WO2012046332A1 - 内燃機関の排気浄化装置 - Google Patents
内燃機関の排気浄化装置 Download PDFInfo
- Publication number
- WO2012046332A1 WO2012046332A1 PCT/JP2010/067705 JP2010067705W WO2012046332A1 WO 2012046332 A1 WO2012046332 A1 WO 2012046332A1 JP 2010067705 W JP2010067705 W JP 2010067705W WO 2012046332 A1 WO2012046332 A1 WO 2012046332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- exhaust
- exhaust gas
- hydrocarbon
- concentration
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/58—Platinum group metals with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/36—Arrangements for supply of additional fuel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/30—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
Definitions
- the present invention relates to an exhaust purification device for an internal combustion engine.
- the engine exhaust passage, NO X storage catalyst air-fuel ratio of the inflowing exhaust gas when the lean that releases NO X air-fuel ratio of the exhaust gas which is occluded becomes rich for occluding NO X contained in the exhaust gas inflow was placed, NO X occluding catalyst upstream of the engine oxidation catalyst having an adsorbing function in the exhaust passage disposed, NO X from occluding catalyst when releasing the NO X is feeding hydrocarbons into the engine exhaust passage an oxidation catalyst upstream
- An internal combustion engine in which the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst is made rich is known (see, for example, Patent Document 1).
- An object of the present invention is to provide an exhaust purification system of an internal combustion engine capable of temperature of the exhaust purification catalyst to obtain a high NO X purification rate even at high temperatures.
- an exhaust purification catalyst for reacting NO X contained in exhaust gas and reformed hydrocarbon is disposed in the engine exhaust passage, and the exhaust purification catalyst is platinum and basic on the carrier.
- the exhaust purification catalyst comprises a mixture of a first catalyst supporting a layer and a second catalyst supporting rhodium on zirconia, and the exhaust purification catalyst has a concentration of hydrocarbons flowing into the exhaust purification catalyst within a predetermined range.
- the exhaust gas to be longer than the predetermined range vibration period of the hydrocarbon concentration period of the NO stored amount of X has a property of increasing amplitude and a predetermined range within a predetermined range of the concentration of hydrocarbons flowing into the exhaust purification catalyst at the time of engine operation contained in so To vibrate I, whereby the exhaust gas purifying apparatus for an internal combustion engine which is adapted to reduce in the NO X contained in the exhaust gas exhaust purification catalyst is provided.
- FIG. 1 is an overall view of a compression ignition type internal combustion engine.
- 2A and 2B are diagrams schematically showing a surface portion of a catalyst carrier.
- FIG. 3 is a view for explaining an oxidation reaction in the exhaust purification catalyst.
- FIG. 4 is a diagram showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
- Figure 5 is a diagram illustrating a NO X purification rate.
- 6A and 6B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
- 7A and 7B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
- FIG. 8 is a diagram showing a change in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
- FIG. 9 is a diagram illustrating a NO X purification rate.
- FIG. 10 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
- FIG. 11 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
- FIG. 12 is a diagram showing the relationship between the oxidizing power of the exhaust purification catalyst and the required minimum air-fuel ratio X.
- FIG. 13 is a graph showing the relationship between the oxygen concentration in the exhaust gas and the amplitude ⁇ H of the hydrocarbon concentration, with which the same NO x purification rate can be obtained.
- Figure 14 is a diagram showing a relationship between an amplitude ⁇ H and NO X purification rate of hydrocarbon concentration.
- FIG. 15 is a diagram showing the relationship between the vibration period ⁇ T and NO X purification rate of hydrocarbon concentration.
- FIG. 16 is a diagram showing a map of the hydrocarbon feed amount W.
- FIG. 17 is a diagram showing changes in the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst.
- Figure 18 is a diagram illustrating a map of exhaust amount of NO X NOXA.
- FIG. 19 shows the fuel injection timing.
- FIG. 20 is a diagram showing a map of the hydrocarbon supply amount WR.
- FIG. 21 is a flowchart for performing NO X purification control.
- FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
- 1 is an engine body
- 2 is a combustion chamber of each cylinder
- 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber
- 4 is an intake manifold
- 5 is an exhaust manifold.
- the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8.
- a throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6.
- a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6.
- the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.
- the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7.
- the outlet of the exhaust turbine 7b is connected to the inlet of the exhaust purification catalyst 13 via the exhaust pipe 12, and the outlet of the exhaust purification catalyst 13 is connected to the particulate filter 14 for collecting particulates contained in the exhaust gas.
- the present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a lean air-fuel ratio.
- the hydrocarbon supply valve 15 supplies hydrocarbons made of gasoline or other fuel used as fuel for the spark ignition internal combustion engine.
- the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 16, and an electronically controlled EGR control valve 17 is disposed in the EGR passage 16.
- EGR exhaust gas recirculation
- a cooling device 18 for cooling the EGR gas flowing in the EGR passage 16 is disposed around the EGR passage 16. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 18, and the EGR gas is cooled by the engine cooling water.
- each fuel injection valve 3 is connected to a common rail 20 via a fuel supply pipe 19, and this common rail 20 is connected to a fuel tank 22 via an electronically controlled fuel pump 21 having a variable discharge amount.
- the fuel stored in the fuel tank 22 is supplied into the common rail 20 by the fuel pump 21, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 through each fuel supply pipe 19.
- the electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31.
- a temperature sensor 23 for detecting the exhaust gas temperature is attached downstream of the exhaust purification catalyst 13.
- Output signals of the temperature sensor 23 and the intake air amount detector 8 are input to the input port 35 via the corresponding AD converters 37, respectively.
- a load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done.
- the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °.
- the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the hydrocarbon supply valve 15, the EGR control valve 17, and the fuel pump 21 through corresponding drive circuits 38.
- the base of the exhaust purification catalyst 13 is made of cordierite, for example, and a coat layer made of a mixture of the powdery first catalyst and the powdery second catalyst is formed on the surface of the base.
- FIG. 2A schematically shows the surface portion of the catalyst support of the first catalyst
- FIG. 2B schematically shows the surface portion of the catalyst support of the second catalyst.
- the catalyst carrier 50 of the first catalyst shown in FIG. 2A is made of alumina Al 2 O 3. On the catalyst carrier 50 made of alumina, platinum Pt 51, potassium K, sodium Na, cesium Cs, etc.
- alkaline earth metals such as alkali metals, barium Ba, calcium Ca, rare earth and silver Ag, such as lanthanides, copper Cu, iron Fe, less selected from metals capable of donating an electron to the NO X as iridium Ir
- a basic layer 52 including one is supported.
- 53 shows the surface part of the basic layer 52, and the surface part 53 of the basic layer 52 is basic.
- palladium Pd can be supported on the catalyst carrier 50 in addition to platinum Pt51.
- alumina Al 2 O 3 is preferably used as the catalyst carrier 50 of the first catalyst, but zirconia ZrO 2 can also be used instead of alumina Al 2 O 3 .
- the catalyst support 55 of the second catalyst shown in FIG. 2B is made of zirconia ZrO 2 , and rhodium Rh 56 is supported on the catalyst support 55.
- the second catalyst does not support the basic layer as shown in FIG.
- FIG. 3 schematically shows the reforming action performed in the first catalyst at this time. As shown in FIG.
- the hydrocarbon HC injected from the hydrocarbon feed valve 15 becomes radical hydrocarbon HC having a small number of carbon atoms by platinum Pt 51. Even if fuel, that is, hydrocarbon, is injected from the fuel injection valve 3 into the combustion chamber 2 during the latter half of the expansion stroke or during the exhaust stroke, the hydrocarbon is reformed in the combustion chamber 2 or in the first catalyst, and exhausted. NO X contained in the gas is purified by the exhaust purification catalyst 13 by the reformed hydrocarbon. Therefore, in the present invention, instead of supplying hydrocarbons from the hydrocarbon supply valve 15 into the engine exhaust passage, it is also possible to supply hydrocarbons into the combustion chamber 2 in the latter half of the expansion stroke or during the exhaust stroke.
- FIG. 4 shows the supply timing of hydrocarbons from the hydrocarbon supply valve 15 and changes in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13. Since the change in the air-fuel ratio (A / F) in depends on the change in the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, the air-fuel ratio (A / F) in shown in FIG. It can be said that the change represents a change in hydrocarbon concentration.
- FIG. 5 shows a change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 as shown in FIG. 4 by periodically changing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13. the NO X purification rate by the exhaust purification catalyst 13 when allowed to indicate for each catalyst temperature TC of the exhaust purification catalyst 13.
- the inventor has conducted research on NO X purification over a long period of time, and in the course of the research, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is set to an amplitude within a predetermined range and a predetermined range.
- the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is set to an amplitude within a predetermined range and a predetermined range.
- FIGS. 6A and 6B schematically show the surface portions of the catalyst carriers 50 and 55 of the first catalyst I and the second catalyst II, and these FIGS. 6A and 6B flow into the exhaust purification catalyst 13.
- the reaction presumed to occur when the hydrocarbon concentration oscillates with an amplitude within a predetermined range and a period within a predetermined range is shown.
- FIG. 6A shows a case where the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is low
- FIG. 6B shows that the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 when hydrocarbons are supplied from the hydrocarbon supply valve 15 is high. It shows when As can be seen from FIG.
- the active NO 2 * is converted into radical hydrocarbons HC and the second catalyst II on the platinum 51 as shown in FIG. 6B.
- the hydrogen H 2 produced on rhodium Rh56, thereby producing the reducing intermediate R—NH 2 .
- This reducing intermediate R—NH 2 is attached or adsorbed on the surface of the basic layer 52.
- hydrogen H 2 is required for the production of the reducing intermediate R—NH 2 , and this hydrogen H 2 is converted from CO and H 2 O contained in the exhaust gas by rhodium Rh56 as shown in FIG. 6B. Generated.
- the basic layer as in the first catalyst I is not supported on the catalyst carrier 55 so as not to reduce the reduction activity of rhodium Rh56.
- the hydrocarbon HC surrounds the generated reducing intermediate R-NH 2
- the reducing intermediate R-NH 2 is blocked by the hydrocarbon HC and reacts further. Does not advance.
- the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is lowered, and as a result, when the oxygen concentration is increased, the hydrocarbons around the reducing intermediate are oxidized. As a result, as shown in FIG. 6A, the reducing intermediate R—NH 2 and active NO 2 * are reacted. At this time, the active NO 2 * reacts with the reducing intermediate R—NH 2 to become N 2 , CO 2 , H 2 O, and thus NO X is purified. In this way, in the exhaust purification catalyst 13, a reducing intermediate is generated by increasing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13, and the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is decreased to reduce the oxygen concentration.
- active NO 2 * reacts with the reducing intermediate, and NO X is purified. That is, in order to purify the NO X by the exhaust purification catalyst 13, it is necessary to change the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 periodically. Of course, in this case, the hydrocarbon concentration needs to be increased to a concentration high enough to produce a reducing intermediate, and carbonized to a concentration low enough to react the resulting reducing intermediate with active NO 2 *. It is necessary to reduce the concentration of hydrogen. That is, it is necessary to vibrate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with an amplitude within a predetermined range.
- the first catalyst I is provided with a basic layer 52 that exhibits basicity.
- the supply cycle of the hydrocarbon is lengthened, the period during which the oxygen concentration becomes high after the hydrocarbon is supplied and before the next hydrocarbon is supplied becomes longer, so that the active NO 2 * is reduced to the reducing intermediate.
- the active NO 2 * is reduced to the reducing intermediate.
- the oscillation cycle of the hydrocarbon concentration Is the oscillation period necessary to continue to produce the reducing intermediate R—NH 2 .
- the injection interval is 3 seconds.
- FIG. 7B shows that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 when NO X is absorbed in the basic layer 52 of the first catalyst in the form of nitrate is the stoichiometric air-fuel ratio or Shows the case of being rich.
- the reaction proceeds in the reverse direction (NO 3 ⁇ ⁇ NO 2 ), and thus the nitrate absorbed in the basic layer 52 is successively converted to nitrate ions NO 3. ⁇ And released from the basic layer 52 in the form of NO 2 as shown in FIG. 7B.
- the released NO 2 is reduced by the hydrocarbons HC and CO contained in the exhaust gas. 8 to temporarily rich air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 shortly before the NO X absorbing capacity of the basic layer 52 of the first catalyst is saturated
- the time interval of this rich control is 1 minute or more.
- the NO X absorbed in the basic layer 52 when the air-fuel ratio (A / F) in of the exhaust gas is lean causes the air-fuel ratio (A / F) in of the exhaust gas to be temporarily rich.
- the basic layer 52 serves as an absorbent for temporarily absorbing NO X.
- the basic layer 52 when using term of storage as a term including both absorption and adsorption temporarily the NO X, therefore at this time the basic layer 52 when using term of storage as a term including both absorption and adsorption temporarily the NO X It plays the role of NO X storage agent for storage. That is, in this case, the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the exhaust purification catalyst 13 is referred to as the air-fuel ratio of the exhaust gas.
- the catalyst i.e., the exhaust purification catalyst 13
- the air-fuel ratio of the exhaust gas is acting as the NO X storage catalyst during lean occludes NO X, the oxygen concentration in the exhaust gas to release NO X occluding the drops.
- Figure 9 shows the NO X purification rate when making the exhaust purification catalyst 13 was thus function as the NO X storage catalyst.
- the horizontal axis in FIG. 9 indicates the catalyst temperature TC of the exhaust purification catalyst 13.
- the catalyst temperature TC is 300 ° C. to 400 ° C.
- NO X purification rate decreases when a high temperature of more.
- the exhaust purification catalyst 13 for reacting NO X contained in the exhaust gas with the reformed hydrocarbon is disposed in the engine exhaust passage, and the exhaust purification catalyst 13 is platinum Pt 51 on the carrier 50. And the first catalyst supporting the basic layer 52 and the second catalyst supporting rhodium Rh56 on the zirconia 55.
- the exhaust purification catalyst 13 is a mixture of hydrocarbons flowing into the exhaust purification catalyst 13.
- this predetermined oscillation period of the hydrocarbon concentration was has a property of absorbing the amount of NO X contained in the exhaust gas is increased to be longer than the range, advance constant the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 at the time of engine operation It was vibrated with a cycle of the amplitude and the predetermined range within the range, so that the reduction of NO X contained in the exhaust gas in the exhaust purification catalyst 13 thereby. That is, the NO X purification methods shown in FIGS.
- FIG. 10 shows an enlarged view of the change in the air-fuel ratio (A / F) in shown in FIG.
- the change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 indicates the change in the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 at the same time.
- ⁇ H indicates the amplitude of the change in the concentration of hydrocarbon HC flowing into the exhaust purification catalyst 13
- ⁇ T indicates the oscillation period of the concentration of hydrocarbon flowing into the exhaust purification catalyst 13.
- (A / F) b represents the base air-fuel ratio indicating the air-fuel ratio of the combustion gas for generating the engine output.
- the base air-fuel ratio (A / F) b represents the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 when the supply of hydrocarbons is stopped.
- X is the air-fuel ratio (A / F) used for generating the reducing intermediate without the generated active NO 2 * being occluded in the basic layer 52 in the form of nitrate.
- the upper limit of in is expressed, and in order to react active NO 2 * and the reformed hydrocarbon to generate a reducing intermediate, the air-fuel ratio (A / F) in is set to be higher than the upper limit X of the air-fuel ratio. It needs to be lowered.
- the hydrocarbon concentration needs to be higher than the lower limit X.
- whether or not the reducing intermediate is generated is determined by the ratio of the oxygen concentration around the active NO 2 * and the hydrocarbon concentration, that is, the air-fuel ratio (A / F) in, and the reducing intermediate is generated.
- the above-described upper limit X of the air-fuel ratio necessary for this is hereinafter referred to as a required minimum air-fuel ratio.
- the required minimum air-fuel ratio X is rich.
- the air-fuel ratio (A / F) in is instantaneously required to generate the reducing intermediate.
- the following is made rich:
- the required minimum air-fuel ratio X is lean.
- the reducing intermediate is generated by periodically reducing the air-fuel ratio (A / F) in while maintaining the air-fuel ratio (A / F) in lean.
- whether the required minimum air-fuel ratio X becomes rich or lean depends on the oxidizing power of the exhaust purification catalyst 13. In this case, for example, if the amount of platinum Pt 51 supported is increased, the exhaust purification catalyst 13 becomes stronger in oxidizing power, and if it becomes more acidic, the oxidizing power becomes stronger.
- the oxidizing power of the exhaust purification catalyst 13 varies depending on the amount of platinum Pt 51 supported and the acidity.
- the air-fuel ratio (A / F) in is periodically decreased while maintaining the air-fuel ratio (A / F) in lean as shown in FIG.
- the air-fuel ratio (A / F) in is lowered, the hydrocarbon is completely oxidized, and as a result, a reducing intermediate cannot be generated.
- the exhaust purification catalyst 13 having a strong oxidizing power if the air-fuel ratio (A / F) in is periodically made rich as shown in FIG. 10, the air-fuel ratio (A / F) in is rich.
- the hydrocarbons are partially oxidized without being completely oxidized, i.e., the hydrocarbons are reformed, thus producing a reducing intermediate. Therefore, when the exhaust purification catalyst 13 having a strong oxidizing power is used, the required minimum air-fuel ratio X needs to be made rich. On the other hand, when the exhaust purification catalyst 13 having a weak oxidizing power is used, the air-fuel ratio (A / F) in is periodically decreased while maintaining the air-fuel ratio (A / F) in lean as shown in FIG. In this case, the hydrocarbon is not completely oxidized but partially oxidized, that is, the hydrocarbon is reformed, and thus a reducing intermediate is produced.
- the exhaust purification catalyst 13 having a weak oxidizing power when the exhaust purification catalyst 13 having a weak oxidizing power is used, if the air-fuel ratio (A / F) in is periodically made rich as shown in FIG. 10, a large amount of hydrocarbons are not oxidized. The exhaust gas is simply exhausted from the exhaust purification catalyst 13, and the amount of hydrocarbons that are wasted is increased. Therefore, when the exhaust purification catalyst 13 having a weak oxidizing power is used, the required minimum air-fuel ratio X needs to be made lean. That is, it can be seen that the required minimum air-fuel ratio X needs to be lowered as the oxidizing power of the exhaust purification catalyst 13 becomes stronger, as shown in FIG.
- the required minimum air-fuel ratio X becomes lean or rich due to the oxidizing power of the exhaust purification catalyst 13, but the case where the required minimum air-fuel ratio X is rich will be described as an example.
- the amplitude of the change in the concentration of the inflowing hydrocarbon and the oscillation period of the concentration of the hydrocarbon flowing into the exhaust purification catalyst 13 will be described.
- the base air-fuel ratio (A / F) b increases, that is, when the oxygen concentration in the exhaust gas before the hydrocarbons are supplied increases, the air-fuel ratio (A / F) in is made equal to or less than the required minimum air-fuel ratio X.
- the amount of hydrocarbons necessary for the increase increases, and the amount of excess hydrocarbons that did not contribute to the production of the reducing intermediate also increases.
- NO X in order to satisfactorily purify NO X must oxidize the excess hydrocarbons as described above, therefore in order to satisfactorily purify NO X amounts of higher hydrocarbons the amount of the surplus is large Oxygen is needed.
- the amount of oxygen can be increased by increasing the oxygen concentration in the exhaust gas. To satisfactorily purify NO X, therefore, it is necessary to increase the oxygen concentration in the exhaust gas after the hydrocarbon feed when the oxygen concentration in the exhaust gas before the hydrocarbons are fed is high.
- FIG. 13 shows the relationship between the oxygen concentration in the exhaust gas before the hydrocarbon is supplied and the amplitude ⁇ H of the hydrocarbon concentration when the same NO X purification rate is obtained. From FIG. 13, it can be seen that in order to obtain the same NO x purification rate, the higher the oxygen concentration in the exhaust gas before the hydrocarbons are supplied, the more the amplitude ⁇ H of the hydrocarbon concentration needs to be increased. That is, it is necessary to increase the amplitude ⁇ T of the hydrocarbon concentration as the base air-fuel ratio (A / F) b is increased to obtain the same of the NO X purification rate.
- the base air-fuel ratio (A / F) b becomes the lowest during acceleration operation.
- NO X can be purified well.
- the base air-fuel ratio (A / F) b is usually larger than that during acceleration operation. Therefore, as shown in FIG. 14, if the hydrocarbon concentration amplitude ⁇ H is 200 ppm or more, a good NO x purification rate can be obtained. become.
- the predetermined range of the amplitude of the hydrocarbon concentration is set to 200 ppm to 10,000 ppm.
- the vibration period ⁇ T of the hydrocarbon concentration becomes longer, the oxygen concentration around the active NO 2 * becomes higher while the hydrocarbon is supplied after the hydrocarbon is supplied.
- the vibration period ⁇ T of the hydrocarbon concentration becomes longer than about 5 seconds, the active NO 2 * begins to be absorbed in the basic layer 52 in the form of nitrate, and therefore the vibration of the hydrocarbon concentration as shown in FIG.
- the vibration period ⁇ T of the hydrocarbon concentration needs to be 5 seconds or less.
- the vibration period ⁇ T of the hydrocarbon concentration becomes approximately 0.3 seconds or less, the supplied hydrocarbon begins to accumulate on the exhaust purification catalyst 13, and therefore, the vibration period ⁇ T of the hydrocarbon concentration becomes as shown in FIG. NO X purification rate decreases and becomes equal to or less than the approximately 0.3 seconds. Therefore, in the present invention, the vibration period of the hydrocarbon concentration is set to be between 0.3 seconds and 5 seconds.
- the hydrocarbon supply amount and the injection timing from the hydrocarbon supply valve 15 are controlled so that the amplitude ⁇ H and the vibration period ⁇ T of the hydrocarbon concentration become optimum values according to the operating state of the engine.
- the hydrocarbon supply amount W capable of obtaining the optimum hydrocarbon concentration amplitude ⁇ H is shown in FIG. 16 as a function of the injection amount Q from the fuel injection valve 3 and the engine speed N. Such a map is stored in the ROM 32 in advance.
- the vibration amplitude ⁇ T of the optimum hydrocarbon concentration is also stored in the ROM 32 in advance in the form of a map as a function of the injection amount Q and the engine speed N.
- NO X purification method when the exhaust purification catalyst 13 with reference made to function as the NO X storing catalyst to FIGS. 17 to 20.
- NO X purification method in the case where the exhaust purification catalyst 13 functions as the NO X storage catalyst is referred to as a second NO X purification method. In this second NO X purification method, as shown in FIG.
- the air-fuel ratio (A / F) in of the gas is temporarily made rich.
- Occluded amount of NO X ⁇ NOX is calculated from the amount of NO X discharged from the engine, for example.
- the ROM32 in the form of a map as shown in FIG. 18 as a function of the discharge amount of NO X NOXA the injection quantity Q and the engine speed N which is discharged from the engine per unit time
- the stored NO X amount ⁇ NOX is calculated from this exhausted NO X amount NOXA.
- the period during which the air-fuel ratio (A / F) in of the exhaust gas is made rich is usually 1 minute or more.
- the exhaust gas flowing into the exhaust purification catalyst 13 by injecting the additional fuel WR into the combustion chamber 2 from the fuel injection valve 3 in addition to the combustion fuel Q.
- the air / fuel ratio (A / F) in of the gas is made rich.
- the horizontal axis in FIG. 19 indicates the crank angle.
- This additional fuel WR is injected when it burns but does not appear as engine output, that is, slightly before ATDC 90 ° after compression top dead center.
- This fuel amount WR is stored in advance in the ROM 32 as a function of the injection amount Q and the engine speed N in the form of a map as shown in FIG.
- the air-fuel ratio (A / F) in of the exhaust gas can be made rich by increasing the amount of hydrocarbons supplied from the hydrocarbon supply valve 15 in this case.
- NO X purification efficiency is deteriorated when a low concentration of NO X exhaust gas.
- the second NO X purification method when the NO X concentration in the exhaust gas is low, the time until the occluded NO X amount ⁇ NOX reaches the allowable value MAX becomes longer, so the air-fuel ratio (A / F of the exhaust gas) ) period for the in rich merely becomes long, not particularly nO X purification efficiency is poor.
- FIG. 21 shows the NO X purification control routine. This routine is executed by interruption every predetermined time. Referring to FIG. 21, first, at step 60, it is judged from the output signal of the temperature sensor 23 whether or not the temperature TC of the exhaust purification catalyst 13 exceeds the activation temperature TX.
- NO X purification efficiency F 1 when using the first NO X purification method and the second NO X purification method are used.
- NO X purification efficiency F 2 when had is calculated.
- the NO x purification efficiencies F 1 and F 2 represent the fuel or hydrocarbon consumption per unit time necessary to obtain the unit NO x purification rate.
- NO X purification efficiency F 1 is calculated from the NO X purification rate shown in the injection interval and 5 of a hydrocarbon feed amount W and a hydrocarbon which is calculated from the map of FIG.
- NO X purification efficiency F 2 is It is calculated from NO X purification rate shown in spacing and 9 between timing of the rich air-fuel ratio in the additional fuel amount WR and 17 calculated from the map of FIG. 20. Then whether NO X purification efficiency F 1 in step 62 is higher than the NO X purification efficiency F 2 is determined. When F 1 ⁇ F 2 , it is determined that the first NO X purification method should be used. At this time, the routine proceeds to step 63. In step 63, supply control of hydrocarbons from the hydrocarbon supply valve 15 is performed. At this time, the NO X purification action by the first NO X purification method is executed.
- step 60 when it is determined at step 60 that TC ⁇ TX, or when it is determined at step 62 that F 1 ⁇ F 2, it is determined that the second NO X purification method should be used. Proceed to In step 64 the discharge amount of NO X NOXA per unit time from the map shown in FIG. 18 is calculated. Next, at step 65, the stored NO X amount ⁇ NOX is calculated by adding the exhausted NO X amount NOXA to ⁇ NOX. Next, at step 66 occluded amount of NO X ⁇ NOX whether exceeds the allowable value MAX or not. When ⁇ NOX> MAX, the routine proceeds to step 67, where an additional fuel amount WR is calculated from the map shown in FIG. 20, and an additional fuel injection action is performed.
- step 68 ⁇ NOX is cleared.
- radicalization effect of hydrocarbon represented in Figure 3 is not performed and the exhaust purification catalyst 13 is not activated, therefore the first of the NO X purification method can not be used as the exhaust purification catalyst 13 is not activated.
- the second NO X purification method does not necessarily have high purification efficiency, but can be used even when the temperature TC of the exhaust purification catalyst 13 is low. Therefore, in the routine shown in FIG. 21, when it is determined in step 60 that TC ⁇ TX, the routine proceeds to step 64 where the NO X purification action by the second NO X purification method is performed.
- an oxidation catalyst for reforming hydrocarbons may be disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
この内燃機関ではNOX吸蔵触媒からNOXを放出すべきときに供給された炭化水素が酸化触媒においてガス状の炭化水素とされ、ガス状の炭化水素がNOX吸蔵触媒に送り込まれる。その結果、NOX吸蔵触媒から放出されたNOXが良好に還元せしめられることになる。
本発明の目的は、排気浄化触媒の温度が高温になっても高いNOX浄化率を得ることのできる内燃機関の排気浄化装置を提供することにある。
図2Aおよび2Bは触媒担体の表面部分を図解的に示す図である。
図3は排気浄化触媒における酸化反応を説明するための図である。
図4は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図5はNOX浄化率を示す図である。
図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。
図7Aおよび7Bは排気浄化触媒における酸化還元反応を説明するための図である。
図8は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図9はNOX浄化率を示す図である。
図10は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図11は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図12は排気浄化触媒の酸化力と要求最小空燃比Xとの関係を示す図である。
図13は同一のNOX浄化率の得られる、排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示す図である。
図14は炭化水素濃度の振幅ΔHとNOX浄化率との関係を示す図である。
図15は炭化水素濃度の振動周期ΔTとNOX浄化率との関係を示す図である。
図16は炭化水素供給量Wのマップを示す図である。
図17は排気浄化触媒への流入排気ガスの空燃比の変化等を示す図である。
図18は排出NOX量NOXAのマップを示す図である。
図19は燃料噴射時期を示す図である。
図20は炭化水素供給量WRのマップを示す図である。
図21はNOX浄化制御を行うためのフローチャートである。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口は排気管12を介して排気浄化触媒13の入口に連結され、排気浄化触媒13の出口は排気ガス中に含まれるパティキュレートを捕集するためのパティキュレートフィルタ14に連結される。排気浄化触媒13上流の排気管12内には圧縮着火式内燃機関の燃料として用いられる軽油その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置される。図1に示される実施例では炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明はリーン空燃比のもとで燃焼の行われる火花点火式内燃機関にも適用することができる。この場合、炭化水素供給弁15からは火花点火式内燃機関の燃料として用いられるガソリンその他の燃料からなる炭化水素が供給される。
一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結され、このコモンレール20は電子制御式の吐出量可変な燃料ポンプ21を介して燃料タンク22に連結される。燃料タンク22内に貯蔵されている燃料は燃料ポンプ21によってコモンレール20内に供給され、コモンレール20内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒13の下流には排気ガス温を検出するための温度センサ23が取付けられている。この温度センサ23および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、炭化水素供給弁15、EGR制御弁17および燃料ポンプ21に接続される。
排気浄化触媒13の基体は例えばコージライトからなり、この基体の表面上には粉体状の第1の触媒と粉体状の第2の触媒との混合体からなるコート層が形成されている。図2Aはこの第1の触媒の触媒担体の表面部分を図解的に示しており、図2Bはこの第2の触媒の触媒担体の表面部分を図解的に示している。
図2Aに示される第1の触媒の触媒担体50はアルミナAl2O3から形成されており、このアルミナからなる触媒担体50上には白金Pt51と、カリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOXに電子を供与しうる金属から選ばれた少くとも一つを含む塩基性層52とが担持されている。図2Aにおいて53は塩基性層52の表面部分を示しており、この塩基性層52の表面部分53は塩基性を呈している。
なお、第1の触媒については触媒担体50上に白金Pt51に加えてパラジウムPdを担持させることができる。また、第1の触媒の触媒担体50としては上述したようにアルミナAl2O3を用いることが好ましいが、アルミナAl2O3に代えてジルコニアZrO2を用いることもできる。
一方、図2Bに示される第2の触媒の触媒担体55はジルコニアZrO2からなり、この触媒担体55上にはロジウムRh56が担持されている。図2Bからわかるようにこの第2の触媒では触媒担体55上に図2Aに示されるような塩基性層が担持されていない。
炭化水素供給弁15から排気ガス中に炭化水素が噴射されるとこの炭化水素は第1の触媒において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒13においてNOXを浄化するようにしている。図3はこのとき第1の触媒において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは白金Pt51によって炭素数の少ないラジカル状の炭化水素HCとなる。
なお、燃料噴射弁3から燃焼室2内に燃料、即ち炭化水素を膨張行程の後半或いは排気行程中に噴射してもこの炭化水素は燃焼室2内又は第1の触媒において改質され、排気ガス中に含まれるNOXはこの改質された炭化水素によって排気浄化触媒13で浄化される。従って本発明では炭化水素供給弁15から機関排気通路内に炭化水素を供給する代りに、膨張行程の後半或いは排気行程中に燃焼室2内に炭化水素を供給することもできる。このように本発明では炭化水素を燃焼室2内に供給することもできるが、以下炭化水素を炭化水素供給弁15から機関排気通路内に噴射するようにした場合を例にとって本発明を説明する。
図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気浄化触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。
図5は、排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気浄化触媒13への流入排気ガスの空燃比(A/F)inを変化させたときの排気浄化触媒13によるNOX浄化率を排気浄化触媒13の各触媒温度TCに対して示している。本発明者は長い期間に亘ってNOX浄化に関する研究を重ねており、その研究課程において、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、図5に示されるように400℃以上の高温領域においても極めて高いNOX浄化率が得られることが判明したのである。
更にこのときには窒素および炭化水素を含む多量の還元性中間体が第1の触媒の塩基性層52の表面部分53上に保持又は吸着され続けており、この還元性中間体が高NOX浄化率を得る上で中心的役割を果していることが判明したのである。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび6Bは第1の触媒Iおよび第2の触媒IIの触媒担体50,55の表面部分を図解的に示しており、これら図6Aおよび6Bには排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動せしめたときに生ずると推測される反応が示されている。
図6Aは排気浄化触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13に流入する炭化水素の濃度が高くなっているときを示している。
さて、図4からわかるように排気浄化触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気浄化触媒13に流入する排気ガスは通常酸素過剰の状態にある。従って排気ガス中に含まれるNOは図6Aに示されるように白金51上において酸化されてNO2となり、次いでこのNO2は白金51から電子を供与されてNO2 −となる。従って白金51上には多量のNO2 −が生成されることになる。このNO2 −は活性が強く、以上このNO2 −を活性NO2 *と称する。
一方、炭化水素供給弁15から炭化水素が供給されると図3に示されるようにこの炭化水素は第1の触媒において改質され、ラジカルとなる。その結果、図6Bに示されるように活性NO2 *周りの炭化水素濃度が高くなる。一方、このとき第2の触媒IIのロジウムRh56上では図6Bに示されるように排気ガス中に含まれる一酸化炭素COと水分H2Oから水素H2が生成される。
ところで活性NO2 *が生成された後、活性NO2 *周りの酸素濃度が高い状態が一定時間以上継続すると活性NO2 *は酸化され、硝酸イオンNO3 −の形で塩基性層52内に吸収される。しかしながらこの一定時間が経過する前に活性NO2 *周りの炭化水素濃度が高くされると図6Bに示されるように活性NO2 *は白金51上においてラジカル状の炭化水素HCおよび第2の触媒IIのロジウムRh56上において生成された水素H2と反応し、それにより還元性中間体R−NH2が生成される。この還元性中間体R−NH2は塩基性層52の表面上に付着又は吸着される。
このように還元性中間体R−NH2の生成には水素H2が必要であり、この水素H2は図6Bに示されるようにロジウムRh56によって排気ガス中に含まれるCOとH2Oから生成される。この場合、触媒担体55の塩基性が強くなるとロジウムRh56の還元活性が低下する。その結果、水素H2を良好に生成しえなくなり、斯くして還元性中間体を良好に生成しえなくなる。従って本発明による実施例ではロジウムRh56の還元活性を低下させることがないように触媒担体55上には第1の触媒Iにおけるような塩基性層が担持されていない。
一方、図6Bに示されるように生成された還元性中間体R−NH2の周りを炭化水素HCが取り囲んでいると還元性中間体R−NH2は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気浄化触媒13に流入する炭化水素の濃度が低下せしめられ、それによって酸素濃度が高くなると還元性中間体周りの炭化水素は酸化せしめられる。その結果、図6Aに示されるように還元性中間体R−NH2と活性NO2 *とが反応するようになる。このとき活性NO2 *は還元性中間体R−NH2と反応してN2,CO2,H2Oとなり、斯くしてNOXが浄化されることになる。
このように排気浄化触媒13では、排気浄化触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気浄化触媒13に流入する炭化水素の濃度を低くして酸素濃度を高くすることにより活性NO2 *が還元性中間体と反応し、NOXが浄化される。即ち、排気浄化触媒13によりNOXを浄化するには排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。
無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を活性NO2 *と反応させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体が活性NO2 *と反応するまで、十分な量の還元性中間体R−NH2を塩基性層52の表面部分53上保持しておかなければならず、そのために第1の触媒Iには塩基性を呈する塩基性層52が設けられている。
一方、炭化水素の供給周期を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NO2 *は還元性中間体を生成することなく硝酸塩の形で塩基性層52内に吸収されることになる。これを回避するためには排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となり、従って本発明による実施例では、炭化水素濃度の振動周期は還元性中間体R−NH2を生成し続けるのに必要な振動周期とされている。因みに図4に示される例では噴射間隔が3秒とされている。
炭化水素濃度の振動周期、即ち炭化水素HCの供給周期を上述の予め定められた範囲内の周期よりも長くすると塩基性層52の表面上から還元性中間体R−NH2が消滅し、このとき白金Pt51上において生成された活性NO2 *は図7Aに示されるように硝酸イオンNO3 −の形で第1の触媒の塩基性層52内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOXは硝酸塩の形で第1の触媒の塩基性層52内に吸収されることになる。
一方、図7BはこのようにNOXが硝酸塩の形で第1の触媒の塩基性層52内に吸収されているときに排気浄化触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO3 −→NO2)に進み、斯くして塩基性層52内に吸収されている硝酸塩は順次硝酸イオンNO3 −となって図7Bに示されるようにNO2の形で塩基性層52から放出される。次いで放出されたNO2は排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
図8は第1の触媒の塩基性層52のNOX吸収能力が飽和する少し前に排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性層52内に吸収されたNOXは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性層52から一気に放出されて還元される。従ってこの場合には塩基性層52はNOXを一時的に吸収するための吸収剤の役目を果している。
なお、このとき塩基性層52がNOXを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性層52はNOXを一時的に吸蔵するためのNOX吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気浄化触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、第1の触媒、即ち排気浄化触媒13は、排気ガスの空燃比がリーンのときにはNOXを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOXを放出するNOX吸蔵触媒として機能している。
図9は、排気浄化触媒13をこのようにNOX吸蔵触媒として機能させたときのNOX浄化率を示している。なお、図9の横軸は排気浄化触媒13の触媒温度TCを示している。排気浄化触媒13をNOX吸蔵触媒として機能させた場合には図9に示されるように触媒温度TCが300℃から400℃のときには極めて高いNOX浄化率が得られるが触媒温度TCが400℃以上の高温になるとNOX浄化率が低下する。
このように触媒温度TCが400℃以上になるとNOX浄化率が低下するのは、触媒温度TCが400℃以上になると硝酸塩が熱分解してNO2の形で第1の触媒から放出されるからである。即ち、NOXを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNOX浄化率を得るのは困難である。しかしながら図4から図6A,6Bに示される新たなNOX浄化方法では図6A,6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNOX浄化率が得られることになる。
そこで本発明では、機関排気通路内に排気ガス中に含まれるNOXと改質された炭化水素とを反応させるための排気浄化触媒13を配置し、排気浄化触媒13が担体50上に白金Pt51および塩基性層52を担持した第1の触媒と、ジルコニア55上にロジウムRh56を担持した第2の触媒との混合体からなり、排気浄化触媒13は、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOXを還元する性質を有すると共に、炭化水素濃度の振動周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOXの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させ、それにより排気ガス中に含まれるNOXを排気浄化触媒13において還元するようにしている。
即ち、図4から図6A,6Bに示されるNOX浄化方法は、貴金属触媒を担持しかつNOXを吸収しうる塩基性層を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOXを浄化するようにした新たなNOX浄化方法であると言うことができる。実際、この新たなNOX浄化方法を用いた場合には排気浄化触媒13をNOX吸蔵触媒として機能させた場合に比べて、塩基性層52から検出される硝酸塩は極く微量である。なお、この新たなNOX浄化方法を以下、第1のNOX浄化方法と称する。
次に図10から図15を参照しつつこの第1のNOX浄化方法についてもう少し詳細に説明する。
図10は図4に示される空燃比(A/F)inの変化を拡大して示している。なお、前述したようにこの排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化は同時に排気浄化触媒13に流入する炭化水素の濃度変化を示している。なお、図10においてΔHは排気浄化触媒13に流入する炭化水素HCの濃度変化の振幅を示しており、ΔTは排気浄化触媒13に流入する炭化水素濃度の振動周期を示している。
更に図10において(A/F)bは機関出力を発生するための燃焼ガスの空燃比を示すベース空燃比を表している。言い換えるとこのベース空燃比(A/F)bは炭化水素の供給を停止したときに排気浄化触媒13に流入する排気ガスの空燃比を表している。一方、図10においてXは、生成された活性NO2 *が硝酸塩の形で塩基性層52内に吸蔵されることなく還元性中間体の生成のために使用される空燃比(A/F)inの上限を表しており、活性NO2 *と改質された炭化水素とを反応させて還元性中間体を生成させるには空燃比(A/F)inをこの空燃比の上限Xよりも低くすることが必要となる。
別の言い方をすると図10のXは活性NO2 *と改質された炭化水素と水素とを反応させて還元性中間体を生成させるのに必要な炭化水素の濃度の下限を表しており、還元性中間体を生成するためには炭化水素の濃度をこの下限Xよりも高くする必要がある。この場合、還元性中間体が生成されるか否かは活性NO2 *周りの酸素濃度と炭化水素濃度との比率、即ち空燃比(A/F)inで決まり、還元性中間体を生成するのに必要な上述の空燃比の上限Xを以下、要求最小空燃比と称する。
図10に示される例では要求最小空燃比Xがリッチとなっており、従ってこの場合には還元性中間体を生成するために空燃比(A/F)inが瞬時的に要求最小空燃比X以下に、即ちリッチにされる。これに対し、図11に示される例では要求最小空燃比Xがリーンとなっている。この場合には空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させることによって還元性中間体が生成される。
この場合、要求最小空燃比Xがリッチになるかリーンになるかは排気浄化触媒13の酸化力による。この場合、排気浄化触媒13は例えば白金Pt51の担持量を増大させれば酸化力が強まり、酸性を強めれば酸化力が強まる。従って排気浄化触媒13の酸化力は白金Pt51の担持量や酸性の強さによって変化することになる。
さて、酸化力が強い排気浄化触媒13を用いた場合に図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、空燃比(A/F)inが低下せしめられたときに炭化水素が完全に酸化されてしまい、その結果還元性中間体を生成することができなくなる。これに対し、酸化力が強い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると空燃比(A/F)inがリッチにされたときに炭化水素は完全に酸化されることなく部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成されることになる。従って酸化力が強い排気浄化触媒13を用いた場合には要求最小空燃比Xはリッチにする必要がある。
一方、酸化力が弱い排気浄化触媒13を用いた場合には図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、炭化水素は完全に酸化されずに部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成される。これに対し、酸化力が弱い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると多量の炭化水素は酸化されることなく単に排気浄化触媒13から排出されることになり、斯くして無駄に消費される炭化水素量が増大することになる。従って酸化力が弱い排気浄化触媒13を用いた場合には要求最小空燃比Xはリーンにする必要がある。
即ち、要求最小空燃比Xは図12に示されるように排気浄化触媒13の酸化力が強くなるほど低下させる必要があることがわかる。このように要求最小空燃比Xは排気浄化触媒13の酸化力によってリーンになったり、或いはリッチになったりするが、以下要求最小空燃比Xがリッチである場合を例にとって、排気浄化触媒13に流入する炭化水素の濃度変化の振幅や排気浄化触媒13に流入する炭化水素濃度の振動周期について説明する。
さて、ベース空燃比(A/F)bが大きくなると、即ち炭化水素が供給される前の排気ガス中の酸素濃度が高くなると空燃比(A/F)inを要求最小空燃比X以下とするのに必要な炭化水素の供給量が増大し、それに伴なって還元性中間体の生成に寄与しなかった余剰の炭化水素量も増大する。この場合、NOXを良好に浄化するためには前述したようにこの余剰の炭化水素を酸化させる必要があり、従ってNOXを良好に浄化するためには余剰の炭化水素量が多いほど多量の酸素が必要となる。
この場合、排気ガス中の酸素濃度を高めれば酸素量を増大することができる。従ってNOXを良好に浄化するためには、炭化水素が供給される前の排気ガス中の酸素濃度が高いときには炭化水素供給後の排気ガス中の酸素濃度を高める必要がある。即ち、炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅を大きくする必要がある。
図13は同一のNOX浄化率が得られるときの、炭化水素が供給される前の排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示している。図13から同一のNOX浄化率を得るためには炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅ΔHを増大させる必要があることがわかる。即ち、同一のNOX浄化率を得るにはベース空燃比(A/F)bが高くなるほど炭化水素濃度の振幅ΔTを増大させることが必要となる。別の言い方をすると、NOXを良好に浄化するためにはベース空燃比(A/F)bが低くなるほど炭化水素濃度の振幅ΔTを減少させることができる。
ところでベース空燃比(A/F)bが最も低くなるのは加速運転時であり、このとき炭化水素濃度の振幅ΔHが200ppm程度あればNOXを良好に浄化することができる。ベース空燃比(A/F)bは通常、加速運転時よりも大きく、従って図14に示されるように炭化水素濃度の振幅ΔHが200ppm以上であれば良好なNOX浄化率を得ることができることになる。
一方、ベース空燃比(A/F)bが最も高いときには炭化水素濃度の振幅ΔHを10000ppm程度にすれば良好なNOX浄化率が得られることがわかっている。従って本発明では炭化水素濃度の振幅の予め定められた範囲が200ppmから10000ppmとされている。
また、炭化水素濃度の振動周期ΔTが長くなると炭化水素が供給された後、次に炭化水素が供給される間、活性NO2 *周りの酸素濃度が高くなる。この場合、炭化水素濃度の振動周期ΔTが5秒程度よりも長くなると活性NO2 *が硝酸塩の形で塩基性層52内に吸収され始め、従って図15に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNOX浄化率が低下することになる。従って炭化水素濃度の振動周期ΔTは5秒以下とする必要がある。
一方、炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になると供給された炭化水素が排気浄化触媒13上に堆積し始め、従って図15に示されるように炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になるとNOX浄化率が低下する。そこで本発明では炭化水素濃度の振動周期が0.3秒から5秒の間とされている。
さて、本発明では炭化水素供給弁15からの炭化水素供給量および噴射時期を変化させることによって炭化水素濃度の振幅ΔHおよび振動周期ΔTが機関の運転状態に応じた最適値となるように制御される。この場合、本発明による実施例ではこの最適な炭化水素濃度の振幅ΔHを得ることのできる炭化水素供給量Wが燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図16に示すようなマップの形で予めROM32内に記憶されている。また、最適な炭化水素濃度の振動振幅ΔT、即ち炭化水素の噴射周期ΔTも同様に噴射量Qおよび機関回転数Nの関数としてマップの形で予めROM32内に記憶されている。
次に図17から図20を参照しつつ排気浄化触媒13をNOX吸蔵触媒として機能させた場合のNOX浄化方法について具体的に説明する。このように排気浄化触媒13をNOX吸蔵触媒として機能させた場合のNOX浄化方法を以下、第2のNOX浄化方法と称する。
この第2のNOX浄化方法では図17に示されるように塩基性層52に吸蔵された吸蔵NOX量ΣNOXが予め定められた許容量MAXを越えたときに排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが一時的にリッチにされる。排気ガスの空燃比(A/F)inがリッチにされると排気ガスの空燃比(A/F)inがリーンのときに塩基性層52内に吸蔵されたNOXが塩基性層52から一気に放出されて還元される。それによってNOXが浄化される。
吸蔵NOX量ΣNOXは例えば機関から排出されるNOX量から算出される。本発明による実施例では機関から単位時間当り排出される排出NOX量NOXAが噴射量Qおよび機関回転数Nの関数として図18に示すようなマップの形で予めROM32内に記憶されており、この排出NOX量NOXAから吸蔵NOX量ΣNOXが算出される。この場合、前述したように排気ガスの空燃比(A/F)inがリッチにされる周期は通常1分以上である。
この第2のNOX浄化方法では図19に示されるように燃焼室2内に燃料噴射弁3から燃焼用燃料Qに加え、追加の燃料WRを噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされる。なお、図19の横軸はクランク角を示している。この追加の燃料WRは燃焼はするが機関出力となって現われない時期に、即ち圧縮上死点後ATDC90°の少し手前で噴射される。この燃料量WRは噴射量Qおよび機関回転数Nの関数として図20に示すようなマップの形で予めROM32内に記憶されている。無論、この場合炭化水素供給弁15からの炭化水素の供給量を増大させることによって排気ガスの空燃比(A/F)inをリッチにすることもできる。
ところで第1のNOX浄化方法を用いてNOXを浄化するには排気ガス中のNOX濃度が低いときでも一定量以上の炭化水素を短かい周期で供給する必要がある。従って排気ガスのNOX濃度が低いときにはNOX浄化効率が悪くなる。これに対し、第2のNOX浄化方法では排気ガス中のNOX濃度が低いときには吸蔵NOX量ΣNOXが許容値MAXに達するまでの時間が長くなるために排気ガスの空燃比(A/F)inをリッチにする周期が長くなるだけであり、特にNOX浄化効率は悪くならない。従って排気ガス中のNOX濃度が低いときには第1のNOX浄化方法よりも第2のNOX浄化方法を用いる方が好ましいと言える。即ち、第1のNOX浄化方法および第2のNOX浄化方法のいずれを用いるべきかは機関の運転状態において変わることになる。
図21にNOX浄化制御ルーチンを示す。このルーチンは一定時間毎の割込みによって実行される。
図21を参照するとまず初めにステップ60において温度センサ23の出力信号から排気浄化触媒13の温度TCが活性化温度TXを越えているか否かが判別される。TC≧TXのとき、即ち排気浄化触媒13が活性化しているときにはステップ61に進んで第1のNOX浄化方法を用いたときのNOX浄化効率F1と第2のNOX浄化方法を用いた場合のNOX浄化効率F2とが算出される。このNOX浄化効率F1,F2は単位NOX浄化率を得るのに必要な単位時間当りの燃料又は炭化水素の消費量を表している。この場合、NOX浄化効率F1は図16のマップから算出される炭化水素供給量Wと炭化水素の噴射間隔と図5に示されるNOX浄化率から算出され、NOX浄化効率F2は図20のマップから算出される追加の燃料量WRと図17においてリッチ空燃比とされるタイミング間の間隔と図9に示されるNOX浄化率から算出される。
次いでステップ62ではNOX浄化効率F1がNOX浄化効率F2よりも高いか否かが判別される。F1≧F2のときには第1のNOX浄化方法を用いるべきであると判断され、このときにはステップ63に進む。ステップ63では炭化水素供給弁15からの炭化水素の供給制御が行われる。このとき第1のNOX浄化方法によるNOX浄化作用が実行される。
これに対し、ステップ60においてTC<TXと判断されたとき、或いはステップ62においてF1<F2であると判断されたときには第2のNOX浄化方法を用いるべきであると判断され、ステップ64に進む。ステップ64では図18に示すマップから単位時間当りの排出NOX量NOXAが算出される。次いでステップ65ではΣNOXに排出NOX量NOXAを加算することによって吸蔵NOX量ΣNOXが算出される。次いでステップ66では吸蔵NOX量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX>MAXになるとステップ67に進んで図20に示すマップから追加の燃料量WRが算出され、追加の燃料の噴射作用が行われる。次いでステップ68ではΣNOXがクリアされる。
なお、図3に示される炭化水素のラジカル化作用は排気浄化触媒13が活性化しないと行われず、従って第1のNOX浄化方法は排気浄化触媒13が活性化しないと用いることはできない。これに対し、第2のNOX浄化方法は必ずしも浄化効率が高いわけではないが排気浄化触媒13の温度TCが低いときでも用いることができる。従って図21に示すルーチンではステップ60においてTC<TXであると判断されたときにはステップ64に進んで第2のNOX浄化方法によるNOX浄化作用が行われる。
なお、別の実施例として排気浄化触媒13上流の機関排気通路内に炭化水素を改質させるための酸化触媒を配置することもできる。
5…排気マニホルド
7…排気ターボチャージャ
12…排気管
13…排気浄化触媒
14…パティキュレートフィルタ
15…炭化水素供給弁
Claims (7)
- 機関排気通路内に排気ガス中に含まれるNOXと改質された炭化水素とを反応させるための排気浄化触媒を配置し、該排気浄化触媒が担体上に白金および塩基性層を担持した第1の触媒と、ジルコニア上にロジウムを担持した第2の触媒との混合体からなり、該排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOXを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOXの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒に流入する炭化水素の濃度を上記予め定められた範囲内の振幅および上記予め定められた範囲内の周期でもって振動させ、それにより排気ガス中に含まれるNOXを排気浄化触媒において還元するようにした内燃機関の排気浄化装置。
- 上記第1の触媒の塩基性層がアルカリ金属又はアルカリ土類金属又は希土類又はNOXに電子を供与しうる金属の少なくとも一つを含んでいる請求項1に記載の内燃機関の排気浄化装置。
- 上記第2の触媒のジルコニア上には塩基性層が担持されていない請求項2に記載の内燃機関の排気浄化装置。
- 上記第1の触媒の担体がアルミナからなる請求項1に記載の内燃機関の排気浄化装置。
- 上記第1の触媒の担体上には白金に加えてパラジウムが担持されている請求項1に記載の内燃機関の排気浄化装置。
- 上記排気浄化触媒内において排気ガス中に含まれるNOXと改質された炭化水素とが反応して窒素および炭化水素を含む還元性中間体が生成され、上記炭化水素濃度の振動周期は還元性中間体を生成し続けるのに必要な振動周期である請求項1に記載の内燃機関の排気浄化装置。
- 上記炭化水素濃度の振動周期が0.3秒から5秒の間である請求項6に記載の内燃機関の排気浄化装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/260,986 US9034267B2 (en) | 2010-10-04 | 2010-10-04 | Exhaust purification system of internal combustion engine |
ES10848626.7T ES2584605T3 (es) | 2010-10-04 | 2010-10-04 | Método para purificación de gases de escape en sistema de purificación de gases de escape de motor de combustión interna |
JP2011530319A JP5168410B2 (ja) | 2010-10-04 | 2010-10-04 | 内燃機関の排気浄化装置 |
CN201080019340.9A CN103154454B (zh) | 2010-10-04 | 2010-10-04 | 内燃机的排气净化装置 |
EP10848626.7A EP2530267B1 (en) | 2010-10-04 | 2010-10-04 | Method for exhaust purification in exhaust purification system of internal combustion engine |
PCT/JP2010/067705 WO2012046332A1 (ja) | 2010-10-04 | 2010-10-04 | 内燃機関の排気浄化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/067705 WO2012046332A1 (ja) | 2010-10-04 | 2010-10-04 | 内燃機関の排気浄化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012046332A1 true WO2012046332A1 (ja) | 2012-04-12 |
Family
ID=45927346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/067705 WO2012046332A1 (ja) | 2010-10-04 | 2010-10-04 | 内燃機関の排気浄化装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9034267B2 (ja) |
EP (1) | EP2530267B1 (ja) |
JP (1) | JP5168410B2 (ja) |
CN (1) | CN103154454B (ja) |
ES (1) | ES2584605T3 (ja) |
WO (1) | WO2012046332A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103154459B (zh) * | 2010-10-18 | 2015-07-15 | 丰田自动车株式会社 | 内燃机的排气净化装置 |
JP5798331B2 (ja) * | 2011-02-08 | 2015-10-21 | 株式会社神戸製鋼所 | 水噴射式スクリュ圧縮機 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04200637A (ja) * | 1990-11-29 | 1992-07-21 | Nippon Shokubai Co Ltd | ディーゼルエンジン排ガス浄化用触媒 |
JP2004216224A (ja) * | 2003-01-10 | 2004-08-05 | Toyota Central Res & Dev Lab Inc | NOx吸蔵還元型触媒 |
JP2007514090A (ja) * | 2003-05-06 | 2007-05-31 | カタリティカ エナジー システムズ, インコーポレイテッド | パルス化した燃料流れを使用して内燃機関エンジンの排出物制御を改善するためのシステムおよび方法 |
JP2008267217A (ja) * | 2007-04-18 | 2008-11-06 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2008286186A (ja) * | 2007-03-19 | 2008-11-27 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
Family Cites Families (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5075274A (en) | 1989-03-15 | 1991-12-24 | Kabushiki Kaisha Riken | Exhaust gas cleaner |
US5052178A (en) | 1989-08-08 | 1991-10-01 | Cummins Engine Company, Inc. | Unitary hybrid exhaust system and method for reducing particulate emmissions from internal combustion engines |
US5130109A (en) * | 1990-02-22 | 1992-07-14 | Wan Chung Zong | Catalyst composition containing segregated platinum and rhodium components |
US5057483A (en) * | 1990-02-22 | 1991-10-15 | Engelhard Corporation | Catalyst composition containing segregated platinum and rhodium components |
JP2605586B2 (ja) | 1992-07-24 | 1997-04-30 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US6667018B2 (en) | 1994-07-05 | 2003-12-23 | Ngk Insulators, Ltd. | Catalyst-adsorbent for purification of exhaust gases and method for purification of exhaust gases |
EP0710499A3 (en) | 1994-11-04 | 1997-05-21 | Agency Ind Science Techn | Exhaust gas purifier and method for purifying an exhaust gas |
DE69816438T2 (de) | 1997-05-12 | 2004-05-27 | Toyota Jidosha K.K., Toyota | Abgasreinigungsvorrichtung für eine verbrennungskraftmaschine |
JP3456408B2 (ja) | 1997-05-12 | 2003-10-14 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
GB9713428D0 (en) | 1997-06-26 | 1997-08-27 | Johnson Matthey Plc | Improvements in emissions control |
FR2778205B1 (fr) | 1998-04-29 | 2000-06-23 | Inst Francais Du Petrole | Procede d'injection controlee d'hydrocarbures dans une ligne d'echappement d'un moteur a combustion interne |
US7707821B1 (en) | 1998-08-24 | 2010-05-04 | Legare Joseph E | Control methods for improved catalytic converter efficiency and diagnosis |
US6718756B1 (en) | 1999-01-21 | 2004-04-13 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust gas purifier for use in internal combustion engine |
JP3680650B2 (ja) * | 1999-01-25 | 2005-08-10 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP2000257419A (ja) | 1999-03-03 | 2000-09-19 | Toyota Motor Corp | 排気浄化方法及び装置 |
US6685897B1 (en) | 2000-01-06 | 2004-02-03 | The Regents Of The University Of California | Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures |
US6311484B1 (en) | 2000-02-22 | 2001-11-06 | Engelhard Corporation | System for reducing NOx transient emission |
JP2001300262A (ja) * | 2000-04-18 | 2001-10-30 | Toyota Motor Corp | 排ガス浄化装置及び排ガス浄化用触媒 |
DE10023439A1 (de) | 2000-05-12 | 2001-11-22 | Dmc2 Degussa Metals Catalysts | Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür |
US7229947B2 (en) * | 2001-02-19 | 2007-06-12 | Toyota Jidosha Kabushiki Kaisha | Catalyst for hydrogen generation and catalyst for purifying of exhaust gas |
JP2002364415A (ja) | 2001-06-07 | 2002-12-18 | Mazda Motor Corp | エンジンの排気浄化装置 |
LU90795B1 (en) | 2001-06-27 | 2002-12-30 | Delphi Tech Inc | Nox release index |
US6677272B2 (en) | 2001-08-15 | 2004-01-13 | Corning Incorporated | Material for NOx trap support |
DE60225321T2 (de) | 2001-12-03 | 2009-02-26 | Eaton Corp., Cleveland | System und verfahren zur verbesserten emissionskontrolle von brennkraftmaschinen |
US20030113242A1 (en) | 2001-12-18 | 2003-06-19 | Hepburn Jeffrey Scott | Emission control device for an engine |
AU2003211336A1 (en) | 2002-02-19 | 2003-09-09 | Yasuo Ajisaka | Diesel exhaust gas purifying filter |
JP3963130B2 (ja) | 2002-06-27 | 2007-08-22 | トヨタ自動車株式会社 | 触媒劣化判定装置 |
ATE421375T1 (de) | 2002-07-31 | 2009-02-15 | Umicore Ag & Co Kg | Verfahren zur regenerierung eines stickoxid- speicherkatalysators |
JP2004068700A (ja) | 2002-08-06 | 2004-03-04 | Toyota Motor Corp | 排気ガス浄化方法 |
US7332135B2 (en) * | 2002-10-22 | 2008-02-19 | Ford Global Technologies, Llc | Catalyst system for the reduction of NOx and NH3 emissions |
EP1563169A1 (en) | 2002-11-15 | 2005-08-17 | Catalytica Energy Systems, Inc. | Devices and methods for reduction of nox emissions from lean burn engines |
JP4385593B2 (ja) | 2002-12-10 | 2009-12-16 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
DE10300298A1 (de) | 2003-01-02 | 2004-07-15 | Daimlerchrysler Ag | Abgasnachbehandlungseinrichtung und -verfahren |
DE10308287B4 (de) | 2003-02-26 | 2006-11-30 | Umicore Ag & Co. Kg | Verfahren zur Abgasreinigung |
US7043902B2 (en) | 2003-03-07 | 2006-05-16 | Honda Motor Co., Ltd. | Exhaust gas purification system |
US6854264B2 (en) | 2003-03-27 | 2005-02-15 | Ford Global Technologies, Llc | Computer controlled engine adjustment based on an exhaust flow |
JP4288985B2 (ja) | 2003-03-31 | 2009-07-01 | 株式会社デンソー | 内燃機関の排気浄化装置 |
DE10315593B4 (de) | 2003-04-05 | 2005-12-22 | Daimlerchrysler Ag | Abgasnachbehandlungseinrichtung und -verfahren |
US6983589B2 (en) | 2003-05-07 | 2006-01-10 | Ford Global Technologies, Llc | Diesel aftertreatment systems |
JP4158697B2 (ja) | 2003-06-17 | 2008-10-01 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置および排気浄化方法 |
JP2006527815A (ja) | 2003-06-18 | 2006-12-07 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 還元体添加の制御方法 |
GB0318776D0 (en) | 2003-08-09 | 2003-09-10 | Johnson Matthey Plc | Lean NOx catalyst |
JP4020054B2 (ja) | 2003-09-24 | 2007-12-12 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム |
JP3876874B2 (ja) | 2003-10-28 | 2007-02-07 | トヨタ自動車株式会社 | 触媒再生方法 |
DE602004012778T2 (de) * | 2003-12-01 | 2009-04-09 | Toyota Jidosha Kabushiki Kaisha | Abgasemissions-reinigungsvorrichtung für selbstzündenden verbrennungsmotor |
GB0329095D0 (en) | 2003-12-16 | 2004-01-14 | Johnson Matthey Plc | Exhaust system for lean burn IC engine including particulate filter |
US20050135977A1 (en) | 2003-12-19 | 2005-06-23 | Caterpillar Inc. | Multi-part catalyst system for exhaust treatment elements |
JP4321332B2 (ja) | 2004-04-01 | 2009-08-26 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4232690B2 (ja) | 2004-05-24 | 2009-03-04 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置に適用される燃料添加制御方法、及び排気浄化装置 |
JP4338586B2 (ja) | 2004-05-26 | 2009-10-07 | 株式会社日立製作所 | エンジンの排気系診断装置 |
US7137379B2 (en) | 2004-08-20 | 2006-11-21 | Southwest Research Institute | Method for rich pulse control of diesel engines |
JP3852461B2 (ja) | 2004-09-03 | 2006-11-29 | いすゞ自動車株式会社 | 排気ガス浄化方法及び排気ガス浄化システム |
EP1662102B1 (en) | 2004-11-23 | 2007-06-27 | Ford Global Technologies, LLC | Method and apparatus for conversion of NOx |
KR100918602B1 (ko) | 2005-06-03 | 2009-09-25 | 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 | 내연기관의 배기가스 처리 방법 및 장치 |
US7685813B2 (en) | 2005-06-09 | 2010-03-30 | Eaton Corporation | LNT regeneration strategy over normal truck driving cycle |
US7743602B2 (en) | 2005-06-21 | 2010-06-29 | Exxonmobil Research And Engineering Co. | Reformer assisted lean NOx catalyst aftertreatment system and method |
US7803338B2 (en) | 2005-06-21 | 2010-09-28 | Exonmobil Research And Engineering Company | Method and apparatus for combination catalyst for reduction of NOx in combustion products |
JP4464876B2 (ja) | 2005-07-01 | 2010-05-19 | 日立オートモティブシステムズ株式会社 | エンジンの制御装置 |
JP2007064167A (ja) | 2005-09-02 | 2007-03-15 | Toyota Motor Corp | 内燃機関の排気浄化装置および排気浄化方法 |
FR2890577B1 (fr) | 2005-09-12 | 2009-02-27 | Rhodia Recherches & Tech | Procede de traitement d'un gaz contenant des oxydes d'azote (nox), utilisant comme piege a nox une composition a base d'oxyde de zirconium et d'oxyde de praseodyme |
US7063642B1 (en) | 2005-10-07 | 2006-06-20 | Eaton Corporation | Narrow speed range diesel-powered engine system w/ aftertreatment devices |
JP4548309B2 (ja) | 2005-11-02 | 2010-09-22 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US7412823B2 (en) | 2005-12-02 | 2008-08-19 | Eaton Corporation | LNT desulfation strategy |
JP4270201B2 (ja) | 2005-12-05 | 2009-05-27 | トヨタ自動車株式会社 | 内燃機関 |
JP5087836B2 (ja) | 2005-12-14 | 2012-12-05 | いすゞ自動車株式会社 | 排気ガス浄化システムの制御方法及び排気ガス浄化システム |
JP2007260618A (ja) | 2006-03-29 | 2007-10-11 | Toyota Motor Corp | 排ガス浄化触媒及び排ガス浄化装置 |
JP2007297918A (ja) | 2006-04-27 | 2007-11-15 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
US20090049826A1 (en) | 2006-05-24 | 2009-02-26 | Toyota Jidosha Kabushiki Kaisha | Exhaust Purification System of Internal Combustion Engine |
JP5373255B2 (ja) | 2006-05-29 | 2013-12-18 | 株式会社キャタラー | NOx還元触媒、NOx還元触媒システム、及びNOx還元方法 |
US7562522B2 (en) | 2006-06-06 | 2009-07-21 | Eaton Corporation | Enhanced hybrid de-NOx system |
JP2007332881A (ja) * | 2006-06-15 | 2007-12-27 | Toyota Central Res & Dev Lab Inc | 排ガス浄化装置及びそれを用いた排ガス浄化方法 |
JP4404073B2 (ja) | 2006-06-30 | 2010-01-27 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4487982B2 (ja) | 2006-07-12 | 2010-06-23 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム |
US7614214B2 (en) | 2006-07-26 | 2009-11-10 | Eaton Corporation | Gasification of soot trapped in a particulate filter under reducing conditions |
US7624570B2 (en) | 2006-07-27 | 2009-12-01 | Eaton Corporation | Optimal fuel profiles |
JP4155320B2 (ja) | 2006-09-06 | 2008-09-24 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4329799B2 (ja) | 2006-09-20 | 2009-09-09 | トヨタ自動車株式会社 | 内燃機関の空燃比制御装置 |
EP1911506B1 (de) | 2006-10-06 | 2009-08-19 | Umicore AG & Co. KG | Stickoxidspeicherkatalysator mit abgesenkter Entschwefelungstemperatur |
JP4733002B2 (ja) | 2006-11-24 | 2011-07-27 | 本田技研工業株式会社 | 内燃機関の排ガス浄化装置 |
DE602006015210D1 (de) | 2006-12-22 | 2010-08-12 | Ford Global Tech Llc | Verbrennungsmotorsystem und Verfahren zur Bestimmung des Zustandes einer Abgasbehandlungsvorrichtung in einem solchen System |
JP4221026B2 (ja) | 2006-12-25 | 2009-02-12 | 三菱電機株式会社 | 内燃機関の空燃比制御装置 |
JP4221025B2 (ja) | 2006-12-25 | 2009-02-12 | 三菱電機株式会社 | 内燃機関の空燃比制御装置 |
US20080196398A1 (en) | 2007-02-20 | 2008-08-21 | Eaton Corporation | HC mitigation to reduce NOx spike |
JP4665923B2 (ja) | 2007-03-13 | 2011-04-06 | トヨタ自動車株式会社 | 触媒劣化判定装置 |
JP4420048B2 (ja) | 2007-03-20 | 2010-02-24 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP2008255858A (ja) | 2007-04-03 | 2008-10-23 | Yanmar Co Ltd | ディーゼルエンジン用黒煙浄化装置 |
JP4702318B2 (ja) | 2007-04-10 | 2011-06-15 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム |
US7788910B2 (en) | 2007-05-09 | 2010-09-07 | Ford Global Technologies, Llc | Particulate filter regeneration and NOx catalyst re-activation |
JP4304539B2 (ja) | 2007-05-17 | 2009-07-29 | いすゞ自動車株式会社 | NOx浄化システムの制御方法及びNOx浄化システム |
JP5590640B2 (ja) | 2007-08-01 | 2014-09-17 | 日産自動車株式会社 | 排気ガス浄化システム |
JP5067614B2 (ja) | 2007-08-21 | 2012-11-07 | 株式会社デンソー | 内燃機関の排気浄化装置 |
JP5037283B2 (ja) | 2007-09-26 | 2012-09-26 | 本田技研工業株式会社 | 内燃機関の排気浄化装置 |
JP2009114879A (ja) | 2007-11-02 | 2009-05-28 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
US8074443B2 (en) | 2007-11-13 | 2011-12-13 | Eaton Corporation | Pre-combustor and large channel combustor system for operation of a fuel reformer at low exhaust temperatures |
JP4428443B2 (ja) | 2007-12-18 | 2010-03-10 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4867911B2 (ja) * | 2007-12-26 | 2012-02-01 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
WO2009082035A1 (ja) | 2007-12-26 | 2009-07-02 | Toyota Jidosha Kabushiki Kaisha | 内燃機関の排気浄化装置 |
WO2009087818A1 (ja) | 2008-01-08 | 2009-07-16 | Honda Motor Co., Ltd. | 内燃機関の排気浄化装置 |
JP2009209839A (ja) | 2008-03-05 | 2009-09-17 | Denso Corp | 内燃機関の排気浄化装置 |
JP2009221939A (ja) | 2008-03-14 | 2009-10-01 | Denso Corp | 排気浄化システムおよびその排気浄化制御装置 |
JP4527792B2 (ja) | 2008-06-20 | 2010-08-18 | 本田技研工業株式会社 | 排ガス浄化装置の劣化判定装置 |
JP5386121B2 (ja) | 2008-07-25 | 2014-01-15 | エヌ・イーケムキャット株式会社 | 排気ガス浄化触媒装置、並びに排気ガス浄化方法 |
JP5157739B2 (ja) | 2008-08-11 | 2013-03-06 | 日産自動車株式会社 | 排ガス浄化システム及びこれを用いた排ガス浄化方法 |
KR101020819B1 (ko) | 2008-11-28 | 2011-03-09 | 기아자동차주식회사 | 흡장형 NOx 촉매의 후분사용 가변 분사장치와 그 분사방법 |
JP5538237B2 (ja) | 2008-12-03 | 2014-07-02 | 第一稀元素化学工業株式会社 | 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法 |
US20100154387A1 (en) | 2008-12-19 | 2010-06-24 | Toyota Jidosha Kabushiki Kaisha | Abnormality detection device for reductant addition valve |
US9453443B2 (en) | 2009-03-20 | 2016-09-27 | Basf Corporation | Emissions treatment system with lean NOx trap |
US9662611B2 (en) | 2009-04-03 | 2017-05-30 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
US8353155B2 (en) | 2009-08-31 | 2013-01-15 | General Electric Company | Catalyst and method of manufacture |
KR101091627B1 (ko) | 2009-08-31 | 2011-12-08 | 기아자동차주식회사 | 배기 시스템 |
US20110120100A1 (en) | 2009-11-24 | 2011-05-26 | General Electric Company | Catalyst and method of manufacture |
JP5782050B2 (ja) | 2010-02-01 | 2015-09-24 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company | NOx吸収剤触媒 |
US8459010B2 (en) | 2010-02-26 | 2013-06-11 | General Electric Company | System and method for controlling nitrous oxide emissions of an internal combustion engine and regeneration of an exhaust treatment device |
US8572950B2 (en) | 2010-03-15 | 2013-11-05 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
EP2402572B1 (en) | 2010-03-15 | 2014-08-06 | Toyota Jidosha Kabushiki Kaisha | Method of operating an exhaust purification system for an internal combustion engine |
CN102741515B (zh) | 2010-03-15 | 2014-10-01 | 丰田自动车株式会社 | 内燃机排气净化装置 |
EP2460989B1 (en) | 2010-03-15 | 2016-04-27 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device for internal combustion engine |
EP2460997B1 (en) | 2010-03-18 | 2018-05-16 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of an internal combustion engine |
BRPI1015307B1 (pt) | 2010-03-23 | 2020-04-28 | Toyota Motor Co Ltd | sistema de purificação de escapamento de motor a combustão interna |
WO2011125198A1 (ja) | 2010-04-01 | 2011-10-13 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP4868097B1 (ja) | 2010-08-30 | 2012-02-01 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP5168412B2 (ja) | 2010-09-02 | 2013-03-21 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US8701390B2 (en) | 2010-11-23 | 2014-04-22 | International Engine Intellectual Property Company, Llc | Adaptive control strategy |
-
2010
- 2010-10-04 JP JP2011530319A patent/JP5168410B2/ja active Active
- 2010-10-04 US US13/260,986 patent/US9034267B2/en active Active
- 2010-10-04 WO PCT/JP2010/067705 patent/WO2012046332A1/ja active Application Filing
- 2010-10-04 EP EP10848626.7A patent/EP2530267B1/en not_active Not-in-force
- 2010-10-04 CN CN201080019340.9A patent/CN103154454B/zh active Active
- 2010-10-04 ES ES10848626.7T patent/ES2584605T3/es active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04200637A (ja) * | 1990-11-29 | 1992-07-21 | Nippon Shokubai Co Ltd | ディーゼルエンジン排ガス浄化用触媒 |
JP2004216224A (ja) * | 2003-01-10 | 2004-08-05 | Toyota Central Res & Dev Lab Inc | NOx吸蔵還元型触媒 |
JP2007514090A (ja) * | 2003-05-06 | 2007-05-31 | カタリティカ エナジー システムズ, インコーポレイテッド | パルス化した燃料流れを使用して内燃機関エンジンの排出物制御を改善するためのシステムおよび方法 |
JP2008286186A (ja) * | 2007-03-19 | 2008-11-27 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2008267217A (ja) * | 2007-04-18 | 2008-11-06 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2530267A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2530267A4 (en) | 2014-03-26 |
EP2530267B1 (en) | 2016-07-06 |
EP2530267A1 (en) | 2012-12-05 |
ES2584605T3 (es) | 2016-09-28 |
JP5168410B2 (ja) | 2013-03-21 |
CN103154454A (zh) | 2013-06-12 |
CN103154454B (zh) | 2015-07-01 |
US20130183203A1 (en) | 2013-07-18 |
JPWO2012046332A1 (ja) | 2014-02-24 |
US9034267B2 (en) | 2015-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5182429B2 (ja) | 内燃機関の排気浄化装置 | |
JP4868097B1 (ja) | 内燃機関の排気浄化装置 | |
JP5168412B2 (ja) | 内燃機関の排気浄化装置 | |
WO2011125198A1 (ja) | 内燃機関の排気浄化装置 | |
JP5067511B2 (ja) | 内燃機関の排気浄化装置 | |
JP5152416B2 (ja) | 内燃機関の排気浄化装置 | |
WO2012108059A1 (ja) | 内燃機関の排気浄化装置 | |
JP5152415B2 (ja) | 内燃機関の排気浄化装置 | |
JP5136694B2 (ja) | 内燃機関の排気浄化装置 | |
JP5131393B2 (ja) | 内燃機関の排気浄化装置 | |
JP5177302B2 (ja) | 内燃機関の排気浄化装置 | |
JP5196024B2 (ja) | 内燃機関の排気浄化装置 | |
JPWO2014128969A1 (ja) | 内燃機関の排気浄化装置 | |
JP5131389B2 (ja) | 内燃機関の排気浄化装置 | |
JP5168410B2 (ja) | 内燃機関の排気浄化装置 | |
JP5561059B2 (ja) | 内燃機関の排気浄化装置 | |
JP5152417B2 (ja) | 内燃機関の排気浄化装置 | |
JP5354104B1 (ja) | 内燃機関の排気浄化装置 | |
JP2015034502A (ja) | 内燃機関の排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080019340.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011530319 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13260986 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2010848626 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010848626 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10848626 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |