜の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源として、低圧水銀ランプやエキシマランプなどを用いてもよい。また、光照射しながらウェハを加熱してもよい。 Further, when the protective film is removed by light irradiation, if the constituent components of the protective film are decomposed by ultraviolet rays and ozone is generated at the same time, and the constituent components of the protective film are oxidized and volatilized by the ozone, the processing time is shortened. Therefore, it is particularly preferable. As this light source, a low-pressure mercury lamp, an excimer lamp, or the like may be used. Further, the wafer may be heated while irradiating light.
 ウェハを加熱する場合、400~700℃、好ましくは、500~700℃でウェハの加熱を行うのが好ましい。この加熱時間は、1~60分間、好ましくは10~30分間の保持で行うことが好ましい。また、当該工程では、オゾン曝露、プラズマ照射、コロナ放電などを併用してもよい。また、ウェハを加熱しながら光照射を行ってもよい。 When heating the wafer, it is preferable to heat the wafer at 400 to 700 ° C., preferably 500 to 700 ° C. The heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes. In this process, ozone exposure, plasma irradiation, corona discharge, etc. may be used in combination. Further, light irradiation may be performed while heating the wafer.
 加熱により前記保護膜を除去する方法は、ウェハを熱源に接触させる方法、熱処理炉などの加熱された雰囲気にウェハを置く方法などがある。なお、加熱された雰囲気にウェハを置く方法は、複数枚のウェハを処理する場合であっても、ウェハ表面に前記保護膜を除去するためのエネルギーを均質に付与しやすいことから、操作が簡便で処理が短時間で済み処理能力が高いという工業的に有利な方法である。 There are a method of removing the protective film by heating, a method of bringing the wafer into contact with a heat source, a method of placing the wafer in a heated atmosphere such as a heat treatment furnace, and the like. The method of placing the wafer in a heated atmosphere is easy to operate because it is easy to uniformly apply energy for removing the protective film to the wafer surface even when processing a plurality of wafers. This is an industrially advantageous method that requires a short processing time and a high processing capacity.
 ウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをウェハ表面に供しても良い。ウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。 When the wafer is exposed to ozone, ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or low-temperature discharge with a high voltage may be provided to the wafer surface. The wafer may be irradiated with light while being exposed to ozone, or may be heated.
 前記の光照射、加熱、オゾン曝露、プラズマ照射、コロナ放電を組み合わせることによって、効率的にウェハ表面の保護膜を除去することができる。 The protective film on the wafer surface can be efficiently removed by combining the light irradiation, heating, ozone exposure, plasma irradiation, and corona discharge.
ウェハの表面を凹凸パターンを有する面とすること、凹凸パターンの少なくとも凹部に保持された洗浄液を他の洗浄液で置換することは、他の文献等にて種々の検討がなされ、既に確立された技術であるので、本実施例では、前記保護膜形成用薬液の評価を中心に行った。 Making the surface of the wafer a surface having a concavo-convex pattern, replacing the cleaning liquid held at least in the concave portion of the concavo-convex pattern with another cleaning liquid, various studies have been made in other literatures, etc. and already established techniques Thus, in this example, the evaluation was mainly performed on the protective film forming chemical solution.
 凹凸パターンの凹部に働く毛細管力は、以下の式で表される。 Capillary force acting on the concave portion of the concave / convex pattern is expressed by the following equation.
 P=2×γ×cosθ/S
(式中、γは凹部に保持されている液体の表面張力、θは凹部表面と凹部に保持されている液体のなす接触角、Sは凹部の幅である。)
この式から明らかなようにパターン倒れを引き起こす毛細管力Pは、洗浄液のウェハ表面への接触角、すなわち液滴の接触角と、洗浄液の表面張力に大きく依存する。凹凸パターン2の凹部4に保持された洗浄液の場合、液滴の接触角と、パターン倒れと等価なものとして考えてよい該凹部に働く毛細管力とは相関性があるので、前記式とウェハの凹凸撥水性保護膜10の液滴の接触角の評価から毛細管力を導き出すことができる。なお、実施例において、前記洗浄液として、水系洗浄液の代表的なものである水を用いた。
P = 2 × γ × cos θ / S
(Where, γ is the surface tension of the liquid held in the recess, θ is the contact angle between the recess surface and the liquid held in the recess, and S is the width of the recess.)
As is clear from this equation, the capillary force P that causes pattern collapse greatly depends on the contact angle of the cleaning liquid to the wafer surface, that is, the contact angle of the droplets and the surface tension of the cleaning liquid. In the case of the cleaning liquid held in the concave portion 4 of the concavo-convex pattern 2, the contact angle of the droplet and the capillary force acting on the concave portion, which can be considered as equivalent to pattern collapse, are correlated. Capillary force can be derived from the evaluation of the contact angle of the droplets of the uneven water-repellent protective film 10. In the examples, water, which is a typical aqueous cleaning solution, was used as the cleaning solution.
 水滴の接触角の評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル基材の表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。そのため、表面に凹凸パターンを有するウェハの場合、該凹凸パターン表面に形成された前記保護膜10自体の接触角を正確に評価できない。 The contact angle of water droplets is evaluated by dropping several μl of water droplets on the surface of the sample base material as described in JIS R 3257 “Test method for wettability of substrate glass surface”. Made by measurement. However, in the case of a wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases. Therefore, in the case of a wafer having a concavo-convex pattern on the surface, the contact angle of the protective film 10 itself formed on the concavo-convex pattern surface cannot be accurately evaluated.
そこで、本実施例では前記薬液を表面が平滑なウェハに供して、ウェハ表面に保護膜を形成して、該保護膜を表面に凹凸パターン2が形成されたウェハ1の表面に形成された保護膜10とみなし、種々評価を行った。 Therefore, in this embodiment, the chemical solution is applied to a wafer having a smooth surface, a protective film is formed on the wafer surface, and the protective film is formed on the surface of the wafer 1 on which the uneven pattern 2 is formed. The film 10 was considered and various evaluations were performed.
[実施例1]
実施例1では、酸化ケイ素及び窒化ケイ素の処理に関する検討を行った。酸化ケイ素及び窒化ケイ素の表面が平滑なウェハとして、それぞれ表面が平滑なシリコンウェハ上に酸化ケイ素層を有する「SiO2膜付きシリコンウェハ」(表中でSiO2と表記)、及び、表面が平滑なシリコンウェハ上に窒化ケイ素層を有する「SiN膜付きシリコンウェハ」(表中でSiNと表記)を用いた。
[Example 1]
In Example 1, examination regarding the treatment of silicon oxide and silicon nitride was performed. “Silicon wafer with SiO 2 film” (indicated as SiO 2 in the table) having a silicon oxide layer on a silicon wafer having a smooth surface as a wafer having a smooth surface of silicon oxide and silicon nitride, and a smooth surface A “SiN film-attached silicon wafer” (expressed as SiN in the table) having a silicon nitride layer on a silicon wafer was used.
 詳細を下記に述べる。以下では、保護膜形成用薬液が供されたウェハの評価方法、該保護膜形成用薬液の調製、そして、ウェハに該保護膜形成用薬液を供した後の評価結果が述べられる。 Details are described below. In the following, a method for evaluating a wafer provided with a chemical solution for forming a protective film, preparation of the chemical solution for forming the protective film, and an evaluation result after providing the chemical solution for forming a protective film on the wafer are described.
〔本発明の保護膜形成用薬液が供されたウェハの評価方法〕
 本発明の保護膜形成用薬液が供されたウェハの評価方法として、以下の(1)~(3)の評価を行った。
[Method for Evaluating Wafer Provided with Chemical Solution for Forming Protective Film of the Present Invention]
The following evaluations (1) to (3) were performed as methods for evaluating a wafer provided with the chemical solution for forming a protective film of the present invention.
(1)ウェハ表面に形成された保護膜の接触角評価
保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角を接触角計(協和界面科学製:CA-X型)で測定し接触角とした。ここでは保護膜の接触角が65~115°の範囲であったものを合格とした。
(1) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the wafer surface on which the protective film is formed, and the angle between the water droplet and the wafer surface is measured by a contact angle meter (manufactured by Kyowa Interface Science: CA-X type) was used as the contact angle. Here, the protective film having a contact angle in the range of 65 to 115 ° was regarded as acceptable.
(2)保護膜の除去性
 以下の条件で低圧水銀灯のUV光をサンプルに1分間照射、撥水性保護膜除去工程における保護膜の除去性を評価した。照射後に水滴の接触角が10°以下となったものを合格とした。
(2) Removability of protective film The sample was irradiated with UV light from a low-pressure mercury lamp for 1 minute under the following conditions, and the removable property of the protective film in the water-repellent protective film removal step was evaluated. A sample in which the contact angle of water droplets was 10 ° or less after irradiation was regarded as acceptable.
  ・ランプ:セン特殊光源製PL2003N-10
  ・照度:15mW/cm2(光源からサンプルまでの距離は10mm)
(3)保護膜除去後のウェハの表面平滑性評価
 原子間力電子顕微鏡(セイコ-電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、中心線平均面粗さ:Ra(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。保護膜を除去した後のウェハ表面のRa値が1nm以下であれば、洗浄によってウェハ表面が浸食されていない、および、前記保護膜の残渣がウェハ表面にないとし、合格とした。
・ Lamp: PL 2003N-10 made by Sen Special Light Source
Illuminance: 15 mW / cm 2 (distance from light source to sample is 10 mm)
(3) Evaluation of surface smoothness of wafer after removal of protective film The surface was observed with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan), and the center line average surface roughness: Ra (nm) Asked. Note that Ra is a three-dimensional extension of the center line average roughness defined in JIS B 0601 to the measurement surface. “The absolute value of the deviation from the reference surface to the specified surface is averaged. The value was calculated by the following formula. If the Ra value on the wafer surface after removing the protective film was 1 nm or less, the wafer surface was not eroded by the cleaning, and no residue of the protective film was present on the wafer surface.
Figure JPOXMLDOC01-appb-M000014
ここで、XL、XR、YB、YTは、それぞれ、X座標、Y座標の測定範囲を示す。S0は、測定面が理想的にフラットであるとした時の面積であり、(XR-XL)×(YB-YT)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Z0は、測定面内の平均高さを表す。
Figure JPOXMLDOC01-appb-M000014
Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and has a value of (X R −X L ) × (Y B −Y T ). F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
[実施例1]
[実施例1-1]
(1)保護膜形成用薬液の調製
 保護膜形成剤としてノナフルオロヘキシルジメチルクロロシラン〔C49(CH22(CH32SiCl〕;1g、有機溶媒としてハイドロフルオロエーテル(スリーエム社製HFE-7100);96g、プロピレングリコールモノメチルエーテルアセテート(PGMEA);3gを混合し(前記有機溶媒を表1中でHFE7100/PGMEAと表記する)、約5分間撹拌して、保護膜形成用薬液の総量に対する保護膜形成剤の濃度(以降「保護膜形成剤濃度」と記載する)が1質量%の保護膜形成用薬液を得た。
[Example 1]
[Example 1-1]
(1) Preparation of chemical solution for forming protective film Nonafluorohexyldimethylchlorosilane [C 4 F 9 (CH 2 ) 2 (CH 3 ) 2 SiCl] as protective film forming agent; 1 g, hydrofluoroether (manufactured by 3M Co. HFE-7100); 96 g, propylene glycol monomethyl ether acetate (PGMEA); 3 g are mixed (the organic solvent is expressed as HFE7100 / PGMEA in Table 1), and the mixture is stirred for about 5 minutes. A protective film forming chemical solution having a concentration of the protective film forming agent with respect to the total amount (hereinafter referred to as “protective film forming agent concentration”) of 1% by mass was obtained.
(2)ウェハの洗浄
 平滑な酸化ケイ素膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するシリコンウェハ)を1質量%のフッ酸水溶液に2分間浸漬し、次いで純水に1分間、2-プロパノールに1分間浸漬した。また、LP-CVDで作製した窒化ケイ素膜付きシリコンウェハ(表面に厚さ50nmの窒化ケイ素層を有するシリコンウェハ)を1質量%のフッ酸水溶液に2分間浸漬し、次いで純水に1分間、28質量%アンモニア水:30質量%過酸化水素水:水を1:1:5の体積比で混合し、ホットプレートで液温を70℃とした洗浄液に1分間、純水に1分間、2-プロパノールに1分間浸漬した。
(2) Cleaning of wafer A silicon wafer with a smooth silicon oxide film (a silicon wafer having a thermal oxide film layer having a thickness of 1 μm on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes and then immersed in pure water for 1 minute. The sample was immersed in 2-propanol for 1 minute. Further, a silicon wafer with a silicon nitride film (a silicon wafer having a silicon nitride layer with a thickness of 50 nm on the surface) produced by LP-CVD is immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 minutes, and then in pure water for 1 minute. 28% by mass ammonia water: 30% by mass hydrogen peroxide water: water was mixed at a volume ratio of 1: 1: 5, and the temperature of the solution was adjusted to 70 ° C. on a hot plate for 1 minute, and pure water for 1 minute. -Soaked in propanol for 1 minute.
(3)ウェハ表面への保護膜形成用薬液による表面処理
 前記酸化ケイ素膜付きシリコンウェハ、及び窒化ケイ素膜付きシリコンウェハを、それぞれ、上記「(1)保護膜形成用薬液の調製」で調製した保護膜形成用薬液に20℃で1分間浸漬させた。その後、ウェハを2-プロパノールに1分間浸漬し、次いで、純水に1分間浸漬した。最後に、ウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface treatment with a chemical film for forming a protective film on the wafer surface The silicon wafer with a silicon oxide film and the silicon wafer with a silicon nitride film were prepared in the above-mentioned "(1) Preparation of chemical liquid for forming a protective film", respectively. It was immersed for 1 minute at 20 degreeC in the chemical | medical solution for protective film formation. Thereafter, the wafer was immersed in 2-propanol for 1 minute, and then immersed in pure water for 1 minute. Finally, the wafer was taken out from the pure water and air was blown to remove the pure water on the surface.
 得られた各ウェハを上記「保護膜形成用薬液が供されたウェハの評価方法」に記載した要領で評価したところ、表1に示すとおり、酸化ケイ素膜付きシリコンウェハでは表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は101°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。 Each wafer obtained was evaluated in the manner described in “Method for evaluating wafer provided with chemical for forming protective film”. As shown in Table 1, in silicon wafer with silicon oxide film, initial contact before surface treatment was performed. Although the angle was less than 10 °, the contact angle after the surface treatment was 101 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
 一方、窒化ケイ素膜付きシリコンウェハでは表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は94°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。 On the other hand, in the silicon wafer with a silicon nitride film, the initial contact angle before the surface treatment was less than 10 °, but the contact angle after the surface treatment was 94 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
 このように保護膜形成剤としてノナフルオロヘキシルジメチルクロロシラン〔C49CH22(CH32SiCl〕を用いると、表面に水酸基の多い酸化ケイ素膜付きシリコンウェハ、水酸基の少ない窒化ケイ素膜付きシリコンウェハのどちらに対しても良好な撥水性付与効果が得られ、効率的に洗浄が行えることを確認した。
Figure JPOXMLDOC01-appb-T000015
Thus, when nonafluorohexyldimethylchlorosilane [C 4 F 9 CH 2 ) 2 (CH 3 ) 2 SiCl] is used as a protective film forming agent, a silicon wafer with a silicon oxide film having many hydroxyl groups on its surface, silicon nitride having few hydroxyl groups It was confirmed that a good water repellency imparting effect was obtained for both of the silicon wafers with a film, and that the cleaning could be performed efficiently.
Figure JPOXMLDOC01-appb-T000015
 [実施例1-2~1-3]
 実施例1-1で用いた有機溶媒を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。なお、表1中で、CTFP/PGMEAは実施例1-1のHFE-7100の代わりに1-クロロ-3,3,3-トリフルオロプロペン(CTFP)を用いた有機溶媒を意味し、DCTFP/PGMEAは実施例1-1のHFE-7100の代わりにcis-1,2-ジクロロ-3,3,3-トリフルオロプロペン(DCTFP)を用いた有機溶媒を意味する。
[Examples 1-2 to 1-3]
The surface treatment of the wafer was performed by appropriately changing the organic solvent used in Example 1-1, and the evaluation was further performed. The results are shown in Table 1. In Table 1, CTFP / PGMEA means an organic solvent using 1-chloro-3,3,3-trifluoropropene (CTFP) instead of HFE-7100 of Example 1-1, and DCTFP / PGMEA means an organic solvent using cis-1,2-dichloro-3,3,3-trifluoropropene (DCTFP) instead of HFE-7100 in Example 1-1.
 [実施例1-4]
 保護膜形成剤としてブチルジメチルシリルジメチルアミン〔C49(CH32SiN(CH32〕;1g、有機溶媒としてPGMEA;98.9g、さらに触媒としてトリフルオロ酢酸〔CF3COOH〕;0.1gを用いて保護膜形成用薬液を作製した。前記保護膜形成剤の総量100質量%に対する前記触媒の添加量(以下、触媒濃度と記載する)は10質量%である。さらに、各ウェハの保護膜形成用薬液への浸漬時間を10分間とした。それ以外は、すべて実施例1-1と同じである。
[Example 1-4]
1 g of butyldimethylsilyldimethylamine [C 4 H 9 (CH 3 ) 2 SiN (CH 3 ) 2 ] as a protective film forming agent; 98.9 g of PGMEA as an organic solvent; and trifluoroacetic acid [CF 3 COOH] as a catalyst A protective film forming chemical was prepared using 0.1 g. The amount of the catalyst added to the total amount of the protective film forming agent of 100% by mass (hereinafter referred to as catalyst concentration) is 10% by mass. Furthermore, the immersion time of each wafer in the chemical solution for forming the protective film was set to 10 minutes. The rest is the same as Example 1-1.
 酸化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は87°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。 As shown in Table 1, the evaluation results of the silicon wafer with a silicon oxide film showed an excellent water repellency imparting effect with a contact angle of 87 ° after the surface treatment. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
 一方、窒化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は71°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。 On the other hand, as shown in Table 1, the evaluation results of the silicon wafer with the silicon nitride film showed a contact angle after the surface treatment of 71 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
 [実施例1-5~1-26]
 実施例1-4で用いた保護膜形成剤、保護膜形成剤濃度、触媒、触媒濃度、有機溶媒、各ウェハの保護膜形成用薬液への浸漬時間、及び、各ウェハの保護膜形成用薬液への浸漬温度を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表1に示す。なお、表1中で、C817(CH32SiN(CH32はオクチルジメチルシリルジメチルアミンを意味し、C817Si〔N(CH323はオクチルシリルトリスジメチルアミンを意味し、(CF3CO)2Oはトリフルオロ酢酸無水物を意味する。
[Examples 1-5 to 1-26]
Protective film forming agent used in Example 1-4, protective film forming agent concentration, catalyst, catalyst concentration, organic solvent, immersion time of each wafer in protective film forming chemical solution, and protective film forming chemical solution for each wafer The surface temperature of the wafer was changed by appropriately changing the immersion temperature in and evaluated. The results are shown in Table 1. In Table 1, C 8 H 17 (CH 3 ) 2 SiN (CH 3 ) 2 means octyldimethylsilyldimethylamine, and C 8 H 17 Si [N (CH 3 ) 2 ] 3 denotes octylsilyl tris. Dimethylamine means (CF 3 CO) 2 O means trifluoroacetic anhydride.
[比較例1-1]
 保護膜形成剤として、トリメチルクロロシラン〔(CH33SiCl〕;1gを用いた以外はすべて実施例1-1と同じとした。
[Comparative Example 1-1]
All were the same as Example 1-1 except that 1 g of trimethylchlorosilane [(CH 3 ) 3 SiCl]; 1 g was used as the protective film forming agent.
 酸化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は71°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。 As shown in Table 1, the evaluation results of the silicon wafer with a silicon oxide film showed a contact angle after the surface treatment of 71 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
 一方、窒化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は41°となり、撥水性付与効果が充分では無かった。 On the other hand, as shown in Table 1, the evaluation result of the silicon wafer with the silicon nitride film was 41 ° after the surface treatment, and the water repellency imparting effect was not sufficient.
[比較例1-2]
 保護膜形成剤として、トリメチルシリルジメチルアミン〔(CH33SiN(CH32〕;1gを用いた以外はすべて実施例1-6と同じとした。
[Comparative Example 1-2]
The same procedure as in Example 1-6 except that 1 g of trimethylsilyldimethylamine [(CH 3 ) 3 SiN (CH 3 ) 2 ]; 1 g was used as the protective film forming agent.
 酸化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は91°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。 As shown in Table 1, the evaluation result of the silicon wafer with the silicon oxide film was 91 ° after the surface treatment, and showed an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
 一方、窒化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は60°となり、撥水性付与効果が充分では無かった。 On the other hand, as shown in Table 1, the evaluation result of the silicon wafer with the silicon nitride film was that the contact angle after the surface treatment was 60 °, and the water repellency imparting effect was not sufficient.
[比較例1-3]
 保護膜形成剤として、ビストリフルオロプロピルジメチルシラザン〔〔CF3(CH22(CH32Si〕2NH〕;1gを用いた以外はすべて実施例1-6と同じとした。
[Comparative Example 1-3]
The same procedure as in Example 1-6 except that 1 g of bistrifluoropropyldimethylsilazane [[CF 3 (CH 2 ) 2 (CH 3 ) 2 Si] 2 NH]; 1 g] was used as the protective film forming agent.
 酸化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は96°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性保護膜の残渣は残らないことが確認できた。 As shown in Table 1, the evaluation results of the silicon wafer with a silicon oxide film showed a contact angle after the surface treatment of 96 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent protective film remained after UV irradiation.
 一方、窒化ケイ素膜付きシリコンウェハの評価結果は表1に示すとおり、表面処理後の接触角は62°となり、撥水性付与効果が充分では無かった。 On the other hand, as shown in Table 1, the evaluation result of the silicon wafer with the silicon nitride film was 62 ° after the surface treatment, and the water repellency imparting effect was not sufficient.
このように比較例1-1~1-3の化合物では、表面に水酸基の多い酸化ケイ素膜付きシリコンウェハの場合には良好な撥水性付与効果が得られたが、表面に水酸基の少ない窒化ケイ素膜付きシリコンウェハの場合には十分な撥水性付与効果が得られず、ウェハ種による水酸基の数に撥水性付与効果が大きく依存した。
[実施例2]
実施例2では、ポリシリコンの処理に関する検討を行った。ポリシリコンの表面が平滑なウェハとして、表面が平滑なシリコンウェハを用いた。本発明の保護膜形成用薬液が供されたウェハの評価方法としては実施例1で用いた方法と同様である。本発明の撥水性保護膜形成薬液を用いて洗浄されたウェハの評価方法として、以下の(1)~(3)の評価を行った。
Thus, in the compounds of Comparative Examples 1-1 to 1-3, a good water repellency-imparting effect was obtained in the case of a silicon wafer with a silicon oxide film having many hydroxyl groups on the surface, but silicon nitride having few hydroxyl groups on the surface. In the case of a silicon wafer with a film, a sufficient water repellency imparting effect could not be obtained, and the water repellency imparting effect greatly depended on the number of hydroxyl groups depending on the wafer type.
[Example 2]
In Example 2, a study on the treatment of polysilicon was performed. A silicon wafer having a smooth surface was used as the wafer having a smooth polysilicon surface. The method for evaluating a wafer provided with the chemical solution for forming a protective film of the present invention is the same as the method used in Example 1. The following evaluations (1) to (3) were performed as evaluation methods for wafers cleaned using the water-repellent protective film-forming chemical solution of the present invention.
(1)ウェハ表面に形成された保護膜の接触角評価
 保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA-X型)で測定した。ここでは保護膜の接触角が65~115°の範囲であったものを合格とした。
(1) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the surface of the wafer on which the protective film is formed, and the angle (contact angle) formed between the water droplet and the wafer surface is measured by a contact angle meter (Kyowa). It was measured by Interface Science: CA-X type. Here, the protective film having a contact angle in the range of 65 to 115 ° was regarded as acceptable.
(2)保護膜の除去性
以下の条件で低圧水銀灯のUV光をサンプルに1分間照射した。照射後に水滴の接触角が10°以下となったものを、前記保護膜が除去されたと判断して、合格とした。
  ・ランプ:セン特殊光源製PL2003N-10
  ・照度:15mW/cm2(光源からサンプルまでの距離は10mm)
(2) Removability of protective film The sample was irradiated with UV light from a low-pressure mercury lamp for 1 minute under the following conditions. When the contact angle of water droplets was 10 ° or less after irradiation, it was judged that the protective film was removed, and the result was accepted.
・ Lamp: PL 2003N-10 made by Sen Special Light Source
Illuminance: 15 mW / cm 2 (distance from light source to sample is 10 mm)
(3)保護膜除去後のウェハの表面平滑性評価
原子間力電子顕微鏡(セイコ-電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、ウェハ洗浄前後の表面中心線平均面粗さ:Ra(nm)の差ΔRa(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。
Figure JPOXMLDOC01-appb-M000016
ここで、XL、XR、YB、YTは、それぞれ、X座標、Y座標の測定範囲を示す。S0は、測定面が理想的にフラットであるとした時の面積であり、(XR-XL)×(YB-YT)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Z0は、測定面内の平均高さを表す。
(3) Evaluation of surface smoothness of wafer after removal of protective film The surface was observed with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan), and the surface centerline average surface roughness before and after wafer cleaning: The difference ΔRa (nm) of Ra (nm) was determined. Note that Ra is a three-dimensional extension of the center line average roughness defined in JIS B 0601 to the measurement surface. “The absolute value of the deviation from the reference surface to the specified surface is averaged. The value was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000016
Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and has a value of (X R −X L ) × (Y B −Y T ). F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
 保護膜形成前のウェハ表面のRa値、及び保護膜を除去した後のウェハ表面のRa値を測定し、両者の差(ΔRa)が±1nm以内であれば、洗浄によってウェハ表面が浸食されていない、および、前記薬液の残渣がウェハ表面にないとし、合格とした。
 [実施例2-1]
(1)撥水性保護膜形成薬液の調製
 保護膜形成剤としてオクチルジメチルシリルジメチルアミン〔C8H17(CH3)2SiN(CH3)2〕;3g、有機溶媒としてPGMEA;96.9g、さらに触媒としてトリフルオロ酢酸〔CF3COOH〕;0.1gを用いて保護膜形成用薬液を作製した。
(2)シリコンウェハの洗浄
 平滑なシリコンウェハを1質量%のフッ酸水溶液に1分間浸漬し、次いで水系洗浄液洗浄工程として純水に1分間浸漬した。さらに、28%-NH3/30%-H2O2/H2O=1/1/5(体積比)で混合し、70℃に加温した後、1分間浸漬し、純水に1分間浸漬した。その後、該ウェハを2-プロパノール(以降、「iPA」と記載することがある)に1分間浸漬した後、プロピレングリコールモノメチルエーテルアセテート(以降、「PGMEA」と記載することがある)に1分間浸漬した。
(3)ウェハ表面への撥水性洗浄液による表面処理
 「(2)シリコンウェハの洗浄」後のシリコンウェハを、上記「(1)撥水性保護膜形成薬液の調製」で調製した保護膜形成薬液に20℃で1分間浸漬させた。その後、該ウェハをiPAに10秒間浸漬した。最後に、該ウェハをiPAから取出し、エアーを吹き付けて、表面のiPAを除去した。
 得られたシリコンウェハを上記「本発明の撥水性保護膜形成薬液を用いて洗浄されたウェハの評価方法」に記載した要領で評価したところ、表2に示す通り、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角は98°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。
さらに、UV照射によるウェハのΔRa値は±0.5nm以内であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。
 [実施例2-2~3-4]
実施例2-1で用いた触媒、保護膜形成工程の時間を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。(CF3CO)2Oは、トリフルオロ酢酸無水物を示す。結果を表2に示す。
Measure the Ra value of the wafer surface before forming the protective film and the Ra value of the wafer surface after removing the protective film. If the difference (ΔRa) is within ± 1 nm, the wafer surface is eroded by cleaning. It was determined that there was no residue of the chemical solution on the wafer surface, and the test was accepted.
[Example 2-1]
(1) Preparation of water-repellent protective film-forming chemical solution Octyldimethylsilyldimethylamine [C8H17 (CH3) 2SiN (CH3) 2] as protective film-forming agent; 3 g, PGMEA as organic solvent; 96.9 g, and trifluoroacetic acid as catalyst [CF3COOH]: 0.1 g was used to prepare a protective film-forming chemical solution.
(2) Cleaning of silicon wafer A smooth silicon wafer was immersed in a 1% by mass hydrofluoric acid aqueous solution for 1 minute, and then immersed in pure water for 1 minute as an aqueous cleaning liquid cleaning step. Further, 28% -NH3 / 30% -H2O2 / H2O = 1/1/5 (volume ratio) was mixed, heated to 70 ° C., immersed for 1 minute, and immersed in pure water for 1 minute. Thereafter, the wafer was immersed in 2-propanol (hereinafter sometimes referred to as “iPA”) for 1 minute, and then immersed in propylene glycol monomethyl ether acetate (hereinafter sometimes referred to as “PGMEA”) for 1 minute. did.
(3) Surface treatment of wafer surface with water-repellent cleaning liquid The silicon wafer after “(2) Cleaning of silicon wafer” is used as the protective film-forming chemical liquid prepared in “(1) Preparation of water-repellent protective film-forming chemical liquid”. It was immersed at 20 ° C. for 1 minute. Thereafter, the wafer was immersed in iPA for 10 seconds. Finally, the wafer was taken out from the iPA and air was blown to remove the surface iPA.
When the obtained silicon wafer was evaluated in the manner described in the above-mentioned “Evaluation Method of Wafer Washed Using Water-Repellent Protective Film Forming Chemical Solution of the Present Invention”, as shown in Table 2, before the formation of the water-repellent protective film, Although the initial contact angle was less than 10 °, the contact angle after the formation of the protective film was 98 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed.
Further, the ΔRa value of the wafer by UV irradiation was within ± 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
[Examples 2-2 to 3-4]
The surface treatment of the wafer was carried out by appropriately changing the time of the catalyst and protective film forming step used in Example 2-1, and further evaluated. (CF 3 CO) 2 O represents trifluoroacetic anhydride. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
[実施例3]
実施例3では、窒化チタンの処理に関する検討を行った。窒化チタンの表面が平滑なウェハとして、表面が平滑なシリコンウェハ上に窒化チタン層を有する窒化チタン膜付きウェハ(以降、「TiNウェハ」と記載することがある)を用いた。本発明の撥水性保護膜形成薬液を用いて洗浄されたウェハの評価方法として、以下の(1)~(3)の評価を行った。
[Example 3]
In Example 3, a study on the treatment of titanium nitride was performed. As the wafer having a smooth titanium nitride surface, a wafer with a titanium nitride film having a titanium nitride layer on a silicon wafer having a smooth surface (hereinafter sometimes referred to as “TiN wafer”) was used. The following evaluations (1) to (3) were performed as evaluation methods for wafers cleaned using the water-repellent protective film-forming chemical solution of the present invention.
(1)ウェハ表面に形成された保護膜の接触角評価
 保護膜が形成されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA-X型)で測定した。ここでは保護膜の接触角が65~115°の範囲であったものを合格とした。
(1) Contact angle evaluation of the protective film formed on the wafer surface About 2 μl of pure water is placed on the surface of the wafer on which the protective film is formed, and the angle (contact angle) formed between the water droplet and the wafer surface is measured by a contact angle meter (Kyowa). It was measured by Interface Science: CA-X type. Here, the protective film having a contact angle in the range of 65 to 115 ° was regarded as acceptable.
(2)保護膜の除去性
以下の条件で低圧水銀灯のUV光をサンプルに1分間照射した。照射後に水滴の接触角が10°以下となったものを、前記保護膜が除去されたと判断して、合格とした。
  ・ランプ:セン特殊光源製PL2003N-10
  ・照度:15mW/cm2(光源からサンプルまでの距離は10mm)
(2) Removability of protective film The sample was irradiated with UV light from a low-pressure mercury lamp for 1 minute under the following conditions. When the contact angle of water droplets was 10 ° or less after irradiation, it was judged that the protective film was removed, and the result was accepted.
・ Lamp: PL 2003N-10 made by Sen Special Light Source
Illuminance: 15 mW / cm 2 (distance from light source to sample is 10 mm)
(3)保護膜除去後のウェハの表面平滑性評価
原子間力電子顕微鏡(セイコ-電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、ウェハ洗浄前後の表面中心線平均面粗さ:Ra(nm)の差ΔRa(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。
Figure JPOXMLDOC01-appb-M000018
ここで、XL、XR、YB、YTは、それぞれ、X座標、Y座標の測定範囲を示す。S0は、測定面が理想的にフラットであるとした時の面積であり、(XR-XL)×(YB-YT)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Z0は、測定面内の平均高さを表す。
(3) Evaluation of surface smoothness of wafer after removal of protective film The surface was observed with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan), and the surface centerline average surface roughness before and after wafer cleaning: The difference ΔRa (nm) of Ra (nm) was determined. Note that Ra is a three-dimensional extension of the center line average roughness defined in JIS B 0601 to the measurement surface. “The absolute value of the deviation from the reference surface to the specified surface is averaged. The value was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000018
Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and has a value of (X R −X L ) × (Y B −Y T ). F (X, Y) represents the height at the measurement point (X, Y), and Z 0 represents the average height in the measurement plane.
 保護膜形成前のウェハ表面のRa値、及び保護膜を除去した後のウェハ表面のRa値を測定し、両者の差(ΔRa)が±1nm以内であれば、洗浄によってウェハ表面が浸食されていない、および、前記薬液の残渣がウェハ表面にないとし、合格とした。 The Ra value of the wafer surface before forming the protective film and the Ra value of the wafer surface after removing the protective film are measured. If the difference (ΔRa) is within ± 1 nm, the wafer surface is eroded by cleaning. It was determined that there was no residue of the chemical solution on the wafer surface, and the test was accepted.
 [実施例3-1]
(1)撥水性保護膜形成薬液の調製
 撥水性保護膜形成剤としてノナフルオロヘキシルジメチルクロロシラン〔C49(CH22(CH32SiCl〕;10g、有機溶媒としてハイドロフルオロエーテル(3M製HFE-7100);90gを混合し、約5分間撹拌して、保護膜形成薬液の総量に対する保護膜形成剤の濃度(以降「保護膜形成剤濃度」と記載する)が10質量%の保護膜形成薬液を得た。
[Example 3-1]
(1) Preparation of water repellent protective film forming chemical solution Nonafluorohexyldimethylchlorosilane [C 4 F 9 (CH 2 ) 2 (CH 3 ) 2 SiCl] as a water repellent protective film forming agent; 10 g, hydrofluoroether ( 3M HFE-7100); 90 g was mixed and stirred for about 5 minutes. The concentration of the protective film forming agent relative to the total amount of the protective film forming chemical solution (hereinafter referred to as “protective film forming agent concentration”) was 10% by mass. A protective film forming chemical was obtained.
(2)TiNウェハの洗浄
 平滑なTiNウェハ(表面に厚さ50nmの窒化チタン層を有するシリコンウェハ)を1質量%のフッ酸水溶液に1分間浸漬し、次いで水系洗浄液洗浄工程として純水に1分間浸漬した。その後、該ウェハを2-プロパノール(以降、「iPA」と記載することがある)に1分間浸漬した後、プロピレングリコールモノメチルエーテルアセテート(以降、「PGMEA」と記載することがある)に1分間浸漬した。
(2) Cleaning of TiN wafer A smooth TiN wafer (a silicon wafer having a titanium nitride layer with a thickness of 50 nm on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution for 1 minute, and then washed with pure water as an aqueous cleaning solution cleaning step. Immerse for a minute. Thereafter, the wafer was immersed in 2-propanol (hereinafter sometimes referred to as “iPA”) for 1 minute, and then immersed in propylene glycol monomethyl ether acetate (hereinafter sometimes referred to as “PGMEA”) for 1 minute. did.
(3)ウェハ表面への撥水性洗浄液による表面処理
 「(2)TiNウェハの洗浄」後のTiNウェハを、上記「(1)保護膜形成薬液の調製」で調製した保護膜形成薬液に20℃で1分間浸漬させた。その後、該TiNウェハをiPAに10秒間浸漬した。最後に、該TiNウェハをiPAから取出し、エアーを吹き付けて、表面のiPAを除去した。
(3) Surface treatment of wafer surface with water-repellent cleaning solution The TiN wafer after “(2) Cleaning of TiN wafer” is applied to the protective film forming chemical solution prepared in the above “(1) Preparation of protective film forming chemical solution” at 20 ° C. Soaked for 1 minute. Thereafter, the TiN wafer was immersed in iPA for 10 seconds. Finally, the TiN wafer was taken out from the iPA and air was blown to remove the surface iPA.
 得られたTiNウェハを上記「本発明の撥水性保護膜形成薬液を用いて洗浄されたウェハの評価方法」に記載した要領で評価したところ、表3に示す通り、撥水性保護膜形成前の初期接触角が10°未満であったものが、保護膜形成後の接触角は91°となり、優れた撥水性付与効果を示した。また、UV照射後の接触角は10°未満であり保護膜は除去できた。さらに、UV照射によるウェハのΔRa値は±0.5nm以内であり、洗浄時にウェハは侵食されず、さらにUV照射後に保護膜の残渣は残らないことが確認できた。 When the obtained TiN wafer was evaluated in the manner described in the above-mentioned “Evaluation Method of Wafer Washed Using Water-Repellent Protective Film Forming Chemical Solution of the Present Invention”, as shown in Table 3, before forming the water-repellent protective film. Although the initial contact angle was less than 10 °, the contact angle after forming the protective film was 91 °, indicating an excellent water repellency imparting effect. Moreover, the contact angle after UV irradiation was less than 10 °, and the protective film could be removed. Further, the ΔRa value of the wafer by UV irradiation was within ± 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no protective film residue remained after UV irradiation.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 [実施例3-2~3-4]
 実施例2-1で用いた保護膜形成剤、有機溶媒、保護膜形成剤濃度、触媒、保護膜形成工程の時間を適宜変更して、ウェハの表面処理を行い、さらにその評価を行った。結果を表3に示す。なお、触媒濃度は、保護膜形成剤の総量100質量%に対する質量%濃度である。
[Examples 3-2 to 3-4]
The protective film forming agent, organic solvent, protective film forming agent concentration, catalyst, and protective film forming process time used in Example 2-1 were appropriately changed to perform surface treatment of the wafer and further evaluated. The results are shown in Table 3. The catalyst concentration is a mass% concentration based on 100% by mass of the total amount of the protective film forming agent.
 [比較例3-1]
保護膜形成薬液として、N,N-ジメチルアミノトリメチルシラン〔(CH33SiN(CH32〕;10g、PGMEA;90gを混合したものを用いた以外は、実施例2-1と同じである。結果、表3に示す通りTiNウェハの接触角は18°となり、撥水性付与効果は得られなかった
[Comparative Example 3-1]
The same as Example 2-1 except that N, N-dimethylaminotrimethylsilane [(CH 3 ) 3 SiN (CH 3 ) 2 ]; 10 g, PGMEA; 90 g was used as the protective film forming chemical. It is. As a result, as shown in Table 3, the contact angle of the TiN wafer was 18 °, and the water repellency imparting effect was not obtained.
 本発明の保護膜形成剤、及び、該剤を含む保護膜形成用薬液、及び、該薬液を用いたウェハの洗浄方法は、電子産業の集積回路分野において、ウェハの種類に応じた表面の洗浄条件の変更や工程の追加を低減できるため、製造効率の向上に貢献する。数種のウェハを扱う場合はではとりわけ効率的な製造が可能である。 The protective film forming agent of the present invention, the chemical solution for forming the protective film containing the agent, and the wafer cleaning method using the chemical solution are used for cleaning the surface according to the type of wafer in the field of integrated circuits in the electronics industry. Because it can reduce the change of conditions and the addition of processes, it contributes to the improvement of manufacturing efficiency. Particularly efficient production is possible when dealing with several types of wafers.
1  ウェハ
2  ウェハ表面の凹凸パターン
3  パターンの凸部
4  パターンの凹部
5  凹部の幅
6  凸部の高さ
7  凸部の幅
8  凹部4に保持された撥水性保護膜形成用薬液
9  凹部4に保持された液体
10 撥水性保護膜
DESCRIPTION OF SYMBOLS 1 Wafer 2 Uneven | corrugated pattern on wafer surface 3 Convex part 4 Pattern concave part 5 Concave width 6 Convex height 7 Convex width 8 Water repellent protective film forming chemical 9 held in the concave part 4 In the concave part 4 Retained liquid 10 water repellent protective film

Claims (14)

  1.  表面に凹凸パターンを有し、該凹凸パターンの少なくとも凹部表面にケイ素元素を含む物質を含むウェハ、又は、該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[1]で表されるケイ素化合物である。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1は、それぞれ互いに独立して、水素基、又は炭素数が1~18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したR1の合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
    A wafer having a concavo-convex pattern on the surface and containing a substance containing silicon element on at least the concave surface of the concavo-convex pattern, or at least a part of the concave surface of the concavo-convex pattern is titanium, titanium nitride, tungsten, aluminum, copper, tin , A water repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer when cleaning a wafer containing at least one substance selected from the group consisting of tantalum nitride and ruthenium, It is a silicon compound represented by the following general formula [1].
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
  2.  表面に凹凸パターンを有し、該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[1]で表されるケイ素化合物である。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1は、それぞれ互いに独立して、水素基、又は炭素数が1~18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したR1の合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
    The agent is a water-repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer at the time of cleaning a wafer having a concave / convex pattern on the surface and containing silicon nitride on at least the concave surface of the concave / convex pattern. Is a silicon compound represented by the following general formula [1].
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
  3.  表面に凹凸パターンを有し、該凹凸パターンの少なくとも凹部表面にチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄時に、前記ウェハの少なくとも凹部表面に保護膜を形成するための撥水性保護膜形成剤であり、前記剤が下記一般式[1]で表されるケイ素化合物である。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R1は、それぞれ互いに独立して、水素基、又は炭素数が1~18の無置換もしくはハロゲン原子が置換した炭化水素基であり、それぞれ互いに独立したR1の合計炭素数は、6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数である。]
    Cleaning a wafer having a concavo-convex pattern on the surface, and containing at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on at least the concave surface of the concavo-convex pattern Sometimes, it is a water repellent protective film forming agent for forming a protective film on at least the concave surface of the wafer, and the agent is a silicon compound represented by the following general formula [1].
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 1 s are each independently a hydrogen group or an unsubstituted or halogenated hydrocarbon group having 1 to 18 carbon atoms, and the total carbon number of R 1 s that are independent of each other is 6 or more, and X are each independently a monovalent functional group in which the element bonded to the silicon element is nitrogen, a monovalent functional group in which the element bonded to the silicon element is oxygen, and halogen And at least one group selected from the group, a is an integer of 1 to 3. ]
  4. 一般式[1]で表されるケイ素化合物が、下記一般式[4]で表される、請求項1乃至請求項3のいずれかに記載の撥水性保護膜形成剤。
    Figure JPOXMLDOC01-appb-C000004
    [式中、R3は、それぞれ互いに独立して、炭素数が1~18の1以上の水素元素がフッ素元素に置換された炭化水素基、R4は、それぞれ互いに独立して、水素基、又は炭素数が1~18の炭化水素基であり、式[4]のR3、及びR4中に含まれる炭素数の合計が6以上であり、Xは、それぞれ互いに独立して、ケイ素元素と結合する元素が窒素である1価の官能基、ケイ素元素と結合する元素が酸素である1価の官能基、及び、ハロゲン基から選ばれる少なくとも1つの基であり、aは1~3の整数、bは0~2の整数であり、aとbの合計は1~3である。]
    The water repellent protective film forming agent according to any one of claims 1 to 3, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [4].
    Figure JPOXMLDOC01-appb-C000004
    [In the formula, R 3 are each independently a hydrocarbon group in which one or more hydrogen elements having 1 to 18 carbon atoms are substituted with fluorine elements; R 4 are each independently a hydrogen group; Or a hydrocarbon group having 1 to 18 carbon atoms, the total number of carbon atoms contained in R 3 and R 4 of the formula [4] is 6 or more, and X is independently of each other a silicon element At least one group selected from a monovalent functional group in which the element bonded to nitrogen is a monovalent functional group in which the element bonded to the silicon element is oxygen, and a halogen group, and a is 1 to 3 An integer, b is an integer of 0-2, and the sum of a and b is 1-3. ]
  5.  一般式[1]で表されるケイ素化合物が下記一般式[2]で表される、請求項1乃至請求項3のいずれかに記載の撥水性保護膜形成剤。
    Figure JPOXMLDOC01-appb-C000005
    [式中、R1、Xはそれぞれ一般式[1]と同様である。]
    The water repellent protective film forming agent according to any one of claims 1 to 3, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [2].
    Figure JPOXMLDOC01-appb-C000005
    [Wherein R 1 and X are the same as in general formula [1]. ]
  6.  一般式[1]で表されるケイ素化合物が下記一般式[3]で表される、請求項1乃至請求項3のいずれかに記載の撥水性保護膜形成剤。
    Figure JPOXMLDOC01-appb-C000006
    [式中、R2は炭素数が4~18の無置換、もしくはハロゲン原子が置換した炭化水素基であり、Xは一般式[1]と同様である。]
    The water repellent protective film forming agent according to any one of claims 1 to 3, wherein the silicon compound represented by the general formula [1] is represented by the following general formula [3].
    Figure JPOXMLDOC01-appb-C000006
    [Wherein R 2 represents an unsubstituted or substituted hydrocarbon group having 4 to 18 carbon atoms, and X is the same as in general formula [1]. ]
  7. 前記ケイ素化合物中のR1、R2、又は、R3が、5以上のフッ素原子を含有している、請求項1乃至請求項6のいずれかに記載の撥水性保護膜形成剤。 The water repellent protective film forming agent according to any one of claims 1 to 6, wherein R 1 , R 2 , or R 3 in the silicon compound contains 5 or more fluorine atoms.
  8.  請求項1乃至請求項7のいずれかに記載の撥水性保護膜形成剤を含有する撥水性保護膜形成用薬液。 A chemical solution for forming a water-repellent protective film, comprising the water-repellent protective film-forming agent according to any one of claims 1 to 7.
  9.  酸を含有する、請求項8に記載の撥水性保護膜形成用薬液。 The chemical solution for forming a water repellent protective film according to claim 8, comprising an acid.
  10.  前記撥水性保護膜形成剤が、該撥水性保護膜形成用薬液の総量100質量%に対して0.1~50質量%となるように混合されてなる、請求項8又は請求項9に記載の撥水性保護膜形成用薬液。 10. The water repellent protective film forming agent according to claim 8, wherein the water repellent protective film forming agent is mixed so that the water repellent protective film forming chemical solution is 0.1 to 50% by mass with respect to a total amount of 100% by mass. Chemical solution for forming a water-repellent protective film.
  11.  表面に凹凸パターンを形成されたウェハにおいて該凹凸パターンの少なくとも凹部表面にケイ素元素を含む物質を含むウェハ、又は、該凹凸パターンの少なくとも凹部表面の一部がチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハの洗浄方法であって、以下に示す工程、
      前記ウェハ表面を水系洗浄液で洗浄する、水系洗浄液洗浄工程、
      前記ウェハの少なくとも凹部に撥水性保護膜形成用薬液を保持し、該凹部表面に撥水性保護膜を形成する、撥水性保護膜形成工程、
      ウェハ表面の液体を除去する、液体除去工程、
      前記凹部表面から撥水性保護膜を除去する、撥水性保護膜除去工程、
    を含み、撥水性保護膜形成工程において請求項8乃至請求項10のいずれかに記載の撥水性保護膜形成用薬液を用いる。
    In a wafer having a concavo-convex pattern formed on the surface, a wafer containing a substance containing silicon element on at least the concave surface of the concavo-convex pattern, or at least a part of the concave surface of the concavo-convex pattern is titanium, titanium nitride, tungsten, aluminum, copper A method for cleaning a wafer containing at least one substance selected from the group consisting of tin, tantalum nitride, and ruthenium, comprising:
    Cleaning the wafer surface with an aqueous cleaning liquid, an aqueous cleaning liquid cleaning step;
    A water-repellent protective film forming step of holding a water-repellent protective film-forming chemical in at least the concave portion of the wafer, and forming a water-repellent protective film on the concave surface;
    A liquid removal process for removing liquid on the wafer surface;
    Removing the water-repellent protective film from the concave surface, a water-repellent protective film removing step,
    The chemical solution for forming a water-repellent protective film according to any one of claims 8 to 10 is used in the step of forming a water-repellent protective film.
  12.  前記ウェハが、該凹凸パターンの少なくとも凹部表面に窒化ケイ素を含むウェハである、請求項11に記載のウェハの洗浄方法。 12. The method for cleaning a wafer according to claim 11, wherein the wafer is a wafer containing silicon nitride on at least a concave surface of the concave / convex pattern.
  13.  前記ウェハが、該凹凸パターンの少なくとも凹部表面にチタン、窒化チタン、タングステン、アルミニウム、銅、スズ、窒化タンタル、及びルテニウムからなる群から選ばれる少なくとも1種の物質を含むウェハである、請求項11に記載のウェハの洗浄方法。 The wafer includes at least one substance selected from the group consisting of titanium, titanium nitride, tungsten, aluminum, copper, tin, tantalum nitride, and ruthenium on at least a concave surface of the concave / convex pattern. 2. A method for cleaning a wafer according to 1.
  14. 撥水性保護膜除去工程が、ウェハ表面を光照射すること、ウェハを加熱すること、ウェハ表面をプラズマ照射すること、ウェハ表面をオゾン曝露すること、及び、ウェハをコロナ放電することから選ばれる少なくとも1つの処理方法で行われる、請求項11乃至請求項13のいずれかに記載のウェハの洗浄方法。 The water repellent protective film removing step is at least selected from irradiating the wafer surface with light, heating the wafer, irradiating the wafer surface with plasma, exposing the wafer surface to ozone, and corona discharging the wafer. The wafer cleaning method according to claim 11, wherein the wafer cleaning method is performed by one processing method.
PCT/JP2011/064370 2010-06-28 2011-06-23 Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution WO2012002243A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180032637.3A CN102971836B (en) 2010-06-28 2011-06-23 Water repellency protecting film forming agent, water repellency protecting film formation chemical solution and use the cleaning method of wafer of this chemical solution
SG2012093423A SG186761A1 (en) 2010-06-28 2011-06-23 Water repellent protective film forming agent, liquid chemical for forming water repellent protective film, and wafer cleaning method using liquid chemical
KR1020157004348A KR101572583B1 (en) 2010-06-28 2011-06-23 Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
KR1020137002349A KR20130046431A (en) 2010-06-28 2011-06-23 Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
US13/667,236 US20130146100A1 (en) 2010-06-28 2012-11-02 Water Repellent Protective Film Forming Agent, Liquid Chemical for Forming Water Repellent Protective Film, and Wafer Cleaning Method Using Liquid Chemical

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010146655 2010-06-28
JP2010-146655 2010-06-28
JP2011040118A JP5712670B2 (en) 2011-02-25 2011-02-25 Water repellent protective film forming chemical
JP2011-040118 2011-02-25
JP2011108634A JP5716527B2 (en) 2010-06-28 2011-05-13 Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
JP2011-108634 2011-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/667,236 Continuation US20130146100A1 (en) 2010-06-28 2012-11-02 Water Repellent Protective Film Forming Agent, Liquid Chemical for Forming Water Repellent Protective Film, and Wafer Cleaning Method Using Liquid Chemical

Publications (1)

Publication Number Publication Date
WO2012002243A1 true WO2012002243A1 (en) 2012-01-05

Family

ID=45401961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064370 WO2012002243A1 (en) 2010-06-28 2011-06-23 Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution

Country Status (1)

Country Link
WO (1) WO2012002243A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197638A (en) * 2013-03-29 2014-10-16 東京エレクトロン株式会社 Substrate processing method, substrate processing device, and storage medium
CN110993621A (en) * 2019-12-12 2020-04-10 深圳市华星光电半导体显示技术有限公司 Array substrate and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077072A (en) * 1999-09-08 2001-03-23 Sony Corp Substrate cleaning method
JP2005244203A (en) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd Semiconductor device, tv set, and manufacturing methods thereof
JP2008277748A (en) * 2007-03-30 2008-11-13 Renesas Technology Corp Method for forming resist pattern, and semiconductor device manufactured by the method
JP2010114414A (en) * 2008-06-16 2010-05-20 Toshiba Corp Method of treating surface of semiconductor substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077072A (en) * 1999-09-08 2001-03-23 Sony Corp Substrate cleaning method
JP2005244203A (en) * 2004-01-26 2005-09-08 Semiconductor Energy Lab Co Ltd Semiconductor device, tv set, and manufacturing methods thereof
JP2008277748A (en) * 2007-03-30 2008-11-13 Renesas Technology Corp Method for forming resist pattern, and semiconductor device manufactured by the method
JP2010114414A (en) * 2008-06-16 2010-05-20 Toshiba Corp Method of treating surface of semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197638A (en) * 2013-03-29 2014-10-16 東京エレクトロン株式会社 Substrate processing method, substrate processing device, and storage medium
CN110993621A (en) * 2019-12-12 2020-04-10 深圳市华星光电半导体显示技术有限公司 Array substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6032338B2 (en) Chemical solution for protective film formation
JP5533178B2 (en) Silicon wafer cleaning agent
JP5482192B2 (en) Silicon wafer cleaning agent
JP5708191B2 (en) Chemical solution for protective film formation
JP5446848B2 (en) Silicon wafer cleaning agent
US9748092B2 (en) Liquid chemical for forming protecting film
US9481858B2 (en) Silicon wafer cleaning agent
WO2012002145A1 (en) Chemical solution for forming water-repellent protective film
JP2012015335A (en) Chemical for forming protective film, and cleaning method of wafer surface
KR101572583B1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP5716527B2 (en) Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
WO2012002243A1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP5678720B2 (en) Wafer cleaning method
WO2012002200A1 (en) Wafer cleaning method
JP5712670B2 (en) Water repellent protective film forming chemical
JP6098741B2 (en) Wafer cleaning method
WO2010084826A1 (en) Silicon wafer cleaning agent
WO2013115021A1 (en) Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032637.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137002349

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11800708

Country of ref document: EP

Kind code of ref document: A1