[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012074002A1 - 絶縁電線、同軸ケーブル及び多心ケーブル - Google Patents

絶縁電線、同軸ケーブル及び多心ケーブル Download PDF

Info

Publication number
WO2012074002A1
WO2012074002A1 PCT/JP2011/077665 JP2011077665W WO2012074002A1 WO 2012074002 A1 WO2012074002 A1 WO 2012074002A1 JP 2011077665 W JP2011077665 W JP 2011077665W WO 2012074002 A1 WO2012074002 A1 WO 2012074002A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
coaxial cable
cable
void
conductor
Prior art date
Application number
PCT/JP2011/077665
Other languages
English (en)
French (fr)
Inventor
達則 林下
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2012520603A priority Critical patent/JP6164844B2/ja
Priority to CN2011800044131A priority patent/CN102687208A/zh
Priority to KR1020127010929A priority patent/KR101852205B1/ko
Publication of WO2012074002A1 publication Critical patent/WO2012074002A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1834Construction of the insulation between the conductors
    • H01B11/1856Discontinuous insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/20Cables having a multiplicity of coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0233Cables with a predominant gas dielectric

Definitions

  • the present invention relates to an insulated wire, a coaxial cable, and a multi-core cable used for telecommunication equipment, information equipment, industrial machinery, vehicle wiring, and the like.
  • Insulated wires and coaxial cables are used for wiring inside equipment, between equipment, inside machines, and inside vehicles.
  • Insulated wires are those in which the center conductor is covered with an insulator, and coaxial cables are usually covered with an insulator in the center conductor, the outer periphery of the insulator is covered with an external conductor, and the outside is covered with a protective covering.
  • the central conductor is covered with an insulator having 6 to 9 cross-sectional circular or elliptical gaps continuous in the longitudinal direction, and an outer conductor is arranged on the outer periphery of the insulator to provide a low dielectric constant coaxial cable.
  • an insulator having 6 to 9 cross-sectional circular or elliptical gaps continuous in the longitudinal direction
  • an outer conductor is arranged on the outer periphery of the insulator to provide a low dielectric constant coaxial cable.
  • a coaxial cable having a fan-shaped cross section of the gap is also known (see, for example, Patent Document 2).
  • the dielectric constant of the insulator can be reduced and good electrical characteristics can be obtained.
  • the void ratio of the void portion is too large, the withstand voltage between the center conductor and the outer conductor is lowered.
  • the porosity is large, the strength may be reduced.
  • the cross section of the air gap is fan-shaped, the air gap will be easily deformed against bending, and the cable will be crushed by external pressure to ensure stable transmission characteristics. May become difficult.
  • An object of the present invention is to provide an insulated wire, a coaxial cable, and a multi-core cable capable of reducing the dielectric constant of an insulator and obtaining good electrical characteristics with a small diameter without causing a decrease in withstand voltage and a decrease in strength. It is to provide.
  • the insulated wire of the present invention that can solve the above-mentioned problem is an insulated wire in which the central conductor is covered with an insulator having a continuous void in the longitudinal direction, The gap is formed in a circular or elliptical cross section, and 6 to 8 gaps are evenly arranged on the insulator, and the area of all the gaps and the insulator in the cross section perpendicular to the cable length direction
  • the void ratio of all the void portions is 18% or more and 35% or less.
  • the coaxial cable of the present invention is a coaxial cable in which a center conductor is covered with an insulator having a continuous gap in the longitudinal direction, and an outer conductor is arranged on the outer periphery of the insulator,
  • the gap is formed in a circular or elliptical cross section, and 6 to 8 gaps are evenly arranged on the insulator, and the area of all the gaps and the insulator in the cross section perpendicular to the cable length direction
  • the void ratio of all the void portions is 18% or more and 35% or less.
  • the insulator is preferably formed from a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • the multi-core cable of the present invention is characterized in that a plurality of the above insulated wires or coaxial cables are accommodated.
  • the dielectric constant of the insulator can be reduced, and good electrical characteristics can be obtained with a small diameter. it can. Further, by setting the porosity to 18% or more and 35% or less, it is possible to reliably ensure the withstand voltage between the center conductor and the outer conductor without causing a decrease in strength.
  • the coaxial cable 11 includes a central conductor 12 covered with an insulator 13, an outer conductor 15 arranged on the outer periphery of the insulator 13, and an outer cover 16 covered with the outer conductor 15 for protection. This is the configuration.
  • the central conductor 12 and the insulator 13 of the coaxial cable 11 have the same configuration in the insulated wire of the present invention.
  • the insulator 13 has eight gap portions 14 that are continuous in the longitudinal direction. These voids 14 are formed in a circular cross section with an outer diameter D3, and are uniformly arranged in the circumferential direction on the insulator 13. Further, the center conductor 12 and the insulator 13 and the outer conductor 15 and the insulator 13 are in close contact.
  • the central conductor 12 is formed of a single wire or a stranded wire made of silver-plated or tin-plated annealed copper wire or copper alloy wire.
  • a stranded wire for example, an outer diameter D2 obtained by twisting seven wires having a wire conductor diameter of 0.030 mm is 0.090 mm (equivalent to AWG (American Wire Gauge) # 40), or a wire conductor diameter. 7 having an outer diameter D2 of 0.075 mm (equivalent to AWG # 42) is used.
  • a fluororesin made of PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) is used for the insulator 13, and the insulator 13 is formed by extruding this fluororesin.
  • PFA has a low dielectric constant among insulating resins (relative dielectric constant at 1 MHz is about 2.1), so that the insulator can be made thin while keeping the same capacitance as compared to the case of using other resins. .
  • the insulator 13 has an outer diameter D1 of about 0.2 mm, and has a relatively high capacitance of 90 to 120 pF / m.
  • the external conductor 15 is a bare copper wire (an annealed copper wire or a copper alloy wire), a silver-plated or tin-plated anodized copper wire or a copper alloy wire having the same thickness as that of the wire conductor used for the center conductor 12. It is formed on the outer periphery with a horizontal winding or a braided structure. Further, in order to improve the shielding function, a metal foil tape may be provided in the layer immediately outside the outer conductor 15.
  • the jacket 16 is formed by extruding a resin material such as a fluororesin or winding a resin tape such as a polyester tape.
  • the outer diameter of the coaxial cable 11 that is the outer diameter of the jacket 16 is about 0.31 mm.
  • the coaxial cable 11 is used for, for example, a cellular phone or a notebook personal computer for antenna wiring, wiring for connecting an LCD (Liquid Crystal Display) and a CPU (Central Processing Unit), or for connecting a sensor and a device. It is often used as a core cable, and the miniaturization and thinning of these terminal devices require a reduction in the diameter of the coaxial cable and a reduction in the diameter of the multi-core cable.
  • the coaxial cable 11 needs to have a predetermined impedance (50 ⁇ , 75 ⁇ , or 80 to 90 ⁇ ), and has a diameter as small as possible. For this purpose, it is necessary to reduce the dielectric constant of the insulating layer between the center conductor 12 and the outer conductor 15. In the present embodiment, by providing the gap portion 14 in the insulator 13, the dielectric constant of the insulator 13 can be reduced, and the coaxial cable 11 can have a small diameter and good electrical characteristics.
  • the insulator 13 is thin with a small diameter, the strength is reduced, and it may not be able to withstand external pressure and bending applied to the cable.
  • the ratio of the void portion 14 to the sum of the area of all the void portions 14 and the area of the insulator 13 is defined as the void ratio
  • the void ratio of all the void portions 14 is 18%.
  • the withstand voltage between the center conductor 12 and the outer conductor 15 is reliably ensured without causing a decrease in strength.
  • the eight gaps 14 formed in a circular cross section are uniformly arranged on the insulator 13 made of PFA, high strength can be maintained while reducing the diameter and reducing the dielectric constant of the insulator 13. Can do.
  • the center conductor 12 can be thickened by thinning the insulator 13, and the transmission efficiency is improved by reducing the conductor resistance. Can be achieved.
  • the center conductor 12 of AWG # 40 can be used. If the outer diameter of the central conductor 12 is the same, the outer diameter of the coaxial cable 11 can be reduced by reducing the thickness of the insulator 13. Even if the insulated wire does not have the external conductor 15, the same effect as that of the coaxial cable 11 can be obtained by configuring the insulator 13 as described above.
  • the eight gaps 14 are formed in the insulator 13, but the number of the gaps 14 is not limited to eight and may be six or seven. Moreover, although the case where the cross-sectional circle-shaped space
  • coaxial cable 11 has been described as an example of a single-core wire, the coaxial cable 11 or a multi-core cable in which a plurality of insulated wires are bundled may be used.
  • the multi-core cable may include only a coaxial cable, may include only an insulated wire, or may include both. Furthermore, it is good also as a multi-core coaxial cable which shielded the coaxial cable or the insulated wire with the common shield conductor.
  • the coaxial cable 11 or the insulated wire can be manufactured using an extruder 30 in which a die 31 and a point 41 are combined.
  • a member 45 having a columnar outer shape is provided at the point 41 by the number of the gap portions 14 and is combined with the die 31 having the circular outlet 33 to push out the resin from between the point 41 and the die 31 (channels 51 and 52).
  • the central conductor 12 is pulled out from the central hole 44 of the cylindrical portion 43 of the point 41.
  • the extruded resin is coated on the central conductor 12.
  • the resin may be coated by a pulling-down method in which the resin exiting the die 31 is stretched to reduce the diameter. Resin does not flow through the cylindrical member 45, and this portion becomes the gap portion 14. If the air hole 46 is provided in the member 45, the void portion 14 through which the resin does not flow is secured in the resin extruded from the die 31, and the cross section becomes circular or elliptical.
  • the porosity of the insulator 13 can be easily adjusted by the diameter of the columnar member 45 provided at the point 41.
  • the thing with a low porosity has a high freedom degree of the combination of the die
  • an example product and a comparative example product of the present invention were manufactured and tested.
  • a stranded wire having an outer diameter of 0.09 mm obtained by twisting seven tin-plated copper alloy wires having an outer diameter of 0.03 mm is used as the central conductor.
  • a fluororesin (PFA) was extrusion coated to form an insulator having an outer diameter of 0.20 mm.
  • the cylindrical member 45 that forms the void as shown in FIG. 2 is used to uniformly form eight voids having a circular section in the longitudinal direction in the insulator. did.
  • a tin-plated annealed copper wire having an outer diameter of 0.03 mm was horizontally wound, and a jacket made of polyester tape was formed thereon to form an AWG # 40 coaxial cable having an outer diameter of 0.31 mm.
  • the overall porosity of the voids in the insulator is 18% (capacitance 110 pF / m) in Example 1, 35% (capacitance 100 pF / m) in Example 2, and 40% (static) in Comparative Example 1.
  • the capacitance was 95 pF / m).
  • Comparative Example 2 a coaxial cable without a void (void ratio 0%) was produced.
  • a stranded wire having an outer diameter of 0.075 mm obtained by twisting seven silver-plated copper alloy wires having an outer diameter of 0.025 mm is used as the central conductor, and fluororesin (PFA) is extrusion coated thereon.
  • PFA fluororesin
  • an insulator having an outer diameter of 0.20 mm was obtained.
  • As the outer conductor a tin-plated annealed copper wire having an outer diameter of 0.03 mm was wound horizontally, and a jacket made of polyester tape was formed thereon to form an AWG # 42 coaxial cable having an outer diameter of 0.31 mm.
  • the capacitance was 110 pF / m.
  • the coaxial cable of each test product was subjected to the following test three times, and each coaxial cable was evaluated.
  • (1) Withstand voltage test An AC voltage was applied between the center conductor and the outer conductor, and a voltage value was measured when the insulator was broken and the center conductor and the outer conductor were short-circuited.
  • (2) Dynamic cut-through From the top of the outer sheath of the coaxial cable, it is crushed by applying pressure with a round blade, and the load when the center conductor and the outer conductor are short-circuited is measured.
  • the round blade was made of SUS and the tip diameter r was 1 mm.
  • Table 1 shows the test results.
  • the numerical value of Table 1 is an average value of a test result of every 3 times.
  • the withstand voltage was 5.6 kV on average and the load of dynamic cut-through was 27.7 N on average.
  • the coaxial cable of Example 1 was found to have sufficient withstand voltage and strength, and the reliability evaluation was good ( ⁇ ).
  • the withstand voltage was an average value of 4.4 kV
  • the dynamic cut-through load was an average value of 25.2 N.
  • the coaxial cable of Example 2 was found to have sufficient withstand voltage and strength, and the evaluation of reliability was good ( ⁇ ).
  • the coaxial cable of Comparative Example 2 in which the void ratio of the void portion is 0% has the same capacitance as that of Example 1.
  • the withstand voltage and the load of dynamic cut-through are the same as in Example 1.
  • the coaxial cable of the comparative example 2 is AWG and is one size smaller than the coaxial cable of the first embodiment in terms of allowable current and conductor resistance.
  • the outer diameter is 0.34 mm, the outer diameter is increased by about 10%, and does not satisfy the demand for reducing the diameter. .
  • the coaxial cable of AWG # 40 was evaluated.
  • the void ratio of the entire void portion was 18%. In the case of 35%, the evaluation was good.

Landscapes

  • Communication Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

 耐電圧の低下及び強度低下を招くことなく、絶縁体の誘電率を小さくして、細径で良好な電気特性を得ることができる絶縁電線、同軸ケーブル及び多心ケーブルを提供する。 同軸ケーブル11は、中心導体12を、長手方向に連続する空隙部14を有する絶縁体13で覆い、絶縁体13の外周に外部導体15を配し、空隙部14は断面円形または楕円形状に形成され、6~8個の空隙部14が絶縁体13に均等に配され、同軸ケーブル11の長さ方向に垂直な断面において全ての空隙部14の面積と絶縁体13の面積の和に対する空隙部14の面積の割合を空隙率とするときに、全部の空隙部14を合わせた空隙率を18%以上35%以下とした。

Description

絶縁電線、同軸ケーブル及び多心ケーブル
 本発明は、電気通信機器、情報機器、産業機械、車輌の配線等に用いられる絶縁電線、同軸ケーブル及び多心ケーブルに関する。
 機器内または機器間、機械内、車輌内の配線に絶縁電線や同軸ケーブルが用いられる。絶縁電線は、中心導体を絶縁体で被覆したものであり、同軸ケーブルは、通常、中心導体を絶縁体で被覆し、絶縁体の外周を外部導体で覆い、その外側を保護被覆体で覆った構造のものであり、用途に応じてケーブル外径が0.25mm~数mmのものがある。これらの電線等は、細径で良好の電気特性を得るには、中心導体の外周を被覆している絶縁体の誘電率をできるだけ小さくすることが求められる。
 このため、中心導体を、長手方向に連続する6~9個の断面円形または楕円形状の空隙部を有する絶縁体で覆い、絶縁体の外周に外部導体を配して低誘電率とした同軸ケーブルが知られている(例えば、特許文献1参照)。また、空隙部の断面形状を扇状とした同軸ケーブルも知られている(例えば、特許文献2参照)。
国際公開第2010/035762号 日本国特許公開:特開2009-110975号公報
 上記のように、絶縁体に空隙部を形成すれば、絶縁体の誘電率を小さくして、良好な電気特性を得ることができる。
 しかし、空隙部の空隙率が大き過ぎると、中心導体と外部導体との間の耐電圧が低下してしまう。また、空隙率が大きいと強度低下を招くおそれもあり、特に、空隙部の断面が扇状であると、曲げに対して空隙部が変形しやすくなり、外圧によってケーブルが潰れて伝送特性の安定確保が難しくなるおそれがある。
 本発明の目的は、耐電圧の低下及び強度低下を招くことなく、絶縁体の誘電率を小さくして、細径で良好な電気特性を得ることができる絶縁電線、同軸ケーブル及び多心ケーブルを提供することにある。
 上記課題を解決することのできる本発明の絶縁電線は、中心導体を、長手方向に連続する空隙部を有する絶縁体で覆った絶縁電線であって、
 前記空隙部は断面が円形または楕円形状に形成され、6~8個の前記空隙部が前記絶縁体に均等に配され、ケーブル長さ方向に垂直な断面において全ての空隙部の面積と絶縁体の面積の和に対する空隙部の面積の割合を空隙率とするときに、全部の空隙部を合わせた空隙率を18%以上35%以下としたことを特徴とする。
 本発明の同軸ケーブルは、中心導体を、長手方向に連続する空隙部を有する絶縁体で覆い、前記絶縁体の外周に外部導体を配した同軸ケーブルであって、
 前記空隙部は断面が円形または楕円形状に形成され、6~8個の前記空隙部が前記絶縁体に均等に配され、ケーブル長さ方向に垂直な断面において全ての空隙部の面積と絶縁体の面積の和に対する空隙部の面積の割合を空隙率とするときに、全部の空隙部を合わせた空隙率を18%以上35%以下としたことを特徴とする。
 本発明の絶縁電線または同軸ケーブルにおいて、前記絶縁体は、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体から形成されていることが好ましい。
 本発明の多心ケーブルは、上記の絶縁電線または同軸ケーブルを、複数本収納してなることを特徴とする。
 本発明によれば、断面円形または楕円形状の6~8個の空隙部を絶縁体に均等に配したので、絶縁体の誘電率を小さくして、細径で良好な電気特性を得ることができる。また、空隙率を18%以上35%以下としたことにより、強度低下を招くことなく、中心導体と外部導体との間の耐電圧を確実に確保することができる。
本発明の一実施形態を示す同軸ケーブルの断面図である。 本発明に係る同軸ケーブルを製造する際に用いる押出機の部分斜視図である。
 以下、本発明に係る同軸ケーブル及び多心ケーブルの実施の形態の例を、図面を参照して説明する。
 図1に示すように、本実施形態に係る同軸ケーブル11は、中心導体12を絶縁体13で覆い、絶縁体13の外周に外部導体15を配し、その外側を外被16で覆って保護した構成である。同軸ケーブル11の中心導体12と絶縁体13の部分は、本発明の絶縁電線においても同じ構成である。
 絶縁体13は、長手方向に連続する8個の空隙部14を有している。これらの空隙部14は外径D3の断面円形に形成されており、絶縁体13に周方向へ均等に配されている。また、中心導体12と絶縁体13および外部導体15と絶縁体13は密着している。
 中心導体12は、銀メッキもしくは錫メッキ軟銅線ないしは銅合金線からなる単線または撚り線で形成される。撚り線の場合は、例えば、素線導体径が0.030mmのものを7本撚った外径D2が0.090mm(AWG(American Wire Gauge)#40相当)のものや、素線導体径が0.025mmのものを7本撚った外径D2が0.075mm(AWG#42相当)のものが用いられる。
 絶縁体13には、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)からなるフッ素樹脂が用いられ、絶縁体13は、このフッ素樹脂を押出成形することにより形成される。PFAは絶縁樹脂の中でも誘電率が低い(1MHzでの比誘電率が約2.1)ので、他の樹脂を使用する場合に比べて静電容量を同じとしながら絶縁体を薄くすることができる。
 絶縁体13は、その外径D1が約0.2mmとされており、また、静電容量は、90~120pF/mと比較的高くされている。
 外部導体15は、中心導体12に用いた素線導体と同程度の太さの裸銅線(軟銅線または銅合金線)または銀メッキもしくは錫メッキ軟銅線ないしは銅合金線を、絶縁体13の外周に横巻きまたは編組構造で配して形成される。さらに、シールド機能を向上させるために、外部導体15のすぐ外の層に金属箔テープを併設する構造としてもよい。
 外被16は、フッ素樹脂等の樹脂材を押出成形するか、または、ポリエステルテープなどの樹脂テープを巻き付けて形成される。
 そして、この外被16の外径である同軸ケーブル11の外径は、約0.31mmとされている。
 上記の同軸ケーブル11は、例えば、携帯電話やノート型パソコンで、アンテナ配線やLCD(Liquid Crystal Display)とCPU(Central Processing Unit)を結ぶ配線等に使用されることやセンサと機器とを結ぶ多心ケーブルとして使用されることが多く、これらの端末装置の小型化、薄型化により、同軸ケーブルの細径化および多心ケーブルの細径化が要求される。
 同軸ケーブル11は、所定のインピーダンス(50Ω、75Ωまたは80~90Ω)とする必要があり、それを実現する限りにおいてできるだけ細径とする。そのためには、中心導体12と外部導体15の間の絶縁層の誘電率を小さくすることが必要である。本実施形態では、絶縁体13に空隙部14を設けることにより、絶縁体13の誘電率を小さくして、同軸ケーブル11を、細径で良好な電気特性を得ることができるものとしている。
 しかし、空隙部14の空隙率が大き過ぎると、中心導体12と外部導体15との間の耐電圧の低下を招くおそれがある。また、細径で絶縁体13の厚さが薄いので、強度低下を招き、ケーブルに加えられる外圧や曲げに対して耐えられなくなることがある。
 このため、本実施形態では、全ての空隙部14の面積と絶縁体13の面積の和に対する空隙部14の割合を空隙率とするときに、全部の空隙部14を合わせた空隙率を18%以上35%以下とすることにより、強度低下を招くことなく、中心導体12と外部導体15との間の耐電圧を確実に確保している。また、断面円形に形成した8個の空隙部14をPFAからなる絶縁体13に均等に配しているので、細径化及び絶縁体13の低誘電率化を図りつつ高い強度を維持することができる。
 これにより、同一外径で所定の静電容量(例えば、100pF/m)とする場合において、絶縁体13の薄肉化により中心導体12を太くすることができ、導体抵抗の低減による伝送効率の向上を図ることができる。例えば、AWG#42であっても、AWG#40の中心導体12が使用可能となる。
 中心導体12の外径を同じとすれば、絶縁体13の薄肉化により同軸ケーブル11の外径を小さくできる。
 外部導体15を有しない絶縁電線であっても、絶縁体13を上記の構成とすることにより上記の同軸ケーブル11と同様の効果を享受することができる。
 なお、上記実施形態の同軸ケーブル11では、絶縁体13に8個の空隙部14を形成したが、空隙部14の数は、8個に限らず6個または7個であっても良い。また、上記実施形態では、断面円形状の空隙部14を形成した場合を例示したが、空隙部14は、断面楕円形状であっても良い。これは絶縁電線でも同様である。
 また、上記の同軸ケーブル11は、単心線の例で説明したが、この同軸ケーブル11または絶縁電線を複数本束ねた多心ケーブルとしてもよい。この多心ケーブルは同軸ケーブルのみを含むのでも、絶縁電線のみを含むのでも、両者を含むのでもよい。さらに共通のシールド導体により同軸ケーブルまたは絶縁電線をシールドした多心の同軸ケーブルとしてもよい。
 図2に示すように、上記の同軸ケーブル11または絶縁電線は、ダイス31とポイント41とを組み合わせた押出機30を使用して製造することができる。
 ポイント41に外形が円柱状の部材45を空隙部14の数だけ設け、円形の出口33を有するダイス31に組み合わせてポイント41とダイス31の間(流路51,52)から樹脂を押し出す。ポイント41の円筒部43の中心孔44から中心導体12を引き出す。押し出された樹脂が中心導体12に被覆される。ダイス31の出口を出た樹脂を引き伸ばして径を小さくして被覆する引き落とし方法により樹脂を被覆してもよい。円柱状の部材45には樹脂が流れず、この部分が空隙部14となる。この部材45に通気孔46を設けておくとダイス31から押し出された樹脂中に樹脂が流れない空隙部14が確保され、その断面が円形または楕円形となる。
 上記の押出機30では、絶縁体13の空隙率は、ポイント41に設けた円柱状の部材45の径で容易に調整することができる。なお、空隙率が低いものは、空隙率が高いものよりも作製するときにダイス31とポイント41の組み合わせや引き落とし率の自由度が高く、良品を得やすい。
 本発明による上述の同軸ケーブルを評価するため、本発明の実施例品と比較例品を作製して試験した。実施例1,2、比較例1の試験品は、中心導体には、外径が0.03mmの錫メッキ銅合金線を7本撚り合わせた外径0.09mmの撚り線を使用し、それにフッ素樹脂(PFA)を押出被覆して外径0.20mmの絶縁体とした。絶縁体を押し出すときに、図2に示したような空隙部を形成する円柱状の部材45を使用して、絶縁体中に長手方向に連続する8個の断面円形の空隙部を均等に形成した。外部導体は外径0.03mmの錫メッキ軟銅線を横巻きし、その上にポリエステルテープからなる外被を形成して外径0.31mmのAWG#40の同軸ケーブルとした。絶縁体における空隙部の全体の空隙率は、実施例1で18%(静電容量110pF/m)、実施例2で35%(静電容量100pF/m)、比較例1で40%(静電容量95pF/m)とした。
 また、比較例2として、空隙部のない(空隙率0%)同軸ケーブルを作製した。この比較例2では、中心導体には、外径が0.025mmの銀メッキ銅合金線を7本撚り合わせた外径0.075mmの撚り線を使用し、それにフッ素樹脂(PFA)を押出被覆して外径0.20mmの絶縁体とした。外部導体は外径0.03mmの錫メッキ軟銅線を横巻きし、その上にポリエステルテープからなる外被を形成して外径0.31mmのAWG#42の同軸ケーブルとした。静電容量は110pF/mとした。
 上記の各試験品の同軸ケーブルについて、下記の試験を3回ずつ行い、各同軸ケーブルの評価を行った。
(1)耐電圧試験
 中心導体と外部導体との間に交流の電圧を印加し、絶縁体が破壊して中心導体と外部導体との間がショートした際の電圧値を測定した。
(2)ダイナミックカットスルー
 同軸ケーブルの外被の上から、丸刃で圧をかけて潰していき、中心導体と外部導体とがショートした際の荷重を測定する。なお、丸刃は、材質をSUSとし、先端径rを1mmとした。
 試験の結果を、表1に示す。なお、表1の数値は、3回ずつの試験結果の平均値である。
Figure JPOXMLDOC01-appb-T000001
 
 空隙部の空隙率が18%である実施例1の同軸ケーブルでは、耐電圧が平均値で5.6kV、ダイナミックカットスルーの荷重が平均値で27.7Nであった。このように、この実施例1の同軸ケーブルでは、十分な耐電圧及び強度を有することが認められ、信頼性の評価は良好(○)であった。
 空隙部の空隙率が35%である実施例2の同軸ケーブルでは、耐電圧が平均値で4.4kV、ダイナミックカットスルーの荷重が平均値で25.2Nであった。このように、この実施例2の同軸ケーブルにおいても、十分な耐電圧及び強度を有することが認められ、信頼性の評価は良好(○)であった。
 空隙部の空隙率が40%である比較例1の同軸ケーブルでは、耐電圧が平均値で2.5kV、ダイナミックカットスルーの荷重が平均値で19.3Nであった。このように、この比較例1の同軸ケーブルでは、耐電圧及び強度のいずれにおいても不足していることが認められ、信頼性の評価は不良(×)であった。
 空隙部の空隙率が0%である比較例2の同軸ケーブルは、静電容量が実施例1と同等である。耐電圧、ダイナミックカットスルーの荷重とも実施例1と同等である。しかし、この比較例2の同軸ケーブルは、中心導体の太さがAWGでワンサイズ小さく、許容電流および導体抵抗の点で実施例1の同軸ケーブルに劣る。
 なお、実施例1と同寸法の中心導体を使用して空隙部のない同軸ケーブルを作製するとその外径は0.34mmとなり、外径が1割程度大きくなり、細径化の要求を満たさない。
 上記の実施例ではAWG#40の同軸ケーブルについて評価したが、細径(AWG#42)の同軸ケーブルについて耐電圧試験及びダイナミックカットスルー試験を行った結果、空隙部全体の空隙率が18%および35%の場合は、評価は良好であった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2010年12月1日出願の日本特許出願(特願2010-268036)に基づくものであり、その内容はここに参照として取り込まれる。
11:同軸ケーブル、12:中心導体、13:絶縁体、14:空隙部、15:外部導体

Claims (5)

  1.  中心導体を、長手方向に連続する空隙部を有する絶縁体で覆った絶縁電線であって、
     前記空隙部は断面が円形または楕円形状に形成され、6~8個の前記空隙部が前記絶縁体に均等に配され、ケーブル長さ方向に垂直な断面において全ての空隙部の面積と絶縁体の面積の和に対する空隙部の面積の割合を空隙率とするときに、全部の空隙部を合わせた空隙率を18%以上35%以下としたことを特徴とする絶縁電線。
  2.  請求項1に記載の絶縁電線であって、
     前記絶縁体は、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体から形成されていることを特徴とする絶縁電線。
  3.  中心導体を、長手方向に連続する空隙部を有する絶縁体で覆い、前記絶縁体の外周に外部導体を配した同軸ケーブルであって、
     前記空隙部は断面が円形または楕円形状に形成され、6~8個の前記空隙部が前記絶縁体に均等に配され、ケーブル長さ方向に垂直な断面において全ての空隙部の面積と絶縁体の面積の和に対する空隙部の面積の割合を空隙率とするときに、全部の空隙部を合わせた空隙率を18%以上35%以下としたことを特徴とする同軸ケーブル。
  4.  請求項3に記載の同軸ケーブルであって、
     前記絶縁体は、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体から形成されていることを特徴とする同軸ケーブル。
  5.  請求項1もしくは2に記載の絶縁電線または請求項3もしくは4に記載の同軸ケーブルを、複数本収納してなることを特徴とする多心ケーブル。
PCT/JP2011/077665 2010-12-01 2011-11-30 絶縁電線、同軸ケーブル及び多心ケーブル WO2012074002A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012520603A JP6164844B2 (ja) 2010-12-01 2011-11-30 絶縁電線、同軸ケーブル及び多心ケーブル
CN2011800044131A CN102687208A (zh) 2010-12-01 2011-11-30 绝缘电线、同轴电缆及多芯电缆
KR1020127010929A KR101852205B1 (ko) 2010-12-01 2011-11-30 절연 전선, 동축 케이블 및 다심 케이블

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-268036 2010-12-01
JP2010268036 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012074002A1 true WO2012074002A1 (ja) 2012-06-07

Family

ID=46171929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077665 WO2012074002A1 (ja) 2010-12-01 2011-11-30 絶縁電線、同軸ケーブル及び多心ケーブル

Country Status (4)

Country Link
JP (1) JP6164844B2 (ja)
KR (1) KR101852205B1 (ja)
CN (2) CN105788748B (ja)
WO (1) WO2012074002A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106131A (ja) * 2019-12-26 2021-07-26 住友電気工業株式会社 電気絶縁ケーブル

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103854732A (zh) * 2013-08-26 2014-06-11 安徽华星电缆集团有限公司 一种新型耐火补偿导线
US20150162854A1 (en) * 2013-12-10 2015-06-11 Rps International System and Method for Stimulating Rainfall
JP6015705B2 (ja) * 2014-04-16 2016-10-26 住友電気工業株式会社 生地及び装着具
JP6123727B2 (ja) * 2014-04-17 2017-05-10 住友電気工業株式会社 衣服
CN105590692A (zh) * 2016-02-03 2016-05-18 安徽长风电缆集团有限公司 一种防水耐压电缆
JP7140074B2 (ja) 2019-08-27 2022-09-21 日立金属株式会社 同軸ケーブル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160325A (ja) * 1999-12-03 2001-06-12 Sumitomo Electric Ind Ltd フラットケーブル
JP2003249129A (ja) * 2001-12-19 2003-09-05 Ube Nitto Kasei Co Ltd 細径同軸ケーブルおよびその製造方法
JP2004119060A (ja) * 2002-09-24 2004-04-15 Sumitomo Electric Ind Ltd ディジタル信号差動伝送用ケーブル、その製造方法およびこれを用いたハーネス
JP2007335393A (ja) * 2005-09-27 2007-12-27 Ube Nitto Kasei Co Ltd 同軸ケーブル用中空コア体,同コア体の製造方法,同コア体を用いる同軸ケーブル
JP2008103179A (ja) * 2006-10-19 2008-05-01 Totoku Electric Co Ltd 高速差動伝送ケーブル
WO2010035762A1 (ja) * 2008-09-24 2010-04-01 住友電気工業株式会社 同軸ケーブルおよび多心同軸ケーブル
WO2010064579A1 (ja) * 2008-12-02 2010-06-10 株式会社フジクラ 伝送ケーブル及びそれを用いた信号伝送ケーブル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528592Y2 (ja) * 1991-04-30 1997-03-12 東京特殊電線株式会社 細心同軸ケーブル
JP2009110975A (ja) * 2001-12-19 2009-05-21 Ube Nitto Kasei Co Ltd 細径同軸ケーブルの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160325A (ja) * 1999-12-03 2001-06-12 Sumitomo Electric Ind Ltd フラットケーブル
JP2003249129A (ja) * 2001-12-19 2003-09-05 Ube Nitto Kasei Co Ltd 細径同軸ケーブルおよびその製造方法
JP2004119060A (ja) * 2002-09-24 2004-04-15 Sumitomo Electric Ind Ltd ディジタル信号差動伝送用ケーブル、その製造方法およびこれを用いたハーネス
JP2007335393A (ja) * 2005-09-27 2007-12-27 Ube Nitto Kasei Co Ltd 同軸ケーブル用中空コア体,同コア体の製造方法,同コア体を用いる同軸ケーブル
JP2008103179A (ja) * 2006-10-19 2008-05-01 Totoku Electric Co Ltd 高速差動伝送ケーブル
WO2010035762A1 (ja) * 2008-09-24 2010-04-01 住友電気工業株式会社 同軸ケーブルおよび多心同軸ケーブル
WO2010064579A1 (ja) * 2008-12-02 2010-06-10 株式会社フジクラ 伝送ケーブル及びそれを用いた信号伝送ケーブル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021106131A (ja) * 2019-12-26 2021-07-26 住友電気工業株式会社 電気絶縁ケーブル
JP7443766B2 (ja) 2019-12-26 2024-03-06 住友電気工業株式会社 電気絶縁ケーブル

Also Published As

Publication number Publication date
JP6164844B2 (ja) 2017-07-19
CN105788748A (zh) 2016-07-20
CN102687208A (zh) 2012-09-19
JPWO2012074002A1 (ja) 2014-05-19
KR101852205B1 (ko) 2018-04-25
KR20140001728A (ko) 2014-01-07
CN105788748B (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
JP5421565B2 (ja) 同軸ケーブル
JP5062200B2 (ja) 同軸ケーブルの製造方法
JP6164844B2 (ja) 絶縁電線、同軸ケーブル及び多心ケーブル
US6677534B2 (en) Double-laterally-wound two-core parallel extrafine coaxial cable
US20130341065A1 (en) Multi-core cable
WO2010123105A1 (ja) 電線及びその製造方法
JP5900275B2 (ja) 多対差動信号伝送用ケーブル
JP5825270B2 (ja) 多芯ケーブル
JP2008034341A (ja) 耐屈曲性信号伝送ケーブルおよびデータ伝送方法
JP2007280762A (ja) ノンハロゲン同軸ケーブル及びこれを用いた多芯ケーブル
JP2004014337A (ja) 極細多心同軸ケーブル
JP5464080B2 (ja) 同軸ケーブルおよび多心同軸ケーブル
CN202205509U (zh) 多芯电缆
JP7265324B2 (ja) 絶縁電線、ケーブル
KR100613954B1 (ko) 동축케이블, 다심케이블 및 그것을 사용한 전자기기
JP4262555B2 (ja) 細径同軸ケーブルおよびその製造方法
JP5381281B2 (ja) 電線の製造方法
JP5326775B2 (ja) 同軸電線及びその製造方法
EP3905281A1 (en) Communication cable and wire harness
JP6939324B2 (ja) 同軸電線および多心ケーブル
JP2023067142A (ja) 通信用電線
JP2023067141A (ja) 通信用電線
JP2006032073A (ja) 細径同軸ケーブル
JP2001076551A (ja) シールドケーブル
JP2020024868A (ja) 同軸ケーブル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004413.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127010929

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012520603

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844253

Country of ref document: EP

Kind code of ref document: A1