[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012086111A1 - 有機elディスプレイパネル及びその製造方法 - Google Patents

有機elディスプレイパネル及びその製造方法 Download PDF

Info

Publication number
WO2012086111A1
WO2012086111A1 PCT/JP2011/005813 JP2011005813W WO2012086111A1 WO 2012086111 A1 WO2012086111 A1 WO 2012086111A1 JP 2011005813 W JP2011005813 W JP 2011005813W WO 2012086111 A1 WO2012086111 A1 WO 2012086111A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic
emitting element
region
bank
Prior art date
Application number
PCT/JP2011/005813
Other languages
English (en)
French (fr)
Inventor
修平 中谷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012511474A priority Critical patent/JP4990425B1/ja
Priority to US13/992,912 priority patent/US8901594B2/en
Priority to EP11850871.2A priority patent/EP2640163A4/en
Priority to CN201180055707.7A priority patent/CN103229596B/zh
Publication of WO2012086111A1 publication Critical patent/WO2012086111A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations

Definitions

  • the present invention relates to an organic EL display panel and a manufacturing method thereof.
  • An organic EL display panel is a display panel having a light emitting element utilizing electroluminescence of an organic compound. That is, the organic EL display panel has an EL device including a cathode and an anode, and an organic compound that emits electroluminescence and is disposed between the two electrodes. Electroluminescent organic compounds can be broadly classified into combinations of low molecular organic compounds (host material and dopant material) and high molecular organic compounds.
  • Examples of the polymer organic compound that emits light include polyparaphenylene vinylene called PPV and derivatives thereof.
  • An organic EL display panel using an electroluminescent polymer organic compound can be driven at a relatively low voltage and has low power consumption.
  • the high molecular organic compound can be dissolved in an aromatic organic solvent such as xylene or toluene to form an ink.
  • an aromatic organic solvent such as xylene or toluene
  • An organic EL device is a laminated device composed of a plurality of layers such as an electrode, a hole injection layer, and an organic light emitting layer.
  • the film thickness of each layer is a very important factor for the light emission characteristics of the organic EL device.
  • an organic light emitting layer that directly contributes to light emission is required to have a high degree of film thickness uniformity. This is because the variation in the film thickness appears as uneven brightness of the panel or uneven light emission color, leading to display quality defects. For this reason, a technique for forming an organic light emitting layer on a flat base is known (see, for example, Patent Documents 1 and 2).
  • an organic light emitting layer is formed by a printing method such as an ink jet method
  • an ink is applied in a region defined by a partition called a bank, and a solvent in the ink is dried to form an organic light emitting layer having a thickness of about 100 nm.
  • the film shape of the organic light-emitting layer is determined by factors such as the application method, ink physical properties (boiling point, viscosity, etc.), bank physical properties (wetability, film thickness, taper angle, etc.), and organic light-emitting layer ink drying conditions. Is done. Therefore, when the ink drying conditions change, the film shape of the organic light emitting layer also changes.
  • the concentration of the solvent vapor of the ink is low at the outer peripheral portion of the panel and the drying of the ink is promoted, the drying speed of the ink is slow at the central portion of the panel, and the drying speed of the ink is fast at the outer peripheral portion of the panel.
  • the organic light emitting layer of the pixel located on the outer peripheral side of the panel is inclined outward and the film shape is deteriorated (see, for example, Patent Document 3).
  • the difference in drying speed becomes significant between the center and the outer periphery of the panel, and the film shape of the organic light emitting layer is more likely to deteriorate at the outer periphery of the panel.
  • FIG. 1A is a plan view of the organic EL display panel described in Patent Document 5
  • FIG. 1B is a cross-sectional view of the organic EL display panel shown in FIG.
  • the organic EL display panel disclosed in Patent Document 5 includes an effective light emitting area A in which light emitting elements 111 are arranged and a dummy area B in which non-light emitting elements 111 ′ are arranged. And have.
  • the outer peripheral portion of the panel having a poor organic functional layer film shape is a dummy region B
  • the central portion of the panel having a good organic functional layer film shape is the effective light emitting region A. It is possible to provide an organic EL display panel that is excellent in display quality.
  • the light emitting element 111 has a contact hole, but the non-light emitting element 111 'does not have a contact hole.
  • an organic EL device having a dummy area in which dummy pixels (non-light emitting elements) are arranged around an effective light emitting area in which effective pixels (light emitting elements) are arranged, the dummy pixels are electrically non-conductive.
  • an organic EL device configured in the same manner as an effective pixel except for conducting (see, for example, Patent Documents 11 and 12).
  • the dummy pixel of this organic EL device has a contact hole like the effective pixel.
  • the contact hole is formed in the planarization film.
  • the planarizing film is generally made of resin. If moisture is contained in the planarizing film due to moisture adsorption or the like, it may diffuse to other layers in the organic EL element. When such moisture enters the light emitting layer or the charge injection layer, the light emitting characteristics may be deteriorated. In the above-described organic EL device in which the contact hole is provided in the dummy image density as well as the effective pixel, there remains room for study on the deterioration of the light emission characteristics due to the diffusion of the moisture in the planarization film.
  • the present invention has been made in view of the above points, and the film shape of the functional layer of the light emitting element at the edge of the effective light emitting region of the organic EL display panel is improved, and there is no luminance unevenness or light emitting color unevenness, and the display quality is improved.
  • An object of the present invention is to provide an organic EL display panel that is favorable and in which a decrease in light emission characteristics is further suppressed.
  • the present inventors have deteriorated the film shape of the functional layer of the light emitting element at the edge of the effective light emitting region because the light emitting element at the edge of the effective light emitting region has a bank having a different shape. I found out. Furthermore, it has been found that the reason why the light-emitting elements at the edge of the effective light-emitting region have banks with different shapes is that the adjacent non-light-emitting elements do not have contact holes (see Comparative Example). In addition, it has been found that forming a hole corresponding to a contact hole in a non-light-emitting element at a specific position is effective in suppressing a decrease in light-emitting characteristics of the light-emitting element.
  • the first of the present invention relates to the organic EL display panel shown below.
  • a TFT panel having an effective light emitting region located at the center, a dummy region located at the outer periphery and surrounding the effective light emitting region, a plurality of light emitting elements arranged in the effective light emitting region, and the dummy
  • An organic EL display panel having a plurality of non-light-emitting elements arranged in a region, wherein the light-emitting device includes a thin film transistor built in the TFT panel, and one end of the region of the light-emitting device in the TFT panel.
  • a contact hole provided, a pixel electrode disposed on the TFT panel and connected to the thin film transistor through the contact hole, an organic functional layer disposed on the pixel electrode, and disposed on the TFT panel And a bank that defines an arrangement region of the organic functional layer, and a counter electrode disposed on the organic functional layer
  • the optical element includes a bank disposed on the TFT panel, and an organic functional layer formed in a region defined by the bank, and the region of the light emitting element among the plurality of non-light emitting elements Only the non-light-emitting element adjacent to the light-emitting element on the other end side of the organic EL display panel further has a hole provided at one end of the region of the non-light-emitting element in the TFT panel.
  • the non-light emitting element adjacent to the effective light emitting region further includes a thin film transistor incorporated in the TFT panel, and the thin film transistor included in the non-light emitting element does not function. 1].
  • the organic light-emitting device according to [1] or [2], wherein the non-light-emitting element adjacent to the effective light-emitting region among the plurality of non-light-emitting elements further includes a pixel electrode disposed on the TFT panel. EL display panel.
  • a second aspect of the present invention relates to a method for manufacturing an organic EL display panel shown below.
  • [7] A method of manufacturing an organic EL display panel according to any one of [1] to [6], wherein the TFT panel is formed by forming a planarizing film on a substrate on which a thin film transistor is disposed.
  • the film shape of the organic functional layer of the light emitting element at the edge of the effective light emitting region can be improved.
  • the number of contact holes and holes formed in the planarization film can be further reduced, and the surface area of the planarization film can be reduced as much as possible. Therefore, it is possible to further suppress moisture absorption of the planarization film and diffusion of moisture from the planarization film to other layers. For this reason, the organic EL display panel of the present invention has less luminance unevenness and light emission color unevenness, has high display quality, and can further suppress deterioration in light emission characteristics.
  • Organic EL Display Panel of the Present Invention is an active matrix organic EL display panel in which each organic EL element is independently driven by a thin film transistor.
  • the organic EL display panel of the present invention is a wet type organic EL display panel in which the organic functional layer of each organic EL element is formed by a coating method.
  • the organic EL display panel of the present invention may be a top emission type or a bottom emission type.
  • the organic EL display panel of the present invention has a TFT panel in which subpixels are arranged in a matrix.
  • the TFT panel incorporates a thin film transistor (hereinafter also referred to as “TFT”).
  • TFT panel includes a substrate, a TFT disposed on the substrate, and a planarization film that covers the substrate and the TFT.
  • the material of the TFT panel substrate differs depending on whether the display panel is a bottom emission type or a top emission type.
  • the material of the substrate may be glass or transparent resin.
  • the display panel is a top emission type, the substrate is not required to be transparent, and therefore the material of the substrate is arbitrary as long as it is insulative.
  • the flattening film is for relaxing the unevenness caused by the TFTs arranged on the substrate and flattening the surface of the TFT panel.
  • the thickness of the planarization film is usually 3-10 ⁇ m and can be about 5 ⁇ m.
  • the material of the planarization film may be an organic material such as a resin, or an inorganic material such as SiO 2 .
  • a contact hole for connecting a pixel electrode, which will be described later, and the source or drain electrode of the driving TFT is formed in the planarizing film.
  • the TFT panel has an effective light emitting region located at the center of the TFT panel and a dummy region located at the outer periphery of the TFT panel and surrounding the effective light emitting region.
  • a plurality of light emitting elements are arranged in a matrix.
  • a plurality of non-light emitting elements are arranged in the dummy area.
  • the outer peripheral portion of the TFT panel in which the film shape of the organic functional layer is likely to deteriorate is set as a non-light emitting region (dummy region), and the central portion of the TFT panel having a good organic functional layer film shape is set in the effective light emitting region.
  • FIG. 2 is a graph showing the uniformity of the film shape of the organic functional layer of each element in the organic EL display panel in which the organic functional layer is formed by a coating method.
  • the horizontal axis of the graph in FIG. 2 indicates the position from the edge of the organic EL display panel.
  • the unit 10 on the horizontal axis means the tenth element from the edge of the organic EL display panel.
  • the vertical axis of the graph in FIG. 2 indicates the degree of variation in the film thickness of the organic functional layer in the element. The larger the value on the vertical axis, the worse the film shape.
  • the film shape of the functional layer of the element is poor near the edge of the organic EL display panel, and the film shape of the functional layer of the element is good at the center of the organic EL display panel. It is.
  • the size of the dummy region is not particularly limited, but preferably includes 2 to 10 columns of elements from the edge of the organic EL display panel, particularly preferably includes 2 to 5 columns of elements, for example, includes 3 columns of elements. .
  • the variation in the film thickness of the organic functional layer is 10% or less.
  • region contains the element of 3 rows from the edge of an organic electroluminescent display panel, and can suppress the dispersion
  • a light emitting element and a non-light emitting element will be described.
  • the light emitting element includes a TFT built in the TFT panel, a contact hole provided in the TFT panel, a pixel electrode disposed on the TFT panel, and an organic functional layer disposed on the pixel electrode. And a bank that defines an arrangement region of the organic functional layer, and a counter electrode arranged on the organic functional layer.
  • the TFT is a device for driving elements.
  • the TFT has a source electrode and a drain electrode, a channel that connects the source electrode and the drain electrode, and a gate electrode that controls the channel.
  • the TFT may be silicon or organic.
  • the contact hole is a hole provided in the flattening film of the TFT panel.
  • a wiring for connecting the source electrode or drain electrode of the TFT and the pixel electrode is disposed in the contact hole.
  • the contact hole is formed at one end of the area of the light emitting element in the TFT panel from the viewpoint of realizing a wider light emitting area in the light emitting element.
  • the contact hole is preferably formed at one end in the longitudinal direction of the region of the light emitting element.
  • the size of the contact hole is not particularly limited. For example, the width is 5 to 20 ⁇ m and the depth is 4 to 5 ⁇ m. In the present invention, the contact hole may have an inverted conical shape.
  • the “inverted conical contact hole” means a contact hole in which the diameter of the opening on the pixel electrode side is larger than the diameter of the opening on the TFT side.
  • the diameter of the opening on the pixel electrode side of the contact hole is preferably 20 to 10 ⁇ m, and the diameter of the opening on the TFT side is preferably 5 to 15 ⁇ m.
  • the pixel electrode is a conductive layer disposed on the planarization film of the TFT panel.
  • the pixel electrode normally functions as an anode, but may function as a cathode.
  • the thickness of the pixel electrode is typically 100-500 nm and can be about 150 nm.
  • the material of the pixel electrode differs depending on whether the display panel is a bottom emission type or a top emission type. When the display panel is a bottom emission type, the pixel electrode is required to be a transparent electrode, so the material of the pixel electrode includes ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), tin oxide, and the like. .
  • the pixel electrode is made of an alloy containing silver, more specifically, a silver-palladium-copper alloy (also referred to as APC). ), Silver-rubididium-gold alloy (also referred to as ARA), molybdenum-chromium alloy (also referred to as MoCr), nickel-chromium alloy (also referred to as NiCr), aluminum alloy, and the like.
  • a silver-palladium-copper alloy also referred to as APC
  • ARA Silver-rubididium-gold alloy
  • MoCr molybdenum-chromium alloy
  • NiCr nickel-chromium alloy
  • aluminum alloy and the like.
  • the pixel electrode is connected to the source electrode or drain electrode of the TFT through a contact hole provided in the TFT panel.
  • a hole injection layer may be disposed on the pixel electrode.
  • the hole injection layer is a layer having a function of assisting injection of holes from the pixel electrode to an organic functional layer described later. For this reason, the hole injection layer is disposed between the pixel electrode and the organic functional layer.
  • the material for the hole injection layer examples include poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (referred to as PEDOT-PSS) and oxides of transition metals.
  • the material of the hole injection layer is preferably an oxide of a transition metal. Since the hole injection layer made of PEDOT is formed by a coating method, the thickness of the hole injection layer is difficult to be uniform. Further, since PEDOT is conductive, there is a high possibility that the organic EL element will be short-circuited. On the other hand, the hole injection layer made of a transition metal oxide has a uniform thickness because it is formed by sputtering.
  • transition metals include tungsten, molybdenum, titanium, vanadium, ruthenium, manganese, chromium, nickel, iridium, and combinations thereof.
  • a preferred hole injection layer material is tungsten oxide (WOx) or molybdenum oxide (MoOx).
  • the thickness of the hole injection layer is typically between 10 nm and 100 nm, and can be about 30 nm. The hole injection layer may be omitted as long as holes can be efficiently injected from the pixel electrode to the organic functional layer.
  • the organic functional layer is a layer including at least an organic light emitting layer and disposed on the pixel electrode.
  • the organic functional layer is formed by applying a material liquid of the organic functional layer to a region defined by the bank.
  • the organic functional layer material liquid in which the organic functional layer material is dissolved in an organic solvent such as anisole or cyclohexylbenzene
  • an application method such as inkjet, it is easy and without damaging other materials.
  • An organic functional layer can be formed.
  • the organic EL material contained in the organic light emitting layer may be a polymer or a low molecule as long as the organic light emitting layer can be formed by a coating method.
  • the low molecular weight organic EL material includes a combination of a dopant material and a host material.
  • dopant materials include BCzVBi (4,7-diphenyl-1,10-phenanthroline), coumarin, rubrene, DCJTB ([2-tert-butyl-6- [2- (2,3,6,7-tetrahydro- 1,1,7,7-tetramethyl-1H, 5H-benzo [ij] quinolizin-9-yl) vinyl] -4H-pyran-4-ylidene] malononitrile), and examples of host materials include DPVBi (4,4′-bis (2,2-diphenylethenyl) biphenyl), Alq3 (tris (8-quinolinolato) aluminum) and the like are included.
  • the polymer organic EL material examples include polyphenylene vinylene and derivatives thereof, polyacetylene and derivatives thereof, polyphenylene and derivatives thereof, polyparaphenylene ethylene and derivatives thereof, poly 3 -Hexylthiophene (Poly 3-hexyl thiophene (P3HT)) and its derivatives, polyfluorene (Poly fluorene (PF)) and its derivatives, etc. are included. Since the organic light emitting layer containing the polymer organic EL material is easily formed by a coating method, the organic EL material contained in the organic light emitting layer is preferably a polymer organic EL material.
  • the organic EL material is appropriately selected so that a desired color (red R, green G, blue B) is generated from each light emitting element.
  • a green light emitting element is disposed next to a red light emitting element
  • a blue light emitting element is disposed next to the green light emitting element
  • a red light emitting element is disposed next to the blue light emitting element.
  • the thickness of the organic functional layer is preferably about 50 to 150 nm (for example, 60 nm).
  • the organic functional layer may further have a hole transport layer (interlayer), an electron transport layer, and the like.
  • the hole transport layer has a role of blocking intrusion of electrons into the pixel electrode or the hole injection layer and a role of efficiently transporting holes to the organic light emitting layer, and is a layer made of, for example, a polyaniline-based material. . Therefore, the hole transport layer is disposed between the pixel electrode or the hole injection layer and the organic light emitting layer.
  • the thickness of the hole transport layer is usually from 10 nm to 100 nm, preferably about 30 nm. Further, the hole transport layer may be omitted as long as holes can be efficiently transported to the organic light emitting layer.
  • the bank is a member that defines the arrangement area of the organic functional layer.
  • the bank is disposed on the substrate.
  • the height of the bank from the surface of the substrate is preferably 0.1 to 3 ⁇ m, and particularly preferably 0.8 to 1.2 ⁇ m.
  • the height of the bank is more than 3 ⁇ m, there is a possibility that one counter electrode shared by all the light emitting elements, which will be described later, is divided by the bank.
  • the height of the bank is less than 0.1 ⁇ m, there is a possibility that the ink applied in the area defined by the bank leaks from the bank.
  • the bank shape is preferably a forward tapered shape.
  • the forward tapered shape means that the wall surface of the bank is slanted and the inclination angle (taper angle) of the wall surface of the bank is 90 ° or less.
  • the taper angle is 20 to 80 °, and particularly preferably 30 to 50 °.
  • the taper angle of the bank is more than 80 °, there is a possibility that one counter electrode shared by all the light emitting elements described later is divided by the bank.
  • the material of the bank is not particularly limited as long as it is a resin, but preferably contains a fluorine-containing resin.
  • the fluorine compound contained in the fluorine-containing resin include fluorinated resins such as vinylidene fluoride, vinyl fluoride, ethylene trifluoride, and copolymers thereof.
  • the resin contained in the fluorine-containing resin include phenol-novolak resin, polyvinylphenol resin, acrylic resin, methacrylic resin, and combinations thereof.
  • fluorine-containing resin examples include, for example, Lumiflon (registered trademark, Asahi Glass), which is a copolymer of a fluorine-containing polymer (fluoroethylene) and vinyl ether described in JP-T-2002-543469. Etc. are included.
  • the bank wall has low wettability. Moreover, it is preferable that the wettability of the upper part of a bank wall surface is lower than the wettability of the lower part of a bank wall surface.
  • the contact angle between the upper portion of the bank wall surface and water is 80 ° or more, preferably 90 ° or more, and the contact angle between the upper portion of the bank wall surface and anisole is preferably 30 ° to 70 °.
  • the contact angle between the lower part of the bank wall surface and the anisole is preferably 3 ° to 30 °. Higher contact angle means lower wettability.
  • the bank may surround four sides of the element (see Embodiments 1 to 4), or may surround elements arranged in a line (see Embodiment 5).
  • the counter electrode is a conductive member disposed on the organic functional layer.
  • the counter electrode normally functions as a cathode, but may function as an anode.
  • the material of the counter electrode differs depending on whether the organic EL display panel is a bottom emission type or a top emission type. In the case of the top emission type, the counter electrode needs to be transparent, and examples of the material of the counter electrode include ITO and IZO. Further, in the case of the top emission type, an organic buffer layer may be disposed between the organic functional layer and the counter electrode.
  • the counter electrode does not need to be transparent. Therefore, the material of the counter electrode is arbitrary as long as it is conductive. Examples of such a material for the counter electrode include barium (Ba), barium oxide (BaO), aluminum (Al), and the like.
  • the counter electrode is usually formed by sputtering. Moreover, all the light emitting elements included in the organic EL display panel may share one counter electrode.
  • the counter electrode shared by all the light emitting elements included in the organic EL display panel is also referred to as a common electrode.
  • the common electrode covers not only the organic functional layer but also the bank (see FIG. 3B).
  • the non-light emitting element has at least a bank disposed on the TFT panel and an organic functional layer formed in a region defined by the bank.
  • the non-light emitting element may further include a TFT, a pixel electrode, and a counter electrode.
  • a non-light emitting element (hereinafter also referred to as “boundary non-light emitting element”) adjacent to the light emitting element at least on the other end side of the light emitting element is provided on the planarization film of the TFT panel.
  • a hole (hereinafter also referred to as “dummy hole”).
  • the dimensions (width and depth) of the dummy holes included in the boundary non-light emitting element are preferably the same as the dimensions of the contact holes included in the light emitting element.
  • the relative position of the dummy hole in the boundary non-light emitting element is preferably the same as the relative position of the contact hole in the light emitting element.
  • the “relative position” of the hole means the position of the hole with respect to the center of the element. That is, it is preferable that the TFT panel has the hole at one end of the boundary non-light emitting element region.
  • the boundary non-light-emitting element has a dummy hole formed in the planarization film of the TFT panel, so that the light-emitting element located at the edge of the effective light-emitting region (hereinafter also referred to as “boundary light-emitting element”) and the others It is possible to suppress variation in the film shape of the organic functional layer between the light emitting elements.
  • boundary light-emitting element the light-emitting element located at the edge of the effective light-emitting region
  • the relationship between providing a dummy hole in the boundary non-light emitting element and suppressing variation in the film shape of the organic functional layer between the light emitting elements will be described.
  • the bank pattern of the boundary light emitting element is different from the bank pattern of the other light emitting elements.
  • the shape of a bank hereinafter also referred to as “boundary bank” that forms the boundary between the effective light emitting region and the dummy region, and the bank of other light emitting elements (hereinafter “ The shape of the bank ”(also referred to as“ bank inside the effective light emitting region ”) was different (see FIG. 12A).
  • the shape of the bank depends on the underlying surface of the bank, that is, the uneven shape of the surface of the planarizing film of the TFT panel (see FIG. 4). Further, the uneven shape of the planarizing film is a hole (contact hole) of an adjacent element. This is because it depends on the presence or absence of dummy holes (FIG. 4). That is, the light-emitting elements delimited by the banks inside the effective light-emitting region have contact holes, whereas the boundary banks also delimit non-light-emitting elements that do not have contact holes.
  • the shape of the organic functional layer applied and formed is affected by the shape of the bank that defines the area where the material liquid of the organic functional layer is applied. For this reason, if the pattern of the bank of the boundary light emitting element is different from the pattern of the bank of the other light emitting element as in the conventional organic EL display panel, the film shape of the organic functional layer of the boundary light emitting element, and other than that The film shape of the organic functional layer of the light emitting element is different.
  • the boundary non-light-emitting element has a dummy hole formed in the planarization film of the TFT panel, all the elements delimited by the boundary bank have holes as in the bank inside the effective light-emitting region.
  • the shape of the boundary bank is equal to the shape of the bank inside the effective light emitting region (see FIG. 11A). Therefore, in the present invention, there is little variation in the bank pattern between the boundary light emitting element and the other light emitting elements. For this reason, in this invention, there is little dispersion
  • the boundary non-light-emitting element since the boundary non-light-emitting element has a dummy hole, a non-light-emitting element that does not correspond to the boundary non-light-emitting element does not have a dummy hole. Therefore, the number of contact holes and dummy holes formed in the planarizing film can be set to the minimum number that can obtain the above pattern variation suppressing effect. As a result, it is possible to provide an organic EL display panel in which the adsorption of moisture to the planarization film and the deterioration of the light emission characteristics due to the diffusion of moisture absorbed in the planarization film to other layers are further suppressed. Become.
  • the organic EL display panel of the present invention can be produced by any method as long as the effects of the present invention are not impaired.
  • An example of a preferred method for producing the organic EL display panel of the present invention is as follows: 1) a first step of preparing a TFT panel; 2) a second step of forming contact holes and dummy holes in the TFT panel; 3) a third step of forming a pixel electrode in the effective light emitting region of the TFT panel; 4) a fourth step of forming a bank on the TFT panel; 5) A fifth step of forming the organic functional layer by applying the organic functional layer material solution in the region defined by the bank.
  • each step will be described.
  • a TFT panel is prepared.
  • a TFT panel is manufactured by, for example, manufacturing a TFT on a substrate and disposing a planarizing film on the substrate on which the TFT is manufactured.
  • a layer such as a gate electrode, a gate insulating film, a source electrode, a drain electrode, a semiconductor film, or a passivation film is formed on the substrate by a sputtering method or a photolithography method. Good.
  • planarizing film for example, a film made of a photosensitive resin may be formed and photocured, or a film made of an inorganic material such as SiO 2 may be formed by sputtering or the like.
  • contact holes and dummy holes are formed in the TFT panel. Specifically, a contact hole is formed in the planarizing film of the TFT panel in the effective light emitting region, and a dummy hole is formed in the planarizing film of the TFT panel in the region where the boundary non-light emitting element is formed in the dummy region.
  • the contact hole and dummy hole formed in the planarization film may be formed by photolithography or etching.
  • a pixel electrode is formed in the effective light emitting region of the TFT panel.
  • a film made of the material of the pixel electrode may be formed on the TFT panel by vapor deposition or sputtering, and the formed film may be patterned into a desired shape.
  • a bank is formed.
  • the bank is formed by, for example, a photolithography process (coating, baking, exposure, development, baking).
  • a photolithography process coating, baking, exposure, development, baking.
  • the shape of the bank is affected by the uneven shape of the base (planarization film) on which the bank is formed.
  • the uneven shape of the planarizing film is also affected by the holes of adjacent elements.
  • the organic functional layer material liquid is applied to the area defined by the bank.
  • the material liquid to be applied contains a desired organic functional layer material and solvent.
  • the solvent include aromatic solvents such as anisole.
  • the means for applying is not particularly limited. Examples of means for applying include ink jet, dispenser, nozzle coat, spin coat, die coat, intaglio printing, letterpress printing and the like. A preferred application means is ink jet.
  • the organic functional layer material liquid is applied to both the effective light emitting area and the dummy area. And the organic functional layer is formed by drying and baking the applied material liquid.
  • the organic functional layer material liquid is applied to both the effective light emitting region and the dummy region.
  • an organic functional layer having a poor film shape is formed in the dummy region, but the film shape is formed in the effective light emitting region.
  • a good organic functional layer can be formed.
  • the shape of the bank included in the boundary light emitting element is the same, an organic functional layer having a good film shape can be formed even with the boundary light emitting element.
  • Embodiment 1 In Embodiment 1, a top emission type organic EL display panel will be described.
  • FIG. 3A shows a partially enlarged view of the plane of the organic EL display panel 100 of Embodiment 1
  • FIG. 3B shows a main part of a cross-sectional view taken along line AA ′ of the organic EL display panel 100 shown in FIG. 3B. .
  • the organic EL display panel 100 includes a TFT panel 110 in which elements (sub-pixels) are arranged in a matrix.
  • the TFT panel 110 has an effective light emitting region L in which the light emitting element 120 is disposed, and a dummy region D in which the non-light emitting element 130 is disposed.
  • the TFT panel 110 includes a substrate 101, a TFT 103 disposed on the substrate 101, a planarizing film 105 disposed on the substrate 101 and the TFT 103, and contacts formed on the planarizing film 105. It has a hole 107 and a dummy hole 109.
  • the light emitting element 120 includes a TFT 103, a contact hole 107, a reflective anode (pixel electrode) 121, a hole injection layer 123, an organic light emitting layer 125, a bank 127, and a transparent cathode (counter electrode) 129.
  • the contact hole 107 is located at one end of the light emitting element 120 in the long axis direction.
  • the reflective anode 121 is made of, for example, an APC alloy.
  • a preferable thickness of the reflective anode 121 is 100 to 200 nm.
  • the hole injection layer 123 is disposed on the reflective anode 121.
  • the hole injection layer 123 is made of tungsten oxide (WOx).
  • the preferred thickness of the hole injection layer 123 is 5 to 30 nm.
  • the organic light emitting layer 125 is disposed on the hole injection layer 123.
  • a preferred thickness of the organic light emitting layer 125 is 50 to 150 nm.
  • the organic light emitting layer 125 is a layer made of a polyfluorene derivative.
  • the bank 127 is arranged on the hole injection layer 123 so that a part of the hole injection layer 123 is exposed.
  • the bank 127 surrounds the four sides of the light emitting element 120.
  • a preferred height of the bank 127 from the hole injection layer 123 is 200 nm to 3 ⁇ m.
  • the transparent cathode 129 is a light transmissive conductive layer disposed on the organic light emitting layer 125.
  • the material of the transparent cathode 129 is, for example, ITO.
  • the non-light emitting element 130 includes a hole injection layer 123, an organic light emitting layer 125, and a transparent cathode 129.
  • a non-light emitting element (boundary non-light emitting element) 130 ⁇ / b> X adjacent to the effective light emitting region L on the other end side of the effective light emitting region L has a dummy hole 109.
  • the dummy hole 109 is located at one end of the non-light emitting element 130 in the long axis direction, like the contact hole 107 in the light emitting element.
  • the relative position of the dummy hole 109 in the non-light emitting element 130 is the same as the relative position of the contact hole 107 in the light emitting element 120.
  • FIG. 4 is a partially enlarged view of the organic EL display panel shown in FIG. 3B.
  • a part of the bank 127Y inside the effective light emitting region is formed on the contact hole, so that a part of the bank 127Y is adjacent to the contact hole 107 of the light emitting element 120.
  • the boundary bank 127X (see symbol X in FIG. 3A) constituting the boundary between the effective light emitting region L and the dummy region is also a dummy hole. Recessed by 109. Therefore, in this embodiment, there is little variation between the shape of the boundary bank 127X and the shape of the bank 127Y.
  • the film shape of the organic light emitting layer 125 of the boundary light emitting element 120X can be improved.
  • the method of manufacturing the organic EL display panel 100 includes 1) a first step (FIG. 5A) for preparing the TFT panel 110, and 2) an effective light emitting region L of the TFT panel 110.
  • FIG. 5A shows the first step.
  • the TFT panel 110 is prepared.
  • a planarization film 105 is formed on a substrate 101 having a TFT 103 disposed in a light emitting element region, contact holes 107 are formed at one end portion of the light emitting element, and at one end portion of the boundary non-light emitting element. Dummy holes 109 are formed respectively.
  • FIG. 5B shows the second step.
  • the reflective anode 121 and the hole injection layer 123 are formed on the effective light emitting region L of the TFT panel 110.
  • the reflective anode 121 may be formed, for example, by forming a film made of the material of the reflective anode 121 on the TFT panel 110 by vapor deposition or sputtering, and patterning the formed film into a desired shape.
  • the hole injection layer 123 may be formed by forming a film made of the material of the hole injection layer 123 on the TFT panel 110 by vapor deposition or sputtering, and patterning the formed film into a desired shape.
  • FIG. 5C shows the third step.
  • a bank 127 is formed on the TFT panel 110.
  • the bank 127 is formed by, for example, a photolithography method. Specifically, the bank 127 is formed by pre-baking, exposing, developing, and post-baking the applied bank material.
  • the conditions of the photolithography method are not particularly limited. For example, pre-baking is performed at 100 ° C. for 2 minutes; irradiation light is i-line having a main peak of 365 nm; irradiation amount is 200 mJ / cm 2 ; development is 0.2 % TMAH for 60 seconds; post-bake may be performed in a 220 ° C. clean oven for 60 minutes.
  • the bank 127 is formed so that at least a part of the hole injection layer 123 is exposed.
  • FIG. 5D shows the fourth step.
  • the material liquid of the organic light emitting layer 125 is applied to the region defined by the bank 127 by, for example, an inkjet method.
  • the material liquid of the organic light emitting layer 125 applied by the inkjet method is dried and baked. Drying is performed, for example, in a vacuum chamber while reducing the pressure. The pressure is reduced until the pressure reaches about 5 Pa.
  • the temperature during drying is 25 ° C. For example, baking is performed on a hot plate at 130 ° C. for 10 minutes.
  • FIG. 5E shows the fifth step.
  • the transparent cathode 129 is formed so as to cover the organic light emitting layer 125 and the bank 127.
  • the transparent cathode 129 is formed by, for example, a vapor deposition method.
  • Embodiment 2 In Embodiment 1, the mode in which the non-light-emitting element does not have a TFT has been described. In Embodiment 2, a mode in which a non-light-emitting element includes a TFT will be described.
  • FIG. 6 is a cross-sectional view of the organic EL display panel 200 according to Embodiment 2 of the present invention. The description of the same components as those of the organic EL display panel 100 of Embodiment 1 is omitted.
  • the non-light emitting element 130 includes the TFT 103. In the present embodiment, all the non-light-emitting elements 130 have the TFTs 103, but at least the boundary non-light-emitting elements 130X may have the TFTs 103.
  • the film shape of the organic light emitting layer 125 of the boundary light emitting element 120X can be improved.
  • the shape of the bank is affected not only by the presence / absence of contact holes in adjacent elements but also by the presence / absence of TFTs in adjacent elements. For this reason, by providing the TFT 103 in the boundary non-light emitting element 130X, the shape of the boundary bank 127X and the shape of the internal bank 127Y can be made more equal. As a result, the film shape of the organic light emitting layer 125 of the boundary light emitting device 120X can be improved.
  • Embodiment 3 In the second embodiment, the mode in which the non-light-emitting element does not have the pixel electrode (reflection anode) and the hole injection layer has been described. In Embodiment 3, a mode in which a non-light-emitting element has a pixel electrode and a hole injection layer will be described.
  • FIG. 7 is a cross-sectional view of the organic EL display panel 300 according to Embodiment 3 of the present invention. The description of the same components as those of the organic EL display panel 200 of the second embodiment is omitted.
  • the non-light emitting element 130 has a reflective anode 121.
  • all the non-light-emitting elements 130 have the reflective anode 121, but at least the boundary non-light-emitting element 130 ⁇ / b> X only needs to have the reflective anode 121.
  • the film shape of the organic light emitting layer 125 of the boundary light emitting element 120X can be improved.
  • the shape of the bank is influenced not only by the presence / absence of a contact hole of an adjacent element but also by the presence / absence of a pixel electrode of the adjacent element. For this reason, by providing the reflective anode 121 in the boundary non-light emitting element 130X, the shape of the boundary bank 127X and the shape of the internal bank 127Y can be made more equal. As a result, the film shape of the organic light emitting layer 125 of the boundary light emitting device 120X can be improved.
  • the TFT 103 included in the non-light-emitting element 130 does not function as a transistor.
  • a conductive member is not disposed in the dummy hole, and the TFT 103 and the reflective anode 121 may not be electrically connected. In this way, by preventing the TFT 103 included in the non-light emitting element 130 from functioning, it is possible to prevent the non-light emitting element 130 from emitting light unintentionally.
  • Embodiment 4 a mode in which a non-light-emitting element does not have a counter electrode will be described.
  • FIG. 8 is a cross-sectional view of the organic EL display panel 400 according to Embodiment 4 of the present invention.
  • the non-light emitting element 130 does not have the transparent cathode 129.
  • the transparent cathode 129 is formed only in the effective light emitting region L and is not formed in the dummy region D.
  • a metal mask or the like may be used when forming the transparent cathode 129 by vapor deposition.
  • the non-light emitting element 130 does not have the transparent electrode 129, the non-light emitting element 130 can be surely prevented from unintentionally emitting light.
  • FIG. 9A shows a partially enlarged view of the plane of the organic EL display panel 500 of Embodiment 5, and FIG. 9B shows the main part of a cross-sectional view taken along the line AA ′ of the organic EL display panel 500 shown in FIG. 9A.
  • FIG. 10 is a partially enlarged view of the organic EL display panel 500 shown in FIG. 9B.
  • the bank 127 is a line-shaped bank defining elements arranged in a line.
  • the bank 127 is easily affected by a base in the vicinity of the bank 127 in a relatively unstable state between development and post-baking. More specifically, in the above relatively unstable state, it tends to flow into the nearby contact hole 107 or be deformed so as to bend toward the contact hole 107. For this reason, even if the bank is not formed on the contact hole 107, such as the line-shaped bank 127, the influence of the contact hole 107 may reach the shape of the bank 127.
  • each light emitting element is defined by the bank 127 affected by the contact hole 107. Therefore, also in this embodiment, the film shape of the light emitting element in the light emitting region L can be improved by forming the dummy hole 109 at the position of one end of the boundary non-light emitting element. Further, by forming the bank 127 in a line shape, the applied material liquid of the organic light emitting layer 125 can move between elements, and the film thickness of the organic light emitting layer 125 can be made more uniform between elements. it can.
  • the organic EL display panel of Embodiment 4 was produced. First, a flattening film was formed with a thickness of 5 ⁇ m on a glass substrate AN100 (370 mm ⁇ 470 mm ⁇ 0.7 mm) manufactured by Asahi Glass Co., Ltd., to produce a TFT panel.
  • AN100 370 mm ⁇ 470 mm ⁇ 0.7 mm
  • a glass substrate coated with a flattening film material (Photo Nice DL-1000 manufactured by Toray Industries, Inc.) by spin coating is pre-baked for 3 minutes on a hot plate at 120 ° C., and using a chromium mask.
  • a portion where holes are formed with ultraviolet light having a wavelength of 365 nm as a main peak is exposed (exposure amount: 150 mJ / cm 2 ), and a developer NMD-3 (TMAH (tetramethylammonium hydroxide) manufactured by Tokyo Ohka Kogyo Co., Ltd. : 2.38%) and post-baked in a clean oven at 230 ° C. for 30 minutes.
  • TMAH tetramethylammonium hydroxide
  • holes were also formed in the boundary non-light emitting element.
  • a silver-palladium-copper (APC) film having a thickness of 150 nm was formed as a reflective electrode on the prepared TFT panel by a sputtering method.
  • a WOx film having a thickness of 30 nm was formed as a hole injection layer on the reflective electrode by a sputtering method.
  • a bank was formed on the formed WOx by photolithography.
  • the bank material was an acrylic material made by Asahi Glass. Specifically, it was applied on a TFT panel by a spin coating method and prebaked at a temperature of 100 ° C. for 2 minutes. Next, ultraviolet light was irradiated through a photomask. Since the bank material used in the examples is a negative material, the exposed portion of the bank material crosslinks and cures. The wavelength of the irradiated ultraviolet light is broad with a main peak at 365 nm. The exposure illuminance was 20 mW / cm 2 and the irradiation time was 10 seconds.
  • the exposed bank material was developed using a 0.2% aqueous TMAH solution (NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd.), and the bank material was patterned.
  • the developer was washed with pure water, and the TFT panel was post-baked for 60 minutes in a 220 ° C. clean oven.
  • an ink containing a luminescent material was applied in an area defined by the bank by an inkjet method. Cyclohexylbenzene was used as an ink solvent.
  • the applied ink was dried by drying under reduced pressure. Specifically, the TFT panel was put into a vacuum chamber, and the applied ink was dried by evacuating the air pressure in the chamber to 10 Pa with a vacuum pump. The exhaust time was 30 seconds, and the drying temperature was 25 ° C. Thereafter, the TFT panel was further baked on a hot plate at 130 ° C. for 10 minutes.
  • FIG. 11A shows a cross-sectional profile of the organic light emitting layer of the boundary light emitting device.
  • the profile shown in FIG. 11A is a profile of a cross section taken along line BB ′ of FIG. 11B.
  • the vertical axis represents the film thickness (nm)
  • the horizontal axis represents the measurement position on the substrate
  • I represents a bank
  • II represents a contact hole
  • II ′ represents a dummy hole
  • III represents an organic light emitting layer.
  • Film thickness left-right difference (film thickness at the left end) ⁇ (film thickness at the right end) (The left end means the point of the organic light emitting layer on the center side of the 7.5 ⁇ m element from the top of the left bank, and the right end means the point of the organic light emitting layer on the center side of the 7.5 ⁇ m element from the top of the right bank. .)
  • Table 1 shows the difference in thickness between the organic light-emitting layers of the boundary light-emitting element thus obtained.
  • an organic EL display panel was produced in the same manner as in the example except that no dummy hole was formed in the dummy region of the TFT panel.
  • the film shape of the organic light emitting layer of the boundary light emitting element of the organic EL display panel of the comparative example was measured with an atomic force microscope (AS-7B manufactured by Takano Co., Ltd.), and the cross-sectional profile of the organic light emitting layer of the boundary light emitting element was obtained.
  • a cross-sectional profile of the organic light emitting layer of the boundary light emitting device is shown in FIG. 12A.
  • the vertical axis represents the film thickness (nm) and the horizontal axis represents the measurement position (nm) on the substrate.
  • the profile shown in FIG. 12A is a profile of a cross section taken along line BB ′ in FIG. 12B.
  • Table 1 shows the difference in thickness between the organic light-emitting layers of the boundary light-emitting element calculated from the cross-sectional profile of FIG.
  • the bank height is equal at both ends of the device.
  • the height of the bank is different at both ends of the element.
  • the bank on the side where the contact hole is formed is approximately 200 nm lower than the bank on the side where the contact hole is not formed. This result suggests that the holes of the boundary non-light emitting element affect the shape of the bank of the boundary light emitting element.
  • the height of the bank at the edge of the contact hole of the boundary light emitting element was lower than the height of the boundary bank.
  • the bank material flowed into the contact hole when applying the bank material. It is thought to be caused by.
  • Table 1 shows the difference in film thickness between the organic light-emitting layers of the boundary light-emitting elements of Examples and Comparative Examples. The larger the value of the difference in film thickness, the greater the inclination of the film and the worse the film shape.
  • the film thickness left-right difference is 0.4 nm, whereas in the comparative example, the film thickness left-right difference is as large as 2.8 nm. This result suggests that the film shape of the organic light emitting layer of the boundary light emitting element is greatly improved in the example as compared with the comparative example.
  • the difference between the left and right film thicknesses was as large as 2.8 nm, which is considered to be due to the difference in the bank height at both ends of the element.
  • the film shape of the organic light emitting layer is affected by the physical properties of the bank, it is considered that if the height of the bank is different at both ends of the element, the film shape of the organic light emitting layer is also different at both ends.
  • the shape of the boundary bank becomes equal to the shape of other effective light emitting area banks, and the shape of the organic light emitting layer of the boundary light emitting element is also uniform. It is suggested that
  • a dummy hole is also formed in a dummy pixel adjacent to an effective light emitting pixel on the other end side of the effective light emitting pixel, so that the light emission having a uniform film shape can be obtained even in the outermost periphery of the effective light emitting region.
  • a layer can be formed.
  • Organic EL display panel 100, 200, 300, 400, 500 Organic EL display panel 101 Substrate 103 TFT 105 planarization film 107 contact hole 109 dummy hole 110 TFT panel 120 light emitting element 121 reflective anode 123 hole injection layer 125 organic light emitting layer 127 bank 129 transparent cathode 130 non-light emitting element D dummy area L effective light emitting area

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、輝度ムラや発光色ムラがなく、表示品質が良好であり、かつ発光特性の低下がより抑制される有機ELディスプレイパネルを提供する。本発明は、中央部に位置する有効発光領域Lと、外周部に位置し、有効発光領域Lを囲むダミー領域Dとを有するTFTパネル110と、有効発光領域Lに配置された複数の発光素子120と、ダミー領域Dに配置された複数の非発光素子130と、を有する有機ELディスプレイパネルであって、複数の非発光素子130のうち、有効発光領域Lに隣接する非発光素子130Xは、TFTパネル110に設けられたダミーホール109をさらに有する、有機ELディスプレイパネルを提供する。

Description

有機ELディスプレイパネル及びその製造方法
 本発明は、有機ELディスプレイパネル及びその製造方法に関する。
 有機ELディスプレイパネルとは、有機化合物の電界発光を利用した発光素子を有するディスプレイパネルである。つまり、有機ELディスプレイパネルは、カソード及びアノード、並びに両極の間に配置された電界発光する有機化合物を含むELデバイスを有する。電界発光する有機化合物は、低分子有機化合物の組み合わせ(ホスト材料とドーパント材料)と、高分子有機化合物とに大別され得る。
 電界発光する高分子有機化合物の例には、PPVと称されるポリパラフェニレンビニレンやその誘導体などが含まれる。電界発光する高分子有機化合物を利用した有機ELディスプレイパネルは、比較的低電圧で駆動でき、消費電力が低いことが特徴である。また、高分子有機化合物は、キシレンやトルエンなどの芳香族系の有機溶剤に溶解させ、インク化することが可能である。インク化することでインクジェット法などの印刷工法で有機発光層を形成することが可能となり、ディスプレイパネルの大画面化に対応しやすいとされており、現在積極的にその研究・開発が行われている。
 有機ELデバイスは電極や正孔注入層、有機発光層などの複数のレイヤーからなる積層デバイスである。それぞれのレイヤーの膜厚は有機ELデバイスの発光特性にとって非常に重要な要素である。中でも発光に直接寄与する有機発光層は、高度な膜厚均一性が求められる。膜厚のばらつきはパネルの輝度ムラや発光色ムラとして現れ、表示品質欠陥につながるからである。このため、平坦な下地上に有機発光層を形成する技術が知られている(例えば、特許文献1及び2参照。)。
 インクジェット法などの印刷法で有機発光層を形成する場合、バンクと呼ばれる隔壁によって規定された領域内にインクを塗布し、インク中の溶媒を乾燥させることで100nm程度の膜厚の有機発光層を形成する。有機発光層の膜形状は、塗布の方法、インクの物性(沸点、粘度など)や、バンクの物性(濡れ性、膜厚、テーパー角など)、有機発光層インクの乾燥条件などの要因により決定される。よって、インクの乾燥条件が変わると、有機発光層の膜形状も変わってしまう。
 例えば、パネルの外周部ではインクの溶媒蒸気の濃度が低く、インクの乾燥が促進されるので、パネルの中央部ではインクの乾燥速度が遅く、パネルの外周部ではインクの乾燥速度が速い。このため、パネルの外周側に位置する画素の有機発光層は外側に向かって傾き、膜形状が悪化する(例えば特許文献3参照)。特にパネルが大面積化すると、パネルの中央部と外周部とで、乾燥速度の差が顕著になり、パネルの外周部で有機発光層の膜形状がより悪化しやすかった。
 この問題を解決するために、パネルの中央部に、発光に寄与する素子(以下、「発光素子」とも称する)を配置し、基板の外周部に非発光素子を配置する技術が知られている(特許文献4~10参照)。パネルの外周部の膜形状が悪い素子は発光させず、膜厚均一性が優れたパネル中央部の阻止のみを発光させることから、非発光素子を有さない有機ELディスプレイパネルに比べて、輝度ムラや発光色ムラの少ない、表示品質に優れた有機ELディスプレイパネルを提供できる。
 図1Aは、特許文献5に記載の有機ELディスプレイパネルの平面図であり、図1Bは図1Aに示された有機ELディスプレイパネルのMM’線による断面図である。図1Aおよび図1Bに示されるように、特許文献5に開示された有機ELディスプレイパネルは、発光素子111が配列された、有効発光領域Aと、非発光素子111’が配列されたダミー領域Bとを有する。このように、有機機能層の膜形状が悪いパネルの外周部をダミー領域Bとし、有機機能層の膜形状が良好なパネルの中央部を有効発光領域Aとすることで、輝度ムラや発色ムラのない表示品質に優れた有機ELディスプレイパネルを提供できる。
 また、図1Bに示されるように、発光素子111は、コンタクトホールを有するが、非発光素子111’はコンタクトホールを有さない。
 しかし、図1に示された特許文献5に開示されたような有機ELディスプレイパネルでは、ダミー領域をいくら大きくしても、有効発光領域の縁に位置する発光素子が有する有機機能層の膜形状を良好にすることはできなかった(比較例参照)。
 このため、特許文献5に開示されたような有機ELディスプレイパネルでは、有効発光領域の縁の発光素子と、その他の発光素子との間で輝度ムラや発光色ムラが生じ、表示品質が低かった。
 一方で、有効画素(発光素子)が配置されてなる有効発光領域の周囲に、ダミー画素(非発光素子)が配置されてなるダミー領域を有する有機EL装置において、ダミー画素は、電気的に非導通とする以外は有効画素と同様に構成される有機EL装置が知られている(例えば特許文献11及び12参照。)。この有機EL装置のダミー画素は、有効画素と同様にコンタクトホールを有する。
 コンタクトホールは平坦化膜に形成される。平坦化膜は一般に樹脂で構成される。この平坦化膜に水分の吸着などによって水分が含有されると、有機EL素子内の他のレイヤーに拡散することがある。そしてこのような水分が発光層や電荷注入層に入ると、発光特性が低下することがある。ダミー画疎にも有効画素と同様にコンタクトホールを設ける上記の有機EL装置では、このような平坦化膜の水分の拡散による発光特性の低下について、検討の余地が残されている。
特開2004-095290号公報 特開2005-093280号公報 特開2010-73602号公報 特許第3628997号公報 特開2005-259716号公報 特開2005-310708号公報 特開2009-081097号公報 米国特許出願公開第2005/0140274号明細書 米国特許出願公開第2005/0264177号明細書 特開2003-249375号公報 特開2009-146885号公報 米国特許出願公開第2009/0128020号明細書
 本発明は、かかる点に鑑みてなされたものであり、有機ELディスプレイパネルの有効発光領域の縁における発光素子の機能層の膜形状を良好にし、輝度ムラや発光色ムラがなく、表示品質が良好であり、かつ発光特性の低下がより抑制される有機ELディスプレイパネルを提供することを目的とする。
 本発明者は、鋭意研究の結果、有効発光領域の縁における発光素子の機能層の膜形状が悪化するのは、有効発光領域の縁における発光素子が形状の異なるバンクを有することが原因であることを見出した。さらに、有効発光領域の縁における発光素子が形状の異なるバンクを有するのは、隣接する非発光素子がコンタクトホールを有さないことが原因であることを見出した(比較例参照)。加えて、特定の位置の非発光素子に、コンタクトホールに相当するホールを形成することによって、発光素子の発光特性の低下を抑制するのに有効であることを見いだした。
 すなわち、本発明の第1は、以下に示す有機ELディスプレイパネルに関する。
 [1]中央部に位置する有効発光領域と、外周部に位置し、前記有効発光領域を囲むダミー領域とを有するTFTパネルと、前記有効発光領域に配置された複数の発光素子と、前記ダミー領域に配置された複数の非発光素子と、を有する有機ELディスプレイパネルであって、前記発光素子は、前記TFTパネルに内蔵された薄膜トランジスタと、前記TFTパネルにおける前記発光素子の領域の一端部に設けられたコンタクトホールと、前記TFTパネル上に配置され、前記コンタクトホールを介して前記薄膜トランジスタと接続した画素電極と、前記画素電極上に配置された有機機能層と、前記TFTパネル上に配置され、かつ前記有機機能層の配置領域を規定するバンクと、前記有機機能層上に配置された対向電極と、を有し、前記非発光素子は、前記TFTパネル上に配置されたバンクと、前記バンクによって規定された領域内に形成された有機機能層と、を有し、前記複数の非発光素子のうち、前記発光素子の領域の他端側で前記発光素子に隣接する前記非発光素子のみが、前記TFTパネルにおける前記非発光素子の領域の一端部に設けられたホールをさらに有する、有機ELディスプレイパネル。
 [2]前記複数の非発光素子のうち、前記有効発光領域に隣接する前記非発光素子は、前記TFTパネルに内蔵された薄膜トランジスタをさらに有し、前記非発光素子が有する薄膜トランジスタは機能しない、[1]に記載の有機ELディスプレイパネル。
 [3]前記複数の非発光素子のうち、前記有効発光領域に隣接する前記非発光素子は、前記TFTパネル上に配置された画素電極をさらに有する、[1]または[2]に記載の有機ELディスプレイパネル。
 [4]前記複数の非発光素子のうち、前記有効発光領域に隣接する前記非発光素子は、対向電極を有さない、[1]~[3]のいずれか一つに記載の有機ELディスプレイパネル。
 [5]前記バンクは、前記素子の四方を囲む、[1]~[4]のいずれか一つに記載の有機ELディスプレイパネル。
 [6]前記バンクは、一列に並んだ前記素子を規定する、[1]~[4]のいずれか一つに記載の有機ELディスプレイパネル。
 本発明の第2は以下に示す有機ELディスプレイパネルの製造方法に関する。
 [7][1]~[6]のいずれか一つに記載の有機ELディスプレイパネルを製造する方法であって、薄膜トランジスタが配置された基板上に平坦化膜を形成することで前記TFTパネルを準備するステップと、前記有効発光領域の前記TFTパネルの平坦化膜における前記発光素子の領域の一端部に前記コンタクトホールを形成し、前記ダミー領域のうち、前記発光素子の領域の他端側で前記発光素子に隣接する前記非発光素子が形成される領域の前記TFTパネルの平坦化膜における前記非発光素子の領域の一端部にのみ、前記ホールを形成するステップと、前記TFTパネルの前記有効発光領域に画素電極を形成するステップと、前記TFTパネル上に前記バンクを形成するステップと、前記バンクによって規定された領域内に前記有機機能層を塗布形成するステップと、前記TFTパネルの前記有効発光領域上に前記対向電極を形成するステップと、を有する、有機ELディスプレイパネルの製造方法。
 本発明の有機ELディスプレイパネルおよびその製造方法によれば、有効発光領域の縁における発光素子の有機機能層の膜形状を良好にすることができる。また、平坦化膜に形成される前記コンタクトホール及び前記ホールの数をより少なくすることができ、平坦化膜の表面積を可能な限り小さくすることができる。よって、平坦化膜の水分の吸収と平坦化膜からの他のレイヤーへの水分の拡散をより抑制することができる。このため、本発明の有機ELディスプレイパネルは、輝度ムラや発光色ムラが少なく、表示品質が高く、かつ発光特性の低下をより抑制することができる。
従来の有機ELディスプレイパネルの平面図と断面図 パネルの縁からの有機機能層の膜形状の均一性の変化を示すグラフ 本発明の実施の形態1に記載の有機ELディスプレイパネルの平面図と断面図 本発明の実施の形態1に記載の有機ELディスプレイパネルの断面図の一部拡大図 本発明の実施の形態1に記載の有機ELディスプレイパネルの製造フローを示す図 本発明の実施の形態2に記載の有機ELディスプレイパネルの断面図 本発明の実施の形態3に記載の有機ELディスプレイパネルの断面図 本発明の実施の形態4に記載の有機ELディスプレイパネルの断面図 本発明の実施の形態5に記載の有機ELディスプレイパネルの断面図 本発明の実施の形態5に記載の有機ELディスプレイパネルの断面図の一部拡大図 実施例の境界発光素子の有機発光層の断面プロフィール 比較例の境界発光素子の有機発光層の断面プロフィール
 1.本発明の有機ELディスプレイパネル
 本発明の有機ELディスプレイパネルは、各有機EL素子を独立して薄膜トランジスタで駆動するアクティブマトリクス型の有機ELディスプレイパネルである。また、本発明の有機ELディスプレイパネルは、各有機EL素子の有機機能層が塗布法で形成される湿式型の有機ELディスプレイパネルである。本発明の有機ELディスプレイパネルは、トップエミッション型であってもボトムエミッション型であってもよい。
 本発明の有機ELディスプレイパネルは、副画素がマトリクス状に配置されたTFTパネルを有する。TFTパネルは薄膜トランジスタ(以下「TFT」とも称する)を内蔵する。TFTパネルは、基板と、基板上に配置されたTFTと、基板およびTFTを覆う平坦化膜とを有する。
 TFTパネルの基板の材料は、ディスプレイパネルが、ボトムエミッション型か、トップエミッション型かによって異なる。例えば、ディスプレイパネルがボトムエミッション型の場合には、基板が透明であることが求められるので、基板の材料は、ガラスや透明樹脂などであればよい。一方、ディスプレイパネルがトップエミッション型の場合には、基板に透明性は求められないので、基板の材料は、絶縁性であれば任意である。
 平坦化膜は、基板上に配置されたTFTによる凹凸を緩和して、TFTパネルの表面を平坦にするためのものである。平坦化膜の厚さは、通常3~10μmであり、約5μmでありうる。平坦化膜の材料は、樹脂などの有機物であってもよいし、SiOなどの無機物であってもよい。平坦化膜には後述する画素電極と、駆動TFTのソースまたはドレイン電極とを接続するためのコンタクトホールが形成される。
 TFTパネルは、TFTパネルの中央部に位置する有効発光領域と、TFTパネルの外周部に位置し、有効発光領域を囲むダミー領域と、を有する。有効発光領域には、複数の発光素子(副画素)がマトリクス状に配置されている。またダミー領域には、複数の非発光素子が配置されている。
 このように本発明では、有機機能層の膜形状が悪化しやすいTFTパネルの外周部を非発光領域(ダミー領域)とし、有機機能層の膜形状が良好なTFTパネルの中央部を有効発光領域とすることで、輝度ムラや発色ムラのない表示品質に優れた有機ELディスプレイパネルを提供できる。
 図2は、有機機能層が塗布法で形成された有機ELディスプレイパネルにおける各素子の有機機能層の膜形状の均一性を示すグラフである。図2のグラフの横軸は、有機ELディスプレイパネルの縁からの位置を示す。例えば、横軸の単位10は、有機ELディスプレイパネルの縁から10個目の素子を意味する。図2のグラフの縦軸は、素子内における有機機能層の膜厚のばらつきの度合いを示す。縦軸の値が大きいほど、膜形状が悪いことを示す。図2に示されるように、有機ELディスプレイパネルの縁付近では、素子の機能層の膜形状が悪く、有機ELディスプレイパネルの中央部では、素子の機能層の膜形状が良好であることが示される。
 ダミー領域の大きさは特に限定されないが、有機ELディスプレイパネルの縁から2~10列の素子を含むことが好ましく、2~5列の素子を含むことが特に好ましく、例えば3列の素子を含む。図2に示されるように有機ELディスプレイパネルの縁から4つ目の素子以降では、有機機能層の膜厚のばらつきが10%以下となる。このため、ダミー領域が、有機ELディスプレイパネルの縁から3列の素子を含むことで、有効発光領域においける有機機能層の膜厚のばらつきを10%以下に抑えることができる。次に発光素子および非発光素子について説明する。
 (1)発光素子について
 発光素子は、TFTパネルに内蔵されたTFTと、TFTパネルに設けられたコンタクトホールと、TFTパネル上に配置された画素電極と、画素電極上に配置された有機機能層と、有機機能層の配置領域を規定するバンクと、有機機能層上に配置された対向電極と、を有する。
 TFTは、素子を駆動するためのデバイスである。TFTは、ソース電極およびドレイン電極と、ソース電極およびドレイン電極を接続するチャネルと、チャネルを制御するゲート電極とを有する。本発明では、TFTは、シリコン系であっても有機系であってもよい。
 コンタクトホールは、TFTパネルの平坦化膜に設けられた穴である。コンタクトホール内には、TFTのソース電極またはドレイン電極と、画素電極とを接続する配線が配置される。コンタクトホールは、発光素子においてより広い発光領域を実現する観点から、TFTパネルにおける発光素子の領域の一端部に形成される。例えば発光素子が矩形等の細長な形状を有する場合では、コンタクトホールは前記発光素子の領域の長手方向における一端部に形成されることが、上記の観点から好ましい。コンタクトホールの寸法は特に限定されないが、例えば幅が5~20μmであり、深さが4~5μmである。また、本発明では、コンタクトホールは逆円錐型であってもよい。ここで「逆円錐型のコンタクトホール」とは、画素電極側の開口部の径が、TFT側の開口部の径よりも大きいコンタクトホールを意味する。具体的には、コンタクトホールの画素電極側の開口部の径が20~10μmであり、TFT側の開口部の径が5~15μmであることが好ましい。
 画素電極は、TFTパネルの平坦化膜上に配置された導電層である。画素電極は通常、陽極として機能するが、陰極として機能してもよい。画素電極の厚さは、通常、100~500nmであり、約150nmでありうる。画素電極の材料は、ディスプレイパネルがボトムエミッション型であるかトップエミッション型であるかによって異なる。ディスプレイパネルがボトムエミッション型である場合、画素電極が透明電極であることが求められるので、画素電極の材料には、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)や酸化スズなどが含まれる。
 一方、ディスプレイパネルがトップエミッション型である場合、画素電極に光反射性が求められるので、画素電極の材料には、銀を含む合金、より具体的には銀-パラジウム-銅合金(APCとも称する)や銀-ルビジジウム-金合金(ARAとも称する)やモリブデン-クロムの合金(MoCrとも称する)やニッケル-クロム合金(NiCrとも称する)やアルミニウム合金などが含まれる。
 画素電極は、TFTパネルに設けられたコンタクトホールを介して、TFTのソース電極またはドレイン電極と接続されている。また、画素電極上には正孔注入層が配置されていてもよい。正孔注入層は、画素電極から後述する有機機能層への正孔の注入を補助する機能を有する層である。このため、正孔注入層は画素電極と有機機能層との間に配置される。
 正孔注入層の材料の例には、ポリスチレンスルホン酸をドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT-PSSと称される)や遷移金属の酸化物などが含まれるが、正孔注入層の材料は、遷移金属の酸化物であることが好ましい。PEDOTからなる正孔注入層は塗布法で形成されることから、正孔注入層の膜厚が均一になりにくい。またPEDOTは導電性であるため、有機EL素子がショートするおそれが高い。一方、遷移金属の酸化物からなる正孔注入層は、スパッタリングで形成されることから、均一な膜厚を有する。
 遷移金属の例には、タングステンやモリブデン、チタン、バナジウム、ルテニウム、マンガン、クロム、ニッケル、イリジウムおよびこれらの組み合わせなどが含まれる。好ましい正孔注入層の材料は、酸化タングステン(WOx)または酸化モリブデン(MoOx)である。正孔注入層の厚さは、通常、10nm~100nmであり、約30nmでありうる。また、画素電極から有機機能層への効率的に正孔の注入ができるのであれば、正孔注入層は省略されてもよい。
 有機機能層は、少なくとも有機発光層を含み、画素電極上に配置された層である。有機機能層は、バンクによって規定される領域に有機機能層の材料液を塗布することで形成される。有機機能層の材料液(有機機能層の材料をアニソールやシクロヘキシルベンゼンなどの有機溶媒に溶解したインク)を、インクジェットなどの塗布法によって塗布することによって、容易かつ他の材料に損傷を与えることなく有機機能層を形成することができる。
 有機発光層に含まれる有機EL材料は、塗布法で有機発光層を形成できるのであれば、高分子であっても、低分子であってもよい。
 低分子系有機EL材料は、ドーパント材料とホスト材料との組み合わせを含む。ドーパント材料の例にはBCzVBi(4,7-ジフェニル-1,10-フェナントロリン)、クマリン、ルブレン、DCJTB([2-tert-ブチル-6-[2-(2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H-ベンゾ[ij]キノリジン-9-イル)ビニル]-4H-ピラン-4-イリデン]マロノニトリル)などが含まれ、ホスト材料の例には、DPVBi(4,4’-ビス(2,2-ジフェニルエテニル)ビフェニル)、Alq3(トリス(8-キノリノラト)アルミニウム)などが含まれる。
 高分子有機EL材料の例には、ポリフェニレンビニレンおよびその誘導体、ポリアセチレン(Poly acetylene)およびその誘導体、ポリフェニレン(Poly phenylene)およびその誘導体、ポリパラフェニレンエチレン(Poly para phenylene ethylene)およびその誘導体、ポリ3-ヘキシルチオフェン(Poly 3-hexyl thiophene(P3HT))およびその誘導体、ポリフルオレン(Poly fluorene (PF))およびその誘導体などが含まれる。高分子有機EL材料を含む有機発光層は、塗布法により形成しやすいことから、有機発光層に含まれる有機EL材料は、高分子有機EL材料であることが好ましい。
 有機EL材料は各発光素子から所望の発色(レッドR、グリーンG、ブルーB)が生じるように、適宜選択される。例えば、レッド発光素子の隣にグリーン発光素子を配置し、グリーン発光素子の隣にブルー発光素子を配置し、ブルー発光素子の隣にレッド発光素子を配置する。また、有機機能層の厚さは約50~150nm(例えば60nm)であることが好ましい。
 有機機能層は、さらに正孔輸送層(インターレイヤー)、電子輸送層などを有していてもよい。正孔輸送層は、画素電極または正孔注入層への電子の侵入をブロックする役割や、有機発光層に正孔を効率よく運ぶ役割などを有し、例えばポリアニリン系の材料からなる層である。したがって、正孔輸送層は、画素電極または正孔注入層と有機発光層との間に配置される。正孔輸送層の厚さは通常、10nm以上100nm以下であり、好ましくは約30nmである。また、有機発光層へ効率的に正孔を輸送できるのであれば、正孔輸送層は省略されてもよい。
 バンクは、有機機能層の配置領域を規定する部材である。バンクは、基板上に配置される。バンクの基板の表面からの高さは0.1~3μmであることが好ましく、0.8μm~1.2μmであることが特に好ましい。バンクの高さが3μm超であった場合、後述する、全ての発光素子が共有する一つの対向電極がバンクによって分断される恐れがある。また、バンクの高さが0.1μm未満であった場合、バンクによって規定された領域内に塗布されたインクがバンクから漏れ出すおそれがある。
 また、バンクの形状は順テーパ状であることが好ましい。順テーパ状とは、バンクの壁面が斜めになっており、バンクの壁面の傾斜角度(テーパ角度)が90°以下であることを意味する。バンクの形状がテーパ状である場合、テーパ角度は20~80°であり、特に30°~50°であることが好ましい。バンクのテーパ角度が80°超であった場合、後述する全ての発光素子が共有する一つの対向電極がバンクによって分断される恐れがある。
 バンクの材料は樹脂であれば特に限定されないが、フッ素含有樹脂を含むことが好ましい。フッ素含有樹脂に含まれるフッ素化合物の例には、フッ化ビニリデン、フッ化ビニル、三フッ化エチレン、およびこれらの共重合体等のフッ化樹脂などが含まれる。またフッ素含有樹脂に含まれる樹脂の例には、フェノール-ノボラック樹脂、ポリビニルフェノール樹脂、アクリル樹脂、メタクリル樹脂およびこれらの組み合わせが含まれる。
 フッ素含有樹脂のさらに具体的な例には、例えば特表2002-543469号公報に記載されているフッ素含有ポリマー(フルオロエチレン)とビニルエーテルとの共重合体であるルミフロン(LUMIFLON、登録商標、旭硝子)などが含まれる。
 バンクの壁面の濡れ性は低い。また、バンク壁面の上部の濡れ性は、バンク壁面の下部の濡れ性よりも低いことが好ましい。バンク壁面の上部と水との接触角は80°以上、好ましくは90°以上であることが好ましく、バンク壁面の上部とアニソールとの接触角は、30°~70°であることが好ましい。一方、バンク壁面の下部とアニソールとの接触角は、3°~30°であることが好ましい。接触角が高いほど濡れ性が低いことを意味する。
 バンクは素子の四方を囲んでもよいし(実施の形態1~4参照)、一列に並んだ素子を囲んでもよい(実施の形態5参照)。
 対向電極は有機機能層上に配置される導電性部材である。対向電極は通常陰極として機能するが陽極として機能してもよい。対向電極の材料は、有機ELディスプレイパネルがボトムエミッション型か、トップエミッション型かによって異なる。トップエミッション型の場合には、対向電極が透明である必要があるので、対向電極の材料の例にはITOやIZOなどが含まれる。さらに、トップエミッション型の場合、有機機能層と対向電極との間に有機バッファー層を配置してもよい。
 一方、ボトムエミッション型の場合には対向電極が透明である必要はない。したがって対向電極の材料は、導電性であれば任意である。このような対向電極の材料の例には、バリウム(Ba)や酸化バリウム(BaO)、アルミニウム(Al)などが含まれる。
 対向電極は通常、スパッタリングにより形成される。また、有機ELディスプレイパネルに含まれる全ての発光素子は、1の対向電極を共有してもよい。有機ELディスプレイパネルに含まれる全ての発光素子が共有する対向電極は、共通電極とも称される。共通電極は有機機能層だけではなく、バンクも覆う(図3B参照)。
 (2)非発光素子について
 非発光素子は、少なくともTFTパネル上に配置されたバンクと、バンクによって規定された領域内に形成された有機機能層と、を有する。非発光素子は、さらに、TFT、画素電極、対向電極を有していてもよい。
 本発明では、非発光素子のうち、少なくとも前記発光素子の他端側で前記発光素子に隣接する非発光素子(以下「境界非発光素子」とも称する)が、TFTパネルの平坦化膜に設けられたホール(以下「ダミーホール」とも称する)を有することを特徴とする。
 境界非発光素子が有するダミーホールの寸法(幅、深さ)は、発光素子が有するコンタクトホールの寸法と同じであることが好ましい。また、境界非発光素子内におけるダミーホールの相対的位置は、発光素子内におけるコンタクトホールの相対的位置と同じであることが好ましい。ここでホールの「相対的位置」とは、素子の中心対するホールの位置を意味する。すなわち、TFTパネルが境界非発光素子の領域の一端部に前記ホールを有することが好ましい。
 このように、境界非発光素子が、TFTパネルの平坦化膜に形成されたダミーホールを有することで、有効発光領域の縁に位置する発光素子(以下「境界発光素子」とも称する)とそれ以外の発光素子との間で有機機能層の膜形状がばらつくことを抑えることができる。以下、境界非発光素子にダミーホールを設けることと、発光素子間での有機機能層の膜形状のばらつきを抑えることとの関係について説明する。
 従来のように非発光素子がコンタクトホールを有さない有機ELディスプレイパネル(図1参照)では、境界発光素子が有するバンクのパターンと、それ以外の発光素子が有するバンクのパターンとが異なっていた。より具体的には、境界発光素子が有するバンクのうち有効発光領域とダミー領域との境界を構成するバンク(以下、「境界バンク」とも称する)の形状と、その他の発光素子のバンク(以下「有効発光領域の内部のバンク」とも称する)の形状とが異なっていた(図12A参照)。
 これは、バンクの形状が、バンクの下地、すなわちTFTパネルの平坦化膜の表面の凹凸形状に依存し(図4参照)、さらに平坦化膜の凹凸形状は、隣接する素子のホール(コンタクトホールまたはダミーホール)の有無に依存するからである(図4)。すなわち有効発光領域の内部のバンクが区切る発光素子は、コンタクトホールを有するが、一方で、境界バンクは、コンタクトホールを有さない非発光素子も区切るためである。
 また、塗布形成される有機機能層の形状は、有機機能層の材料液が塗布される領域を規定するバンクの形状に影響される。このため、従来の有機ELディスプレイパネルのように境界発光素子のバンクのパターンと、それ以外の発光素子のバンクのパターンとが異なると、境界発光素子の有機機能層の膜形状と、それ以外の発光素子の有機機能層の膜形状とが異なる。
 一方、本発明では、境界非発光素子がTFTパネルの平坦化膜に形成されたダミーホールを有するので、有効発光領域の内部のバンクと同様に、境界バンクが区切る素子は全てホールを有する。このため、本発明では、境界バンクの形状と有効発光領域の内部のバンクの形状とが等しくなる(図11A参照)。したがって、本発明では、境界発光素子と他の発光素子とでバンクのパターンにばらつきが少ない。このため、本発明では、境界発光素子とそれ以外の発光素子とで、有機機能層の膜形状にもばらつきが少ない。これにより、輝度ムラや発光色ムラが少ない発光特性に優れた有機ELディスプレイパネルを提供することが可能となる。
 また、本発明では、前記境界非発光素子がダミーホールを有するので、境界非発光素子に該当しない非発光素子はダミーホールを有さない。よって、平坦化膜に形成されるコンタクトホール及びダミーホールの数を、上記のパターンばらつき抑制効果が得られる最低限の数とすることができる。これにより、平坦化膜への水分の吸着や、平坦化膜に吸収された水分の他のレイヤーへの拡散による発光特性の低下、がより抑制された有機ELディスプレイパネルを提供することが可能となる。
 2.本発明の有機ELディスプレイパネルの製造方法
 本発明の有機ELディスプレイパネルは、本発明の効果を損なわない限り、任意の方法で製造され得る。
 本発明の有機ELディスプレイパネルの好ましい製造方法の一例は、
 1)TFTパネルを準備する第1ステップと、
 2)TFTパネルにコンタクトホールおよびダミーホールを形成する第2ステップと、
 3)TFTパネルの有効発光領域に画素電極を形成する第3ステップと、
 4)TFTパネル上にバンクを形成する第4ステップと、
 5)バンクによって規定された領域内に有機機能層の材料液を塗布し、有機機能層を形成する第5ステップと、を有する。以下、それぞれのステップについて説明する。
 1)第1ステップでは、TFTパネルを準備する。TFTパネルは例えば、基板上にTFTを作製し、TFTが作製された基板上に平坦化膜を配置することで製造される。
 基板上にTFTを形成するには、例えば、基板上にゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、半導体膜、パッシベーション膜などの層を、スパッタリング法やフォトリソグラフィ法を用いて形成すればよい。
 また、平坦化膜は例えば、感光性樹脂からなる膜を成膜し、光硬化させてもよいし、SiOなどの無機物からなる膜をスパッタリングなどで成膜してもよい。
 2)第2ステップでは、TFTパネルにコンタクトホールおよびダミーホールを形成する。具体的には、有効発光領域のTFTパネルの平坦化膜にコンタクトホールを形成し、ダミー領域のうち、境界非発光素子が形成される領域のTFTパネルの平坦化膜にダミーホールを形成する。平坦化膜に形成されるコンタクトホールおよびダミーホールは、フォトリソグラフィ法またはエッチングによって形成すればよい。
 3)第3ステップでは、TFTパネルの有効発光領域に画素電極を形成する。画素電極は、例えば、TFTパネル上に蒸着法やスパッタリング法などにより画素電極の材料からなる膜を形成し、形成された膜を所望の形状にパターニングすればよい。
 4)第4ステップでは、バンクを形成する。バンクは、例えば、フォトリソグラフィプロセス(塗布、ベーク、露光、現像、焼成)で形成する。このようにバンクをフォトリソグラフィプロセスで形成する場合、バンクの形状は、バンクが形成される下地(平坦化膜)の凹凸形状の影響を受ける。そして、平坦化膜の凹凸形状は隣接する素子のホールにも影響を受ける。
 5)第5ステップでは、バンクによって規定された領域内に、有機機能層の材料液を塗布する。塗布する材料液は、所望の有機機能層の材料および溶媒を含む。溶媒の例には、アニソールなどの芳香族系の溶媒が含まれる。塗布する手段は特に限定されない。塗布する手段の例には、インクジェット、ディスペンサー、ノズルコート、スピンコート、ダイコート、凹版印刷、凸版印刷などが含まれる。好ましい塗布手段は、インクジェットである。
 具体的には、有効発光領域およびダミー領域の両方に有機機能層の材料液を塗布する。そして、塗布した材料液を乾燥、ベークすることで有機機能層を形成する。このように、有効発光領域およびダミー領域の両方に有機機能層の材料液を塗布することで、ダミー領域には、膜形状の悪い有機機能層が形成されるが、有効発光領域には膜形状のよい有機機能層を形成することができる。
 また、本実施の形態では、境界発光素子が有するバンクの形状が等しいので、境界発光素子でも、膜形状のよい有機機能層を形成することができる。
 以下図面を参照しながら本発明の実施の形態について説明するが、本発明の範囲は、以下の実施の形態に限定されない。
 (実施の形態1)
 実施の形態1では、トップエミッション型の有機ELディスプレイパネルについて説明する。
 図3Aは、実施の形態1の有機ELディスプレイパネル100の平面の一部拡大図を示し、図3Bは図3Bに示された有機ELディスプレイパネル100のAA’線による断面図の要部を示す。
 図3Aおよび図3Bに示されるように、有機ELディスプレイパネル100は、素子(副画素)がマトリクス状に配置されたTFTパネル110を有する。TFTパネル110は、発光素子120が配置された有効発光領域Lと、非発光素子130が配置されたダミー領域Dと、を有する。
 図3Bに示されるようにTFTパネル110は、基板101と、基板101上に配置されたTFT103と、基板101およびTFT103上に配置された平坦化膜105と、平坦化膜105に形成されたコンタクトホール107およびダミーホール109とを有する。
 発光素子120は、TFT103、コンタクトホール107、反射陽極(画素電極)121、正孔注入層123、有機発光層125、バンク127、透明陰極(対向電極)129を有する。コンタクトホール107は、発光素子120の長軸方向の一方の端部に位置する。
 反射陽極121は例えば、APC合金からなる。好ましい反射陽極121の厚さは100~200nmである。
 正孔注入層123は反射陽極121上に配置される。正孔注入層123は、タングステンオキサイド(WOx)からなる。正孔注入層123の好ましい厚さは5~30nmである。
 有機発光層125は、正孔注入層123上に配置される。有機発光層125の好ましい厚さは、50~150nmである。有機発光層125は、ポリフルオレンの誘導体からなる層である。
 バンク127は正孔注入層123上に正孔注入層123の一部が露出するように配置される。本実施の形態では、バンク127は発光素子120の四方を囲む。好ましいバンク127の正孔注入層123からの高さは、200nm~3μmである。
 透明陰極129は、有機発光層125上に配置される、光透過性の導電層である。透明陰極129の材料は、例えばITOである。
 非発光素子130は、正孔注入層123、有機発光層125、透明陰極129を有する。また、非発光素子130のうち、有効発光領域Lの他端側で有効発光領域Lに隣接する非発光素子(境界非発光素子)130Xは、ダミーホール109を有する。ダミーホール109は、発光素子におけるコンタクトホール107と同様に、非発光素子130の長軸方向の一方の端部に位置する。このように、非発光素子130におけるダミーホール109の相対的位置は、発光素子120におけるコンタクトホール107の相対的位置と同じである。
 図4は、図3Bに示された有機ELディスプレイパネルの一部拡大図である。図4に示されるように、本実施の形態では、有効発光領域の内部のバンク127Yの一部がコンタクトホール上に形成されるので、バンク127Yの一部が隣接する発光素子120のコンタクトホール107の影響を受けて凹む。また、本発明では、境界非発光素子130Xにもダミーホール109が設けられているので、有効発光領域Lとダミー領域との境界を構成する境界バンク127X(図3Aの符号X参照)もダミーホール109の影響を受けて凹む。このため本実施の形態では、境界バンク127Xの形状と、バンク127Yの形状とのばらつきが少ない。
 このように、本実施の形態によれば、境界バンク127Xの形状と、内部バンク127Yの形状とが等しいので、境界発光素子120Xの有機発光層125の膜形状を良好にすることができる。
 このような有機ELディスプレイパネル100の反射陽極121と透明陰極129との間に電圧を印加すると、反射陽極121から正孔が、透明陰極129から電子が有機発光層125に注入される。注入された正孔および電子は、有機発光層125の内部で結合し、励起子が発生する。この励起子によって有機発光層125が発光し、透明陰極129を通して光が発せられる。
 次に図5A~図5Eを参照しながら、本実施の形態の有機ELディスプレイパネル100の製造方法について説明する。図5A~図5Eに示されるように、有機ELディスプレイパネル100の製造方法は、1)TFTパネル110を準備する第1ステップ(図5A)と、2)TFTパネル110の有効発光領域L上に反射陽極121および正孔注入層123を形成する第2ステップ(図5B)と、3)TFTパネル110上にバンク127を形成する第3ステップ(図5C)、4)バンク127によって規定された領域に、有機発光層125を塗布形成する第4ステップ(図5D)、5)有機発光層125およびバンク127を覆うように透明陰極129を形成する第5ステップ(図5E)を有する。
 1)図5Aは第1ステップを示す。図5Aに示されるように第1ステップでは、TFTパネル110を準備する。発光素子の領域に配置されるTFT103を有する基板101上に平坦化膜105を形成し、発光素子の一端部の位置にコンタクトホール107をそれぞれ形成し、前記境界非発光素子の一端部の位置にダミーホール109をそれぞれ形成する。
 2)図5Bは第2ステップを示す。図5Bに示されるように第2ステップでは、TFTパネル110の有効発光領域L上に反射陽極121および正孔注入層123を形成する。反射陽極121は、例えば、TFTパネル110上に蒸着法やスパッタリング法などにより反射陽極121の材料からなる膜を形成し、形成された膜を所望の形状にパターニングすればよい。同様に正孔注入層123もTFTパネル110上に蒸着法やスパッタリング法などにより正孔注入層123の材料からなる膜を形成し、形成された膜を所望の形状にパターニングすればよい。
 3)図5Cは第3ステップを示す。図5Cに示されるように、第3ステップでは、TFTパネル110上にバンク127を形成する。バンク127は、例えばフォトリソグラフィ法によって形成される。具体的には塗布されたバンク材料を、プリベーク、露光、現像、ポストベークすることでバンク127が形成される。フォトリソグラフィ法の条件は特に限定されないが、例えばプリベークを100℃で2分間行い;照射光を365nmがメインピークであるi線とし;照射量を露光量200mJ/cmとし;現像を0.2%のTMAHで60秒間行い;ポストベークを220℃のクリーンオーブンで60分間行えばよい。また、TFTパネル110の有効発光領域L上では、バンク127は、正孔注入層123の少なくとも一部が露出するように、形成される。
 4)図5Dは第4ステップを示す。図5Dに示されるように、バンク127によって規定された領域に、有機発光層125の材料液を、例えばインクジェット法で塗布する。インクジェット法で塗布された有機発光層125の材料液を、乾燥、ベークさせる。乾燥は例えば、真空チャンバー内で、減圧しながら行う。減圧は圧力5Pa程度になるまで行われる。乾燥中の温度は25℃である。ベークは、例えば130℃のホットプレートで10分間行なう。
 5)図5Eは第5ステップを示す。図5Eに示されるように、第5ステップでは、有機発光層125およびバンク127を覆うように透明陰極129を形成する。透明陰極129は、例えば、蒸着法により形成される。
 (実施の形態2)
 実施の形態1では、非発光素子がTFTを有さない形態について説明した。実施の形態2では、非発光素子がTFTを有する形態について説明する。
 図6は、本発明の実施の形態2の有機ELディスプレイパネル200の断面図である。実施の形態1の有機ELディスプレイパネル100と同一の構成要素については説明を省略する。図6に示されるように、本実施の形態では、非発光素子130がTFT103を有する。本実施の形態では全ての非発光素子130がTFT103を有するが、少なくとも境界非発光素子130XがTFT103を有すればよい。
 このように、境界非発光素子130XにTFT103を設けることで、境界発光素子120Xの有機発光層125の膜形状をより良好にできる。
 バンクの形状は、隣接する素子のコンタクトホールの有無だけでなく、隣接する素子のTFTの有無によっても影響される。このため、境界非発光素子130XにTFT103を設けることで、このため境界バンク127Xの形状と、内部バンク127Yの形状とをより等しくすることができる。この結果、境界発光素子120Xの有機発光層125の膜形状をより良好にできる。
 (実施の形態3)
 実施の形態2では、非発光素子が画素電極(反射陽極)および正孔注入層を有さない形態について説明した。実施の形態3では、非発光素子が画素電極および正孔注入層を有する形態について説明する。
 図7は、本発明の実施の形態3の有機ELディスプレイパネル300の断面図である。実施の形態2の有機ELディスプレイパネル200と同一の構成要素については説明を省略する。図7に示されるように、本実施の形態では、非発光素子130が、反射陽極121を有する。本実施の形態では全ての非発光素子130が反射陽極121を有するが、少なくとも境界非発光素子130Xが反射陽極121を有すればよい。
 このように、境界非発光素子130Xに反射陽極121を設けることで、境界発光素子120Xの有機発光層125の膜形状をより良好にできる。
 バンクの形状は、隣接する素子のコンタクトホールの有無だけでなく、隣接する素子の画素電極の有無によっても影響される。このため、境界非発光素子130Xに反射陽極121を設けることで、境界バンク127Xの形状と、内部バンク127Yの形状とをより等しくすることができる。この結果、境界発光素子120Xの有機発光層125の膜形状をより良好にできる。
 また、本実施の形態では、非発光素子130が有するTFT103がトランジスタとして機能しない。TFT103からトランジスタとしての機能を奪うには、例えば、ダミーホール内に導電性部材を配置せず、TFT103と反射陽極121とを電気的に接続しなければよい。このように非発光素子130が有するTFT103を機能させないことで、非発光素子130が意図せず発光することを防止することができる。
 (実施の形態4)
 実施の形態4では、非発光素子が対向電極を有さない形態について説明する。
 図8は、本発明の実施の形態4の有機ELディスプレイパネル400の断面図である。実施の形態3の有機ELディスプレイパネル300と同一の構成要素については説明を省略する。図8に示されるように、本実施の形態では、非発光素子130が、透明陰極129を有さない。具体的には、透明陰極129は有効発光領域Lにのみ形成されダミー領域Dには形成されない。このように、透明陰極129を有効発光領域Lにのみ形成するには、蒸着で透明陰極129を形成する際に、メタルマスクなどを用いればよい。
 このように、非発光素子130が、透明電極129を有さないことで、非発光素子130が、意図せず発光することをより確実に防止できる。
 (実施の形態5)
 実施の形態5では、バンクが一列に並んだ素子を規定する形態について説明する。
 図9Aは、実施の形態5の有機ELディスプレイパネル500の平面の一部拡大図を示し、図9Bは図9Aに示された有機ELディスプレイパネル500のAA’線による断面図の要部を示す。また、図10は、図9Bに示された有機ELディスプレイパネル500の一部拡大図である。
 図9A、図9Bおよび図10に示されるように、本実施の形態では、バンク127は一列に配列された素子を規定するライン状のバンクである。バンク127は、フォトリソグラフィ法によって形成される場合、現像からポストベークの間の比較的不安定な状態において、バンク127の近傍の下地の影響を受けやすい。より具体的には、上記の比較的不安定な状態では近傍のコンタクトホール107に流れ込んだり、コンタクトホール107に向けて撓むように変形しやすい。このため、ライン状のバンク127のように、コンタクトホール107上には形成されないバンクであっても、コンタクトホール107の影響がバンク127の形状に及ぶことがある。したがって、本実施の形態でも、各発光素子は、コンタクトホール107に影響されたバンク127によって規定される。よって、本実施の形態でも、前記境界非発光素子の一端部の位置にダミーホール109を形成することによって、発光領域Lにおける発光素子の膜形状を良好にすることができる。さらに、バンク127をライン状とすることで、塗布された有機発光層125の材料液が、素子間を移動することができ、素子間で有機発光層125の膜厚をより均一にすることができる。
 (実施例)
 実施例では、実施の形態4の有機ELディスプレイパネルを作製した。まず、旭硝子株式会社製ガラス基板AN100(370mm×470mm×0.7mm)上に平坦化膜を5μmの厚さで形成し、TFTパネルを作成した。
 具体的には、スピンコートで平坦化膜の材料(東レ株式会社製のフォトニースDL-1000)を塗布されたガラス基板上を、120℃のホットプレートで3分間プリベークし、クロムマスクを用いて波長365nmをメインピークとする紫外光でホールが形成される箇所を露光(露光量:150mJ/cm)し、東京応化工業株式会社製の現像液NMD-3(TMAH(テトラメチルアンモニウムハイドロオキサイド):2.38%)に浸漬させ、そして、230℃のクリーンオーブンで30分間ポストベークした。
 これによりホールが形成されたTFTパネルを形成した。実施例では、境界非発光素子にもホールを形成した。
 準備したTFTパネルに反射電極として銀-パラジウム-銅(APC)膜を150nmの厚さでスパッタリング法により形成した。反射電極上に、正孔注入層としてWOx膜を30nmの厚さでスパッタリング法により形成した。
 形成したWOx上に、バンクをフォトリソグラフィ法により形成した。バンクの材料は旭硝子製のアクリル材料を用いた。具体的には、スピンコート法によりTFTパネル上に塗布し、温度100℃で2分間プリベークした。次に、フォトマスクを介して紫外光を照射した。実施例で用いたバンク材料はネガ型材料であるので、露光された部分のバンク材料が架橋反応し硬化する。照射した紫外光の波長は365nmをメインピークとするブロードである。露光照度は20mW/cmで、照射時間は10秒間とした。そして、露光されたバンク材料を、0.2%のTMAH水溶液(東京応化製NMD-3)を用いて現像し、バンク材料をパターニングした。そして、純水で、現像液の洗浄を行なった後、TFTパネルを220℃のクリーンオーブンにて60分間ポストベークした。
 次に発光材料を含むインクをインクジェット法により、バンクによって規定された領域内に塗布した。インクの溶媒はシクロヘキシルベンゼンを用いた。そして、塗布したインクを減圧乾燥で乾燥させた。具体的には、TFTパネルを真空チャンバーに投入し、真空ポンプでチャンバー内の気圧が10Paになるまで排気することで塗布したインクを乾燥させた。排気時間を30秒間とし、乾燥温度は25℃とした。その後、TFTパネルを130℃のホットプレートで10分間さらにベークした。
 以上の方法で作製した有機ELディスプレイパネルの境界発光素子の有機発光層の膜形状を原子間力顕微鏡(タカノ株式会社製 AS-7B)で測定し、境界発光素子の有機発光層の断面プロファイルを求めた。境界発光素子の有機発光層の断面プロファイルを図11Aに示す。図11Aに示されたプロファイルは、図11BのBB’線による断面のプロファイルである。図11Aにおいて、縦軸は膜厚(nm)を、横軸は基板上における測定位置を表し、Iはバンク、IIはコンタクトホール、II'はダミーホール、IIIは有機発光層を示す。
 また、図11Aの断面プロファイルから境界発光素子の有機発光層の膜厚左右差を以下の式で求めた。
 [式1]膜厚左右差=(左端での膜厚)-(右端での膜厚)
 (左端は左側のバンクの頂部から7.5μm素子の中心側の有機発光層の点を意味し、右端は右側のバンクの頂部から7.5μm素子の中心側の有機発光層の点を意味する。)
 このように求められた境界発光素子の有機発光層の膜厚左右差を表1に示す。
 (比較例)
 比較例では、TFTパネルのダミー領域にはダミーホールを形成しなかった以外は、実施例と同様に有機ELディスプレイパネルを作製した。比較例の有機ELディスプレイパネルの境界発光素子の有機発光層の膜形状を原子間力顕微鏡(タカノ株式会社製 AS-7B)で測定し、境界発光素子の有機発光層の断面プロファイルを求めた。境界発光素子の有機発光層の断面プロファイルを図12Aに示す。図12Aにおいて、縦軸は膜厚(nm)を、横軸は基板上における測定位置(nm)を表す。図12Aに示されたプロファイルは、図12BのBB’線による断面のプロファイルである。
 また、図12Aの断面プロファイルから算出した境界発光素子の有機発光層の膜厚左右差を表1に示す。
 (実施例および比較例の評価)
 図11Aに示されるように、実施例では、バンクの高さが素子の両端で等しい。一方、図12Aに示されるように、比較例ではバンクの高さが素子の両端で異なっている。具体的には、コンタクトホールが形成されている側のバンクは、コンタクトホールが形成されてない側のバンクに比べて、200nm程度低くなっている。この結果は、境界非発光素子が有するホールが、境界発光素子が有するバンクの形状に影響を与えることを示唆する。
 また、比較例では境界発光素子のコンタクトホール端のバンクの高さが、境界バンクの高さよりも低くなったのは、コンタクトホール側では、バンク材料の塗布時にバンク材料がコンタクトホールに流れ込んだことに起因すると考えられる。
Figure JPOXMLDOC01-appb-T000001
 次に表1を参照しながら、実施例および比較例の有機ELディスプレイパネルの境界発光素子の有機発光層の膜形状について説明する。表1には、実施例および比較例の境界発光素子の有機発光層の膜厚左右差を示す。膜厚左右差の値が大きいほど、膜の傾きが大きく、膜形状が悪いことを示す。
 表1に示されるように、実施例では膜厚左右差が0.4nmであるのに対し、比較例では膜厚左右差は2.8nmと、大きくなっている。この結果は、比較例と比較して、実施例では境界発光素子の有機発光層の膜形状が大きく改善されていることを示唆する。
 また、比較例では膜厚左右差は2.8nmと大きくなったのは、バンクの高さが素子の両端で異なっていることに起因すると考えられる。前述したように、有機発光層の膜形状はバンクの物性の影響を受けるので、バンクの高さが素子の両端で異なると、有機発光層の膜形状も両端で異なると考えられるからである。
 以上の結果を総括すると、境界非発光素子にもホールを形成することで、境界バンクの形状が、他の有効発光領域バンクの形状と等しくなり、境界発光素子の有機発光層の形状も均一になることが示唆される。
 本出願は、2010年12月20日出願の特願2010-283115に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明の有機ELディスプレイパネルは、有効発光画素の他端側で有効発光画素に隣接するダミー画素にもダミーホールを形成することで、有効発光領域の最外周においても、膜形状が均一な発光層を形成することができる。これにより、パネル面内で輝度ムラや発光色ムラの少ない、表示品質に優れた有機ELディスプレイパネルを提供することができる。
 100、200、300、400、500 有機ELディスプレイパネル
 101 基板
 103 TFT
 105 平坦化膜
 107 コンタクトホール
 109 ダミーホール
 110 TFTパネル
 120 発光素子
 121 反射陽極
 123 正孔注入層
 125 有機発光層
 127 バンク
 129 透明陰極
 130 非発光素子
 D ダミー領域
 L 有効発光領域
 

Claims (7)

  1.  中央部に位置する有効発光領域と、外周部に位置し、前記有効発光領域を囲むダミー領域とを有するTFTパネルと、前記有効発光領域に配置された複数の発光素子と、前記ダミー領域に配置された複数の非発光素子と、を有する有機ELディスプレイパネルであって、
     前記発光素子は、
      前記TFTパネルに内蔵された薄膜トランジスタと、
      前記TFTパネルにおける前記発光素子の領域の一端部に設けられたコンタクトホールと、
      前記TFTパネル上に配置され、前記コンタクトホールを介して前記薄膜トランジスタと接続した画素電極と、
      前記画素電極上に配置された有機機能層と、
      前記TFTパネル上に配置され、かつ前記有機機能層の配置領域を規定するバンクと、
      前記有機機能層上に配置された対向電極と、を有し、
     前記非発光素子は、
      前記TFTパネル上に配置されたバンクと、
      前記バンクによって規定された領域内に形成された有機機能層と、を有し、
     前記複数の非発光素子のうち、前記発光素子の領域の他端側で前記発光素子に隣接する前記非発光素子のみが、前記TFTパネルにおける前記非発光素子の領域の一端部に設けられたホールをさらに有する、有機ELディスプレイパネル。
  2.  前記複数の非発光素子のうち、前記有効発光領域に隣接する前記非発光素子は、前記TFTパネルに内蔵された薄膜トランジスタをさらに有し、
     前記非発光素子が有する薄膜トランジスタは機能しない、請求項1に記載の有機ELディスプレイパネル。
  3.  前記複数の非発光素子のうち、前記有効発光領域に隣接する前記非発光素子は、前記TFTパネル上に配置された画素電極をさらに有する、請求項1に記載の有機ELディスプレイパネル。
  4.  前記複数の非発光素子のうち、前記有効発光領域に隣接する前記非発光素子は、対向電極を有さない、請求項1に記載の有機ELディスプレイパネル。
  5.  前記バンクは、前記素子の四方を囲む、請求項1に記載の有機ELディスプレイパネル。
  6.  前記バンクは、一列に並んだ前記素子を規定する、請求項1に記載の有機ELディスプレイパネル。
  7.  請求項1に記載の有機ELディスプレイパネルを製造する方法であって、
     薄膜トランジスタが配置された基板上に平坦化膜を形成することで前記TFTパネルを準備するステップと、
     前記有効発光領域の前記TFTパネルの平坦化膜における前記発光素子の領域の一端部に前記コンタクトホールを形成し、前記ダミー領域のうち、前記発光素子の領域の他端側で前記発光素子に隣接する前記非発光素子が形成される領域の前記TFTパネルの平坦化膜における前記非発光素子の領域の一端部にのみ、前記ホールを形成するステップと、
     前記TFTパネルの前記有効発光領域に画素電極を形成するステップと、
     前記TFTパネル上に前記バンクを形成するステップと、
     前記バンクによって規定された領域内に前記有機機能層を塗布形成するステップと、
     前記TFTパネルの前記有効発光領域上に前記対向電極を形成するステップと、を有する、有機ELディスプレイパネルの製造方法。
PCT/JP2011/005813 2010-12-20 2011-10-18 有機elディスプレイパネル及びその製造方法 WO2012086111A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012511474A JP4990425B1 (ja) 2010-12-20 2011-10-18 有機elディスプレイパネル及びその製造方法
US13/992,912 US8901594B2 (en) 2010-12-20 2011-10-18 Organic EL display panel and method for manufacturing same
EP11850871.2A EP2640163A4 (en) 2010-12-20 2011-10-18 ORGANIC EL DISPLAY BOARD AND METHOD FOR THE PRODUCTION THEREOF
CN201180055707.7A CN103229596B (zh) 2010-12-20 2011-10-18 有机电致发光显示器面板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-283115 2010-12-20
JP2010283115 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086111A1 true WO2012086111A1 (ja) 2012-06-28

Family

ID=46313406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005813 WO2012086111A1 (ja) 2010-12-20 2011-10-18 有機elディスプレイパネル及びその製造方法

Country Status (5)

Country Link
US (1) US8901594B2 (ja)
EP (1) EP2640163A4 (ja)
JP (1) JP4990425B1 (ja)
CN (1) CN103229596B (ja)
WO (1) WO2012086111A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020914A1 (ja) * 2012-08-02 2014-02-06 パナソニック株式会社 有機el表示パネルとその製造方法
JP2019008962A (ja) * 2017-06-23 2019-01-17 株式会社Joled 有機el表示パネル及び有機el表示パネルの製造方法
KR20190067593A (ko) * 2017-12-07 2019-06-17 엘지디스플레이 주식회사 전계 발광 표시장치
KR20190103553A (ko) * 2018-02-27 2019-09-05 삼성디스플레이 주식회사 표시 패널
JP2021524047A (ja) * 2018-05-23 2021-09-09 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. アレイ基板、表示パネル及び表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102050383B1 (ko) * 2012-12-28 2019-11-29 엘지디스플레이 주식회사 유기전계발광표시장치
KR102103862B1 (ko) * 2013-04-15 2020-04-27 삼성디스플레이 주식회사 발광 표시 장치 및 그 제조 방법
JP6399801B2 (ja) * 2014-05-13 2018-10-03 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置
KR102201827B1 (ko) * 2014-09-16 2021-01-13 엘지디스플레이 주식회사 유기발광표시장치, 유기발광표시패널 및 그 제조방법
CN106717119B (zh) * 2014-09-25 2018-12-04 株式会社日本有机雷特显示器 有机el显示面板的制造方法
KR102269134B1 (ko) * 2014-09-29 2021-06-25 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 유기 발광 표시 장치용 증착 마스크
CN110771264B (zh) * 2017-03-21 2022-09-20 索尼半导体解决方案公司 发光元件、显示设备以及电子装置
JP6982975B2 (ja) 2017-04-17 2021-12-17 株式会社ジャパンディスプレイ 表示装置、及び表示装置の製造方法
KR102451725B1 (ko) * 2017-12-20 2022-10-07 삼성디스플레이 주식회사 디스플레이 장치
KR20210077861A (ko) * 2019-12-17 2021-06-28 삼성디스플레이 주식회사 디스플레이 장치
CN112701148B (zh) * 2020-12-28 2024-04-30 广东聚华印刷显示技术有限公司 顶发射显示面板、显示装置及其制作方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543469A (ja) 1999-05-04 2002-12-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フッ素化ポリマー、フォトレジストおよびミクロリソグラフィーのための方法
JP2003249375A (ja) 2001-12-18 2003-09-05 Seiko Epson Corp 表示装置及び電子機器並びに表示装置の製造方法
JP2004095290A (ja) 2002-08-30 2004-03-25 Seiko Epson Corp 電気光学装置及びその製造方法、電子機器
JP3628997B2 (ja) 2000-11-27 2005-03-16 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法
JP2005093280A (ja) 2003-09-18 2005-04-07 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
JP2005148335A (ja) * 2003-11-14 2005-06-09 Hitachi Displays Ltd 表示装置
US20050140274A1 (en) 2003-12-30 2005-06-30 Lee Jae Y. Organic electro luminescence device and fabrication method thereof
JP2005259716A (ja) 2000-11-27 2005-09-22 Seiko Epson Corp 有機エレクトロルミネッセンス装置
JP2005310708A (ja) 2004-04-26 2005-11-04 Seiko Epson Corp 有機el装置、電子機器
JP2005322639A (ja) * 2002-05-28 2005-11-17 Seiko Epson Corp 発光装置および電子機器
US20050264177A1 (en) 2004-01-08 2005-12-01 Jin-Koo Chung Display device, and method of manufacturing the display device
JP2006058751A (ja) * 2004-08-23 2006-03-02 Mitsubishi Electric Corp アクティブマトリクス型表示装置およびアクティブマトリクス型表示装置の製造方法
JP2008047515A (ja) * 2006-07-19 2008-02-28 Canon Inc 表示装置
JP2009081097A (ja) 2007-09-27 2009-04-16 Seiko Epson Corp 電気光学装置および電子機器
US20090128020A1 (en) 2007-11-20 2009-05-21 Seiko Epson Corporation Method for manufacturing organic electroluminescent device and organic electroluminescent device
JP2009199852A (ja) * 2008-02-21 2009-09-03 Seiko Epson Corp 有機エレクトロルミネッセンス装置
JP2010073602A (ja) 2008-09-22 2010-04-02 Seiko Epson Corp 有機el装置の製造方法
JP2010176937A (ja) * 2009-01-28 2010-08-12 Seiko Epson Corp 電気光学装置、発光装置、及び電子機器
JP2010283115A (ja) 2009-06-04 2010-12-16 Panasonic Corp エネルギーデバイスの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810919B2 (en) 2002-01-11 2004-11-02 Seiko Epson Corporation Manufacturing method for display device, display device, manufacturing method for electronic apparatus, and electronic apparatus
JP2003282273A (ja) 2002-03-20 2003-10-03 Seiko Epson Corp 表示装置とその製造方法及び電子機器
JP3778176B2 (ja) 2002-05-28 2006-05-24 セイコーエプソン株式会社 発光装置および電子機器
JP4366988B2 (ja) 2003-05-01 2009-11-18 セイコーエプソン株式会社 有機el装置および電子機器
JP2008257271A (ja) * 2008-07-04 2008-10-23 Canon Inc 表示装置
KR101348408B1 (ko) * 2008-12-02 2014-01-07 엘지디스플레이 주식회사 상부발광 방식 유기전계 발광소자 및 이의 제조 방법

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543469A (ja) 1999-05-04 2002-12-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フッ素化ポリマー、フォトレジストおよびミクロリソグラフィーのための方法
JP3628997B2 (ja) 2000-11-27 2005-03-16 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法
JP2005259716A (ja) 2000-11-27 2005-09-22 Seiko Epson Corp 有機エレクトロルミネッセンス装置
JP2003249375A (ja) 2001-12-18 2003-09-05 Seiko Epson Corp 表示装置及び電子機器並びに表示装置の製造方法
JP2005322639A (ja) * 2002-05-28 2005-11-17 Seiko Epson Corp 発光装置および電子機器
JP2004095290A (ja) 2002-08-30 2004-03-25 Seiko Epson Corp 電気光学装置及びその製造方法、電子機器
JP2005093280A (ja) 2003-09-18 2005-04-07 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
JP2005148335A (ja) * 2003-11-14 2005-06-09 Hitachi Displays Ltd 表示装置
US20050140274A1 (en) 2003-12-30 2005-06-30 Lee Jae Y. Organic electro luminescence device and fabrication method thereof
US20050264177A1 (en) 2004-01-08 2005-12-01 Jin-Koo Chung Display device, and method of manufacturing the display device
JP2005310708A (ja) 2004-04-26 2005-11-04 Seiko Epson Corp 有機el装置、電子機器
JP2006058751A (ja) * 2004-08-23 2006-03-02 Mitsubishi Electric Corp アクティブマトリクス型表示装置およびアクティブマトリクス型表示装置の製造方法
JP2008047515A (ja) * 2006-07-19 2008-02-28 Canon Inc 表示装置
JP2009081097A (ja) 2007-09-27 2009-04-16 Seiko Epson Corp 電気光学装置および電子機器
US20090128020A1 (en) 2007-11-20 2009-05-21 Seiko Epson Corporation Method for manufacturing organic electroluminescent device and organic electroluminescent device
JP2009146885A (ja) 2007-11-20 2009-07-02 Seiko Epson Corp 有機エレクトロルミネッセンス装置および有機エレクトロルミネッセンス装置の製造方法
JP2009199852A (ja) * 2008-02-21 2009-09-03 Seiko Epson Corp 有機エレクトロルミネッセンス装置
JP2010073602A (ja) 2008-09-22 2010-04-02 Seiko Epson Corp 有機el装置の製造方法
JP2010176937A (ja) * 2009-01-28 2010-08-12 Seiko Epson Corp 電気光学装置、発光装置、及び電子機器
JP2010283115A (ja) 2009-06-04 2010-12-16 Panasonic Corp エネルギーデバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2640163A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020914A1 (ja) * 2012-08-02 2014-02-06 パナソニック株式会社 有機el表示パネルとその製造方法
JPWO2014020914A1 (ja) * 2012-08-02 2016-07-21 株式会社Joled 有機el表示パネルとその製造方法
US9698347B2 (en) 2012-08-02 2017-07-04 Joled Inc. Organic EL display panel and method for manufacturing same
JP2019008962A (ja) * 2017-06-23 2019-01-17 株式会社Joled 有機el表示パネル及び有機el表示パネルの製造方法
KR20190067593A (ko) * 2017-12-07 2019-06-17 엘지디스플레이 주식회사 전계 발광 표시장치
KR102484644B1 (ko) * 2017-12-07 2023-01-03 엘지디스플레이 주식회사 전계 발광 표시장치
KR20190103553A (ko) * 2018-02-27 2019-09-05 삼성디스플레이 주식회사 표시 패널
KR102541880B1 (ko) * 2018-02-27 2023-06-09 삼성디스플레이 주식회사 표시 패널
JP2021524047A (ja) * 2018-05-23 2021-09-09 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. アレイ基板、表示パネル及び表示装置
JP7295808B2 (ja) 2018-05-23 2023-06-21 京東方科技集團股▲ふん▼有限公司 アレイ基板、表示パネル及び表示装置

Also Published As

Publication number Publication date
EP2640163A1 (en) 2013-09-18
JPWO2012086111A1 (ja) 2014-05-22
CN103229596B (zh) 2016-03-16
JP4990425B1 (ja) 2012-08-01
CN103229596A (zh) 2013-07-31
US8901594B2 (en) 2014-12-02
EP2640163A4 (en) 2013-10-09
US20130256648A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP4990425B1 (ja) 有機elディスプレイパネル及びその製造方法
JP4621818B1 (ja) 有機elディスプレイパネルおよびその製造方法
JP5096648B1 (ja) 有機elディスプレイパネル及びその製造方法
JP4664447B2 (ja) 有機elディスプレイパネル
JP4495781B2 (ja) 有機elディスプレイパネルおよびその製造方法
US8624275B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
JP4526595B2 (ja) 有機elディスプレイパネル
JP4328384B2 (ja) 有機elディスプレイパネルおよびその製造方法
US8907358B2 (en) Organic light-emitting panel, manufacturing method thereof, and organic display device
US8921838B2 (en) Light emitting element, method for manufacturing same, and light emitting device
US10714549B2 (en) Organic EL display panel manufacturing method and organic EL display panel
JP6519933B2 (ja) 有機発光デバイスとその製造方法
US8901546B2 (en) Organic light-emitting panel, manufacturing method thereof, and organic display device
US20150155516A1 (en) Organic light-emitting element and production method therefor
WO2010070800A1 (ja) 有機el発光装置
US20200227661A1 (en) Organic el display panel and method for manufacturing organic el display panel
JP2007134327A (ja) 表示装置とその製造方法
US10861910B2 (en) Organic EL display panel and method for manufacturing organic EL display panel
US20170047381A1 (en) Method for forming functional layer of organic light-emitting device and method for manufacturing organic light-emitting device
JP2010282903A (ja) 有機elディスプレイパネル
JP2011249035A (ja) 有機elディスプレイパネルおよびその製造方法
JP2013105694A (ja) 有機エレクトロルミネッセンス素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180055707.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012511474

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13992912

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011850871

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE