[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5533178B2 - Silicon wafer cleaning agent - Google Patents

Silicon wafer cleaning agent Download PDF

Info

Publication number
JP5533178B2
JP5533178B2 JP2010094696A JP2010094696A JP5533178B2 JP 5533178 B2 JP5533178 B2 JP 5533178B2 JP 2010094696 A JP2010094696 A JP 2010094696A JP 2010094696 A JP2010094696 A JP 2010094696A JP 5533178 B2 JP5533178 B2 JP 5533178B2
Authority
JP
Japan
Prior art keywords
water
repellent
cleaning liquid
silicon wafer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010094696A
Other languages
Japanese (ja)
Other versions
JP2010272852A (en
Inventor
創一 公文
崇 齋尾
忍 荒田
秀寿 七井
佳則 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2010094696A priority Critical patent/JP5533178B2/en
Priority to SG2011065182A priority patent/SG174322A1/en
Priority to KR1020117026295A priority patent/KR101361203B1/en
Priority to PCT/JP2010/057008 priority patent/WO2010123001A1/en
Priority to TW099112885A priority patent/TWI482854B/en
Priority to US12/898,185 priority patent/US9053924B2/en
Publication of JP2010272852A publication Critical patent/JP2010272852A/en
Priority to US14/136,381 priority patent/US9281178B2/en
Application granted granted Critical
Publication of JP5533178B2 publication Critical patent/JP5533178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/162Organic compounds containing Si
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/261Alcohols; Phenols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/261Alcohols; Phenols
    • C11D7/262Alcohols; Phenols fatty or with at least 8 carbon atoms in the alkyl or alkenyl chain
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5022Organic solvents containing oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、半導体デバイス製造において、特に微細でアスペクト比の高い回路パターン化されたデバイスの製造歩留まりの向上を目的としたシリコン基板(ウェハ)の洗浄技術に関する。   The present invention relates to a technique for cleaning a silicon substrate (wafer) for the purpose of improving the manufacturing yield of a device having a circuit pattern that is fine and has a high aspect ratio, particularly in the manufacture of semiconductor devices.

ネットワークやデジタル家電用の半導体デバイスにおいて、さらなる高性能・高機能化や低消費電力化が要求されている。そのため回路パターンの微細化が進行しており、それに伴い製造歩留まりの低下を引き起こすパーティクルサイズも微小化している。その結果、微小化したパーティクルの除去を目的とした洗浄工程が多用されており、その結果、半導体製造工程全体の3〜4割にまで洗浄工程が占めている。   In semiconductor devices for networks and digital home appliances, higher performance, higher functionality, and lower power consumption are required. For this reason, circuit patterns are being miniaturized, and accordingly, the particle size that causes a reduction in manufacturing yield is also miniaturized. As a result, a cleaning process for removing fine particles is frequently used, and as a result, the cleaning process accounts for 30 to 40% of the entire semiconductor manufacturing process.

その一方で、従来行われていたアンモニアの混合洗浄剤による洗浄では、回路パターンの微細化に伴い、その塩基性によるウェハへのダメージが問題となっている。そのため、よりダメージの少ない例えば希フッ酸系洗浄剤への代替が進んでいる。   On the other hand, in the conventional cleaning with the mixed ammonia cleaning agent, the damage to the wafer due to the basicity becomes a problem as the circuit pattern is miniaturized. For this reason, replacement with, for example, a dilute hydrofluoric acid-based cleaning agent with less damage is in progress.

これにより、洗浄によるウェハへのダメージの問題は改善されたが、半導体デバイスの微細化に伴うパターンのアスペクト比が高くなることによる問題が顕在化している。すなわち洗浄またはリンス後、気液界面がパターンを通過する時にパターンが倒れる現象を引き起こし、歩留まりが大幅に低下することが大きな問題となっている。   Thus, although the problem of damage to the wafer due to cleaning has been improved, the problem due to the increase in the aspect ratio of the pattern accompanying the miniaturization of the semiconductor device has become apparent. That is, after cleaning or rinsing, a phenomenon that the pattern collapses when the gas-liquid interface passes through the pattern causes a significant decrease in yield.

このパターン倒れは、ウェハを洗浄液またはリンス液から引き上げるときに生じる。これは、パターンのアスペクト比が高い部分と低い部分との間において、残液高さの差ができ、それによってパターンに作用する毛細管力に差が生じることが原因と言われている。   This pattern collapse occurs when the wafer is pulled up from the cleaning liquid or the rinse liquid. This is said to be caused by a difference in residual liquid height between a portion where the aspect ratio of the pattern is high and a portion where the aspect ratio is low, thereby causing a difference in capillary force acting on the pattern.

このため、毛細管力を小さくすれば、残液高さの違いによる毛細管力の差が低減し、パターン倒れが解消すると期待できる。毛細管力の大きさは、以下に示される式で求められるPの絶対値であり、この式からγ、もしくは、cosθを小さくすれば、毛細管力を低減できると期待される。   For this reason, if the capillary force is reduced, it can be expected that the difference in capillary force due to the difference in the residual liquid height will be reduced and the pattern collapse will be eliminated. The magnitude of the capillary force is the absolute value of P obtained by the following formula. From this formula, it is expected that the capillary force can be reduced by reducing γ or cos θ.

P=2×γ×cosθ/S(γ:表面張力、θ:接触角、S:パターン寸法)
特許文献1には、γを小さくしてパターン倒れを抑制する手法として気液界面を通過する前に洗浄液を水から2−プロパノールへ置換する技術が開示されている。しかし、この手法では、パターン倒れ防止に有効である一方、γが小さい2−プロパノール等の溶媒は通常の接触角も小さくなり、その結果、cosθが大きくなる傾向にある。そのため、対応できるパターンのアスペクト比が5以下である等、限界があると言われている。
P = 2 × γ × cos θ / S (γ: surface tension, θ: contact angle, S: pattern dimension)
Patent Document 1 discloses a technique for substituting the cleaning liquid from water to 2-propanol before passing through the gas-liquid interface as a technique for reducing γ and suppressing pattern collapse. However, while this method is effective for preventing pattern collapse, a solvent such as 2-propanol having a small γ tends to have a small normal contact angle and, as a result, tends to increase cos θ. Therefore, it is said that there is a limit, for example, the aspect ratio of the pattern that can be handled is 5 or less.

また、特許文献2には、cosθを小さくしてパターン倒れを抑制する手法として、レジストパターンを対象とする技術が開示されている。この手法は接触角を90°付近とすることで、cosθを0に近づけ毛細管力を極限まで下げることによって、パターン倒れを抑制する手法である。   Patent Document 2 discloses a technique for resist patterns as a technique for reducing cos θ to suppress pattern collapse. This method is a method of suppressing pattern collapse by setting cos θ close to 0 and reducing the capillary force to the limit by setting the contact angle near 90 °.

しかし、この開示された技術はレジストパターンを対象としており、レジスト自体を改質するものであり、さらに最終的にレジストと共に除去が可能であるため、乾燥後の処理剤の除去方法を想定する必要がなく、本目的には適用できない。   However, since the disclosed technique is intended for a resist pattern, it modifies the resist itself, and can be finally removed together with the resist. Therefore, it is necessary to assume a method for removing the treatment agent after drying. Is not applicable to this purpose.

また、半導体デバイスのパターン倒れを防止する手法として、臨界流体の利用や液体窒素の利用等が提案されている。しかし、いずれも一定の効果があるものの、従来の洗浄プロセスと異なり、密閉系もしくはバッチでの処理が必要であるため、スループットなどコスト上問題がある。
特開2008−198958号公報 特開平5−299336号公報
In addition, as a technique for preventing pattern collapse of a semiconductor device, use of a critical fluid, use of liquid nitrogen, or the like has been proposed. However, all have certain effects, but unlike conventional cleaning processes, processing in a closed system or batch is necessary, and thus there is a cost problem such as throughput.
JP 2008-198958 A Japanese Patent Laid-Open No. 5-299336

半導体デバイスの製造時には、シリコンウェハ表面は微細な凹凸パターンを有する面とされる。本発明は、表面に微細な凹凸パターンを有するシリコンウェハの製造方法において、パターン倒れを誘発しやすい洗浄工程を改善するためのシリコンウェハ用洗浄剤を提供することを課題とする。   At the time of manufacturing a semiconductor device, the surface of the silicon wafer is a surface having a fine uneven pattern. An object of the present invention is to provide a silicon wafer cleaning agent for improving a cleaning process that easily induces pattern collapse in a method for manufacturing a silicon wafer having a fine uneven pattern on the surface.

本発明のシリコンウェハ用洗浄剤は、表面に微細な凹凸パターンを有するシリコンウェハ用洗浄剤であり、該シリコンウェハ用洗浄剤は少なくとも水系洗浄液と、洗浄過程中に凹凸パターンの少なくとも凹部を撥水化するための撥水性洗浄液とを含み、該撥水性洗浄液は、シリコンウェハのSiと化学的に結合可能な反応性部位と疎水性基を含む撥水性化合物と、少なくともアルコール溶媒を含む有機溶媒が混合されて含まれることを特徴とする。   The cleaning agent for silicon wafers of the present invention is a cleaning agent for silicon wafers having a fine uneven pattern on the surface, and the cleaning agent for silicon wafers repels at least an aqueous cleaning solution and at least the recesses of the uneven pattern during the cleaning process. The water-repellent cleaning liquid comprises a water-repellent compound containing a reactive group capable of chemically bonding to Si of the silicon wafer and a hydrophobic group, and an organic solvent containing at least an alcohol solvent. It is mixed and contained.

本発明の洗浄剤において、各洗浄液はそれぞれ独立に使用され、該洗浄液は少なくとも2種類以上使用される。   In the cleaning agent of the present invention, each cleaning solution is used independently, and at least two types of cleaning solutions are used.

また、本発明において、撥水性とは、物品表面の表面エネルギーを低減させて、水やその他の液体と該物品表面との間(界面)で相互作用、例えば、水素結合、分子間力などを低減させる意味である。特に水に対して相互作用を低減させる効果が大きいが、水と水以外の液体の混合液や、水以外の液体に対しても相互作用を低減させる効果を有する。該相互作用の低減により、物品表面に対する液体の接触角を大きくすることができる。   In the present invention, the water repellency means reducing the surface energy of the article surface, and interacting between water or other liquid and the article surface (interface), for example, hydrogen bonding, intermolecular force, etc. It means to reduce. In particular, the effect of reducing the interaction with water is great, but it has the effect of reducing the interaction with a mixed liquid of water and a liquid other than water or a liquid other than water. By reducing the interaction, the contact angle of the liquid with the article surface can be increased.

本発明のシリコンウェハ用洗浄剤に含まれる水系洗浄液は、凹凸パターンが形成されたシリコンウェハの洗浄に際して、シリコンウェハ表面を微細な凹凸パターンを有する面とした後に当該面の凹部に供給される。また、撥水性洗浄液の前記シリコンウェハへの供給を経てから前記シリコンウェハへ供給されてもよい。さらには、撥水性洗浄液及び水系洗浄液はシリコンウェハ表面の凹部に当該洗浄液とは異なる洗浄液が保持された状態で該異なる洗浄液を置換しながらシリコンウェハ表面に供されてもよい。   The aqueous cleaning liquid contained in the silicon wafer cleaning agent of the present invention is supplied to the concave portions of the surface after the surface of the silicon wafer has a fine uneven pattern when cleaning the silicon wafer on which the uneven pattern is formed. Further, the water repellent cleaning liquid may be supplied to the silicon wafer after being supplied to the silicon wafer. Furthermore, the water-repellent cleaning liquid and the water-based cleaning liquid may be supplied to the silicon wafer surface while replacing the different cleaning liquid in a state where a cleaning liquid different from the cleaning liquid is held in the concave portion of the silicon wafer surface.

本発明のシリコンウェハ用洗浄剤は、複数の洗浄液からなるもので、凹部の保持された洗浄液を、他の洗浄液で置換しながら用いられるもので、該洗浄剤は、最終的にシリコンウェハ表面から除去される。   The cleaning agent for silicon wafers of the present invention is composed of a plurality of cleaning liquids, and is used while replacing the cleaning liquid holding the recesses with other cleaning liquids. Removed.

本発明のシリコンウェハ用洗浄剤にてシリコンウェハ表面が洗浄されている間に、シリコンウェハ表面の凹部は、前記撥水性洗浄液を一旦保持することになる。この保持によって、凹部は撥水性化合物により撥水化された表面状態となる。本発明の撥水化された表面状態は、必ずしも連続的に形成されていなくてもよく、また、必ずしも均一に形成されていなくてもよいが、より優れた撥水性を付与できるため、連続的に、また、均一に形成されていることがより好ましい。   While the silicon wafer surface is being cleaned with the silicon wafer cleaning agent of the present invention, the recesses on the silicon wafer surface temporarily hold the water-repellent cleaning liquid. By this holding, the concave portion becomes a surface state that has been made water-repellent by the water-repellent compound. The water-repellent surface state of the present invention does not necessarily have to be formed continuously, and does not necessarily have to be formed uniformly, but it can provide more excellent water repellency, In addition, it is more preferable that they are formed uniformly.

本発明では、前記撥水性化合物をシリコンウェハのSiと化学的に結合可能な反応性部位を含むものとしているので、洗浄剤が凹部から除去されるまで前記撥水化された表面状態をシリコンウェハ表面に保持させることができる。従って、洗浄液が除去されるとき、すなわち、乾燥されるとき、前記凹部表面が前記撥水化された表面状態となっているので、該凹部表面の毛細管力が小さくなり、パターン倒れが生じにくくなる。前記の撥水化されたシリコンウェハ表面の凹部に水が保持されたと仮定したときの該凹部表面の毛細管力は2.1MN/m以下であると、毛細管力が小さく、パターン倒れが生じにくいため好ましい。また、前記撥水化された表面状態は、光照射すること、シリコンウェハを加熱すること、及び、シリコンウェハをオゾン曝露することから選ばれる少なくとも1つの処理により除去できる。 In the present invention, since the water repellent compound includes a reactive site capable of chemically bonding with Si of the silicon wafer, the water repellent surface state is maintained until the cleaning agent is removed from the recess. It can be held on the surface. Therefore, when the cleaning liquid is removed, that is, when it is dried, the surface of the recess is in a water-repellent surface state, so that the capillary force on the surface of the recess is reduced and pattern collapse is less likely to occur. . When it is assumed that water is held in the concave portion on the surface of the water-repellent silicon wafer, the capillary force on the concave surface is 2.1 MN / m 2 or less, so that the capillary force is small and pattern collapse hardly occurs. Therefore, it is preferable. The water-repellent surface state can be removed by at least one treatment selected from light irradiation, heating a silicon wafer, and exposing the silicon wafer to ozone.

また、撥水性洗浄液を、シリコンウェハのSiと化学的に結合可能な反応性部位と疎水性基を含む撥水性化合物と、アルコール溶媒が混合されて含まれることにより、短時間で前記凹部表面を十分に撥水化された表面状態としやすくなる。   In addition, the water-repellent cleaning liquid is mixed with a water-repellent compound containing a reactive site that can be chemically bonded to Si of the silicon wafer and a hydrophobic group, and an alcohol solvent, so that the surface of the recess can be formed in a short time. It becomes easy to obtain a sufficiently water-repellent surface state.

撥水性洗浄液において、前記撥水性化合物が、該撥水性洗浄液の総量100質量%に対して0.1質量%未満では、前記凹部表面を十分に撥水化された表面状態としにくい。他方、99.9質量%超では、アルコールの効果(短時間で前記凹部表面を十分に撥水化できる)が小さくなる。   In the water-repellent cleaning liquid, when the water-repellent compound is less than 0.1% by mass with respect to 100% by mass of the total amount of the water-repellent cleaning liquid, it is difficult to make the surface of the recess sufficiently surface repellent. On the other hand, if it exceeds 99.9% by mass, the effect of alcohol (which can sufficiently repel the surface of the recess in a short time) becomes small.

本発明のシリコンウェハ用洗浄剤は優れたパターン倒れ防止性を示すので、該洗浄剤を用いると、表面に微細な凹凸パターンを有するシリコンウェハの製造方法中の洗浄工程が、スループットが低下することなく改善される。従って、本発明のシリコンウェハ用洗浄剤を用いて行われる表面に微細な凹凸パターンを有するシリコンウェハの製造方法は、生産性が高いものとなる。   Since the cleaning agent for silicon wafers of the present invention exhibits excellent pattern collapse prevention properties, the use of the cleaning agent reduces the throughput of the cleaning process in the method for manufacturing a silicon wafer having a fine uneven pattern on the surface. Will be improved. Therefore, the method for producing a silicon wafer having a fine concavo-convex pattern on the surface, which is performed using the silicon wafer cleaning agent of the present invention, has high productivity.

本発明の洗浄剤は、今後益々高くなると予想される例えば7以上のアスペクト比を有する凹凸パターンにも対応可能であり、より高密度化された半導体デバイス生産のコストダウンを可能とする。しかも従来の装置から大きな変更がなく対応でき、その結果、各種の半導体デバイスの製造に適用可能なものとなる。   The cleaning agent of the present invention can cope with a concavo-convex pattern having an aspect ratio of, for example, 7 or more, which is expected to become higher in the future, and can reduce the cost of production of higher-density semiconductor devices. In addition, the conventional apparatus can be applied without significant change, and as a result, can be applied to the manufacture of various semiconductor devices.

表面が微細な凹凸パターン2を有する面とされたシリコンウェハ1を斜視したときの模式図を示す図である。It is a figure which shows the schematic diagram when the silicon wafer 1 made into the surface which has the fine uneven | corrugated pattern 2 on the surface is perspective. 図1中のa−a’断面の一部を示したものである。FIG. 2 shows a part of the a-a ′ cross section in FIG. 1. 洗浄工程にて凹部4が洗浄液8を保持した状態の模式図を示している。The schematic diagram of the state in which the recessed part 4 hold | maintained the washing | cleaning liquid 8 in the washing | cleaning process is shown. 撥水化された表面状態の凹部4に水系洗浄液が保持された状態の模式図を示す図である。It is a figure which shows the schematic diagram of the state by which the aqueous cleaning liquid was hold | maintained at the recessed part 4 of the surface state made water-repellent.

本発明のシリコンウェハ用洗浄剤を用いる表面に微細な凹凸パターンを有するシリコンウェハの好適な洗浄方法は、
シリコンウェハ表面を微細な凹凸パターンを有する面とした後、水系洗浄液を当該面に供し、凹部に水系洗浄液を保持する工程
凹部に保持された水系洗浄液を該水系洗浄液とは異なる洗浄液Aで置換する工程
凹凸パターンの凹部表面を撥水化するための撥水性洗浄液を該凹部に保持する工程
洗浄剤を除去する工程
を有する。
A suitable cleaning method for a silicon wafer having a fine concavo-convex pattern on the surface using the silicon wafer cleaning agent of the present invention,
After making the surface of the silicon wafer into a surface having a fine concavo-convex pattern, the aqueous cleaning liquid is applied to the surface, and the aqueous cleaning liquid held in the recess is replaced with a cleaning liquid A different from the aqueous cleaning liquid. It has the process of removing the process cleaning agent which hold | maintains the water-repellent cleaning liquid for making the recessed surface of a process uneven | corrugated pattern water-repellent in this recessed part.

さらに、前記撥水性洗浄液を凹部に保持する工程の後で、凹部に保持された撥水性洗浄液を該撥水性洗浄液とは異なる洗浄液Bに置換してもよい。また、前記異なる洗浄液Bへの置換を経て、該凹部に水系溶液からなる水系洗浄液を保持する工程を行うことがより好ましい。   Further, after the step of holding the water-repellent cleaning liquid in the recess, the water-repellent cleaning liquid held in the recess may be replaced with a cleaning liquid B different from the water-repellent cleaning liquid. Further, it is more preferable to perform a step of holding an aqueous cleaning liquid composed of an aqueous solution in the concave portion through the replacement with the different cleaning liquid B.

また、前記洗浄剤を除去する工程は、
凹部に保持された洗浄液を乾燥により凹部より除去する工程、
シリコンウェハ表面を光照射すること、シリコンウェハを加熱すること、及び、シリコンウェハをオゾン曝露することから選ばれる少なくとも1つの処理を行う工程
を有する。
In addition, the step of removing the cleaning agent,
Removing the cleaning liquid retained in the recess from the recess by drying;
The method includes performing at least one treatment selected from irradiating the surface of the silicon wafer with light, heating the silicon wafer, and exposing the silicon wafer to ozone.

また、前記洗浄剤を除去する工程の、凹部に保持された洗浄液を乾燥により凹部より除去する工程とシリコンウェハ表面を光照射すること、シリコンウェハを加熱すること、及び、シリコンウェハをオゾン曝露することから選ばれる少なくとも1つの処理を行う工程の間に、凹部に洗浄液Bを供し、該洗浄液Bを乾燥により除去する工程を行ってもよいし、前記洗浄液Bを供した後に該凹部に水系溶液からなる水系洗浄液を保持し、該水系洗浄液を乾燥により除去する工程を行ってもよい。   Further, in the step of removing the cleaning agent, the step of removing the cleaning liquid held in the concave portion from the concave portion by drying, irradiating the silicon wafer surface with light, heating the silicon wafer, and exposing the silicon wafer to ozone During the step of performing at least one treatment selected from the above, the cleaning liquid B may be provided in the recess, and the cleaning liquid B may be removed by drying, or the aqueous solution may be provided in the recess after the cleaning liquid B is provided. A step of holding an aqueous cleaning solution consisting of and removing the aqueous cleaning solution by drying may be performed.

前記撥水性洗浄液は、該撥水性洗浄液の総量100質量%に対して0.1〜99.9質量%、好ましくは0.2〜75質量%、さらに好ましくは0.3〜50質量%の該撥水性化合物と、少なくともアルコール溶媒を含む有機溶媒が混合されて含まれるものである。撥水性化合物を0.1〜99.9質量%含有することにより、短時間で前記凹部表面を均質に撥水化された表面状態としやすくなる。   The water-repellent cleaning liquid is 0.1 to 99.9% by weight, preferably 0.2 to 75% by weight, more preferably 0.3 to 50% by weight with respect to 100% by weight of the total amount of the water-repellent cleaning liquid. A water repellent compound and an organic solvent containing at least an alcohol solvent are mixed and contained. By containing 0.1 to 99.9% by mass of the water-repellent compound, the surface of the concave portion can be easily converted into a water-repellent surface state in a short time.

前記撥水性洗浄液は、少なくともアルコール溶媒を含む。該アルコール溶媒があると、前記撥水性化合物とシリコンウェハのSiとの反応が早くなり、短時間でシリコンウェハの凹部表面を十分に撥水化された表面状態としやすくなる。   The water repellent cleaning liquid contains at least an alcohol solvent. When the alcohol solvent is present, the reaction between the water-repellent compound and Si of the silicon wafer is accelerated, and the surface of the concave portion of the silicon wafer is easily brought into a sufficiently water-repellent surface state in a short time.

該アルコール溶媒の例としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、tert−ブタノール、iso−ブタノール、1−ペンタノール、1−ヘキサノール、1−ヘプタノール、1−オクタノールなどのアルキル基と1個の水酸基からなるアルコール、エチレングリコール、グリセリン、1,2−プロパンジオール、1,3プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどの多価アルコールおよびその誘導体が挙げられる。   Examples of the alcohol solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, iso-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1 -Alcohol consisting of an alkyl group such as octanol and one hydroxyl group, ethylene glycol, glycerin, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, diethylene glycol monoethyl Polyhydric alcohols such as ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether And derivatives thereof.

また、前記アルコール溶媒は、アルキル基と1個の水酸基からなるアルコールが好ましい。この場合、短時間でシリコンウェハの凹部表面を十分に撥水化された表面状態としやすくなる。さらに、アルキル基と1個の水酸基からなるアルコールの中でも、1級アルコール、または、2級アルコールは、短時間でシリコンウェハの凹部表面を十分に撥水化された表面状態としやすくなるので特に好ましい。   The alcohol solvent is preferably an alcohol composed of an alkyl group and one hydroxyl group. In this case, it becomes easy to make the surface of the concave portion of the silicon wafer into a sufficiently water-repellent surface state in a short time. Further, among alcohols composed of an alkyl group and one hydroxyl group, primary alcohol or secondary alcohol is particularly preferable because it easily makes the surface of a concave portion of a silicon wafer sufficiently water-repellent in a short time. .

また、前記アルコール溶媒は、炭素数が10以下であることが好ましく、特に炭素数が6以下であることが好ましい。さらにまた、前記アルコール溶媒は、単独のものであっても、複数のアルコール溶媒の混合物であっても良い。   The alcohol solvent preferably has 10 or less carbon atoms, and particularly preferably 6 or less carbon atoms. Furthermore, the alcohol solvent may be a single one or a mixture of a plurality of alcohol solvents.

アルコール溶媒は、該撥水性化合物の総量100質量部に対して0.1〜10000質量部、特に0.5〜5000質量部とすると、短時間でシリコンウェハの凹部表面を十分に撥水化された表面状態としやすくなるので好ましい。   When the alcohol solvent is 0.1 to 10000 parts by mass, particularly 0.5 to 5000 parts by mass with respect to 100 parts by mass of the total amount of the water-repellent compound, the concave surface of the silicon wafer is sufficiently water-repellent in a short time. This is preferable because it is easy to obtain a surface state.

また、前記撥水性洗浄液は、アルコール溶媒以外の有機溶媒を含んでいても良い。前記撥水性化合物は、プロトン性溶媒と反応しやすいため、該アルコール溶媒以外の有機溶媒は、非プロトン性溶媒を用いると、短時間で撥水性を発現しやすくなるので特に好ましい。なお、非プロトン性溶媒は、非プロトン性極性溶媒と非プロトン性非極性溶媒の両方のことである。このような非プロトン性溶媒としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、水酸基を持たない多価アルコールの誘導体、N−H結合を持たない含窒素化合物溶媒等が挙げられる。前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子製)、Novec HFE−7100、Novec HFE−7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、前記水酸基を持たない多価アルコール誘導体の例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、N−H結合を持たない含窒素化合物溶媒の例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、トリエチルアミン、ピリジンなどがある。   The water-repellent cleaning liquid may contain an organic solvent other than the alcohol solvent. Since the water-repellent compound easily reacts with a protic solvent, it is particularly preferable to use an aprotic solvent as the organic solvent other than the alcohol solvent because the water-repellent property is easily developed in a short time. The aprotic solvent is both an aprotic polar solvent and an aprotic apolar solvent. Examples of such aprotic solvents include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, polyhydric alcohol derivatives having no hydroxyl group, and nitrogen-containing compounds having no N—H bond. A compound solvent etc. are mentioned. Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, isophorone, and the like. Examples of the halogen-containing solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, Hydrofluorocarbons such as 3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Nippon Zeon), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all from 3M), chlorocarbons such as tetrachloromethane, chloroform Hydrochlorocarbons such as chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-pe Tafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3- Examples include hydrochlorofluorocarbons such as trifluoropropene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of polyhydric alcohol derivatives having no hydroxyl group include Diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol di Examples of nitrogen-containing compound solvents having no N—H bond include N, N-dimethylformamide, N, N-dimethylacetamide, N, and the like. -Methyl-2-pyrrolidone, triethylamine, pyridine and the like.

また、前記アルコール溶媒以外の有機溶媒に不燃性のものを使うと、撥水性洗浄液が不燃性になる、あるいは、引火点が高くなって、該撥水性洗浄液の危険性が低下するので好ましい。含ハロゲン溶媒は不燃性のものが多く、不燃性含ハロゲン溶媒は不燃性有機溶媒として好適に使用できる。   In addition, it is preferable to use a nonflammable organic solvent other than the alcohol solvent because the water-repellent cleaning liquid becomes nonflammable or has a high flash point, which reduces the risk of the water-repellent cleaning liquid. Many halogen-containing solvents are nonflammable, and the nonflammable halogen-containing solvent can be suitably used as a nonflammable organic solvent.

この場合、前記アルコール溶媒以外の有機溶媒は、アルコール溶媒に対して、質量比で好ましくは2〜95000倍、より好ましくは4〜50000倍とされる。   In this case, the organic solvent other than the alcohol solvent is preferably 2 to 95000 times, more preferably 4 to 50000 times in mass ratio with respect to the alcohol solvent.

また、ウェハを回転させながら前記撥水性洗浄液をウェハに供する場合、前記有機溶媒の沸点が低い場合、前記撥水性洗浄液がウェハ全面に濡れ広がる前に該洗浄液が乾燥しやすくなる。また、沸点が高い場合は粘性が高くなる傾向がある。このため、前記有機溶媒は沸点が70〜220℃のものを用いるのが好ましい。このような溶媒としては、特にアルコールが好ましく、コストや他の洗浄液との溶解性(置換のしやすさ)を考慮すると、前記アルコールでは、1−プロパノール、2−プロパノール、前記アルコール以外の有機溶媒では、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、シクロヘキサノンが好ましい。   Further, when the water-repellent cleaning liquid is supplied to the wafer while rotating the wafer, when the boiling point of the organic solvent is low, the cleaning liquid is easily dried before the water-repellent cleaning liquid wets and spreads over the entire surface of the wafer. Further, when the boiling point is high, the viscosity tends to increase. For this reason, it is preferable to use the organic solvent having a boiling point of 70 to 220 ° C. As such a solvent, alcohol is particularly preferable, and considering the cost and solubility with other cleaning liquids (ease of substitution), the alcohol includes 1-propanol, 2-propanol, and organic solvents other than the alcohol. In diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, ethylene glycol diethyl ether, ethylene glycol dimethyl ether, and cyclohexanone are preferable.

シリコンウェハ表面を微細な凹凸パターンを有する面とするパターン形成工程では、まず、該ウェハ表面にレジストを塗布したのち、レジストマスクを介してレジストに露光し、露光されたレジスト、または、露光されなかったレジストをエッチング除去することによって所望の凹凸パターンを有するレジストを作製する。また、レジストにパターンを有するモールドを押し当てることでも、凹凸パターンを有するレジストを得ることができる。次に、ウェハをエッチングする。このとき、レジストパターンの凹の部分が選択的にエッチングされる。最後に、レジストを剥離すると、微細な凹凸パターンを有するシリコンウェハが得られる。   In the pattern formation process in which the surface of the silicon wafer has a fine concavo-convex pattern, first, after applying a resist to the wafer surface, the resist is exposed through a resist mask, and the exposed resist is not exposed. The resist having a desired concavo-convex pattern is produced by etching away the resist. Moreover, the resist which has an uneven | corrugated pattern can be obtained also by pressing the mold which has a pattern to a resist. Next, the wafer is etched. At this time, the concave portion of the resist pattern is selectively etched. Finally, when the resist is removed, a silicon wafer having a fine uneven pattern is obtained.

なお、シリコンウェハとしては、自然酸化膜や熱酸化膜や気相合成膜(CVD膜など)などの酸化ケイ素膜が表面に形成したもの、あるいは、上記凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部が酸化ケイ素となるものも含まれる。また、シリコンや窒化ケイ素は、最表面が水や大気などとの接触により自然に酸化されて酸化ケイ素膜が表面に形成されることから、このようなものも使用できる。   In addition, as a silicon wafer, a silicon oxide film such as a natural oxide film, a thermal oxide film, or a gas phase synthetic film (such as a CVD film) is formed on the surface, or when the above uneven pattern is formed, the uneven pattern Also included are those in which at least a part of the silicon oxide is silicon oxide. Further, silicon or silicon nitride can be used because its outermost surface is naturally oxidized by contact with water or air to form a silicon oxide film on the surface.

また、シリコンおよび/または酸化ケイ素を含む複数の成分から構成されたウェハに対しても、該シリコンおよび/または酸化ケイ素表面を撥水化することができる。該複数の成分から構成されたウェハとしては、シリコンおよび/または自然酸化膜や熱酸化膜や気相合成膜(CVD膜など)などの酸化ケイ素膜が表面に形成したもの、あるいは、凹凸パターンを形成したときに、該凹凸パターンの少なくとも一部がシリコンおよび/または酸化ケイ素となるものも含まれる。   Further, the surface of the silicon and / or silicon oxide can be water-repellent even for a wafer composed of a plurality of components including silicon and / or silicon oxide. As a wafer composed of the plurality of components, silicon and / or a silicon oxide film such as a natural oxide film, a thermal oxide film, a vapor-phase synthesis film (such as a CVD film) formed on the surface, or an uneven pattern is used. When formed, at least a part of the concave / convex pattern includes silicon and / or silicon oxide.

シリコンウェハ表面を微細な凹凸パターンを有する面とした後、水系洗浄液で表面の洗浄を行い、乾燥等により水系洗浄液を除去すると、凹部の幅が小さく、凸部のアスペクト比が大きいと、パターン倒れが生じやすくなる。該凹凸パターンは、図1及び図2に記すように定義される。図1は、表面が微細な凹凸パターン2を有する面とされたシリコンウェハ1を斜視したときの模式図を示し、図2は図1中のa−a’断面の一部を示したものである。凹部の幅5は、図2に示すように凸部3と凸部3の間隔で示され、凸部のアスペクト比は、凸部の高さ6を凸部の幅7で割ったもので表される。洗浄工程でのパターン倒れは、凹部の幅が70nm以下、特には45nm以下、アスペクト比が4以上、特には6以上のときに生じやすくなる。   After the surface of the silicon wafer has a fine uneven pattern, the surface is cleaned with an aqueous cleaning solution, and the aqueous cleaning solution is removed by drying or the like. If the width of the concave portion is small and the aspect ratio of the convex portion is large, the pattern collapses. Is likely to occur. The concavo-convex pattern is defined as shown in FIGS. FIG. 1 shows a schematic view when a silicon wafer 1 whose surface is a surface having a fine uneven pattern 2 is viewed, and FIG. 2 shows a part of aa ′ cross section in FIG. is there. As shown in FIG. 2, the width 5 of the concave portion is indicated by the interval between the convex portion 3 and the convex portion 3, and the aspect ratio of the convex portion is expressed by dividing the height 6 of the convex portion by the width 7 of the convex portion. Is done. Pattern collapse in the cleaning process tends to occur when the width of the recess is 70 nm or less, particularly 45 nm or less, and the aspect ratio is 4 or more, particularly 6 or more.

本発明の好ましい態様では、シリコンウェハ表面を微細な凹凸パターンを有する面とした後、水系洗浄液を当該面に供し、凹部に水系洗浄液を保持する。そして、凹部に保持された水系洗浄液を該水系洗浄液とは異なる洗浄液Aで置換する。該異なる洗浄液Aの好ましい例としては、本発明で特定する撥水性洗浄液、水、有機溶媒、あるいは、それらの混合物、あるいは、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合されたもの等が挙げられる。特に、パターンのダメージや清浄度を考慮すると、本発明で特定する撥水性洗浄液、水、有機溶媒、あるいは、それらの混合物が特に好ましい。また、該異なる洗浄液Aとして該撥水性洗浄液以外を使用したときは、凹部4に該異なる洗浄液Aが保持された状態で、該異なる洗浄液Aを該撥水性洗浄液に置換していくことが好ましい。   In a preferred embodiment of the present invention, after the surface of the silicon wafer is made a surface having a fine uneven pattern, an aqueous cleaning liquid is applied to the surface, and the aqueous cleaning liquid is held in the recesses. Then, the aqueous cleaning liquid held in the recess is replaced with a cleaning liquid A different from the aqueous cleaning liquid. As a preferable example of the different cleaning liquid A, the water-repellent cleaning liquid specified in the present invention, water, an organic solvent, or a mixture thereof, or at least one of acid, alkali, and surfactant is mixed. And the like. In particular, in consideration of pattern damage and cleanliness, the water-repellent cleaning liquid specified in the present invention, water, an organic solvent, or a mixture thereof is particularly preferable. Further, when other than the water-repellent cleaning liquid is used as the different cleaning liquid A, it is preferable to replace the different cleaning liquid A with the water-repellent cleaning liquid while the different cleaning liquid A is held in the recess 4.

また、該異なる洗浄液Aの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。   Examples of the organic solvent which is one of preferred examples of the different cleaning liquid A include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, and derivatives of polyhydric alcohols. And nitrogen-containing compound solvents.

前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子製)、Novec HFE−7100、Novec HFE−7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、アルコール類の例としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、1,3−プロパンジオールなどがあり、前記多価アルコールの誘導体の例としては、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、含窒素化合物溶媒の例としては、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジエチルアミン、トリエチルアミン、ピリジンなどがある。   Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, isophorone, and the like. Examples of the halogen-containing solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, Hydrofluorocarbons such as 3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Nippon Zeon), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all from 3M), chlorocarbons such as tetrachloromethane, chloroform Hydrochlorocarbons such as chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-pe Tafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3- There are hydrochlorofluorocarbons such as trifluoropropene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of alcohols include methanol, ethanol, propanol, butanol. Ethylene glycol, 1,3-propanediol, etc. Examples of the derivative of the polyhydric alcohol include diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether. , Propylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, ethylene glycol diethyl Examples of nitrogen-containing compound solvents include formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, diethylamine, triethylamine, and pyridine. .

図3は、洗浄工程にて凹部4が洗浄液8を保持した状態の模式図を示している。図3の模式図のシリコンウェハは、図1のa−a’断面の一部を示すものである。洗浄工程の際に、撥水性洗浄液が、凹凸パターン2が形成されたシリコンウェハ1に供される。この際、撥水性洗浄液は図3に示したように少なくとも凹部4に保持された状態となり、凹部4が撥水化される。   FIG. 3 is a schematic view showing a state in which the recess 4 holds the cleaning liquid 8 in the cleaning process. The silicon wafer in the schematic diagram of FIG. 3 shows a part of the a-a ′ cross section of FIG. 1. In the cleaning process, a water-repellent cleaning liquid is supplied to the silicon wafer 1 on which the uneven pattern 2 is formed. At this time, as shown in FIG. 3, the water-repellent cleaning liquid is held in at least the concave portion 4, and the concave portion 4 is made water-repellent.

凹部4に前記撥水性洗浄液が一旦保持された状態から当該洗浄液とは異なる洗浄液への置換を経て、水系洗浄液を供する場合、凹部4に保持された撥水性洗浄液を、撥水性洗浄液とは異なる洗浄液Bと置換する。この異なる洗浄液Bの例としては、水系溶液からなる水系洗浄液、又は、有機溶媒、又は、前記水系洗浄液と有機溶媒の混合物、又は、それらに酸、アルカリ、界面活性剤のうち少なくとも1種が混合されたもの等が挙げられ、特に、パターンのダメージや清浄度を考慮すると、水系洗浄液、又は、有機溶媒、又は、前記水系洗浄液と有機溶媒の混合物が好ましい。また、この異なる洗浄液Bとして水系洗浄液以外を使用したときは、凹部4に水系洗浄液以外の洗浄液が保持された状態で、該洗浄液を水系洗浄液へと置換していくことが好ましい。   When the water-repellent cleaning liquid is supplied from the state where the water-repellent cleaning liquid is once held in the recess 4 to a cleaning liquid different from the cleaning liquid, the water-repellent cleaning liquid held in the recess 4 is used as a cleaning liquid different from the water-repellent cleaning liquid. Replace with B. Examples of the different cleaning liquid B include an aqueous cleaning liquid composed of an aqueous solution, an organic solvent, a mixture of the aqueous cleaning liquid and an organic solvent, or a mixture of at least one of acid, alkali, and surfactant. In view of pattern damage and cleanliness, an aqueous cleaning liquid, an organic solvent, or a mixture of the aqueous cleaning liquid and an organic solvent is preferable. Further, when other than the aqueous cleaning liquid is used as the different cleaning liquid B, it is preferable to replace the cleaning liquid with the aqueous cleaning liquid in a state where the cleaning liquid other than the aqueous cleaning liquid is held in the recess 4.

また、前記異なる洗浄液Bの好ましい例の一つである有機溶媒の例としては、炭化水素類、エステル類、エーテル類、ケトン類、含ハロゲン溶媒、スルホキシド系溶媒、アルコール類、多価アルコールの誘導体、含窒素化合物溶媒等が挙げられる。   Examples of the organic solvent which is one of the preferable examples of the different cleaning liquid B include hydrocarbons, esters, ethers, ketones, halogen-containing solvents, sulfoxide solvents, alcohols, and derivatives of polyhydric alcohols. And nitrogen-containing compound solvents.

前記炭化水素類の例としては、トルエン、ベンゼン、キシレン、ヘキサン、ヘプタン、オクタンなどがあり、前記エステル類の例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、アセト酢酸エチルなどがあり、前記エーテル類の例としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサンなどがあり、前記ケトン類の例としては、アセトン、アセチルアセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、シクロヘキサノン、イソホロンなどがあり、前記含ハロゲン溶媒の例としては、パーフルオロオクタン、パーフルオロノナン、パーフルオロシクロペンタン、パーフルオロシクロヘキサン、ヘキサフルオロベンゼンなどのパーフルオロカーボン、1、1、1、3、3−ペンタフルオロブタン、オクタフルオロシクロペンタン、2,3−ジハイドロデカフルオロペンタン、ゼオローラH(日本ゼオン製)などのハイドロフルオロカーボン、メチルパーフルオロイソブチルエーテル、メチルパーフルオロブチルエーテル、エチルパーフルオロブチルエーテル、エチルパーフルオロイソブチルエーテル、アサヒクリンAE−3000(旭硝子製)、Novec HFE−7100、Novec HFE−7200、Novec7300、Novec7600(いずれも3M製)などのハイドロフルオロエーテル、テトラクロロメタンなどのクロロカーボン、クロロホルムなどのハイドロクロロカーボン、ジクロロジフルオロメタンなどのクロロフルオロカーボン、1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン、1−クロロ−3,3,3−トリフルオロプロペン、1,2−ジクロロ−3,3,3−トリフルオロプロペンなどのハイドロクロロフルオロカーボン、パーフルオロエーテル、パーフルオロポリエーテルなどがあり、前記スルホキシド系溶媒の例としては、ジメチルスルホキシドなどがあり、アルコール類の例としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、1,3−プロパンジオールなどがあり、前記多価アルコールの誘導体の例としては、ジエチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジメチルエーテルなどがあり、含窒素化合物溶媒の例としては、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジエチルアミン、トリエチルアミン、ピリジンなどがある。   Examples of the hydrocarbons include toluene, benzene, xylene, hexane, heptane, and octane. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate, and ethyl acetoacetate, and the ether. Examples of such classes include diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, dioxane and the like, and examples of the ketones include acetone, acetylacetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, cyclohexanone, isophorone, and the like. Examples of the halogen-containing solvent include perfluorocarbons such as perfluorooctane, perfluorononane, perfluorocyclopentane, perfluorocyclohexane, hexafluorobenzene, 1, 1, 1, Hydrofluorocarbons such as 3-pentafluorobutane, octafluorocyclopentane, 2,3-dihydrodecafluoropentane, Zeolora H (manufactured by Nippon Zeon), methyl perfluoroisobutyl ether, methyl perfluorobutyl ether, ethyl perfluorobutyl ether, Hydrofluoroethers such as ethyl perfluoroisobutyl ether, Asahiklin AE-3000 (manufactured by Asahi Glass), Novec HFE-7100, Novec HFE-7200, Novec 7300, and Novec 7600 (all from 3M), chlorocarbons such as tetrachloromethane, chloroform Hydrochlorocarbons such as chlorofluorocarbons such as dichlorodifluoromethane, 1,1-dichloro-2,2,3,3,3-pe Tafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1-chloro-3,3,3-trifluoropropene, 1,2-dichloro-3,3,3- There are hydrochlorofluorocarbons such as trifluoropropene, perfluoroethers, perfluoropolyethers, etc. Examples of the sulfoxide solvents include dimethyl sulfoxide, and examples of alcohols include methanol, ethanol, propanol, butanol. Ethylene glycol, 1,3-propanediol, etc. Examples of the derivative of the polyhydric alcohol include diethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether. , Propylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, ethylene glycol diethyl Examples of nitrogen-containing compound solvents include formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, diethylamine, triethylamine, and pyridine. .

水系洗浄液の例としては、水、あるいは、水に有機溶媒、酸、アルカリのうち少なくとも1種が混合された水を主成分(例えば、水の含有率が50質量%以上)とするものが挙げられる。特に、清浄度を考慮すると、水系洗浄液に水を用いることが好ましい。   Examples of the aqueous cleaning liquid include water or water mainly containing water mixed with at least one organic solvent, acid or alkali in water (for example, the water content is 50% by mass or more). It is done. In particular, in consideration of cleanliness, it is preferable to use water for the aqueous cleaning liquid.

撥水性化合物により撥水化された凹部4に水系洗浄液が保持された場合の模式図を図4に示す。図4の模式図のシリコンウェハは、図1のa−a’断面の一部を示すものである。凹部4の表面は撥水性化合物により撥水化された表面状態10となっている。そして、前記Siと化学的に結合可能なユニットによって、撥水化された表面状態10は、水系洗浄液9が凹部4から除去されるときもシリコンウェハ表面に保持されている。   FIG. 4 shows a schematic diagram in the case where the aqueous cleaning liquid is held in the recess 4 made water repellent by the water repellent compound. The silicon wafer in the schematic diagram of FIG. 4 shows a part of the a-a ′ cross section of FIG. 1. The surface of the recess 4 has a surface state 10 that is water-repellent with a water-repellent compound. The surface state 10 that has been made water-repellent by the unit that can be chemically bonded to Si is held on the surface of the silicon wafer even when the aqueous cleaning liquid 9 is removed from the recess 4.

撥水性洗浄液により撥水化されたシリコンウェハ表面の凹部、すなわち図4に示すような凹部4の表面が撥水性化合物により撥水化された表面状態10となったとき、該凹部に水が保持されたと仮定したときの該凹部表面の毛細管力は2.1MN/m以下であることが好ましい。該毛細管力が2.1MN/m以下であれば、パターン倒れが発生し難いため好ましい。また、該毛細管力が小さくなると、パターン倒れは更に発生し難くなるため、該毛細管力は1.5MN/m以下が特に好ましく、1.0MN/m以下がさらに好ましい。さらに、洗浄液との接触角を90°付近に調整して毛細管力を限りなく0.0MN/mに近づけることが理想的である。 When the surface of the silicon wafer surface that has been made water-repellent by the water-repellent cleaning solution, that is, the surface of the recess 4 as shown in FIG. When it is assumed that the capillary force on the surface of the recess is 2.1 MN / m 2 or less. It is preferable that the capillary force is 2.1 MN / m 2 or less because pattern collapse hardly occurs. Also, when the capillary force is small, the collapse is further difficult to occur pattern, capillary force is particularly preferably 1.5Mn / m 2 or less, more preferably 1.0 MN / m 2 or less. Furthermore, it is ideal to adjust the contact angle with the cleaning liquid to around 90 ° so that the capillary force is as close to 0.0 MN / m 2 as possible.

また、撥水性洗浄液のシリコンウェハのSiと化学的に結合可能な反応性部位と疎水性基を含む撥水性化合物において、該反応性部位は、シラノール基(Si−OH基)と反応するものが挙げられ、その例として、クロロ基、ブロモ基などのハロゲン基、イソシアネート基、アミノ基、ジアルキルアミノ基、イソチオシアネート基、アジド基、アセトアミド基、シラザン、−N(CH)COCH、−N(CH)COCF、イミダゾール環、オキサゾリジノン環、モルホリン環などのSi−N結合、アルコキシ基、アセトキシ基、トリフルオロアセトキシ基、−OC(CH)=CHCOCH、−OC(CH)=N−Si(CH、−OC(CF)=N−Si(CH、−CO−NH−Si(CHなどのSi−O−C結合、アルキルスルホネート基、パーフルオロアルキルスルホネート基などのSi−O−S結合、あるいは、ニトリル基などが挙げられる。また、該疎水性基の例として、炭化水素基を含む1価の有機基やC−F結合を含む1価の有機基が挙げられる。このような撥水性化合物は、前記反応性部位がシリコンウェハの凹凸パターンの酸化ケイ素層のシラノール基と速やかに反応し、撥水性化合物がシロキサン結合を介してシリコンウェハのSiと化学的に結合することによって、ウェハ表面を疎水性基で覆うことができるため、短時間で該ウェハの凹部表面の毛細管力を小さくできる。 Moreover, in the water-repellent compound containing a reactive site capable of chemically bonding to Si of the water-repellent cleaning liquid and a hydrophobic group, the reactive site may react with a silanol group (Si-OH group). Examples thereof include halogen groups such as chloro group and bromo group, isocyanate group, amino group, dialkylamino group, isothiocyanate group, azide group, acetamide group, silazane, —N (CH 3 ) COCH 3 , —N. (CH 3 ) COCF 3 , Si—N bond such as imidazole ring, oxazolidinone ring, morpholine ring, alkoxy group, acetoxy group, trifluoroacetoxy group, —OC (CH 3 ) ═CHCOCH 3 , —OC (CH 3 ) = N-Si (CH 3) 3 , -OC (CF 3) = N-Si (CH 3) 3, -CO-NH-Si (CH 3 Si-O-C bond such as 3, alkyl sulfonate group, Si-O-S bond such as perfluoroalkyl sulfonate group, or the like nitrile group. Examples of the hydrophobic group include a monovalent organic group containing a hydrocarbon group and a monovalent organic group containing a C—F bond. In such a water repellent compound, the reactive site reacts quickly with the silanol group of the silicon oxide layer of the concave-convex pattern of the silicon wafer, and the water repellent compound chemically bonds with Si of the silicon wafer through a siloxane bond. As a result, since the wafer surface can be covered with the hydrophobic group, the capillary force on the concave surface of the wafer can be reduced in a short time.

さらに、撥水性洗浄液において、シリコンウェハのSiと化学的に結合可能な反応性部位と疎水性基を含む撥水性化合物が、下記一般式[1]および[2]からなる群から選ばれる少なくとも一つからなることが好ましい。   Furthermore, in the water-repellent cleaning liquid, the water-repellent compound containing a reactive site capable of chemically bonding to Si of the silicon wafer and a hydrophobic group is at least one selected from the group consisting of the following general formulas [1] and [2]. Preferably it consists of one.

(RSi(CH4−a−b−c [1]
〔RSi(CH2−dNH3−e [2]
ここで、Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、または、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基である。Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、または、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基である。また、Xは、それぞれ互いに独立して、ハロゲン基、アルコキシ基、アセトキシ基、トリフルオロアセトキシ基、−OC(CH)=CHCOCH、−OC(CH)=N−Si(CH、−OC(CF)=N−Si(CH、−CO−NH−Si(CH、アルキルスルホネート基、パーフルオロアルキルスルホネート基、ニトリル基、及び、Siと結合する元素が窒素の1価の有機基からなる群から選ばれる少なくとも1つの基を示す。aは1〜3の整数、bおよびcは、それぞれ、0〜2の整数であり、aとbとcの合計は1〜3である。さらに、dは0〜2の整数で、eは1〜3の整数である。
(R 1 ) a Si (CH 3 ) b H c X 4-abc [1]
[R 2 Si (CH 3) 2 -d H d ] e NH 3-e [2]
Here, R 1 s are each independently a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms or a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. It is. R 2 is each independently a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms or a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. Further, X are each independently of one another, a halogen group, an alkoxy group, an acetoxy group, trifluoroacetoxy group, -OC (CH 3) = CHCOCH 3, -OC (CH 3) = N-Si (CH 3) 3 , -OC (CF 3) = N -Si (CH 3) 3, -CO-NH-Si (CH 3) 3, alkyl sulfonate group, perfluoroalkyl sulfonate group, a nitrile group, and, an element that binds to Si At least one group selected from the group consisting of monovalent organic groups of nitrogen is shown. a is an integer of 1 to 3, b and c are each an integer of 0 to 2, and the sum of a, b and c is 1 to 3. Furthermore, d is an integer of 0-2, and e is an integer of 1-3.

また、前記一般式[1]のR、および、前記一般式[2]のRは、それぞれ、C2m+1(m=1〜18)、または、C2n+1CHCH(n=1〜8)であることが特に好ましい。 Also, R 2 in R 1, and the general formula [2] of the general formula [1], respectively, C m H 2m + 1 ( m = 1~18), or, C n F 2n + 1 CH 2 CH 2 ( It is particularly preferable that n = 1 to 8).

前記一般式[1]で示される撥水性化合物としては、例えば、C1837SiCl、C1021SiCl、C13SiCl、CSiCl、CHSiCl、C1837Si(CH)Cl、C1021Si(CH)Cl、C13Si(CH)Cl、CSi(CH)Cl、(CHSiCl、C1837Si(CHCl、C1021Si(CHCl、C13Si(CHCl、CSi(CHCl、(CHSiCl、(CHSiHClなどのアルキルクロロシラン、あるいは、C17CHCHSiCl、C13CHCHSiCl、CCHCHSiCl、CFCHCHSiCl、C17CHCHSi(CH)Cl、C13CHCHSi(CH)Cl、CCHCHSi(CH)Cl、CFCHCHSi(CH)Cl、C17CHCHSi(CHCl、C13CHCHSi(CHCl、CCHCHSi(CHCl、CFCHCHSi(CHCl、CFCHCHSi(CH)HClのフルオロアルキルクロロシラン、あるいは、前記クロロシランのクロロ基を、ブロモ基などのクロロ基以外のハロゲン基、イソシアネート基、アルコキシ基、アセトキシ基、トリフルオロアセトキシ基、−OC(CH)=CHCOCH、−OC(CH)=N−Si(CH、−OC(CF)=N−Si(CH、−CO−NH−Si(CH、アルキルスルホネート基、パーフルオロアルキルスルホネート基、ニトリル基、−NH、−N(CH、−N(C、−NHCOCH、−N、−N=C=S、−N(CH)COCH、−N(CH)COCF、−N=C(CH)OSi(CH、−N=C(CF)OSi(CH、−NHCO−OSi(CH、−NHCO−NH−Si(CH、イミダゾール環、オキサゾリジノン環、モルホリン環に置き換えた撥水性化合物を用いることができる。 Examples of the water repellent compound represented by the general formula [1] include C 18 H 37 SiCl 3 , C 10 H 21 SiCl 3 , C 6 H 13 SiCl 3 , C 3 H 7 SiCl 3 , CH 3 SiCl 3 , C 18 H 37 Si (CH 3 ) Cl 2 , C 10 H 21 Si (CH 3 ) Cl 2 , C 6 H 13 Si (CH 3 ) Cl 2 , C 3 H 7 Si (CH 3 ) Cl 2 , (CH 3 ) 2 SiCl 2 , C 18 H 37 Si (CH 3 ) 2 Cl, C 10 H 21 Si (CH 3 ) 2 Cl, C 6 H 13 Si (CH 3 ) 2 Cl, C 3 H 7 Si (CH 3 ) 2 Cl, (CH 3) 3 SiCl, (CH 3) alkyl chlorosilane such as 2 SiHCl, or,, C 8 F 17 CH 2 CH 2 SiCl 3, C 6 F 13 CH 2 CH SiCl 3, C 4 F 9 CH 2 CH 2 SiCl 3, CF 3 CH 2 CH 2 SiCl 3, C 8 F 17 CH 2 CH 2 Si (CH 3) Cl 2, C 6 F 13 CH 2 CH 2 Si (CH 3) Cl 2, C 4 F 9 CH 2 CH 2 Si (CH 3) Cl 2, CF 3 CH 2 CH 2 Si (CH 3) Cl 2, C 8 F 17 CH 2 CH 2 Si (CH 3) 2 Cl , C 6 F 13 CH 2 CH 2 Si (CH 3) 2 Cl, C 4 F 9 CH 2 CH 2 Si (CH 3) 2 Cl, CF 3 CH 2 CH 2 Si (CH 3) 2 Cl, CF 3 CH 2 CH 2 Si (CH 3) HCl fluoroalkyl chlorosilane or a chloro group of the chlorosilane, a halogen group other than a chloro group, such as bromo group, isocyanate group, a Kokishi group, acetoxy group, trifluoroacetoxy group, -OC (CH 3) = CHCOCH 3, -OC (CH 3) = N-Si (CH 3) 3, -OC (CF 3) = N-Si (CH 3 ) 3 , —CO—NH—Si (CH 3 ) 3 , alkyl sulfonate group, perfluoroalkyl sulfonate group, nitrile group, —NH 2 , —N (CH 3 ) 2 , —N (C 2 H 5 ) 2 , -NHCOCH 3, -N 3, -N = C = S, -N (CH 3) COCH 3, -N (CH 3) COCF 3, -N = C (CH 3) OSi (CH 3) 3, -N = C (CF 3) OSi ( CH 3) 3, -NHCO-OSi (CH 3) 3, -NHCO-NH-Si (CH 3) 3, an imidazole ring, an oxazolidinone ring, a water-repellent compound by replacing the morpholine ring It can be used.

また、前記撥水性化合物の反応性部位が複数あると、該撥水性化合物が凝集しやすくなり、均質に撥水化された表面状態が得られにくくなる。その結果、シリコンウェハ表面を光照射又はシリコンウェハを加熱する工程にて、撥水性化合物の凝集に起因して形成された部位の除去のための付加的な光照射時間また加熱時間を要するようになる。このため、該反応性部位の数を示す4−a−b−cは1であることがより好ましい。   Further, when there are a plurality of reactive sites of the water repellent compound, the water repellent compound is likely to aggregate, and it becomes difficult to obtain a homogeneous water-repellent surface state. As a result, in the step of irradiating the surface of the silicon wafer with light or heating the silicon wafer, additional light irradiation time or heating time for removing the site formed due to aggregation of the water repellent compound is required. Become. For this reason, it is more preferable that 4-abc indicating the number of reactive sites is 1.

前記一般式[2]で示される撥水性化合物としては、例えば、(CHSiNHSi(CH、CSi(CHNHSi(CH、CSi(CHNHSi(CH、C13Si(CHNHSi(CH13、CSi(CHNHSi(CH、{(CHSi}N、{CSi(CHN、(CHHSiNHSi(CHH、CFCHCHSi(CHNHSi(CHCHCHCF、CCHCHSi(CHNHSi(CHCHCH、C13CHCHSi(CHNHSi(CHCHCH13、C17CHCHSi(CHNHSi(CHCHCH17、{CFCHCHSi(CHNなどを用いることができる。特に、前記一般式[2]のeが2であるジシラザンが好ましい。 Examples of the water repellent compound represented by the general formula [2] include (CH 3 ) 3 SiNHSi (CH 3 ) 3 , C 2 H 5 Si (CH 3 ) 2 NHSi (CH 3 ) 2 C 2 H 5 , C 3 H 7 Si (CH 3 ) 2 NHSi (CH 3) 2 C 3 H 7, C 6 H 13 Si (CH 3) 2 NHSi (CH 3) 2 C 6 H 13, C 6 H 5 Si (CH 3 ) 2 NHSi (CH 3 ) 2 C 6 H 5 , {(CH 3 ) 3 Si} 3 N, {C 2 H 5 Si (CH 3 ) 2 } 3 N, (CH 3 ) 2 HSiNHSi (CH 3 ) 2 H, CF 3 CH 2 CH 2 Si (CH 3) 2 NHSi (CH 3) 2 CH 2 CH 2 CF 3, C 4 F 9 CH 2 CH 2 Si (CH 3) 2 NHSi (CH 3) 2 CH 2 CH 2 C 4 F 9 , C 6 F 13 CH 2 CH 2 Si ( CH 3) 2 NHSi (CH 3) 2 CH 2 CH 2 C 6 F 13, C 8 F 17 CH 2 CH 2 Si (CH 3) 2 NHSi (CH 3) 2 CH 2 CH 2 C 8 F 17 , {CF 3 CH 2 CH 2 Si (CH 3 ) 2 } 3 N, or the like can be used. In particular, disilazane in which e in the general formula [2] is 2 is preferable.

上記で例示した撥水性化合物の中でも、短時間で凹部表面を十分に撥水化された表面状態としやすいという点から、前記一般式[1]でXがクロロ基であるクロロシランが特に好ましい。   Among the water-repellent compounds exemplified above, chlorosilane, in which X is a chloro group in the general formula [1], is particularly preferable because the surface of the concave portion is easily made into a sufficiently water-repellent surface state in a short time.

また、撥水性洗浄液中に水があると、撥水性化合物の反応性部位は、加水分解してシラノール基(Si−OH)となる。該反応性部位は、このシラノール基とも反応するため、その結果、撥水性化合物同士が結合して2量体化する。この2量体は、シリコンウェハの酸化ケイ素層のシラノール基との反応性が低いため、シリコンウェハ表面を撥水化するのに要する時間が長くなる。このため、前記撥水性洗浄液の溶媒には、水以外、すなわち、前記少なくともアルコール溶媒を含む有機溶媒が使用される。   If water is present in the water-repellent cleaning solution, the reactive site of the water-repellent compound is hydrolyzed to become a silanol group (Si—OH). The reactive site also reacts with the silanol group, and as a result, the water-repellent compounds are bonded to form a dimer. Since this dimer has low reactivity with the silanol group of the silicon oxide layer of the silicon wafer, it takes a long time to make the surface of the silicon wafer water repellent. For this reason, as the solvent of the water-repellent cleaning liquid, an organic solvent other than water, that is, an organic solvent containing at least the alcohol solvent is used.

なお、前記撥水性洗浄液の溶媒には、微量の水分が存在してもよい。ただし、この水分が溶媒に大量に含まれると、撥水性化合物は該水分によって加水分解して反応性が低下することがある。このため、溶媒中の水分量は低くすることが好ましく、該水分量は、前記撥水性化合物と混合したときに、該撥水性化合物に対して、モル比で3モル倍未満とすることが好ましく、より好ましくは1モル倍、さらに0.5モル倍未満にすることが特に好ましい。   Note that a trace amount of water may be present in the solvent of the water-repellent cleaning liquid. However, if this water is contained in a large amount in the solvent, the water repellent compound may be hydrolyzed by the water and the reactivity may be lowered. For this reason, the amount of water in the solvent is preferably low, and the amount of water is preferably less than 3 moles in terms of a molar ratio with respect to the water-repellent compound when mixed with the water-repellent compound. More preferably, the molar ratio is more preferably 1 mol times, and even more preferably less than 0.5 mol times.

また、撥水性洗浄液には、前記撥水性化合物とウェハ表面の反応を促進させるために、触媒が添加されても良い。このような触媒として、トリフルオロ酢酸、無水トリフルオロ酢酸、ペンタフルオロプロキオン酸、無水ペンタフルオロプロキオン酸、トリフルオロメタンスルホン酸、無水トリフルオロメタンスルホン酸、硫酸、塩化水素などの水を含まない酸、アンモニア、アルキルアミン、ジアルキルアミンなどの塩基、硫化アンモニウム、酢酸カリウム、メチルヒドロキシアミン塩酸塩などの塩、および、スズ、アルミニウム、チタンなどの金属錯体や金属塩、および、クロロシラン、トリメチルシリルトリフルオロアセトナート、トリメチルシリルトリフルオロメタンスルホネートなどが好適に用いられる。特に、触媒効果や清浄度を考慮すると、トリフルオロ酢酸、トリフルオロ酢酸無水物、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸無水物、硫酸、塩化水素などの水を含まない酸、および、クロロシラン、トリメチルシリルトリフルオロアセトナート、トリメチルシリルトリフルオロメタンスルホネートなどが好ましい。   Further, a catalyst may be added to the water repellent cleaning liquid in order to promote the reaction between the water repellent compound and the wafer surface. Examples of such catalysts include trifluoroacetic acid, trifluoroacetic anhydride, pentafluoropropionic acid, pentafluoropropionic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride-free acid, ammonia, and the like. , Bases such as alkylamine and dialkylamine, salts such as ammonium sulfide, potassium acetate and methylhydroxyamine hydrochloride, and metal complexes and metal salts such as tin, aluminum and titanium, and chlorosilane, trimethylsilyl trifluoroacetonate, Trimethylsilyl trifluoromethanesulfonate and the like are preferably used. In particular, considering catalytic effect and cleanliness, water-free acids such as trifluoroacetic acid, trifluoroacetic anhydride, trifluoromethanesulfonic acid, trifluoromethanesulfonic anhydride, sulfuric acid, hydrogen chloride, and chlorosilane, trimethylsilyl Trifluoroacetonate, trimethylsilyl trifluoromethanesulfonate and the like are preferable.

触媒の添加量は、前記撥水性化合物の総量100質量%に対して、0.001〜5質量%が好ましい。添加量が少なくなると触媒効果が低下するので好ましくない。また、過剰に多くしても触媒効果は向上せず、逆に、ウェハ表面を侵食したり、不純物としてウェハに残留する懸念もある。このため、前記触媒添加量は、0.005〜3質量%が特に好ましい。   The addition amount of the catalyst is preferably 0.001 to 5% by mass with respect to 100% by mass of the total amount of the water repellent compound. If the amount added is small, the catalytic effect is lowered, which is not preferable. Further, even if the amount is excessively increased, the catalytic effect is not improved, and conversely, there is a concern that the wafer surface may be eroded or remain as impurities on the wafer. For this reason, the catalyst addition amount is particularly preferably 0.005 to 3% by mass.

さらにまた、撥水性洗浄液は、温度を高くすると、より短時間で前記凹部表面を撥水化された表面状態としやすくなる。均質に撥水化された表面状態となりやすい温度は、0〜160℃、特には10〜120℃で保持されることが好ましい。撥水性洗浄液の温度は、凹部4に保持されているときも当該温度に保持することが好ましい。   Furthermore, when the temperature of the water-repellent cleaning liquid is increased, the surface of the recess is easily made water-repellent in a shorter time. It is preferable that the temperature at which the surface state easily becomes water-repellent is easily maintained at 0 to 160 ° C, particularly 10 to 120 ° C. The temperature of the water-repellent cleaning liquid is preferably maintained at the temperature even when held in the recess 4.

次に、撥水性化合物により撥水化された凹部4に保持された洗浄液を除去し、さらに洗浄剤を除去する工程が行われる。該工程は、
凹部に保持された洗浄液を乾燥により凹部より除去する工程
シリコンウェハ表面を光照射すること、シリコンウェハを加熱すること、及び、シリコンウェハをオゾン曝露することから選ばれる少なくとも1つの処理を行う工程
を有することが好ましい。
Next, a process of removing the cleaning liquid held in the recesses 4 made water-repellent by the water-repellent compound and further removing the cleaning agent is performed. The process
The step of removing the cleaning liquid held in the concave portion from the concave portion by drying The step of performing at least one treatment selected from irradiating the surface of the silicon wafer with light, heating the silicon wafer, and exposing the silicon wafer to ozone. It is preferable to have.

前記凹部から洗浄液が除去されるときに、凹部に保持されている洗浄液は、水系洗浄液が好ましい。この場合、前記撥水性洗浄液を凹部に保持する工程の後で、凹部に保持された撥水性洗浄液と該撥水性洗浄液とは異なる洗浄液Bとの置換を経て該凹部に水系溶液からなる水系洗浄液を保持する工程を行うことが好ましい。なお、前記凹部から洗浄液が除去されるときに、凹部に保持されている洗浄液は、撥水性洗浄液、あるいは、該異なる洗浄液Bでも良い。   When the cleaning liquid is removed from the recess, the cleaning liquid held in the recess is preferably an aqueous cleaning liquid. In this case, after the step of holding the water-repellent cleaning liquid in the recess, the water-based cleaning liquid made of an aqueous solution is placed in the recess through replacement of the water-repellent cleaning liquid held in the recess and the cleaning liquid B different from the water-repellent cleaning liquid. It is preferable to perform the holding step. When the cleaning liquid is removed from the recess, the cleaning liquid held in the recess may be a water-repellent cleaning liquid or the different cleaning liquid B.

前記の洗浄液を凹部より除去する工程では、洗浄液が乾燥により除去される。当該乾燥は、スピン乾燥法、IPA(2−プロパノール)蒸気乾燥、マランゴニ乾燥、加熱乾燥、温風乾燥、真空乾燥などの周知の乾燥方法によって行うことが好ましい。   In the step of removing the cleaning liquid from the recess, the cleaning liquid is removed by drying. The drying is preferably performed by a known drying method such as spin drying, IPA (2-propanol) vapor drying, Marangoni drying, heat drying, hot air drying, or vacuum drying.

シリコンウェハ表面を光照射すること、シリコンウェハを加熱すること、及び、シリコンウェハをオゾン曝露することから選ばれる少なくとも1つの処理を行う工程では、シリコンウェハ表面の撥水化された表面状態10が除去される。   In the process of performing at least one treatment selected from irradiating the silicon wafer surface with light, heating the silicon wafer, and exposing the silicon wafer to ozone, the water-repellent surface state 10 of the silicon wafer surface is Removed.

光照射で前記撥水化された表面状態10を除去する場合、撥水性化合物により撥水化された表面状態10中のSi−C結合、C−C結合、C−F結合を切断することが有効であり、このためには、それらの結合エネルギーである58〜80kcal/mol、83kcal/mol、116kcal/molに相当するエネルギーである350〜450nm、340nm、240nmよりも短い波長を含む紫外線を照射することが好ましい。この光源としては、メタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、エキシマランプ、カーボンアークなどが用いられる。紫外線照射強度は、例えば、照度計(コニカミノルタセンシング製照射強度計UM−10、受光部UM−360〔ピーク感度波長:365nm、測定波長範囲:310〜400nm〕の測定値で100mW/cm以上が好ましく、200mW/cm以上が特に好ましい。なお、照射強度が100mW/cm未満では前記撥水化された表面状態10を除去するのに長時間要するようになる。また、低圧水銀ランプであれば、より短波長の紫外線を照射することになるので、照射強度が低くても短時間で前記撥水化された表面状態10を除去できるので好ましい。 When removing the water-repellent surface state 10 by light irradiation, the Si—C bond, C—C bond, and C—F bond in the surface state 10 water-repellent by the water-repellent compound may be broken. For this purpose, ultraviolet rays including wavelengths shorter than 350 to 450 nm, 340 nm, and 240 nm, which are energies corresponding to their binding energies of 58 to 80 kcal / mol, 83 kcal / mol, and 116 kcal / mol, are irradiated. It is preferable to do. As this light source, a metal halide lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer lamp, a carbon arc, or the like is used. The ultraviolet irradiation intensity is, for example, 100 mW / cm 2 or more as measured by an illuminometer (irradiance intensity meter UM-10 manufactured by Konica Minolta Sensing, light receiving unit UM-360 [peak sensitivity wavelength: 365 nm, measurement wavelength range: 310 to 400 nm]). 200 mW / cm 2 or more is particularly preferable, and if the irradiation intensity is less than 100 mW / cm 2 , it takes a long time to remove the water-repellent surface state 10. If so, ultraviolet rays having a shorter wavelength are irradiated, so that even if the irradiation intensity is low, the water-repellent surface state 10 can be removed in a short time, which is preferable.

また、光照射で前記撥水化された表面状態10を除去する場合、紫外線で前記撥水化された表面状態10の構成成分を分解すると同時にオゾンを発生させ、該オゾンによって前記撥水化された表面状態10の構成成分を酸化揮発させると、処理時間が短くなるので特に好ましい。この光源としては、低圧水銀ランプやエキシマランプが用いられる。また、光照射しながらシリコンウェハを加熱してもよい。   Further, when removing the water-repellent surface state 10 by light irradiation, ozone is generated at the same time as the constituents of the water-repellent surface state 10 are decomposed by ultraviolet rays, and the water-repellent surface state 10 is generated by the ozone. Further, it is particularly preferable to oxidize and volatilize the constituent component of the surface state 10 because the processing time is shortened. As this light source, a low-pressure mercury lamp or an excimer lamp is used. Further, the silicon wafer may be heated while irradiating light.

シリコンウェハを加熱する場合、400〜700℃、好ましくは、500〜700℃でシリコンウェハの加熱を行う。この加熱時間は、1〜60min、好ましくは10〜30minの保持で行うことが好ましい。また、当該工程では、オゾン暴露、プラズマ照射、コロナ放電などを併用してもよい。また、シリコンウェハを加熱しながら光照射を行ってもよい。   When the silicon wafer is heated, the silicon wafer is heated at 400 to 700 ° C, preferably 500 to 700 ° C. The heating time is preferably 1 to 60 minutes, preferably 10 to 30 minutes. In this step, ozone exposure, plasma irradiation, corona discharge, or the like may be used in combination. Further, light irradiation may be performed while heating the silicon wafer.

シリコンウェハをオゾン曝露する場合、低圧水銀灯などによる紫外線照射や高電圧による低温放電等で発生させたオゾンをシリコンウェハ表面に供することが好ましい。シリコンウェハをオゾン曝露しながら光照射してもよいし、加熱してもよい。   When the silicon wafer is exposed to ozone, it is preferable that ozone generated by ultraviolet irradiation with a low-pressure mercury lamp or the like or low-temperature discharge with a high voltage is provided on the silicon wafer surface. The silicon wafer may be irradiated with light while being exposed to ozone, or may be heated.

前記のシリコンウェハ表面の撥水化された表面状態10を除去する工程では、前記光照射処理、前記加熱処理、前記オゾン曝露処理を組み合わせることによって、効率的に前記表面状態10を除去することができる。また、当該工程では、プラズマ照射、コロナ放電などを併用してもよい。   In the step of removing the water-repellent surface state 10 on the silicon wafer surface, the surface state 10 can be efficiently removed by combining the light irradiation treatment, the heat treatment, and the ozone exposure treatment. it can. In this step, plasma irradiation, corona discharge, or the like may be used in combination.

シリコンウェハの表面を微細な凹凸パターンを有する面とすること、凹部に保持された洗浄液を他の洗浄液で置換することは、公知文献等に記載されているように、既に確立された技術であるので、本発明では、撥水性洗浄液の評価を中心に行った。また、背景技術等で述べた式
P=2×γ×cosθ/S(γ:表面張力、θ:接触角、S:パターン寸法)
から明らかなように、パターン倒れは、洗浄液のシリコンウェハ表面への接触角、すなわち液滴の接触角と、洗浄液の表面張力に大きく依存する。凹凸パターン2の凹部4に保持された洗浄液の場合、液滴の接触角と、パターン倒れと等価なものとして考えてよい該凹部表面の毛細管力とは相関性があるので、前記式と撥水化された表面状態10の液滴の接触角の評価から毛細管力を導き出してもよい。なお、実施例において、前記洗浄液として、水系洗浄液の代表的なものである水を用いた。
Making the surface of the silicon wafer a surface having a fine uneven pattern and replacing the cleaning liquid held in the recesses with other cleaning liquids are already established techniques as described in publicly known documents and the like. Therefore, in the present invention, the evaluation was mainly on the water-repellent cleaning liquid. In addition, the formula P = 2 × γ × cos θ / S (γ: surface tension, θ: contact angle, S: pattern dimension) described in the background art, etc.
As can be seen from the above, the pattern collapse greatly depends on the contact angle of the cleaning liquid to the silicon wafer surface, that is, the contact angle of the droplets and the surface tension of the cleaning liquid. In the case of the cleaning liquid held in the concave portion 4 of the concave / convex pattern 2, the contact angle of the liquid droplet and the capillary force on the concave portion surface, which can be considered as equivalent to the pattern collapse, are correlated. Capillary force may be derived from the evaluation of the contact angle of the surface state 10 droplet. In the examples, water, which is a typical aqueous cleaning solution, was used as the cleaning solution.

しかしながら、表面に微細な凹凸パターンを有するシリコンウェハの場合、パターンは非常に微細なため、撥水化された表面状態10自体の撥水性を正確に評価できない。   However, in the case of a silicon wafer having a fine concavo-convex pattern on the surface, since the pattern is very fine, the water repellency of the water-repellent surface state 10 itself cannot be accurately evaluated.

撥水性評価のための水滴の接触角の評価は、JIS R 3257「基板ガラス表面のぬれ性試験方法」にもあるように、サンプル(基材)表面に数μlの水滴を滴下し、水滴と基材表面のなす角度の測定によりなされる。しかし、パターンを有するシリコンウェハの場合、接触角が非常に大きくなる。これは、Wenzel効果やCassie効果が生じるからで、接触角が基材の表面形状(ラフネス)に影響され、見かけ上の水滴の接触角が増大するためである。   For the evaluation of the contact angle of water droplets for water repellency evaluation, as described in JIS R 3257 “Test method for wettability of substrate glass surface”, several μl of water droplets are dropped on the surface of the sample (base material). This is done by measuring the angle formed by the substrate surface. However, in the case of a silicon wafer having a pattern, the contact angle becomes very large. This is because a Wenzel effect and a Cassie effect occur, and the contact angle is affected by the surface shape (roughness) of the substrate, and the apparent contact angle of water droplets increases.

そこで、本発明では撥水性洗浄液を表面が平滑なシリコンウェハに供して、撥水化された表面状態として、該表面状態を表面に微細な凹凸パターン2が形成されたシリコンウェハ1の撥水化された表面状態10とみなし、評価を行った。   Therefore, in the present invention, the water-repellent cleaning solution is applied to a silicon wafer having a smooth surface, and the water-repellent surface state is converted into a water-repellent surface state. The surface state 10 was regarded as being evaluated.

詳細を下記に述べる。以下では、撥水性洗浄液が供されたシリコンウェハの評価方法、撥水性洗浄液の調製、そして、シリコンウェハに撥水性洗浄液を供した後の評価結果が述べられる。   Details are described below. In the following, the evaluation method of a silicon wafer provided with a water-repellent cleaning liquid, the preparation of the water-repellent cleaning liquid, and the evaluation results after supplying the water-repellent cleaning liquid to the silicon wafer will be described.

〔撥水性洗浄液が供されたシリコンウェハの評価方法〕
撥水性洗浄液が供されたシリコンウェハの評価方法として、以下の(1)〜(4)の評価を行った。
[Method for evaluating silicon wafer provided with water-repellent cleaning liquid]
The following evaluations (1) to (4) were performed as evaluation methods for a silicon wafer provided with a water-repellent cleaning liquid.

(1)撥水性洗浄液により撥水化された表面状態の接触角評価
撥水化されたウェハ表面上に純水約2μlを置き、水滴とウェハ表面とのなす角(接触角)を接触角計(協和界面科学製:CA−X型)で測定した。ここでは撥水化された表面状態の接触角が50〜120°の範囲であったものを合格(表中で○と表記)とした。
(1) Contact angle evaluation of the surface state made water-repellent with a water-repellent cleaning solution Place approximately 2 μl of pure water on the water-repellent wafer surface, and measure the angle (contact angle) between the water droplet and the wafer surface. (Measured by Kyowa Interface Science: CA-X type). Here, the contact angle of the water-repellent surface state in the range of 50 to 120 ° was regarded as acceptable (denoted as “◯” in the table).

(2)毛細管力の評価
下式を用いてPを算出し、毛細管力(Pの絶対値)を求めた。
(2) Evaluation of capillary force P was calculated using the following equation, and the capillary force (absolute value of P) was determined.

P=2×γ×cosθ/S
ここで、γは表面張力、θは接触角、Sはパターン寸法を示す。なお、線幅:45nm、アスペクト比:6のパターンでは、ウェハが気液界面を通過するときの洗浄液が水の場合はパターンが倒れやすく、2−プロパノールの場合はパターンが倒れ難い傾向がある。パターン寸法:45nm、ウェハ表面:酸化ケイ素の場合、洗浄液が、2−プロパノール(表面張力:22mN/m、酸化ケイ素との接触角:1°)では毛細管力は0.98MN/mとなる。一方、水銀を除く液体の中で表面張力が最も大きい水(表面張力:72mN/m、酸化ケイ素との接触角:2.5°)では毛細管力は3.2MN/mとなる。そこで、中間の2.1MN/mを目標とし、水が保持されたときの毛細管力が2.1MN/m以下になれば合格(表中で○と表記)とした。
P = 2 × γ × cos θ / S
Here, γ is the surface tension, θ is the contact angle, and S is the pattern dimension. In the pattern with a line width of 45 nm and an aspect ratio of 6, the pattern tends to collapse when the cleaning liquid is water when the wafer passes through the gas-liquid interface, and the pattern does not easily collapse when 2-propanol. When the pattern size is 45 nm and the wafer surface is silicon oxide, the capillary force is 0.98 MN / m 2 when the cleaning liquid is 2-propanol (surface tension: 22 mN / m, contact angle with silicon oxide: 1 °). On the other hand, the capillary force is 3.2 MN / m 2 in water (surface tension: 72 mN / m, contact angle with silicon oxide: 2.5 °) having the largest surface tension among liquids excluding mercury. Therefore, the intermediate 2.1MN / m 2 as the target, the capillary force when the water was retained was evaluated as acceptable if the following 2.1MN / m 2 (expressed as ○ in Table).

(3)撥水性洗浄液により撥水化された表面状態の除去性
以下の条件でメタルハライドランプのUV光をサンプルに2時間照射した。照射後に水滴の接触角が30°以下となったものを合格(表中で○と表記)とした。
(3) Removability of surface state made water repellent by water-repellent cleaning liquid The sample was irradiated with UV light from a metal halide lamp for 2 hours under the following conditions. A sample having a water droplet contact angle of 30 ° or less after irradiation was regarded as acceptable (denoted as “◯” in the table).

・ランプ:アイグラフィックス製M015−L312(強度:1.5kW)
・照度:下記条件における測定値が128mW/cm
・測定装置:紫外線強度計(コニカミノルタセンシング製、UM−10)
・受光部:UM−360
(受光波長:310〜400nm、ピーク波長:365nm)
・測定モード:放射照度測定
-Lamp: M0155-L312 (strength: 1.5 kW) manufactured by Eye Graphics
Illuminance: The measured value under the following conditions is 128 mW / cm 2
Measuring device: UV intensity meter (Konica Minolta Sensing, UM-10)
-Light receiving part: UM-360
(Receiving wavelength: 310 to 400 nm, peak wavelength: 365 nm)
・ Measurement mode: Irradiance measurement

(4)撥水化された表面状態の除去後のシリコンウェハの表面平滑性評価
原子間力電子顕微鏡(セイコ−電子製:SPI3700、2.5μm四方スキャン)によって表面観察し、中心線平均面粗さ:Ra(nm)を求めた。なお、Raは、JIS B 0601で定義されている中心線平均粗さを測定面に対し適用して三次元に拡張したものであり、「基準面から指定面までの偏差の絶対値を平均した値」として次式で算出した。撥水化された表面状態を除去した後のウェハのRa値が1nm以下であれば、洗浄によってウェハ表面が侵食されていない、および、撥水性洗浄液の残渣がウェハ表面にないとし、合格(表中で○と表記)とした。
(4) Evaluation of surface smoothness of silicon wafer after removal of water-repellent surface state The surface was observed with an atomic force electron microscope (Seiko-Electronics: SPI3700, 2.5 μm square scan), and the centerline average surface roughness was Sa: Ra (nm) was determined. Ra is a three-dimensional extension of the centerline average roughness defined in JIS B 0601 to the measurement surface. “The absolute value of the deviation from the reference surface to the specified surface is averaged. The value was calculated by the following formula. If the Ra value of the wafer after removing the water-repellent surface state is 1 nm or less, the wafer surface is not eroded by cleaning, and the residue of the water-repellent cleaning liquid is not present on the wafer surface. (Indicated by ○).

Figure 0005533178
ここで、X、X、Y、Yは、それぞれ、X座標、Y座標の測定範囲を示す。Sは、測定面が理想的にフラットであるとした時の面積であり、(X−X)×(Y−Y)の値とした。また、F(X,Y)は、測定点(X,Y)における高さ、Zは、測定面内の平均高さを表す。
Figure 0005533178
Here, X L , X R , Y B , and Y T indicate measurement ranges of the X coordinate and the Y coordinate, respectively. S 0 is an area when the measurement surface is ideally flat, and is a value of (X R −X L ) × (Y B −Y T ). Moreover, F (X, Y) is, the measurement point (X, Y) in height, Z 0 represents the average height within the measurement surface.

[実施例1]
(1)撥水性洗浄液の調製
撥水性化合物としてトリメチルクロロシラン〔(CHSiCl〕;3g、アルコール溶媒として2−プロパノール(iPA);5gとアルコール溶媒以外の有機溶媒としてトルエン;92gとの混合溶媒を混合し、約5min撹拌して、撥水性洗浄液の総量に対する撥水性化合物の濃度(以降「撥水性化合物濃度」と記載する)が3質量%、撥水性洗浄液の総量に対するアルコール溶媒の濃度(以降「アルコール濃度」と記載する)が5質量%の撥水性洗浄液を得た。
[Example 1]
(1) Preparation of water-repellent cleaning solution Trimethylchlorosilane [(CH 3 ) 3 SiCl] as water-repellent compound; 3 g, 2-propanol (iPA) as alcohol solvent; 5 g and toluene as an organic solvent other than alcohol solvent; 92 g The solvent was mixed and stirred for about 5 minutes. The concentration of the water-repellent compound relative to the total amount of the water-repellent cleaning liquid (hereinafter referred to as “water-repellent compound concentration”) was 3% by mass, and the concentration of the alcohol solvent relative to the total amount of the water-repellent cleaning liquid ( Hereinafter, a water-repellent cleaning liquid having an alcohol concentration of 5% by mass was obtained.

(2)シリコンウェハの洗浄
平滑な熱酸化膜付きシリコンウェハ(表面に厚さ1μmの熱酸化膜層を有するSiウェハ)を1質量%のフッ酸水溶液に2min浸漬し、次いで純水に1min、アセトンに1min浸漬した。
(2) Cleaning of silicon wafer A silicon wafer with a smooth thermal oxide film (Si wafer having a thermal oxide film layer with a thickness of 1 μm on the surface) is immersed in a 1% by mass hydrofluoric acid aqueous solution for 2 min, and then 1 min in pure water. It was immersed in acetone for 1 min.

(3)シリコンウェハ表面への撥水性洗浄液による表面処理
シリコンウェハを、上記「(1)撥水性洗浄液の調製」で調製した撥水性洗浄液に20℃で10min浸漬させた。その後、シリコンウェハをiPAに1min浸漬し、次いで、水系洗浄液としての純水に1min浸漬した。最後に、シリコンウェハを純水から取出し、エアーを吹き付けて、表面の純水を除去した。
(3) Surface treatment with water-repellent cleaning liquid on silicon wafer surface The silicon wafer was immersed in the water-repellent cleaning liquid prepared in “(1) Preparation of water-repellent cleaning liquid” at 20 ° C. for 10 minutes. Thereafter, the silicon wafer was immersed in iPA for 1 min, and then immersed in pure water as an aqueous cleaning solution for 1 min. Finally, the silicon wafer was taken out from the pure water and air was blown to remove the pure water on the surface.

得られたウェハを上記「撥水性洗浄液が供されたシリコンウェハの評価方法」に記載した要領で評価したところ、表1に示すとおり、表面処理前の初期接触角が10°未満であったものが、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、上記「毛細管力の評価」に記載した式を使って、水が保持されたときの毛細管力を計算したところ、毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。 When the obtained wafer was evaluated in the manner described in the above-mentioned “Method for evaluating silicon wafer provided with water-repellent cleaning solution”, as shown in Table 1, the initial contact angle before the surface treatment was less than 10 °. However, the contact angle after the surface treatment was 70 °, which showed the effect of imparting water repellency. Further, when the capillary force when water was held was calculated using the formula described in the above “Evaluation of Capillary Force”, the capillary force was 1.1 MN / m 2 and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

Figure 0005533178
Figure 0005533178

[実施例2]
撥水性化合物濃度を1質量%とした以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は66°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 2]
All were the same as Example 1 except that the water repellent compound concentration was 1% by mass. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 66 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.3 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例3]
アルコール濃度を10質量%とした以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は68°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.2MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 3]
All were the same as in Example 1 except that the alcohol concentration was 10% by mass. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 68 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.2 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例4]
アルコール溶媒に1−プロパノール(nPA)を用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 4]
All were the same as in Example 1 except that 1-propanol (nPA) was used as the alcohol solvent. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例5]
アルコール溶媒にエタノールを用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 5]
All were the same as Example 1 except that ethanol was used as the alcohol solvent. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例6]
アルコール溶媒に1−ブタノールを用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 6]
All were the same as Example 1 except that 1-butanol was used as the alcohol solvent. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例7]
アルコール溶媒に1−ヘキサノールを用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 7]
All were the same as Example 1 except that 1-hexanol was used as the alcohol solvent. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例8]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒として、フッ素系溶剤(旭硝子製アサヒクリンAE3000:ハイドロフルオロエーテル)を用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 8]
The same procedure as in Example 1 was conducted except that a fluorine-based solvent (Asahiclin AE3000: Hydrofluoroether manufactured by Asahi Glass) was used as the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例9]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒として、フッ素系溶剤(住友3M製Novec HFE−7100:ハイドロフルオロエーテル)を用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は76°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.8MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 9]
The organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was the same as Example 1 except that a fluorinated solvent (Novec HFE-7100 manufactured by Sumitomo 3M) was used. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 76 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.8 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例10]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒として、1−クロロ−3,3,3−トリフルオロプロペン(CTFP)を用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 10]
All were the same as in Example 1 except that 1-chloro-3,3,3-trifluoropropene (CTFP) was used as the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例11]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒として、1,2ジクロロ−3,3,3−トリフルオロプロペン(DCTFP)を用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 11]
The same procedure as in Example 1 was performed except that 1,2-dichloro-3,3,3-trifluoropropene (DCTFP) was used as the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例12]
撥水性化合物にトリフルオロプロピルジメチルクロロシラン〔CFCHCHSi(CHCl〕を用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は66°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 12]
The same procedure as in Example 1 was conducted except that trifluoropropyldimethylchlorosilane [CF 3 CH 2 CH 2 Si (CH 3 ) 2 Cl] was used as the water repellent compound. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 66 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.3 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例13]
撥水性化合物にノナフルオロヘキシルジメチルクロロシラン〔CF(CFCHCHSi(CHCl〕を用いた以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 13]
The same procedure as in Example 1 was conducted except that nonafluorohexyldimethylchlorosilane [CF 3 (CF 2 ) 3 CH 2 CH 2 Si (CH 3 ) 2 Cl] was used as the water repellent compound. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例14]
上記「(2)シリコンウェハの洗浄」でシリコンウェハをフッ酸水溶液に2min浸漬した後、純水に1min、iPAに1min浸漬した以外はすべて実施例1と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 14]
The same procedure as in Example 1 was performed except that the silicon wafer was immersed in a hydrofluoric acid aqueous solution for 2 minutes in the above “(2) Cleaning of silicon wafer”, then immersed in pure water for 1 min and iPA for 1 min. As shown in Table 1, the evaluation results showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例15]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をHFE−7100とした以外はすべて実施例14と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 15]
All were the same as Example 14 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was changed to HFE-7100. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例16]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をCTFPとした以外はすべて実施例14と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 16]
All were the same as Example 14 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was CTFP. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例17]
アルコール溶媒に1−プロパノール(nPA)を用いた以外はすべて実施例15と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 17]
All were the same as Example 15 except that 1-propanol (nPA) was used as the alcohol solvent. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例18]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をCTFPとした以外はすべて実施例17と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 18]
All were the same as Example 17 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was CTFP. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例19]
撥水性化合物濃度を5質量%とした以外はすべて実施例17と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 19]
All were the same as Example 17 except that the water-repellent compound concentration was 5 mass%. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例20]
撥水性化合物濃度を10質量%とした以外はすべて実施例17と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.4MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 20]
All were the same as Example 17 except that the water-repellent compound concentration was 10 mass%. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.4 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例21]
撥水性化合物濃度を50質量%とした以外はすべて実施例17と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は84°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.3MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 21]
All were the same as Example 17 except that the water-repellent compound concentration was 50 mass%. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 84 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.3 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例22]
撥水性洗浄液中の有機溶媒を1−プロパノール(nPA)とした以外はすべて実施例19と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 22]
All were the same as Example 19 except that the organic solvent in the water-repellent cleaning liquid was 1-propanol (nPA). As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例23]
撥水性化合物濃度を10質量%とした以外はすべて実施例22と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 23]
All were the same as Example 22 except that the water-repellent compound concentration was 10 mass%. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例24]
撥水性化合物濃度を50質量%とした以外はすべて実施例22と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は80°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.6MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 24]
All were the same as Example 22 except that the water-repellent compound concentration was 50 mass%. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 80 °, which showed the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.6 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例25]
上記「(3)シリコンウェハ表面への撥水性洗浄液による表面処理」でシリコンウェハを撥水性洗浄液に浸漬した後、純水に1min浸漬し、最後にシリコンウェハを純水から取出し、エアーを吹き付けて、撥水化された表面状態のウェハを得た以外はすべて実施例15と同じとした。評価結果は表1に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 25]
After immersing the silicon wafer in the water-repellent cleaning liquid in “(3) Surface treatment with water-repellent cleaning liquid on the surface of the silicon wafer” described above, the silicon wafer is immersed in pure water for 1 minute, and finally the silicon wafer is taken out from the pure water and blown with air. All were the same as Example 15 except that a water-repellent surface state wafer was obtained. As shown in Table 1, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例26]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をCTFPとした以外はすべて実施例25と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 26]
All were the same as in Example 25 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was CTFP. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

Figure 0005533178
Figure 0005533178

[実施例27]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をDCTFPとした以外はすべて実施例25と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 27]
All were the same as Example 25 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was changed to DCTFP. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例28]
上記「(3)シリコンウェハ表面への撥水性洗浄液による表面処理」でシリコンウェハを撥水性洗浄液に浸漬した後、エアーを吹き付けて、表面の撥水性洗浄液を除去した。次いで、iPAに1min浸漬し、純水に1min浸漬し、最後に、シリコンウェハを純水から取出し、エアーを吹き付けて表面の純水を除去することによって、撥水化された表面状態のウェハを得た以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 28]
After immersing the silicon wafer in the water-repellent cleaning liquid in “(3) Surface treatment of the silicon wafer surface with the water-repellent cleaning liquid”, air was blown to remove the water-repellent cleaning liquid on the surface. Next, the wafer is dipped in iPA for 1 min, dipped in pure water for 1 min. Finally, the silicon wafer is taken out from the pure water, and air is blown to remove the pure water on the surface, whereby a water-repellent surface state wafer is obtained. All were the same as Example 15 except that they were obtained. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例29]
上記「(3)シリコンウェハ表面への撥水性洗浄液による表面処理」でシリコンウェハを撥水性洗浄液に浸漬した後、エアーを吹き付けて、表面の撥水性洗浄液を除去した。次いで、iPAに1min浸漬し、最後に、シリコンウェハをiPAから取出し、エアーを吹き付けて表面のiPAを除去することによって、撥水化された表面状態のウェハを得た以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 29]
After immersing the silicon wafer in the water-repellent cleaning liquid in “(3) Surface treatment of the silicon wafer surface with the water-repellent cleaning liquid”, air was blown to remove the water-repellent cleaning liquid on the surface. Next, all of the examples except for obtaining a water-repellent surface state wafer by immersing in iPA for 1 min and finally removing the silicon wafer from iPA and blowing air to remove the surface iPA. Same as above. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例30]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をCTFPとした以外はすべて実施例29と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 30]
All were the same as in Example 29 except that CTFP was used as the organic solvent other than the alcohol solvent in the water-repellent cleaning solution. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例31]
上記「(3)シリコンウェハ表面への撥水性洗浄液による表面処理」でシリコンウェハを撥水性洗浄液に浸漬した後、エアーを吹き付けて、表面の撥水性洗浄液を除去した。次いで、純水に1min浸漬し、最後に、シリコンウェハを純水から取出し、エアーを吹き付けて表面の純水を除去することによって、撥水化された表面状態のウェハを得た以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 31]
After immersing the silicon wafer in the water-repellent cleaning liquid in “(3) Surface treatment of the silicon wafer surface with the water-repellent cleaning liquid”, air was blown to remove the water-repellent cleaning liquid on the surface. Next, all steps were carried out except that the wafer was dipped in pure water for 1 min, and finally the silicon wafer was taken out from the pure water and air was blown to remove the pure water on the surface to obtain a water-repellent surface state wafer. Same as Example 15. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例32]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をCTFPとした以外はすべて実施例31と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 32]
All were the same as Example 31 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was CTFP. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例33]
上記「(3)シリコンウェハ表面への撥水性洗浄液による表面処理」でシリコンウェハを撥水性洗浄液から取出した後、エアーを吹き付けて、撥水化された表面状態のウェハを得た以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 33]
All the steps were performed except that after removing the silicon wafer from the water-repellent cleaning solution in “(3) Surface treatment with water-repellent cleaning solution on the surface of the silicon wafer”, air was blown to obtain a wafer having a water-repellent surface state. Same as Example 15. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例34]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をCTFPとした以外はすべて実施例33と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 34]
All were the same as Example 33 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was CTFP. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例35]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をDCTFPとした以外はすべて実施例33と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 35]
The same procedure as in Example 33 was performed except that DCTFP was used as the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例36]
上記「(3)シリコンウェハ表面への撥水性洗浄液による表面処理」でシリコンウェハを撥水性洗浄液に浸漬した後、iPAに1min浸漬し、最後に、シリコンウェハをiPAから取出し、エアーを吹き付けて表面のiPAを除去することによって、撥水化された表面状態のウェハを得た以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 36]
After immersing the silicon wafer in the water-repellent cleaning liquid in “(3) Surface treatment with water-repellent cleaning liquid on the surface of the silicon wafer” described above, the silicon wafer is immersed in iPA for 1 min. Finally, the silicon wafer is taken out from the iPA and blown with air. The same procedure as in Example 15 was performed except that a wafer having a water-repellent surface state was obtained by removing iPA. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例37]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をCTFPとした以外はすべて実施例36と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 37]
All were the same as Example 36 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was CTFP. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例38]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をDCTFPとした以外はすべて実施例36と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 38]
All were the same as Example 36 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was changed to DCTFP. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例39]
上記「(2)シリコンウェハの洗浄」でシリコンウェハをフッ酸水溶液に2min浸漬した後、純水に1min浸漬し、iPAに1min浸漬し、トルエンに1min浸漬した以外はすべて実施例1と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は70°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.1MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 39]
The same as Example 1 except that the silicon wafer was immersed in a hydrofluoric acid aqueous solution for 2 min in the above “(2) Cleaning of silicon wafer”, then immersed in pure water for 1 min, immersed in iPA for 1 min, and immersed in toluene for 1 min. did. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 70 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.1 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例40]
上記「(2)シリコンウェハの洗浄」でシリコンウェハをフッ酸水溶液に2min浸漬した後、純水に1min浸漬し、iPAに1min浸漬し、HFE−7100に1min浸漬した以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 40]
Example 15 is the same as Example 15 except that the silicon wafer was immersed in a hydrofluoric acid aqueous solution for 2 min in the “(2) Cleaning of silicon wafer”, then immersed in pure water for 1 min, immersed in iPA for 1 min, and immersed in HFE-7100 for 1 min. Same as above. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例41]
上記「(2)シリコンウェハの洗浄」でシリコンウェハをフッ酸水溶液に2min浸漬した後、純水に1min浸漬した以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は74°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.9MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 41]
The same procedure as in Example 15 was performed except that the silicon wafer was immersed in an aqueous hydrofluoric acid solution for 2 minutes and then immersed in pure water for 1 minute in “(2) Cleaning of silicon wafer”. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 74 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.9 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例42]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をCTFPとした以外はすべて実施例41と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 42]
All were the same as Example 41 except that the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid was CTFP. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例43]
撥水性洗浄液中のアルコール溶媒以外の有機溶媒をDCTFPとした以外はすべて実施例41と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は72°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は1.0MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 43]
The same procedure as in Example 41 was performed except that DCTFP was used as the organic solvent other than the alcohol solvent in the water-repellent cleaning liquid. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 72 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 1.0 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例44]
撥水性化合物にエチルジメチルクロロシラン〔CSi(CHCl〕を用いた以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は78°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.7MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 44]
All were the same as Example 15 except that ethyldimethylchlorosilane [C 2 H 5 Si (CH 3 ) 2 Cl] was used as the water repellent compound. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 78 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.7 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[実施例45]
撥水性化合物にプロピルジメチルクロロシラン〔CSi(CHCl〕を用いた以外はすべて実施例15と同じとした。評価結果は表2に示すとおり、表面処理後の接触角は82°となり、撥水性付与効果を示した。また、水が保持されたときの毛細管力は0.5MN/mとなり、毛細管力は小さかった。また、UV照射後の接触角は10°未満であり撥水化された表面状態は除去できた。さらに、UV照射後のウェハのRa値は0.5nm未満であり、洗浄時にウェハは侵食されず、さらにUV照射後に撥水性洗浄液の残渣は残らないことが確認できた。
[Example 45]
All were the same as Example 15 except that propyldimethylchlorosilane [C 3 H 7 Si (CH 3 ) 2 Cl] was used as the water repellent compound. As shown in Table 2, the evaluation result showed that the contact angle after the surface treatment was 82 °, indicating the effect of imparting water repellency. Moreover, the capillary force when water was held was 0.5 MN / m 2 , and the capillary force was small. Moreover, the contact angle after UV irradiation was less than 10 °, and the water-repellent surface state could be removed. Furthermore, the Ra value of the wafer after UV irradiation was less than 0.5 nm, and it was confirmed that the wafer was not eroded during cleaning, and that no residue of the water-repellent cleaning liquid remained after UV irradiation.

[比較例1]
シリコンウェハに撥水性洗浄液を供さなかった以外は、実施例1と同じとした。すなわち、本比較例では、撥水化されていない表面状態のウェハを評価した。評価結果は表2に示すとおり、ウェハの接触角は3°と低く、水が保持されたときの毛細管力は3.2MN/mと大きかった。
[Comparative Example 1]
Example 1 was the same as Example 1 except that the water-repellent cleaning solution was not applied to the silicon wafer. That is, in this comparative example, a wafer having a surface state that is not water-repellent was evaluated. As shown in Table 2, the contact angle of the wafer was as low as 3 °, and the capillary force when water was retained was as large as 3.2 MN / m 2 .

[比較例2]
トリメチルクロロシシラン;3.0g、iPA;94.6gを混合し、次いで、0.1N硝酸水溶液(pH1);2.4gを添加し、約24時間室温で撹拌して、撥水性洗浄液を得た以外は、実施例1と同じとした。すなわち、本比較例では、反応性部位が加水分解した撥水性化合物を含む撥水性洗浄液を用いた。評価結果は表2に示すとおり、表面処理後の接触角は14°と低く、水が保持されたときの毛細管力は3.1MN/mと大きかった。
[Comparative Example 2]
3.0 g, iPA; 94.6 g were mixed, and then 0.1N nitric acid aqueous solution (pH 1); 2.4 g was added and stirred at room temperature for about 24 hours to obtain a water-repellent cleaning solution. The same as Example 1 except for the above. That is, in this comparative example, a water-repellent cleaning liquid containing a water-repellent compound whose reactive site was hydrolyzed was used. As shown in Table 2, the contact angle after the surface treatment was as low as 14 °, and the capillary force when water was retained was as large as 3.1 MN / m 2 as shown in Table 2.

1 シリコンウェハ
2 シリコンウェハ表面の微細な凹凸パターン
3 パターンの凸部
4 パターンの凹部
5 凹部の幅
6 凸部の高さ
7 凸部の幅
8 凹部4に保持された洗浄液
9 凹部4に保持された水系洗浄液
10 撥水性化合物により撥水化された表面状態
DESCRIPTION OF SYMBOLS 1 Silicon wafer 2 Fine uneven | corrugated pattern on the surface of a silicon wafer 3 Pattern convex part 4 Pattern concave part 5 Concave width 6 Convex part height 7 Convex part width 8 Cleaning liquid 9 held in the concave part 4 Aqueous cleaning solution 10 Surface condition made water repellent by water repellent compound

Claims (8)

表面に微細な凹凸パターンを有するシリコンウェハ用洗浄剤であり、該シリコンウェハ用洗浄剤は少なくとも水系洗浄液と、洗浄過程中に凹凸パターンの少なくとも凹部を撥水化するための撥水性洗浄液とを含み、該撥水性洗浄液は、シリコンウェハのSiと化学的に結合可能な反応性部位と疎水性基を含む撥水性化合物と、少なくともアルコール溶媒を含む有機溶媒とが混合されて含まれることを特徴とするシリコンウェハ用洗浄剤。 A silicon wafer cleaning agent having a fine concavo-convex pattern on the surface, the silicon wafer cleaning agent comprising at least an aqueous cleaning liquid and a water-repellent cleaning liquid for repelling at least concave portions of the concavo-convex pattern during the cleaning process. The water-repellent cleaning liquid is characterized by containing a mixture of a water-repellent compound containing a reactive site capable of chemically bonding to Si of a silicon wafer and a hydrophobic group, and an organic solvent containing at least an alcohol solvent. Cleaning agent for silicon wafers. 前記アルコール溶媒は、炭素数が10以下のアルコールからなる群から選ばれる少なくとも一つであることを特徴とする請求項1に記載のシリコンウェハ用洗浄剤。 2. The cleaning agent for a silicon wafer according to claim 1, wherein the alcohol solvent is at least one selected from the group consisting of alcohols having 10 or less carbon atoms. 前記撥水性化合物が、下記一般式[1]および[2]からなる群から選ばれる少なくとも一つからなることを特徴とする、請求項1または請求項2に記載のシリコンウェハ用洗浄剤。
(RSi(CH4−a−b−c [1]
〔RSi(CH2−dNH3−e [2]
ここで、Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、または、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基を表す。Rは、それぞれ互いに独立して、炭素数が1〜18の炭化水素基を含む1価の有機基、または、炭素数が1〜8のフルオロアルキル鎖を含む1価の有機基を表す。また、Xは、それぞれ互いに独立して、ハロゲン基、アルコキシ基、アセトキシ基、トリフルオロアセトキシ基、−OC(CH)=CHCOCH、−OC(CH)=N−Si(CH、−OC(CF)=N−Si(CH、−CO−NH−Si(CH、アルキルスルホネート基、パーフルオロアルキルスルホネート基、ニトリル基、及び、Siと結合する元素が窒素の1価の有機基からなる群から選ばれる少なくとも1つの基を表す。aは1〜3の整数であり、bおよびcは、それぞれ、0〜2の整数であり、aとbとcの合計は1〜3である。さらに、dは0〜2の整数であり、eは1〜3の整数である。
The said water-repellent compound consists of at least one chosen from the group which consists of following General formula [1] and [2], The cleaning agent for silicon wafers of Claim 1 or Claim 2 characterized by the above-mentioned.
(R 1 ) a Si (CH 3 ) b H c X 4-abc [1]
[R 2 Si (CH 3) 2 -d H d ] e NH 3-e [2]
Here, R 1 s are each independently a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms or a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. Represents. R 2 s each independently represent a monovalent organic group containing a hydrocarbon group having 1 to 18 carbon atoms or a monovalent organic group containing a fluoroalkyl chain having 1 to 8 carbon atoms. Further, X are each independently of one another, a halogen group, an alkoxy group, an acetoxy group, trifluoroacetoxy group, -OC (CH 3) = CHCOCH 3, -OC (CH 3) = N-Si (CH 3) 3 , -OC (CF 3) = N -Si (CH 3) 3, -CO-NH-Si (CH 3) 3, alkyl sulfonate group, perfluoroalkyl sulfonate group, a nitrile group, and, an element that binds to Si It represents at least one group selected from the group consisting of monovalent organic groups of nitrogen. a is an integer of 1 to 3, b and c are each an integer of 0 to 2, and the sum of a, b and c is 1 to 3. Furthermore, d is an integer of 0 to 2, and e is an integer of 1 to 3.
前記有機溶媒が、前記アルコール溶媒と非プロトン性溶媒であることを特徴とする請求項1乃至請求項3のいずれかに記載のシリコンウェハ用洗浄剤。 The said organic solvent is the said alcohol solvent and an aprotic solvent, The cleaning agent for silicon wafers in any one of the Claims 1 thru | or 3 characterized by the above-mentioned. 前記有機溶媒が、前記アルコール溶媒と不燃性含ハロゲン溶媒であることを特徴とする請求項1乃至請求項4のいずれかに記載のシリコンウェハ用洗浄剤。 The said organic solvent is the said alcohol solvent and a nonflammable halogen-containing solvent, The cleaning agent for silicon wafers in any one of the Claims 1 thru | or 4 characterized by the above-mentioned. 前記撥水性洗浄液により撥水化されたシリコンウェハ表面の凹部に水が保持されたと仮定したときの該凹部表面の毛細管力を2.1MN/m以下とせしめるものであることを特徴とする請求項1乃至請求項5のいずれかに記載のシリコンウェハ用洗浄剤。 The capillary force on the surface of the recess is assumed to be 2.1 MN / m 2 or less when it is assumed that water is held in the recess on the surface of the silicon wafer that has been made water-repellent by the water-repellent cleaning liquid. The cleaning agent for silicon wafers according to any one of claims 1 to 5. 表面に微細な凹凸パターンを有するシリコンウェハの洗浄過程中に凹凸パターンの少なくとも凹部を撥水化するための撥水性洗浄液であり、該撥水性洗浄液は、シリコンウェハのSiと化学的に結合可能な反応性部位と疎水性基を含む撥水性化合物と、少なくともアルコール溶媒を含む有機溶媒とが混合されて含まれることを特徴とするシリコンウェハの洗浄過程中に使用される撥水性洗浄液。 This is a water-repellent cleaning liquid for repelling at least the recesses of the concavo-convex pattern during the cleaning process of the silicon wafer having a fine concavo-convex pattern on the surface, and the water-repellent cleaning liquid can be chemically bonded to Si of the silicon wafer. A water-repellent cleaning liquid used during a silicon wafer cleaning process, comprising a mixture of a water-repellent compound containing a reactive site and a hydrophobic group and an organic solvent containing at least an alcohol solvent. 請求項1乃至請求項6のいずれかに記載のシリコンウェハ用洗浄剤を用いるシリコンウェハ表面の洗浄方法であり、該方法は、洗浄液をシリコンウェハ表面から取り除いた後にシリコンウェハ表面を光照射すること、シリコンウェハを加熱すること、及び、シリコンウェハをオゾン曝露することから選ばれる少なくとも1つの処理を行う工程を有することを特徴とするシリコンウェハ表面の洗浄方法。 A silicon wafer surface cleaning method using the silicon wafer cleaning agent according to any one of claims 1 to 6, wherein the method includes irradiating the silicon wafer surface with light after removing the cleaning liquid from the silicon wafer surface. A method for cleaning the surface of a silicon wafer, comprising the steps of performing at least one treatment selected from heating a silicon wafer and exposing the silicon wafer to ozone.
JP2010094696A 2008-12-26 2010-04-16 Silicon wafer cleaning agent Expired - Fee Related JP5533178B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010094696A JP5533178B2 (en) 2009-04-24 2010-04-16 Silicon wafer cleaning agent
KR1020117026295A KR101361203B1 (en) 2009-04-24 2010-04-20 Cleaning agent for silicon wafer, water-repellent cleaning liquid and cleaning method for surface of silicon wafer
PCT/JP2010/057008 WO2010123001A1 (en) 2009-04-24 2010-04-20 Cleaning agent for silicon wafer
SG2011065182A SG174322A1 (en) 2009-04-24 2010-04-20 Cleaning agent for silicon wafer
TW099112885A TWI482854B (en) 2009-04-24 2010-04-23 Silicon wafer cleaning agent
US12/898,185 US9053924B2 (en) 2008-12-26 2010-10-05 Cleaning agent for silicon wafer
US14/136,381 US9281178B2 (en) 2008-12-26 2013-12-20 Cleaning agent for silicon wafer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009106894 2009-04-24
JP2009106894 2009-04-24
JP2010094696A JP5533178B2 (en) 2009-04-24 2010-04-16 Silicon wafer cleaning agent

Publications (2)

Publication Number Publication Date
JP2010272852A JP2010272852A (en) 2010-12-02
JP5533178B2 true JP5533178B2 (en) 2014-06-25

Family

ID=43011118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094696A Expired - Fee Related JP5533178B2 (en) 2008-12-26 2010-04-16 Silicon wafer cleaning agent

Country Status (5)

Country Link
JP (1) JP5533178B2 (en)
KR (1) KR101361203B1 (en)
SG (1) SG174322A1 (en)
TW (1) TWI482854B (en)
WO (1) WO2010123001A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678720B2 (en) * 2011-02-25 2015-03-04 セントラル硝子株式会社 Wafer cleaning method
JP6098741B2 (en) * 2010-12-28 2017-03-22 セントラル硝子株式会社 Wafer cleaning method
US8828144B2 (en) 2010-12-28 2014-09-09 Central Grass Company, Limited Process for cleaning wafers
US20120164818A1 (en) * 2010-12-28 2012-06-28 Central Glass Company, Limited Process for Cleaning Wafers
JP2013118347A (en) * 2010-12-28 2013-06-13 Central Glass Co Ltd Cleaning method of wafer
JP2013102109A (en) * 2011-01-12 2013-05-23 Central Glass Co Ltd Liquid chemical for forming protecting film
JP5953721B2 (en) * 2011-10-28 2016-07-20 セントラル硝子株式会社 Method for preparing protective film forming chemical
JP6213616B2 (en) * 2011-10-28 2017-10-18 セントラル硝子株式会社 Method for preparing protective film forming chemical
JP6375688B2 (en) 2013-05-20 2018-08-22 セントラル硝子株式会社 Pumping container, storage method using the pumping container, and liquid transfer method using the pumping container
JP6493095B2 (en) * 2014-09-18 2019-04-03 セントラル硝子株式会社 Wafer cleaning method and chemical solution used for the cleaning method
WO2016043128A1 (en) * 2014-09-18 2016-03-24 セントラル硝子株式会社 Method for cleaning wafer, and chemical used in such cleaning method
WO2017030073A1 (en) * 2015-08-20 2017-02-23 セントラル硝子株式会社 Wafer washing method, and liquid chemical used in same
JP2017168710A (en) * 2016-03-17 2017-09-21 セントラル硝子株式会社 Wafer cleaning method
JP2017174859A (en) * 2016-03-18 2017-09-28 セントラル硝子株式会社 Wafer cleaning method
JP6226501B2 (en) * 2016-04-27 2017-11-08 神戸合成株式会社 Cleaning composition and aerosol composition thereof
WO2017217320A1 (en) 2016-06-13 2017-12-21 富士フイルム株式会社 Container in which liquid composition is contained and method for storing liquid composition
WO2024070526A1 (en) * 2022-09-30 2024-04-04 富士フイルム株式会社 Chemical solution, method for producing modified substrate, and method for producing layered body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105683B2 (en) * 1992-04-23 1994-12-21 株式会社ソルテック Resist pattern formation method
US7029826B2 (en) * 2000-06-23 2006-04-18 Honeywell International Inc. Method to restore hydrophobicity in dielectric films and materials
JP2008198958A (en) * 2007-02-16 2008-08-28 Dainippon Screen Mfg Co Ltd Device and method for treating substrate
JP2008277748A (en) * 2007-03-30 2008-11-13 Renesas Technology Corp Method for forming resist pattern, and semiconductor device manufactured by the method
US20080241489A1 (en) 2007-03-30 2008-10-02 Renesas Technology Corp. Method of forming resist pattern and semiconductor device manufactured with the same

Also Published As

Publication number Publication date
TW201100535A (en) 2011-01-01
KR101361203B1 (en) 2014-02-07
SG174322A1 (en) 2011-11-28
TWI482854B (en) 2015-05-01
JP2010272852A (en) 2010-12-02
KR20110139306A (en) 2011-12-28
WO2010123001A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5533178B2 (en) Silicon wafer cleaning agent
JP5482192B2 (en) Silicon wafer cleaning agent
JP5446848B2 (en) Silicon wafer cleaning agent
JP6032338B2 (en) Chemical solution for protective film formation
JP5708191B2 (en) Chemical solution for protective film formation
US9281178B2 (en) Cleaning agent for silicon wafer
US9481858B2 (en) Silicon wafer cleaning agent
US9748092B2 (en) Liquid chemical for forming protecting film
WO2012002145A1 (en) Chemical solution for forming water-repellent protective film
JP6191372B2 (en) Wafer cleaning method
KR101572583B1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP5716527B2 (en) Chemical solution for forming water repellent protective film and method for cleaning wafer using the chemical solution
WO2012002243A1 (en) Water-repellent protective film formation agent, chemical solution for forming water-repellent protective film, and wafer cleaning method using chemical solution
JP5678720B2 (en) Wafer cleaning method
JP6098741B2 (en) Wafer cleaning method
WO2010084826A1 (en) Silicon wafer cleaning agent
WO2013115021A1 (en) Chemical solution for forming water-repellent protective film, chemical solution kit for forming water-repellent protective film, and method for washing wafer
JP5712670B2 (en) Water repellent protective film forming chemical

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees