[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011129083A1 - Solar cell module and method for manufacturing same - Google Patents

Solar cell module and method for manufacturing same Download PDF

Info

Publication number
WO2011129083A1
WO2011129083A1 PCT/JP2011/002109 JP2011002109W WO2011129083A1 WO 2011129083 A1 WO2011129083 A1 WO 2011129083A1 JP 2011002109 W JP2011002109 W JP 2011002109W WO 2011129083 A1 WO2011129083 A1 WO 2011129083A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
metal substrate
insulating layer
photoelectric conversion
Prior art date
Application number
PCT/JP2011/002109
Other languages
French (fr)
Japanese (ja)
Inventor
東昭男
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011129083A1 publication Critical patent/WO2011129083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module and a manufacturing method thereof, and more particularly to a solar cell module in which a wiring structure of a lead wire for taking out an output from a solar cell submodule in the solar cell module is simplified and a manufacturing method thereof. is there.
  • a solar cell module a large number of photoelectric conversion elements having a laminated structure in which a photoelectric conversion layer made of a semiconductor that generates electric charge by light absorption is sandwiched between a back electrode (lower electrode) and a transparent electrode (upper electrode) are connected in series on a substrate.
  • a solar cell submodule As the solar cell module, an adhesive sealing material and a protective material are laminated on both the front and back surfaces of the solar cell submodule, and a terminal box for external wiring is integrally assembled on the back surface side.
  • a transparent electrode layer, a photovoltaic thin film semiconductor layer, and a layer including a back electrode layer are sequentially formed on a transparent insulating substrate, and a photovoltaic element divided into a plurality of regions is electrically connected.
  • Thin film solar cell having a bus region that collects power as an end of the connection and collects power, a sealing means including a filler and a back surface protection cover for protecting the surface on which the thin film solar cell is formed, and the thin film solar cell
  • a thin film solar cell module including connection means for supplying power generated by the battery to the outside, wiring from the bus region to the connection means is embedded in the filler, and another wiring is provided between the wiring and the back electrode layer.
  • a thin film solar cell module in which a glass nonwoven fabric sheet or a 160 ° C. heat resistant synthetic fiber nonwoven fabric sheet embedded in a filler is described.
  • a filler, wiring, a glass nonwoven fabric sheet or a 160 ° C. heat-resistant synthetic fiber nonwoven fabric sheet, a back surface protective cover are laid, assembled, and fixed by a vacuum laminating method.
  • the bus regions are provided on both sides of the long side of the power generation region of the thin-film solar cell.
  • a solder-plated copper foil is formed in each bus region, and another solder-plated copper foil is connected to the solder-plated copper foil as a lead wire for outputting power to the outside.
  • This lead wire is bent in a substantially L shape so as to protrude from the power generation region of the thin film solar cell in the vicinity of the center of the short side of the power generation region of the thin film solar cell, and is connected to the terminal box outside the back surface protective cover. .
  • Patent Document 2 an adhesive sealing material and a protective material are laminated on both front and back surfaces of a thin film solar cell in which a photoelectric conversion element is formed on a film substrate, and a terminal box for external wiring is integrally assembled on the back surface side.
  • the solar cell module in which an internal lead wire holding insulation is provided between the positive and negative electrodes for power extraction formed at both end regions of the solar cell and the connection conductor of the terminal box, one end of the solar cell electrode
  • a solar cell module in which an internal lead wire connected and pulled out is laid so as to bypass the outside along the side edge of the solar cell, and sandwiched between adhesive sealants together with the solar cell is described. Has been.
  • Patent Document 2 a connecting portion on one end side of a lead wire is soldered to an electrode of a solar cell or electrically connected with a conductive adhesive tape.
  • the other end side of the lead wire is bent upright in an L shape toward the back surface side, and then is pulled out to the back surface side of the module through the adhesive sealing material laminated to the solar cell, through the slit hole of the back surface protection material, It is connected by soldering to a connection terminal of a terminal box assembled to the module in accordance with this drawing position.
  • Patent Document 1 wiring of another solder-plated copper foil serving as internal wiring is necessary from the solder-plated copper foil of each bus region to the vicinity of the center of the short side of the power generation region of the thin film solar cell. There is a problem that the cost increases. Moreover, in patent document 1, in order to fix a filler, wiring, a glass nonwoven fabric sheet or a 160-degree-C heat-resistant synthetic fiber nonwoven fabric sheet, a back surface protection cover, and to assemble after assembly, a separate solder plating copper foil is used. There is a problem in that the surface of the thin-film solar cell is locally curved and deformed along the provided wiring path. Thus, in patent document 1, since the convex part which the adhesion filling layer and the surface protection material rose along another solder plating copper foil is formed, damage or local stress concentration, as a solar cell There is a problem that the reliability deteriorates.
  • Patent Document 2 the wiring of the solar cell submodule and the routing of the lead wire require a long lead wire that retains insulation from the electrode of the solar cell to the terminal box, and thus the cost of the wiring member increases. There is a point. As described above, in Patent Documents 1 and 2, since the wiring becomes long, the wiring layout becomes complicated, and the complexity of the wiring process at the time of laying the module deteriorates due to the complexity. Furthermore, since the workability of the wiring process at the time of laying is poor, there is a risk of damaging the solar cell, which causes quality problems. As described above, Patent Documents 1 and 2 have problems such as quality and reliability problems.
  • the present invention has been made in view of the above circumstances, and provides a solar cell module capable of simplifying the wiring structure and simplifying the manufacturing process, and a manufacturing method thereof.
  • the solar cell module of the present invention is a solar cell submodule comprising a metal substrate having an insulating layer on at least a surface thereof, and a solar cell portion having positive and negative electrodes on the insulating layer, A solar cell module comprising a pair of lead wires connected to the positive electrode and the negative electrode, respectively, and taking out the output from the solar cell unit; An electrical connection portion formed in a part of the solar cell submodule and electrically connecting one of the positive electrode and the negative electrode to the metal substrate, the one electrode and the one directly below the one electrode An electrical connection portion comprising a microcrack that penetrates through the insulating layer and reaches the metal substrate and a solder material embedded in the microcrack; One of the pair of lead wires is connected to the metal substrate, and is connected to the one electrode via the electrical connection portion.
  • the micro-crack of the electrical connection portion is formed by ultrasonic soldering on the one electrode, and the solder material is the micro-crack during the ultrasonic soldering process. It is embedded inside.
  • a plurality of photoelectric conversion elements composed of a back electrode, a photoelectric conversion layer, and a front electrode are connected in series, wherein the solar cell unit is sequentially laminated on the insulating layer,
  • the back electrode of the end photoelectric conversion element disposed at one end of the plurality of photoelectric conversion elements connected in series constitutes the one electrode,
  • the micro cracks reach the metal substrate from the solder processing portion on the surface electrode of the edge photoelectric conversion element through the surface electrode, photoelectric conversion layer, and back electrode of the edge photoelectric conversion element. be able to.
  • the solder processing section refers to a portion that has been subjected to ultrasonic solder processing. That is, the micro crack of the electrical connection portion is formed through the surface electrode, the photoelectric conversion layer, and the back electrode of the photoelectric conversion element by being subjected to ultrasonic soldering from the surface of the end photoelectric conversion element. It has been done.
  • a plurality of photoelectric conversion elements each including the back surface electrode, the photoelectric conversion layer, and the front surface electrode, in which the solar cell unit is sequentially stacked on the insulating layer, are connected.
  • the end back electrode connected to the surface electrode of the end photoelectric conversion element disposed at one end of the plurality of photoelectric conversion elements connected in series constitutes the one electrode,
  • the microcracks may extend from the solder processing portion on the surface of the end back electrode to the metal substrate through the end back electrode.
  • the solder processing section refers to a portion that has been subjected to ultrasonic solder processing. That is, the micro crack of the electrical connection portion is formed by ultrasonic soldering from the surface of the end back electrode.
  • the one lead wire is fixed by a solder material to a region of the insulating layer surface where the solar cell portion is not formed, and penetrates the insulating layer from the surface of the insulating layer. Then, it is desirable to be connected to the metal substrate via a solder material embedded in a microcrack reaching the metal substrate.
  • the metal substrate comprises a back side insulating layer on the back side
  • the one lead wire is fixed to the surface of the back-side insulating layer with a solder material, and the solder material embedded in the microcracks from the surface of the back-side insulating layer through the insulating layer to the metal substrate It is desirable to be connected to the metal substrate.
  • the metal substrate is composed of any one of aluminum, stainless steel, a steel material, and a clad material combining these
  • the insulating layer is preferably composed of an oxide film, nitride film, or oxynitride film of any of aluminum, silicon, titanium, and iron.
  • the said photoelectric converting layer is comprised with the compound semiconductor of at least 1 sort (s) of chalcopyrite structure.
  • the compound semiconductor having a chalcopyrite structure is preferably a so-called Ib-IIIb-VIb group compound semiconductor composed of an Ib group element, an IIIb group element, and a VIb group element.
  • the Ib-IIIb-VIb group compound semiconductor includes at least one type Ib element selected from the group consisting of Cu and Ag, and at least one type IIIb group element selected from the group consisting of Al, Ga, and In.
  • S, Se, and Te are preferably composed of at least one compound semiconductor composed of at least one VIb group element selected from the group consisting of.
  • a method for producing a solar cell module of the present invention includes a solar cell submodule comprising a metal substrate having an insulating layer on at least a surface thereof, and a solar cell unit having positive and negative electrodes on the insulating layer.
  • a solar cell module manufacturing method comprising a pair of lead wires connected to the positive electrode and the negative electrode, respectively, and taking out the output from the solar cell part to the outside, One of the pair of lead wires is connected to the metal substrate; By performing ultrasonic soldering from one of the positive electrode and the negative electrode, a micro crack is formed from the one electrode through the insulating layer directly below the electrode to reach the metal substrate. By infiltrating the solder material in the inside to form an electrical connection portion between the one electrode and the metal substrate, The one lead wire is connected to the one electrode through the electrical connection portion.
  • the one lead wire is ultrasonically soldered to a region of the surface of the insulating layer where the solar cell portion is not formed, thereby It is desirable to form a microcrack that penetrates through the insulating layer and reaches the metal substrate, and to infiltrate the solder material into the microcrack and connect it to the metal substrate.
  • the metal substrate one having a back surface side insulating layer on the back surface
  • the one lead wire is ultrasonically soldered to the surface of the back-side insulating layer to form a microcrack that penetrates the back-side insulating layer and reaches the metal substrate. It is desirable to infiltrate the solder material and connect it to the metal substrate.
  • the solar cell module of the present invention penetrates through one electrode and the insulating layer immediately below the metal substrate so that either the positive electrode or the negative electrode of the solar cell portion is electrically connected to a part of the submodule. It has an electrical connection part consisting of a microcrack that reaches the substrate and a solder material embedded in the microcrack, and one of the pair of lead wires is connected to the metal substrate, and the metal substrate is used as a conductor for electricity Since it is connected to one electrode via the connection portion, the metal substrate itself can be energized as a conductor, and it is not necessary to draw a long lead wire to connect to the outside at least, The wiring structure can be simplified. For this reason, wiring length can be shortened in the whole solar cell module. Thereby, the material cost concerning wiring can be held down. Furthermore, costs such as module manufacturing process costs and solar cell module laying work costs can be reduced.
  • the electrical connection for energizing the metal substrate and one of the electrodes is formed by forming a microcrack by performing ultrasonic soldering from one electrode and penetrating the solder material into the microcrack. Therefore, it is not necessary to remove the insulating layer by etching to expose the metal substrate, and the lead wire attaching process can be simplified.
  • the wiring structure can be simplified, the quality and reliability of the solar cell module can be improved. Furthermore, since the position of the junction box of the solar cell module can be not the center of the solar cell module but the end, the aesthetic appearance is excellent and the commercial value of the solar cell module can be improved. .
  • the electrical connection part for connecting one of the positive electrode and the negative electrode to the substrate electrode is formed by performing ultrasonic soldering on the one electrode.
  • the process of removing the metal substrate by etching or the like is not necessary, and the connection part can be formed by a very simple process, and as a result, the module manufacturing process can be simplified. Productivity can be improved.
  • the typical perspective view showing the solar cell module of the embodiment of the present invention The typical top view which shows the solar cell submodule used for the solar cell module of embodiment of this invention. IIIA-IIIA cross-sectional view of the solar cell submodule shown in FIG. IIIB-IIIB cross section of the solar cell submodule shown in FIG.
  • FIG. 1 is a perspective view schematically showing a configuration of a solar cell module 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a solar cell submodule used in the solar cell module according to the first embodiment of the present invention, and FIGS. 3A and 3B show respective end portions of the solar cell submodule shown in FIG. FIG.
  • a solar cell module 10 includes a solar cell unit 36 including positive and negative electrodes on a metal substrate 30 and an insulating layer 32 on the surface of the metal substrate.
  • An adhesive filling layer 20 and a back sheet (protective layer) 22 disposed on the back surface side (upper surface side in FIG. 1) of the solar cell sub module 12, and a solar cell sub module 12 protruding from the back sheet 22.
  • the first and second lead wires 56 and 60 for taking out the output of the negative electrode and the negative electrode (one electrode) to which the second lead wire 60 (one lead wire) is connected
  • The has an electrical connection portion 55 for conducting the metal substrate 30, and a terminal box 24 that the first and second leads 56 and 60 are connected.
  • the solar cell submodule 12 In the solar cell module 10, the solar cell submodule 12, the adhesive filling layer 14, the water vapor barrier layer 16 and the surface protective layer 18 disposed on the surface side of the solar cell submodule 12, and the back surface side of the solar cell submodule 12
  • the adhesive filling layer 20 and the back sheet 22 arranged in are laminated and integrated by, for example, a vacuum laminating method.
  • the surface side of the solar cell submodule 12 is a surface that receives light for obtaining electric power
  • the back surface side is an opposite side of the surface.
  • the solar cell module of FIG. 1 is configured to receive light from the arrow direction, and in FIG. 1, the surface is the lower surface side.
  • the terminal box 24 is for taking out the electric power obtained by the solar cell module 10 to the outside of the solar cell module 10, and is connected to a power feeding cable or the like.
  • the terminal box 24 is fixed by being adhesively sealed with, for example, a silicone resin around the corner portion of the surface 22a of the back sheet 22.
  • the surface-side adhesion filling layer 14 is inserted between the solar cell submodule 12 and the water vapor barrier layer 16 and between the water vapor barrier layer 16 and the surface protective layer 18 to seal the solar cell submodule 12.
  • the solar cell submodule 12, the water vapor barrier layer 16, and the surface protective layer 18 are adhered to each other.
  • the adhesive filling layer 20 on the back side is for sealing and protecting the solar cell submodule 12 and for adhering to the back sheet 22.
  • EVA ethylene vinyl acetate
  • PVB polyvinyl butyral
  • the water vapor barrier layer 16 is for protecting the solar cell submodule 12 from moisture.
  • the water vapor barrier layer 16 for example, a layer in which an inorganic layer made of SiO 2 , SiN, Al 2 O 3 or the like is formed on a transparent film such as PET or PEN, or a transparent film such as PET or PEN is made of SiO. 2.
  • a sandwich structure in which an inorganic layer made of SiN or the like and an acrylic resin or the like is further formed and the inorganic layer is sandwiched between resin layers is used.
  • the configuration of the water vapor barrier layer 16 is not particularly limited as long as the water vapor transmission rate, the oxygen transmission rate, and the like satisfy predetermined performance.
  • the surface protective layer 18 protects the solar cell submodule 12 from dirt and the like, and suppresses a decrease in the amount of incident light on the solar cell submodule 12 due to dirt and the like.
  • a fluorine resin film is used.
  • this fluororesin for example, ETFE (ethylene tetrafluoroethylene) is used.
  • the thickness of the surface protective layer 18 is, for example, 20 to 200 ⁇ m.
  • the back sheet 22 is for protecting the solar cell module 10 from the back side and ensuring insulation of the solar cell module 10.
  • the back sheet 22 is made of a resin film made of PVF (polyvinyl fluoride), PET, PEN or the like and sandwiched with an aluminum foil.
  • the configuration of the back sheet 22 is not particularly limited.
  • the solar cell submodule 12 of this embodiment includes a metal substrate 30 that includes insulating layers 32 and 34 on the entire surface 30 a and back surface 30 b, respectively, and an insulating layer 32.
  • a frame-shaped insulating region where the insulating layer surface 32 a is exposed is provided so as to surround the solar cell portion 36. This region is provided by sequentially laminating each layer of the solar cell portion 36 on the entire surface of the substrate and then removing only the peripheral region with a laser.
  • the solar cell unit 36 includes a back electrode 38, a photoelectric conversion layer 40 made of a compound semiconductor, a buffer layer 42, and a surface electrode (transparent electrode) on the insulating layer 32 on the surface of the metal substrate 30. ) 44 are sequentially stacked, and a plurality of photoelectric conversion elements 50 separated into strips extending in the short side direction of the substrate are connected in series by connecting the back electrode 38 and the transparent electrode 44 between the adjacent photoelectric conversion elements 50. Being done.
  • Each photoelectric conversion element 50 includes a back electrode 38, a photoelectric conversion layer 40, a buffer layer 42, and a transparent electrode 44.
  • Each back electrode 38 is disposed and formed on the surface 32 a of the insulating layer 32 so as to be separated from the adjacent back electrode 38 by the first separation groove 39.
  • the photoelectric conversion layer 40 is formed on the back electrode 38 while filling the first separation groove 39.
  • a buffer layer 42 is formed on the surface of the photoelectric conversion layer 40.
  • the photoelectric conversion layer 40 and the buffer layer 42 of each photoelectric conversion element are separated from the photoelectric conversion layer 40 and the buffer layer 42 of the adjacent photoelectric conversion element by a second separation groove 43 reaching the back electrode 38.
  • the second separation groove 43 is formed at a position different from the first separation groove 39 of the back electrode 38.
  • a transparent electrode 44 is formed on the surface of the buffer layer 42 while filling the groove 43. Furthermore, a third separation groove 45 that penetrates the transparent electrode 44, the buffer layer 42, and the photoelectric conversion layer 40 and reaches the back electrode 38 is formed.
  • Each photoelectric conversion element 50 has a configuration in which the back electrode 38 and the transparent electrode 44 of the adjacent photoelectric conversion element are connected in series by being connected by a third separation groove 45.
  • the back electrode 38 is made of a molybdenum electrode
  • the photoelectric conversion layer 40 is made of CIGS
  • the buffer layer 42 is made of CdS
  • the transparent electrode 44 is made of ZnO. Yes.
  • the back electrode 38 of the photoelectric conversion element 50 a at the left end is a positive electrode (plus electrode).
  • the back electrode 38 of the photoelectric conversion element 50z at the right end becomes a negative electrode (negative electrode).
  • the solar cell part 36 of this embodiment can be manufactured with the manufacturing method of a well-known CIGS type solar cell, for example.
  • the first to third separation grooves 39, 43, and 45 can be formed by laser scribe or mechanical scribe.
  • the electrical connection portion 55 includes a back electrode 38 z (a negative electrode of the solar cell portion 36) of the end photoelectric conversion element 50 z disposed at one end of the solar cell portion 36, and the metal substrate 30. It is provided in order to ensure electrical continuity.
  • the electrical connecting portion 55 penetrates through the end photoelectric conversion element 50z and the insulating layer 32 directly below the element 50z formed by performing ultrasonic soldering from the surface of the transparent electrode 44 of the end photoelectric conversion element 50z.
  • a microcrack 52 reaching the metal substrate 30 and a solder material 54 penetrating from the surface of the transparent electrode 44 and embedded in the microcrack 52 are configured. Further, the solder material 54 remains on the surface of the transparent electrode 44 as a trace of the ultrasonic soldering process (solder processing part).
  • the end photoelectric conversion element 50z on which the electrical connection portion 55 is formed includes the back surface electrode 38z, the photoelectric conversion layer 40, the buffer layer 42, and the transparent electrode 44, but does not have a photoelectric conversion function.
  • the electrical connection portion 55 is preferably provided periodically at a plurality of locations along the strip-shaped back electrode 38z. For example, it is provided every 2 cm. Although it may be provided continuously along the strip-shaped back electrode 38z, it is sufficient to periodically provide it at a plurality of locations, and it is preferable because the processing step time can be shortened compared to continuous provision.
  • a pair of lead wires 56 and 60 for taking out the output of the solar cell unit 36 are connected to one corner of the solar cell submodule 12.
  • the first lead wire 56 is connected to the positive electrode
  • the second lead wire 60 is connected to the negative electrode.
  • the back electrode 38 of the photoelectric conversion element 50 a at the left end of the solar cell unit 36, which constitutes the positive electrode of the solar cell unit 36, is provided to protrude to the left side.
  • the first lead wire 56 is connected to the surface of the protruding back electrode 38a (the shaded area in FIG. 2).
  • the first lead wire 56 is connected to the back electrode 38a by normal soldering that is not ultrasonic soldering or by a conductive paste such as silver paste.
  • the first lead wire 56 is directly connected to the back electrode 38a.
  • a conductive member such as a tin-plated copper ribbon or a conductive tape is provided on the back electrode 38a. It may be connected to the back electrode 38a through a conductive member. By providing the conductive tape, the strength of the back electrode 38a can be reinforced.
  • the photoelectric conversion layer 40, the buffer layer 42, and the transparent electrode 44 are formed in the part to which the first lead wire 56 of the back electrode 38a is connected, these layers are formed by laser scribe or mechanical scribe. And the back electrode 38a is exposed.
  • the second lead wire 60 is ultrasonically soldered to the insulating layer surface 32a in the frame insulating region in the vicinity of the back electrode 38a and fixed by the solder material 64, and penetrates the insulating layer 32 from the surface of the insulating layer 32. It is connected to the metal substrate 30 via a solder material 64 embedded in a microcrack 62 reaching the metal substrate 30. During the ultrasonic soldering, the microcracks 62 are formed and the solder material 64 penetrates into the microcracks 62.
  • the second lead wire 60 is thus connected to the metal substrate 30, and is electrically connected to the negative electrode 38 z connected through the electrical connection portion 55 with the metal substrate 30 as a conductor. Further, the second lead wire 60 is insulated by the insulating sleeve 61 except for the connection portion.
  • FIG. 4 is a partial perspective view schematically showing the wiring state of the lead wires in the solar cell module 10 according to the present embodiment.
  • the first lead wire 56 is bent in a substantially U-shape and is wired along the side surface 30 c of the substrate 30 and the surface 22 a of the back sheet 22.
  • the tip 56a is bent so as to be substantially perpendicular to the surface 22a of the back sheet 22, and is bent upright in a substantially L shape.
  • the second lead wire 60 is also bent in a substantially U shape and wired along the side surface 30 c of the substrate 30 and the surface 22 a of the back sheet 22, and the metal substrate 30.
  • the front end 56a is bent so as to be substantially perpendicular to the surface 22a of the back sheet 22, and is bent upright in a substantially L shape.
  • the first lead wire 56 and the second lead wire 60 are each connected to a terminal (not shown) of the terminal box 24 in a state of protruding from the back sheet 22.
  • the second lead wire connected to one electrode (here, the negative electrode) is connected to the other electrode (here, the metal substrate 30 as a conductor).
  • the metal substrate 30 By connecting to the metal substrate 30 in the vicinity of the positive electrode, it is not necessary to wire the second lead wire 60 of the negative electrode so as to surround the periphery of the solar cell portion 36, and at least the wiring of the second lead wire 60
  • the length can be shortened and the wiring structure can be simplified. For this reason, wiring length can be shortened as the whole solar cell module 10, and the material cost concerning wiring can be held down. Furthermore, costs such as module manufacturing process costs and solar cell module laying work costs can be reduced.
  • the wiring structure can be simplified, the quality and reliability of the solar cell module 10 can be improved. Furthermore, since the mounting position of the terminal box 24 of the solar cell module 10 can be not near the center of the solar cell module 10 but in the vicinity of the corner portion, the appearance is excellent and the commercial value of the solar cell module 10 is improved. Can be improved.
  • the first lead wire 56 of the positive electrode and the second lead wire 60 of the negative electrode are brought close to each other and can be immediately connected to the terminal box 24 on the back surface side of the metal substrate 30, the first The lengths of the lead wire 56 and the second lead wire 60 on the back surface 30b side of the metal substrate 30 can be shortened. Thereby, the simple high quality and highly reliable solar cell module 10 of the structure without the convex part by the 1st lead wire 56 and the 2nd lead wire 60 can be provided.
  • the electrical connection portion 55 for conducting one electrode and the metal substrate 30 can be formed by a very simple method of ultrasonic soldering, the lead wire attaching process can be simplified and the module manufacturing process cost can be reduced. Can be further suppressed.
  • the series resistance of the metal substrate 30 serving as a current path varies depending on the metal material used, it is as shown in Table 1 below when the module size is 120 cm long ⁇ 60 cm wide. As shown in Table 1 below, even in a SUS430 substrate having a high resistivity, the series resistance is at a level that does not cause a problem.
  • the short side series resistance shown in following Table 1 is a series resistance in the long side direction of a module.
  • the metal substrate 30 has the insulating layers 32 and 34 formed on the front surface 30a and the back surface 30b.
  • the insulating layers 32 and 34 are, for example, insulating oxide films having a plurality of pores formed by anodizing a metal substrate. This insulating oxide film has a high insulating property.
  • the insulating layer only needs to be provided on at least the surface of the metal substrate 30.
  • a material in which a metal oxide film generated on the front and back surfaces of the metal substrate 30 by anodic oxidation is an insulator can be used.
  • the metal substrate 30 aluminum (Al), zirconium (Zr), titanium (Ti), magnesium (Mg), copper (Cu), niobium (Nb), tantalum (Ta) and iron (Fe)
  • Al aluminum
  • Zr zirconium
  • Ti titanium
  • Mg magnesium
  • Cu copper
  • Nb niobium
  • Ta tantalum
  • Fe iron
  • a substrate made of an alloy of these metals can also be used.
  • aluminum is most preferable as the metal substrate 30.
  • a so-called clad material obtained by rolling or hot-plating the above-described metal usable for the metal substrate 30 on the surface of a steel plate such as mild steel or stainless steel can be used for improving heat resistance.
  • the metal substrate 30 of this embodiment is provided with flexibility (flexibility). Thereby, the solar cell module obtained can be made flexible.
  • the insulating layers 32 and 34 can be formed by anodizing and performing a specific sealing treatment.
  • the manufacturing process of the insulating layers 32 and 34 may include various processes other than the essential processes.
  • a degreasing step for removing adhering rolling oil for example, a degreasing step for removing adhering rolling oil, a desmut treatment step for dissolving a smut on the surface of the aluminum plate, and a roughening of the surface of the aluminum plate
  • the insulating layers 32 and 34 are formed through a roughening treatment step, an anodizing treatment step for forming an anodized film on the surface of the aluminum plate, and a sealing treatment for sealing the micropores of the anodized film. It is preferable to use a substrate for the above.
  • the thicknesses of the insulating layers 32 and 34 formed of the anodized aluminum oxide film are not particularly limited as long as they have insulating properties and surface hardness that prevents damage due to mechanical shock during handling, but are too thick. In some cases, there is a problem in terms of flexibility. Therefore, the preferable thickness of the insulating layers 32 and 34 formed of the aluminum oxide film by anodic oxidation is 0.5 to 50 ⁇ m, and the thickness of the insulating layer can be controlled by the electrolysis time of the anodic oxidation treatment. it can.
  • the insulating layers 32 and 34 are not limited to the aluminum oxide film formed by anodic oxidation.
  • Examples of the insulating layers 32 and 34 include an aluminum oxide film, a silicon oxide film, a titanium oxide film, and an iron oxide film.
  • Examples of the insulating layers 32 and 34 include an aluminum nitride film, a silicon nitride film, a titanium nitride film, and an iron nitride film.
  • Further examples include an aluminum nitrogen oxide film, a silicon nitrogen oxide film, a titanium nitrogen oxide film, and an iron nitrogen oxide film.
  • These insulating layers 32 and 34 can be formed by, for example, an anodic oxidation method, a CVD method, a PVD method, or a sol-gel method.
  • the thickness of the insulating layers 32 and 34 is preferably 1 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the back electrode 38 is made of, for example, Mo, Cr, or W, and a combination thereof.
  • the back electrode 38 may have a single layer structure or a laminated structure such as a two-layer structure.
  • the back electrode 38 preferably has a thickness of 100 nm or more, and more preferably 0.2 to 0.8 ⁇ m.
  • the method for forming the back electrode 38 is not particularly limited, and can be formed by a vapor deposition method such as an electron beam evaporation method or a sputtering method.
  • the transparent electrode 44 is an electrode arranged on the light incident side, and needs to have translucency in order to make light incident on the photoelectric conversion layer.
  • the transparent electrode 44 is made of, for example, ZnO to which Al, B, Ga, Sb, In or the like is added, ITO (indium tin oxide), SnO 2 or a combination thereof.
  • the transparent electrode 44 may have a single layer structure or a laminated structure such as a two-layer structure. Further, the thickness of the transparent electrode 44 is not particularly limited, and is preferably 0.3 to 1 ⁇ m.
  • the buffer layer 42 has functions such as protecting the photoelectric conversion layer 40 when the transparent electrode 44 is formed and band discontinuous matching, and transmits light incident from the transparent electrode 44 to the photoelectric conversion layer 40. It is necessary to have translucency.
  • the buffer layer 42 is made of, for example, CdS, ZnS, ZnO, ZnMgO, ZnS (O, OH), or a combination thereof.
  • the buffer layer 42 preferably has a thickness of 0.03 to 0.1 ⁇ m.
  • the buffer layer 42 can be formed by, for example, a CBD (chemical bath deposition) method.
  • the photoelectric conversion layer 40 is a layer that generates a charge (electromotive force) by absorbing light that has passed through the transparent electrode 44 and the buffer layer 42.
  • the composition of the photoelectric conversion layer 40 is not particularly limited, and is, for example, at least one compound semiconductor having a chalcopyrite structure. Specifically, at least one selected from the group consisting of a compound semiconductor composed of a group Ib element such as a so-called CIS group, a group IIIb element and a group VIb element, or at least one compound semiconductor such as a CIGS group, Cu and Ag.
  • a group Ib element, at least one group IIIb element selected from the group consisting of Al, Ga and In, and at least one group VIb element selected from the group consisting of S, Se and Te At least one compound semiconductor comprising:
  • the photoelectric conversion layer 40 is composed of at least one group Ib element selected from the group consisting of Cu and Ag, and a group consisting of Al, Ga, and In. It is preferably at least one compound semiconductor composed of at least one group IIIb element selected from the group consisting of S, Se, and Te, and at least one group VIb element selected from the group consisting of S, Se, and Te.
  • the photoelectric conversion layer 40 particularly preferably includes CuInSe 2 (CIS) and / or Cu (In, Ga) Se 2 (CIGS) in which Ga is dissolved.
  • CIS and CIGS are semiconductors having a chalcopyrite crystal structure, have high light absorption, and high photoelectric conversion efficiency has been reported. Moreover, there is little degradation of efficiency by light irradiation etc. and it is excellent in durability.
  • the photoelectric conversion layer 40 contains impurities for obtaining a desired semiconductor conductivity type. Impurities can be contained in the photoelectric conversion layer 40 by diffusion from adjacent layers and / or active doping.
  • the constituent elements and / or impurities of the I-III-VI group semiconductor may have a concentration distribution, and a plurality of layer regions having different semiconductor properties such as n-type, p-type, and i-type May be included.
  • the band gap width / carrier mobility and the like can be controlled, and the photoelectric conversion efficiency can be designed high.
  • the photoelectric conversion layer 40 may contain one or more semiconductors other than the group I-III-VI semiconductor.
  • Semiconductors other than I-III-VI group semiconductors include semiconductors composed of group IVb elements such as Si (group IV semiconductors), semiconductors composed of group IIIb elements such as GaAs and group Vb elements (group III-V semiconductors), and Examples thereof include semiconductors composed of IIb group elements such as CdTe and VIb group elements (II-VI group semiconductors).
  • the photoelectric conversion layer 40 may contain an optional component other than a semiconductor and impurities for obtaining a desired conductivity type as long as the characteristics are not hindered. Further, the content of the group I-III-VI semiconductor in the photoelectric conversion layer 40 is not particularly limited. The content of the group I-III-VI semiconductor in the photoelectric conversion layer 40 is preferably 75% by mass or more, more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • Any method may be applied as a method of forming the CIGS layer.
  • a method for forming a CIGS layer a multi-source co-evaporation method, a selenization method, a sputtering method, a hybrid sputtering method, a mechanochemical process method, and the like are known.
  • screen printing, proximity sublimation, MOCVD, spraying, and the like may be used.
  • the manufacturing method of the solar cell module 10 according to the present embodiment includes a lead wire attaching step for attaching a lead wire for extracting power to the solar cell sub module 12, and adhesive filling on the front surface side and the back surface side of the solar cell sub module 12, respectively.
  • the lead wire attaching step is a step of connecting the pair of lead wires 56 and 60 to the positive electrode and the negative electrode of the solar cell portion 36, respectively, and includes the formation of the electrical connecting portion 55 here.
  • the photoelectric conversion layer 40, the buffer layer 42, and the transparent electrode 44 on the back electrode 38a at the left end in FIG. 2, which is the positive electrode of the solar cell portion 36 of the solar cell submodule 12, are removed by laser scribe or mechanical scribe, and the back surface The electrode 38a is exposed.
  • the electrical connection portion 55 is formed by performing an ultrasonic soldering process on the surface of the transparent electrode 44 of the right end photoelectric conversion element 50z in FIG.
  • the tip of the soldering iron is brought to a temperature of about 300 to 500 ° C., and the surface oxide is removed from the soldering process by generating ultrasonic waves of 2 to 3 W and several tens of kHz from the tip.
  • soldering is performed.
  • ultrasonic soldering is performed on the surface of the transparent electrode 44 of the end photoelectric conversion element 50z to obtain an ultrasonic intensity of a predetermined level or more, the transparent electrode 44, the buffer layer 42, the photoelectric conversion layer 40, and the negative electrode of the solar cell unit 36 are configured.
  • a plurality of microcracks 52 that penetrate through the back electrode 38z and further through the insulating layer 32 directly below the back electrode 38z and reach the metal substrate 30 are generated, and the solder material 54 permeates from above the transparent electrode 44 so that the inside of the microcrack 52 is inside. It is embedded with solder material 54.
  • the back electrode 38 z can be electrically connected to the metal substrate 30 by the solder material 54 embedded in the microcrack 52. More specifically, for example, a Kuroda Techno lead-free solder cerasolzer 217 is used as the solder material 54, and the ultrasonic strength is set to 2 W and the soldering iron tip temperature is 450 ° C. by the Kuroda Techno ultrasonic soldering device sun bonder.
  • the electrical connection portion 55 is formed by ultrasonic soldering. On the surface of the strip-shaped end photoelectric conversion element 50z, a plurality of electrical connection portions 55 are formed by ultrasonic soldering, for example, every 2 cm in the length direction.
  • second lead wire 60 is connected to the metal substrate 30, and the other (first lead wire 56) is connected to the back electrode 38a at the left end in FIG. Connecting.
  • the first lead wire 56 is directly connected and fixed to the back electrode 38a using silver paste.
  • the second lead wire 60 is ultrasonically soldered to the insulating layer surface 32a in the frame insulating region near the back electrode 38a.
  • the lead wire 60 is fixed to the surface 32a of the insulating layer 32 with the solder material 64 by ultrasonic soldering, and the microcracks that penetrate the insulating layer 32 and reach the metal substrate 30 as in the case of forming the electrical connection portion 55.
  • a plurality of 62 are formed, and the solder material 64 is infiltrated and embedded in the microcracks 62.
  • ultrasonic soldering is performed by setting the tip of the soldering iron to a temperature of about 300 to 500 ° C. and generating ultrasonic waves of 2 to 3 W and several tens of kHz from the tip.
  • the second lead wire 60 is connected to the negative electrode (via the metal substrate 30 and the electrical connection portion 55). It can be connected to the back electrode 38z). Note that either the formation of the electrical connection portion or the connection of the lead wires 56 and 60 may be performed first.
  • the second lead wire 60 may be directly connected and fixed to the metal substrate 30 by removing a part of the insulating layer 32 by laser scribe or mechanical scribe. However, as in this embodiment, the second lead wire 60 is insulated by ultrasonic soldering. If it is the method of fixing on the layer 32, since it is not necessary to provide the process of removing a part of insulating layer 32, a manufacturing process becomes simpler.
  • the adhesion filling layer 14, the water vapor barrier layer 16, and the surface protective layer 18 are disposed on the surface side of the solar cell submodule 12.
  • the first lead wire 56 and the second lead wire 60 are bent in a state where they are kept parallel to each other and turned around the back surface 30 b of the metal substrate 30.
  • the tips 56 a and 60 a are projected from the back sheet 22 through through holes provided at predetermined positions of the arranged adhesive filling layer 20 and the back sheet 22.
  • the first lead wire 56 and the second lead wire 60 are bent, and are bent upright on the surface 22a of the backsheet 22 in a substantially L shape. Further, the terminals of the terminal box 24 are connected to the tips 56 a and 60 a of the first lead wire 56 and the second lead wire 60. Then, the terminal box 24 is bonded and sealed, for example, with a silicone resin in the vicinity of the corner portion of the surface 22a of the back sheet 22. As described above, the solar cell module 10 of the embodiment shown in FIG. 1 can be manufactured.
  • FIG. 5 is a schematic plan view of a solar cell submodule 112 of a design change example used in the solar cell module according to the embodiment of the present invention.
  • FIGS. 6A and 6B are respectively the solar cell submodules shown in FIG. It is a schematic cross section of an edge part.
  • connection position of the second lead wire 60 to the solar cell submodule 112 and the configuration of the electrical connection portion 55 are the solar cell submodule 12 shown in FIG. Different from reference).
  • differences from the solar cell submodule 12 will be mainly described.
  • the solar cell submodule 112 is adjacent to the right end photoelectric conversion element 50z in FIG. 5 arranged at one end of the plurality of photoelectric conversion elements 50 connected in series.
  • An end back electrode 38 ⁇ connected to the surface electrode 44 of the partial photoelectric conversion element 50z is provided, and the end back electrode 38 ⁇ constitutes one electrode (here, the negative electrode) of the solar cell portion 36.
  • the electrical connection portion 55 is subjected to ultrasonic soldering from the surface of the end back electrode 38 ⁇ to penetrate the insulating layer 32 immediately below the electrode 38 ⁇ from the surface of the end back electrode 38 ⁇ to the metal substrate 30.
  • the microcrack 52 and the solder material 54 which penetrates from the surface of the transparent electrode 44 and is embedded in the microcrack 52 are configured.
  • the photoelectric conversion layer 40, the buffer layer 42, and the transparent electrode 44 provided on the end back electrode 38 ⁇ are removed by laser scribe or mechanical scribe to expose the end back electrode 38 ⁇ , and then the end back electrode 38 ⁇ .
  • the electrical connection portion 55 can be formed by performing ultrasonic soldering from the surface. In FIG. 5, the shaded area indicates a portion where the back electrode 38 is exposed on the surface of the submodule.
  • a conductive tape 46 is pressure-bonded to the surface of the back electrode 38a at the left end in FIG. 5 to which the first lead wire 56 is connected.
  • a conductive tape 46 is pressure-bonded onto the back electrode 38a at 2 kg / cm 2 . This conductive tape ensures good conductivity and can reinforce the strength of the back electrode 38a.
  • the second lead wire 60 is ultrasonically soldered to the insulating layer 34 formed on the back surface side of the metal substrate 30 and fixed by the solder material 64, and the micro crack 62 that penetrates the insulating layer 34 and reaches the metal substrate 30. It is connected to the metal substrate 30 via a solder material 64 embedded therein.
  • the second lead wire 60 is fixed to the insulating layer 34 on the back surface side of the metal substrate 30, it is not necessary to route the side surface 30 c of the metal substrate 30, and the distance to the back sheet 22 can be set to the solar cell sub It can be slightly shorter than the module 12. Therefore, the workability in the manufacturing process can be further improved, and the material cost can be further reduced.
  • the first lead wire 56 is connected to the positive electrode and the second lead wire 60 is connected to the negative electrode.
  • the present invention is not limited to this.
  • the polarity with respect to the second lead wire 60 may be reversed, and in this case as well, the same effects are achieved in any of the above-described embodiments.
  • the terminal box 24 is provided.
  • the present invention is not limited to this, and the terminal box provided outside the solar cell module is not limited to the terminal box provided in the solar cell module.
  • the first lead wire 56 and the second lead wire 60 may be connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar cell module wherein the wiring structure is simplified. The solar cell module is provided with: a solar cell sub-module (12), which is provided with a metal substrate (30) having an insulating layer (32) provided on the surface, and a solar cell section (36) having the positive electrode and the negative electrode provided on the insulating layer (32); and a pair of lead lines (56, 60), which take out power from the solar cell section (36) to the outside. A part of the solar cell sub-module (12) is provided with an electrically connecting section (55), which electrically connects the electrode (38z), i.e., one of the positive and negative electrodes, with the metal substrate (30), and which is composed of a micro crack (52) that reaches the metal substrate (30) by penetrating the electrode (38z) and the insulating layer (32) directly under the electrode, and a solder material (54) embedded in the micro crack (52). The lead line (56) is connected to the electrode (38z) with the electrically connecting section (55) therebetween, by connecting the lead line with the metal substrate (30).

Description

太陽電池モジュールおよびその製造方法Solar cell module and manufacturing method thereof
 本発明は、太陽電池モジュールおよびその製造方法に関し、特に、太陽電池モジュール内の太陽電池サブモジュールから出力を取り出すためのリード線の配線構造が簡素化された太陽電池モジュールおよびその製造方法に関するものである。 The present invention relates to a solar cell module and a manufacturing method thereof, and more particularly to a solar cell module in which a wiring structure of a lead wire for taking out an output from a solar cell submodule in the solar cell module is simplified and a manufacturing method thereof. is there.
 現在、太陽電池の研究が盛んに行われている。太陽電池モジュールは、光吸収により電荷を生じる半導体からなる光電変換層を裏面電極(下部電極)と透明電極(上部電極)とで挟んだ積層構造の光電変換素子を基板上に多数直列に接続してなる太陽電池サブモジュールを有する。
 太陽電池モジュールとしては、更にこの太陽電池サブモジュールの表裏両面に、接着封止材および保護材をラミネートした上で、その裏面側に外部配線用の端子ボックスを一体に組付け、太陽電池サブモジュールの両端域に振り分けて形成した電力取り出し用の正極、負極と端子箱の接続導体との間に内部リード線を配線した構成のものが知られている。
 一般に、太陽電池モジュールにおいては、正極および負極からの出力の外部への取り出しは、太陽電池サブモジュール両端の電極に金属リボン等をハンダ付け等により接続し、絶縁層を間に挟んで折り返して接電箱(端子ボックス)に接続している(特許文献1、2参照)。
Currently, research on solar cells is actively conducted. In a solar cell module, a large number of photoelectric conversion elements having a laminated structure in which a photoelectric conversion layer made of a semiconductor that generates electric charge by light absorption is sandwiched between a back electrode (lower electrode) and a transparent electrode (upper electrode) are connected in series on a substrate. A solar cell submodule.
As the solar cell module, an adhesive sealing material and a protective material are laminated on both the front and back surfaces of the solar cell submodule, and a terminal box for external wiring is integrally assembled on the back surface side. There is known a configuration in which an internal lead wire is wired between a positive electrode and a negative electrode for power extraction formed by distributing to both end regions of the terminal and a connection conductor of a terminal box.
In general, in the solar cell module, the output from the positive electrode and the negative electrode is taken out by connecting a metal ribbon or the like to the electrodes at both ends of the solar cell submodule by soldering, etc., and folding back with an insulating layer in between. It is connected to an electric box (terminal box) (see Patent Documents 1 and 2).
 特許文献1には、透明絶縁基板上に、透明電極層、光起電力薄膜半導体層、裏面電極層を含む層が順次形成され、複数個の領域に分割されてなされる光起電力素が電気的に接続され、その接続の終端として電力を集めるバス領域を有する薄膜太陽電池と、その薄膜太陽電池が形成された面を保護する充填材と裏面保護カバーを含む封止手段と、その薄膜太陽電池により発生した電力を外部に供給するための接続手段とを含む薄膜太陽電池モジュールにおいて、バス領域から接続手段までの配線が充填材に埋設され、その配線と裏面電極層との間に別の充填材に埋設されたガラス不織布シートあるいは160℃耐熱の合成繊維不織布シートが存在する薄膜太陽電池モジュールが記載されている。
 この特許文献1の薄膜太陽電池モジュールでは、充填材、配線、ガラス不織布シートあるいは160℃耐熱の合成繊維不織布シート、裏面保護カバーを敷設、組立後、真空ラミネート法によって固定されている。
In Patent Document 1, a transparent electrode layer, a photovoltaic thin film semiconductor layer, and a layer including a back electrode layer are sequentially formed on a transparent insulating substrate, and a photovoltaic element divided into a plurality of regions is electrically connected. Thin film solar cell having a bus region that collects power as an end of the connection and collects power, a sealing means including a filler and a back surface protection cover for protecting the surface on which the thin film solar cell is formed, and the thin film solar cell In a thin film solar cell module including connection means for supplying power generated by the battery to the outside, wiring from the bus region to the connection means is embedded in the filler, and another wiring is provided between the wiring and the back electrode layer. A thin film solar cell module in which a glass nonwoven fabric sheet or a 160 ° C. heat resistant synthetic fiber nonwoven fabric sheet embedded in a filler is described.
In the thin-film solar cell module of Patent Document 1, a filler, wiring, a glass nonwoven fabric sheet or a 160 ° C. heat-resistant synthetic fiber nonwoven fabric sheet, a back surface protective cover are laid, assembled, and fixed by a vacuum laminating method.
 また、特許文献1においては、バス領域は、薄膜太陽電池の発電領域の長辺の両側に設けられている。各バス領域に半田メッキ銅箔が形成されており、この半田メッキ銅箔にバス領域と電力を外部に出すためのリード線として別の半田メッキ銅箔が接続されている。このリード線は、薄膜太陽電池の発電領域の短辺中央近傍で、薄膜太陽電池の発電領域から突出するように略L字状に折り曲げられており、裏面保護カバー外部で端子ボックスに接続される。 Further, in Patent Document 1, the bus regions are provided on both sides of the long side of the power generation region of the thin-film solar cell. A solder-plated copper foil is formed in each bus region, and another solder-plated copper foil is connected to the solder-plated copper foil as a lead wire for outputting power to the outside. This lead wire is bent in a substantially L shape so as to protrude from the power generation region of the thin film solar cell in the vicinity of the center of the short side of the power generation region of the thin film solar cell, and is connected to the terminal box outside the back surface protective cover. .
 特許文献2には、フィルム基板上に光電変換素子を形成した薄膜太陽電池の表裏両面に接着封止材および保護材をラミネートしてなり、その裏面側に外部配線用の端子ボックスを一体に組付け、太陽電池の両端域に形成した電力取り出し用のプラス、マイナス電極と前記端子ボックスの接続導体との間に絶縁を保持した内部リード線を配線した太陽電池モジュールにおいて、一端を太陽電池の電極に接続して引き出した内部リード線を、太陽電池の側縁に沿ってその外側を迂回するように敷設し、太陽電池とともに接着封止材の間に挟み込んで封止支持した太陽電池モジュールが記載されている。
 特許文献2においては、リード線の一端側の接続部を太陽電池の電極に半田付け、あるいは導電性粘着テープで電気的に接続される。リード線の他端側は裏面側に向けてL字状に起立屈曲させた上で、太陽電池にラミネートした接着封止材、裏面保護材のスリット穴を貫通してモジュールの裏面側に引き出し、この引出し位置に合わせてモジュールに組付けた端子ボックスの接続端子と半田付けして接続されている。
In Patent Document 2, an adhesive sealing material and a protective material are laminated on both front and back surfaces of a thin film solar cell in which a photoelectric conversion element is formed on a film substrate, and a terminal box for external wiring is integrally assembled on the back surface side. In the solar cell module in which an internal lead wire holding insulation is provided between the positive and negative electrodes for power extraction formed at both end regions of the solar cell and the connection conductor of the terminal box, one end of the solar cell electrode A solar cell module in which an internal lead wire connected and pulled out is laid so as to bypass the outside along the side edge of the solar cell, and sandwiched between adhesive sealants together with the solar cell is described. Has been.
In Patent Document 2, a connecting portion on one end side of a lead wire is soldered to an electrode of a solar cell or electrically connected with a conductive adhesive tape. The other end side of the lead wire is bent upright in an L shape toward the back surface side, and then is pulled out to the back surface side of the module through the adhesive sealing material laminated to the solar cell, through the slit hole of the back surface protection material, It is connected by soldering to a connection terminal of a terminal box assembled to the module in accordance with this drawing position.
特許第312810号公報Japanese Patent No. 312810 特開2004-31646号公報JP 2004-31646 A
 上述の特許文献1においては、内部配線となる別の半田メッキ銅箔の引き回しは、各バス領域の半田メッキ銅箔から薄膜太陽電池の発電領域の短辺中央近傍まで必要であるため、配線部材のコストが嵩むという問題点がある。
 また、特許文献1においては、充填材、配線、ガラス不織布シートあるいは160℃耐熱の合成繊維不織布シート、裏面保護カバーを敷設、組立後、真空ラミネート法によって固定するため、別の半田メッキ銅箔を設けた配線経路に沿って薄膜太陽電池の表面が局部的に湾曲変形して盛り上がるようになるという問題点がある。
 このように、特許文献1においては、接着充填層および表面保護材が別の半田メッキ銅箔に沿って盛り上がった凸部が形成されるため損傷、または局部的な応力集中により、太陽電池としての信頼性が悪くなるという問題点がある。
In the above-mentioned Patent Document 1, wiring of another solder-plated copper foil serving as internal wiring is necessary from the solder-plated copper foil of each bus region to the vicinity of the center of the short side of the power generation region of the thin film solar cell. There is a problem that the cost increases.
Moreover, in patent document 1, in order to fix a filler, wiring, a glass nonwoven fabric sheet or a 160-degree-C heat-resistant synthetic fiber nonwoven fabric sheet, a back surface protection cover, and to assemble after assembly, a separate solder plating copper foil is used. There is a problem in that the surface of the thin-film solar cell is locally curved and deformed along the provided wiring path.
Thus, in patent document 1, since the convex part which the adhesion filling layer and the surface protection material rose along another solder plating copper foil is formed, damage or local stress concentration, as a solar cell There is a problem that the reliability deteriorates.
 さらに、特許文献2においては、太陽電池サブモジュールの配線、リード線の引き回しは、太陽電池の電極から端子箱まで絶縁を保持した長いリード線を必要とするため、配線部材のコストが嵩むという問題点がある。
 このように、特許文献1、2においては、配線がいずれも長くなるため、配線のレイアウトが複雑化し、その複雑さからモジュール敷設時の配線工程の作業性が悪くなる。さらには、敷設時の配線工程の作業性が悪いことにより、太陽電池を傷付ける等の損傷を与える虞があり、品質問題をもたらす原因となる。上述のように、特許文献1、2には、品質上、信頼性上の問題が生ずる等の問題点がある。
Furthermore, in Patent Document 2, the wiring of the solar cell submodule and the routing of the lead wire require a long lead wire that retains insulation from the electrode of the solar cell to the terminal box, and thus the cost of the wiring member increases. There is a point.
As described above, in Patent Documents 1 and 2, since the wiring becomes long, the wiring layout becomes complicated, and the complexity of the wiring process at the time of laying the module deteriorates due to the complexity. Furthermore, since the workability of the wiring process at the time of laying is poor, there is a risk of damaging the solar cell, which causes quality problems. As described above, Patent Documents 1 and 2 have problems such as quality and reliability problems.
 本発明は、上記事情に鑑みてなされたものであって、配線構造が簡素化され、製造工程を簡単なものとしうる太陽電池モジュールおよびその製造方法を提供するものである。 The present invention has been made in view of the above circumstances, and provides a solar cell module capable of simplifying the wiring structure and simplifying the manufacturing process, and a manufacturing method thereof.
 本発明の太陽電池モジュールは、少なくとも表面に絶縁層を備えてなる金属基板と、該絶縁層上に正極および負極の電極を備えた太陽電池部とを備えてなる太陽電池サブモジュールと、
 前記正極および負極の電極にそれぞれ接続され、前記太陽電池部からの出力を外部に取り出す1対のリード線とを備えてなる太陽電池モジュールであって、
 前記太陽電池サブモジュールの一部に形成された、前記正極および負極のいずれか一方の電極を前記金属基板に導通させる電気接続部であって、前記一方の電極および該一方の電極の直下の前記絶縁層を貫通して前記金属基板に至るマイクロクラックと該マイクロクラック中に埋め込まれた半田材とからなる電気接続部を備え、
 前記1対のリード線の一方が、前記金属基板に接続され、前記電気接続部を介して前記一方の電極に接続されていることを特徴とするものである。
The solar cell module of the present invention is a solar cell submodule comprising a metal substrate having an insulating layer on at least a surface thereof, and a solar cell portion having positive and negative electrodes on the insulating layer,
A solar cell module comprising a pair of lead wires connected to the positive electrode and the negative electrode, respectively, and taking out the output from the solar cell unit;
An electrical connection portion formed in a part of the solar cell submodule and electrically connecting one of the positive electrode and the negative electrode to the metal substrate, the one electrode and the one directly below the one electrode An electrical connection portion comprising a microcrack that penetrates through the insulating layer and reaches the metal substrate and a solder material embedded in the microcrack;
One of the pair of lead wires is connected to the metal substrate, and is connected to the one electrode via the electrical connection portion.
 ここで、前記電気接続部の前記マイクロクラックは、前記一方の電極上において超音波半田処理がなされたことにより形成されたものであり、前記半田材は該超音波半田処理の際に前記マイクロクラック中に埋め込まれたものである。 Here, the micro-crack of the electrical connection portion is formed by ultrasonic soldering on the one electrode, and the solder material is the micro-crack during the ultrasonic soldering process. It is embedded inside.
 本発明の太陽電池モジュールは、前記太陽電池部が、前記絶縁層上に順に積層された、裏面電極、光電変換層および表面電極からなる光電変換素子が複数直列接続されてなるものであり、
 前記直列接続された複数の光電変換素子の一端に配置された端部光電変換素子の裏面電極が、前記一方の電極を構成し、
 前記マイクロクラックが、前記端部光電変換素子の表面電極の表面の半田処理部から、該端部光電変換素子の表面電極、光電変換層および裏面電極を貫通して前記金属基板に至るものとすることができる。
In the solar cell module of the present invention, a plurality of photoelectric conversion elements composed of a back electrode, a photoelectric conversion layer, and a front electrode are connected in series, wherein the solar cell unit is sequentially laminated on the insulating layer,
The back electrode of the end photoelectric conversion element disposed at one end of the plurality of photoelectric conversion elements connected in series constitutes the one electrode,
The micro cracks reach the metal substrate from the solder processing portion on the surface electrode of the edge photoelectric conversion element through the surface electrode, photoelectric conversion layer, and back electrode of the edge photoelectric conversion element. be able to.
 ここで、半田処理部とは、超音波半田処理がなされた部分をいうものである。すなわち、前記電気接続部の前記マイクロクラックは、前記端部光電変換素子の表面から超音波半田処理がなされたことにより、該光電変換素子の表面電極、光電変換層および裏面電極を貫通して形成されたものである。 Here, the solder processing section refers to a portion that has been subjected to ultrasonic solder processing. That is, the micro crack of the electrical connection portion is formed through the surface electrode, the photoelectric conversion layer, and the back electrode of the photoelectric conversion element by being subjected to ultrasonic soldering from the surface of the end photoelectric conversion element. It has been done.
 あるいは、本発明の太陽電池モジュールは、前記太陽電池部が、前記絶縁層上に順に積層された、裏面電極、光電変換層および表面電極からなる光電変換素子が複数直列接続されてなるものであり、
 前記直列接続された複数の光電変換素子の一端に配置された端部光電変換素子の表面電極と接続された端部裏面電極が、前記一方の電極を構成し、
 前記マイクロクラックが、前記端部裏面電極の表面の半田処理部から、該端部裏面電極を貫通して前記金属基板に至るものとすることができる。
Alternatively, in the solar cell module of the present invention, a plurality of photoelectric conversion elements each including the back surface electrode, the photoelectric conversion layer, and the front surface electrode, in which the solar cell unit is sequentially stacked on the insulating layer, are connected. ,
The end back electrode connected to the surface electrode of the end photoelectric conversion element disposed at one end of the plurality of photoelectric conversion elements connected in series constitutes the one electrode,
The microcracks may extend from the solder processing portion on the surface of the end back electrode to the metal substrate through the end back electrode.
 ここで、半田処理部とは、超音波半田処理がなされた部分をいうものである。すなわち、前記電気接続部の前記マイクロクラックは、前記端部裏面電極の表面から超音波半田処理がなされたことにより形成されたものである。 Here, the solder processing section refers to a portion that has been subjected to ultrasonic solder processing. That is, the micro crack of the electrical connection portion is formed by ultrasonic soldering from the surface of the end back electrode.
 本発明の太陽電池モジュールにおいては、前記絶縁層表面の、前記太陽電池部が形成されていない領域に、前記一方のリード線が半田材により固定され、前記絶縁層の表面から該絶縁層を貫通して前記金属基板に至るマイクロクラック中に埋め込まれた半田材を介して前記金属基板に接続されていることが望ましい。 In the solar cell module of the present invention, the one lead wire is fixed by a solder material to a region of the insulating layer surface where the solar cell portion is not formed, and penetrates the insulating layer from the surface of the insulating layer. Then, it is desirable to be connected to the metal substrate via a solder material embedded in a microcrack reaching the metal substrate.
 あるいは、前記金属基板が裏面に裏面側絶縁層を備えてなり、
 前記一方のリード線が、該裏面側絶縁層の表面に半田材により固定され、前記裏面側絶縁層の表面から絶縁層を貫通して前記金属基板に至るマイクロクラック中に埋め込まれた半田材を介して前記金属基板に接続されていることが望ましい。
Alternatively, the metal substrate comprises a back side insulating layer on the back side,
The one lead wire is fixed to the surface of the back-side insulating layer with a solder material, and the solder material embedded in the microcracks from the surface of the back-side insulating layer through the insulating layer to the metal substrate It is desirable to be connected to the metal substrate.
 本発明の太陽電池モジュールにおいては、前記金属基板が、アルミニウム、ステンレス、鉄鋼材およびこれらを組み合わせたクラッド材のうちのいずれかにより構成され、
 前記絶縁層が、アルミニウム、シリコン、チタンおよび鉄のいずれかの酸化膜、窒化膜または酸窒化膜により構成されていることが望ましい。
In the solar cell module of the present invention, the metal substrate is composed of any one of aluminum, stainless steel, a steel material, and a clad material combining these,
The insulating layer is preferably composed of an oxide film, nitride film, or oxynitride film of any of aluminum, silicon, titanium, and iron.
 また、本発明の太陽電池モジュールにおいては、前記光電変換層は、少なくとも1種のカルコパイライト構造の化合物半導体で構成されることが好ましい。
 また、カルコパイライト構造の化合物半導体としては、Ib族元素とIIIb族元素とVIb族元素とからなる所謂、Ib-IIIb-VIb族化合物半導体が好ましい。
 Ib-IIIb-VIb族化合物半導体としては、CuおよびAgからなる群より選択された少なくとも1種のIb族元素と、Al、GaおよびInからなる群より選択された少なくとも1種のIIIb族元素と、S、Se、およびTeからなる群から選択された少なくとも1種のVIb族元素とからなる少なくとも1種の化合物半導体で構成されることが好ましい。
Moreover, in the solar cell module of this invention, it is preferable that the said photoelectric converting layer is comprised with the compound semiconductor of at least 1 sort (s) of chalcopyrite structure.
The compound semiconductor having a chalcopyrite structure is preferably a so-called Ib-IIIb-VIb group compound semiconductor composed of an Ib group element, an IIIb group element, and a VIb group element.
The Ib-IIIb-VIb group compound semiconductor includes at least one type Ib element selected from the group consisting of Cu and Ag, and at least one type IIIb group element selected from the group consisting of Al, Ga, and In. , S, Se, and Te are preferably composed of at least one compound semiconductor composed of at least one VIb group element selected from the group consisting of.
 本発明の太陽電池モジュールの製造方法は、少なくとも表面に絶縁層を備えてなる金属基板と、該絶縁層上に正極および負極の電極を備えた太陽電池部とを備えてなる太陽電池サブモジュールと、前記正極および負極の電極にそれぞれ接続され、前記太陽電池部からの出力を外部に取り出す1対のリード線とを備えてなる太陽電池モジュールの製造方法であって、
 前記1対のリード線の一方を、前記金属基板に接続し、
 前記正極および負極の一方の電極上から超音波半田処理を行うことにより、該一方の電極から該電極の直下の前記絶縁層を貫通し前記金属基板に至るマイクロクラックを形成すると共に、該マイクロクラック内に半田材を浸透させて前記一方の電極と前記金属基板との電気接続部を形成することにより、
 前記一方のリード線を、前記電気接続部を介して前記一方の電極に接続することを特徴とする。
A method for producing a solar cell module of the present invention includes a solar cell submodule comprising a metal substrate having an insulating layer on at least a surface thereof, and a solar cell unit having positive and negative electrodes on the insulating layer. A solar cell module manufacturing method comprising a pair of lead wires connected to the positive electrode and the negative electrode, respectively, and taking out the output from the solar cell part to the outside,
One of the pair of lead wires is connected to the metal substrate;
By performing ultrasonic soldering from one of the positive electrode and the negative electrode, a micro crack is formed from the one electrode through the insulating layer directly below the electrode to reach the metal substrate. By infiltrating the solder material in the inside to form an electrical connection portion between the one electrode and the metal substrate,
The one lead wire is connected to the one electrode through the electrical connection portion.
 本発明の太陽電池モジュールの製造方法においては、前記一方のリード線を、前記絶縁層の表面の、前記太陽電池部が形成されていない領域に、超音波半田付けすることにより、該領域の前記絶縁層を貫通して前記金属基板に至るマイクロクラックを形成すると共に、該マイクロクラック内に半田材を浸透させて前記金属基板と接続させることが望ましい。 In the method for manufacturing a solar cell module of the present invention, the one lead wire is ultrasonically soldered to a region of the surface of the insulating layer where the solar cell portion is not formed, thereby It is desirable to form a microcrack that penetrates through the insulating layer and reaches the metal substrate, and to infiltrate the solder material into the microcrack and connect it to the metal substrate.
 あるいは、前記金属基板として、裏面に裏面側絶縁層を備えてなるものを用い、
 前記一方のリード線を、前記裏面側絶縁層の表面に、超音波半田付けすることにより、前記裏面側絶縁層を貫通して前記金属基板に至るマイクロクラックを形成すると共に、該マイクロクラック内に半田材を浸透させて前記金属基板と接続させることが望ましい。
Alternatively, as the metal substrate, one having a back surface side insulating layer on the back surface,
The one lead wire is ultrasonically soldered to the surface of the back-side insulating layer to form a microcrack that penetrates the back-side insulating layer and reaches the metal substrate. It is desirable to infiltrate the solder material and connect it to the metal substrate.
 本発明の太陽電池モジュールは、サブモジュールの一部に太陽電池部の正極および負極のいずれか一方の電極を金属基板に導通させるために、一方の電極およびその直下の絶縁層を貫通して金属基板に至るマイクロクラックとそのマイクロクラック中に埋め込まれた半田材とからなる電気接続部を備えており、1対のリード線のうちの一方が、金属基板に接続され、金属基板を導体として電気接続部を介して一方の電極に接続されているので、金属基板自体を導体として通電することができ、少なくともこの一方の電極に接続されるリード線を外部に引き出すために長く引き回す必要がなくなり、配線構造を簡素化できる。このため、太陽電池モジュール全体で、配線長さを短くすることができる。これにより、配線にかかる材料費を抑えることができる。さらには、モジュール作製工程費、太陽電池モジュール敷設作業費等のコストを下げることができる。 The solar cell module of the present invention penetrates through one electrode and the insulating layer immediately below the metal substrate so that either the positive electrode or the negative electrode of the solar cell portion is electrically connected to a part of the submodule. It has an electrical connection part consisting of a microcrack that reaches the substrate and a solder material embedded in the microcrack, and one of the pair of lead wires is connected to the metal substrate, and the metal substrate is used as a conductor for electricity Since it is connected to one electrode via the connection portion, the metal substrate itself can be energized as a conductor, and it is not necessary to draw a long lead wire to connect to the outside at least, The wiring structure can be simplified. For this reason, wiring length can be shortened in the whole solar cell module. Thereby, the material cost concerning wiring can be held down. Furthermore, costs such as module manufacturing process costs and solar cell module laying work costs can be reduced.
 また、金属基板と一方の電極を通電させるための電気接続部は、一方の電極上から超音波半田処理を行うことによりマイクロクラックを形成する共に、半田材をマイクロクラック内に浸透させることにより形成できるので、金属基板を露出させるために絶縁層をエッチング当により除去する必要がなく、リード線取り付け工程を簡素化できる。 In addition, the electrical connection for energizing the metal substrate and one of the electrodes is formed by forming a microcrack by performing ultrasonic soldering from one electrode and penetrating the solder material into the microcrack. Therefore, it is not necessary to remove the insulating layer by etching to expose the metal substrate, and the lead wire attaching process can be simplified.
 また、本発明によれば、配線構造を単純にできるため、太陽電池モジュールの品質および信頼性を向上させることができる。更には、太陽電池モジュールの接続箱の位置も、太陽電池モジュールの中央ではなく、端部にすることができるため、美観上も優れたものとなり、太陽電池モジュールの商品価値を向上させることができる。 Further, according to the present invention, since the wiring structure can be simplified, the quality and reliability of the solar cell module can be improved. Furthermore, since the position of the junction box of the solar cell module can be not the center of the solar cell module but the end, the aesthetic appearance is excellent and the commercial value of the solar cell module can be improved. .
 本発明の太陽電池モジュールの製造方法によれば、正極および負極の一方の電極を基板電極に接続させる電気接続部を、一方の電極上から超音波半田処理を行うことにより形成するので、絶縁層をエッチング等により取り除いて金属基板をむき出しにする処理等が不要であり、非常に簡単な工程で接続部を形成することができ、結果としてモジュール製造工程を簡単なものとすることができるので、生産性を向上させることができる。 According to the method for manufacturing a solar cell module of the present invention, the electrical connection part for connecting one of the positive electrode and the negative electrode to the substrate electrode is formed by performing ultrasonic soldering on the one electrode. The process of removing the metal substrate by etching or the like is not necessary, and the connection part can be formed by a very simple process, and as a result, the module manufacturing process can be simplified. Productivity can be improved.
本発明の実施形態の太陽電池モジュールを示す模式的斜視図The typical perspective view showing the solar cell module of the embodiment of the present invention. 本発明の実施形態の太陽電池モジュールに用いられる太陽電池サブモジュールを示す模式的平面図The typical top view which shows the solar cell submodule used for the solar cell module of embodiment of this invention. 図2に示す太陽電池サブモジュールのIIIA-IIIA断面図IIIA-IIIA cross-sectional view of the solar cell submodule shown in FIG. 図2に示す太陽電池サブモジュールのIIIB-IIIB断面図IIIB-IIIB cross section of the solar cell submodule shown in FIG. 本発明の実施形態の太陽電池モジュールの配線構造の一部を示す模式的斜視図The typical perspective view which shows a part of wiring structure of the solar cell module of embodiment of this invention. 他の構成の太陽電池サブモジュールを示す模式的平面図Schematic plan view showing a solar cell submodule of another configuration 図5に示す太陽電池サブモジュールのVIA-VIA断面図VIA-VIA cross section of the solar cell sub-module shown in FIG. 図5に示す太陽電池サブモジュールのVIB-VIB断面図VIB-VIB cross-sectional view of the solar cell submodule shown in FIG.
 以下、本発明の太陽電池モジュールおよびその製造方法について図面を参照して説明する。なお、各図においては、視認しやすくするために各部の縮尺は適宜変更して示してある。 Hereinafter, the solar cell module of the present invention and the manufacturing method thereof will be described with reference to the drawings. In each drawing, the scale of each part is appropriately changed for easy visual recognition.
<太陽電池モジュール>
 図1は、本発明の実施形態に係る太陽電池モジュール10の構成を模式的に示す斜視図である。図2は、本発明の第1の実施形態の太陽電池モジュールに用いられる太陽電池サブモジュールの模式的平面図であり、図3Aおよび図3Bは、図2に示す太陽電池サブモジュールのそれぞれ端部の模式断面図である。
<Solar cell module>
FIG. 1 is a perspective view schematically showing a configuration of a solar cell module 10 according to an embodiment of the present invention. FIG. 2 is a schematic plan view of a solar cell submodule used in the solar cell module according to the first embodiment of the present invention, and FIGS. 3A and 3B show respective end portions of the solar cell submodule shown in FIG. FIG.
 図1、図3Aに示すように、本発明の実施形態の太陽電池モジュール10は、金属基板30および金属基板表面の絶縁層32上に正極および負極の電極を備えた太陽電池部36を備えてなる太陽電池サブモジュール12と、この太陽電池サブモジュール12の表面側(図1において下面側)に配置された接着充填層14、水蒸気バリア層(保護層)16および表面保護層(保護層)18と、この太陽電池サブモジュール12の裏面側(図1において上面側)に配置された接着充填層20およびバックシート(保護層)22と、バックシート22から突出させた、太陽電池サブモジュール12からの出力を外部に取り出すための第1および第2のリード線56、60と、第2のリード線60(一方のリード線)が接続される負極(一方の電極)を金属基板30に導通させる電気接続部55と、第1および第2のリード線56、60が接続される端子ボックス24とを有する。 As shown in FIGS. 1 and 3A, a solar cell module 10 according to an embodiment of the present invention includes a solar cell unit 36 including positive and negative electrodes on a metal substrate 30 and an insulating layer 32 on the surface of the metal substrate. A solar cell submodule 12 and an adhesive filling layer 14, a water vapor barrier layer (protective layer) 16, and a surface protective layer (protective layer) 18 disposed on the surface side (lower surface side in FIG. 1) of the solar cell submodule 12. An adhesive filling layer 20 and a back sheet (protective layer) 22 disposed on the back surface side (upper surface side in FIG. 1) of the solar cell sub module 12, and a solar cell sub module 12 protruding from the back sheet 22. The first and second lead wires 56 and 60 for taking out the output of the negative electrode and the negative electrode (one electrode) to which the second lead wire 60 (one lead wire) is connected The has an electrical connection portion 55 for conducting the metal substrate 30, and a terminal box 24 that the first and second leads 56 and 60 are connected.
 太陽電池モジュール10において、太陽電池サブモジュール12と、太陽電池サブモジュール12の表面側に配置された接着充填層14、水蒸気バリア層16および表面保護層18と、この太陽電池サブモジュール12の裏面側に配置された接着充填層20およびバックシート22とは、例えば、真空ラミネート法により、ラミネート加工されて一体化されている。
 ここで、太陽電池サブモジュール12の表面側とは、電力を得るための光を受ける側の面のことであり、裏面側とは、その表面の反対側のことである。図1の太陽電池モジュールは、矢印方向から光を受けるよう構成されており、図1においては、表面が下面側とされている。
In the solar cell module 10, the solar cell submodule 12, the adhesive filling layer 14, the water vapor barrier layer 16 and the surface protective layer 18 disposed on the surface side of the solar cell submodule 12, and the back surface side of the solar cell submodule 12 The adhesive filling layer 20 and the back sheet 22 arranged in are laminated and integrated by, for example, a vacuum laminating method.
Here, the surface side of the solar cell submodule 12 is a surface that receives light for obtaining electric power, and the back surface side is an opposite side of the surface. The solar cell module of FIG. 1 is configured to receive light from the arrow direction, and in FIG. 1, the surface is the lower surface side.
 端子ボックス24は、太陽電池モジュール10で得られた電力を、太陽電池モジュール10の外部に取り出すためのものであり、給電ケーブル等が接続される。この端子ボックス24は、バックシート22の表面22aの角部周辺に、例えば、シリコーン樹脂によって接着封止されて固定される。 The terminal box 24 is for taking out the electric power obtained by the solar cell module 10 to the outside of the solar cell module 10, and is connected to a power feeding cable or the like. The terminal box 24 is fixed by being adhesively sealed with, for example, a silicone resin around the corner portion of the surface 22a of the back sheet 22.
 表面側の接着充填層14は、太陽電池サブモジュール12と水蒸気バリア層16との間および水蒸気バリア層16と表面保護層18との間にそれぞれ挿入されており、太陽電池サブモジュール12を封止して保護するとともに、太陽電池サブモジュール12、水蒸気バリア層16、表面保護層18を互いに接着させるためのものである。同様に、裏面側の接着充填層20は、太陽電池サブモジュール12を封止して保護するとともに、バックシート22と接着させるためのものである。
 この接着充填層14、20には、例えば、EVA(エチレンビニルアセテート)、またはPVB(ポリビニルブチラール)が用いられる。
The surface-side adhesion filling layer 14 is inserted between the solar cell submodule 12 and the water vapor barrier layer 16 and between the water vapor barrier layer 16 and the surface protective layer 18 to seal the solar cell submodule 12. The solar cell submodule 12, the water vapor barrier layer 16, and the surface protective layer 18 are adhered to each other. Similarly, the adhesive filling layer 20 on the back side is for sealing and protecting the solar cell submodule 12 and for adhering to the back sheet 22.
For the adhesive filling layers 14 and 20, for example, EVA (ethylene vinyl acetate) or PVB (polyvinyl butyral) is used.
 水蒸気バリア層16は、太陽電池サブモジュール12を水分から保護するためのものである。この水蒸気バリア層16としては、例えば、PETまたはPEN等の透明フィルム上にSiO、SiN、Al23等からなる無機層が形成されたもの、またはPETまたはPEN等の透明フィルム上にSiO、SiN等からなる無機層を形成し、さらにアクリル樹脂等を形成した、無機層が樹脂層に挟まれたサンドイッチ構造のものが用いられる。
 なお、水蒸気バリア層16は、水蒸気透過率、酸素透過率等が所定の性能を満たすものであれば、その構成については特に限定されるものではない。
The water vapor barrier layer 16 is for protecting the solar cell submodule 12 from moisture. As the water vapor barrier layer 16, for example, a layer in which an inorganic layer made of SiO 2 , SiN, Al 2 O 3 or the like is formed on a transparent film such as PET or PEN, or a transparent film such as PET or PEN is made of SiO. 2. A sandwich structure in which an inorganic layer made of SiN or the like and an acrylic resin or the like is further formed and the inorganic layer is sandwiched between resin layers is used.
The configuration of the water vapor barrier layer 16 is not particularly limited as long as the water vapor transmission rate, the oxygen transmission rate, and the like satisfy predetermined performance.
 表面保護層18は、汚れ等から太陽電池サブモジュール12を守るとともに、汚れ等による太陽電池サブモジュール12への入射光量の低下を抑制するものである。この表面保護層18としては、例えば、フッ素系樹脂フィルムが用いられる。このフッ素系樹脂としては、例えば、ETFE(エチレンテトラフルオロエチレン)が用いられる。また、表面保護層18の厚さは、例えば、20~200μmである。 The surface protective layer 18 protects the solar cell submodule 12 from dirt and the like, and suppresses a decrease in the amount of incident light on the solar cell submodule 12 due to dirt and the like. As this surface protective layer 18, for example, a fluorine resin film is used. As this fluororesin, for example, ETFE (ethylene tetrafluoroethylene) is used. Further, the thickness of the surface protective layer 18 is, for example, 20 to 200 μm.
 バックシート22は、太陽電池モジュール10を裏側から保護するとともに、太陽電池モジュール10の絶縁性を確保するためのものである。このバックシート22には、PVF(ポリフッ化ビニル)、PETまたはPEN等の樹脂フィルムで、アルミニウム箔を挟んだ構造のものが用いられる。なお、バックシート22においても、その構成については特に限定されるものではない。 The back sheet 22 is for protecting the solar cell module 10 from the back side and ensuring insulation of the solar cell module 10. The back sheet 22 is made of a resin film made of PVF (polyvinyl fluoride), PET, PEN or the like and sandwiched with an aluminum foil. The configuration of the back sheet 22 is not particularly limited.
 (太陽電池サブモジュール)
 図2および図3A、図3Bに示すように、本実施形態の太陽電池サブモジュール12は、表面30aおよび裏面30bの全面にそれぞれ絶縁層32、34を備えてなる金属基板30と、絶縁層32の表面32aに形成された複数の光電変換素子(太陽電池セル)50が直列接続された集積型構造の太陽電池部36とを有している。サブモジュール12の表面には、太陽電池部36の周囲を取り囲むように絶縁層表面32aが露出される額縁状絶縁領域が設けられている。この領域は、太陽電池部36の各層を基板の全面に順次積層した後に、周縁領域のみレーザーで除去することにより設けられる。
(Solar cell sub-module)
As shown in FIG. 2, FIG. 3A, and FIG. 3B, the solar cell submodule 12 of this embodiment includes a metal substrate 30 that includes insulating layers 32 and 34 on the entire surface 30 a and back surface 30 b, respectively, and an insulating layer 32. A plurality of photoelectric conversion elements (solar battery cells) 50 formed on the front surface 32a of the solar cell unit 36 having an integrated structure in which the photovoltaic cells are connected in series. On the surface of the submodule 12, a frame-shaped insulating region where the insulating layer surface 32 a is exposed is provided so as to surround the solar cell portion 36. This region is provided by sequentially laminating each layer of the solar cell portion 36 on the entire surface of the substrate and then removing only the peripheral region with a laser.
 太陽電池部36は、図3Aおよび図3Bに示すように、金属基板30の表面の絶縁層32上に、裏面電極38と化合物半導体からなる光電変換層40とバッファ層42と表面電極(透明電極)44とが順次積層され、基板短辺方向に延びる短冊状に分離された複数の光電変換素子50が、隣り合う光電変換素子50間で裏面電極38と透明電極44が接続されて、直列接続されてなる。各光電変換素子50は、裏面電極38、光電変換層40、バッファ層42および透明電極44により構成されている。 As shown in FIG. 3A and FIG. 3B, the solar cell unit 36 includes a back electrode 38, a photoelectric conversion layer 40 made of a compound semiconductor, a buffer layer 42, and a surface electrode (transparent electrode) on the insulating layer 32 on the surface of the metal substrate 30. ) 44 are sequentially stacked, and a plurality of photoelectric conversion elements 50 separated into strips extending in the short side direction of the substrate are connected in series by connecting the back electrode 38 and the transparent electrode 44 between the adjacent photoelectric conversion elements 50. Being done. Each photoelectric conversion element 50 includes a back electrode 38, a photoelectric conversion layer 40, a buffer layer 42, and a transparent electrode 44.
 各裏面電極38は、隣り合う裏面電極38と第1の分離溝39により離間されて絶縁層32の表面32aに配置形成されている。光電変換層40は第1の分離溝39を埋めつつ裏面電極38の上に形成されている。この光電変換層40の表面にバッファ層42が形成されている。各光電変換素子の光電変換層40およびバッファ層42は、裏面電極38にまで達する第2の分離溝43により、隣り合う光電変換素子の光電変換層40およびバッファ層42と離間されている。この第2の分離溝43は、裏面電極38の第1の分離溝39とは異なる位置に形成されている。 Each back electrode 38 is disposed and formed on the surface 32 a of the insulating layer 32 so as to be separated from the adjacent back electrode 38 by the first separation groove 39. The photoelectric conversion layer 40 is formed on the back electrode 38 while filling the first separation groove 39. A buffer layer 42 is formed on the surface of the photoelectric conversion layer 40. The photoelectric conversion layer 40 and the buffer layer 42 of each photoelectric conversion element are separated from the photoelectric conversion layer 40 and the buffer layer 42 of the adjacent photoelectric conversion element by a second separation groove 43 reaching the back electrode 38. The second separation groove 43 is formed at a position different from the first separation groove 39 of the back electrode 38.
 また、この溝43を埋めつつバッファ層42の表面に透明電極44が形成されている。さらに、透明電極44、バッファ層42および光電変換層40を貫き裏面電極38に達する第3の分離溝45が形成されている。それぞれの光電変換素子50はその裏面電極38と隣接する光電変換素子の透明電極44とが第3の分離溝45により接続されることにより直列に接続された構成となっている。 Further, a transparent electrode 44 is formed on the surface of the buffer layer 42 while filling the groove 43. Furthermore, a third separation groove 45 that penetrates the transparent electrode 44, the buffer layer 42, and the photoelectric conversion layer 40 and reaches the back electrode 38 is formed. Each photoelectric conversion element 50 has a configuration in which the back electrode 38 and the transparent electrode 44 of the adjacent photoelectric conversion element are connected in series by being connected by a third separation groove 45.
 本実施形態の光電変換素子50は、例えば、裏面電極38がモリブデン電極で構成され、光電変換層40がCIGSで構成され、バッファ層42がCdSで構成され、透明電極44がZnOで構成されている。
 この光電変換素子50に、透明電極44側から光が入射されると、この光が透明電極44およびバッファ層42を通過し、光電変換層40で起電力が発生し、透明電極44から裏面電極38に向かう電流が発生する。このとき、図2および図3中、複数の光電変換素子50が直列接続されて構成される太陽電池部36においては、左側の端の光電変換素子50aの裏面電極38が正極(プラス極)になり、右側の端の光電変換素子50zの裏面電極38が負極(マイナス極)になる。
In the photoelectric conversion element 50 of the present embodiment, for example, the back electrode 38 is made of a molybdenum electrode, the photoelectric conversion layer 40 is made of CIGS, the buffer layer 42 is made of CdS, and the transparent electrode 44 is made of ZnO. Yes.
When light enters the photoelectric conversion element 50 from the transparent electrode 44 side, the light passes through the transparent electrode 44 and the buffer layer 42, and an electromotive force is generated in the photoelectric conversion layer 40. A current directed to 38 is generated. At this time, in FIG. 2 and FIG. 3, in the solar cell unit 36 configured by connecting a plurality of photoelectric conversion elements 50 in series, the back electrode 38 of the photoelectric conversion element 50 a at the left end is a positive electrode (plus electrode). Thus, the back electrode 38 of the photoelectric conversion element 50z at the right end becomes a negative electrode (negative electrode).
 なお、本実施形態の太陽電池部36は、例えば、公知のCIGS系の太陽電池の製造方法により製造することができる。このとき、第1~第3の分離溝39、43、45は、レーザースクライブまたはメカニカルスクライブにより形成することができる。 In addition, the solar cell part 36 of this embodiment can be manufactured with the manufacturing method of a well-known CIGS type solar cell, for example. At this time, the first to third separation grooves 39, 43, and 45 can be formed by laser scribe or mechanical scribe.
 (電気接続部)
 図2および図3Aに示すように、電気接続部55は、太陽電池部36の一端に配置されている端部光電変換素子50zの裏面電極38z(太陽電池部36の負極)と、金属基板30との導通を確保するために設けられるものである。
(Electrical connection)
As shown in FIG. 2 and FIG. 3A, the electrical connection portion 55 includes a back electrode 38 z (a negative electrode of the solar cell portion 36) of the end photoelectric conversion element 50 z disposed at one end of the solar cell portion 36, and the metal substrate 30. It is provided in order to ensure electrical continuity.
 電気接続部55は、端部光電変換素子50zの透明電極44表面から超音波半田処理を行うことにより形成された、端部光電変換素子50zおよびこの素子50zの直下の絶縁層32を貫通して金属基板30に至るマイクロクラック52と、透明電極44表面から浸透してマイクロクラック52中に埋め込まれた半田材54とにより構成されている。また、透明電極44の表面には、超音波半田処理の跡(半田処理部)として半田材54が残留している。なお、電気接続部55が形成された端部光電変換素子50zは、裏面電極38z、光電変換層40、バッファ層42および透明電極44を備えてなるが、光電変換の機能は有しない。 The electrical connecting portion 55 penetrates through the end photoelectric conversion element 50z and the insulating layer 32 directly below the element 50z formed by performing ultrasonic soldering from the surface of the transparent electrode 44 of the end photoelectric conversion element 50z. A microcrack 52 reaching the metal substrate 30 and a solder material 54 penetrating from the surface of the transparent electrode 44 and embedded in the microcrack 52 are configured. Further, the solder material 54 remains on the surface of the transparent electrode 44 as a trace of the ultrasonic soldering process (solder processing part). The end photoelectric conversion element 50z on which the electrical connection portion 55 is formed includes the back surface electrode 38z, the photoelectric conversion layer 40, the buffer layer 42, and the transparent electrode 44, but does not have a photoelectric conversion function.
 電気接続部55は、短冊状の裏面電極38zに沿って、複数個所に周期的に設けられていることが好ましい。例えば、2cm毎に設ける等である。短冊状の裏面電極38zに沿って、連続的に設けられていてもよいが、周期的に複数個所に設ければ十分であり、連続的に設けるよりも処理工程時間が短くでき好ましい。 The electrical connection portion 55 is preferably provided periodically at a plurality of locations along the strip-shaped back electrode 38z. For example, it is provided every 2 cm. Although it may be provided continuously along the strip-shaped back electrode 38z, it is sufficient to periodically provide it at a plurality of locations, and it is preferable because the processing step time can be shortened compared to continuous provision.
(リード線)
 図2に示すように、本実施形態においては、太陽電池部36の出力を外部に取り出すための一対のリード線56、60は、太陽電池サブモジュール12の一角に接続されている。ここでは、第1のリード線56が正極、第2のリード線60が負極にそれぞれ接続されている。
(Lead)
As shown in FIG. 2, in this embodiment, a pair of lead wires 56 and 60 for taking out the output of the solar cell unit 36 are connected to one corner of the solar cell submodule 12. Here, the first lead wire 56 is connected to the positive electrode, and the second lead wire 60 is connected to the negative electrode.
 図2および図3Bに示すように、太陽電池サブモジュール12においては、太陽電池部36の正極を構成する、太陽電池部36の左端の光電変換素子50aの裏面電極38が左側に張り出して設けられており、この張り出した裏面電極38a(図2の網掛け領域)の表面に第1のリード線56が接続されている。第1のリード線56は、超音波半田付けでない通常の半田付け、もしくは、銀ペーストのような導電性ペーストにより裏面電極38aに接続される。本実施形態においては、第1のリード線56を直に裏面電極38aに接続するものとしているが、例えば、錫メッキ銅リボン、導電性テープ等の導電性部材を裏面電極38a上に備え、この導電性部材を介して裏面電極38aに接続されていてもよい。導電性テープを備えることにより、裏面電極38aの強度を補強することができる。 As shown in FIGS. 2 and 3B, in the solar cell submodule 12, the back electrode 38 of the photoelectric conversion element 50 a at the left end of the solar cell unit 36, which constitutes the positive electrode of the solar cell unit 36, is provided to protrude to the left side. The first lead wire 56 is connected to the surface of the protruding back electrode 38a (the shaded area in FIG. 2). The first lead wire 56 is connected to the back electrode 38a by normal soldering that is not ultrasonic soldering or by a conductive paste such as silver paste. In the present embodiment, the first lead wire 56 is directly connected to the back electrode 38a. For example, a conductive member such as a tin-plated copper ribbon or a conductive tape is provided on the back electrode 38a. It may be connected to the back electrode 38a through a conductive member. By providing the conductive tape, the strength of the back electrode 38a can be reinforced.
 なお、裏面電極38aの第1のリード線56が接続される部分に、光電変換層40、バッファ層42および透明電極44が形成されていた場合には、レーザースクライブまたはメカニカルスクライブにより、これらの層を取り除いて裏面電極38aを露出させる。 In addition, when the photoelectric conversion layer 40, the buffer layer 42, and the transparent electrode 44 are formed in the part to which the first lead wire 56 of the back electrode 38a is connected, these layers are formed by laser scribe or mechanical scribe. And the back electrode 38a is exposed.
 第2のリード線60は、裏面電極38aの近傍の額縁絶縁領域の絶縁層表面32aに超音波半田付けされて半田材64により固定され、絶縁層32の表面からこの絶縁層32を貫通して金属基板30に至るマイクロクラック62中に埋め込まれた半田材64を介して金属基板30に接続されている。超音波半田付けの際に、マイクロクラック62が形成されると共に半田材64がマイクロクラック62中に浸透する。第2のリード線60は、このようにして金属基板30に接続されており、この金属基板30を導体として、さらに電気接続部55を介して接続された負極38zと導通されている。また、この第2のリード線60は、絶縁スリーブ61により接続部分以外は絶縁されている。 The second lead wire 60 is ultrasonically soldered to the insulating layer surface 32a in the frame insulating region in the vicinity of the back electrode 38a and fixed by the solder material 64, and penetrates the insulating layer 32 from the surface of the insulating layer 32. It is connected to the metal substrate 30 via a solder material 64 embedded in a microcrack 62 reaching the metal substrate 30. During the ultrasonic soldering, the microcracks 62 are formed and the solder material 64 penetrates into the microcracks 62. The second lead wire 60 is thus connected to the metal substrate 30, and is electrically connected to the negative electrode 38 z connected through the electrical connection portion 55 with the metal substrate 30 as a conductor. Further, the second lead wire 60 is insulated by the insulating sleeve 61 except for the connection portion.
 図4は、本実施形態に太陽電池モジュール10におけるリード線の配線状態を模式的に示す一部斜視図である。 FIG. 4 is a partial perspective view schematically showing the wiring state of the lead wires in the solar cell module 10 according to the present embodiment.
 図4において絶縁スリーブ57、61の図示は省略しているが、第1のリード線56は、略コ字状に折り曲げられて、基板30の側面30cおよびバックシート22の表面22aに沿って配線されて金属基板30の裏側に廻され、更には先端56aがバックシート22の表面22aに対して略垂直になるように折り曲げられて、略L字状に屈曲起立されている。
 また、第2のリード線60も、第1のリード線56と同様に、略コ字状に折り曲げられて、基板30の側面30cおよびバックシート22の表面22aに沿って配線されて金属基板30の裏側に廻されて、更には先端56aがバックシート22の表面22aに対して略垂直になるように折り曲げられて、略L字状に屈曲起立されている。
 図1に示すように、第1のリード線56および第2のリード線60は、それぞれバックシート22から突き抜けた状態で端子ボックス24の端子(図示せず)に接続される。
Although illustration of the insulating sleeves 57 and 61 is omitted in FIG. 4, the first lead wire 56 is bent in a substantially U-shape and is wired along the side surface 30 c of the substrate 30 and the surface 22 a of the back sheet 22. The tip 56a is bent so as to be substantially perpendicular to the surface 22a of the back sheet 22, and is bent upright in a substantially L shape.
Similarly to the first lead wire 56, the second lead wire 60 is also bent in a substantially U shape and wired along the side surface 30 c of the substrate 30 and the surface 22 a of the back sheet 22, and the metal substrate 30. Further, the front end 56a is bent so as to be substantially perpendicular to the surface 22a of the back sheet 22, and is bent upright in a substantially L shape.
As shown in FIG. 1, the first lead wire 56 and the second lead wire 60 are each connected to a terminal (not shown) of the terminal box 24 in a state of protruding from the back sheet 22.
 本実施形態においては、太陽電池サブモジュール12から電力を取り出す際に、金属基板30を導体として利用して、一方の電極(ここでは負極)に接続する第2リード線を、他方の電極(ここでは正極)の近傍で金属基板30に接続させることにより、負極の第2のリード線60を、太陽電池部36の周縁を取り囲むように配線する必要がなくなり、少なくとも第2のリード線60の配線長を短くできて、配線構造を簡素化することができる。
 このため、太陽電池モジュール10全体として配線長さを短くでき、配線にかかる材料費を抑えることができる。さらには、モジュール作製工程費、太陽電池モジュール敷設作業費等のコストを下げることができる。
In the present embodiment, when the electric power is taken out from the solar cell submodule 12, the second lead wire connected to one electrode (here, the negative electrode) is connected to the other electrode (here, the metal substrate 30 as a conductor). By connecting to the metal substrate 30 in the vicinity of the positive electrode), it is not necessary to wire the second lead wire 60 of the negative electrode so as to surround the periphery of the solar cell portion 36, and at least the wiring of the second lead wire 60 The length can be shortened and the wiring structure can be simplified.
For this reason, wiring length can be shortened as the whole solar cell module 10, and the material cost concerning wiring can be held down. Furthermore, costs such as module manufacturing process costs and solar cell module laying work costs can be reduced.
 また、本実施形態によれば、配線構造を簡素化できるため、太陽電池モジュール10の品質および信頼性を向上させることができる。更には、太陽電池モジュール10の端子ボックス24の取付位置も太陽電池モジュール10の中央ではなく、角部近傍にすることができるため、美観上も優れたものとなり、太陽電池モジュール10の商品価値を向上させることができる。 Moreover, according to this embodiment, since the wiring structure can be simplified, the quality and reliability of the solar cell module 10 can be improved. Furthermore, since the mounting position of the terminal box 24 of the solar cell module 10 can be not near the center of the solar cell module 10 but in the vicinity of the corner portion, the appearance is excellent and the commercial value of the solar cell module 10 is improved. Can be improved.
 さらには、正極の第1のリード線56および負極の第2のリード線60を近付けて、金属基板30の裏面側において、すぐのところで、端子ボックス24に接続することができるため、第1のリード線56および第2のリード線60の金属基板30の裏面30b側における長さを短くすることができる。これにより、第1のリード線56および第2のリード線60による凸部のない構造の単純な高品質・高信頼性の太陽電池モジュール10を提供することができる。 Furthermore, since the first lead wire 56 of the positive electrode and the second lead wire 60 of the negative electrode are brought close to each other and can be immediately connected to the terminal box 24 on the back surface side of the metal substrate 30, the first The lengths of the lead wire 56 and the second lead wire 60 on the back surface 30b side of the metal substrate 30 can be shortened. Thereby, the simple high quality and highly reliable solar cell module 10 of the structure without the convex part by the 1st lead wire 56 and the 2nd lead wire 60 can be provided.
 また、超音波半田処理という非常に簡単な方法で、一方の電極と金属基板30とを導通させる電気接続部55を形成することができるため、リード線取り付け工程を簡素化でき、モジュール作製工程費をさらに抑制することができる。 In addition, since the electrical connection portion 55 for conducting one electrode and the metal substrate 30 can be formed by a very simple method of ultrasonic soldering, the lead wire attaching process can be simplified and the module manufacturing process cost can be reduced. Can be further suppressed.
 以下に、太陽電池サブモジュール12の詳細を説明する。
 (基板)
 通電路となる金属基板30の直列抵抗は、使用する金属材料により異なるが、モジュールサイズを長さ120cm×幅60cmとすると下記表1に示すようになる。下記表1に示すように、抵抗率が大きいSUS430基板においても、直列抵抗は問題とはならないレベルである。なお、下記表1に示す短辺間直列抵抗とは、モジュールの長辺方向における直列抵抗である。
Figure JPOXMLDOC01-appb-T000001
Below, the detail of the solar cell submodule 12 is demonstrated.
(substrate)
Although the series resistance of the metal substrate 30 serving as a current path varies depending on the metal material used, it is as shown in Table 1 below when the module size is 120 cm long × 60 cm wide. As shown in Table 1 below, even in a SUS430 substrate having a high resistivity, the series resistance is at a level that does not cause a problem. In addition, the short side series resistance shown in following Table 1 is a series resistance in the long side direction of a module.
Figure JPOXMLDOC01-appb-T000001
 なお、本実施形態において、金属基板30は、表面30aおよび裏面30bに絶縁層32、34が形成されている。この絶縁層32、34は、例えば、金属基板の陽極酸化による複数の細孔を有する絶縁性酸化膜である。この絶縁性酸化膜は、高い絶縁性が確保されている。なお、絶縁層は、金属基板30の少なくとも表面に備えられていればよい。
 金属基板30としては、陽極酸化により金属基板30の表面および裏面に生成される金属酸化膜が絶縁体である材料を利用することができる。
In the present embodiment, the metal substrate 30 has the insulating layers 32 and 34 formed on the front surface 30a and the back surface 30b. The insulating layers 32 and 34 are, for example, insulating oxide films having a plurality of pores formed by anodizing a metal substrate. This insulating oxide film has a high insulating property. The insulating layer only needs to be provided on at least the surface of the metal substrate 30.
As the metal substrate 30, a material in which a metal oxide film generated on the front and back surfaces of the metal substrate 30 by anodic oxidation is an insulator can be used.
 金属基板30としては、具体的には、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、マグネシウム(Mg)、銅(Cu)、ニオブ(Nb)、タンタル(Ta)および鉄(Fe)並びにこれらの金属の合金からなる基板を用いることができる。コスト、および太陽電池に要求される特性の観点から、金属基板30としては、アルミニウムが最も好ましい。
 金属基板30としては、耐熱性向上のために軟鋼、ステンレス鋼等の鉄鋼板表面に、金属基板30に利用可能な上述の金属を、圧延または溶融メッキした、いわゆる、クラッド材を用いることもできる。
 なお、本実施形態の金属基板30は、フレキシブル性(可撓性)を備えることが好ましい。これにより、得られる太陽電池モジュールをフレキシブルなものとすることができる。
Specifically, as the metal substrate 30, aluminum (Al), zirconium (Zr), titanium (Ti), magnesium (Mg), copper (Cu), niobium (Nb), tantalum (Ta) and iron (Fe) A substrate made of an alloy of these metals can also be used. From the viewpoint of cost and characteristics required for the solar cell, aluminum is most preferable as the metal substrate 30.
As the metal substrate 30, a so-called clad material obtained by rolling or hot-plating the above-described metal usable for the metal substrate 30 on the surface of a steel plate such as mild steel or stainless steel can be used for improving heat resistance. .
In addition, it is preferable that the metal substrate 30 of this embodiment is provided with flexibility (flexibility). Thereby, the solar cell module obtained can be made flexible.
 金属基板30に、アルミニウム板を用いた場合、陽極酸化し、更に特定の封孔処理をすることで絶縁層32、34を形成することができる。この絶縁層32、34の製造工程には、必須の工程以外の各種の工程が含まれていてもよい。
 本実施形態においては、金属基板30にアルミニウム板を用いる場合、例えば、付着している圧延油を除く脱脂工程、アルミニウム板の表面のスマットを溶解するデスマット処理工程、アルミニウム板の表面を粗面化する粗面化処理工程、アルミニウム板の表面に陽極酸化皮膜を形成させる陽極酸化処理工程および陽極酸化皮膜のマイクロポアを封孔する封孔処理を経て、絶縁層32、34を形成し、太陽電池用の基板とするのが好ましい。
When an aluminum plate is used for the metal substrate 30, the insulating layers 32 and 34 can be formed by anodizing and performing a specific sealing treatment. The manufacturing process of the insulating layers 32 and 34 may include various processes other than the essential processes.
In this embodiment, when an aluminum plate is used for the metal substrate 30, for example, a degreasing step for removing adhering rolling oil, a desmut treatment step for dissolving a smut on the surface of the aluminum plate, and a roughening of the surface of the aluminum plate The insulating layers 32 and 34 are formed through a roughening treatment step, an anodizing treatment step for forming an anodized film on the surface of the aluminum plate, and a sealing treatment for sealing the micropores of the anodized film. It is preferable to use a substrate for the above.
 陽極酸化によるアルミニウム酸化膜で構成された絶縁層32、34の厚さは特に制限されず、絶縁性とハンドリング時の機械衝撃による損傷を防止する表面硬度を有していればよいが、厚すぎると可撓性の観点で問題を生じる場合がある。このことから、陽極酸化によるアルミニウム酸化膜で構成された絶縁層32、34の好ましい厚さは0.5~50μmであり、絶縁層の厚さは、陽極酸化処理の電解時間により制御することができる。 The thicknesses of the insulating layers 32 and 34 formed of the anodized aluminum oxide film are not particularly limited as long as they have insulating properties and surface hardness that prevents damage due to mechanical shock during handling, but are too thick. In some cases, there is a problem in terms of flexibility. Therefore, the preferable thickness of the insulating layers 32 and 34 formed of the aluminum oxide film by anodic oxidation is 0.5 to 50 μm, and the thickness of the insulating layer can be controlled by the electrolysis time of the anodic oxidation treatment. it can.
 また、絶縁層32、34は、陽極酸化によるアルミニウム酸化膜に限定されるものではない。絶縁層32、34としては、例えば、アルミニウム酸化膜、シリコン酸化膜、チタン酸化膜、鉄酸化膜が挙げられる。また、絶縁層32、34としては、例えば、アルミニウム窒化膜、シリコン窒化膜、チタン窒化膜、鉄窒化膜が挙げられる。さらには、アルミニウム窒素酸化膜、シリコン窒素酸化膜、チタン窒素酸化膜、鉄窒素酸化膜が挙げられる。
 これらの絶縁層32、34は、例えば、陽極酸化法、CVD法、PVD法、またはゾルゲル法により形成することができる。絶縁層32、34の厚さは1~100μmが好ましく、さらには10~50μmがより好ましい。
Further, the insulating layers 32 and 34 are not limited to the aluminum oxide film formed by anodic oxidation. Examples of the insulating layers 32 and 34 include an aluminum oxide film, a silicon oxide film, a titanium oxide film, and an iron oxide film. Examples of the insulating layers 32 and 34 include an aluminum nitride film, a silicon nitride film, a titanium nitride film, and an iron nitride film. Further examples include an aluminum nitrogen oxide film, a silicon nitrogen oxide film, a titanium nitrogen oxide film, and an iron nitrogen oxide film.
These insulating layers 32 and 34 can be formed by, for example, an anodic oxidation method, a CVD method, a PVD method, or a sol-gel method. The thickness of the insulating layers 32 and 34 is preferably 1 to 100 μm, and more preferably 10 to 50 μm.
(裏面電極)
 裏面電極38は、例えば、Mo、Cr、またはW、およびこれらを組合せたものにより構成される。この裏面電極38は、単層構造でもよいし、2層構造等の積層構造でもよい。
 裏面電極38は、厚さが100nm以上であることが好ましく、0.2~0.8μmであることがより好ましい。
 また、裏面電極38の形成方法は、特に制限されるものではなく、電子ビーム蒸着法、スパッタリング法等の気相成膜法により形成することができる。
(Back electrode)
The back electrode 38 is made of, for example, Mo, Cr, or W, and a combination thereof. The back electrode 38 may have a single layer structure or a laminated structure such as a two-layer structure.
The back electrode 38 preferably has a thickness of 100 nm or more, and more preferably 0.2 to 0.8 μm.
The method for forming the back electrode 38 is not particularly limited, and can be formed by a vapor deposition method such as an electron beam evaporation method or a sputtering method.
(透明電極)
 透明電極44は、光入射側に配置される電極であり、光電変換層に光を入射させるために透光性を有する必要がある。
 透明電極44は、例えば、Al、B、Ga、Sb、In等が添加されたZnO、ITO(インジウム錫酸化物)、またはSnOおよびこれらを組合せたものにより構成される。この透明電極44は、単層構造でもよいし、2層構造等の積層構造でもよい。また、透明電極44の厚さは、特に制限されるものではなく、0.3~1μmが好ましい。
(Transparent electrode)
The transparent electrode 44 is an electrode arranged on the light incident side, and needs to have translucency in order to make light incident on the photoelectric conversion layer.
The transparent electrode 44 is made of, for example, ZnO to which Al, B, Ga, Sb, In or the like is added, ITO (indium tin oxide), SnO 2 or a combination thereof. The transparent electrode 44 may have a single layer structure or a laminated structure such as a two-layer structure. Further, the thickness of the transparent electrode 44 is not particularly limited, and is preferably 0.3 to 1 μm.
(バッファ層)
 バッファ層42は、透明電極44の形成時の光電変換層40を保護すること、バンド不連続の整合などの機能を有し、透明電極44から入射した光を光電変換層40まで透過させるために透光性を有する必要がある。
 バッファ層42は、例えば、CdS、ZnS、ZnO、ZnMgO、またはZnS(O,OH)およびこれらの組合せたものにより構成される。
 バッファ層42は、厚さが0.03~0.1μmであることが好ましい。また、このバッファ層42は、例えば、CBD(ケミカルバスデポジション)法により形成することができる。
(Buffer layer)
The buffer layer 42 has functions such as protecting the photoelectric conversion layer 40 when the transparent electrode 44 is formed and band discontinuous matching, and transmits light incident from the transparent electrode 44 to the photoelectric conversion layer 40. It is necessary to have translucency.
The buffer layer 42 is made of, for example, CdS, ZnS, ZnO, ZnMgO, ZnS (O, OH), or a combination thereof.
The buffer layer 42 preferably has a thickness of 0.03 to 0.1 μm. The buffer layer 42 can be formed by, for example, a CBD (chemical bath deposition) method.
(光電変換層)
 光電変換層40は、透明電極44およびバッファ層42を通過して到達した光を吸収して電荷(起電力)を生じる層である。本実施形態において、光電変換層40は、その組成は、特に制限されるものではなく、例えば、少なくとも1種のカルコパイライト構造の化合物半導体である。具体的には、所謂CIS系などのIb族元素とIIIb族元素とVIb族元素とからなる化合物半導体、あるいは、CIGS系などの少なくとも1種の化合物半導体CuおよびAgからなる群より選択された少なくとも1種のIb族元素と、Al、GaおよびInからなる群より選択された少なくとも1種のIIIb族元素と、S、Se、およびTeからなる群から選択された少なくとも1種のVIb族元素とからなる少なくとも1種の化合物半導体が好適である。
(Photoelectric conversion layer)
The photoelectric conversion layer 40 is a layer that generates a charge (electromotive force) by absorbing light that has passed through the transparent electrode 44 and the buffer layer 42. In the present embodiment, the composition of the photoelectric conversion layer 40 is not particularly limited, and is, for example, at least one compound semiconductor having a chalcopyrite structure. Specifically, at least one selected from the group consisting of a compound semiconductor composed of a group Ib element such as a so-called CIS group, a group IIIb element and a group VIb element, or at least one compound semiconductor such as a CIGS group, Cu and Ag. One group Ib element, at least one group IIIb element selected from the group consisting of Al, Ga and In, and at least one group VIb element selected from the group consisting of S, Se and Te At least one compound semiconductor comprising:
 さらに光吸収率が高く、高い光電変換効率が得られることから、光電変換層40は、CuおよびAgからなる群より選択された少なくとも1種のIb族元素と、Al、GaおよびInからなる群より選択された少なくとも1種のIIIb族元素と、S、Se、およびTeからなる群から選択された少なくとも1種のVIb族元素とからなる少なくとも1種の化合物半導体であることが好ましい。この化合物半導体としては、CuAlS2、CuGaS2、CuInS2、CuAlSe2、CuGaSe2、CuInSe2(CIS)、AgAlS2、AgGaS2、AgInS2、AgAlSe2、AgGaSe2、AgInSe2、AgAlTe2、AgGaTe2、AgInTe2、Cu(In1-xGax)Se2(CIGS)、Cu(In1-xAlx)Se2、Cu(In1-xGax)(S、Se)2、Ag(In1-xGax)Se2、およびAg(In1-xGax)(S、Se)2等が挙げられる。 Further, since the light absorption rate is high and high photoelectric conversion efficiency is obtained, the photoelectric conversion layer 40 is composed of at least one group Ib element selected from the group consisting of Cu and Ag, and a group consisting of Al, Ga, and In. It is preferably at least one compound semiconductor composed of at least one group IIIb element selected from the group consisting of S, Se, and Te, and at least one group VIb element selected from the group consisting of S, Se, and Te. As the compound semiconductor, CuAlS 2, CuGaS 2, CuInS 2, CuAlSe 2, CuGaSe 2, CuInSe 2 (CIS), AgAlS 2, AgGaS 2, AgInS 2, AgAlSe 2, AgGaSe 2, AgInSe 2, AgAlTe 2, AgGaTe 2 , AgInTe 2 , Cu (In 1-x Ga x ) Se 2 (CIGS), Cu (In 1-x Al x ) Se 2 , Cu (In 1-x Ga x ) (S, Se) 2 , Ag (In 1-x Ga x ) Se 2 , Ag (In 1-x Ga x ) (S, Se) 2 and the like.
 光電変換層40は、CuInSe2(CIS)、および/またはこれにGaを固溶したCu(In、Ga)Se2(CIGS)を含むことが特に好ましい。CISおよびCIGSはカルコパイライト結晶構造を有する半導体であり、光吸収率が高く、高い光電変換効率が報告されている。また、光照射等による効率の劣化が少なく、耐久性に優れている。 The photoelectric conversion layer 40 particularly preferably includes CuInSe 2 (CIS) and / or Cu (In, Ga) Se 2 (CIGS) in which Ga is dissolved. CIS and CIGS are semiconductors having a chalcopyrite crystal structure, have high light absorption, and high photoelectric conversion efficiency has been reported. Moreover, there is little degradation of efficiency by light irradiation etc. and it is excellent in durability.
 光電変換層40には、所望の半導体導電型を得るための不純物が含まれる。不純物は隣接する層からの拡散、および/または積極的なドープによって、光電変換層40中に含有させることができる。光電変換層40中において、I-III-VI族半導体の構成元素および/または不純物には濃度分布があってもよく、n型、p型、およびi型等の半導体性の異なる複数の層領域が含まれていてもよい。
 例えば、CIGS系においては、光電変換層40中のGa量に厚み方向の分布を持たせると、バンドギャップの幅/キャリアの移動度等を制御でき、光電変換効率を高く設計することができる。
The photoelectric conversion layer 40 contains impurities for obtaining a desired semiconductor conductivity type. Impurities can be contained in the photoelectric conversion layer 40 by diffusion from adjacent layers and / or active doping. In the photoelectric conversion layer 40, the constituent elements and / or impurities of the I-III-VI group semiconductor may have a concentration distribution, and a plurality of layer regions having different semiconductor properties such as n-type, p-type, and i-type May be included.
For example, in the CIGS system, when the Ga amount in the photoelectric conversion layer 40 has a distribution in the thickness direction, the band gap width / carrier mobility and the like can be controlled, and the photoelectric conversion efficiency can be designed high.
 光電変換層40は、I-III-VI族半導体以外の1種又は2種以上の半導体を含んでいてもよい。I-III-VI族半導体以外の半導体としては、Si等のIVb族元素からなる半導体(IV族半導体)、GaAs等のIIIb族元素およびVb族元素からなる半導体(III-V族半導体)、およびCdTe等のIIb族元素およびVIb族元素からなる半導体(II-VI族半導体)等が挙げられる。光電変換層40には、特性に支障のない限りにおいて、半導体、所望の導電型とするための不純物以外の任意成分が含まれていても構わない。
 また、光電変換層40中のI-III-VI族半導体の含有量は、特に制限されるものではない。光電変換層40中のI-III-VI族半導体の含有量は、75質量%以上が好ましく、95質量%以上がより好ましく、99質量%以上が特に好ましい。
The photoelectric conversion layer 40 may contain one or more semiconductors other than the group I-III-VI semiconductor. Semiconductors other than I-III-VI group semiconductors include semiconductors composed of group IVb elements such as Si (group IV semiconductors), semiconductors composed of group IIIb elements such as GaAs and group Vb elements (group III-V semiconductors), and Examples thereof include semiconductors composed of IIb group elements such as CdTe and VIb group elements (II-VI group semiconductors). The photoelectric conversion layer 40 may contain an optional component other than a semiconductor and impurities for obtaining a desired conductivity type as long as the characteristics are not hindered.
Further, the content of the group I-III-VI semiconductor in the photoelectric conversion layer 40 is not particularly limited. The content of the group I-III-VI semiconductor in the photoelectric conversion layer 40 is preferably 75% by mass or more, more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
 CIGS層の成膜方法としては、如何なる方法を適用してもよい。CIGS層の成膜方法としては、多源同時蒸着法、セレン化法、スパッタ法、ハイブリッドスパッタ法、およびメカノケミカルプロセス法等が知られている。その他、スクリーン印刷法、近接昇華法、MOCVD法、およびスプレー法などを用いてもよい。 Any method may be applied as a method of forming the CIGS layer. As a method for forming a CIGS layer, a multi-source co-evaporation method, a selenization method, a sputtering method, a hybrid sputtering method, a mechanochemical process method, and the like are known. In addition, screen printing, proximity sublimation, MOCVD, spraying, and the like may be used.
<太陽電池モジュールの製造方法>
 本発明の実施形態の太陽電池モジュールの製造方法として、上記実施形態の太陽電池モジュール10の製造方法を説明する。
 本実施形態の太陽電池モジュール10の製造方法は、太陽電池サブモジュール12に対して、電力取り出し用のリード線を取り付けるリード線取り付け工程、太陽電池サブモジュール12の表面側および裏面側にそれぞれ接着充填層及び保護層を配置するレイアップ工程、およびラミネート処理を行うラミネート処理工程を含む。
<Method for manufacturing solar cell module>
As a method for manufacturing the solar cell module according to the embodiment of the present invention, a method for manufacturing the solar cell module 10 according to the above embodiment will be described.
The manufacturing method of the solar cell module 10 according to the present embodiment includes a lead wire attaching step for attaching a lead wire for extracting power to the solar cell sub module 12, and adhesive filling on the front surface side and the back surface side of the solar cell sub module 12, respectively. A lay-up process for arranging the layer and the protective layer, and a laminating process for performing a laminating process.
(リード線取り付け工程)
 リード線取り付け工程は、1対のリード線56、60を太陽電池部36の正極および負極にそれぞれ接続する工程であり、ここでは、電気接続部55の形成を含む。
(Lead wire installation process)
The lead wire attaching step is a step of connecting the pair of lead wires 56 and 60 to the positive electrode and the negative electrode of the solar cell portion 36, respectively, and includes the formation of the electrical connecting portion 55 here.
 まず、太陽電池サブモジュール12の太陽電池部36の正極である図2中左端の裏面電極38a上の光電変換層40、バッファ層42および透明電極44をレーザースクライブまたはメカニカルスクライブにより除去して、裏面電極38aを露出させておく。 First, the photoelectric conversion layer 40, the buffer layer 42, and the transparent electrode 44 on the back electrode 38a at the left end in FIG. 2, which is the positive electrode of the solar cell portion 36 of the solar cell submodule 12, are removed by laser scribe or mechanical scribe, and the back surface The electrode 38a is exposed.
 電気接続部55は、図2中右端の端部光電変換素子50zの透明電極44表面において、超音波半田処理を行うことにより形成する。超音波半田処理は半田ごての先端を300~500℃程度の温度にすると共に、先端から2~3W、数10kHzの超音波を生じさせることにより、半田処理を行う箇所の表面酸化物を除去しつつ半田処理を行うものである。
 端部光電変換素子50zの透明電極44表面において超音波半田処理を行い、所定以上の超音波強度にすると、透明電極44、バッファ層42、光電変換層40および太陽電池部36の負極を構成する裏面電極38zを貫通し、さらに裏面電極38z直下の絶縁層32を貫通して金属基板30に至る複数のマイクロクラック52が生じ、透明電極44上から半田材54が浸透してマイクロクラック52内が半田材54で埋め込まれる。マイクロクラック52に埋め込まれた半田材54により、裏面電極38zを金属基板30と導通させることができる。
 より具体的には、例えば、半田材54として黒田テクノ製鉛フリー半田セラソルザ217を用い、黒田テクノ製超音波半田付け装置サンボンダにより、超音波強度2W、半田ごて先端温度450℃に設定して超音波半田処理をして電気接続部55を形成する。短冊状の端部光電変換素子50zの表面上において、長さ方向に、例えば2cm毎に超音波半田処理をして複数の電気接続部55を形成する。
The electrical connection portion 55 is formed by performing an ultrasonic soldering process on the surface of the transparent electrode 44 of the right end photoelectric conversion element 50z in FIG. In the ultrasonic soldering process, the tip of the soldering iron is brought to a temperature of about 300 to 500 ° C., and the surface oxide is removed from the soldering process by generating ultrasonic waves of 2 to 3 W and several tens of kHz from the tip. However, soldering is performed.
When ultrasonic soldering is performed on the surface of the transparent electrode 44 of the end photoelectric conversion element 50z to obtain an ultrasonic intensity of a predetermined level or more, the transparent electrode 44, the buffer layer 42, the photoelectric conversion layer 40, and the negative electrode of the solar cell unit 36 are configured. A plurality of microcracks 52 that penetrate through the back electrode 38z and further through the insulating layer 32 directly below the back electrode 38z and reach the metal substrate 30 are generated, and the solder material 54 permeates from above the transparent electrode 44 so that the inside of the microcrack 52 is inside. It is embedded with solder material 54. The back electrode 38 z can be electrically connected to the metal substrate 30 by the solder material 54 embedded in the microcrack 52.
More specifically, for example, a Kuroda Techno lead-free solder cerasolzer 217 is used as the solder material 54, and the ultrasonic strength is set to 2 W and the soldering iron tip temperature is 450 ° C. by the Kuroda Techno ultrasonic soldering device sun bonder. The electrical connection portion 55 is formed by ultrasonic soldering. On the surface of the strip-shaped end photoelectric conversion element 50z, a plurality of electrical connection portions 55 are formed by ultrasonic soldering, for example, every 2 cm in the length direction.
 1対のリード線の一方(第2のリード線60)を金属基板30に接続し、他方(第1のリード線56)を太陽電池部36の正極である図2中左端の裏面電極38aに接続する。
 第1のリード線56を、銀ペーストを用いて裏面電極38aに直接接続固定する。また、第2のリード線60を、裏面電極38aの近傍の額縁絶縁領域の絶縁層表面32aに超音波半田付けする。超音波半田付けにより、リード線60を絶縁層32の表面32aに半田材64で固定するとともに、電気接続部55形成の場合と同様に、絶縁層32を貫通して金属基板30に至るマイクロクラック62を複数形成して、半田材64をマイクロクラック62中に浸透させて埋め込む。ここでも、超音波半田付けは、半田ごての先端を300~500℃程度の温度にすると共に、先端から2~3W、数10kHzの超音波を生じさせて行う。
One of the pair of lead wires (second lead wire 60) is connected to the metal substrate 30, and the other (first lead wire 56) is connected to the back electrode 38a at the left end in FIG. Connecting.
The first lead wire 56 is directly connected and fixed to the back electrode 38a using silver paste. Further, the second lead wire 60 is ultrasonically soldered to the insulating layer surface 32a in the frame insulating region near the back electrode 38a. The lead wire 60 is fixed to the surface 32a of the insulating layer 32 with the solder material 64 by ultrasonic soldering, and the microcracks that penetrate the insulating layer 32 and reach the metal substrate 30 as in the case of forming the electrical connection portion 55. A plurality of 62 are formed, and the solder material 64 is infiltrated and embedded in the microcracks 62. Again, ultrasonic soldering is performed by setting the tip of the soldering iron to a temperature of about 300 to 500 ° C. and generating ultrasonic waves of 2 to 3 W and several tens of kHz from the tip.
 以上のようにして電気接続部55を形成し、第2のリード線60を金属基板30に接続させることにより、第2のリード線60を、金属基板30、電気接続部55を介して負極(裏面電極38z)と接続させることができる。なお、電気接続部の形成と、リード線56、60の接続とは、いずれを先に行ってもよい。 By forming the electrical connection portion 55 as described above and connecting the second lead wire 60 to the metal substrate 30, the second lead wire 60 is connected to the negative electrode (via the metal substrate 30 and the electrical connection portion 55). It can be connected to the back electrode 38z). Note that either the formation of the electrical connection portion or the connection of the lead wires 56 and 60 may be performed first.
 第2のリード線60は、絶縁層32の一部をレーザースクライブまたはメカニカルスクライブにより除去して金属基板30に直接接続固定してもよいが、本実施形態のように超音波半田付けで、絶縁層32上に固定する方法であれば、絶縁層32の一部を除去する工程を設ける必要がないため、より製造工程が簡単なものとなる。 The second lead wire 60 may be directly connected and fixed to the metal substrate 30 by removing a part of the insulating layer 32 by laser scribe or mechanical scribe. However, as in this embodiment, the second lead wire 60 is insulated by ultrasonic soldering. If it is the method of fixing on the layer 32, since it is not necessary to provide the process of removing a part of insulating layer 32, a manufacturing process becomes simpler.
(レイアップ工程)
 レイアップ工程においては、まず、太陽電池サブモジュール12の表面側に接着充填層14、水蒸気バリア層16および表面保護層18を配置する。
 このとき、太陽電池サブモジュール12において、第1のリード線56および第2のリード線60を平行に保った状態で折り曲げ、金属基板30の裏面30bに廻し、太陽電池サブモジュール12の裏面側に配置した接着充填層20およびバックシート22の所定の位置に設けられた貫通穴を通して先端56a、60aをバックシート22から突出させる。
(Layup process)
In the lay-up process, first, the adhesion filling layer 14, the water vapor barrier layer 16, and the surface protective layer 18 are disposed on the surface side of the solar cell submodule 12.
At this time, in the solar cell submodule 12, the first lead wire 56 and the second lead wire 60 are bent in a state where they are kept parallel to each other and turned around the back surface 30 b of the metal substrate 30. The tips 56 a and 60 a are projected from the back sheet 22 through through holes provided at predetermined positions of the arranged adhesive filling layer 20 and the back sheet 22.
 (ラミネート処理工程)
 上記のように太陽電池サブモジュール12の表面側に接着充填層14、水蒸気バリア層16および表面保護層18を配置した状態で、例えば、真空ラミネーターにより150℃、20分の条件でラミネート加工して一体化する。
(Lamination process)
In the state where the adhesive filling layer 14, the water vapor barrier layer 16 and the surface protective layer 18 are arranged on the surface side of the solar cell submodule 12 as described above, for example, lamination is performed at 150 ° C. for 20 minutes using a vacuum laminator. Integrate.
 (後工程)
 その後、第1のリード線56および第2のリード線60を折り曲げ、バックシート22の表面22aに略L字状に屈曲起立させる。
 さらに、端子ボックス24の端子と、第1のリード線56および第2のリード線60の先端56a、60aを接続する。そして、この端子ボックス24を、バックシート22の表面22aの角部近傍に、例えば、シリコーン樹脂によって接着封止して固定する。
 以上のようにして、図1に示す実施形態の太陽電池モジュール10を製造することができる。
(Post-process)
Thereafter, the first lead wire 56 and the second lead wire 60 are bent, and are bent upright on the surface 22a of the backsheet 22 in a substantially L shape.
Further, the terminals of the terminal box 24 are connected to the tips 56 a and 60 a of the first lead wire 56 and the second lead wire 60. Then, the terminal box 24 is bonded and sealed, for example, with a silicone resin in the vicinity of the corner portion of the surface 22a of the back sheet 22.
As described above, the solar cell module 10 of the embodiment shown in FIG. 1 can be manufactured.
<設計変更例>
 太陽電池サブモジュール、リード線および電気接続部の設計変更例について説明する。
 図5は、本発明の実施形態の太陽電池モジュールに用いられる設計変更例の太陽電池サブモジュール112の模式的平面図であり、図6Aおよび図6Bは、図5に示す太陽電池サブモジュールのそれぞれ端部の模式断面図である。
<Design change example>
A design change example of the solar cell submodule, the lead wire, and the electrical connection portion will be described.
FIG. 5 is a schematic plan view of a solar cell submodule 112 of a design change example used in the solar cell module according to the embodiment of the present invention. FIGS. 6A and 6B are respectively the solar cell submodules shown in FIG. It is a schematic cross section of an edge part.
 図5に示すように、本設計変更例においては、太陽電池サブモジュール112に対する第2のリード線60の接続位置および電気接続部55の構成が図2に示した太陽電池サブモジュール12(図2参照)と異なる。以下、主として太陽電池サブモジュール12と異なる点について説明する。 As shown in FIG. 5, in the present design modification example, the connection position of the second lead wire 60 to the solar cell submodule 112 and the configuration of the electrical connection portion 55 are the solar cell submodule 12 shown in FIG. Different from reference). Hereinafter, differences from the solar cell submodule 12 will be mainly described.
 図5および図6Aに示すように、太陽電池サブモジュール112は、直列接続された複数の光電変換素子50の一端に配置された図5中右端の端部光電変換素子50zに隣接して、端部光電変換素子50zの表面電極44と接続された端部裏面電極38αを備えており、この端部裏面電極38αが太陽電池部36の一方の電極(ここでは、負極)を構成している。 As shown in FIG. 5 and FIG. 6A, the solar cell submodule 112 is adjacent to the right end photoelectric conversion element 50z in FIG. 5 arranged at one end of the plurality of photoelectric conversion elements 50 connected in series. An end back electrode 38α connected to the surface electrode 44 of the partial photoelectric conversion element 50z is provided, and the end back electrode 38α constitutes one electrode (here, the negative electrode) of the solar cell portion 36.
 電気接続部55は、この端部裏面電極38αの表面から超音波半田処理を施すことにより、端部裏面電極38αの表面からこの電極38αの直下の絶縁層32を貫通して金属基板30に至るマイクロクラック52と、透明電極44表面から浸透してマイクロクラック52中に埋め込まれた半田材54とにより構成されている。端部裏面電極38α上に設けられていた光電変換層40、バッファ層42および透明電極44を、レーザースクライブまたはメカニカルスクライブにより取り除いて端部裏面電極38αを露出させた上で、端部裏面電極38α表面から超音波半田処理を行うことにより、電気接続部55を形成することができる。
 なお、図5において、網掛け領域は裏面電極38がサブモジュール表面に露出している部分を示している。
The electrical connection portion 55 is subjected to ultrasonic soldering from the surface of the end back electrode 38α to penetrate the insulating layer 32 immediately below the electrode 38α from the surface of the end back electrode 38α to the metal substrate 30. The microcrack 52 and the solder material 54 which penetrates from the surface of the transparent electrode 44 and is embedded in the microcrack 52 are configured. The photoelectric conversion layer 40, the buffer layer 42, and the transparent electrode 44 provided on the end back electrode 38α are removed by laser scribe or mechanical scribe to expose the end back electrode 38α, and then the end back electrode 38α. The electrical connection portion 55 can be formed by performing ultrasonic soldering from the surface.
In FIG. 5, the shaded area indicates a portion where the back electrode 38 is exposed on the surface of the submodule.
 図5および図6Bに示すように、第1のリード線56が接続される図5中左端の裏面電極38aの表面には、導電テープ46が圧着されている。例えば、住友スリーエム社製のエンボス導電テープを、2kg/cm2で裏面電極38a上に圧着する。この導電テープにより良好な導電性が確保されると共に、裏面電極38aの強度補強を行うことができる。 As shown in FIGS. 5 and 6B, a conductive tape 46 is pressure-bonded to the surface of the back electrode 38a at the left end in FIG. 5 to which the first lead wire 56 is connected. For example, an embossed conductive tape manufactured by Sumitomo 3M Limited is pressure-bonded onto the back electrode 38a at 2 kg / cm 2 . This conductive tape ensures good conductivity and can reinforce the strength of the back electrode 38a.
 第2のリード線60は、金属基板30の裏面側に形成された絶縁層34に超音波半田付けされて半田材64により固定され、絶縁層34を貫通して金属基板30に至るマイクロクラック62中に埋め込まれた半田材64を介して金属基板30に接続されている。 The second lead wire 60 is ultrasonically soldered to the insulating layer 34 formed on the back surface side of the metal substrate 30 and fixed by the solder material 64, and the micro crack 62 that penetrates the insulating layer 34 and reaches the metal substrate 30. It is connected to the metal substrate 30 via a solder material 64 embedded therein.
 第2のリード線60は、金属基板30の裏面側の絶縁層34に固定されているため、金属基板30の側面30cを引き回す必要がなく、またバックシート22への引き回し距離を、太陽電池サブモジュール12よりも若干短くすることができる。従って、更に作製工程での作業性を向上させることができると共に、更に材料費を削減することができる。 Since the second lead wire 60 is fixed to the insulating layer 34 on the back surface side of the metal substrate 30, it is not necessary to route the side surface 30 c of the metal substrate 30, and the distance to the back sheet 22 can be set to the solar cell sub It can be slightly shorter than the module 12. Therefore, the workability in the manufacturing process can be further improved, and the material cost can be further reduced.
 上記以外の構成は、図2に示した太陽電池サブモジュール12とほぼ同様であり、同様にして製造することができる。 Other configurations are substantially the same as those of the solar cell submodule 12 shown in FIG. 2, and can be manufactured in the same manner.
 本例においても、電気接続部55および第2のリード線60の金属基板への接続に、超音波半田処理および超音波半田付けを用いているので、第1の実施形態と同様の効果を得ることができる。 Also in this example, since the ultrasonic soldering process and the ultrasonic soldering are used for the connection of the electrical connection portion 55 and the second lead wire 60 to the metal substrate, the same effect as the first embodiment is obtained. be able to.
 なお、上述の実施形態においては、第1のリード線56を正極、第2のリード線60を負極に接続するものとしたが、これに限定されるものではなく、第1のリード線56と第2のリード線60との極性は逆になっても良く、この場合においても、上述のいずれの実施形態においても、同様の作用効果を奏する。 In the above-described embodiment, the first lead wire 56 is connected to the positive electrode and the second lead wire 60 is connected to the negative electrode. However, the present invention is not limited to this. The polarity with respect to the second lead wire 60 may be reversed, and in this case as well, the same effects are achieved in any of the above-described embodiments.
 さらに、上述の実施形態においては、端子ボックス24を設ける構成としたが、これに限定されるものではなく、太陽電池モジュールに端子ボックスを設けることなく、太陽電池モジュール外に設けた端子ボックスに第1のリード線56および第2のリード線60を接続する構成としてもよい。 Furthermore, in the above-described embodiment, the terminal box 24 is provided. However, the present invention is not limited to this, and the terminal box provided outside the solar cell module is not limited to the terminal box provided in the solar cell module. The first lead wire 56 and the second lead wire 60 may be connected.

Claims (10)

  1.  少なくとも表面に絶縁層を備えてなる金属基板と、該絶縁層上に正極および負極の電極を備えた太陽電池部とを備えてなる太陽電池サブモジュールと、
     前記正極および負極の電極にそれぞれ接続され、前記太陽電池部からの出力を外部に取り出す1対のリード線とを備えてなる太陽電池モジュールであって、
     前記太陽電池サブモジュールの一部に形成された、前記正極および負極のいずれか一方の電極を前記金属基板に導通させる電気接続部であって、前記一方の電極および該一方の電極の直下の前記絶縁層を貫通して前記金属基板に至るマイクロクラックと該マイクロクラック中に埋め込まれた半田材とからなる電気接続部を備え、
     前記1対のリード線の一方が、前記金属基板に接続され、前記電気接続部を介して前記一方の電極に接続されていることを特徴とする太陽電池モジュール。
    A solar cell submodule comprising at least a metal substrate provided with an insulating layer on the surface, and a solar cell part provided with positive and negative electrodes on the insulating layer;
    A solar cell module comprising a pair of lead wires connected to the positive electrode and the negative electrode, respectively, and taking out the output from the solar cell unit;
    An electrical connection portion formed in a part of the solar cell submodule and electrically connecting one of the positive electrode and the negative electrode to the metal substrate, the one electrode and the one directly below the one electrode An electrical connection portion comprising a microcrack that penetrates through the insulating layer and reaches the metal substrate and a solder material embedded in the microcrack;
    One of the pair of lead wires is connected to the metal substrate, and is connected to the one electrode through the electrical connection portion.
  2.  前記太陽電池部が、前記絶縁層上に順に積層された、裏面電極、光電変換層および表面電極からなる光電変換素子が複数直列接続されてなるものであり、
     前記直列接続された複数の光電変換素子の一端に配置された端部光電変換素子の裏面電極が、前記一方の電極を構成し、
     前記マイクロクラックが、前記端部光電変換素子の表面電極の表面の半田処理部から、該端部光電変換素子の表面電極、光電変換層および裏面電極を貫通して前記金属基板に至るものであることを特徴とする請求項1記載の太陽電池モジュール。
    A plurality of photoelectric conversion elements composed of a back electrode, a photoelectric conversion layer, and a front electrode are connected in series, wherein the solar cell unit is sequentially laminated on the insulating layer,
    The back electrode of the end photoelectric conversion element disposed at one end of the plurality of photoelectric conversion elements connected in series constitutes the one electrode,
    The micro-crack extends from the solder processing portion on the surface electrode surface of the edge photoelectric conversion element to the metal substrate through the surface electrode, photoelectric conversion layer, and back electrode of the edge photoelectric conversion element. The solar cell module according to claim 1.
  3.  前記太陽電池部が、前記絶縁層上に順に積層された、裏面電極、光電変換層および表面電極からなる光電変換素子が複数直列接続されてなるものであり、
     前記直列接続された複数の光電変換素子の一端に配置された端部光電変換素子の表面電極と接続された端部裏面電極が、前記一方の電極を構成し、
     前記マイクロクラックが、前記端部裏面電極の表面の半田処理部から、該端部裏面電極を貫通して前記金属基板に至るものであることを特徴とする請求項1記載の太陽電池モジュール。
    A plurality of photoelectric conversion elements composed of a back electrode, a photoelectric conversion layer, and a front electrode are connected in series, wherein the solar cell unit is sequentially laminated on the insulating layer,
    The end back electrode connected to the surface electrode of the end photoelectric conversion element disposed at one end of the plurality of photoelectric conversion elements connected in series constitutes the one electrode,
    2. The solar cell module according to claim 1, wherein the microcrack extends from the solder processing portion on the surface of the end back electrode to the metal substrate through the end back electrode. 3.
  4.  前記絶縁層表面の、前記太陽電池部が形成されていない領域に、前記一方のリード線が半田材により固定され、前記絶縁層の表面から該絶縁層を貫通して前記金属基板に至るマイクロクラック中に埋め込まれた半田材を介して前記金属基板に接続されていることを特徴とする請求項1から3いずれか1項記載の太陽電池モジュール。 The one lead wire is fixed by a solder material in a region of the insulating layer surface where the solar cell portion is not formed, and the micro crack extends from the surface of the insulating layer to the metal substrate through the insulating layer. The solar cell module according to any one of claims 1 to 3, wherein the solar cell module is connected to the metal substrate via a solder material embedded therein.
  5.  前記金属基板が裏面に裏面側絶縁層を備えてなり、
     前記一方のリード線が、該裏面側絶縁層の表面に半田材により固定され、前記裏面側絶縁層の表面から絶縁層を貫通して前記金属基板に至るマイクロクラック中に埋め込まれた半田材を介して前記金属基板に接続されていることを特徴とする請求項1から3いずれか1項記載の太陽電池モジュール。
    The metal substrate comprises a back side insulating layer on the back side,
    The one lead wire is fixed to the surface of the back-side insulating layer with a solder material, and the solder material embedded in the microcracks from the surface of the back-side insulating layer through the insulating layer to the metal substrate 4. The solar cell module according to claim 1, wherein the solar cell module is connected to the metal substrate.
  6.  前記金属基板が、アルミニウム、ステンレス、鉄鋼材およびこれらのクラッド材のうちのいずれかにより構成され、
     前記絶縁層が、アルミニウム、シリコン、チタンおよび鉄のいずれかの酸化膜、窒化膜または酸窒化膜により構成されていることを特徴とする請求項1から5いずれか1項記載の太陽電池モジュール。
    The metal substrate is made of any one of aluminum, stainless steel, steel material, and cladding materials thereof,
    6. The solar cell module according to claim 1, wherein the insulating layer is made of an oxide film, a nitride film, or an oxynitride film of any one of aluminum, silicon, titanium, and iron.
  7.  前記光電変換層が、CuおよびAgからなる群より選択された少なくとも1種のIb族元素と、Al、GaおよびInからなる群より選択された少なくとも1種のIIIb族元素と、S、Se、およびTeからなる群から選択された少なくとも1種のVIb族元素とからなる少なくとも1種の化合物半導体により構成されていることを特徴とする請求項1から6いずれか1項記載の太陽電池モジュール。 The photoelectric conversion layer includes at least one group Ib element selected from the group consisting of Cu and Ag; at least one group IIIb element selected from the group consisting of Al, Ga and In; and S, Se, 7. The solar cell module according to claim 1, comprising at least one compound semiconductor composed of at least one VIb group element selected from the group consisting of Te and Te.
  8.  少なくとも表面に絶縁層を備えてなる金属基板と、該絶縁層上に正極および負極の電極を備えた太陽電池部とを備えてなる太陽電池サブモジュールと、前記正極および負極の電極にそれぞれ接続され、前記太陽電池部からの出力を外部に取り出す1対のリード線とを備えてなる太陽電池モジュールの製造方法であって、
     前記1対のリード線の一方を、前記金属基板に接続し、
     前記正極および負極の一方の電極上から超音波半田処理を行うことにより、該一方の電極から該電極の直下の前記絶縁層を貫通し前記金属基板に至るマイクロクラックを形成すると共に、該マイクロクラック内に半田材を浸透させて前記一方の電極と前記金属基板との電気接続部を形成することにより、
     前記一方のリード線を、前記電気接続部を介して前記一方の電極に接続することを特徴とする太陽電池モジュールの製造方法。
    A solar cell submodule comprising at least a metal substrate comprising an insulating layer on the surface, a solar cell unit comprising positive and negative electrodes on the insulating layer, and connected to the positive and negative electrodes, respectively. , A method for manufacturing a solar cell module comprising a pair of lead wires for taking out the output from the solar cell unit to the outside,
    One of the pair of lead wires is connected to the metal substrate;
    By performing ultrasonic soldering from one of the positive electrode and the negative electrode, a micro crack is formed from the one electrode through the insulating layer directly below the electrode to reach the metal substrate. By infiltrating the solder material in the inside to form an electrical connection portion between the one electrode and the metal substrate,
    The method of manufacturing a solar cell module, wherein the one lead wire is connected to the one electrode through the electrical connection portion.
  9.  前記一方のリード線を、前記絶縁層の表面の、前記太陽電池部が形成されていない領域に、超音波半田付けすることにより、該領域の前記絶縁層を貫通して前記金属基板に至るマイクロクラックを形成すると共に、該マイクロクラック内に半田材を浸透させて前記金属基板と接続させることを特徴とする請求項8記載の太陽電池モジュールの製造方法。 The one lead wire is ultrasonically soldered to a region of the surface of the insulating layer where the solar cell portion is not formed, thereby passing through the insulating layer in the region to reach the metal substrate. 9. The method for manufacturing a solar cell module according to claim 8, wherein a crack is formed and a solder material is infiltrated into the micro crack to be connected to the metal substrate.
  10.  前記金属基板として、裏面に裏面側絶縁層を備えてなるものを用い、
     前記一方のリード線を、前記裏面側絶縁層の表面に、超音波半田付けすることにより、前記裏面側絶縁層を貫通して前記金属基板に至るマイクロクラックを形成すると共に、該マイクロクラック内に半田材を浸透させて前記金属基板と接続させることを特徴とする請求項8記載の太陽電池モジュールの製造方法。
    As the metal substrate, using a back side provided with a back side insulating layer,
    The one lead wire is ultrasonically soldered to the surface of the back-side insulating layer to form a microcrack that penetrates the back-side insulating layer and reaches the metal substrate. The method for manufacturing a solar cell module according to claim 8, wherein a solder material is infiltrated and connected to the metal substrate.
PCT/JP2011/002109 2010-04-12 2011-04-08 Solar cell module and method for manufacturing same WO2011129083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010091475A JP2011222822A (en) 2010-04-12 2010-04-12 Solar battery module and manufacturing method thereof
JP2010-091475 2010-04-12

Publications (1)

Publication Number Publication Date
WO2011129083A1 true WO2011129083A1 (en) 2011-10-20

Family

ID=44798470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002109 WO2011129083A1 (en) 2010-04-12 2011-04-08 Solar cell module and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2011222822A (en)
WO (1) WO2011129083A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102403698B1 (en) * 2016-06-22 2022-05-30 현대에너지솔루션(주) Solar cell and method for fabricating the same
KR101962827B1 (en) * 2017-05-08 2019-03-27 한국항공대학교산학협력단 Method for contacting bus bar of see-through cigs solar window
JP2022074165A (en) * 2019-01-30 2022-05-18 出光興産株式会社 Solar battery module
KR102029835B1 (en) * 2019-03-19 2019-10-08 한국항공대학교산학협력단 Method for contacting bus bar of see-through cigs solar window
WO2023181456A1 (en) * 2022-03-24 2023-09-28 株式会社Lixil Roll screen device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839073A (en) * 1981-08-31 1983-03-07 Mitsubishi Electric Corp Amorphous solar battery
JPS63119587A (en) * 1986-11-07 1988-05-24 Mitsubishi Electric Corp Integrated type amorphous silicon solar battery
JPH05259487A (en) * 1992-01-16 1993-10-08 Sanyo Electric Co Ltd Manufacture of solar cell
JPH0974211A (en) * 1995-09-05 1997-03-18 Canon Inc Photovoltaic element and manufacture thereof
JP2003110124A (en) * 2001-10-01 2003-04-11 Fuji Electric Corp Res & Dev Ltd Mask for forming thin film and method for manufacturing thin film solar cell using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839073A (en) * 1981-08-31 1983-03-07 Mitsubishi Electric Corp Amorphous solar battery
JPS63119587A (en) * 1986-11-07 1988-05-24 Mitsubishi Electric Corp Integrated type amorphous silicon solar battery
JPH05259487A (en) * 1992-01-16 1993-10-08 Sanyo Electric Co Ltd Manufacture of solar cell
JPH0974211A (en) * 1995-09-05 1997-03-18 Canon Inc Photovoltaic element and manufacture thereof
JP2003110124A (en) * 2001-10-01 2003-04-11 Fuji Electric Corp Res & Dev Ltd Mask for forming thin film and method for manufacturing thin film solar cell using the same

Also Published As

Publication number Publication date
JP2011222822A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5410050B2 (en) Solar cell module
JP5676280B2 (en) Solar module
EP2388827B1 (en) Solar cell module
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
WO2011129083A1 (en) Solar cell module and method for manufacturing same
US20140069479A1 (en) Photoelectric Device Module and Manufacturing Method Thereof
WO2011039951A1 (en) Solar cell module
WO2011039933A1 (en) Photoelectric converter
US20120090680A1 (en) Solar cell module and method for manufacturing solar cell module
TW200939495A (en) Solar cell module
WO2011039991A1 (en) Solar cell module
WO2011135856A1 (en) Solar cell module
KR101550927B1 (en) Solar cell and method of fabircating the same
JP2013077749A (en) Solar cell module
WO2012073802A1 (en) Solar battery cell and solar battery module
JP2013074117A (en) Photoelectric conversion module
JP2014533073A (en) Solar module with flat ribbon conductor and method for manufacturing solar module with flat ribbon conductor
JP2012234936A (en) Photoelectric conversion module and method for manufacturing the same
JP2015046470A (en) Photoelectric conversion module
JP2015153982A (en) Solar battery
JP2013175498A (en) Photoelectric conversion module
JP2016157808A (en) Photoelectric conversion device
JP5755163B2 (en) Photoelectric conversion module
JP2014049484A (en) Photoelectric conversion device
JP2015170716A (en) photoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768608

Country of ref document: EP

Kind code of ref document: A1