[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012050010A1 - 建設機械 - Google Patents

建設機械 Download PDF

Info

Publication number
WO2012050010A1
WO2012050010A1 PCT/JP2011/072892 JP2011072892W WO2012050010A1 WO 2012050010 A1 WO2012050010 A1 WO 2012050010A1 JP 2011072892 W JP2011072892 W JP 2011072892W WO 2012050010 A1 WO2012050010 A1 WO 2012050010A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
motor
power
construction machine
amount
Prior art date
Application number
PCT/JP2011/072892
Other languages
English (en)
French (fr)
Inventor
枝穂 泉
誠司 石田
勇輔 梶田
英敏 佐竹
枝村 学
藤島 一雄
佐々木 正貴
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN2011800496393A priority Critical patent/CN103154388A/zh
Priority to US13/878,822 priority patent/US20140147238A1/en
Priority to EP11832446.6A priority patent/EP2628857A1/en
Priority to KR1020137007950A priority patent/KR20140009129A/ko
Publication of WO2012050010A1 publication Critical patent/WO2012050010A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07572Propulsion arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a construction machine provided with an engine and a power supply system.
  • a construction machine such as a hydraulic shovel drives a hydraulic pump by an output torque of an engine to drive a hydraulic work device (a bucket cylinder, an arm cylinder, a boom cylinder).
  • a hydraulic work device a bucket cylinder, an arm cylinder, a boom cylinder.
  • the battery is charged with the electric power generated by the generator at light load and the regenerative electric power obtained at braking, and the electric power charged at heavy load is discharged from the battery and used.
  • Japanese Patent Application Laid-Open No. 09-224302 relates to a hybrid vehicle, but a lead battery and a capacitor are combined to constitute a power supply system, energy is stored in the capacitor, and the stored energy is supplied to the load. Describes what is trying to improve the regeneration efficiency. Then, according to Japanese Patent Application Laid-Open No. 09-224302, the vehicle speed is detected to control so that the target voltage of the capacitor is increased at low speed and decreased at high speed, and the capacitor is controlled according to the vehicle speed. It is described that the target storage rate is changed.
  • a target of the motorization is a traveling unit.
  • the motorization of the construction machine is a system that uses a combination of the case where the swing unit and the hydraulic work device are driven using oil pressure and the case where the unit is driven using electric power stored in a battery or a capacitor. It does not stay at.
  • the motorization of the construction machine is motorized using the AC motor used to drive the revolving structure, and motorized using the motor generator used to assist the drive of the hydraulic pump that drives the hydraulic work device It is.
  • the target of the motorization is not merely limited to the traveling part, and the charge and discharge control for the battery and the capacitor is not unitary, and the turning part and the hydraulic work device It is also necessary to consider the driving of
  • the present invention provides a construction machine capable of effectively charging power to a capacitor in consideration of the driving of such a turning portion and a hydraulic work device.
  • a construction machine includes an engine, a hydraulic pump driven by the engine, a motor generator capable of generating electricity connected to the engine and the hydraulic pump, and a hydraulic work device driven by oil discharged from the hydraulic pump
  • power is supplied to a bucket cylinder, an arm cylinder, a boom cylinder, a swing body on which a hydraulic work device is installed, an AC motor for driving the swing body, and a motor generator and / or an AC motor (preferably AC motor).
  • capacitors and batteries for charging electric power regenerated from a motor generator and / or an alternating current motor (preferably an alternating current motor) can be used as the batteries, but in particular lead Power supply system having the A controller for controlling Temu, and has a.
  • a motion estimation unit configured to estimate the next motion of the hydraulic work device and / or the swing body (in particular, the next motion of the swing body is preferable) based on the current operation of the operator, the measured load, and the like.
  • an energy calculating unit that calculates the amount of power regenerated from the motor generator and / or the alternating current motor (preferably, the alternating current motor), and the target voltage of the capacitor based on the calculated amount of power It is preferable to have the capacitor control part to set.
  • the controller has a vehicle control unit that calculates the amount of electric power required from the hydraulic work device and / or the swing body (preferably the swing body) according to the current operation of the operator.
  • the capacitor control unit calculates a charge / discharge command calculation unit for the capacitor based on the calculated power amount and the detected current voltage based on the capacitor state detection unit for detecting the current voltage of the capacitor and the calculated current amount.
  • a capacitor target voltage setting unit configured to set a target voltage of the capacitor based on the created charge / discharge command.
  • the capacitor control unit can correct the target voltage of the capacitor based on the number of revolutions of the engine, the torque command of the AC motor, and / or the torque command of the motor generator.
  • the construction machine drives a revolving structure in which a hydraulically driven hydraulic cylinder driven by oil discharged from a motor generator and / or a hydraulic pump which can be connected to an engine and a hydraulic pump is installed.
  • a lead battery As a battery, although a lead battery and a lithium battery can be used, a lead battery is particularly preferable.
  • the power is supplied to the AC motor and the AC motor is used. It is preferable to charge the electric power regenerated from
  • the controller estimates the next operation of the hydraulic control device and / or the swing body based on the current operation of the operator, the measured load and the like, and the motor generator and / or the AC motor based on the estimated next operation. It is preferable to calculate the amount of power regenerated from (preferably an AC motor) and to set the target voltage of the capacitor based on the calculated amount of power.
  • the controller preferably creates a charge / discharge command for the capacitor based on the calculated power amount, and sets a target voltage of the capacitor based on the created charge / discharge command.
  • the controller calculates the amount of electric power based on the rotational speed of the AC motor, that is, the physical quantity that changes based on the current operation of the operator, the measured load, and the like.
  • the amount of power can also be calculated using the amount of energy.
  • the controller compares the current voltage of the capacitor with the target voltage of the capacitor, and if the current voltage of the capacitor is larger than the target voltage of the capacitor, supplies (discharges) the power stored in the capacitor in advance. Is particularly preferred.
  • an alternating current motor is preferable especially.
  • controller estimates the next operation of the hydraulic work device or the swing body based on the current operation of the operator, the measured load, and the like will be described below.
  • the hydraulic work device or the swing body is driven. That is, by detecting the lever operation amount (lever operation signal) of the operator, it is possible to estimate the driving amount of the hydraulic work device or the swing body.
  • the movement (drive) is substantially limited to the drive for construction work, so based on the estimated drive (drive amount) of the hydraulic work device and the swing body, the hydraulic work device And the next movement of the revolving unit can be estimated.
  • the amount of electric power regenerated from the motor generator and the AC motor is estimated based on the next operation of the hydraulic work device and the swing structure.
  • the next operation is predicted from the current operation of the construction machine, and the electric power at the time of power generation or driving is calculated by the AC motor or motor generator in the next operation using information of the current vehicle body.
  • the charging target voltage of the battery and the capacitor is calculated, and charging and discharging are performed in advance to achieve the target voltage.
  • Predicting the next operation from the current operation can be said to be a unique property of the construction machine. That is, it is necessary to consider not only the traveling part but also the driving of the turning part and the hydraulic work device.
  • the current operation is a turning power running operation
  • the next operation is a turning regeneration operation.
  • the number of revolutions of the engine is small as the current operation, it can be predicted that the engine is idling or the front work is lightly loaded, so it can be predicted that the next operation is the power running operation.
  • the present invention calculates the electric power at the time of power generation or driving at the AC motor or motor generator at the current operation to the next operation. As a result, it is possible to calculate in advance the amount of power that the capacitor or battery should charge and discharge.
  • FIG. 1 is a view showing the configuration of a hydraulic shovel (a typical example of a construction machine) to which the present embodiment is applied.
  • the hydraulic shovel 2 has a traveling body 401 and a revolving body 402.
  • the traveling body 401 is driven by the traveling hydraulic motor 33.
  • the revolving unit 402 is driven by the AC motor 35 and is formed so as to be rotatable relative to the traveling unit 401.
  • the driver's seat 403 is installed on one side (for example, the front side and the left side) of the front of the revolving body 402, and the boom 405 is provided on the other side (the front side and the right side)
  • An articulated work unit 400 having an arm 406 and a bucket 407 is installed.
  • the boom 405, the arm 406, and the bucket 407 are respectively driven by the boom cylinder 32a, the arm cylinder 32b, and the bucket cylinder 32c.
  • FIG. 2 is a diagram showing a system configuration of a hydraulic shovel.
  • the system of the hydraulic shovel includes an engine 10 controlled by an engine controller (ECU) 11, a motor generator (M / G) 8 capable of generating electricity connected to the engine 10 and a hydraulic pump 31, And a first inverter (INV) 9 connected to the motor generator (M / G) 8 to control the power generated by the M / G 8).
  • ECU engine controller
  • M / G motor generator
  • ISV first inverter
  • the motor generator (M / G) 8 assists the engine 10 at the time of power running, drives the hydraulic pump 31 connected to the engine 10 and the accessory load 16 such as an air conditioner, and generates electricity at the time of regeneration.
  • the generated power (energy) is converted into direct current by the first inverter 9 and supplied to the power supply system 1. Although it is possible to consume the generated electric power by the swing structure 402, it is preferable to charge the capacitor 13 of the power supply system 1.
  • the first inverter 9 converts direct current power into alternating current power and converts alternating current power into direct current power.
  • the hydraulic shovel system comprises a hydraulic pump 31 and a control valve 36 for driving the front working device 32 and the traveling hydraulic motor 33 by controlling the flow of oil supplied from the hydraulic pump 31. There is.
  • the control valve 36 controls the flow of oil supplied from the hydraulic pump 31 and supplies hydraulic oil to the boom cylinder 32 a, the arm cylinder 32 b, the bucket cylinder 32 c, and the traveling hydraulic motor 33.
  • the front work device (hydraulic work device) 32 includes a boom cylinder 32 a, an arm cylinder 32 b, and a bucket cylinder 32 c, and is installed on the revolving unit 402.
  • An alternating current motor 35 is connected to the revolving unit 402, and the alternating current motor 35 drives the revolving unit 402.
  • a second inverter (INV) 34 for driving the AC motor 35 is connected to the AC motor 35.
  • the revolving unit 402 has a reduction gear, and accelerates the axial output of the AC motor 35 to drive the revolving unit 402.
  • the AC motor 35 is a motor generator and operates as a motor (electric motor) to generate a driving force at the time of power running, and operates as a generator (generator) at the time of braking in the revolving unit 402 to regenerate electric power.
  • the second inverter 34 converts direct current power into alternating current power and converts alternating current power into direct current power.
  • the system of the hydraulic shovel has a power supply system 1.
  • the power supply system 1 includes a battery 12, a capacitor 13, a first DC / DC converter 15 connected to the battery 12, and a second DC / DC converter 14 connected to the capacitor 13.
  • the battery 12 and the capacitor 13 are storage devices that store electrical energy.
  • a lead storage battery having a voltage of 170 V to 360 V is used.
  • a lithium ion battery can be used instead of the lead storage battery.
  • the capacitor 13 an electric double layer capacitor is used, and a voltage of about 400 V and a capacitance of about 1000 F are assumed.
  • the capacitor 13 depends on the amount of work of the construction machine and the work time of one day, but a capacity of about 120 Ah is required.
  • the first DC / DC converter 15 and the second DC / DC converter 14 are buck-boost choppers, and according to the amount of energy (amount of energy) input and output from the power supply system 1, respectively, the battery 12 and the capacitor 13 The output is controlled so that the voltage of V.sub.2 becomes the DC bus voltage, and the power conversion between the inverter and the storage device is performed.
  • the first DC / DC converter 15 converts power between the capacitor 13 and the first inverter 9 and the second inverter 34
  • the second DC / DC converter 14 converts the battery 12 and the first inverter. Power conversion between the inverter 9 and the second inverter 34 is performed.
  • power supply system 1 includes a power storage device (capacitor 13 and battery 12) and a power converter for performing power conversion between direct current and alternating current (first DC / DC converter 15, second DC / DC converter 14 And the like.
  • the controller 17 calculates the current to be discharged or charged from the power storage device (capacitor 13, battery 12), and accordingly the power converter (first DC / DC converter 15, second DC / DC converter 14) Control.
  • the controller 17 receives an operator's current operation, vehicle body information, and a load.
  • a lever, an accelerator, and a brake operation amount at the driver's seat 403 are input. Further, as the vehicle body information, there are the speed and acceleration in the traveling unit 401, the turning speed and the posture information of the working unit 400 when turning, as the information in the turning unit 402.
  • the posture information of the working unit 400 can be obtained by the amount of lever operation of the driver, and can be defined as the moment of inertia of the revolving unit 402 from the amount of operation on the boom, arm, and bucket.
  • the measured load is input.
  • the controller 17 is connected to an engine controller, a motor controller, and a battery controller (not shown) via communication means, and the energy according to each parameter such as the amount of operation of the operator, the storage state of the power supply system 1, vehicle information, etc.
  • the engine 10, the motor generator (M / G) 8, the AC motor 35 and the power supply system 1 are controlled.
  • the hydraulic shovel has been described as a representative example of a construction machine
  • the present embodiment is also applicable to industrial vehicles and construction machines provided with an internal combustion engine (engine) and a power supply system.
  • engine internal combustion engine
  • the present invention can also be applied to wheel loaders, forklifts, and the like.
  • a power supply system including a battery (lead storage battery) and a capacitor is used in the present embodiment, since the lead storage battery has a large loss during charging, regenerative energy can not be efficiently recovered to the lead storage battery. When charging and discharging were repeated with a large current, the deterioration progressed and the life tended to be shortened.
  • the input / output of the capacitor 13 is optimized in the scene where the hydraulic shovel 2 repeats the turning operation or repeats the lifting and lowering of the working unit 400 by the front work. to manage.
  • the state of the hydraulic shovel is grasped in advance, the energy amount is calculated, the next operation is predicted, the energy amount to charge the capacitor 13 is determined, and the DC / DC converter is controlled accordingly.
  • the present invention can be applied to forward and backward movement in a wheel loader, loading and unloading of soil, loading and unloading operations, traveling in a forklift, and lifting operations.
  • FIG. 3 is a diagram showing an outline of control logic of the controller 17.
  • a lever, an accelerator, a brake operation amount, vehicle body information, posture information, and a load are input to the controller 17 as input information.
  • the lever, the accelerator, and the amount of brake operation are determined by the current operation of the operator at the driver's seat 403. Further, the vehicle body information includes the speed and acceleration of the traveling body 401, and information on the revolving unit 402 includes the revolving speed and posture information of the working unit 400 when revolving.
  • the posture information of the working unit 400 can be obtained by the amount of lever operation of the operator, and can be defined as the moment of inertia of the revolving unit 402 from the amount of operation on the boom, arm, and bucket.
  • the measured load is input as the load.
  • the input information is used in the vehicle control unit 20 to calculate the output required by the hydraulic pump 31, the engine 10, the AC motor 35 and the motor generator 26.
  • the required output is used by the hydraulic pump control unit 21, the engine control unit 22, the AC motor control unit 23, and the M / G (motor generator) control unit 26, respectively, depending on the required output of each unit.
  • the engine control unit 22, the turning control unit 23, and the M / G control unit 26 set an engine target rotation speed We *, an AC motor torque command Tm * and a motor torque command Tm2 *, respectively, to drive each part.
  • the energy calculating unit 24 calculates the amount of electric power (regeneration energy) regenerated from the motor generator (M / G) 8 and the AC motor 35.
  • the energy calculating unit 24 calculates the sum of the potential energy Ep and the kinetic energy Ev of the hydraulic shovel 2 as regenerative energy.
  • the potential energy Ep and the kinetic energy Ev use the current operation of the operator input to the controller 17, vehicle information, and a load.
  • the kinetic energy Ev 1 in the revolving unit 402 can be calculated by the following equation (1) from the revolving speed ⁇ m [rad / s].
  • I 1 represents the moment of inertia, and the moment of inertia differs depending on the attitude of the front portion of the hydraulic shovel when turning, so the lever operation amount for boom 405, arm 406, and bucket 407, or The inertia moment corresponding to the pilot pressure is defined in advance.
  • kinetic energy due to the rotation of the engine 10 can be calculated by the following equation using the engine speed ⁇ e [rad / s].
  • Ev 2 K 2 ⁇ (1/2) ⁇ I 2 ⁇ ⁇ e 2 (2)
  • I 2 represents the moment of inertia of the engine.
  • K 2 represents a constant set in advance, for example, the rotational speed in Delta] t [s] before the engine 10, in which determined according to the boost pressure.
  • Ep K 3 ⁇ St (3) It can be calculated by
  • St is a boom when the front section 9 performs a regenerative represents the stroke of the arm [m]
  • K 3 is a constant that is set in advance.
  • This energy E is the amount of power to be regenerated.
  • each rotation speed and command value set in the vehicle body control unit 20 the information of the electric energy required by each unit, and the regenerated energy calculated in the energy calculation unit 24 are the motion estimation unit 25. Is input to
  • the motion estimation unit 25 estimates the next motion of the traveling unit 401, the front work device 32, and the revolving unit 402 of the hydraulic shovel based on the information.
  • a construction machine such as the hydraulic shovel 2 has a substantially fixed work pattern. Therefore, it is easy to estimate the next operation based on the current operation. For example, in the traveling body 401, when the operator operates so as to accelerate the vehicle speed, it is estimated that the next deceleration is performed. In the operation unit 400, when the bucket 407 is operated to be high, it is estimated that the bucket 407 is lowered in the next operation. In addition, when the swing body 402 swings and performs powering, it can be estimated that the next motion decelerates the swing. In the present embodiment, in particular, it is preferable to estimate the next operation of the rotating body 402.
  • kinetic energy Ev 1/2 ⁇ m ⁇ v 2 for traveling can be calculated from the velocity v [m / s].
  • the weight m [g] of soil and the like stacked in the bucket, the height h [m] obtained from the posture information of the working unit 400, etc. By calculating the potential energy, the amount of power to be regenerated can be determined.
  • the calculated electric energy to be regenerated is input to the operation estimation unit 25, and estimates the next operation together with the current operation of the operator.
  • the capacitor control unit 27 which charges the capacitor 13 without overcharging sets a target voltage of the capacitor.
  • FIG. 4 is a diagram illustrating control logic of the capacitor control unit.
  • the capacitor control unit 27 includes a capacitor charge / discharge command unit 40, a capacitor state detection unit 41, and a capacitor target voltage setting unit 42.
  • the capacitor state detection unit 41 detects the current voltage V 0 of the capacitor, which is the current capacitor voltage.
  • the capacitor discharge command calculation unit 40 receives the current voltage V 0 detected by the capacitor state detection unit 41 and the regenerative energy calculated by the energy calculation unit 24, and calculates a discharge command to the capacitor.
  • Capacitor target voltage setting unit 42 determines capacitor target voltage V c * based on the discharge command generated in this manner.
  • the discharge command for the capacitor calculated by the capacitor discharge command calculation unit 40 depends on the magnitude of the power amount calculated by the energy calculation unit 24.
  • the charge command value is decreased or the discharge command value is increased. This is because in order to efficiently charge the capacitor with the electric energy to be regenerated, it is necessary to discharge the capacitor in advance to increase the chargeable capacity.
  • the discharge command value may be set large so as to discharge the capacitor in advance. For example, when the engine speed ⁇ e is high during powering, it can be predicted that heavy load work is being performed, and charging of the capacitor 13 is impossible, so the charge power command value is reduced. In addition, when using a turbo engine, it is possible to predict the state of load by considering boost pressure as a parameter.
  • a capacitor charge / discharge command is output so as to increase the charge command value or decrease the discharge command value.
  • the discharge command value may be set small. For example, when the engine rotational speed ⁇ e is low, that is, when the calculated electric energy is small, the discharge command value may be set small because the regenerative electric energy is small.
  • the capacitor target voltage calculation unit 42 calculates the capacitor target voltage Vc * so that discharge is performed according to the discharge command set by the capacitor charge / discharge command calculation unit 40.
  • the capacitor target voltage V c * is obtained by using the current voltage V 0 of the capacitor detected by the capacitor state detection unit 41 and the kinetic energy Ev and the potential energy Ep constituting the regenerative energy calculated by the energy calculation unit 24. It is calculated by the following equation.
  • V c * V 0 -E '(4)
  • E ′ (Kp ⁇ Ep + Kv ⁇ Ev) (5)
  • Kp and Kv indicate constants set in advance.
  • capacitor control unit 27 corrects capacitor target voltage V c * based on engine target rotation speed We *, AC motor torque command Tm * and motor torque command T m2 *.
  • FIG. 5 is a diagram showing the relationship between pivot lever pilot pressure, pivot speed, energy E, and capacitor voltage versus time.
  • FIG. 5 shows the relationship between swing lever pilot pressure, swing body speed, energy E, and capacitor voltage and time when controlling the capacitor target voltage.
  • the lever operation is performed so that the turning speed reaches the maximum speed, but the same applies to the case where the turning speed is low.
  • the kinetic energy is also small, so the numerical value of the capacitor target voltage value V c * calculated in equation (4) changes accordingly.
  • the target voltage value V c * is increased, but is set to a value smaller than the first turning operation in FIG. Since the speed during turning is also low at the second time, the amount of energy that can be regenerated also decreases when the lever is returned to neutral and the regeneration operation is performed.
  • the battery target voltage V b * is set in advance so that the SOC of the battery approaches 0 when the working time of the construction machine ends. Therefore, the battery 12 controls the battery target voltage V b * by performing only discharging according to the set battery target voltage V b * regardless of the regenerated electric energy calculated by the energy calculating unit.
  • the capacitor 13 is discharged in advance.
  • the capacitor voltage is controlled by this control, which will be described with reference to FIG.
  • Operation estimating unit 25 controls the amount of power discharged so that the capacitor satisfies capacitor target voltage V c * set by capacitor target voltage setting unit 42 so that AC motor 35 is preferentially discharged. . At this time, discharge is performed so as to satisfy the required output of each part calculated by the vehicle control unit 20, and the operation estimation unit 25 plays a role of determining the flow (power flow) of the amount of supplied power to each part.
  • FIG. 6 shows that the power stored in the capacitor is prioritized on the basis of the power flow determined by the operation estimation unit 25 when the swing portion consisting of the swing body 402, the AC motor 35 and the second inverter 34 is in power running operation. It shows that the AC motor 35 is discharged.
  • each portion is controlled based on the power flow as shown in (1).
  • the motor generator (M / G) 8 is used as a power flow as shown in (1) and (2). It is possible to use the power generated by
  • the power flow is as shown in (3), and the AC motor 35 is used using battery power. It may be controlled to drive the
  • Electric power is controlled to each part based on the power flow determined in this way, and a torque command to the motor generator (M / G) 8 and a torque command to the AC motor 35 are issued accordingly.
  • each part is controlled to follow the power flow as shown in (1).
  • the power flow of (1) and (2) is set, and the energy regenerated by the turning motor is used to generate motor generator (M / G) 8 It is also possible to drive and assist the engine and use it for the output of the pump 31.
  • the power flow is as shown in (1) and (3), and the power generated by the motor generator (M / G) 8 is also used. It is possible. In either case, the power flow is determined to satisfy the capacitor target voltage V c * of the capacitor.
  • control method of the power supply system 1 in this embodiment is also applied to the case where the traveling operation and the boom operation of the front portion are motorized. Is applicable.
  • the present invention relates to a construction machine provided with an engine and a power supply system, and is applicable to a hydraulic shovel, a wheel loader, a forklift and the like.
  • Power supply system 8 Motor generator (M / G) 9 first inverter 10 engine 12 battery 13 capacitor 14 second DC / DC converter 15 first DC / DC converter 17 controller 32 front work device 33 traveling hydraulic motor 34 second inverter 35 AC motor 36 control valve 400 Working part 402

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 本発明は、旋回部や油圧作業装置の駆動を考慮し、キャパシタに電力を有効に充電することができる建設機械を提供することを目的とする。そのために、建設機械(2)の状態を予め把握しエネルギを算出して、次の動作を予測し、キャパシタ(13)に充電するエネルギ量を決定し、それに伴いDC/DCコンバータ(15)を制御することとした。これにより、従来のバッテリ(鉛蓄電池)における回生時の損失を減らすことが可能となり、効率が向上する。

Description

建設機械
 本発明は、エンジンと電源システムとを備えた建設機械に関するものである。
 従来、油圧ショベルなどの建設機械は、油圧ポンプをエンジンの出力トルクによって駆動し、油圧作業装置(バケットシリンダ、アームシリンダ、ブームシリンダ)を駆動していた。
 そして、近年、燃費の向上、排ガスの抑制、騒音の低減を目的として、エンジン、発電機(モータジェネレータ)、電動機(交流モータ)、蓄電装置(バッテリ)等を備えたハイブリッド建設機械が提案されている。
 例えば、軽負荷時に発電機で発電した電力や制動時に得られる回生電力をバッテリに充電し、重負荷時に充電された電力をバッテリから放電し、使用する。
 特に、バッテリに鉛バッテリを使用するハイブリッド建設機械では、鉛バッテリの回生効率が悪いため、制動時に得られる回生電力を鉛バッテリに充電することが、効率よく行われない。
 例えば、特開平09-224302号公報には、ハイブリッド自動車に関するものではあるが、鉛バッテリとキャパシタとを組合せて電源システムを構成し、エネルギをキャパシタに蓄積し、蓄積したエネルギを負荷に供給することで回生効率の向上を図っているものが記載されている。そして、特開平09-224302号公報には、キャパシタの目標電圧を、低速時には大きくするように、また、高速時には小さくするように、制御するために、車速を検出し、車速に応じてキャパシタの目標蓄電率を変更することが記載されている。
 また、特開平11-164402号公報には、ハイブリット車両の速度が低いときには、蓄電部の充電状態が高めに設定され、ハイブリット車両の速度が高いときには、蓄電部の充電状態が低めに設定されることが記載されている。
 さらには、特開2002-359935公報には、ハイブリット作業機械において、運動エネルギ及び位置エネルギが大きい時には蓄電部の充放電閾値を小さく設定し、運動エネルギ及び位置エネルギが小さい時には蓄電部の充放電閾値を大きく設定することが記載されている。
特開平09-224302号公報 特開平11-164402号公報 特開2002-359935公報
 一般的に、自動車を電動化する場合は、その電動化の対象は走行部である。
 しかしながら、建設機械の電動化は、旋回部や油圧作業装置を、油圧を用いて駆動する場合とバッテリやキャパシタに蓄電されている電力を用いて駆動する場合とを併用するシステムであり、走行部に留まらない。
 つまり、建設機械の電動化は、旋回体を駆動するために用いる交流モータを用いて電動化し、油圧作業装置を駆動する油圧ポンプの駆動をアシストするために用いるモータジェネレータを用いて電動化するものである。
 このように、建設機械を電動化する場合には、その電動化の対象が、単に走行部に留まるものではなく、バッテリやキャパシタに対する充放電制御も単一的ではなく、旋回部や油圧作業装置の駆動も考慮する必要がある。
 また、キャパシタとバッテリとを併用するシステムにおいては、キャパシタに電力を有効に充電する必要がある。
 そこで、本発明は、こうした旋回部や油圧作業装置の駆動を考慮し、キャパシタに電力を有効に充電することができる建設機械を提供するものである。
 本発明の一実施態様である建設機械は、エンジンと、エンジンによって駆動する油圧ポンプと、エンジンと油圧ポンプとに連結する発電可能なモータジェネレータと、油圧ポンプから吐出する油によって駆動する油圧作業装置、たとえば、バケットシリンダ、アームシリンダ、ブームシリンダと、油圧作業装置が設置される旋回体と、旋回体を駆動する交流モータと、モータジェネレータおよび/または交流モータ(好ましくは交流モータ)に電力を供給、ならびに、モータジェネレータおよび/または交流モータ(好ましくは交流モータ)から回生される電力を充電するキャパシタおよびバッテリ(バッテリとしては、鉛蓄電池やリチウムイオン電池が使用可能であるが、特に、鉛蓄電池が好ましい。)を有する電源システムと、電源システムを制御するコントローラと、を有するものである。
 そして、コントローラは、オペレータの現操作や測定される荷重等に基づいて、油圧作業装置および/または旋回体の次動作(特に、旋回体の次操作が好ましい。)を推定する動作推定部と、推定された次動作に基づいて、モータジェネレータおよび/または交流モータ(好ましくは交流モータ)から回生される電力量を算出するエネルギ算出部と、算出された電力量に基づいて、キャパシタの目標電圧を設定するキャパシタ制御部と、を有することが好ましい。
 なお、コントローラは、オペレータの現操作に応じて、油圧作業装置および/または旋回体(好ましくは旋回体)から要求される電力量を算出する車体制御部を有することが好ましい。
 そして、キャパシタ制御部は、キャパシタの現電圧を検出するキャパシタ状態検出部と、算出された電力量と検出された現電圧とに基づいて、キャパシタに対する充放電指令を算出するキャパシタ充放電指令算出部と、作成された充放電指令に基づいて、キャパシタの目標電圧を設定するキャパシタ目標電圧設定部と、を有することが好ましい。
 そして、キャパシタ制御部は、エンジンの回転数、交流モータのトルク指令、および/または、モータジェネレータのトルク指令に基づいて、キャパシタの目標電圧を補正することができることが好ましい。
 また、本発明の一実施態様である建設機械は、エンジンと油圧ポンプとに連結する発電可能なモータジェネレータおよび/または油圧ポンプから吐出する油によって駆動する油圧シリンダが設置される旋回体を駆動する交流モータ、に電力を供給する、ならびに、モータジェネレータおよび/または交流モータから回生される電力を充電する、キャパシタとバッテリとを有する電源システムと、電源システムを制御するコントローラと、を有するものである。
 なお、バッテリとしては、鉛バッテリやリチウム電池が使用可能であるが、特に、鉛バッテリが好ましい。
 また、モータジェネレータおよび/または交流モータに電力を供給する場合やモータジェネレータおよび/または交流モータから回生される電力を充電する場合においては、いずれも、交流モータに対して電力を供給し、交流モータから回生される電力を充電することが好ましい。
 そして、コントローラは、オペレータの現操作や測定される荷重等に基づいて、油圧制御装置および/または旋回体の次動作を推定し、推定された次動作に基づいて、モータジェネレータおよび/または交流モータ(好ましくは交流モータ)から回生される電力量を算出し、算出された電力量に基づいて、キャパシタの目標電圧を設定することが好ましい。
 そして、コントローラは、算出された電力量に基づいて、キャパシタに対する充放電指令を作成し、作成された充放電指令に基づいて、キャパシタの目標電圧を設定することが好ましい。
 さらに、コントローラは、交流モータの回転速度、つまりオペレータの現操作や測定される荷重等に基づいて変化する物理量に基づいて、電力量を算出するものである。
 なお、電力量はエネルギ量を用いて算出することも可能である。
 また、コントローラは、キャパシタの現電圧とキャパシタの目標電圧とを比較し、キャパシタの現電圧がキャパシタの目標電圧より大きい場合には、予め、キャパシタに充電されている電力を供給(放電)することが、特に好ましい。
 そして、放電する対象としては、モータジェネレータや交流モータであるが、特に、交流モータが好ましい。
 なお、コントローラが、オペレータの現操作や測定される荷重等に基づいて、油圧作業装置や旋回体の次動作を推定する場合について、以下に説明する。
 たとえば、オペレータのレバー操作に基づいて、油圧作業装置や旋回体が駆動する。つまり、オペレータのレバー操作量(レバー操作信号)を検出することにより、油圧作業装置や旋回体の駆動量が推定できる。
 そして、建設機械の場合はその動き(駆動)が、建設作業のための駆動にほぼ限定されるため、この推定された油圧作業装置や旋回体の駆動(駆動量)に基づいて、油圧作業装置や旋回体の次動作が推定できる。この油圧作業装置や旋回体の次動作に基づいて、モータジェネレータや交流モータから回生される電力量が推定される。
 このように、必要な電力をバッテリおよびキャパシタにおいて効率よく充放電するためには、予め蓄電率を制御しておく必要がある。
 そこで、本発明では、建設機械の現動作から次動作を予測するとともに、次動作において交流モータやモータジェネレータにおいて発電時や駆動時における電力を、現在の車体の情報を用いて算出し、さらに、この算出電力を用いて、バッテリおよびキャパシタの充電目標電圧の算出を行い、その目標電圧になるように予め充放電を行う。
 現動作から次動作を予測することは、建設機械の特有の性質といえる。つまり、走行部のみならず、旋回部や油圧作業装置の駆動についても考慮する必要があるためである。
 たとえば、現動作が旋回力行動作である場合は、次動作が旋回回生動作であることが予測される。一方、現動作としてエンジンの回転数が小さいときには、アイドリング状態であったり、フロント作業が軽負荷状態であることが予測できるため、次動作は力行動作であることが予測できる。
 つまり、本発明は、現動作から次動作における交流モータやモータジェネレータにおいての発電時や駆動時における電力を算出する。これにより、キャパシタやバッテリが予め充放電すべき電力量を算出することができる。
 こうした本発明によって、こうした旋回部や油圧作業装置の駆動を考慮し、キャパシタに電力を有効に、そしてエネルギ効率よく充電可能な建設機械を提供することができる。
本実施形態を適用した油圧ショベルの構成を示す図である。 油圧ショベルのシステム構成を示す図である。 コントローラの制御ロジックの概要を示す図である。 キャパシタ制御部の制御ロジックを表す図である。 旋回レバー・パイロット圧、旋回体速度、エネルギE、およびキャパシタ電圧と時間との関係を表す図である。 旋回部の力行動作におけるパワーフローの一例を表す図である。 旋回部の回生動作におけるパワーフローの一例を表す図である。
 以下、図1~図7を用いて、本発明の一つの実施形態を説明する。
 図1は、本実施形態を適用した油圧ショベル(建設機械の代表例)の構成を示す図である。
 図1において、油圧ショベル2は、走行体401、旋回体402を有する。
 走行体401は、走行用油圧モータ33により駆動される。
 旋回体402は、交流モータ35により駆動され、走行体401に対して旋回可能に形成される。
 また、旋回体402の前部一方の片側(たとえば前方を向いて左側)には運転席403が設置され、旋回体402の前部他方の片側(たとえば前方を向いて右側)にはブーム405、アーム406、バケット407を有する多関節構造の作業部400が設置されている。
 ブーム405、アーム406、バケット407は、それぞれ、ブームシリンダ32a、アームシリンダ32b、バケットシリンダ32cにより、それぞれ駆動する。
 図2は、油圧ショベルのシステム構成を示す図である。
 図2において、油圧ショベルのシステムは、エンジンコントローラ(ECU)11により制御されるエンジン10と、エンジン10と油圧ポンプ31とに連結する発電可能なモータジェネレータ(M/G)8と、モータジェネレータ(M/G)8で発生する動力を制御するためにモータジェネレータ(M/G)8に接続されている第1のインバータ(INV)9と、を有している。
 ここで、モータジェネレータ(M/G)8は、力行時にはエンジン10をアシストし、エンジン10に接続された油圧ポンプ31やエアコン等の補機負荷16を駆動し、回生時には発電を行う。
 発電された電力(エネルギ)は、第1のインバータ9によって直流に変換され、電源システム1に供給する。なお、発電された電力を旋回体402で消費することも可能であるが、電源システム1のキャパシタ13に充電することが好ましい。
 なお、第1のインバータ9は、直流電力を交流電力に、交流電力を直流電力に変換するものである。
 さらに、油圧ショベルのシステムは、油圧ポンプ31と、油圧ポンプ31から供給される油の流れを制御することでフロント作業装置32および走行用油圧モータ33を駆動するコントロールバルブ36と、を具備している。
 コントロールバルブ36は、油圧ポンプ31から供給される油の流れを制御し、ブームシリンダ32a、アームシリンダ32b、バケットシリンダ32c、走行用油圧モータ33に作動油を供給する。
 ここで、フロント作業装置(油圧作業装置)32は、ブームシリンダ32a、アームシリンダ32bおよびバケットシリンダ32cからなり、旋回体402に設置されている。
 旋回体402には、交流モータ35が接続され、交流モータ35は旋回体402を駆動する。
 また、交流モータ35には、交流モータ35を駆動するための第2のインバータ(INV)34が接続されている。
 旋回体402は、減速機を有しており、交流モータ35の軸出力を増速して旋回体402を駆動する。交流モータ35は、モータジェネレータであり、力行時にはモータ(電動機)として動作して駆動力を発生し、旋回体402における制動時にはジェネレータ(発電機)として動作して電力を回生する。
 なお、第2のインバータ34は、直流電力を交流電力に、交流電力を直流電力に変換するものである。
 さらに、油圧ショベルのシステムは、電源システム1を有する。
 電源システム1は、バッテリ12、キャパシタ13、バッテリ12に接続された第1のDC/DCコンバータ15、およびキャパシタ13に接続された第2のDC/DCコンバータ14を有する。なお、バッテリ12やキャパシタ13は、電気エネルギを蓄積する蓄電装置である。
 バッテリ12には、電圧が170V~360Vの鉛蓄電池を使用する。なお、鉛蓄電池の代わりに、リチウムイオン電池でも使用可能である。
 キャパシタ13には、電気二重層コンデンサを使用し、電圧が400V程度、容量が1000F程度のものを想定している。なお、キャパシタ13は、バッテリ12として240Vの鉛蓄電池を用いる場合、建設機械の作業量および1日の作業時間にも左右されるが、120Ah程度の容量が必要である。
 第1のDC/DCコンバータ15および第2のDC/DCコンバータ14は、昇降圧チョッパであり、電源システム1から入出力する電力量(エネルギ量)に応じて、それぞれ、バッテリ12とキャパシタ13との電圧を直流バス電圧になるように出力を制御し、インバータと蓄電装置との間の電力変換を行う直流電力変換機である。
 なお、第1のDC/DCコンバータ15は、キャパシタ13と第1のインバータ9および第2のインバータ34との間の電力変換を、第2のDC/DCコンバータ14は、バッテリ12と第1のインバータ9および第2のインバータ34との間の電力変換を行う。
 つまり、電源システム1は、蓄電装置(キャパシタ13、バッテリ12)と、直流と交流との間の電力変換を行う電力変換器(第1のDC/DCコンバータ15、第2のDC/DCコンバータ14)とを有するものである。
 そして、コントローラ17は、蓄電装置(キャパシタ13、バッテリ12)からの放電または充電する電流を算出し、それに伴い電力変換機(第1のDC/DCコンバータ15、第2のDC/DCコンバータ14)を制御する。
 なお、コントローラ17には、オペレータ現操作、車体情報および荷重が入力される。
 オペレータ現操作としては、運転席403におけるレバー、アクセル、ブレーキ操作量が入力される。また、車体情報としては、走行部401における速度や加速度、旋回体402における情報として旋回速度や旋回している際の作業部400の姿勢情報がある。
 作業部400の姿勢情報は、ドライバのレバー操作量によって得ることができ、ブーム、アーム、バケットに対する操作量より、旋回体402の慣性モーメントとして定義することができる。
 また、荷重としては、測定された負荷荷重が入力される。
 コントローラ17は、不図示のエンジンコントローラ、モータコントローラおよびバッテリコントローラと、通信手段を介して接続されており、オペレータの操作量、電源システム1の蓄電状態や車体情報など、各パラメータに応じて、エネルギの流れを決定し、エンジン10、モータジェネレータ(M/G)8、交流モータ35や電源システム1を制御する。
 このように本実施例は、油圧ショベルを建設機械の代表例として説明したが、内燃機関(エンジン)と電源システムとを備えた産業車両や建設機械にも適用可能である。例えば、油圧ショベルのほか、ホイールローダ、フォークリフト等にも適用可能である。
 また、本実施例において、バッテリ(鉛蓄電池)とキャパシタと含む電源システムを用いるが、鉛蓄電池は充電時における損失が大きいため、回生エネルギを効率よく鉛蓄電池に回収することができず、鉛蓄電池への充放電を大電流で繰り返すと、劣化を進めてしまい寿命が短くなる傾向にあった。
 このため、回生エネルギを電源システム1に充電する場合には、可能な限りキャパシタ13に充電することが望ましい。これにより充電によるエネルギ効率を向上させることができる。
 以上のように、本実施例によれば、油圧ショベル2が旋回動作を繰り返したり、フロント作業による作業部400の昇降を繰り返したりするようなシーンにおいて、キャパシタ13の入出力が最適となるように管理する。
 このため、予め、油圧ショベルの状態を把握し、エネルギ量を算出して、次の動作を予測し、キャパシタ13に充電するエネルギ量を決定し、それに伴いDC/DCコンバータを制御する。
 これにより、鉛蓄電池における回生時の損失を減らすことが可能となり、エネルギ効率が向上する。
 なお、油圧ショベル2の旋回動作について説明したが、走行動作や掘削動作、他の建設機械や産業車両においても同様に適用することができる。
 例えば、ホイールローダにおける前進と後退、土砂の積載、積み降し動作、または、フォークリフトにおける走行、リフト動作などにも適用できる。
 建設機械では自動車と異なり、その動作が定まっているため、予め次の動作を把握して適切にエネルギ収支を管理することができる。
 図3は、コントローラ17の制御ロジックの概要を示す図である。
 コントローラ17には、レバー、アクセル、ブレーキ操作量、車体情報、姿勢情報および荷重が入力情報として入力される。
 レバー、アクセル、ブレーキ操作量は、運転席403におけるオペレータの現操作によって決定するものである。また、車体情報は、走行体401における速度や加速度、また、旋回体402に関する情報としては旋回速度や旋回している際の作業部400の姿勢情報がある。
 作業部400の姿勢情報は、オペレータのレバー操作量によって得ることができ、ブーム、アーム、バケットに対する操作量より、旋回体402の慣性モーメントとして定義することができる。
 また、荷重としては測定された負荷荷重が入力される。
 これらの入力情報は、車体制御部20において、油圧ポンプ31、エンジン10、交流モータ35およびモータジェネレータ26で必要とされる出力を算出するために使用される。この必要とされる出力は、それぞれ、油圧ポンプ制御部21、エンジン制御部22、交流モータ制御部23およびM/G(モータジェネレータ)制御部26によって用いられ、その各部での必要出力に応じて、エンジン制御部22、旋回制御部23およびM/G制御部26において、それぞれ、エンジン目標回転数We*、交流モータトルク指令Tm*およびモータトルク指令Tm2*を設定し、各部を駆動する。
 エネルギ算出部24では、モータジェネレータ(M/G)8および交流モータ35から回生される電力量(回生エネルギ)を算出する。
 ここで、回生エネルギの求め方を、旋回体402について述べる。
 エネルギ算出部24では、油圧ショベル2の持つ位置エネルギEpと運動エネルギEvとの和を、回生エネルギとして算出する。
 位置エネルギEpと運動エネルギEvとは、コントローラ17に入力されるオペレータの現操作、車体情報および荷重を用いる。
 旋回体402における運動エネルギEv1は、旋回速度ωm[rad/s]より、下記の数式(1)で算出可能である。
  Ev1=(1/2)・I1・ωm2        …(1)
 ここで、I1は、慣性モーメントを表しており、旋回する際における油圧ショベルのフロント部の姿勢によって、慣性モーメントは異なるため、ブーム405、アーム406、バケット407に対してそれぞれレバー操作量、又は、パイロット圧に応じた慣性モーメントを予め定義しておく。
 同様に、エンジン回転数ωe[rad/s]を用いて、エンジン10の回転による運動エネルギも次式にて算出できる。
  Ev2=K2・(1/2)・I2・ωe2     …(2)
 ここで、I2はエンジンの慣性モーメントを表している。K2は予め設定した定数を表しており、例えばエンジン10のΔt[s]前における回転数や、ブースト圧に応じて決めるものである。
 以上より、運動エネルギEvは、Ev1とEv2との和(Ev=Ev1+Ev2)で算出される。
 また、位置エネルギEpは、
  Ep=K3・St               …(3)
により算出できる。
 ここで、Stは、フロント部で回生を行う場合のブーム、アームのストローク[m]を表し、K3はあらかじめ設定されている定数である。
 このようにして算出した位置エネルギEpと運動エネルギEvと(Ev=Ev1+Ev2)の和を、エネルギEとして算出する。このエネルギEを、回生される電力量とする。
 なお、実際は、回生される電力量としては、交流モータ35によるエネルギが多くを占める。
 以上のように、車体制御部20において設定された各回転数および指令値と、各部で要求される電力量の情報およびエネルギ算出部24において算出された回生されるエネルギとは、動作推定部25に入力される。
 動作推定部25は、これらの情報を元に、油圧ショベルの走行部401、フロント作業装置32および旋回体402の次の動作を推定する。
 一般に、油圧ショベル2のような建設機械は、作業パターンがほぼ決まっている。そのため、現動作を元に次動作を推定しやすい。たとえば、走行体401では、車速が加速するようにオペレータが操作すると、次は減速すると推定される。作業部400においては、バケット407の位置が高くなるように操作すると、次の動作ではバケット407の位置は下がると推定される。また、旋回体402が旋回し力行する際には、次の動作は旋回が減速すると推定できる。本実施例では、特に、旋回体402の次操作を推定することが好ましい。
 また、本実施例においては、旋回体402を電動化した場合について述べたが、走行部401やフロント作業装置32についても適用できる。
 例えば、走行部401においては、速度v[m/s]より、走行による運動エネルギEv=1/2・m・v2として算出できる。また、フロント作業装置32において、例えば、ブームを電動化した場合には、バケットに積んだ土砂などの重量m[g]や、作業部400部の姿勢情報から得られる高さh[m]などにより、位置エネルギを算出することにより、回生される電力量を求めることができる。
 以上のように、算出された回生される電力量は、動作推定部25に入力され、オペレータの現操作とともに次動作を推定する。過充電することなくキャパシタ13に充電するキャパシタ制御部27においてキャパシタの目標電圧を設定する。
 ここで、キャパシタ目標電圧を設定する方法について、図4を用いて説明する。
 図4は、キャパシタ制御部の制御ロジックを表す図である。
 図4に示されているように、キャパシタ制御部27は、キャパシタ充放電指令部40、キャパシタ状態検出部41およびキャパシタ目標電圧設定部42から構成されている。
 キャパシタ状態検出部41では、現在のキャパシタ電圧であるキャパシタの現電圧V0を検出する。
 キャパシタ放電指令算出部40では、キャパシタ状態検出部41において検出された現電圧V0と、エネルギ算出部24にて算出された回生エネルギが入力され、キャパシタに対する放電指令を算出する。
 キャパシタ目標電圧設定部42では、このように作成された放電指令に基づいて、キャパシタ目標電圧Vc*を決定する。
 ここで、キャパシタ放電指令算出部40で算出するキャパシタに対する放電指令は、エネルギ算出部24で算出した電力量の大きさに依存する。
 たとえば、電力量が大きい場合には、充電指令値を小さくする、又は、放電指令値を大きくする。これは回生する電力量が効率よくキャパシタに充電されるためには、予めキャパシタから放電させて充電可能な容量を大きくしておく必要があるからである。
 つまり、予めキャパシタの放電を行うように放電指令値を大きく設定すればよい。たとえば、力行時においてエンジン回転数ωeが高い場合には、重負荷作業中であると予測でき、キャパシタ13に充電することは不可能な状況であるため、充電電指令値は小さくする。また、ターボエンジンを使用している際には、ブースト圧もパラメータとして考慮して負荷の状態を予測することができる。
 逆に、電力量が小さい場合には、充電指令値を大きく、又は放電指令値を小さくするように、キャパシタ充放電指令を出力する。回生する電力量が小さい場合は、キャパシタの充電可能な容量を大きくする必要はないので、放電指令値を小さく設定すればよい。たとえば、エンジン回転数について、エンジン回転数ωeが低い場合、つまり算出された電力量が小さい場合は、回生電力量が小さいため放電指令値は小さく設定すればよい。
 このようにキャパシタ充放電指令算出部40で設定された放電指令に従って放電を行うように、キャパシタ目標電圧算出部42において、キャパシタ目標電圧Vc*を算出する。キャパシタ目標電圧Vc*は、キャパシタ状態検出部41で検出したキャパシタの現電圧V0と、エネルギ算出部24にて算出された回生エネルギを構成している運動エネルギEvおよび位置エネルギEpを用いて次式によって算出される。
  Vc*=V0-E′              …(4)
  E′=(Kp・Ep+Kv・Ev)      …(5)
 ここで、Kp、Kvはあらかじめ設定した定数を示している。
 数式(4)から自明のように、エネルギ算出部において算出された電力量が大きいほど、次の動作に備えてキャパシタ目標電圧Vc*を低くし、エネルギが小さいほどキャパシタ目標電圧Vc*を高く制御すればよい。
 なお、このキャパシタ制御部27は、エンジン目標回転数We*、交流モータトルク指令Tm*およびモータトルク指令Tm2*に基づいて、キャパシタ目標電圧Vc*を補正することも考えられる。
 図5は、旋回レバー・パイロット圧、旋回体速度、エネルギE、およびキャパシタ電圧と時間との関係を表す図である。
 図5は、キャパシタ目標電圧を制御した際の、旋回レバー・パイロット圧、旋回体速度、エネルギE、およびキャパシタ電圧と時間との関係である。
 図5において、旋回レバーを操作しない間、旋回体の速度がゼロになっているため、このときの運動エネルギはゼロである。よって、数式(4)で算出する目標電圧Vc*を高めに設定する。次に、旋回レバー・パイロット圧が最大となるように、旋回レバーを操作した際には、それに伴い旋回体の速度が上昇する。よって、このときの運動エネルギは大きくなり、目標電圧Vc*が小さくなる。この目標電圧値は、実際のショベルの仕様に合わせ、旋回体の最高回転数や出力し得る最大トルクに基づき、予め、数式(5)の定数Kvを設定しておけばよい。
 次に、旋回体速度が最高速度で旋回しているところから、レバーを中立に戻すと、旋回体は減速する。減速すると共に、運動エネルギに応じて、キャパシタの目標電圧値Vc*を上げるように出力する。
 以上は、旋回速度が最高速に達するようなレバー操作を行った場合の説明であるが、旋回速度が小さい場合も同様である。旋回速度が小さい場合には、運動エネルギも小さくなるため、数式(4)において算出されるキャパシタ目標電圧値Vc*の数値は、それに応じて変化する。力行動作の場合には、目標電圧値Vc*を高くするが、図5における1回目の旋回動作よりも小さい値に設定される。旋回中の速度も2回目は小さいため、レバーを中立に戻して回生動作する際には、回生できるエネルギ量も小さくなる。
 ところで、図3に示されているバッテリ制御部28は、建設機械の作業時間終了時にバッテリのSOCが0に近づくように、予めバッテリ目標電圧Vb*が設定されている。よってバッテリ12は、エネルギ算出部で算出された回生される電力量によらず、設定されているバッテリ目標電圧Vb*に従い、放電のみを行うことで、バッテリ目標電圧Vb*を制御する。
 一方、前述したように、キャパシタ13が設定したキャパシタ目標電圧Vc*に制御されるために、本発明ではキャパシタ13の放電を予め行う。この制御によりキャパシタ電圧を制御しており、図3を参照しながら説明する。
 動作推定部25は、キャパシタがキャパシタ目標電圧設定部42にて設定されたキャパシタ目標電圧Vc*とを満たすように放電する電力量を、優先的に交流モータ35に放電されるように制御する。この時、車体制御部20で算出された各部の要求出力を満たすように放電が行われており、動作推定部25は各部への供給電力量の流れ(パワーフロー)を決定する役割を果たす。
 図6は、旋回体402、交流モータ35および第2のインバータ34からなる旋回部が力行動作の際、動作推定部25により決定されたパワーフローに基づき、キャパシタに充電されている電力が、優先的に交流モータ35に放電されることを示したものである。
 キャパシタ13からの放電電力量が、旋回部で必要とされる要求パワーPsを全てキャパシタ13から全て賄える場合には、(1)で示すようなパワーフローに基づき、各部を制御する。
 また、キャパシタ13の電圧が低い状態であるなど、キャパシタ13で全エネルギを賄うことができない場合には、(1)及び(2)で示すようなパワーフローとして、モータジェネレータ(M/G)8で発電したパワーも用いることが可能である。
 また、上述したバッテリ制御部28において、バッテリの状態が高SOCであったり、エンジン出力が不足している場合には、(3)で示すようなパワーフローとし、バッテリ電力を用いて交流モータ35を駆動するように制御しても良い。
 これらのパワーフローは、何れもキャパシタ13とバッテリ12の状態に基づくものであり、上述したとおり、キャパシタ制御部27やバッテリ制御部28において算出した充放電指令値を満たすように決定する。
 このように決定したパワーフローに基づいて、各部へ電力は制御され、それに伴いモータジェネレータ(M/G)8へのトルク指令と、交流モータ35へのトルク指令が行われる。
 以上のように、予めキャパシタ13の放電が行われた後、旋回部やモータジェネレータからの回生電力がキャパシタに充電される際のパワーフローの一例について、図7を用いて説明する。
 キャパシタ13への充電が可能な場合には、(1)のようなパワーフローに従うように、各部を制御する。ただし、旋回力行時には、旋回動作と共に複合動作として、フロント作業を行う可能性もある。その場合、旋回による回生される電力量がキャパシタへの充電指令に対して大きければ、(1)及び(2)のパワーフローとし、旋回モータで回生したエネルギでモータジェネレータ(M/G)8を駆動してエンジンをアシストし、ポンプ31の出力に使用することも可能である。
 また、キャパシタ13の蓄電状態が低くなり、充電指令が出力された場合には、(1)及び(3)で示すようなパワーフローとし、モータジェネレータ(M/G)8で発電したパワーも用いることが可能である。いずれも、キャパシタのキャパシタ目標電圧Vc*を満たすようにパワーフローを決定するものである。
 以上の説明では、旋回体の力行および回生動作例を示したが、その他の部分、例えば走行動作やフロント部のブーム動作が電動化された場合についても本実施例における電源システム1の制御方法については適用可能である。
 本発明は、エンジンと電源システムとを備えた建設機械に関するものであって、油圧ショベル、ホイールローダ、フォークリフト等に利用可能である。
1 電源システム
8 モータジェネレータ(M/G)
9 第1のインバータ
10 エンジン
12 バッテリ
13 キャパシタ
14 第2のDC/DCコンバータ
15 第1のDC/DCコンバータ
17 コントローラ
32 フロント作業装置
33 走行用油圧モータ
34 第2のインバータ
35 交流モータ
36 コントロールバルブ
400 作業部
402 旋回体

Claims (8)

  1.  エンジンと、前記エンジンによって駆動する油圧ポンプと、前記エンジンと前記油圧ポンプとに連結する発電可能なモータジェネレータと、前記油圧ポンプから吐出する油によって駆動する油圧作業装置と、前記油圧作業装置が設置される旋回体と、前記旋回体を駆動する交流モータと、前記モータジェネレータおよび/または前記交流モータに電力を供給、ならびに、前記モータジェネレータおよび/または前記交流モータから回生される電力を充電するキャパシタを有する電源システムと、前記電源システムを制御するコントローラと、を有する建設機械において、
     前記コントローラは、オペレータの現操作に基づいて、前記油圧作業装置および/または前記旋回体の次動作を推定する動作推定部と、推定された次動作に基づいて、前記モータジェネレータおよび/または前記交流モータから回生される電力量を算出するエネルギ算出部と、算出された電力量に基づいて、前記キャパシタの目標電圧を設定するキャパシタ制御部と、を有することを特徴とする建設機械。
  2.  請求項1に記載の建設機械において、
     前記キャパシタ制御部は、前記キャパシタの現電圧を検出するキャパシタ状態検出部と、算出された電力量と検出された現電圧とに基づいて、前記キャパシタに対する充放電指令を算出するキャパシタ充放電指令算出部と、作成された充放電指令に基づいて、前記キャパシタの目標電圧を設定するキャパシタ目標電圧設定部と、を有することを特徴とする建設機械。
  3.  請求項1に記載の建設機械において、
     前記キャパシタ制御部は、前記エンジンの回転数、前記交流モータのトルク指令、および/または、前記モータジェネレータのトルク指令に基づいて、前記キャパシタの目標電圧を補正することを特徴とする建設機械。
  4.  請求項1に記載の建設機械において、
     前記コントローラは、オペレータの現操作に応じて前記旋回体から要求される電力量を算出する車体制御部を有することを特徴とする建設機械。
  5.  エンジンと油圧ポンプとに連結する発電可能なモータジェネレータおよび/または前記油圧ポンプから吐出する油によって駆動する油圧作業装置が設置される旋回体を駆動する交流モータ、に電力を供給する、ならびに、前記モータジェネレータおよび/または前記交流モータから回生される電力を充電する、キャパシタを有する電源システムと、前記電源システムを制御するコントローラと、を有する建設機械において、
     前記コントローラは、オペレータの現操作に基づいて、前記油圧作業装置および/または前記旋回体の次動作を推定し、推定された次動作に基づいて、前記モータジェネレータおよび/または前記交流モータから回生される電力量を算出し、算出された電力量に基づいて、前記キャパシタの目標電圧を設定することを特徴とする建設機械。
  6.  請求項5に記載の建設機械において、
     前記コントローラは、算出された電力量に基づいて、前記キャパシタに対する充放電指令を作成し、作成された充放電指令に基づいて、前記キャパシタの目標電圧を設定することを特徴とする建設機械。
  7.  請求項5に記載の建設機械において、
     前記コントローラは、前記交流モータの回転速度に基づいて、電力量を算出することを特徴とする建設機械。
  8.  請求項5に記載の建設機械において、
     前記コントローラは、キャパシタの現電圧と前記キャパシタの目標電圧とを比較し、前記キャパシタの現電圧が前記キャパシタの目標電圧より大きい場合には、前記旋回体を駆動する交流モータに、予め、前記キャパシタに充電されている電力を供給することを特徴とする建設機械。
PCT/JP2011/072892 2010-10-14 2011-10-04 建設機械 WO2012050010A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800496393A CN103154388A (zh) 2010-10-14 2011-10-04 工程机械
US13/878,822 US20140147238A1 (en) 2010-10-14 2011-10-04 Construction machine
EP11832446.6A EP2628857A1 (en) 2010-10-14 2011-10-04 Construction machine
KR1020137007950A KR20140009129A (ko) 2010-10-14 2011-10-04 건설 기계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010231086A JP2012082644A (ja) 2010-10-14 2010-10-14 建設機械
JP2010-231086 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012050010A1 true WO2012050010A1 (ja) 2012-04-19

Family

ID=45938239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072892 WO2012050010A1 (ja) 2010-10-14 2011-10-04 建設機械

Country Status (6)

Country Link
US (1) US20140147238A1 (ja)
EP (1) EP2628857A1 (ja)
JP (1) JP2012082644A (ja)
KR (1) KR20140009129A (ja)
CN (1) CN103154388A (ja)
WO (1) WO2012050010A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014047564A1 (en) * 2012-09-21 2014-03-27 Harnischfeger Technologies, Inc. Energy management system for machinery performing a predictable work cycle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226733B2 (ja) * 2010-05-20 2013-07-03 株式会社小松製作所 ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法
JP2014087115A (ja) * 2012-10-22 2014-05-12 Kobe Steel Ltd 建設機械用2次電池保護回路
JP5580914B1 (ja) * 2013-03-22 2014-08-27 トヨタ自動車株式会社 電源制御装置
JP6324661B2 (ja) * 2013-03-29 2018-05-16 住友重機械工業株式会社 ショベル
CN103342124B (zh) * 2013-07-25 2016-08-10 潍柴动力股份有限公司 一种取力器取力的控制方法及装置
JP6324072B2 (ja) * 2014-01-07 2018-05-16 株式会社Kcm ハイブリッド式ホイールローダ
JP6557472B2 (ja) * 2015-01-06 2019-08-07 川崎重工業株式会社 作業機械の駆動制御システム、それを備える作業機械、及びその駆動制御方法
JP6243856B2 (ja) 2015-01-22 2017-12-06 日立建機株式会社 ハイブリッド建設機械
JP6708969B2 (ja) 2016-12-08 2020-06-10 コベルコ建機株式会社 旋回制御装置
WO2018176041A1 (en) * 2017-03-24 2018-09-27 Sturman Digital Systems, Llc Multiple engine block and multiple engine internal combustion power plants for both stationary and mobile applications
JP6961548B2 (ja) * 2018-07-19 2021-11-05 日立建機株式会社 建設機械
KR102402509B1 (ko) 2018-09-28 2022-05-30 가부시키가이샤 히다치 겡키 티에라 전동식 건설 기계
JP7283910B2 (ja) * 2019-02-01 2023-05-30 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
CN111022440A (zh) * 2019-11-27 2020-04-17 上海中船三井造船柴油机有限公司 用于数控机床液压系统的余能转换再利用装置
CN113958550A (zh) * 2021-11-03 2022-01-21 北京时代龙博科技有限公司 工程抢险集成车
JP2024055024A (ja) * 2022-10-06 2024-04-18 日立建機株式会社 作業機械

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224302A (ja) 1996-02-19 1997-08-26 Aqueous Res:Kk ハイブリッド車両
JPH11164402A (ja) 1997-11-28 1999-06-18 Aisin Aw Co Ltd ハイブリッド車両の制御装置及び制御方法
JP2002359935A (ja) 2001-05-31 2002-12-13 Komatsu Ltd ハイブリッド作業機械の蓄電部充放電制御装置
WO2010114036A1 (ja) * 2009-03-31 2010-10-07 日立建機株式会社 電源システムを備えた建設機械及び産業車両

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709654B2 (ja) * 1997-05-21 2005-10-26 日立建機株式会社 掘削手段を備えた土質改良機械
JP4248579B2 (ja) * 2004-09-24 2009-04-02 株式会社小松製作所 旋回制御装置、旋回制御方法、および建設機械
US8207708B2 (en) * 2007-03-23 2012-06-26 Komatsu Ltd. Power generation control method of hybrid construction machine and hybrid construction machine
US8186156B2 (en) * 2007-06-26 2012-05-29 Hitachi Construction Machinery Co., Ltd. Automotive construction machine
JP5096813B2 (ja) * 2007-07-03 2012-12-12 日立建機株式会社 建設機械のエンジン制御装置
CN102076943B (zh) * 2008-06-27 2013-08-14 住友重机械工业株式会社 混合式施工机械
JP5079725B2 (ja) * 2009-03-05 2012-11-21 住友重機械工業株式会社 作業機械
JP5116787B2 (ja) * 2009-03-05 2013-01-09 住友重機械工業株式会社 ハイブリッド型作業機械
JP5228000B2 (ja) * 2010-05-26 2013-07-03 日立建機株式会社 ハイブリッド式建設機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224302A (ja) 1996-02-19 1997-08-26 Aqueous Res:Kk ハイブリッド車両
JPH11164402A (ja) 1997-11-28 1999-06-18 Aisin Aw Co Ltd ハイブリッド車両の制御装置及び制御方法
JP2002359935A (ja) 2001-05-31 2002-12-13 Komatsu Ltd ハイブリッド作業機械の蓄電部充放電制御装置
WO2010114036A1 (ja) * 2009-03-31 2010-10-07 日立建機株式会社 電源システムを備えた建設機械及び産業車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014047564A1 (en) * 2012-09-21 2014-03-27 Harnischfeger Technologies, Inc. Energy management system for machinery performing a predictable work cycle
CN104379845A (zh) * 2012-09-21 2015-02-25 哈尼施费格尔技术公司 用于执行可预测工作周期的机械的能量管理系统
AU2013317745B2 (en) * 2012-09-21 2017-05-25 Joy Global Surface Mining Inc Energy management system for machinery performing a predictable work cycle
CN104379845B (zh) * 2012-09-21 2017-06-23 哈尼施费格尔技术公司 用于执行可预测工作周期的工业机器、能量管理系统以及操作该工业机器的方法
US10132335B2 (en) 2012-09-21 2018-11-20 Joy Global Surface Mining Inc Energy management system for machinery performing a predictable work cycle

Also Published As

Publication number Publication date
US20140147238A1 (en) 2014-05-29
CN103154388A (zh) 2013-06-12
EP2628857A1 (en) 2013-08-21
KR20140009129A (ko) 2014-01-22
JP2012082644A (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2012050010A1 (ja) 建設機械
JP5340381B2 (ja) 電源システムを備えた建設機械及び産業車両
JP5356543B2 (ja) 作業用車両の駆動制御装置
CN102459769B (zh) 混合式挖土机及其控制方法
JP5841399B2 (ja) ハイブリッド式建設機械及びその制御方法
US9598838B2 (en) Hybrid work vehicle with load dependent target state of charge
KR101834598B1 (ko) 하이브리드식 건설 기계
JP5174875B2 (ja) ハイブリッドホイールローダ
US8297392B2 (en) Hybrid energy management system
JP5922151B2 (ja) 作業機械
CN102318181A (zh) 混合式挖掘机
JP2010173599A (ja) ハイブリッド式作業機械の制御方法、及びサーボ制御システムの制御方法
JP6243857B2 (ja) ハイブリッド建設機械
WO2016117232A1 (ja) ハイブリッド建設機械
JP2011079637A (ja) 電動産業車両
JP2005207385A (ja) ハイブリッドシステムにおける制御方法
JP2015123803A (ja) ハイブリッド式作業車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049639.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137007950

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011832446

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13878822

Country of ref document: US