[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012060374A1 - 電子輸送材料およびこれを用いた有機電界発光素子 - Google Patents

電子輸送材料およびこれを用いた有機電界発光素子 Download PDF

Info

Publication number
WO2012060374A1
WO2012060374A1 PCT/JP2011/075179 JP2011075179W WO2012060374A1 WO 2012060374 A1 WO2012060374 A1 WO 2012060374A1 JP 2011075179 W JP2011075179 W JP 2011075179W WO 2012060374 A1 WO2012060374 A1 WO 2012060374A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
represented
formula
formulas
carbons
Prior art date
Application number
PCT/JP2011/075179
Other languages
English (en)
French (fr)
Inventor
洋平 小野
馬場 大輔
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to KR1020137011642A priority Critical patent/KR101835020B1/ko
Priority to JP2012541874A priority patent/JP5737294B2/ja
Priority to CN201180052069.3A priority patent/CN103189355B/zh
Publication of WO2012060374A1 publication Critical patent/WO2012060374A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Definitions

  • the present invention relates to a novel electron transport material having a pyridyl group, an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device), and the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-123983 discloses that an organic EL device can be driven at a low voltage by using a 2,2′-bipyridyl compound, which is a phenanthroline derivative or an analog thereof, as an electron transport material. It is stated that it can be done.
  • Non-patent document 1 Non-patent document 1 (Proceedings of the 10 th International Workshop on Inorganic and Organic Electroluminescence), Patent Document 2 (JP 2002-158093 JP ) And Patent Document 3 (International Publication No. 2007/86552 pamphlet).
  • the compound described in Non-Patent Document 1 has a low Tg and is not practical.
  • the compounds described in Patent Documents 2 and 3 can drive an organic EL device at a relatively low voltage, longer life is desired for practical use.
  • the present invention has been made in view of the problems of such conventional techniques. It is an object of the present invention to provide an electron transport material that contributes to extending the lifetime of an organic EL element. Furthermore, this invention makes it a subject to provide the organic EL element using this electron transport material.
  • naphthyl or phenyl of 9- (2-naphthyl) -10-phenylanthracene has pyridyl, bipyridyl, or pyridylphenyl, and a benzene ring or naphthalene ring.
  • a compound in which at least one of hydrogen of the pyridine ring is substituted with alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms for an electron transport layer of an organic EL device and can be driven with a long lifetime It was found that an element was obtained, and the present invention was completed based on this finding. Said subject is solved by each item shown below.
  • At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth. Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescent element according to the above [16] or [17].
  • the compound of the present invention is stable even when a voltage is applied in a thin film state and has a feature of high charge transport capability.
  • the compound of the present invention is suitable as a charge transport material in an organic EL device.
  • an organic EL device having a long lifetime can be obtained.
  • a high-performance display device such as full-color display can be created.
  • the first invention of the present application is a compound having pyridyl, bipyridyl or pyridylphenyl represented by the following formula (1).
  • a feature of the present compound is that at least one of hydrogen in the benzene ring, naphthalene ring and pyridine ring in the formula (1) is replaced with alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms. It is.
  • the pyridyl represented by the formula (2) is specifically 2-pyridyl, 3-pyridyl or 4-pyridyl.
  • Bipyridyl represented by the formula (3) is specifically 2,2′-bipyridin-5-yl, 2,2′-bipyridin-6-yl, 2,2′-bipyridin-4-yl, 2, 3'-bipyridin-5-yl, 2,3'-bipyridin-6-yl, 2,3'-bipyridin-4-yl, 2,4'-bipyridin-5-yl, 2,4'-bipyridine-6 -Yl, 2,4'-bipyridin-4-yl, 3,2'-bipyridin-6-yl, 3,2'-bipyridin-5-yl, 3,3'-bipyridin-6-yl, 3,3 '-Bipyridin-5-yl, 3,4'-bipyridin-6-yl, 3,4'-bipyridin-5-yl, 4,2'-bipyridin-3-yl, 4,3'-bipyridine-3- Or 4,4′-b
  • pyridylphenyl represented by the formula (4) include 4- (2-pyridyl) phenyl, 4- (3-pyridyl) phenyl, 4- (4-pyridyl) phenyl, and 3- (2-pyridyl). It is phenyl, 3- (3-pyridyl) phenyl, 3- (4-pyridyl) phenyl, 2- (2-pyridyl) phenyl, 2- (3-pyridyl) phenyl, or 2- (4-pyridyl) phenyl.
  • Py may be linked at any position in phenyl or 2-naphthyl, but 4-position and 3-position are preferable in phenyl, and 6-position and 7-position in 2-naphthyl are preferable.
  • the 3-position of phenyl is preferable in that the conjugated system cannot be expanded and the LUMO level is not lowered.
  • the 6-position of 2-naphthyl is particularly preferable in view of easy availability of raw materials.
  • alkyl having 1 to 6 carbon atoms substituted on the benzene ring, naphthalene ring and pyridine ring in the formula (1) are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n- Pentyl, isopentyl, 2,2-dimethylpropyl, n-hexyl, and isohexyl.
  • preferred alkyls are methyl, ethyl, isopropyl, and t-butyl, with methyl and t-butyl being more preferred.
  • cycloalkyl having 3 to 6 carbon atoms examples include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. Of these, cycloalkyl is preferably cyclohexyl in view of availability of raw materials and ease of synthesis.
  • the compound represented by the formula (1) is specifically a compound represented by the following formula (1-1) or (1-2).
  • the definition of Py in the formulas (1-1) and (1-2) is the same as described above.
  • the compound represented by the formula (1) is a compound represented by any one of the following formulas (1-3) to (1-6).
  • the definition of Py in the formulas (1-3) to (1-6) is the same as described above.
  • the compound represented by the formula (1) is a compound represented by any one of the following formulas (1-7) to (1-10).
  • Py and R are as defined above.
  • p is an integer of 1 to 5, preferably an integer of 1 to 2, and more preferably 1.
  • the position of phenyl substituted by R is not limited, but the 3-position or 4-position is preferred.
  • Q in the formulas (1-9) and (1-10) is an integer of 1 to 5, preferably an integer of 1 to 2, and more preferably 1.
  • limiting in the position of the naphthyl which R substitutes It is preferable that it is 6th-position or 7th-position.
  • the compound represented by the formula (1) is more specifically a compound represented by any of the following formulas (1-11) to (1-14).
  • the definition of Py 1 is the same as described above.
  • the definition of R in the above formula (2 ′), (3 ′) or (4 ′) is the same as described above.
  • s is an integer of 1 to 4, preferably 1 or 2, and more preferably 1.
  • the position of pyridyl substituted by R is not particularly limited.
  • the compound represented by the formula (1) is more specifically a compound represented by the following formula (1-15) or (1-16).
  • the definitions of Py and R in the formulas (1-15) and (1-16) are the same as described above.
  • t is an integer of 1 to 4, preferably 1 or 2, and more preferably 1.
  • phenylene substituted by R there is no restriction on the position of phenylene substituted by R, but considering the ease of synthesis, in the case of 1,4-phenylene, the 3-position is preferred based on the carbon linked to anthracene. In the case of 1,3-phenylene, the 4-position is preferred based on the carbon linked to the anthracene.
  • the compounds represented by the formula (1) are roughly classified into compounds represented by the formulas (1-7) to (1-16).
  • preferred structures are formulas (1-7), formulas (1-9) to (1-11), and formulas (1-13) to (1-16), and more preferred structures are formulas (1- 7).
  • Specific examples of the compound represented by the formula (1-7) are represented by the following formulas (1-7-1) to (1-7-144). Of these, preferred compounds are those represented by formulas (1-7-1) to (1-7-6), formulas (1-7-10) to (1-7-12), formulas (1-7-16) to (1-7-30), formulas (1-7-34) to (1-7-36), formulas (1-7-40) to (1-7-48), formula (1-7-73) To (1-7-78), formulas (1-7-82) to (1-7-84), formulas (1-7-88) to (1-7-102), formulas (1-7-106) ) To (1-7-108) and formulas (1-7-112) to (1-7-120).
  • Specific examples of the compound represented by the formula (1-15) are represented by the following formulas (1-15-1) to (1-15-48). Of these, preferred compounds are those represented by formulas (1-15-10) to (1-15-12), (1-15-16) to (1-15-18), and formulas (1-15-34) to ( 1-15-36) and (1-15-40) to (1-15-42).
  • the coupling of the benzene ring and the anthracene ring is not limited to the above method, and for example, the Negishi coupling reaction using a zinc complex, the Suzuki coupling reaction using a boronic acid or a boronic acid ester, and the like are also possible. These conventional methods can be appropriately used depending on the case.
  • N-bromosuccinimide is used to bromine the 10-position of 9-phenylanthracene in which phenyl is substituted with an alkyl group (cycloalkyl group).
  • a commonly used brominating agent other than N-bromosuccinimide can be used.
  • reaction 3 the anthracene ring and the naphthalene ring are coupled.
  • 2-bromo-6-methoxynaphthalene is converted into a Grignard reagent according to a conventional method, and this is reacted with the 9-bromoanthracene derivative synthesized in Reaction 2 in the presence of a catalyst to give 9- (6-methoxynaphthalen-2-yl)-
  • a 10-phenylanthracene derivative is synthesized.
  • coupling of the benzene ring and the anthracene ring is not limited to the above method.
  • Negishi coupling reaction using a zinc complex Suzuki coupling reaction using a boronic acid or a boronic acid ester, and the like.
  • Reaction 6 a pyridine ring is bonded to the naphthalene ring by Negishi coupling reaction.
  • 4-bromopyridine is used as a Grignard reagent.
  • isopropylmagnesium chloride is used in an amount of 2 moles.
  • a raw material which does not need to use hydrochloride may be used in an equimolar amount.
  • a zinc chloride tetramethylethylenediamine complex is added to a Grignard reagent to synthesize a zinc chloride complex of pyridine, and this is reacted with the triflate obtained in the reaction 5 in the presence of a palladium catalyst to synthesize a target product.
  • Reaction 6 in addition to the Negishi coupling reaction, a commonly used coupling reaction such as a Suzuki coupling reaction can be appropriately used.
  • a commonly used coupling reaction such as a Suzuki coupling reaction
  • an optimal boronic acid or boronic acid ester may be prepared according to the target product.
  • the target product can be obtained using a boronic acid ester as shown in the following reaction 7. .
  • the palladium catalyst used in the coupling reaction include Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0), tris (di) Benzylideneacetone) dipalladium (0) chloroform complex, bis (dibenzylideneacetone) palladium (0), bis (tri-t-butylphosphino) palladium (0), or (1,1′-bis (diphenylphosphino) ferrocene ) Dichloropalladium (II).
  • a phosphine compound may be added to these palladium compounds in some cases.
  • the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis (di-t-butylphos Fino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1′-binaphthy
  • the base used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphoric acid
  • Examples include tripotassium or potassium fluoride.
  • solvent used in the reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4- Examples include dioxane, methanol, ethanol, cyclopentyl methyl ether, and isopropyl alcohol. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
  • a pyridine derivative substituted with an alkyl group or a cycloalkyl group can be synthesized as shown in Reactions 8 to 9 below.
  • a method for synthesizing a pyridine moiety in the compounds represented by formula (1-11-1), formula (1-12-111), formula (1-13-111) and formula (1-14-11) is illustrated.
  • pyridine derivatives substituted with various alkyl groups or cycloalkyl groups can be synthesized by appropriately changing the raw materials.
  • the compound of the present invention When the compound of the present invention is used for an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied. These represent that the compound of the present invention is excellent as an electron injecting material or an electron transporting material for an electroluminescent device.
  • the electron injection layer mentioned here is a layer for receiving electrons from the cathode to the organic layer
  • the electron transport layer is a layer for transporting the injected electrons to the light emitting layer.
  • the electron transport layer can also serve as the electron injection layer.
  • the material used for each layer is referred to as an electron injection material and an electron transport material.
  • 2nd invention of this application is an organic EL element containing the compound represented by Formula (1) of this invention in an electron injection layer or an electron carrying layer.
  • the organic EL element of the present invention has a low driving voltage and high durability during driving.
  • the structure of the organic EL device of the present invention has various modes, it is basically a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode.
  • Examples of the specific configuration of the device are (1) anode / hole transport layer / light emitting layer / electron transport layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, (3) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, etc.
  • the compound of the present invention Since the compound of the present invention has high electron injecting property and electron transporting property, it can be used for an electron injecting layer or an electron transporting layer alone or in combination with other materials.
  • the organic EL device of the present invention emits blue, green, red and white light by combining a hole injection layer, a hole transport layer, a light emitting layer, etc. using other materials with the electron transport material of the present invention. It can also be obtained.
  • the light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is daylight fluorescence as described in the Polymer Society of Japan, Polymer Functional Materials Series “Optical Functional Materials”, Joint Publication (1991), P236. Materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents and other luminescent materials, supervised by Koji Koji, “Organic EL materials and displays” published by CMMC (2001) P155-156 And a light emitting material of a triplet material as described in P170 to 172.
  • the compounds that can be used as the light emitting material or the light emitting dopant are polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer light emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, borane derivatives, oxazines. Derivatives, compounds having a spiro ring, oxadiazole derivatives, fluorene derivatives and the like.
  • Examples of the polycyclic aromatic compound are anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, chrysene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like.
  • heteroaromatic compounds are oxadiazole derivatives having a dialkylamino group or diarylamino group, pyrazoloquinoline derivatives, pyridine derivatives, pyran derivatives, phenanthroline derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, quinacridone derivatives Etc.
  • organometallic complexes examples include zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc., quinolinol derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, A complex with a benzimidazole derivative, a pyrrole derivative, a pyridine derivative, a phenanthroline derivative, or the like.
  • dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazoles And pigments such as derivatives.
  • the polymer light-emitting material are polyparaphenyl vinylene derivatives, polythiophene derivatives, polyvinyl carbazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like.
  • styryl derivatives are amine-containing styryl derivatives, styrylarylene derivatives, and the like.
  • electron transport materials used in the organic EL device of the present invention are arbitrarily selected from compounds that can be used as electron transport compounds in photoconductive materials and compounds that can be used in the electron transport layer and electron injection layer of organic EL devices. Can be used.
  • electron transport materials include quinolinol metal complexes, 2,2′-bipyridyl derivatives, phenanthroline derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazole derivatives, thiadiazole derivatives, oxine derivatives.
  • a compound conventionally used as a charge transport material for holes or a hole injection of an organic EL device is used in a photoconductive material.
  • Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof are carbazole derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
  • Each layer constituting the organic EL element of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coat method, or a cast method.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm.
  • a vapor deposition method as a method of thinning the light emitting material from the viewpoint that a homogeneous film can be easily obtained and pinholes are hardly generated.
  • the vapor deposition conditions differ depending on the type of the light emitting material of the present invention.
  • Deposition conditions generally include boat heating temperature 50 to 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature ⁇ 150 to + 300 ° C., film thickness 5 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • the organic EL device of the present invention is preferably supported by a substrate in any of the structures described above.
  • the substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used.
  • the anode material metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.
  • Cathode materials can use metals, alloys, electrically conductive compounds, and mixtures thereof with work functions of less than 4 eV. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy include aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, and magnesium / indium. In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more.
  • the sheet resistance as the electrode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the properties of the electrode material, it is usually set in the range of 10 nm to 1 ⁇ m, preferably 10 to 400 nm.
  • Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
  • an organic material comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport material of the present invention / cathode is used.
  • a method for creating an EL element will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a light emitting layer thin film is formed thereon.
  • the electron transport material of this invention is vacuum-deposited, a thin film is formed, and it is set as an electron carrying layer.
  • the target organic EL element is obtained by forming the thin film which consists of a substance for cathodes by a vapor deposition method, and making it a cathode.
  • the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
  • the anode When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The organic EL element also emits light when an alternating voltage is applied.
  • the alternating current waveform to be applied may be arbitrary.
  • reaction solution was cooled to room temperature, washed with water to dissolve the salt, and a solid was collected by suction filtration.
  • reaction solution was cooled to room temperature, washed with water to dissolve the salt, and a solid was collected by suction filtration.
  • the structure of the compound was confirmed by NMR measurement.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the obtained eluate was passed through an activated carbon short column to remove colored components. Crystals deposited while the filtrate was distilled off under reduced pressure were collected, and the compound 2-methyl-4- (6- (10-phenylanthracen-9-yl) represented by (1-11-1) was collected. ) Naphthalen-2-yl) pyridine (0.7 g) was obtained. The structure of the compound was confirmed by NMR measurement.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the obtained eluate was passed through an activated carbon short column to remove colored components. Crystals precipitated while the filtrate was distilled off under reduced pressure were collected, recrystallized from toluene, and compound 3-methyl-4- (6- (10 -Phenylanthracen-9-yl) naphthalen-2-yl) pyridine (0.5 g) was obtained.
  • the structure of the compound was confirmed by NMR measurement.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the solid obtained by evaporating the solvent under reduced pressure was recrystallized from toluene, and the compound 2-methyl-5- (6- (10-phenylanthracen-9-yl) naphthalene represented by (1-11-3) -2-yl) pyridine (1.2 g) was obtained.
  • the structure of the compound was confirmed by NMR measurement.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • the obtained eluate was passed through an activated carbon short column to remove colored components.
  • the solvent was distilled off under reduced pressure, and the resulting solid was recrystallized from toluene to give the compound 4-methyl-3- (6- (10-phenylanthracen-9-yl) naphthalene represented by (1-1-11-5) -2-yl) pyridine (0.6 g) was obtained.
  • reaction solution was cooled to room temperature, and water and toluene were added for liquid separation.
  • reaction solution was cooled to room temperature, and the precipitated solid was collected by suction filtration.
  • the obtained solid was purified by silica gel column chromatography (developing solution: toluene). Subsequently, the obtained eluate was passed through an activated carbon short column to remove colored components. The solvent was distilled off under reduced pressure, ethyl acetate was added for reprecipitation, and the compound represented by (1-1-11-8) 5-methyl-2- (6- (10-phenylanthracen-9-yl) naphthalene-2- Yl) pyridine (1.5 g) was obtained. The structure of the compound was confirmed by NMR measurement.
  • Table 1 below shows the material configuration of each layer in the devices according to Examples 1 to 4 and Comparative Examples 1 and 2 that were manufactured.
  • HI is N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine
  • NPD means N 4 , N 4 ′ -di (naphthalen-1-yl) -N 4 , N 4 ′ -diphenyl- [1,1′-biphenyl] -4,4′-diamine
  • Compound (A) is 9-phenyl-10- (4-phenylnaphthalen-1-yl) anthracene
  • compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexaphenyl-7H-benzo [C] Fluorene-5,9-diamine
  • Compound (C) is 9,10-di ([2,2′-bipyridin] -5-yl) anthracene
  • a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and a compound (A) Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (B), molybdenum vapor deposition boat containing compound (1-7-74), molybdenum vapor deposition boat containing Liq, magnesium A molybdenum boat and a tungsten evaporation boat containing silver were installed.
  • a commercially available vapor deposition apparatus manufactured by Showa Vacuum Co., Ltd.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5.
  • the evaporation boat containing the compound (1-7-74) was heated and evaporated to a film thickness of 15 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
  • the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and the cathode was formed so that the deposition rate was 0.1 to 10 nm / second, to obtain an organic electroluminescent device.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-7-74) was replaced with the compound (1-7-26).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 6.36 V, and the time for maintaining the luminance of 90% or more of the initial value was 151 hours.
  • Example 1 An organic EL device was obtained by the method according to Example 1 except that the compound (1-7-96) was changed to the compound (C). A constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . As a result, the drive test start voltage was 5.06 V, and the time for maintaining the luminance of 90% or more of the initial value was 6 hours.
  • Example 2 An organic EL device was obtained in the same manner as in Example 1 except that the compound (1-7-96) was changed to the compound (D). A constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . As a result, the drive test start voltage was 5.05 V, and the time for maintaining the luminance of 90% or more of the initial value was 10 hours.
  • Table 3 below shows the material structure of each layer in the devices according to Examples 5 to 20 and Comparative Examples 3 to 5.
  • HT represents N-([1,1′-biphenyl] -4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl)- 9H-fluoren-2-amine
  • compound (E) is 9- (4- (naphthalen-1-yl) phenyl) -10-phenylanthracene
  • compound (F) is 4,4 ′-((7,7-diphenyl) -7H-benzo [c] fluorene-5,9-diyl) bis ((phenyl) amino)) dibenzonitrile
  • compound (G) is 4 ′-(4- (10- (naphthalen-2-yl) anthracene-9 -Yl) phenyl) -2,2 ': 6', 2 "-terpyridine
  • compound (H) is 3- (6- (10-phenylanthracen-9-yl) naphthalen-2-yl)
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing HT, and a compound (E) Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (F), molybdenum vapor deposition boat containing compound (1-11-1), molybdenum vapor deposition boat containing Liq, magnesium A molybdenum boat and a tungsten evaporation boat containing silver were installed.
  • a commercially available vapor deposition apparatus manufactured by Showa Vacuum Co., Ltd.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing HI was heated to deposit to a film thickness of 40 nm to form a hole injection layer, and then HT entered.
  • the vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed.
  • the vapor deposition boat containing the compound (E) and the vapor deposition boat containing the compound (F) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (E) to compound (F) was approximately 95 to 5.
  • the vapor deposition boat containing the compound (1-11-1) and the vapor deposition boat containing Liq were heated at the same time so as to have a film thickness of 25 nm, thereby forming an electron transport layer.
  • the deposition rate was adjusted so that the weight ratio of the compound (1-11-1) and Liq was about 1: 1.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
  • the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and the cathode was formed so that the deposition rate was 0.1 to 10 nm / second, to obtain an organic electroluminescent device.
  • An organic EL device was obtained by the method according to Example 5 except that the compound (1-11-1) was changed to the compound (1-11-2).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 4.12 V, and the time for maintaining the luminance of 90% or more of the initial value was 85 hours.
  • An organic EL device was obtained by the method according to Example 5 except that the compound (1-11-1) was changed to the compound (1-11-3).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the drive test start voltage was 3.78 V, and the time for maintaining the luminance of 90% or more of the initial value was 97 hours.
  • An organic EL device was obtained by the method according to Example 5 except that the compound (1-11-1) was changed to the compound (1-11-4).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 3.95 V, and the time for maintaining the luminance of 90% or more of the initial value was 83 hours.
  • An organic EL device was obtained by the method according to Example 5 except that the compound (1-11-1) was changed to the compound (1-14-2).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.61 V, and the time for maintaining the luminance of 90% or more of the initial value was 76 hours.
  • An organic EL device was obtained by the method according to Example 5 except that the compound (1-11-1) was changed to the compound (1-14-3).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 3.85 V, and the time for maintaining the luminance of 90% or more of the initial value was 141 hours.
  • An organic EL device was obtained by the method according to Example 5 except that the compound (1-11-1) was replaced with the compound (1-1-14-16).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 4.25 V, and the time for maintaining the luminance of 90% or more of the initial value was 70 hours.
  • Example 3 An organic EL device was obtained in the same manner as in Example 5 except that the compound (1-11-1) was changed to the compound (G). A constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . As a result, the drive test start voltage was 5.36 V, and the time for maintaining the luminance of 90% or more of the initial value was 2 hours.
  • Example 4 An organic EL device was obtained in the same manner as in Example 5 except that the compound (1-11-1) was changed to the compound (H). A constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . As a result, the driving test start voltage was 4.12 V, and the time for maintaining the luminance of 90% or more of the initial value was 26 hours.
  • Example 5 An organic EL device was obtained by the method according to Example 5 except that the compound (1-11-1) was changed to the compound (I).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 4.15 V
  • the time for maintaining the luminance of 90% or more of the initial value was 30 hours.
  • an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本発明の式(1)で表される化合物は、有機EL素子の電子輸送材料として有用であり、この電子輸送材料を用いることによって有機EL素子の長寿命化等に寄与する。 式(1)において、Pyは独立して式(2)、(3)または(4)で表される基であり; mおよびnは0または1であるが、m+n=1であり;そして、式(1)中のベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられている。

Description

電子輸送材料およびこれを用いた有機電界発光素子
本発明は、ピリジル基を有する新規な電子輸送材料、この電子輸送材料を用いた有機電界発光素子(以下、有機EL素子または単に素子と略記することがある。)等に関する。
近年、次世代のフルカラーフラットパネルディスプレイとして有機EL素子が注目され、活発な研究がなされている。有機EL素子の実用化を促進するには、素子の駆動電圧の低減、長寿命化が不可欠な要素であり、これらを達成するために新しい電子輸送材料の開発がなされてきた。特に、青色素子の駆動電圧低下、長寿命化は必須である。特許文献1(特開2003-123983号公報)には、フェナントロリン誘導体またはその類似体である2,2’-ビピリジル化合物を電子輸送材料に使用することで有機EL素子を低電圧で駆動させることができると記載されている。しかしながらこの文献の実施例に報告されている素子の特性(駆動電圧、発光効率など)は比較例を基準にした相対値のみであり、実用的な値と判断できる実測値は記載されていない。他に、2,2’-ビピリジル化合物を電子輸送材料に使用した例が、非特許文献1(Proceedings of the 10th International Workshop on Inorganic and Organic Electroluminescence)、特許文献2(特開2002-158093号公報)および特許文献3(国際公開2007/86552パンフレット)に開示されている。非特許文献1に記載されている化合物はTgが低く、実用的ではなかった。特許文献2および3に記載の化合物は比較的低電圧で有機EL素子を駆動させることができるが、実用化に向けてはより長寿命化が望まれている。
特開2003-123983号公報 特開2002-158093号公報 国際公開2007/86552パンフレット
Proceedings of the 10th International Workshop on Inorganic and Organic Electroluminescence (2000)
本発明は、このような従来技術が有する課題に鑑みてなされたものである。本発明は、有機EL素子の長寿命化等に寄与する電子輸送材料を提供することを課題とする。さらに本発明は、この電子輸送材料を用いた有機EL素子を提供することを課題とする。
本発明者らは鋭意検討した結果、9-(2-ナフチル)-10-フェニルアントラセンのナフチルまたはフェニルのどちらか一方に、ピリジル、ビピリジル、またはピリジルフェニルを有し、かつ、ベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つが炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられた化合物を有機EL素子の電子輸送層に用いることにより、長寿命で駆動できる有機EL素子が得られることを見出し、この知見に基づいて本発明を完成した。
上記の課題は以下に示す各項によって解決される。
[1] 下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000024
式(1)において、
Pyは独立して、式(2)、(3)または(4)で表される基であり;
Figure JPOXMLDOC01-appb-C000025
mおよびnは0または1であるが、m+n=1であり;そして、
式(1)中のベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられている。
[2] 下記式(1-1)または(1-2)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000026
式(1-1)および(1-2)において、
Pyは式(2)、(3)または(4)で表される基であり;
Figure JPOXMLDOC01-appb-C000027
そして、式(1-1)および(1-2)中のベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられている。
[3] 下記式(1-3)、(1-4)、(1-5)、または(1-6)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000028
式(1-3)~(1-6)において、
Pyは式(2)、(3)または(4)で表される基であり;
Figure JPOXMLDOC01-appb-C000029
そして、式(1-3)~(1-6)中のベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられている。
[4] 下記式(1-7)または(1-8)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000030
式(1-7)および(1-8)において、
Pyは式(2)、(3)または(4)で表される基であり;
Figure JPOXMLDOC01-appb-C000031
Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、
pは1~5の整数である。
[5] 下記式(1-9)または(1-10)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000032
式(1-9)および(1-10)において、
Pyは式(2)、(3)または(4)で表される基であり;
Figure JPOXMLDOC01-appb-C000033
Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、
qは1~5の整数である。
[6] 下記式(1-11)または(1-12)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000034
式(1-11)および(1-12)において、
Pyは式(2’)、(3’)または(4’)で表される基であり;
Figure JPOXMLDOC01-appb-C000035
式(2’)、(3’)および(4’)において、Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、sは1~4の整数である。
[7] 下記式(1-13)または(1-14)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000036
式(1-13)および(1-14)において、
Pyは式(2’)、(3’)または(4’)で表される基であり;
Figure JPOXMLDOC01-appb-C000037
式(2’)、(3’)または(4’)において、Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、sは1~4の整数である。
[8] 下記式(1-15)または(1-16)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000038
式(1-15)および(1-16)において、
Pyは式(2)、(3)または(4)で表される基であり;
Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、tは1~4の整数である。
[9] 下記式(1-7-26)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000040
[10] 下記式(1-7-74)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000041
[11] 下記式(1-7-98)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000042
[12] 下記式(1-7-96)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000043
[13] 下記式(1-14-14)で表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000044
[14] 下記式(1-11-1)、(1-11-2)、(1-11-3)、(1-11-4)、(1-11-5)、(1-11-6)、(1-11-8)、(1-11-18)、(1-11-39)、(1-14-2)、(1-14-3)、(1-14-11)、(1-14-12)、(1-14-13)、(1-14-15)、(1-14-16)、(1-14-17)、(1-14-18)、および(1-14-20)のいずれか1つで表される、前記[1]項に記載の化合物。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
[15] 前記[1]~[14]のいずれか1項に記載の化合物を含有する電子輸送材料。
[16] 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、前記[15]項に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。
[17] 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、前記[16]項に記載する有機電界発光素子。
[18] 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、前記[16]または[17]項に記載の有機電界発光素子。
本発明の化合物は薄膜状態で電圧を印加しても安定であり、また、電荷の輸送能力が高いという特徴を持つ。本発明の化合物は有機EL素子における電荷輸送材料として適している。本発明の化合物を有機EL素子の電子輸送層および/または電子注入層に用いることで、長い寿命を有する有機EL素子を得ることができる。本発明の有機EL素子を用いることにより、フルカラー表示等の高性能のディスプレイ装置を作成できる。
以下、本発明をさらに詳細に説明する。なお、本明細書においては、例えば「式(1-7-26)で表される化合物」のことを「化合物(1-7-26)」と称することがある。「式(1-7-74)で表される化合物」のことを「化合物(1-7-74)」と称することがある。その他の式記号、式番号についても同様に扱われる。
<化合物の説明>
本願の第1の発明は下記の式(1)で表される、ピリジル、ビピリジルまたはピリジルフェニルを有する化合物である。
Figure JPOXMLDOC01-appb-C000047
式(1)において、Pyは独立して、式(2)、(3)または(4)で表される基であり、mおよびnは0または1であるが、m+n=1である。そして、式(1)中のベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つが炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていることが、本化合物の特徴である。
式(2)で表されるピリジルは、具体的には2-ピリジル、3-ピリジルまたは4-ピリジルである。
式(3)で表されるビピリジルは、具体的には2,2’-ビピリジン-5-イル、2,2’-ビピリジン-6-イル、2,2’-ビピリジン-4-イル、2,3’-ビピリジン-5-イル、2,3’-ビピリジン-6-イル、2,3’-ビピリジン-4-イル、2,4’-ビピリジン-5-イル、2,4’-ビピリジン-6-イル、2,4’-ビピリジン-4-イル、3,2’-ビピリジン-6-イル、3,2’-ビピリジン-5-イル、3,3’-ビピリジン-6-イル、3,3’-ビピリジン-5-イル、3,4’-ビピリジン-6-イル、3,4’-ビピリジン-5-イル、4,2’-ビピリジン-3-イル、4,3’-ビピリジン-3-イル、または4,4’-ビピリジン-3-イルである。
式(4)で表されるピリジルフェニルは、具体的には4-(2-ピリジル)フェニル、4-(3-ピリジル)フェニル、4-(4-ピリジル)フェニル、3-(2-ピリジル)フェニル、3-(3-ピリジル)フェニル、3-(4-ピリジル)フェニル、2-(2-ピリジル)フェニル、2-(3-ピリジル)フェニル、または2-(4-ピリジル)フェニルである。
式(1)において、Pyが連結するのはフェニルにおいても、2-ナフチルにおいても任意の位置でよいが、フェニルにおいては4位および3位が、2-ナフチルにおいては6位および7位が好ましい。特にフェニルの3位は共役系を拡げないという点と、LUMOの準位を下げないという点において好ましい。また、2-ナフチルの6位は原料が入手しやすいという点で特に好ましい。
式(1)中のベンゼン環、ナフタレン環、およびピリジン環に置換する炭素数1~6のアルキルの例はメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、イソペンチル、2,2-ジメチルプロピル、n-ヘキシル、およびイソヘキシルである。この中で好ましいアルキルはメチル、エチル、イソプロピル、およびt-ブチルであり、メチルおよびt-ブチルがより好ましい。炭素数3~6のシクロアルキルの例はシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルである。この中で好ましいシクロアルキルは原料の入手、合成の容易さを考慮するとシクロヘキシルである。
式(1)で表される化合物は、具体的には下記の式(1-1)または(1-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000048
式(1-1)および(1-2)におけるPyの定義は前記と同じである。
式(1)で表される化合物は、より具体的には下記の式(1-3)~(1-6)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000049
式(1-3)~(1-6)におけるPyの定義は前記と同じである。
式(1)で表される化合物は、さらに具体的には下記の式(1-7)~(1-10)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
式(1-7)~(1-10)におけるPyおよびRの定義は前記と同じである。式(1-7)および(1-8)におけるpは1~5の整数であり、1~2の整数であることが好ましく、1であることがより好ましい。Rが置換するフェニルの位置に制約はないが、3位または4位であることが好ましい。式(1-9)および(1-10)におけるqは1~5の整数であり、1~2の整数であることが好ましく、1であることがより好ましい。Rが置換するナフチルの位置に制約はないが、6位または7位であることが好ましい。
また、式(1)で表される化合物は、さらに具体的には下記の式(1-11)~(1-14)のいずれかで表される化合物である。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
式(1-11)~(1-14)におけるPyの定義は前記と同じである。前記の式(2’)、(3’)または(4’)におけるRの定義は前記と同じである。sは1~4の整数であり、1または2であることが好ましく、1であることがより好ましい。Rが置換するピリジルの位置には特に制約はない。
また、式(1)で表される化合物は、さらに具体的には下記の式(1-15)または(1-16)で表される化合物である。
Figure JPOXMLDOC01-appb-C000055
式(1-15)および(1-16)におけるPyおよびRの定義は前記と同じである。tは1~4の整数であり、1または2であることが好ましく、1であることがより好ましい。Rが置換するフェニレンの位置に制約はないが、合成の容易さを考慮すると、1,4-フェニレンの場合はアントラセンに連結している炭素を基準にして3位が好ましい。1,3-フェニレンの場合は、アントラセンに連結している炭素を基準にして4位が好ましい。
上記のように式(1)で表される化合物は、具体的には式(1-7)~(1-16)で表される化合物に大別される。これらの中で好ましい構造は式(1-7)、式(1-9)~(1-11)および式(1-13)~(1-16)であり、より好ましい構造は式(1-7)である。
<化合物の具体例>
本発明の化合物の具体例は以下に列記する式によって示されるが、本発明はこれらの具体的な構造の開示によって限定されることはない。
<式(1-7)で表される化合物の具体例>
式(1-7)で表される化合物の具体例は下記の式(1-7-1)~(1-7-144)で示される。これらの中で好ましい化合物は式(1-7-1)~(1-7-6)、式(1-7-10)~(1-7-12)、式(1-7-16)~(1-7-30)、式(1-7-34)~(1-7-36)、式(1-7-40)~(1-7-48)、式(1-7-73)~(1-7-78)、式(1-7-82)~(1-7-84)、式(1-7-88)~(1-7-102)、式(1-7-106)~(1-7-108)および式(1-7-112)~(1-7-120)である。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
<式(1-8)で表される化合物の具体例>
式(1-8)で表される化合物の具体例は下記の式(1-8-1)~(1-8-105)で示される。
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
<式(1-9)で表される化合物の具体例>
式(1-9)で表される化合物の具体例は下記の式(1-9-1)~(1-9-48)で示される。これらの中で好ましい化合物は式(1-9-10)~(1-9-12)、(1-9-16)~(1-9-18)、式(1-9-34)~(1-9-36)および式(1-9-40)~(1-9-42)である。
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
<式(1-10)で表される化合物の具体例>
式(1-10)で表される化合物の具体例は下記の式(1-10-1)~(1-10-48)で示される。これらの中で好ましい化合物は式(1-10-1)~(1-10-6)、(1-10-10)~(1-10-12)および(1-10-16)~(1-10-21)である。
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
<式(1-11)で表される化合物の具体例>
式(1-11)で表される化合物の具体例は下記の式(1-11-1)~(1-11-60)で示される。これらの中で好ましい化合物は式(1-11-3)~(1-11-10)、(1-11-25)~(1-11-28)および(1-11-51)~(1-11-60)である。
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
<式(1-12)で表される化合物の具体例>
式(1-12)で表される化合物の具体例は下記の式(1-12-1)~(1-12-60)で示される。
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
<式(1-13)で表される化合物の具体例>
式(1-13)で表される化合物の具体例は下記の式(1-13-1)~(1-13-60)で示される。これらの中で好ましい化合物は式(1-13-21)~(1-13-28)および式(1-13-31)~(1-31-40)である。
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
<式(1-14)で表される化合物の具体例>
式(1-14)で表される化合物の具体例は下記の式(1-14-1)~(1-14-60)で示される。これらの中で好ましい化合物は式(1-14-1)~(1-14-18)である。
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
<式(1-15)で表される化合物の具体例>
式(1-15)で表される化合物の具体例は下記の式(1-15-1)~(1-15-48)で示される。これらの中で好ましい化合物は式(1-15-10)~(1-15-12)、(1-15-16)~(1-15-18)、式(1-15-34)~(1-15-36)および(1-15-40)~(1-15-42)である。
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
<式(1-16)で表される化合物の具体例>
式(1-16)で表される化合物の具体例は下記の式(1-16-1)~(1-16-24)で示される。これらの中で好ましい化合物は式(1-16-1)~(1-16-5)である。
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
<化合物の合成法>
以下に本発明の化合物の合成法について説明する。本発明の化合物は、汎用される既知の合成法を適宜組み合わせて利用することにより合成することができる。
<式(1-7-1)~式(1-7-144)で表される化合物の合成法>
Figure JPOXMLDOC01-appb-C000118
先ず、反応1でフェニルがアルキル基(シクロアルキル基)で置換された9-フェニルアントラセンを合成する。アルキル置換されたブロモベンゼンをTHF中で金属マグネシウムと反応させグリニャール試薬とし、これに触媒の存在下9-ブロモアントラセンを反応させてフェニルがアルキル基(シクロアルキル基)で置換された9-フェニルアントラセンとする。ベンゼン環とアントラセン環をカップリングするには上記の方法に限らず、例えば亜鉛錯体を用いた根岸カップリング反応、ボロン酸またはボロン酸エステルを用いた鈴木カップリング反応などによっても可能であり、状況に応じてこれらの常法が適宜使用できる。
Figure JPOXMLDOC01-appb-C000119
反応2ではN-ブロモスクシンイミドを用いてフェニルがアルキル基(シクロアルキル基)で置換された9-フェニルアントラセンの10位を臭素化する。ここでもN-ブロモスクシンイミド以外の常用される臭素化剤を使用することができる。
Figure JPOXMLDOC01-appb-C000120
反応3ではアントラセン環とナフタレン環をカップリングする。先ず2-ブロモ-6-メトキシナフタレンを常法に従ってグリニャール試薬とし、これに触媒の存在下反応2で合成した9-ブロモアントラセン誘導体を反応させて9-(6-メトキシナフタレン-2-イル)-10-フェニルアントラセン誘導体を合成する。反応1と同様に、ベンゼン環とアントラセン環をカップリングするには上記の方法に限らず、例えば亜鉛錯体を用いた根岸カップリング反応、ボロン酸またはボロン酸エステルを用いた鈴木カップリング反応などによっても可能であり、状況に応じてこれらの常法が適宜使用できる。
Figure JPOXMLDOC01-appb-C000121
反応4では9-(6-メトキシナフタレン-2-イル)-10-フェニルアントラセン誘導体のメトキシ基を脱メチルしてナフトールにする。ここでも脱メチル化反応に常用される試薬が適宜使用できる。
Figure JPOXMLDOC01-appb-C000122
反応5でナフトールの-OHをトリフルオロメチルスルホネート(トリフラート)にする。反応式中の-OTfは-OSOCFの略である。
Figure JPOXMLDOC01-appb-C000123
反応6で根岸カップリング反応によってナフタレン環にピリジン環を結合させる。先ず4-ブロモピリジンをグリニャール試薬とする。ここでは原料に安定な4-ブロモピリジン塩酸塩を用いているためイソプロピルマグネシウムクロリドを2倍モル使用しているが、塩酸塩を用いる必要がない原料については等モルで差し支えない。グリニャール試薬に塩化亜鉛テトラメチルエチレンジアミン錯体を加えてピリジンの塩化亜鉛錯体を合成し、これにパラジウム触媒の存在下反応5で得たトリフラートを反応させて目的物を合成する。
反応6では根岸カップリング反応以外にも、鈴木カップリング反応など常用されるカップリング反応を適宜用いることができる。鈴木カップリング反応を用いた場合は目的物に応じて最適なボロン酸またはボロン酸エステルを用意すればよく、例えば下記の反応7に示されるようなボロン酸エステルを用い目的物を得ることができる。
Figure JPOXMLDOC01-appb-C000124
カップリング反応で用いられるパラジウム触媒の具体例としては、Pd(PPh、PdCl(PPh、Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリt-ブチルホスフィノ)パラジウム(0)、または(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)があげられる。
また、反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例としては、トリ(t-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、または2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニルがあげられる。
反応で用いられる塩基の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、リン酸三カリウム、またはフッ化カリウムがあげられる。
また、反応で用いられる溶媒の具体例としては、ベンゼン、トルエン、キシレン、1,2,4-トリメチルベンゼン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、シクロペンチルメチルエーテルまたはイソプロピルアルコールがあげられる。これらの溶媒は適宜選択でき、単独で用いてもよく、混合溶媒として用いてもよい。
<式(1-8-1)~式(1-8-105)で表される化合物の合成法>
前記の反応3において、2-ブロモ-6-メトキシナフタレンの代わりに2-ブロモ-7-メトキシナフタレンを使用すれば、同様に合成することができる。
<式(1-9-1)~式(1-9-48)および式(1-10-1)~式(1-10-48)で表される化合物の合成法>
前記の反応1~3において用いた原料の代わりに、それらのベンゼン骨格とナフタレン骨格を置き換えた原料を用いることにより、前記と同様に合成することができる。すなわち、2-ブロモアントラセンのグリニャール試薬と9-ブロモアントラセンをカップリングし、反応2に準じてアントラセンの10位を臭素化し、次いでこの臭化物をパラメトキシブロモベンゼンまたはメタメトキシブロモベンゼンのグリニャール試薬と反応させて9-(4-または3-メトキシフェニル)-10-(2-ナフチル)アントラセンを得る。この化合物についてメトキシ基の脱メチル化反応以降の手順は前記に準じて行えばよい。さらに、具体的に例示した化合物以外についても、目的物に合わせて原料を適宜用いることにより、上記の合成法に準じて合成することができるのは言うまでもない。
<式(1-11-1)~式(1-11-60)、式(1-12-1)~式(1-12-60)、式(1-13-1)~式(1-13-60)および式(1-14-1)~式(1-10-60)で表される化合物の合成法>
前記の反応6または7において用いた原料のピリジン誘導体代わりに、アルキル基またはシクロアルキル基で置換されたピリジン誘導体を原料に用いることにより、前記と同様に合成できる。
アルキル基またはシクロアルキル基で置換されたピリジン誘導体は下記反応8~9に示したように合成することができる。ここでは式(1-11-11)、式(1-12-11)、式(1-13-11)および式(1-14-11)で表される化合物におけるピリジン部位の合成法を例示したが、原料を適宜変更することで、種々のアルキル基またはシクロアルキル基で置換されたピリジン誘導体を合成することができる。
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
<式(1-15-1)~式(1-15-48)および式(1-16-1)~式(1-16-24)で表される化合物の合成法>
上述の「式(1-9-1)~式(1-9-48)および式(1-10-1)~式(1-10-48)で表される化合物の合成法」におけるフェニル基の導入工程時に、アルキル基またはシクロアルキル基で置換されたフェニル基を用いればよい。例えば下記の反応10で表せるような合成法を用いることができる。
Figure JPOXMLDOC01-appb-C000127
式中のRの定義は前記と同じである。0は1~4の整数である。Rは目的とする化合物に応じてベンゼン環の任意の位置に、所望の数だけ連結してよい。
本発明の化合物を、有機EL素子における、電子注入層または電子輸送層に用いた場合、電界印加時において安定である。これらは、本発明の化合物が、電界発光型素子の電子注入材料、または電子輸送材料として優れていることを表す。ここで言う電子注入層とは陰極から有機層へ電子を受け取る層であり、電子輸送層とは注入された電子を発光層へ輸送するための層である。また、電子輸送層が電子注入層を兼ねることも可能である。それぞれの層に用いる材料を、電子注入材料および電子輸送材料という。
<有機EL素子の説明>
本願の第2の発明は、電子注入層、または電子輸送層に、本発明の式(1)で表される化合物を含有する有機EL素子である。本発明の有機EL素子は、駆動電圧が低く、駆動時の耐久性が高い。
本発明の有機EL素子の構造は各種の態様があるが、基本的には陽極と陰極との間に少なくとも正孔輸送層、発光層、電子輸送層を挟持した多層構造である。素子の具体的な構成の例は、(1)陽極/正孔輸送層/発光層/電子輸送層/陰極、(2)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極、(3)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、等である。
本発明の化合物は、高い電子注入性および電子輸送性を持っているので、単体又は他の材料と併用して電子注入層、または電子輸送層に使用できる。本発明の有機EL素子は、本発明の電子輸送材料に他の材料を用いた正孔注入層、正孔輸送層、発光層、などを組み合わせることで、青色、緑色、赤色や白色の発光を得ることもできる。
本発明の有機EL素子に使用できる発光材料または発光性ドーパントは、高分子学会編、高分子機能材料シリーズ“光機能材料”、共同出版(1991)、P236に記載されているような昼光蛍光材料、蛍光増白剤、レーザー色素、有機シンチレータ、各種の蛍光分析試薬等の発光材料、城戸淳二監修、“有機EL材料とディスプレイ”シーエムシー社出版(2001)P155~156に記載されているようなドーパント材料、P170~172に記載されているような3重項材料の発光材料等である。
発光材料または発光性ドーパントとして使用できる化合物は、多環芳香族化合物、ヘテロ芳香族化合物、有機金属錯体、色素、高分子系発光材料、スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ボラン誘導体、オキサジン誘導体、スピロ環を有する化合物、オキサジアゾール誘導体、フルオレン誘導体等である。多環芳香族化合物の例は、アントラセン誘導体、フェナントレン誘導体、ナフタセン誘導体、ピレン誘導体、クリセン誘導体、ペリレン誘導体、コロネン誘導体、ルブレン誘導体等である。ヘテロ芳香族化合物の例は、ジアルキルアミノ基またはジアリールアミノ基を有するオキサジアゾール誘導体、ピラゾロキノリン誘導体、ピリジン誘導体、ピラン誘導体、フェナントロリン誘導体、シロール誘導体、トリフェニルアミノ基を有するチオフェン誘導体、キナクリドン誘導体等である。有機金属錯体の例は、亜鉛、アルミニウム、ベリリウム、ユーロピウム、テルビウム、ジスプロシウム、イリジウム、白金、オスミウム、金、等と、キノリノール誘導体、ベンゾキサゾ-ル誘導体、ベンゾチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、ピロール誘導体、ピリジン誘導体、フェナントロリン誘導体等との錯体である。色素の例は、キサンテン誘導体、ポリメチン誘導体、ポルフィリン誘導体、クマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、オキソベンズアントラセン誘導体、カルボスチリル誘導体、ペリレン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体等の色素が挙げられる。高分子系発光材料の例は、ポリパラフェニルビニレン誘導体、ポリチオフェン誘導体、ポリビニルカルバゾ-ル誘導体、ポリシラン誘導体、ポリフルオレン誘導体、ポリパラフェニレン誘導体等である。スチリル誘導体の例は、アミン含有スチリル誘導体、スチリルアリーレン誘導体等である。
本発明の有機EL素子に使用される他の電子輸送材料は、光導電材料において電子伝達化合物として使用できる化合物、有機EL素子の電子輸送層および電子注入層に使用できる化合物の中から任意に選択して用いることができる。
このような電子輸送材料の具体例は、キノリノール系金属錯体、2,2’-ビピリジル誘導体、フェナントロリン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体、チオフェン誘導体、トリアゾール誘導体、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パ-フルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体、イミダゾピリジン誘導体、ボラン誘導体等である。
本発明の有機EL素子に使用される正孔注入材料および正孔輸送材料については、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物や、有機EL素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾ-ル誘導体、トリアリールアミン誘導体、フタロシアニン誘導体等である。
本発明の有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、スピンコート法またはキャスト法等の方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。なお、発光材料を薄膜化する方法は、均質な膜が得やすく、かつピンホールが生成しにくい等の点から蒸着法を採用するのが好ましい。蒸着法を用いて薄膜化する場合、その蒸着条件は、本発明の発光材料の種類により異なる。蒸着条件は一般的に、ボート加熱温度50~400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚5nm~5μmの範囲で適宜設定することが好ましい。
本発明の有機EL素子は、前記のいずれの構造であっても、基板に支持されていることが好ましい。基板は機械的強度、熱安定性および透明性を有するものであればよく、ガラス、透明プラスチックフィルム等を用いることができる。陽極物質は4eVより大きな仕事関数を有する金属、合金、電気伝導性化合物およびこれらの混合物を用いることができる。その具体例は、Au等の金属、CuI、インジウムチンオキシド(以下、ITOと略記する)、SnO、ZnO等である。
陰極物質は4eVより小さな仕事関数の金属、合金、電気伝導性化合物、およびこれらの混合物を使用できる。その具体例は、アルミニウム、カルシウム、マグネシウム、リチウム、マグネシウム合金、アルミニウム合金等である。合金の具体例は、アルミニウム/弗化リチウム、アルミニウム/リチウム、マグネシウム/銀、マグネシウム/インジウム等である。有機EL素子の発光を効率よく取り出すために、電極の少なくとも一方は光透過率を10%以上にすることが望ましい。電極としてのシート抵抗は数百Ω/□以下にすることが好ましい。なお、膜厚は電極材料の性質にもよるが、通常10nm~1μm、好ましくは10~400nmの範囲に設定される。このような電極は、上述の電極物質を使用して、蒸着やスパッタリング等の方法で薄膜を形成させることにより作製することができる。
次に、本発明の発光材料を用いて有機EL素子を作成する方法の一例として、前述の陽極/正孔注入層/正孔輸送層/発光層/本発明の電子輸送材料/陰極からなる有機EL素子の作成法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法により形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上に発光層の薄膜を形成させる。この発光層の上に本発明の電子輸送材料を真空蒸着し、薄膜を形成させ、電子輸送層とする。さらに陰極用物質からなる薄膜を蒸着法により形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明又は半透明の電極側(陽極又は陰極、および両方)より発光が観測できる。また、この有機EL素子は、交流電圧を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
以下に、本発明を実施例に基づいて更に詳しく説明する。まず、実施例で用いた化合物の合成例について、以下に説明する。
[合成例1]化合物(1-7-74)の合成
<9-(4-t-ブチルフェニル)アントラセンの合成>
窒素雰囲気下、9-ブロモアントラセン31g、4-t-ブチルフェニルボロン酸25g、Pd(PPh1.3g、リン酸カリウム51gおよび1,2,4-トリメチルベンゼン150mlの入ったフラスコを還流温度で21時間撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。溶媒を減圧留去することで析出する固体を吸引濾過にて採取し、メタノール次いで酢酸エチルで洗浄し、9-(4-t-ブチルフェニル)アントラセン28gを得た。
<9-ブロモ-10-(4-t-ブチルフェニル)アントラセンの合成>
9-(4-t-ブチルフェニル)アントラセン27g、ヨウ素0.1gおよびTHF300mlの入ったフラスコに、窒素雰囲気下、N-ブロモスクシンイミド19gを加えた。室温で18時間攪拌し、チオ硫酸ナトリウム水溶液を加え、反応を停止した。この溶液を分液ロートに移し、クロロホルムで抽出した。溶媒を減圧留去することで析出する固体を吸引濾過にて採取し、ついでクロロベンゼンから再結晶し、9-ブロモ-10-(4-t-ブチルフェニル)アントラセン29gを得た。
<3-(6-ブロモナフタレン-2-イル)ピリジンの合成>
3-ブロモピリジン10gおよびTHF60mlを入れたフラスコを氷浴で冷却し、窒素雰囲気下、2MイソプロピルマグネシウムクロリドTHF溶液35mlを攪拌しながら滴下した。滴下終了後一旦室温まで昇温した後、氷水で冷却して、塩化亜鉛テトラメチルエチレンジアミン錯体17gを攪拌しながら加えた。その後室温で1時間攪拌した後、6-ブロモナフタレン-2-イル トリフロオロメタンスホネート18gおよびPdCl(dppp)1.6gを加え、還流温度で3時間撹拌した。反応液を室温まで冷却した後、触媒の金属イオンを除去するため、目的の化合物に対しておよそ3倍モルに相当するエチレンジアミン四酢酸・四ナトリウム塩二水和物を適量の水に溶解した溶液(以後、EDTA・4Na水溶液と略記する。)およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=7/3(容積比))で精製し、3-(6-ブロモナフタレン-2-イル)ピリジン12gを得た。
<化合物(1-7-74)の合成>
3-(6-ブロモナフタレン-2-イル)ピリジン6.2g、ビスピナコレートジボロン5.9g、ビス(ジベンジリデンアセトン)パラジウム(0)0.4g、トリシクロヘキシルホスフィン0.5g、酢酸カリウム3.9gおよびジメトキシエタン50mlを入れたフラスコを窒素雰囲気下、還流温度で4時間撹拌した。この溶液に9-ブロモ-10-(4-t-ブチル)フェニル)アントラセン8.6g、リン酸カリウム9.3gおよび1,2,4-トリメチルベンゼン50mlを加え、ジメトキシエタンをディーンスターク管を用い、常温で加熱留去した。t-ブチルアルコール5ml、水5ml、ビス(ジベンジリデンアセトン)パラジウム(0)0.4gおよびトリシクロヘキシルホスフィン0.5gを加え、還流温度で更に5時間撹拌した。反応液を室温まで冷却し、水洗して塩を溶解させた後、吸引濾過にて固体を採取した。得られた固体をメタノール、次いで酢酸エチルで洗浄した後、シリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=9/1(容積比))で精製して、化合物(1-7-74):3-(6-(10-(4-t-ブチル)フェニル)アントラセン-9-イル)ナフタレン-2-イル)ピリジン1.0gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.07(m,1H), 8.68(dd,1H), 8.23(m,1H), 8.15(d,1H), 8.08(m,1H), 8.03(m,2H), 7.83(dd,1H), 7.78(d,2H), 7.72(d,2H), 7.68(dd,1H), 7.63(d,2H), 7.42-7.48(m,3H), 7.30-7.38(m,4H), 1.49(s,9H).
[合成例2]化合物(1-7-26)の合成
<9-(3-トリル)アントラセンの合成>
窒素雰囲気下、9-ブロモアントラセン36g、3-メチルフェニルボロン酸21g、Pd(PPh1.4g、リン酸カリウム59gおよび1,2,4-トリメチルベンゼン150mlの入ったフラスコを還流温度で2.5時間撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。得られたトルエン溶液をシリカゲルショートカラムにて精製した後、溶媒を減圧留去した。得られたオイルにヘプタンを加え、析出する固体を吸引濾過にて採取し、9-(3-トリル)アントラセン31gを得た。
<9-ブロモ-10-(3-トリル)アントラセンの合成>
9-(3-トリル)アントラセン30gおよびTHF200mlの入ったフラスコに、窒素雰囲気下氷浴で冷却し、N-ブロモスクシンイミド20gおよびヨウ素0.1gを加えた。室温で15時間攪拌し、チオ硫酸ナトリウム水溶液を加え、反応を停止した。この溶液を分液ロートに移し、トルエンで抽出した後、シリカゲルショートカラムを行なった。溶媒を減圧留去した、得られた溶液にヘプタンを加えて析出した固体を吸引濾過にて採取し、9-ブロモ-10-(3-トリル)アントラセン30gを得た。
<4,4,5,5-テトラメチル-2-(10-(3-トリル)アントラセン-9-イル)-1,3,2-ジオキサボロランの合成>
9-ブロモ-10-(3-トリル)アントラセン30g、ビスピナコレートジボロン26g、ビス(ジベンジリデンアセトン)パラジウム(0)1.5g、トリシクロヘキシルホスフィン1.4g、酢酸カリウム15g、炭酸カリウム12gおよびシクロペンチルメチルエーテル100mlを入れたフラスコを窒素雰囲気下、還流温度で16時間撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液し、得られたトルエン溶液をシリカゲルショートカラムで精製した。溶媒を減圧留去し、得られたオイルにヘプタンを加えて析出した固体を吸引濾過にて採取し、4,4,5,5-テトラメチル-2-(10-(3-トリル)アントラセン-9-イル)-1,3,2-ジオキサボロラン24gを得た。
<化合物(1-7-26)の合成>
4,4,5,5-テトラメチル-2-(10-(3-トリル)アントラセン-9-イル)-1,3,2-ジオキサボロラン12g、3-(6-ブロモナフタレン-2-イル)ピリジン10g、Pd(PPh1.0g、リン酸カリウム13g、1,2,4-トリメチルベンゼン50ml、t-ブチルアルコール10mlおよび水10mlの入ったフラスコを還流温度で1時間撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液し、溶媒を減圧留去した。得られた粗体をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=20/1(容積比))にて精製した後、トルエン/ヘプタン混合溶液から再結晶し、化合物(1-7-26):3-(6-(10-(3-トリル)アントラセン-9-イル)ナフタレン-2-イル)ピリジン7.1gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.06(m,1H), 8.67(dd,1H), 8.22(m,1H), 8.14(d,1H), 8.06(m,1H), 8.02(m,2H), 7.81(m,1H), 7.75(d,2H), 7.72(d,2H), 7.66(dd,1H), 7.50(t,1H), 7.45(m,1H), 7.27-7.39(m,7H), 2.50(s,3H).
[合成例3]化合物(1-7-98)の合成
<9-(3-t-ブチルフェニル)アントラセンの合成>
窒素雰囲気下、9-ブロモアントラセン23g、2-(3-t-ブチルフェニル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン25g、Pd(PPh3.1g、リン酸カリウム37g、1,2,4-トリメチルベンゼン250ml、t-ブチルアルコール50mlおよび水30mlの入ったフラスコを還流温度で21時間撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。得られたトルエン溶液をシリカゲルショートカラムで精製し、溶媒を減圧留去、メタノールを加えることにより析出する固体を吸引濾過にて採取し、9-(3-t-ブチルフェニル)アントラセン24gを得た。
<9-ブロモ-10-(3-t-ブチルフェニル)アントラセンの合成>
9-(3-t-ブチルフェニル)アントラセン23g、ヨウ素0.1gおよびTHF100mlの入ったフラスコに、窒素雰囲気下、N-ブロモスクシンイミド13gを加えた。室温で1時間攪拌し、チオ硫酸ナトリウム水溶液を加え、反応を停止した。この溶液を分液ロートに移し、トルエンで抽出した。得られたトルエン溶液をシリカゲルショートカラムで精製し、溶媒を減圧留去した後、トルエン/メタノール再沈殿を行い、9-ブロモ-10-(3-t-ブチルフェニル)アントラセン23gを得た。
<化合物(1-7-98)の合成>
3-(6-ブロモナフタレン-2-イル)ピリジン6.2g、ビスピナコレートジボロン5.9g、ビス(ジベンジリデンアセトン)パラジウム(0)0.4g、トリシクロヘキシルホスフィン0.5g、酢酸カリウム3.9gおよびジメトキシエタン50mlを入れたフラスコを窒素雰囲気下、還流温度で4時間撹拌した。この溶液に9-ブロモ-10-(3-t-ブチルフェニル)アントラセン8.6g、リン酸カリウム9.3gおよび1,2,4-トリメチルベンゼン50mlを加え、ジメトキシエタンをディーンスターク管を用い、常温で加熱留去した。t-ブチルアルコール5ml、水5ml、ビス(ジベンジリデンアセトン)パラジウム(0)0.4gおよびトリシクロヘキシルホスフィン0.5gを加え、還流温度で更に2時間撹拌した。反応液を室温まで冷却し、水洗して塩を溶解させた後、吸引濾過にて固体を採取した。得られた固体をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=9/1(容積比))で精製した後、トルエンから再結晶し、化合物(1-7-98):3-(6-(10-(3-t-ブチルフェニル)アントラセン-9-イル)ナフタレン-2-イル)ピリジン1.5gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.07(m,1H), 8.68(dd,1H), 8.23(s,1H), 8.16(d,1H), 8.08(m,1H), 8.03(m,2H), 7.83(m,1H), 7.75(d,2H), 7.72(d,2H), 7.68(m,1H), 7.52-7.61(m,3H), 7.46(m,1H), 7.30-7.38(m,5H), 1.41(s,9H).
[合成例4]化合物(1-7-96)の合成
<2-(10-(4-t-ブチルフェニル)アントラセン-9-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランの合成>
9-ブロモ-10-(4-t-ブチルフェニル)アントラセン7.8g、ビスピナコラートジボロン6.1g、ビス(ジベンジリデンアセトン)パラジウム(0)0.3g、トリシクロヘキシルホスフィン0.3g、酢酸カリウム3.9g、炭酸カリウム2.8g、およびシクロペンチルメチルエーテル40mlを入れたフラスコを窒素雰囲気下、還流温度で6時間半撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液し、溶媒を減圧留去した。得られたオイルにヘプタンを加えて析出した固体を吸引濾過にて採取し、2-(10-(4-t-ブチルフェニル)アントラセン-9-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン6.9gを得た。
<4-(3-(6-ブロモナフタレン-2-イル)フェニル)ピリジンの合成>
窒素雰囲気下、4-(3-ブロモフェニル)ピリジン9.8gおよびTHF20mlの入ったフラスコをドライアイス/メタノール浴にて-70℃以下に冷却し、2.6Mノルマルブチルリチウム17mlをゆっくり滴下した。滴下終了後、同温度にて0.5時間撹拌し、塩化亜鉛テトラメチルエチレンジアミン錯体12gを加えた。その後、室温で0.5時間撹拌した後、6-ブロモナフタレン-2-イル トリフロオロメタンスホネート15g、ビス(ジベンジリデンアセトン)パラジウム(0)および1,2-ビス(ジフェニルホスフィノ)プロパン0.5gを加え、還流温度で1時間撹拌した。反応終了後、EDTA・4Na水溶液、酢酸エチルを加え分液し、溶媒を減圧留去した後、活性アルミナカラムクロマトグラフィー(トルエン/酢酸エチル=9/1(容積比))で精製した。ついでメタノールで洗浄し、酢酸エチル/メタノール混合溶媒から再結晶し、4-(3-(6-ブロモナフタレン-2-イル)フェニル)ピリジン5.3gを得た。
<化合物(1-7-96)の合成>
2-(10-(4-t-ブチルフェニル)アントラセン-9-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン6.1g、4-(3-(6-ブロモナフタレン-2-イル)フェニル)ピリジン5.0g、Pd(PPh0.5g、リン酸カリウム3.0g、1,2,4-トリメチルベンゼン25ml、t-ブチルアルコール5mlおよび水5mlの入ったフラスコを還流温度で6時間撹拌した。反応液を室温まで冷却した後、EDTA・Na水およびトルエンを加え分液し、溶媒を減圧留去した。得られた粗体を活性アルミナカラムクロマトグラフィー(トルエン/酢酸エチル=9/1(容積比))にて精製した。溶媒を減圧留去して得られた固体を酢酸エチルで洗浄した後、トルエンから再結晶し、化合物(1-7-96):4(3-(6-(10-(4-t-ブチルフェニル)アントラセン-9-イル)ナフタレン-2-イル)フェニル)ピリジン3.3gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):8.73(dd,2H),8.27(m,1H),8.15(d,1H),8.03(m,3H),7.99(m,2H),7.78(d,2H),7.73(d,2H),7.61~7.70 (m,7H),7.44(m,2H),7.30~7.38(m,4H)、1.49(s,9H).
[合成例5]化合物(1-14-14)の合成
<9-(3-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセンの合成>
フラスコに1-ブロモ-3-エトキシベンゼン72.4g、(10-(ナフタレン-2-イル)アントラセン-9-イル)ボロン酸104.5g、Pd(PPh10.4g、リン酸カリウム127.4g、1,2,4-トリメチルベンゼン600ml、2-プロパノール120ml、および水120mlを入れて、窒素雰囲気下、還流温度で6時間撹拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノールで洗浄して、9-(3-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセン82gを得た。
<3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノールの合成>
フラスコに9-(3-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセン82gおよびピリジン塩酸塩446.0gを入れて、窒素雰囲気下、還流温度で8時間撹拌した。反応液を室温まで冷却した後、水を加えて析出した固体を吸引濾過にて採取し、メタノール、次いでトルエンで洗浄して、3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノール76.0gを得た。
<3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネートの合成>
3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノール(76.0g)およびピリジン(1L)の入ったフラスコを氷浴で冷却し、ここに窒素雰囲気下、トリフルオロメタンスルホン酸無水物65.0gを滴下した。滴下終了後、さらに室温で15時間撹拌し、水を加えて析出した固体を吸引濾過にて採取した。この固体をメタノールで洗浄して、3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネート90.3gを得た。
<4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロランの合成>
フラスコに3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネート90.3g、ビスピナコラートジボロン52.1g、ビス(ジベンジリデンアセトン)パラジウム(0)7.4g、トリシクロヘキシルホスフィン7.2g、酢酸カリウム33.6g、炭酸カリウム23.6g、およびアニソール500mlを入れて、還流温度で5時間撹拌した。反応液を室温まで冷却した後、セライトを敷いた桐山ロートで吸引濾過して不溶物を除去し、濾液をEDTA・4Na水で洗浄した。濾液の溶媒を減圧留去して得た固体をヘプタンで洗浄し、4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(52.0g)を得た。
<化合物(1-14-14)の合成>
フラスコに4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン8.6g、特開2009-124114に記載されている方法で合成した5’-ブロモ-3-メチル-2,2’-ビピリジン5.1g、Pd(PPh0.6g、リン酸カリウム7.2g、1,2,4-トリメチルベンゼン25ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で2.5時間攪拌した。反応液を室温まで冷却した後、水を加えた後、液中の固体を吸引濾過にて採取し、メタノールで洗浄した。この固体をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=9/1(容積比))にて精製し、ついで活性炭カラムクロマトグラフィーにて更に精製した。溶液を濃縮し、クロロベンゼンから再結晶して、化合物(1-14-14):3-メチル-5’-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’-ビピリジン2.3gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.05(m,1H), 8.55(d,1H), 8.11(dd,1H), 8.09(d,1H), 8.02(m,1H), 8.00(s,1H), 7.73-7.95(m,9H), 7.60(m,5H), 7.30-7.40(m,4H), 7.23(m,1H), 2.56(s,3H).
[合成例6]化合物(1-11-1)の合成
<2-メチル-4-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.0g)、4-ブロモ-2-メチルピリジン(0.8g)、Pd(PPh(0.3g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン(20ml)、t-ブチルアルコール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で7時間半撹拌した。加熱終了後、反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)で精製した。ついで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。得られた濾液を減圧留去している途中で析出した結晶を採取し、(1-11-1)で表される化合物2-メチル-4-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン(0.7g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.66(d,1H), 8.30(s,1H), 8.17(d,1H), 8.03(m,2H), 7.87(d,1H), 7.72-7.78(m,4H), 7.70(d,1H), 7.65(m,2H), 7.58(m,2H), 7.56(m,3H), 7.31-7.39(m,4H), 2.73(s,3H).
[合成例7]化合物(1-11-2)の合成
<3-メチル-4-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.0g)、4-ブロモ-3-メチルピリジン塩酸塩(1.0g)、Pd(PPh(0.3g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン(20ml)、t-ブチルアルコール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で24時間半撹拌した。加熱終了後、反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)で精製した。ついで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。得られた濾液を減圧留去している途中で析出した結晶を採取し、更にトルエンから再結晶し、(1-11-2)で表される化合物3-メチル-4-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン(0.5g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.62(s,1H), 8.58(d,1H), 8.13(d,1H), 8.06(s,1H), 8.02(d,1H), 7.99(s,1H), 7.75(d,4H), 7.70(dd,1H), 7.65(t,2H), 7.59(t,2H), 7.53(m,2H), 7.33-7.39(m,5H), 2.44(s,3H).
[合成例8]化合物(1-11-3)の合成
<2-メチル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-2-メチルピリジン(0.8g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン(20ml)、t-ブタノール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で5時間撹拌した。加熱終了後、反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)で精製した。溶媒を減圧留去して得られた固体をトルエンから再結晶し、(1-11-3)で表される化合物2-メチル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン(1.2g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.95(m,1H), 8.20(s,1H), 8.14(d,1H), 8.01(m,2H), 7.96(dd,1H), 7.81(dd,1H), 7.74(m,4H), 7.67(dd,1H), 7.63(t,2H), 7.57(t,1H), 7.52(m,2H), 7.30-7.37(m,5H), 2.67(s,3H).
[合成例9]化合物(1-11-4)の合成
<3-メチル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.0g)、3-ブロモ-5-メチルピリジン(0.8g)、Pd(PPh(0.3g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン(20ml)、t-ブタノール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で7時間半撹拌した。加熱終了後、反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)で精製した。ついで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、ヘプタンを加え再沈殿させ、(1-11-4)で表される化合物3-メチル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン(1.3g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.87(m,1H), 8.51(m,1H), 8.22(s,1H), 8.15(d,1H), 8.03(m,2H), 7.89(m,1H), 7.83(dd,1H), 7.73(m,4H), 7.67(dd,1H), 7.63(m,2H), 7.57(t,1H), 7.52(m,2H), 7.30-7.37(m,4H), 2.49(s,3H).
[合成例10]化合物(1-11-5)の合成
<4-メチル-3-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.0g)、3-ブロモ-4-メチルピリジン塩酸塩(1.0g)、Pd(PPh(0.3g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン(20ml)、t-ブチルアルコール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で7時間撹拌した。加熱終了後、反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)で精製した。ついで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、得られた固体をトルエンから再結晶し、(1-11-5)で表される化合物4-メチル-3-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン(0.6g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.64(s,1H), 8.55(d,1H), 8.14(d,1H), 8.06(s,1H), 8.02(d,1H), 7.99(s,1H), 7.76(m,4H), 7.70(dd,1H), 7.63(m,2H), 7.59(t,2H), 7.53(m,2H), 7.32-7.39(m,4H), 7.30(d,1H), 2.45(s,3H).
[合成例11]化合物(1-11-6)の合成
<2-メチル-3-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.0g)、3-ブロモ-2-メチルピリジン(0.8g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン(20ml)、t-ブチルアルコール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で4時間撹拌した。加熱終了後、反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)で精製した。ついで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、ヘプタンを加え再沈殿させ、(1-11-6)で表される化合物2-メチル-3-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン(1.1g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.60(m,1H), 8.11(d,1H), 8.05(s,1H), 8.00(d,1H), 7.96(s,1H), 7.74(m,4H), 7.69(m,2H), 7.63(m,2H), 7.57(m,2H), 7.52(m,2H), 7.30-7.37(m,4H), 7.28(m,1H), 2.66(s,3H).
[合成例12]化合物(1-11-8)の合成
<5-メチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.5g)、3-ブロモ-2-メチルピリジン(1.0g)、Pd(PPh(0.15g)、リン酸カリウム(2.1g)、1,2,4-トリメチルベンゼン(20ml)、t-ブチルアルコール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で18時間撹拌した。加熱終了後、反応液を室温まで冷却し、析出した固体を吸引濾過にて採取した。得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン)で精製した。ついで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、酢酸エチルを加え再沈殿させ、(1-11-8)で表される化合物5-メチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン(1.5g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.63(m,2H), 8.23(dd,1H), 8.16(d,1H), 8.00(m,2H), 7.86(d,1H), 7.73(m,4H), 7.60-7.67(m,4H), 7.56(t,1H), 7.51(m,2H), 7.30-7.36(m,4H), 2.44(s,3H).
[合成例13]化合物(1-11-39)の合成
<5-ブロモ-2’-メチル-3,4’-ビピリジンの合成>
4-ブロモ-2-メチルピリジン(13.8g)およびトルエン(150ml)の入ったフラスコをアセトン/ドライアイス浴で冷却した。この溶液に1.6Mのノルマルブチルリチウムヘキサン溶液(55ml)を滴下した。滴下終了後、アセトン/ドライアイス浴で冷却しながら1時間撹拌し、塩化亜鉛テトラメチルエチレンジアミン(29.3g)およびTHF(45ml)を加え、アセトン/ドライアイス浴を外し昇温した。室温まで昇温した後、トルエン(20ml)、3,5-ジブロモピリジン(19.0g)およびPd(PPh(2.8g)を加え、還流温度で2時間撹拌した。反応液を室温まで冷却した後、触媒の金属イオンを除去するため、目的の化合物に対しておよそ3倍モルに相当するエチレンジアミン四酢酸・四ナトリウム塩二水和物を適量の水に溶解した溶液(以後、EDTA・4Na水溶液と略記する。)およびトルエンを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル)で精製した。この際、「有機化学実験のてびき(1)-物質取扱法と分離精製法-」株式会社化学同人出版、94頁に記載の方法を参考にして、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。ついで溶媒を減圧留去し、得られた固体をヘプタンから再結晶し、5-ブロモ-2’-メチル-3,4’-ビピリジン(5.3g)を得た。
<2’-メチル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)3,4’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.5g)、5-ブロモ-2’-メチル-3,4’-ビピリジン(1.1g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン(20ml)、t-ブチルアルコール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で3時間撹拌した。加熱終了後、反応液を室温まで冷却し、水およびトルエンを加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=1/1)で精製した。溶媒を減圧留去し、得られた固体をトルエンから再結晶し、(1-11-39)で表される化合物2’-メチル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)3,4’-ビピリジン(0.3g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.11(m,1H), 8.92(m,1H), 8.65(d,1H), 8.28(m,2H), 8.17(d,1H), 8.05(m,2H), 7.87(d,1H), 7.68-7.75(m,5H), 7.61(m,2H), 7.56(t,1H), 7.51(m,3H), 7.45(m,1H), 7.30-7.37(m,4H), 2.70(s,3H).
[合成例14]化合物(1-14-2)の合成
<3-メチル-4-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.5g)、4-ブロモ-3-メチルピリジン塩酸塩(1.3g)、Pd(PPh(0.35g)、リン酸カリウム(3.2g)、1,2,4-トリメチルベンゼン20ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で11時間半攪拌した。反応液を室温まで冷却した後、トルエンおよび水を加え、分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)にて精製した。ついで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、ヘプタンを加え再沈殿させ、(1-14-2)で表される化合物3-メチル-4-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)ピリジン(1.4g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.53(s,1H), 8.50(d,1H), 8.08(dd,1H), 8.02(m,1H), 7.97(d,1H), 7.92(m,1H), 7.70-7.78(m,5H), 7.48-7.63(m,6H), 7.35-7.39(m,2H), 7.29-7.34(m,3H), 2.41(s,3H).
[合成例15]化合物(1-14-3)の合成
<2-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)ピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.5g)、5-ブロモ-2-メチルピリジン(1.0g)、Pd(PPh(0.35g)、リン酸カリウム(3.2g)、1,2,4-トリメチルベンゼン20ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で8時間半攪拌した。反応液を室温まで冷却した後、析出した固体を吸引濾過にて採取した。得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)にて精製した。ついで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、得られた固体を酢酸エチルで洗浄し、(1-14-3)で表される化合物2-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)ピリジン(1.5g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.45(m,1H), 8.08(d,1H), 8.03(m,1H), 7.99(s,1H), 7.93(m,1H), 7.87(dd,1H), 7.70-7.81(m,7H), 7.57-7.63(m,3H), 7.54(m,1H), 7.30-7.40(m,4H), 7.23(d,1H), 2.61(s,3H).
[合成例16]化合物(1-14-11)の合成
<5-ブロモ-6’-メチル-2,2’-ビピリジンの合成>
2-ブロモ-6-メチルピリジン(5.2g)およびシクロペンチルメチルエーテル(30ml)の入ったフラスコをメタノール/ドライアイス浴で冷却した。この溶液に1.6Mのノルマルブチルリチウムヘキサン溶液(22ml)を滴下した。滴下終了後、メタノール/ドライアイス浴で冷却しながら2時間撹拌し、塩化亜鉛テトラメチルエチレンジアミン(8.3g)を加え、メタノール/ドライアイス浴を外し昇温した。室温まで昇温した後、2,5-ジブロモピリジン(7.1g)およびPd(PPh(1.0g)を加え、還流温度で3時間半撹拌した。反応液を室温まで冷却した後、EDTA・4Na水溶液およびトルエンを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル)で精製した。この際、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。ついで溶媒を減圧留去し、得られた固体をヘプタンから再結晶し、5-ブロモ-6’-メチル-2,2’-ビピリジン(1.4g)を得た。
<6’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-6’-メチル-2,2’-ビピリジン(1.0g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン20ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で7時間半攪拌した。反応液を室温まで冷却した後、析出した固体を吸引濾過にて採取した。得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)にて精製し、得られた溶出液をそのまま活性炭を敷いた桐山ロートを用い吸引濾過し、着色成分を除去した。溶媒を減圧留去し、酢酸エチルを加え再沈殿させ、(1-14-11)で表される化合物6’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’-ビピリジン(1.2g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.03(m,1H), 8.49(dd,1H), 8.22(d,1H), 8.09(m,2H), 8.03(m,1H), 8.00(s,1H), 7.93(m,1H), 7.87(d,1H), 7.68-7.83(m,7H), 7.55-7.64(m,4H), 7.30-7.40(m,4H), 7.17(d,1H), 2.65(s,3H).
[合成例17]化合物(1-14-12)の合成
<5-ブロモ-5’-メチル-2,2’-ビピリジンの合成>
2-ブロモ-5-メチルピリジン(1.7g)およびTHF(5ml)の入ったフラスコを氷浴で冷却し、この溶液に2MのイソプロピルマグネシウムクロリドTHF溶液(5.5ml)を滴下した。滴下終了後、氷浴を外し室温で3時間半撹拌した後、再び氷浴で冷却し、塩化亜鉛テトラメチルエチレンジアミン(2.8g)を加えた。氷浴を外し室温まで昇温した後、2,5-ジブロモピリジン(2.4g)およびPd(PPh(0.35g)を加え、還流温度で1時間半撹拌した。反応液を室温まで冷却した後、EDTA・4Na水溶液およびトルエンを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=9/1)で精製した。溶媒を減圧留去し、ヘプタンを加え再沈殿させ、5-ブロモ-5’-メチル-2,2’-ビピリジン(1.5g)を得た。
<5-メチル-5’-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-5’-メチル-2,2’-ビピリジン(1.2g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン20ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で6時間攪拌した。反応液を室温まで冷却した後、トルエンおよび水を加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)にて精製し、得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、酢酸エチルを加え再沈殿させ、得られた固体を更にトルエンから再結晶し、(1-14-12)で表される化合物5-メチル-5’-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’-ビピリジン(1.2g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.03(m,1H), 8.52(s,1H), 8.44(dd,1H), 8.33(d,1H), 8.09(m,1H), 8.03(m,1H), 8.00(s,2H), 7.93(m,1H), 7.87(m,1H), 7.73-7.83(m,6H), 7.56-7.66(m,5H), 7.31-7.39(m,4H), 2.41(s,3H).
[合成例18]化合物(1-14-13)の合成
<5’-ブロモ-4-メチル-2,2’-ビピリジンの合成>
2-ブロモ-4-メチルピリジン(6.9g)およびTHF(20ml)の入ったフラスコを氷浴で冷却し、この溶液に2MのイソプロピルマグネシウムクロリドTHF溶液(24ml)を滴下した。滴下終了後、氷浴を外し室温で1時間撹拌した後、再び氷浴で冷却し、塩化亜鉛テトラメチルエチレンジアミン(12.1g)を加えた。氷浴を外し室温まで昇温した後、2,5-ジブロモピリジン(9.5g)およびPd(PPh(1.4g)を加え、還流温度で2時間半撹拌した。反応液を室温まで冷却した後、EDTA・4Na水溶液およびトルエンを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=9/1)で精製した。溶媒を減圧留去し、得られた固体をヘプタンから再結晶し、5’-ブロモ-4-メチル-2,2’-ビピリジン(5.5g)を得た。
<4-メチル-5’-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.0g)、’-ブロモ-4-メチル-2,2’-ビピリジン(1.2g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン20ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で16時間攪拌した。反応液を室温まで冷却した後、トルエンおよび水を加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=95/5)にて精製し、得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、ヘプタンで洗浄することで、(1-14-13)で表される化合物4-メチル-5’-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’-ビピリジン(1.4g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.04(m,1H), 8.55(d,1H), 8.47(dd,1H), 8.28(s,1H), 8.11(dd,1H), 8.09(d,1H), 8.03(m,1H), 8.00(s,1H), 7.93(m,1H), 7.88(d,1H), 7.73-7.83(m,6H), 7.57-7.63(m,4H), 7.30-7.40(m,4H), 7.14(d,1H), 2.45(s,3H).
[合成例19]化合物(1-14-15)の合成
<5-ブロモ-6’-メチル-2,3’-ビピリジンの合成>
5-ブロモ-2-メチルピリジン(3.4g)およびTHF(10ml)の入ったフラスコを氷浴で冷却し、この溶液に2MのイソプロピルマグネシウムクロリドTHF溶液(11ml)を滴下した。滴下終了後、氷浴を外し室温で3時間撹拌した後、再び氷浴で冷却し、塩化亜鉛テトラメチルエチレンジアミン(5.5g)を加えた。氷浴を外し室温まで昇温した後、2,5-ジブロモピリジン(4.7g)およびPd(PPh(0.7g)を加え、還流温度で5時間撹拌した。反応液を室温まで冷却した後、EDTA・4Na水溶液と略記する。)およびトルエンを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=7/3)で精製し、5-ブロモ-6’-メチル-2,3’-ビピリジン(1.5g)を得た。
<6’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-6’-メチル-2,3’-ビピリジン(1.2g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン25ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で5時間攪拌した。反応液を室温まで冷却した後、析出した固体を吸引濾過にて採取し、メタノールついで酢酸エチルで洗浄した。ついで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=4/1)にて精製し、得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、得られた固体を更にクロロベンゼンから再結晶し、(1-14-15)で表される化合物6’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジン(1.3g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.13(m,1H), 9.07(m,1H), 8.28(dd,1H), 8.01-8.11(m,3H), 8.00(s,1H), 7.93(m,1H), 7.86(m,1H), 7.73-7.83(m,7H), 7.57-7.64(m,4H), 7.31-7.39(m,4H), 7.28(d,1H), 2.63(s,3H).
[合成例20]化合物(1-14-16)の合成
<5-ブロモ-5’-メチル-2,3’-ビピリジンの合成>
3-ブロモ-5-メチルピリジン(3.4g)およびTHF(10ml)の入ったフラスコを氷浴で冷却し、この溶液に2MのイソプロピルマグネシウムクロリドTHF溶液(11ml)を滴下した。滴下終了後、氷浴を外し室温で1時間半撹拌した後、再び氷浴で冷却し、塩化亜鉛テトラメチルエチレンジアミン(5.5g)を加えた。氷浴を外し室温まで昇温した後、2,5-ジブロモピリジン(4.7g)およびPd(PPh(0.7g)を加え、還流温度で5時間撹拌した。反応液を室温まで冷却した後、EDTA・4Na水溶液およびトルエンを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=7/3)で精製し、5-ブロモ-5’-メチル-2,3’-ビピリジン(1.4g)を得た。
<5’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-6’-メチル-2,3’-ビピリジン(1.2g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン25ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で5時間攪拌した。反応液を室温まで冷却した後、析出した固体を吸引濾過にて採取し、メタノールついで酢酸エチルで洗浄した。ついで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=4/1)にて精製し、そこで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、得られた固体を更にクロロベンゼンから再結晶し、(1-14-16)で表される化合物5’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジン(1.3g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.08(m,1H), 9.04(s,1H), 8.50(s,1H), 8.21(s,1H), 8.09(m,2H), 8.04(m,1H), 8.00(s,1H), 7.93(m,1H), 7.73-7.88(m,8H), 7.62(m,4H), 7.31-7.40(m,4H), 2.45(s,3H).
[合成例21]化合物(1-14-17)の合成
<5-ブロモ-4’-メチル-2,3’-ビピリジンの合成>
3-ブロモ-4-メチルピリジン(5.2g)およびTHF(10ml)の入ったフラスコを氷浴で冷却し、この溶液に2MのイソプロピルマグネシウムクロリドTHF溶液(17ml)を滴下した。滴下終了後、氷浴を外し室温で9時間撹拌した後、再び氷浴で冷却し、塩化亜鉛テトラメチルエチレンジアミン(8.3g)を加えた。氷浴を外し室温まで昇温した後、2,5-ジブロモピリジン(7.1g)、Pd-137(ジョンソン・マッセイ社)(0.4g)およびNMP(25ml)を加え、還流温度で6時間撹拌した。反応液を室温まで冷却した後、EDTA・4Na水溶液およびトルエンを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=7/3)で精製した。溶媒を減圧留去し、得られた固体をヘプタンで洗浄し、5-ブロモ-4’-メチル-2,3’-ビピリジン(2.4g)を得た。
<4’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-6’-メチル-2,3’-ビピリジン(1.2g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン25ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で5時間攪拌した。反応液を室温まで冷却した後、トルエンおよび水を加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=7/3)にて精製し、そこで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、得られた固体を更にトルエンから再結晶し、(1-14-17)で表される化合物4’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジン(0.7g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.09(s,1H), 8.67(s,1H), 8.51(d,1H), 8.09(m,2H), 8.03(m,1H), 8.00(m,1H), 7.93(m,1H), 7.88(d,1H), 7.73-7.84(m,6H), 7.61(m,4H), 7.52(d,1H), 7.31-7.40(m,4H), 7.23(d,1H), 2.46(s,3H).
[合成例22]化合物(1-14-18)の合成
<5-ブロモ-2’-メチル-2,3’-ビピリジンの合成>
3-ブロモ-2-メチルピリジン(5.2g)およびTHF(10ml)の入ったフラスコを氷浴で冷却し、この溶液に2MのイソプロピルマグネシウムクロリドTHF溶液(17ml)を滴下した。滴下終了後、氷浴を外し室温で2時間撹拌した後、再び氷浴で冷却し、塩化亜鉛テトラメチルエチレンジアミン(8.3g)を加えた。氷浴を外し室温まで昇温した後、2,5-ジブロモピリジン(7.1g)、Pd(PPh(1.0g)およびキシレン(10ml)を加え、還流温度で7時間撹拌した。反応液を室温まで冷却した後、EDTA・4Na水溶液およびトルエンを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=4/1)で精製し、5-ブロモ-2’-メチル-2,3’-ビピリジン(1.3g)を得た。
<2’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-6’-メチル-2,3’-ビピリジン(1.2g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン25ml、t-ブチルアルコール5ml、および水1mlを入れて、還流温度で12時間攪拌した。反応液を室温まで冷却した後、トルエンおよび水を加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=4/1)にて精製し、そこで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、析出した固体を吸引濾過にて採取し、(1-14-18)で表される化合物2’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジン(0.8g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.08(m,1H), 8.57(m,1H), 7.99-8.10(m,4H), 7.92(m,1H), 7.88(d,1H), 7.73-7.83(m,7H), 7.61(m,4H), 7.51(dd,1H), 7.30-7.40(m,4H), 7.25(m,1H), 2.66(s,3H).
[合成例23]化合物(1-14-20)の合成
<5-ブロモ-3’-メチル-2,4’-ビピリジンの合成>
4-ブロモ-3-メチルピリジン(5.0g)およびTHF(30ml)の入ったフラスコをドライアイス/メタノール浴で冷却し、この溶液に2MのイソプロピルマグネシウムクロリドTHF溶液(16ml)を滴下した。滴下終了後、冷却用バスを外し室温で2時間半撹拌した後、氷浴で冷却し、塩化亜鉛テトラメチルエチレンジアミン(8.0g)を加えた。氷浴を外し室温まで昇温した後、2,5-ジブロモピリジン(7.6g)およびPd(PPh(1.0g)を加え、還流温度で2時間撹拌した。反応液を室温まで冷却した後、EDTA・4Na水溶液および酢酸エチルを加え分液した。溶媒を減圧留去した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=5/1)で精製し、5-ブロモ-3’-メチル-2,4’-ビピリジン(5.6g)を得た。
<3’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,4’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-3’-メチル-2,4’-ビピリジン(1.2g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン1ml、t-ブチルアルコール1ml、および水1mlを入れて、還流温度で4時間攪拌した。反応液を室温まで冷却した後、水を加え、吸引濾過にて析出物を採取した。得られた固体を水およびメタノールで洗浄した後、NH修飾シリカゲル(DM1020:富士シリシア製)カラムクロマトグラフィー(展開液:トルエン)にて精製し、(1-14-20)で表される化合物3’-メチル-5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,4’-ビピリジン(1.7g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.09(m,1H), 8.56(s,1H), 8.55(d,1H), 8.10(m,2H), 8.03(m,1H), 8.00(d,1H), 7.93(d,1H), 7.88(d,1H), 7.73-7.83(m,6H), 7.61(m,4H), 7.53(d,1H), 7.31-7.41(m,5H), 2.44(s,3H).
[合成例24]化合物(1-11-18)の合成
<2’-メチル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)2,3’-ビピリジンの合成>
4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン(2.0g)、5-ブロモ-2’-メチル-2,3’-ビピリジン(1.2g)、Pd(PPh(0.15g)、リン酸カリウム(1.7g)、1,2,4-トリメチルベンゼン(20ml)、t-ブチルアルコール(5ml)および水(1ml)をフラスコに入れて、窒素雰囲気下還流温度で8時間撹拌した。加熱終了後、反応液を室温まで冷却した後、析出した固体を吸引濾過にて採取し、メタノールついで酢酸エチルで洗浄した。ついでシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=7/3)にて精製し、そこで得られた溶出液を活性炭ショートカラムに通し、着色成分を除去した。溶媒を減圧留去し、析出した固体を吸引濾過にて採取し、(1-11-18)で表される化合物2’-メチル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)2,3’-ビピリジン(1.1g)を得た。
NMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.17(m,1H), 8.60(dd,1H), 8.230(s,1H), 8.19(m,2H), 8.06(m,2H),7.87(dd,1H), 7.85(dd,1H), 7.73(m,4H), 7.69(dd,1H), 7.55-7.65(m,4H), 7.51(m,2H), 7.26-7.37(m,5H), 2.73(s,3H).
原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の誘導体化合物を合成することができる。
以下、本発明をさらに詳細に説明するために、本発明の化合物を用いた有機EL素子の実施例を示すが、本発明はこれらに限定されるものではない。
実施例1から4および比較例1から2に係る素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期値の90%以上の輝度を保持する時間(hr)の測定を行った。以下、実施例および比較例について詳細に説明する。
作製した実施例1から4および比較例1から2に係る素子における、各層の材料構成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000128
表1において、「HI」はN,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、「NPD」はN,N4’-ジ(ナフタレン-1-イル)-N,N4’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン、化合物(A)は9-フェニル-10-(4-フェニルナフタレン-1-イル)アントラセン、化合物(B)はN,N,N,N-7,7-ヘキサフェニル-7H-ベンゾ〔c〕フルオレン-5,9-ジアミン、化合物(C)は9,10-ジ([2,2’-ビピリジン]-5-イル)アントラセン、化合物(D)は9,10-ビス(4-(ピリジン-3-イル)ナフタレン-1-イル)アントラセンである。電子輸送層と陰極の中間に形成する層に用いた「Liq」と共に以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000129
<化合物(1-7-74)を電子輸送層に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、化合物(1-7-74)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデンボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、ついで、NPDが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(A)が入った蒸着用ボートと化合物(B)の入った蒸着用ボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。化合物(A)と化合物(B)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-7-74)の入った蒸着用ボートを加熱して膜厚15nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.1~10nm/秒になるように陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、マグネシウム/銀電極を陰極として、直流電圧を印加すると、波長約460nmの青色発光が得られた。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施したところ、駆動試験開始電圧は7.33Vで、初期値の90%(1800cd/m)以上の輝度を保持する時間は45時間であった。
<化合物(1-7-26)を電子輸送層に用いた素子>
化合物(1-7-74)を化合物(1-7-26)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は6.36Vで、初期値の90%以上の輝度を保持する時間は151時間だった。
<化合物(1-7-98)を電子輸送層に用いた素子>
化合物(1-7-74)を化合物(1-7-98)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は7.34Vで、初期値の90%以上の輝度を保持する時間は265時間だった。
<化合物(1-7-96)を電子輸送層に用いた素子>
化合物(1-7-74)を化合物(1-7-96)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.33Vで、初期値の90%以上の輝度を保持する時間は103時間だった。
[比較例1]
 化合物(1-7-96)を化合物(C)に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。その結果、駆動試験開始電圧は5.06Vで、初期値の90%以上の輝度を保持する時間は6時間であった。
[比較例2]
 化合物(1-7-96)を化合物(D)に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。その結果、駆動試験開始電圧は5.05Vで、初期値の90%以上の輝度を保持する時間は10時間であった。
以上の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000130
実施例5から20および比較例3から5に係る素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期値の90%以上の輝度を保持する時間(hr)の測定を行った。以下、実施例および比較例について詳細に説明する。
作製した実施例5から20および比較例3から5に係る素子における、各層の材料構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000131
表3において、HTはN-([1,1’-ビフェニル]-4-イル)-9,9-ジメチル-N-(4-(9-フェニル-9H-カルバゾール-3-イル)フェニル)-9H-フルオレン-2-アミン、化合物(E)は9-(4-(ナフタレン-1-イル)フェニル)-10-フェニルアントラセン、化合物(F)は4,4’-((7,7-ジフェニル-7H-ベンゾ〔c〕フルオレン-5,9-ジイル)ビス((フェニル)アミノ))ジベンゾニトリル、化合物(G)は4’-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’:6’,2”-テルピリジン、化合物(H)は3-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン、化合物(I)は6-(4-(10-(ナフタレン-1-イル)アントラセン-9-イル)フェニル)-2,4’-ビピリジンである。
Figure JPOXMLDOC01-appb-C000132
<化合物(1-11-1)を電子輸送層に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HTを入れたモリブデン製蒸着用ボート、化合物(E)を入れたモリブデン製蒸着用ボート、化合物(F)を入れたモリブデン製蒸着用ボート、化合物(1-11-1)を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデンボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、ついで、HTが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(E)が入った蒸着用ボートと化合物(F)の入った蒸着用ボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。化合物(E)と化合物(F)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-11-1)の入った蒸着用ボートとLiqの入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して電子輸送層を形成した。化合物(1-11-1)とLiqの重量比がおよそ1:1になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。
その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.1~10nm/秒になるように陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、マグネシウム/銀電極を陰極として、直流電圧を印加すると、波長約450nmの青色発光が得られた。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施したところ、駆動試験開始電圧は4.00Vで、初期値の90%(1800cd/m)以上の輝度を保持する時間は87時間であった。
<化合物(1-11-2)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-11-2)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.12Vで、初期値の90%以上の輝度を保持する時間は85時間だった。
<化合物(1-11-3)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-11-3)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.78Vで、初期値の90%以上の輝度を保持する時間は97時間だった。
<化合物(1-11-4)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-11-4)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.95Vで、初期値の90%以上の輝度を保持する時間は83時間だった。
<化合物(1-11-5)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-11-5)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.88Vで、初期値の90%以上の輝度を保持する時間は93時間だった。
<化合物(1-11-39)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-11-39)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.16Vで、初期値の90%以上の輝度を保持する時間は74時間だった。
<化合物(1-14-2)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-2)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.61Vで、初期値の90%以上の輝度を保持する時間は76時間だった。
<化合物(1-14-3)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-3)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.85Vで、初期値の90%以上の輝度を保持する時間は141時間だった。
<化合物(1-14-11)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-11)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.16Vで、初期値の90%以上の輝度を保持する時間は162時間だった。
<化合物(1-14-12)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-12)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.87Vで、初期値の90%以上の輝度を保持する時間は75時間だった。
<化合物(1-14-14)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-14)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.82Vで、初期値の90%以上の輝度を保持する時間は227時間だった。
<化合物(1-14-15)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-15)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.98Vで、初期値の90%以上の輝度を保持する時間は101時間だった。
<化合物(1-14-16)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-16)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.25Vで、初期値の90%以上の輝度を保持する時間は70時間だった。
<化合物(1-14-18)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-18)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.75Vで、初期値の90%以上の輝度を保持する時間は125時間だった。
<化合物(1-14-20)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-14-20)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.19Vで、初期値の90%以上の輝度を保持する時間は63時間だった。
<化合物(1-11-18)を電子輸送層に用いた素子>
化合物(1-11-1)を化合物(1-11-18)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.29Vで、初期値の90%以上の輝度を保持する時間は60時間だった。
[比較例3]
 化合物(1-11-1)を化合物(G)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。その結果、駆動試験開始電圧は5.36Vで、初期値の90%以上の輝度を保持する時間は2時間であった。
[比較例4]
 化合物(1-11-1)を化合物(H)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。その結果、駆動試験開始電圧は4.12Vで、初期値の90%以上の輝度を保持する時間は26時間であった。
[比較例5]
 化合物(1-11-1)を化合物(I)に替えた以外は実施例5に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。その結果、駆動試験開始電圧は4.15Vで、初期値の90%以上の輝度を保持する時間は30時間であった。
以上の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000133
本発明の好ましい態様によれば、特に発光素子の寿命を向上させ、駆動電圧とのバランスも優れた有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。

Claims (18)

  1. 下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)において、
    Pyは独立して、式(2)、(3)または(4)で表される基であり;
    Figure JPOXMLDOC01-appb-C000002
    mおよびnは0または1であるが、m+n=1であり;そして、
    式(1)中のベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられている。
  2. 下記式(1-1)または(1-2)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    式(1-1)および(1-2)において、
    Pyは式(2)、(3)または(4)で表される基であり;
    Figure JPOXMLDOC01-appb-C000004
    そして、式(1-1)および(1-2)中のベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられている。
  3. 下記式(1-3)、(1-4)、(1-5)、または(1-6)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    式(1-3)~(1-6)において、
    Pyは式(2)、(3)または(4)で表される基であり;
    Figure JPOXMLDOC01-appb-C000006
    そして、式(1-3)~(1-6)中のベンゼン環、ナフタレン環およびピリジン環の水素の少なくとも1つは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられている。
  4. 下記式(1-7)または(1-8)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    式(1-7)および(1-8)において、
    Pyは式(2)、(3)または(4)で表される基であり;
    Figure JPOXMLDOC01-appb-C000008
    Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、
    pは1~5の整数である。
  5. 下記式(1-9)または(1-10)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    式(1-9)および(1-10)において、
    Pyは式(2)、(3)または(4)で表される基であり;
    Figure JPOXMLDOC01-appb-C000010
    Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、
    qは1~5の整数である。
  6. 下記式(1-11)または(1-12)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
    式(1-11)および(1-12)において、
    Pyは式(2’)、(3’)または(4’)で表される基であり;
    Figure JPOXMLDOC01-appb-C000012
    式(2’)、(3’)および(4’)において、Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、sは1~4の整数である。
  7. 下記式(1-13)または(1-14)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000013
    式(1-13)および(1-14)において、
    Pyは式(2’)、(3’)または(4’)で表される基であり;
    Figure JPOXMLDOC01-appb-C000014
    式(2’)、(3’)または(4’)において、Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、sは1~4の整数である。
  8. 下記式(1-15)または(1-16)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000015
    式(1-15)および(1-16)において、
    Pyは式(2)、(3)または(4)で表される基であり;
    Figure JPOXMLDOC01-appb-C000016
    Rは炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルであり;そして、tは1~4の整数である。
  9. 下記式(1-7-26)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000017
  10. 下記式(1-7-74)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000018
  11. 下記式(1-7-98)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000019
  12. 下記式(1-7-96)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000020
  13. 下記式(1-14-14)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000021
  14. 下記式(1-11-1)、(1-11-2)、(1-11-3)、(1-11-4)、(1-11-5)、(1-11-6)、(1-11-8)、(1-11-18)、(1-11-39)、(1-14-2)、(1-14-3)、(1-14-11)、(1-14-12)、(1-14-13)、(1-14-15)、(1-14-16)、(1-14-17)、(1-14-18)、および(1-14-20)のいずれか1つで表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
  15. 請求項1~14のいずれか1項に記載の化合物を含有する電子輸送材料。
  16. 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、請求項15に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。
  17. 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、請求項16に記載する有機電界発光素子。
  18. 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項16または17に記載の有機電界発光素子。
PCT/JP2011/075179 2010-11-04 2011-11-01 電子輸送材料およびこれを用いた有機電界発光素子 WO2012060374A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137011642A KR101835020B1 (ko) 2010-11-04 2011-11-01 전자 수송 재료 및 이것을 사용한 유기 전계 발광 소자
JP2012541874A JP5737294B2 (ja) 2010-11-04 2011-11-01 電子輸送材料およびこれを用いた有機電界発光素子
CN201180052069.3A CN103189355B (zh) 2010-11-04 2011-11-01 电子传输材料及使用其的有机电激发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-247332 2010-11-04
JP2010247332 2010-11-04

Publications (1)

Publication Number Publication Date
WO2012060374A1 true WO2012060374A1 (ja) 2012-05-10

Family

ID=46024488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075179 WO2012060374A1 (ja) 2010-11-04 2011-11-01 電子輸送材料およびこれを用いた有機電界発光素子

Country Status (5)

Country Link
JP (1) JP5737294B2 (ja)
KR (1) KR101835020B1 (ja)
CN (2) CN104744349B (ja)
TW (1) TWI508949B (ja)
WO (1) WO2012060374A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126717A (ja) * 2010-11-25 2012-07-05 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
WO2013114941A1 (ja) * 2012-02-03 2013-08-08 Jnc株式会社 アントラセン誘導体およびこれを用いた有機電界発光素子
JP2013177375A (ja) * 2012-02-06 2013-09-09 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
KR20140090035A (ko) * 2013-01-08 2014-07-16 에스에프씨 주식회사 헤테로아릴 치환기를 갖는 나프틸기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자
KR20140090036A (ko) * 2013-01-08 2014-07-16 에스에프씨 주식회사 헤테로아릴 치환기를 갖는 페닐기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자
WO2014204234A1 (ko) * 2013-06-19 2014-12-24 경상대학교산학협력단 페닐안트라센 유도체 및 이를 포함하는 유기 발광소자
KR101492523B1 (ko) * 2013-01-25 2015-02-12 에스에프씨 주식회사 발광층과 전자수송층에 각각 아릴 치환된 안트라센 유도체를 포함하는 유기 발광 소자
JP2015051966A (ja) * 2013-08-07 2015-03-19 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2015064560A1 (ja) * 2013-10-29 2015-05-07 Jnc株式会社 アントラセン系化合物、発光層用材料、これを用いた有機電界発光素子、表示装置および照明装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180108604A (ko) * 2016-02-10 2018-10-04 가꼬우 호징 관세이 가쿠잉 지연 형광 유기 전계 발광 소자
KR20240095561A (ko) * 2022-12-06 2024-06-26 삼성디스플레이 주식회사 혼합 조성물을 포함한 전자 수송층, 이를 포함한 발광 소자 제조 방법, 발광 소자 및 전자 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002297A (ja) * 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009256352A (ja) * 2008-04-15 2009-11-05 Samsung Mobile Display Co Ltd ビピリジン系化合物及びそれを含む有機膜を備えた有機発光素子
WO2009139579A2 (ko) * 2008-05-14 2009-11-19 주식회사 두산 비대칭 안트라센 유도체의 제조 및 이를 이용한 유기전계 발광 소자
WO2010137678A1 (ja) * 2009-05-29 2010-12-02 チッソ株式会社 電子輸送材料およびこれを用いた有機電界発光素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751024A (zh) * 2003-01-10 2006-03-22 出光兴产株式会社 含氮杂环衍生物以及使用该衍生物的有机电致发光元件
JP4788202B2 (ja) * 2004-07-09 2011-10-05 Jnc株式会社 発光材料およびこれを用いた有機電界発光素子
KR100878115B1 (ko) * 2005-10-21 2009-01-14 주식회사 엘지화학 신규한 바이나프탈렌 유도체, 이의 제조방법 및 이를이용한 유기전자소자
US8367220B2 (en) * 2007-10-30 2013-02-05 Samsung Electronics Co., Ltd. Anthracene-based compound and organic light emitting device employing the same
JP5353233B2 (ja) * 2007-12-27 2013-11-27 Jnc株式会社 ピリジルフェニル基を有するアントラセン誘導体化合物及び有機電界発光素子
CN101570536B (zh) * 2008-04-28 2014-08-20 三星显示有限公司 基于蒽的化合物和使用其的有机发光器件
KR101507166B1 (ko) * 2008-12-08 2015-04-30 엘지디스플레이 주식회사 청색 발광 화합물 및 이를 포함하는 유기전계발광소자
WO2010074087A1 (ja) * 2008-12-26 2010-07-01 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP5210187B2 (ja) * 2009-01-22 2013-06-12 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
CN101597259B (zh) * 2009-07-07 2012-11-07 清华大学 有机材料及其在有机电致发光器件中的应用
JP5807637B2 (ja) * 2010-07-05 2015-11-10 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
JP5799637B2 (ja) * 2010-08-26 2015-10-28 Jnc株式会社 アントラセン誘導体およびこれを用いた有機電界発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002297A (ja) * 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009256352A (ja) * 2008-04-15 2009-11-05 Samsung Mobile Display Co Ltd ビピリジン系化合物及びそれを含む有機膜を備えた有機発光素子
WO2009139579A2 (ko) * 2008-05-14 2009-11-19 주식회사 두산 비대칭 안트라센 유도체의 제조 및 이를 이용한 유기전계 발광 소자
WO2010137678A1 (ja) * 2009-05-29 2010-12-02 チッソ株式会社 電子輸送材料およびこれを用いた有機電界発光素子

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126717A (ja) * 2010-11-25 2012-07-05 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
US9478750B2 (en) 2012-02-03 2016-10-25 Jnc Corporation Anthracene derivative and organic electroluminescent element using the same
WO2013114941A1 (ja) * 2012-02-03 2013-08-08 Jnc株式会社 アントラセン誘導体およびこれを用いた有機電界発光素子
JP2013177375A (ja) * 2012-02-06 2013-09-09 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
KR20140090035A (ko) * 2013-01-08 2014-07-16 에스에프씨 주식회사 헤테로아릴 치환기를 갖는 나프틸기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자
KR20140090036A (ko) * 2013-01-08 2014-07-16 에스에프씨 주식회사 헤테로아릴 치환기를 갖는 페닐기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자
KR102030584B1 (ko) * 2013-01-08 2019-10-10 에스에프씨주식회사 헤테로아릴 치환기를 갖는 페닐기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자
KR102051952B1 (ko) * 2013-01-08 2019-12-04 에스에프씨주식회사 헤테로아릴 치환기를 갖는 나프틸기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자
KR101492523B1 (ko) * 2013-01-25 2015-02-12 에스에프씨 주식회사 발광층과 전자수송층에 각각 아릴 치환된 안트라센 유도체를 포함하는 유기 발광 소자
WO2014204234A1 (ko) * 2013-06-19 2014-12-24 경상대학교산학협력단 페닐안트라센 유도체 및 이를 포함하는 유기 발광소자
KR101751784B1 (ko) * 2013-06-19 2017-06-29 경상대학교산학협력단 페닐안트라센 유도체 및 이를 포함하는 유기 발광소자
JP2015051966A (ja) * 2013-08-07 2015-03-19 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2015064560A1 (ja) * 2013-10-29 2015-05-07 Jnc株式会社 アントラセン系化合物、発光層用材料、これを用いた有機電界発光素子、表示装置および照明装置

Also Published As

Publication number Publication date
CN104744349B (zh) 2017-09-22
JP5737294B2 (ja) 2015-06-17
CN103189355A (zh) 2013-07-03
TW201226394A (en) 2012-07-01
KR101835020B1 (ko) 2018-03-06
TWI508949B (zh) 2015-11-21
CN103189355B (zh) 2015-08-26
KR20130140709A (ko) 2013-12-24
CN104744349A (zh) 2015-07-01
JPWO2012060374A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5533863B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5737294B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
KR101418840B1 (ko) 전자 수송 재료 및 이것을 이용한 유기 전계발광 소자
JP5353233B2 (ja) ピリジルフェニル基を有するアントラセン誘導体化合物及び有機電界発光素子
JP5807637B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5262192B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5907069B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
WO2011105373A1 (ja) 置換されたピリジル化合物および有機エレクトロルミネッセンス素子
JP5799772B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5176366B2 (ja) 新規ビピリジン誘導体、およびこれを含む有機電界発光素子
JP2015071619A (ja) ベンゾピリドインドール誘導体および有機エレクトロルミネッセンス素子
JP6402904B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
TWI607997B (zh) 新穎之萘并三唑衍生物及有機電致發光元件
JP6428762B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP2013227251A (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP6136311B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP6479770B2 (ja) キノリノトリアゾール誘導体および有機エレクトロルミネッセンス素子
JP6070047B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5549270B2 (ja) アントラセン誘導体およびこれを用いた有機電界発光素子
JP2016074623A (ja) アルキル置換アゾールを有する化合物、この化合物を含む電子輸送材料およびこれを用いた有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541874

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137011642

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838024

Country of ref document: EP

Kind code of ref document: A1