[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011129068A1 - 偏心量測定方法 - Google Patents

偏心量測定方法 Download PDF

Info

Publication number
WO2011129068A1
WO2011129068A1 PCT/JP2011/002018 JP2011002018W WO2011129068A1 WO 2011129068 A1 WO2011129068 A1 WO 2011129068A1 JP 2011002018 W JP2011002018 W JP 2011002018W WO 2011129068 A1 WO2011129068 A1 WO 2011129068A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
measuring
eccentricity
light source
optical surface
Prior art date
Application number
PCT/JP2011/002018
Other languages
English (en)
French (fr)
Inventor
和幸 小椋
昌広 興津
小川 洋一
球 高田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to US13/640,709 priority Critical patent/US8665425B2/en
Priority to JP2012510550A priority patent/JP5582188B2/ja
Priority to CN201180018489.XA priority patent/CN102822656B/zh
Publication of WO2011129068A1 publication Critical patent/WO2011129068A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/025Testing optical properties by measuring geometrical properties or aberrations by determining the shape of the object to be tested

Definitions

  • the present invention relates to an eccentricity measuring method for measuring an eccentricity, and more particularly to an eccentricity measuring method for measuring an eccentricity of an optical element formed by a molding method.
  • This molding method includes a molding method by hot pressing using glass or a thermoplastic resin as a lens material, and a compression molding method or a casting molding method using a thermosetting resin or an ultraviolet curable resin. .
  • a molding method it is possible to produce a large amount of lenses at low cost by making one mold, and it is also possible to produce aspherical surfaces and free-form surfaces that were difficult to produce by the polishing method Is mentioned.
  • the molds 2 and 3 for molding the lens 1 include lens mold surfaces 2a and 3a having a lens surface shape such as a spherical surface or an aspherical surface, and peripheral edges of the lens mold surfaces 2a and 3a.
  • the lens 1 formed by the molds 2 and 3 extends from the lens surfaces 1a and 1b formed by the lens mold surfaces 2a and 3a of the respective molds 2 and 3 and from the periphery of the lens surfaces 1a and 1b. It has flange surfaces 1c and 1d which are formed by planes 2b and 3b and are annular plane portions. As described above, since the planes 2b and 3b of the molds 2 and 3 serve as processing reference surfaces, the inclination of the lens surfaces 1a and 1b in the molded lens 1 and the planes 2b and 3b of the molds 2 and 3 are determined. The inclination is equivalent.
  • Patent Document 1 discloses an aspherical lens having two optical surfaces that form an aspherical lens and two plane portions that are coaxially formed with the optical surfaces and are integrally formed with the optical surface.
  • a method is disclosed in which an inclination angle formed by a flat surface portion and an eccentric angle of the two optical surfaces with respect to a measurement axis are detected, and an eccentric amount of the aspherical lens is calculated based on these detected values.
  • Patent Document 2 discloses a method for measuring the amount of eccentricity by the autocollimation method even if the first surface and the second surface are meniscus lenses having the same center of curvature.
  • the present invention has been made in view of the above circumstances, and its purpose is to measure the amount of eccentricity with the same measuring optical system regardless of the radius of curvature of the optical surface of the optical element. It aims to provide a method.
  • the eccentricity measuring method in the eccentricity measuring method according to the present invention, the first position of the image of the light source formed by reflection on one optical surface is measured, and the predetermined second position related to the other optical surface is measured, Based on these first and second positions, the relative decentering amount of both optical surfaces is calculated. For this reason, the eccentricity measuring method according to the present invention can measure the eccentricity with the same measuring optical system regardless of the radius of curvature of the optical surface of the optical element.
  • FIG. 1 is a schematic cross-sectional view showing an example of an eccentricity measuring apparatus used for measuring the amount of eccentricity.
  • the decentration measuring apparatus 100 includes an illumination optical system 200, a measurement optical system 300, a measurement sensor 400, and the like.
  • the illumination optical system 200 irradiates the optical element 1 with illumination light 213, and includes, for example, a light source 210, a condenser lens 220, a mirror 230, an objective lens 240, and the like.
  • the illumination light 213 is condensed by the condenser lens 220, reflected by the mirror 230, and once formed on the pupil 241 of the objective lens 240.
  • the illumination light 213 imaged on the pupil 241 of the objective lens 240 is converted into parallel light by the objective lens 240 and enters the optical element 1 to illuminate the optical element 1 uniformly.
  • the measurement optical system 300 guides the illumination light 213 reflected by the optical element 1 to the measurement sensor 400, and includes, for example, an objective lens 240, an eyepiece lens 310, and the like.
  • the reflected light 245 reflected by the optical element 1 is collected by the objective lens 240, and the image of the optical element 1 is arranged at the focal point of the eyepiece lens 310 by the eyepiece lens 310.
  • the image is formed on the imaging surface 410.
  • the optical axis 250 of the illumination optical system 200 and the optical axis 320 of the measurement optical system 300 are coincident with each other, and the light emitting unit 211 of the light source 210, the pupil 241 of the objective lens 240, the focal point 243 of the objective lens 240, and the eyepiece 310
  • the focal point 311 is a conjugate position.
  • the above-described illumination optical system 200 is a type of optical system for uniformly illuminating a surface, called Koehler illumination, and is an optical system used for coaxial epi-illumination of a microscope.
  • the measurement optical system 300 described above is a general microscope observation optical system. That is, a general microscope equipped with a coaxial epi-illumination device for Koehler illumination can be used as the optical system of the eccentricity measuring device 100. As a result, there is no need to use a special device as the eccentricity measuring device 100, so that the cost of the measuring device can be reduced.
  • Koehler illumination is used as the illumination optical system 200.
  • the illumination optical system 200 is not limited to Koehler illumination, and an image of the light source is formed at the rear focal position of the objective lens 240. Any optical system may be used.
  • the measurement sensor 400 is a two-dimensional image sensor such as a CCD image sensor or a CMOS image sensor, and captures an image formed on the imaging surface 410 by the eyepiece 310.
  • the imaging output of the measurement sensor 400 may be output to a monitor (not shown) and used to measure the amount of eccentricity by visual observation, or may be input to a personal computer and used to measure the amount of eccentricity by image processing.
  • a general microscope camera can be used, and it is not necessary to use a special device, so that the cost of the measurement device can be reduced.
  • FIG. 2A and 2B are schematic views showing the shape of a lens as a first example of the optical element, FIG. 2A shows the outer shape of the lens, and FIG. 2B shows the lens when there is no eccentricity.
  • FIG. 2A shows a cross section taken along the line AA ′
  • FIG. 2C shows a cross section taken along the line AA ′ when the lens is decentered.
  • the shape of the lens shown here is the same as that shown in FIGS. 16 and 18, but there are portions with different numbers assigned.
  • the lens 1 has a shape in which an annular flange portion 3 surrounds the periphery of the optical surface 2.
  • the optical surface 2 of the lens 1 is composed of a first optical surface 2a having a curvature radius r1 and a second optical surface 2b having a curvature radius r2 facing the first optical surface 2a.
  • the flange portion 3 includes a first flange surface 3a connected to the first optical surface 2a and a plane perpendicular to the optical axis, and a second flange surface connected to the second optical surface 2b and a plane perpendicular to the optical axis. 3b and a lens end surface (circumferential surface) 3c parallel to the optical axis.
  • the first optical surface 2 a and the second optical surface 2 b are not decentered, and the optical axes of both surfaces are coincident with the design optical axis 1 ax of the lens 1.
  • FIG. 2C shows an example in which both the first optical surface 2a and the second optical surface 2b are parallel decentered and tilt decentered with a biconvex lens having the same shape as shown in FIG.
  • the optical axis 2ax of the surface 2a and the optical axis 2bx of the second optical surface 2b are both deviated from the design optical axis 1ax of the lens 1.
  • Parallel decentering is the state in which the optical axis of the optical surface is shifted in the direction perpendicular to the optical axis of the lens design, and the amount of parallel eccentricity is the unit of length. (For example, ⁇ m).
  • the tilt eccentricity is a state in which the optical axis of the optical surface is tilted with respect to the optical axis of the lens design, and the tilt eccentricity is the tilted deviation in the unit of angle (for example, minutes). It is a representation.
  • FIG. 3 is a schematic diagram illustrating the principle of measuring the amount of eccentricity.
  • the parallel illumination light 213 incident on the convex optical surface 2a having the radius of curvature r 1 is formed as a virtual image at a position D of about r 1/2 from the apex of the optical surface 2a toward the center of curvature C. Then, an image of the light source of the illumination light 213 is formed at the position D.
  • an image of the light source of the illumination light 213 is formed as a real image at a position D of about r 1/2 opposite to the center of curvature C with respect to the optical surface 2a. Therefore, by adjusting the focal point 243 of the objective lens 240 of the measurement optical system 300 shown in FIG. 1 to the position D, an image of the light source of the illumination light 213 can be formed on the imaging surface 410 of the measurement sensor 400. .
  • the position D of the light source image moves in a plane perpendicular to the optical axis in accordance with the amount of decentering. Therefore, the position D of the light source image in the plane perpendicular to the optical axis.
  • the amount of parallel eccentricity can be known by measuring.
  • the light source 210 used for measuring the amount of eccentricity will be described.
  • the size of the light source is small.
  • a small light source such as a laser diode
  • the laser diode since a small image of the laser diode is formed at the position D, the position D is easy to measure.
  • the laser diode since the laser diode has a single emission wavelength, the laser diode does not need to be achromatic, and it is easy to create an optical system that forms an image of the light source without aberration.
  • a plurality of secondary light sources are formed using a light bulb and an integrator so that they can be seen as a uniform surface light source.
  • a fly-eye lens system a rod lens system, or the like can be used.
  • the outline of the light source is clear and the center position can be easily detected.
  • a laser diode and general microscope illumination such as a light bulb can be used in combination.
  • FIG. 4 is a process diagram showing the first embodiment of the method for measuring the amount of eccentricity.
  • 5 and 6 are schematic views showing each step of FIG.
  • FIG. 7 is a schematic diagram showing an image on the measurement sensor when measuring the amount of eccentricity.
  • the first embodiment of the method for measuring the amount of eccentricity includes the following five steps.
  • (S1) First Flange Surface Adjustment Step the first flange surface 3a is placed on the optical axis 320 of the eccentricity measuring device 100 in order to correct the eccentricity caused by the posture error due to the tilt of the lens 1.
  • This is a step of adjusting vertically.
  • the lens 1 is held by the holding portion 500 so as to be rotatable around the optical axis 320 with reference to the second flange surface 3b of the flange portion 3 and the lens end surface 3c, for example. And movably held parallel to the optical axis 320.
  • step S ⁇ b> 12 as the objective lens 240, a lens that can know the tilt of the surface by interference fringes called an interference objective lens is used, and the focal point 243 of the objective lens 240 is aligned with the first flange surface 3 a of the lens 1.
  • the holding unit 500 rotates around the optical axis 320 so that the interference fringes on the first flange surface 3a are symmetric around the optical axis 320 using the image captured by the measurement sensor 400. Moved. As a result, the first flange surface 3 a is adjusted perpendicularly to the optical axis 320 of the eccentricity measuring device 100. Since the first flange surface 3a is molded with a mold at the same time as the first optical surface 2a, the tilt eccentricity of the first optical surface 2a with respect to the optical axis 320 is corrected by this adjustment. This state is shown in FIG.
  • This first light source image position measuring step is a step of measuring the position of the image of the light source 210 reflected by the first optical surface 2a.
  • step S21 in FIG. 4 as shown in FIG. 5 (b), a part of the illumination light 213 of the parallel light is reflected by the first optical surface 2a of the convex radius of curvature r 1, the vertex of the first optical surface 2a Since an image of the light source 210 is formed at a position D1 of about r 1/2 from the portion toward the center of curvature, the focal point 243 of the objective lens 240 is changed to a position by changing the distance between the objective lens 240 and the lens 1. Focus on D1. As a result, an image of the light emitting unit 211 of the light source 210 reflected by the first optical surface 2 a is formed on the imaging surface 410 of the measurement sensor 400 via the measurement optical system 300.
  • step S22 of FIG. 4 as shown in FIG. 7, the first position Ia of the image of the light source 210 reflected on the first optical surface 2a formed on the imaging surface 410 of the measurement sensor 400 is measured. And memorized. Note that the point Iz in FIG. 7 is the position of the optical axis 320.
  • This second light source image position measuring step is a step of measuring the position of the image of the light source 210 reflected by the second optical surface 2b.
  • step S31 in FIG. 4 as shown in FIG. 6 (a), a part of the illumination light 213 of the parallel light is reflected by the second optical surface 2b of the convex radius of curvature r 2, the vertex of the second optical surface 2b because the part is imaged as an image of the light source 210 to the position D2 of about r 2/2 toward the center of curvature, by changing the distance between the objective lens 240 and the lens 1, focus 243 of the objective lens 240 is positioned D1 To focus on.
  • an image of the light emitting unit 211 of the light source 210 reflected by the second optical surface 2 b can be formed on the imaging surface 410 of the measurement sensor 400 via the measurement optical system 300.
  • This second flange surface inclination measurement step is a step of measuring the inclination of the second flange surface 3b.
  • an interference objective lens is used as the objective lens 240, and the focal point 243 of the objective lens 240 is aligned with the second flange surface 3b of the lens 1.
  • the inclination of the second flange surface 3b is measured and stored from the interference fringes on the second flange surface 3b of the image captured by the measurement sensor 400.
  • This state is shown in FIG.
  • the second flange surface 3b is molded with a mold simultaneously with the second optical surface 2b.
  • the tilt eccentricity of the first optical surface 2a with respect to the optical axis 320 is corrected. Therefore, the inclination of the second flange surface 3b indicates the relative inclination eccentricity between the first optical surface 2a and the second optical surface 2b.
  • This eccentricity calculation step is a step of calculating the relative eccentricity between the first optical surface 2a and the second optical surface 2b.
  • step S51 of FIG. 4 the first position Ia of the image of the light source 210 reflected by the first optical surface 2a measured in the above-described (S2) first light source image position measuring step, and (S3) second.
  • step S52 of FIG. 4 (S4) the inclination of the second flange surface 3b measured in the second flange surface inclination measurement step, that is, the relative inclination eccentricity between the first optical surface 2a and the second optical surface 2b. Is used to separate the tilt decentering amount of the second optical surface 2b from the relative decentering amount of the first optical surface 2a and the second optical surface 2b, and the relative relationship between the first optical surface 2a and the second optical surface 2b. The amount of parallel eccentricity is calculated.
  • the tilt angle of the second flange surface 3b is ⁇
  • the curvature radius of the optical surface is In the case of r
  • the tilt eccentricity is converted into a parallel eccentricity by rsin ⁇ , and the tilt eccentricity component converted into the parallel eccentricity and the original parallel eccentricity component are separated.
  • this eccentricity measuring method includes a first flange surface adjustment step of adjusting the first flange surface of the optical element perpendicular to the optical axis of the eccentricity measuring device, and a light source.
  • An eccentricity amount calculating step for calculating the eccentricity amount. Irrespective of the curvature radius of the can measure the eccentricity of
  • FIG. 8A and 8B are schematic views showing the shape of a lens as a second example of the optical element.
  • FIG. 8A shows the outer shape of the lens
  • FIG. 8B shows the lens shown in FIG. AA 'cross section is shown.
  • the lens 1 has a shape in which an annular flange portion 3 surrounds the periphery of the optical surface 2.
  • a center mark 2 c is provided at the center of one surface of the optical surface 2.
  • the center mark is a mark provided at the center of the optical surface of the lens.
  • a small convex or concave mark that does not affect the optical performance of the lens.
  • a method of providing the center mark for example, a method of providing a convex portion or a concave portion at the center of the molding die and transferring it to the lens is preferable because the mark can be formed easily and accurately.
  • the surface shape of the lower mold has better transferability, so the center mark is often provided on the lower mold, but this is not restrictive. It may be provided on both the upper mold and the lower mold. In the example of FIG. 8, it is assumed that a center mark 2c is provided on the first optical surface 2a.
  • the optical surface 2 of the lens 1 is composed of a first optical surface 2a of the curvature radius r 1, a second optical surface 2b of the radius of curvature r 2 which faces the first optical surface 2a,
  • the lens 1 is a biconcave lens.
  • the center mark 2c is provided at the center of the first optical surface 2a.
  • the flange portion 3 is a first flange surface 3a connected to the first optical surface 2a, which is a plane perpendicular to the optical axis 1ax, and a second plane connected to the second optical surface 2b, which is a plane perpendicular to the optical axis 1ax. It has a flange surface 3b and a lens end surface 3c parallel to the optical axis 1ax.
  • FIG. 9 is a process diagram showing a second embodiment of a method for measuring the amount of eccentricity.
  • FIG. 10 is a schematic diagram showing each step of FIG.
  • FIG. 11 is a schematic diagram showing an image on the measurement sensor when measuring the amount of eccentricity.
  • the second embodiment of the eccentricity measuring method is composed of the following five steps.
  • This first flange surface adjustment step is a step of adjusting the first flange surface 3a perpendicularly to the optical axis 320 of the eccentricity measuring device 100. Since this step is the same as the (S1) first flange surface adjustment step of the first embodiment shown in FIGS. 4 and 5A, the description thereof is omitted.
  • This center mark position measuring step is a step of measuring the position of the center mark 2c provided on the first optical surface 2a.
  • step S61 of FIG. 9 as shown in FIG. 10A, the objective lens 240, the lens 1, and the objective lens 240 are set so that the focal point 243 of the objective lens 240 is focused on the center mark 2c provided on the first optical surface 2a. The interval of can be changed. As a result, an image of the center mark 2 c is formed on the imaging surface 410 of the measurement sensor 400 via the measurement optical system 300.
  • This second light source image position measuring step is a step of measuring the position of the image of the light source 210 reflected by the second optical surface 2b. Since this step is the same as the (S3) second light source image position measuring step in the first embodiment shown in FIGS. 4 and 6A, the description thereof is omitted.
  • This second flange surface inclination measurement step is a step of measuring the inclination of the second flange surface 3b. Since this step is also the same step as the (S4) second flange surface inclination measurement step of the first embodiment shown in FIGS. 4 and 6B, the description thereof is omitted.
  • This eccentricity calculation step is a step of calculating the relative eccentricity between the first optical surface 2a and the second optical surface 2b.
  • step S53 of FIG. 9 the position Ic of the image of the center mark 2c provided on the first optical surface 2a measured in the above-described (S2) center mark position measuring step, and (S3) second light source image position measurement.
  • the relative eccentricity between the first optical surface 2a and the second optical surface 2b is calculated from the second position Ib of the image of the light source 210 reflected by the second optical surface 2b measured in the process. .
  • the method for calculating the amount of eccentricity is the same as in the first embodiment.
  • step S52 of FIG. 9, (S4) the inclination of the second flange surface 3b measured in the second flange surface inclination measurement step, that is, the relative inclination eccentricity between the first optical surface 2a and the second optical surface 2b.
  • the tilt decentering amount of the second optical surface 2b is separated from the relative decentering amount of the first optical surface 2a and the second optical surface 2b, and the first optical surface The relative parallel decentering amount between the surface 2a and the second optical surface 2b is calculated.
  • this eccentricity measuring method includes a first flange surface adjustment step of adjusting the first flange surface of the optical element perpendicular to the optical axis of the eccentricity measuring device, A center mark position measuring step for measuring the position of the image of the center mark provided on one optical surface, and the illumination light from the light source is incident on the second optical surface and formed by reflection of the illumination light on the second optical surface.
  • a second light source image position measuring step for measuring a second position of the image of the illumination light source, a second flange surface inclination measuring step for measuring the inclination of the second flange surface, the position of the center mark image and the second
  • the eccentric amount calculating step of calculating the relative eccentric amount between the first optical surface and the second optical surface based on the position of the second flange surface and the inclination of the second flange surface.
  • FIG. 12A and 12B are schematic views showing the shape of a lens array as an example of the optical element array
  • FIG. 12A shows the outer shape of the lens array
  • FIG. 12B shows the lens array shown in FIG. AA ′ cross section of FIG.
  • the lens array 10 has a plurality of lenses 1 each having an optical surface 2 formed on a substrate 3.
  • An alignment mark 4 used for alignment at the time of manufacturing the lens array 10 is formed on the substrate 3.
  • the left-right direction is the x direction
  • the direction orthogonal to the x direction is the y direction.
  • the lens array 10 is manufactured by a technique called WLO (wafer level optics), which is a technique for forming hundreds to thousands of lenses 1 on a substrate by applying semiconductor manufacturing technology and equipment.
  • WLO wafer level optics
  • WLO is not only cast using a mold, but may be mass-produced by applying, for example, a photomask, a photosensitive material, and an etching technique.
  • the optical surface 2 of the lens array 10 is composed of a first optical surface 2a of the curvature radius r 1, a second optical surface 2b of the radius of curvature r 2 which faces the first optical surface 2a ing.
  • the substrate 3 has a first flange surface 3a that is a plane perpendicular to the optical axis 1ax connected to the first optical surface 2a, and a second flange that is a plane perpendicular to the optical axis 1ax connected to the second optical surface 2b.
  • surface 3b The alignment mark 4 described above is formed on the first flange surface 3a.
  • the lens array 10 is separated into individual lenses 1 by dicing or the like as indicated by broken lines in FIG. Alternatively, the lens array 10 may be used as a so-called fly-eye lens without being separated.
  • FIG. 13 is a process diagram showing a third embodiment of a method for measuring the amount of eccentricity.
  • the third embodiment of the eccentricity measuring method is composed of the following five steps.
  • This first flange surface adjustment step is a step of adjusting the first flange surface 3a perpendicularly to the optical axis 320 of the eccentricity measuring device 100. Since this step is the same as the (S1) first flange surface adjustment step of the first embodiment shown in FIGS. 4 and 5A, the description thereof is omitted.
  • This alignment mark position measurement step is a step of measuring the position of the alignment mark 4 formed on the first flange surface 3a.
  • step S71 of FIG. 13 the lens array 10 is scanned in the xy plane shown in FIG. 12, and the focal point 243 of the objective lens 240 is focused on the alignment mark 4.
  • step S72 the position of the image of the alignment mark 4 formed on the imaging surface 410 of the measurement sensor 400 is measured and stored.
  • step S81 in FIG. 13 the lens array 10 is moved by a predetermined amount in the xy plane shown in FIG.
  • the predetermined amount is the amount of movement from the alignment mark 4 to the design center position of the lens 1 to be measured next when moving from the alignment mark 4, and when moving from the lens 1 to the next lens 1, the lens The distance between the lenses 1 of the array 10.
  • This first light source image position measuring step is a step of measuring the position of the image of the light source 210 reflected by the first optical surface 2a. Since this step is the same as the (S2) first light source image position measuring step in the first embodiment shown in FIGS. 4 and 5B, description thereof will be omitted.
  • This second light source image position measuring step is a step of measuring the position of the image of the light source 210 reflected by the second optical surface 2b. Since this step is the same as the (S3) second light source image position measuring step in the first embodiment shown in FIGS. 4 and 6A, the description thereof is omitted.
  • step S82 of FIG. 13 for all the lenses 1 of the lens array 10, it is confirmed whether or not the measurement in the (S2) first light source image position measurement step and (S3) the second light source image position measurement step is completed. Until the measurement of all the lenses is completed, the above-described steps S81 to (S3) of the second light source image position measurement step are repeated. When measurement of all the lenses is completed (step S82; Yes), an eccentricity amount calculation step is executed (S5).
  • This eccentricity calculation step is a step of calculating the relative eccentricity between the first optical surface 2a and the second optical surface 2b and the deviation between the alignment mark 4 and the center of each lens 1. is there.
  • step S51 of FIG. 13 for each lens 1, the first position Ia of the image of the light source 210 reflected by the first optical surface 2a, measured in the above-described (S2) first light source image position measurement step, and (S3) From the second position Ib of the image of the light source 210 reflected by the second optical surface 2b measured in the second light source image position measuring step, the first optical surface 2a and the second optical surface 2b Is calculated.
  • the method for calculating the amount of eccentricity is the same as in the first embodiment.
  • step S54 of FIG. 13 (S7) the position of the image of the alignment mark 4 measured in the alignment mark position measuring step, the predetermined amount by which the lens array 10 is moved in step S81, and the first value calculated in step S51.
  • the amount of deviation between the alignment mark 4 and the center of each lens 1 is calculated from the relative amount of eccentricity between the optical surface 2a and the second optical surface 2b. Alternatively, the relative shift amount of the center of each lens 1 of the lens array 10 may be calculated.
  • the eccentricity measuring method includes a first flange surface adjustment step of adjusting the first flange surface of the optical element array perpendicularly to the optical axis of the eccentricity measuring device; Alignment mark position measurement step for measuring the position of the image of the alignment mark, and illumination light from the light source is incident on the first optical surface for each optical element of the optical element array, and reflection of the illumination light on the first optical surface; A first light source image position measuring step for measuring a first position of an image of the illumination light source formed by the step, and the illumination light is incident on the second optical surface, and the illumination light is reflected by the second optical surface.
  • the decentration amount measuring method uses the same measurement optical system regardless of the radius of curvature of the optical surface of the optical element. The amount can be measured.
  • FIG. 14A and 14B are schematic views showing the shape of a mirror as a third example of the optical element.
  • FIG. 14A shows the outer shape of the mirror
  • FIG. 14B shows the shape of the mirror.
  • AA 'cross section is shown.
  • the mirror 1 has a shape in which an annular flange portion 3 surrounds the optical surface 2.
  • the mirror 1 is formed by, for example, vapor-depositing Ag, Al or the like on the optical surface 2 after being formed by the method shown in FIG.
  • the left-right direction is the x direction
  • the direction orthogonal to the x direction is the y direction.
  • the optical surface 2 of the mirror 1 is composed of a first optical surface 2a of the curvature radius r 1.
  • the flange portion 3 includes a first flange surface 3a that is connected to the first optical surface 2a and is a plane perpendicular to the optical axis 1ax, and an end surface 3c that is parallel to the optical axis 1ax.
  • FIG. 15 is a process diagram showing the fourth embodiment of the method for measuring the amount of eccentricity.
  • the fourth embodiment of the eccentricity measuring method is composed of the following four steps.
  • This first flange surface adjustment step is a step of adjusting the first flange surface 3a perpendicularly to the optical axis 320 of the eccentricity measuring device 100. Since this step is the same as the (S1) first flange surface adjustment step of the first embodiment shown in FIGS. 4 and 5A, the description thereof is omitted.
  • This outline center measurement step is a step of scanning the mirror 1 in a direction perpendicular to the optical axis 320 and measuring the center position of the outline of the mirror 1.
  • the mirror 1 is not only held by the holding unit 500 so as to be rotatable around the optical axis 320 and movable in parallel to the optical axis 320, but also perpendicular to the optical axis 320. It is held so as to be movable in at least two directions.
  • step S91 of FIG. 15 the mirror 1 is scanned in the x direction shown in FIG. 14A with the focal point 243 of the objective lens 240 focused on the first flange surface 3a, and the measurement sensor 300 scans. From the captured image of the outer shape of the mirror 1, the center C (x) of the outer shape in the x direction of the mirror 1 is measured.
  • step S92 in FIG. 15 the mirror 1 is scanned in the y direction shown in FIG. 14A, and the image of the outer shape of the mirror 1 captured by the measurement sensor 300 is used. The center C (y) of the outer shape is measured. Then, the center C (x, y) of the outer shape of the mirror 1 is determined and stored from C (x) and C (y) thus obtained.
  • This first light source image position measuring step is a step of measuring the position of the image of the light source 210 reflected by the first optical surface 2a. Since this step is the same as the (S2) first light source image position measuring step in the first embodiment shown in FIGS. 4 and 5B, description thereof will be omitted.
  • This eccentricity calculation step is a step of calculating the eccentricity between the center C (x, y) of the outer shape of the mirror 1 and the first optical surface 2a. Reflected at the center C (x, y) of the outer shape of the mirror 1 measured in the above-described (S7) outer shape center measuring step and (S3) the first optical surface 2a measured in the first light source image position measuring step. From the first position Ia of the image of the light source 210, the amount of eccentricity between the center C (x, y) of the outer shape of the mirror 1 and the first optical surface 2a is the position of the center C on the measurement sensor and the position Ia. It is calculated by the distance.
  • the optical element is not a mirror but has the first optical surface and the second optical surface as in the first or second example of the optical element and the example of the optical element array described above, the above-described (S2). ) Between the first light source image position measurement step and (S5) eccentricity calculation step, (S3) second light source image position measurement step and (S4) second flange surface inclination measurement step of the first embodiment Is done.
  • this eccentricity measuring method includes a first flange surface adjustment step of adjusting the first flange surface of the optical element perpendicular to the optical axis of the eccentricity measuring device, and the optical Scanning the element in a direction perpendicular to the optical axis to measure the position of the center of the outer shape of the optical element, and illuminating light from the light source is made parallel light and incident on the first optical surface.
  • the eccentricity measuring method can be performed with the same measuring optical system regardless of the radius of curvature of the optical surface of the optical element. The amount of eccentricity can be measured.
  • this decentration amount measuring method is a decentration amount measuring method of an optical element having a first optical surface and a second optical surface facing each other, and includes illumination from a light source.
  • An image position measuring step, wherein the illumination light is incident on the second optical surface, and a second position of the image of the illumination light source formed by reflection of the illumination light on the second optical surface is measured.
  • this eccentricity measuring method can measure the eccentricity with the same measuring optical system irrespective of the curvature radius of the optical surface of the optical element.
  • the decentration amount measuring method of the present embodiment is a decentration amount measuring method of an optical element having a first optical surface and a second optical surface facing each other, and is provided on the first optical surface of the optical element.
  • a center mark position measuring step for measuring the position of the center mark, and illumination formed by reflection of the illumination light on the second optical surface by making the illumination light from the light source parallel light and entering the second optical surface Relative eccentricity between the first optical surface and the second optical surface based on a light source image position measuring step for measuring the position of the image of the light source, the position of the center mark, and the position of the image of the light source.
  • An eccentric amount calculating step for calculating the amount.
  • the eccentricity measuring method of the present embodiment is an eccentricity of an optical element array configured by connecting a plurality of optical elements having first and second optical surfaces facing each other in a direction perpendicular to the optical axis.
  • this eccentricity measuring method can measure the eccentricity with the same measuring optical system irrespective of the curvature radius of the optical surface of the optical element.
  • the eccentricity measuring method of the present embodiment is an eccentricity measuring method of an optical element having at least a first optical surface, and the optical element is scanned in a direction perpendicular to the optical axis, and the outer shape of the optical element is measured.
  • An outer shape center measuring step for measuring the center position of the light source, and an illumination image formed by making the illumination light from the light source incident on the first optical surface as parallel light and reflecting the illumination light on the first optical surface
  • a light source image position measuring step for measuring a position of an image of the light source, and an eccentric amount calculating step for calculating an eccentric amount with respect to the outer shape of the first optical surface based on the position of the center of the outer shape and the position of the image of the light source.
  • this eccentricity measuring method can measure the eccentricity with the same measuring optical system irrespective of the radius of curvature of the optical surface of the optical element.
  • the optical element preferably includes a first flange portion having at least a first flange surface, and the first flange surface is a light of the illumination light.
  • the optical element includes a second flange portion having a second flange surface facing the first flange surface, and the illumination light of the second flange surface is provided.
  • a second flange surface inclination measuring step for measuring an inclination from the optical axis is further provided, and the eccentricity calculating step includes an optical axis of the illumination light of the second flange surface obtained in the second flange surface inclination measuring step. In this step, the parallel decentering amount and the tilt decentering amount of the optical element are obtained based on the tilt from the angle.
  • an eccentricity measuring method for measuring the eccentricity can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 本発明にかかる偏心量測定方法では、一方の光学面での反射によって結像された光源の像の第1の位置が測定され(S2)、他方の光学面に関わる所定の第2の位置が測定され(S3)、これら第1および第2の各位置に基づいて両光学面における相対的な偏心量が算出される(S5)。このため、本発明にかかる偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。

Description

偏心量測定方法
 本発明は、偏心量を測定する偏心量測定方法に関し、特にモールド法により成形された光学素子の偏心量を測定する偏心量測定方法に関する。
 近年、レンズの作製に当たり、研磨によるのではなく、金型形状の転写により作製するモールド法が多く用いられている。このモールド法には、レンズ材料としてガラスあるいは熱可塑性樹脂を用いた熱間プレスによる成形方法、および、熱硬化性樹脂あるいは紫外線硬化性樹脂を用いた圧縮成形方法もしくは注型成形方法などが存在する。モールド法の利点として、金型を一つ作ることで、大量かつ安価にてレンズを生産可能である点、および研磨する方法では作製困難であった非球面や自由曲面の生産も可能である点が挙げられる。
 図16に示すように、レンズ1を成形する金型2、3には、球面や非球面等のレンズ面形状を形成したレンズ金型面2a、3aと、レンズ金型面2a、3aの周縁から延設される、該レンズ金型面2a、3aと同時に加工された平面2b、3bとが存在する。平面2b、3bは、レンズ金型面2a、3aと同時加工されない場合でも、レンズ金型面2a、3aを加工するときの加工基準面とされる場合がある。このような金型2、3によって成形されたレンズ1は、各金型2、3のレンズ金型面2a、3aによって成形されたレンズ面1a、1bと、レンズ面1a、1bの周縁から延設される、平面2b、3bによって成形され環状の平面部分であるフランジ面1c、1dとを有する。上述のように金型2、3の平面2b、3bは、加工基準面となることから、成形されたレンズ1におけるレンズ面1a、1bの傾きと、金型2、3における平面2b、3bの傾きとは、等価となる。
 このようにモールド法でレンズを成形する場合、成形機に取り付けられた2つの金型の位置および姿勢にズレが生じると、図17に示すように、金型2、3の平行偏心4や傾き偏心5が発生する。このように偏心した金型2、3にて成形された図18に示すレンズ1では、外形あるいはレンズ面1bに対してレンズ面1aが平行偏心6および傾き偏心7の少なくとも一方が生じる結果となる。レンズによっては、例えば平行偏心6で数μm、傾き偏心7で数分程度の偏心が生じた場合でも、所望のレンズ特性を達成できなくなる場合もある。よって、所望のレンズ特性を達成可能なように、成形機における金型の位置および姿勢を再調整する必要があり、そのため、成形されたレンズにおける平行偏心6および傾き偏心7の量および方向を測定し、金型の位置および姿勢へフィードバックする必要がある。
 このような観点から、例えばレンズにおける平行偏心および傾き偏心の量および方向を測定する方法等が従来から提案されており、レンズ、ミラーおよびプリズム等の光学素子の検査には、被検面の精密な角度測定が可能なオートコリメーション法の原理を応用した測定装置(オートコリメータ)が使用されている。
 例えば特許文献1には、非球面レンズを形成する2つの光学面と、これら光学面に各々同軸にして上記光学面と一体成形された2つの平面部とを有する非球面レンズにおいて、上記2つの平面部のなす傾き角と、上記2つの光学面の測定軸に対する偏心角とを検出し、これらの検出値により上記非球面レンズの偏心量を演算する方法が開示されている。
 又、特許文献2には、第1面と第2面の曲率中心が同じメニスカスレンズであっても、オートコリメーション法で偏心量を測定するための方法が開示されている。
 しかしながら、これら特許文献1および特許文献2で用いられているオートコリメーション法では、被検レンズのレンズ面の曲率半径に応じてリレーレンズを適宜選択して、レンズ面に応じた球面波を生成する必要がある。そのため、オートコリメーション法では、被検レンズごとに専用の測定光学系を準備する必要があり、設備費用が嵩む。さらに、被検レンズが変わるたびに測定光学系の段取り替えを行う必要があり、測定準備に時間がかかる。
特許第3127003号公報 特開平04-106447号公報
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる偏心量測定方法を提供することを目的とする。
 本発明にかかる偏心量測定方法では、一方の光学面での反射によって結像された光源の像の第1の位置が測定され、他方の光学面に関わる所定の第2の位置が測定され、これら第1および第2の各位置に基づいて両光学面における相対的な偏心量が算出される。このため、本発明にかかる偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
偏心量の測定に用いる偏心測定装置の例を示す断面模式図である。 光学素子の第1の例としてのレンズの形状を示す模式図である。 偏心量の測定原理を示す模式図である。 偏心量の測定方法の第1の実施の形態を示す工程図である。 図4の各工程を示す模式図(1/2)である。 図4の各工程を示す模式図(2/2)である。 偏心量の測定時の測定用センサ上の像を示す模式図である。 光学素子の第2の例としてのレンズの形状を示す模式図である。 偏心量の測定方法の第2の実施の形態を示す工程図である。 図9の各工程を示す模式図である。 偏心量の測定時の測定用センサ上の像を示す模式図である。 光学素子の第3の例としてのレンズの形状を示す模式図である。 偏心量の測定方法の第3の実施の形態を示す工程図である。 光学素子の第4の例としてのレンズの形状を示す模式図である。 偏心量の測定方法の第4の実施の形態を示す工程図である。 モールド法によるレンズの成形方法を示す模式図である。 モールド法によるレンズの成形時の金型の平行偏心および傾き偏心を示す模式図である。 モールド法で成形されたレンズの平行偏心および傾き偏心を示す模式図である。
 以下、本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限らない。なお、図中、同一あるいは同等の部分には同一の番号を付与し、重複する説明は省略することがある。
 最初に、本発明の一実施形態における偏心量の測定に用いる偏心測定装置の例について、図1を用いて説明する。図1は、偏心量の測定に用いる偏心測定装置の例を示す断面模式図である。
 図1において、偏心測定装置100は、照明光学系200、測定光学系300および測定用センサ400等を備えて構成される。照明光学系200は、光学素子1に照明光213を照射するものであり、例えば、光源210、集光レンズ220、ミラー230および対物レンズ240等を備えて構成され、光源210の発光部211からの照明光213が集光レンズ220で集光され、ミラー230で反射されて、一旦、対物レンズ240の瞳241に結像される。対物レンズ240の瞳241に結像された照明光213は、対物レンズ240で平行光とされて、光学素子1に入射し、光学素子1を均一に照明する。
 測定光学系300は、光学素子1で反射された照明光213を測定用センサ400へ導光するものであり、例えば、対物レンズ240および接眼レンズ310等を備えて構成される。測定光学系300では、光学素子1で反射された反射光245が対物レンズ240で集光され、接眼レンズ310によって、光学素子1の像が、接眼レンズ310の焦点に配置された測定用センサ400の撮像面410上に結像される。
 照明光学系200の光軸250と測定光学系300の光軸320とは、一致させてあり、光源210の発光部211、対物レンズ240の瞳241、対物レンズ240の焦点243および接眼レンズ310の焦点311は、共役な位置となっている。
 上述した照明光学系200は、ケーラー照明と呼ばれる、面を均一に照明するための光学系の一形式であり、顕微鏡の同軸落射照明等に用いられる光学系である。また、上述した測定光学系300は、一般的な顕微鏡の観察光学系である。つまり、偏心測定装置100の光学系として、ケーラー照明の同軸落射照明装置を備えた一般的な顕微鏡を用いることができる。これによって、偏心測定装置100として特別な装置を用いる必要がないので、測定装置のコストダウンを行うことができる。
 なお、上述した例では、照明光学系200としてケーラー照明を用いたが、照明光学系200は、ケーラー照明に限るものではなく、対物レンズ240の後側焦点位置に光源の像が結像される光学系であればよい。
 測定用センサ400は、例えばCCD型撮像素子やCMOS型撮像素子等のような2次元画像センサであり、接眼レンズ310によって撮像面410上に結像された像を撮像する。測定用センサ400の撮像出力は、図示しないモニタに出力されて目視によって偏心量の測定に用いられてもよいし、パーソナルコンピュータに入力されて、画像処理によって偏心量の測定に用いられてもよい。測定用センサ400も一般的な顕微鏡用カメラを用いることができ、特別な装置を用いる必要がないので、測定装置のコストダウンを行うことができる。
 次に、光学素子の第1の例を、図2を用いて説明する。図2は、光学素子の第1の例としてのレンズの形状を示す模式図であり、図2(a)は、レンズの外形を示し、図2(b)は、偏心がない場合のレンズの図2(a)のA-A’断面を示し、図2(c)は、偏心がある場合のレンズのA-A’断面を示す。ここで示したレンズの形状は、図16および図18で示したものと同じであるが、付与した番号の異なる部分がある。
 図2(a)において、レンズ1は、光学面2の周囲を、環状のフランジ部3が囲む形状をしている。
 図2(b)において、レンズ1の光学面2は、曲率半径r1の第1光学面2aと、第1光学面2aに対向した曲率半径r2の第2光学面2bとで構成され、レンズ1は、両凸のレンズである。フランジ部3は、第1光学面2aに繋がった、光軸に垂直な平面である第1フランジ面3aと、第2光学面2bに繋がった、光軸に垂直な平面である第2フランジ面3bと、光軸に平行なレンズ端面(周面)3cとを有している。第1光学面2aと第2光学面2bとは、偏心がなく、両面の光軸は、レンズ1の設計上の光軸1axに一致している。
 図2(c)は、図18に示したと同じ形状の両凸レンズで、第1光学面2aと第2光学面2bとが共に、平行偏心および傾き偏心している場合の例であり、第1光学面2aの光軸2axおよび第2光学面2bの光軸2bxは、共に、レンズ1の設計上の光軸1axからずれている。平行偏心とは、レンズの設計上の光軸に対して、その垂直な方向に光学面の光軸がずれている状態であり、平行偏心量とは、そのずれている距離を長さの単位(例えばμm等)で表したものである。傾き偏心とは、レンズの設計上の光軸に対して、光学面の光軸が傾いている状態であり、傾き偏心量とは、そのずれている傾きを角度の単位(例えば分等)で表したものである。
 次に、本発明の一実施形態における偏心量の測定原理について、図3を用いて説明する。図3は、偏心量の測定原理を示す模式図である。
 図3において、曲率半径rの凸の光学面2aに入射した平行な照明光213は、光学面2aの頂点部から曲率中心Cに向かって約r/2の位置Dに虚像として結像され、位置Dに照明光213の光源の像が結像される。光学面2aが凹面の場合は、光学面2aに対し、曲率中心Cとは反対側の約r/2の位置Dに照明光213の光源の像が実像として結像される。従って、図1に示した測定光学系300の対物レンズ240の焦点243を位置Dに合わせることで、測定用センサ400の撮像面410上に照明光213の光源の像を結像させることができる。
 光学面2aに平行偏心があると、光源の像の位置Dが光軸に垂直な面内で、偏心量に応じて移動するので、光軸に垂直な面内での光源の像の位置Dを測定することで、平行偏心量を知ることができる。
 ここで、偏心量の測定に用いられる光源210について述べる。図3に示した原理で光源の像の位置Dを測定するためには、光源の大きさが小さい方がよい。例えばレーザダイオードのような小さな光源を用いると、位置Dにはレーザダイオードの小さな像が結像されるため、位置Dが測定しやすい。また、レーザダイオードは、発光波長が単波長のために色消しをする必要がなく、光源の像を収差なく結像させる光学系を作成しやすい。
 一方、例えば光源として一般に顕微鏡用の照明に用いられる電球を用いると、フィラメントの大きな像が位置Dに結像されるので、光源の像の中心位置を検出することは、難しく、光源の像の位置Dの測定には不向きである。
 そこで、電球とインテグレータとを用いて複数の2次光源を形成して、均一な面光源として見えるようにする方法がある。インテグレータ光学系には、蝿の目レンズ方式やロッドレンズ方式等を用いることができる。インテグレータを用いることで、光源の輪郭がはっきりして、中心位置が検出しやすくなる。あるいは、レーザダイオードと電球等の一般の顕微鏡用の照明とを併用することもできる。
 次に、本発明の一実施形態における偏心量の測定方法の第1の実施の形態について、図4ないし図7を用いて説明する。図4は、偏心量の測定方法の第1の実施の形態を示す工程図である。図5および図6は、図4の各工程を示す模式図である。図7は、偏心量の測定時の測定用センサ上の像を示す模式図である。
 図4において、偏心量の測定方法の第1の実施の形態は、以下の5つの工程で構成される。
 (S1)第1フランジ面調整工程
 この第1フランジ面調整工程は、レンズ1の傾きによる姿勢誤差に起因する偏心を補正するために、第1フランジ面3aを偏心測定装置100の光軸320に垂直に調整する工程である。図5(a)に示すように、レンズ1は、保持部500によって、例えばフランジ部3の第2フランジ面3bとレンズ端面3cとを基準として、光軸320の周りに回動可能に保持されるとともに、光軸320に平行に移動可能に保持されている。
 図4のステップS11で、レンズ1に、平行光の照明光213が入射される。ステップS12で、対物レンズ240として、干渉対物レンズと呼ばれる干渉縞によって面の傾きを知ることのできるレンズが用いられ、対物レンズ240の焦点243が、レンズ1の第1フランジ面3aに合わせられる。
 この状態で、測定用センサ400で撮像される画像を用いて、第1フランジ面3aの干渉縞が光軸320の周りに対称となるように、保持部500が、光軸320の周りに回動される。これによって、第1フランジ面3aが、偏心測定装置100の光軸320に垂直に調整される。第1フランジ面3aは、第1光学面2aと同時に金型で成形されているので、この調整によって、光軸320に対する第1光学面2aの傾き偏心が補正されたことになる。この状態を、図5(a)に示す。
 (S2)第1光源像位置測定工程
 この第1光源像位置測定工程は、第1光学面2aで反射された光源210の像の位置を測定する工程である。図4のステップS21で、図5(b)に示すように、平行光の照明光213の一部が曲率半径rの凸の第1光学面2aで反射され、第1光学面2aの頂点部から曲率中心に向かって約r/2の位置D1に光源210の像として結像されるため、対物レンズ240とレンズ1との間隔を変えることにより、対物レンズ240の焦点243は、位置D1に合焦する。これによって、測定光学系300を介して、測定用センサ400の撮像面410上に、第1光学面2aで反射された光源210の発光部211の像が結像する。
 図4のステップS22で、図7に示すように、測定用センサ400の撮像面410上に結像された、第1光学面2aで反射された光源210の像の第1の位置Iaが測定され、記憶される。なお、図7の点Izは、光軸320の位置である。
 (S3)第2光源像位置測定工程
 この第2光源像位置測定工程は、第2光学面2bで反射された光源210の像の位置を測定する工程である。図4のステップS31で、図6(a)に示すように、平行光の照明光213の一部が曲率半径rの凸の第2光学面2bで反射され、第2光学面2bの頂点部から曲率中心に向かって約r/2の位置D2に光源210の像として結像されるため、対物レンズ240とレンズ1との間隔を変えることによって、対物レンズ240の焦点243が位置D1に合焦させられる。これによって、測定光学系300を介して、測定用センサ400の撮像面410上に、第2光学面2bで反射された光源210の発光部211の像が結像することができる。
 図4のステップS32で、図7に示すように、測定用センサ400の撮像面410上に結像された、第2光学面2bで反射された光源210の像の第2の位置Ibが測定され、記憶される。
 (S4)第2フランジ面傾き測定工程
 この第2フランジ面傾き測定工程は、第2フランジ面3bの傾きを測定する工程である。図4のステップS41で、対物レンズ240として干渉対物レンズが用いられ、対物レンズ240の焦点243がレンズ1の第2フランジ面3bに合わせられる。
 この状態で、測定用センサ400で撮像される画像の第2フランジ面3bの干渉縞から、第2フランジ面3bの傾きが測定され、記憶される。この状態が、図6(b)に示されている。第2フランジ面3bは、第2光学面2bと同時に金型で成形されている。また、上述した(S1)第1フランジ面調整工程で、光軸320に対する第1光学面2aの傾き偏心は、補正されている。従って、第2フランジ面3bの傾きは、即ち、第1光学面2aと第2光学面2bとの相対的な傾き偏心量を示している。
 (S5)偏心量算出工程
 この偏心量算出工程は、第1光学面2aと第2光学面2bとの相対偏心量を算出する工程である。図4のステップS51で、上述した(S2)第1光源像位置測定工程で測定された、第1光学面2aで反射された光源210の像の第1の位置Iaと、(S3)第2光源像位置測定工程で測定された、第2光学面2bで反射された光源210の像の第2の位置Ibとから、第1光学面2aと第2光学面2bとの相対的な偏心量が算出される。より具体的には、測定用センサ上における、位置Iaと位置Ibとの距離より相対的な偏心量が算出される。
 図4のステップS52で、(S4)第2フランジ面傾き測定工程で測定された第2フランジ面3bの傾き、即ち、第1光学面2aと第2光学面2bとの相対的な傾き偏心量を用いて、第1光学面2aと第2光学面2bとの相対的な偏心量から第2光学面2bの傾き偏心量が分離され、第1光学面2aと第2光学面2bとの相対的な平行偏心量が算出される。より具体的には、測定用センサ上の位置Ibは、傾き偏心量と平行偏心量とが合成された位置であるため、第2フランジ面3bの傾き角度をαとし、光学面の曲率半径をrとした場合、傾き偏心量がrsinαにより平行偏心量へ換算され、平行偏心量に換算された傾き偏心の成分と、元々の平行偏心との成分とに分離される。
 なお、レンズ1の傾きが小さい場合や、傾き偏心量と平行偏心量とを分離する必要がない場合は、(S1)第1フランジ面調整工程、および(S4)第2フランジ面傾き測定工程は、必須ではない。
 上述したように、第1の実施の形態によれば、この偏心量測定方法は、光学素子の第1フランジ面を偏心測定装置の光軸に垂直に調整する第1フランジ面調整工程と、光源からの照明光を第1光学面に入射させ、第1光学面での照明光の反射によって結像される照明光源の像の第1の位置を測定する第1光源像位置測定工程と、該照明光を第2光学面に入射させ、第2光学面での照明光の反射によって結像される照明光源の像の第2の位置を測定する第2光源像位置測定工程と、第2フランジ面の傾きを測定する第2フランジ面傾き測定工程と、第1の位置と第2の位置と第2フランジ面の傾きとに基づいて、第1光学面と第2光学面との相対的な偏心量を算出する偏心量算出工程とを備えたことで、本偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 次に、光学素子の第2の例を、図8を用いて説明する。図8は、光学素子の第2の例としてのレンズの形状を示す模式図であり、図8(a)は、レンズの外形を示し、図8(b)は、レンズの図8(a)のA-A’断面を示す。
 図8(a)において、レンズ1は、光学面2の周囲を、環状のフランジ部3が囲む形状をしている。光学面2の一方の面の中心には、センターマーク2cが設けられている。センターマークとは、レンズの光学面の中心に設けられたマークである。たとえば、レンズの光学性能に影響しない程度の小さな凸あるいは凹のマークである。センターマークを設ける方法として、例えば、成形金型の中心に凸部あるいは凹部を設け、それをレンズに転写する方法が容易かつ正確にマークを形成できるので好ましい。
 図16に示したような成形方法では、下型の面形状の方が転写性がよいため、多くは下型にセンターマークが設けられているが、これに限るものではなく、上型に設けられてもよいし、上型と下型の両方に設けられてもよい。図8の例では、第1光学面2aにセンターマーク2cが設けられているとする。
 図8(b)において、レンズ1の光学面2は、曲率半径rの第1光学面2aと、第1光学面2aに対向した曲率半径rの第2光学面2bとで構成され、レンズ1は、両凹のレンズである。上述したように、第1光学面2aの中心にセンターマーク2cが設けられている。フランジ部3は、第1光学面2aに繋がった、光軸1axに垂直な平面である第1フランジ面3aと、第2光学面2bに繋がった、光軸1axに垂直な平面である第2フランジ面3bと、光軸1axに平行なレンズ端面3cとを有している。
 次に、本発明の一実施形態における偏心量の測定方法の第2の実施の形態について、図9から図11を用いて説明する。図9は、偏心量の測定方法の第2の実施の形態を示す工程図である。図10は、図9の各工程を示す模式図である。図11は、偏心量の測定時の測定用センサ上の像を示す模式図である。
 図9において、偏心量の測定方法の第2の実施の形態は、以下の5つの工程で構成される。
 (S1)第1フランジ面調整工程
 この第1フランジ面調整工程は、第1フランジ面3aを偏心測定装置100の光軸320に垂直に調整する工程である。この工程は、図4および図5(a)に示した第1の実施の形態の(S1)第1フランジ面調整工程と同じ工程であるので、その説明は、省略する。
 (S6)センターマーク位置測定工程
 このセンターマーク位置測定工程は、第1光学面2aに設けられたセンターマーク2cの位置を測定する工程である。図9のステップS61で、図10(a)に示すように、対物レンズ240の焦点243が第1光学面2aに設けられたセンターマーク2cに合焦するように、対物レンズ240とレンズ1との間隔が変えられる。これによって、測定光学系300を介して、測定用センサ400の撮像面410上に、センターマーク2cの像が結像する。
 図4のステップS62で、図11に示すように、測定用センサ400の撮像面410上に結像されたセンターマーク2cの像の位置Icが測定され、記憶される。なお、図11の点Izは、光軸320の位置である。
 (S3)第2光源像位置測定工程
 この第2光源像位置測定工程は、第2光学面2bで反射された光源210の像の位置を測定する工程である。この工程は、図4および図6(a)に示した第1の実施の形態の(S3)第2光源像位置測定工程と同じ工程であるので、その説明は、省略する。
 (S4)第2フランジ面傾き測定工程
 この第2フランジ面傾き測定工程は、第2フランジ面3bの傾きを測定する工程である。この工程も、図4および図6(b)に示した第1の実施の形態の(S4)第2フランジ面傾き測定工程と同じ工程であるので、その説明は、省略する。
 (S5)偏心量算出工程
 この偏心量算出工程は、第1光学面2aと第2光学面2bとの相対偏心量を算出する工程である。図9のステップS53で、上述した(S2)センターマーク位置測定工程で測定された、第1光学面2aに設けられたセンターマーク2cの像の位置Icと、(S3)第2光源像位置測定工程で測定された、第2光学面2bで反射された光源210の像の第2の位置Ibとから、第1光学面2aと第2光学面2bとの相対的な偏心量が算出される。偏心量の算出方法は、第1の実施の形態と同じである。
 図9のステップS52で、(S4)第2フランジ面傾き測定工程で測定された第2フランジ面3bの傾き、即ち、第1光学面2aと第2光学面2bとの相対的な傾き偏心量を用いて、第1の実施の形態と同じ方法により、第1光学面2aと第2光学面2bとの相対的な偏心量から第2光学面2bの傾き偏心量が分離され、第1光学面2aと第2光学面2bとの相対的な平行偏心量が算出される。
 なお、第1の実施の形態と同様に、傾き偏心量と平行偏心量とを分離する必要がない場合は、(S1)第1フランジ面調整工程、および(S4)第2フランジ面傾き測定工程は、必須ではない。
 上述したように、第2の実施の形態によれば、この偏心量測定方法は、光学素子の第1フランジ面を偏心測定装置の光軸に垂直に調整する第1フランジ面調整工程と、第1光学面に設けられたセンターマークの像の位置を測定するセンターマーク位置測定工程と、光源からの照明光を第2光学面に入射させ、第2光学面での照明光の反射によって結像される照明光源の像の第2の位置を測定する第2光源像位置測定工程と、第2フランジ面の傾きを測定する第2フランジ面傾き測定工程と、センターマークの像の位置と第2の位置と第2フランジ面の傾きとに基づいて、第1光学面と第2光学面との相対的な偏心量を算出する偏心量算出工程とを備えたことで、本偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 次に、光学素子アレイの例を、図12を用いて説明する。図12は、光学素子アレイの例としてのレンズアレイの形状を示す模式図であり、図12(a)は、レンズアレイの外形を示し、図12(b)は、レンズアレイの図12(a)のA-A’断面を示す。
 図12(a)において、レンズアレイ10は、基板3の上に、光学面2を有するレンズ1が複数個形成されている。また、基板3上には、レンズアレイ10の製造時の位置あわせに用いられるアライメントマーク4が形成されている。ここで、図12(a)において、その左右方向がx方向され、x方向に直交する方向がy方向とされる。
 レンズアレイ10は、WLO(ウェハレベルオプティクス)と呼ばれる、半導体製造技術や設備を応用して基板上に数百から数千個にものぼるレンズ1を形成する技術で製造される。WLOは、金型を用いた注型成形だけでなく、例えばフォトマスクと感光材料とエッチング技術とを応用して、大量生産されることもある。
 図12(b)において、レンズアレイ10の光学面2は、曲率半径rの第1光学面2aと、第1光学面2aに対向した曲率半径rの第2光学面2bとで構成されている。基板3は、第1光学面2aに繋がった、光軸1axに垂直な平面である第1フランジ面3aと、第2光学面2bに繋がった、光軸1axに垂直な平面である第2フランジ面3bとを有している。上述したアライメントマーク4は、第1フランジ面3a上に形成されている。
 レンズアレイ10は、図12(b)に破線で示したように、ダイシング等で個々のレンズ1に切り離される。あるいは、レンズアレイ10は、切り離されずに、所謂ハエの目レンズとして用いられる場合もある。
 次に、本発明の一実施形態における偏心量の測定方法の第3の実施の形態について、図13を用いて説明する。図13は、偏心量の測定方法の第3の実施の形態を示す工程図である。
図13において、偏心量の測定方法の第3の実施の形態は、以下の5つの工程で構成される。
 (S1)第1フランジ面調整工程
 この第1フランジ面調整工程は、第1フランジ面3aを偏心測定装置100の光軸320に垂直に調整する工程である。この工程は、図4および図5(a)に示した第1の実施の形態の(S1)第1フランジ面調整工程と同じ工程であるので、その説明は、省略する。
 (S7)アライメントマーク位置測定工程
 このアライメントマーク位置測定工程は、第1フランジ面3a上に形成されたアライメントマーク4の位置を測定する工程である。図13のステップS71で、レンズアレイ10が、図12に示したx-y面内で走査されるとともに、対物レンズ240の焦点243が、アライメントマーク4に合焦される。ステップS72で、測定用センサ400の撮像面410上に結像されたアライメントマーク4の像の位置が測定され、記憶される。
 図13のステップS81で、レンズアレイ10が図12に示したx-y面内で所定量だけ移動される。所定量は、アライメントマーク4からの移動時では、アライメントマーク4から次に測定するレンズ1の設計上の中心位置までの移動量であり、レンズ1から次のレンズ1までの移動時では、レンズアレイ10の各レンズ1の間隔である。
 (S2)第1光源像位置測定工程
 この第1光源像位置測定工程は、第1光学面2aで反射された光源210の像の位置を測定する工程である。この工程は、図4および図5(b)に示した第1の実施の形態の(S2)第1光源像位置測定工程と同じ工程であるので、その説明は、省略する。
 (S3)第2光源像位置測定工程
 この第2光源像位置測定工程は、第2光学面2bで反射された光源210の像の位置を測定する工程である。この工程は、図4および図6(a)に示した第1の実施の形態の(S3)第2光源像位置測定工程と同じ工程であるので、その説明は、省略する。
 図13のステップS82で、レンズアレイ10の全てのレンズ1について、(S2)第1光源像位置測定工程と(S3)第2光源像位置測定工程との測定が完了したか否かが確認され、全てのレンズの測定が完了するまで、上述したステップS81から(S3)第2光源像位置測定工程の各工程が繰り返される。全てのレンズの測定が完了すると(ステップS82;Yes)、(S5)偏心量算出工程が実行される。
 (S5)偏心量算出工程
 この偏心量算出工程は、第1光学面2aと第2光学面2bとの相対偏心量、およびアライメントマーク4と各レンズ1の中心とのズレ量を算出する工程である。図13のステップS51で、各レンズ1毎に、上述した(S2)第1光源像位置測定工程で測定された、第1光学面2aで反射された光源210の像の第1の位置Iaと、(S3)第2光源像位置測定工程で測定された、第2光学面2bで反射された光源210の像の第2の位置Ibとから、第1光学面2aと第2光学面2bとの相対的な偏心量が算出される。偏心量の算出方法は、第1の実施の形態と同じである。
 図13のステップS54で、(S7)アライメントマーク位置測定工程で測定されたアライメントマーク4の像の位置と、ステップS81でレンズアレイ10が移動された所定量と、ステップS51で算出された第1光学面2aと第2光学面2bとの相対的な偏心量とから、アライメントマーク4と各レンズ1の中心とのズレ量が算出される。あるいは、レンズアレイ10の各レンズ1の中心の相対的なズレ量が算出されてもよい。
 上述したように、第3の実施の形態によれば、この偏心量測定方法は、光学素子アレイの第1フランジ面を偏心測定装置の光軸に垂直に調整する第1フランジ面調整工程と、アライメントマークの像の位置を測定するアライメントマーク位置測定工程と、光学素子アレイの各光学素子毎に、光源からの照明光を第1光学面に入射させ、第1光学面での照明光の反射によって結像される照明光源の像の第1の位置を測定する第1光源像位置測定工程と、該照明光を第2光学面に入射させ、第2光学面での照明光の反射によって結像される照明光源の像の第2の位置を測定する第2光源像位置測定工程と、第1の位置と第2の位置とに基づいて、第1光学面と第2光学面との相対的な偏心量を算出する偏心量算出工程、およびアライメントマークと各光学素子の中心とのズレ量を算出するズレ量算出工程とを備えたことで、この偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 次に、光学素子の第3の例を、図14を用いて説明する。図14は、光学素子の第3の例としてのミラーの形状を示す模式図であり、図14(a)は、ミラーの外形を示し、図14(b)は、ミラーの図14(a)のA-A’断面を示す。
 図14(a)において、ミラー1は、光学面2の周囲を、環状のフランジ部3が囲む形状をしている。この例では、ミラー1は、図16に示したような方法で成形された後に、光学面2に例えばAgやAl等が蒸着等されて形成される。ここで、図14(a)において、その左右方向がx方向され、x方向に直交する方向がy方向とされる。
 図14(b)において、ミラー1の光学面2は、曲率半径rの第1光学面2aで構成されている。フランジ部3は、第1光学面2aに繋がった、光軸1axに垂直な平面である第1フランジ面3aと、光軸1axに平行な端面3cとを有している。
 次に、本発明の一実施形態における偏心量の測定方法の第4の実施の形態について、図15を用いて説明する。図15は、偏心量の測定方法の第4の実施の形態を示す工程図である。
 図15において、偏心量の測定方法の第4の実施の形態は、以下の4つの工程で構成される。
 (S1)第1フランジ面調整工程
 この第1フランジ面調整工程は、第1フランジ面3aを偏心測定装置100の光軸320に垂直に調整する工程である。この工程は、図4および図5(a)に示した第1の実施の形態の(S1)第1フランジ面調整工程と同じ工程であるので、その説明は、省略する。
 (S9)外形中心測定工程
 この外形中心測定工程は、ミラー1を光軸320に垂直な方向に走査して、ミラー1の外形の中心の位置を測定する工程である。第4の実施の形態では、ミラー1は、保持部500によって、光軸320の周りに回動可能かつ光軸320に平行に移動可能に保持されているだけでなく、光軸320に垂直な少なくとも2方向に移動可能に保持されている。
 図15のステップS91で、対物レンズ240の焦点243を第1フランジ面3aに合焦させた状態で、ミラー1を図14(a)に示したx方向に走査して、測定用センサ300で撮像されたミラー1の外形の画像から、ミラー1のx方向の外形の中心C(x)が測定される。
 同様にして、図15のステップS92で、ミラー1を図14(a)に示したy方向に走査して、測定用センサ300で撮像されたミラー1の外形の画像から、ミラー1のy方向の外形の中心C(y)が測定される。そして、こうして得られたC(x)とC(y)とから、ミラー1の外形の中心C(x,y)が決定され、記憶される。
 (S2)第1光源像位置測定工程
 この第1光源像位置測定工程は、第1光学面2aで反射された光源210の像の位置を測定する工程である。この工程は、図4および図5(b)に示した第1の実施の形態の(S2)第1光源像位置測定工程と同じ工程であるので、その説明は、省略する。
 (S5)偏心量算出工程
 この偏心量算出工程は、ミラー1の外形の中心C(x,y)と第1光学面2aとの偏心量を算出する工程である。上述した(S7)外形中心測定工程で測定されたミラー1の外形の中心C(x,y)と、(S3)第1光源像位置測定工程で測定された第1光学面2aで反射された光源210の像の第1の位置Iaとから、ミラー1の外形の中心C(x,y)と第1光学面2aとの偏心量が、測定用センサ上における中心Cの位置と位置Iaとの距離により算出される。
 なお、光学素子がミラーではなく、上述した光学素子の第1あるいは第2の例や光学素子アレイの例のような第1光学面と第2光学面とを有する場合には、上述した(S2)第1光源像位置測定工程と(S5)偏心量算出工程との間に、第1の実施の形態の(S3)第2光源像位置測定工程と(S4)第2フランジ面傾き測定工程とが行われる。
 上述したように、第4の実施の形態によれば、この偏心量測定方法は、光学素子の第1フランジ面を偏心測定装置の光軸に垂直に調整する第1フランジ面調整工程と、光学素子を光軸に垂直な方向に走査して、光学素子の外形の中心の位置を測定する外形中心測定工程と、光源からの照明光を平行光にして第1光学面に入射させ、第1光学面での照明光の反射によって結像される照明光源の像の第1の位置を測定する第1光源像位置測定工程と、外形の中心の位置と第1の位置とに基づいて、外形の中心と第1光学面との偏心量を算出する偏心量算出工程とを備えたことで、本偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 以上に述べたように、本実施形態によれば、この偏心量測定方法は、対向する第1光学面と第2光学面とを有する光学素子の偏心量測定方法であって、光源からの照明光を平行光にして前記光学素子の前記第1光学面に入射させ、前記第1光学面での照明光の反射によって結像される照明光源の像の第1の位置を測定する第1光源像位置測定工程と、前記照明光を前記第2光学面に入射させ、前記第2光学面での照明光の反射によって結像される前記照明光源の像の第2の位置を測定する第2光源像位置測定工程と、前記第1の位置と前記第2の位置とに基づいて、前記第1光学面と前記第2光学面との相対的な偏心量を算出する偏心量算出工程とを備える。これによって、この偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 また、本実施形態の偏心量測定方法は、対向する第1光学面と第2光学面とを有する光学素子の偏心量測定方法であって、前記光学素子の前記第1光学面に設けられたセンターマークの位置を測定するセンターマーク位置測定工程と、光源からの照明光を平行光にして前記第2光学面に入射させ、前記第2光学面での照明光の反射によって結像される照明光源の像の位置を測定する光源像位置測定工程と、前記センターマークの位置と、前記光源の像の位置とに基づいて、前記第1光学面と前記第2光学面との相対的な偏心量を算出する偏心量算出工程とを備える。これによって、この偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 また、本実施形態の偏心量測定方法は、対向する第1光学面と第2光学面とを有する光学素子が、光軸に垂直な方向に複数個連結されて構成された光学素子アレイの偏心量測定方法であって、前記光学素子アレイに設けられたアライメントマークの位置を測定するアライメントマーク位置測定工程と、前記光学素子アレイを構成する光学素子毎に、光源からの照明光を平行光にして前記光学素子の前記第1光学面に入射させ、前記第1光学面での照明光の反射によって結像される前記光源の像の第1の位置を測定する第1光源像位置測定工程と、前記照明光を前記第2光学面に入射させ、前記第2光学面での前記照明光の反射によって結像される前記光源の像の第2の位置を測定する第2光源像位置測定工程と、前記第1の位置と前記第2の位置に基づいて、前記光学素子毎の前記第1光学面と前記第2光学面との相対的な偏心量を算出する偏心量算出工程と、前記アライメントマークの位置と、前記偏心量とに基づいて、前記光学素子毎に、前記アライメントマークと各光学素子の中心とのズレ量を算出するズレ量を算出するズレ量算出工程とを備える。これによって、この偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 さらに、本実施形態の偏心量測定方法は、少なくとも第1光学面を有する光学素子の偏心量測定方法であって、前記光学素子を光軸に垂直な方向に走査して、前記光学素子の外形の中心の位置を測定する外形中心測定工程と、光源からの照明光を平行光にして前記第1光学面に入射させ、前記第1光学面での前記照明光の反射によって結像される照明光源の像の位置を測定する光源像位置測定工程と、前記外形の中心の位置と光源の像の位置とに基づいて、第1光学面の外形に対する偏心量を算出する偏心量算出工程とを備える。これによって、この偏心量測定方法は、光学素子の光学面の曲率半径に関わりなく、同一の測定光学系で偏心量を測定することができる。
 また、これら上述のいずれかの実施形態における偏心量測定方法において、好ましくは、前記光学素子は、少なくとも第1フランジ面を有する第1フランジ部を備え、前記第1フランジ面が前記照明光の光軸に垂直となるように調整する第1フランジ面調整工程を備える。
 また、この上述の偏心量測定方法において、好ましくは、前記光学素子は、前記第1フランジ面に対向する第2フランジ面を有する第2フランジ部を備え、前記第2フランジ面の前記照明光の光軸からの傾きを測定する第2フランジ面傾き測定工程をさらに備え、前記偏心量算出工程は、前記第2フランジ面傾き測定工程で求められた前記第2フランジ面の前記照明光の光軸からの傾きとに基づいて、前記光学素子の平行偏心量と傾き偏心量とを求める工程である。
 また、これら上述のいずれかの実施形態における偏心量測定方法において、好ましくは、前記照明光として、顕微鏡のケーラー照明を用いる。
 この出願は、2010年4月13日に出願された日本国特許出願特願2010-92057を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、偏心量を測定する偏心量測定方法を提供することができる。

Claims (7)

  1.  対向する第1光学面と第2光学面とを有する光学素子の偏心量測定方法であって、
     光源からの照明光を前記第1光学面に入射させ、前記第1光学面での前記照明光の反射によって結像される前記光源の像の第1の位置を測定する第1光源像位置測定工程と、
     前記照明光を前記第2光学面に入射させ、前記第2光学面での前記照明光の反射によって結像される前記光源の像の第2の位置を測定する第2光源像位置測定工程と、
     前記第1の位置と前記第2の位置とに基づいて、前記第1光学面と前記第2光学面との相対的な偏心量を算出する偏心量算出工程とを備えたこと
     を特徴とする偏心量測定方法。
  2.  対向する第1光学面と第2光学面とを有する光学素子の偏心量測定方法であって、
     前記第1光学面に設けられたセンターマークの位置を測定するセンターマーク位置測定工程と、
     光源からの照明光を前記第2光学面に入射させ、前記第2光学面での前記照明光の反射によって結像される前記光源の像の位置を測定する第2光源像位置測定工程と、
     前記センターマークの位置と、前記光源の像の位置とに基づいて、前記第1光学面と前記第2光学面との相対的な偏心量を算出する偏心量算出工程とを備えたこと
     を特徴とする偏心量測定方法。
  3.  対向する第1光学面と第2光学面とを有する光学素子が、光軸に垂直な方向に複数個連結されて構成された光学素子アレイの偏心量測定方法であって、
     前記光学素子アレイに設けられたアライメントマークの位置を測定するアライメントマーク位置測定工程と、
     前記光学素子アレイを構成する光学素子毎に、
     光源からの照明光を前記光学素子の前記第1光学面に入射させ、前記第1光学面での前記照明光の反射によって結像される前記光源の像の第1の位置を測定する第1光源像位置測定工程と、
     前記照明光を前記第2光学面に入射させ、前記第2光学面での前記照明光の反射によって結像される前記光源の像の第2の位置を測定する第2光源像位置測定工程と、
     前記第1の位置と前記第2の位置とに基づいて、前記光学素子毎の前記第1光学面と前記第2光学面との相対的な偏心量を算出する偏心量算出工程と、
     前記アライメントマークの位置と、前記偏心量に基づいて、前記光学素子毎に、前記アライメントマークと各光学素子の中心とのズレ量を算出するズレ量算出工程とを備えたこと
     を特徴とする偏心量測定方法。
  4.  少なくとも第1光学面を有する光学素子の偏心量測定方法であって、
     前記光学素子を光軸に垂直な方向に走査して、前記光学素子の外形の中心の位置を測定する外形中心測定工程と、
     光源からの照明光を前記第1光学面に入射させ、前記第1光学面での前記照明光の反射によって結像される前記光源の像の第1の位置を測定する第1光源像位置測定工程と、
     前記外形の中心の位置と前記第1の位置とに基づいて、前記第1光学面の前記外形に対する偏心量を算出する偏心量算出工程とを備えたこと
     を特徴とする偏心量測定方法。
  5.  前記光学素子は、少なくとも第1フランジ面を有する第1フランジ部を備え、
     前記第1フランジ面が前記照明光の光軸に垂直となるように調整する第1フランジ面調整工程を備えたこと
     を特徴とする請求項1ないし請求項4のいずれか1項に記載の偏心量測定方法。
  6.  前記光学素子は、前記第1フランジ面に対向する第2フランジ面を有する第2フランジ部を備え、
     前記第2フランジ面の前記照明光の光軸からの傾きを測定する第2フランジ面傾き測定工程をさらに備え、
     前記偏心量算出工程は、前記第2フランジ面傾き測定工程で求められた前記第2フランジ面の前記照明光の光軸からの傾きとに基づいて、前記光学素子の平行偏心量と傾き偏心量とを求める工程であること
     を特徴とする請求項5に記載の偏心量測定方法。
  7.  前記照明光として、顕微鏡のケーラー照明を用いることを特徴とする請求項1ないし請求項6のいずれか1項に記載の偏心量測定方法。
PCT/JP2011/002018 2010-04-13 2011-04-05 偏心量測定方法 WO2011129068A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/640,709 US8665425B2 (en) 2010-04-13 2011-04-05 Eccentricity measuring method
JP2012510550A JP5582188B2 (ja) 2010-04-13 2011-04-05 偏心量測定方法
CN201180018489.XA CN102822656B (zh) 2010-04-13 2011-04-05 偏心量测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010092057 2010-04-13
JP2010-092057 2010-04-13

Publications (1)

Publication Number Publication Date
WO2011129068A1 true WO2011129068A1 (ja) 2011-10-20

Family

ID=44798456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002018 WO2011129068A1 (ja) 2010-04-13 2011-04-05 偏心量測定方法

Country Status (4)

Country Link
US (1) US8665425B2 (ja)
JP (1) JP5582188B2 (ja)
CN (1) CN102822656B (ja)
WO (1) WO2011129068A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146634A1 (ja) * 2014-03-28 2015-10-01 コニカミノルタ株式会社 非球面の偏心量測定方法及び形状解析方法
WO2016021028A1 (ja) * 2014-08-07 2016-02-11 日立化成株式会社 レンズシートの検査方法及びそれによって得られるレンズシート、レンズ付き光導波路、並びに、レンズ付き電気配線板
KR20170042360A (ko) * 2014-08-15 2017-04-18 지고 코포레이션 렌즈 및 렌즈 몰드의 광학적 평가 방법
WO2017068813A1 (ja) * 2015-10-23 2017-04-27 株式会社カツラ・オプト・システムズ 光学素子特性測定装置
JP2020071212A (ja) * 2018-11-02 2020-05-07 キヤノン株式会社 偏心計測方法、レンズ製造方法、および偏心計測装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201423035A (zh) * 2012-12-14 2014-06-16 Hon Hai Prec Ind Co Ltd 光耦合透鏡檢測系統及其檢測方法
DE102014208636B4 (de) * 2014-05-08 2018-06-28 Asphericon Gmbh Verfahren und Vorrichtung zur Messung einer Dezentrierung und Verkippung von Flächen eines optischen Elements
PL3037800T3 (pl) 2014-12-24 2018-11-30 Trioptics Gmbh Pomiar pozycji środków krzywizny powierzchni optycznych jedno- lub wielosoczewkowego układu optycznego
WO2017116787A1 (en) * 2015-12-31 2017-07-06 Zygo Corporation Method and apparatus for optimizing the optical performance of interferometers
EP3961180A1 (de) * 2020-09-01 2022-03-02 Engelbert Hofbauer Verfahren zur vermessung optischer linsenflächen
CN113310455B (zh) * 2021-04-08 2023-07-11 超丰微纳科技(宁波)有限公司 一种检测模压成型加工双面镜偏心量的方法
CN113701997B (zh) * 2021-07-23 2024-05-14 歌尔光学科技有限公司 光学镜头偏心测试系统及方法
WO2023160815A1 (de) * 2022-02-28 2023-08-31 Engelbert Hofbauer Verfahren zur vermessung optischer linsenflächen
CN116592795B (zh) * 2023-07-14 2023-09-26 浙江至格科技有限公司 一种ar镜片平行度测量方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113342A (en) * 1980-12-29 1982-07-14 Ricoh Co Ltd Eccentricity measurement
JP2002071344A (ja) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd 形状測定方法及び装置
JP2005090962A (ja) * 2003-09-11 2005-04-07 Ricoh Co Ltd 光学素子の測定方法および測定装置
WO2007018118A1 (ja) * 2005-08-05 2007-02-15 Mitaka Kohki Co., Ltd. レンズにおける表裏面の光軸偏芯量の測定方法
JP2007047131A (ja) * 2005-08-12 2007-02-22 Hoya Corp 非球面レンズの測定方法、非球面レンズの測定装置、非球面レンズの測定プログラム、非球面レンズの製造方法及び非球面レンズ
JP2009097952A (ja) * 2007-10-16 2009-05-07 Ricoh Co Ltd 光学素子及びその偏心測定方法
JP2010019832A (ja) * 2008-06-10 2010-01-28 Fujinon Corp 偏芯量測定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127003A (ja) 1989-10-13 1991-05-30 Furukawa Electric Co Ltd:The 多心光ファイバ一括接続部
JPH04106447A (ja) 1990-08-27 1992-04-08 Olympus Optical Co Ltd 偏芯測定機用光学系
JP3127003B2 (ja) 1991-06-14 2001-01-22 オリンパス光学工業株式会社 非球面レンズ偏心測定方法
JPH09138181A (ja) * 1995-11-15 1997-05-27 Nikon Corp 光学系の屈折力および曲率半径の測定装置
JP3725817B2 (ja) * 2001-11-20 2005-12-14 オリンパス株式会社 非球面レンズの偏心測定方法及び偏心測定装置
CN1458647A (zh) * 2002-05-15 2003-11-26 建碁股份有限公司 薄型光盘机偏重心片检测方法
JP4106447B2 (ja) 2003-01-17 2008-06-25 ハリマ化成株式会社 導電性金ペーストを用いた無電解金メッキ代替導電性金皮膜の形成方法
JP4474150B2 (ja) * 2003-11-28 2010-06-02 キヤノン株式会社 偏心測定方法
US7349161B1 (en) * 2006-10-20 2008-03-25 E-Pin Optical Industry Co., Ltd. Molding lens with indentation for measuring eccentricity and method for measuring eccentricity thereof
EP2184596B1 (en) * 2007-08-27 2018-11-14 Nikon Corporation Wavefront aberration measuring device and method and wavefront aberration adjusting method
JP2010237189A (ja) * 2009-03-11 2010-10-21 Fujifilm Corp 3次元形状測定方法および装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113342A (en) * 1980-12-29 1982-07-14 Ricoh Co Ltd Eccentricity measurement
JP2002071344A (ja) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd 形状測定方法及び装置
JP2005090962A (ja) * 2003-09-11 2005-04-07 Ricoh Co Ltd 光学素子の測定方法および測定装置
WO2007018118A1 (ja) * 2005-08-05 2007-02-15 Mitaka Kohki Co., Ltd. レンズにおける表裏面の光軸偏芯量の測定方法
JP2007047131A (ja) * 2005-08-12 2007-02-22 Hoya Corp 非球面レンズの測定方法、非球面レンズの測定装置、非球面レンズの測定プログラム、非球面レンズの製造方法及び非球面レンズ
JP2009097952A (ja) * 2007-10-16 2009-05-07 Ricoh Co Ltd 光学素子及びその偏心測定方法
JP2010019832A (ja) * 2008-06-10 2010-01-28 Fujinon Corp 偏芯量測定方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146634A1 (ja) * 2014-03-28 2015-10-01 コニカミノルタ株式会社 非球面の偏心量測定方法及び形状解析方法
JPWO2015146634A1 (ja) * 2014-03-28 2017-04-13 コニカミノルタ株式会社 非球面の偏心量測定方法及び形状解析方法
WO2016021028A1 (ja) * 2014-08-07 2016-02-11 日立化成株式会社 レンズシートの検査方法及びそれによって得られるレンズシート、レンズ付き光導波路、並びに、レンズ付き電気配線板
KR20170042360A (ko) * 2014-08-15 2017-04-18 지고 코포레이션 렌즈 및 렌즈 몰드의 광학적 평가 방법
JP2017529524A (ja) * 2014-08-15 2017-10-05 ザイゴ コーポレーションZygo Corporation レンズ及びレンズ金型の光学評価
JP2017530341A (ja) * 2014-08-15 2017-10-12 ザイゴ コーポレーションZygo Corporation レンズ及びレンズ金型の光学評価
KR102332214B1 (ko) * 2014-08-15 2021-11-26 지고 코포레이션 렌즈 및 렌즈 몰드의 광학적 평가 방법
WO2017068813A1 (ja) * 2015-10-23 2017-04-27 株式会社カツラ・オプト・システムズ 光学素子特性測定装置
JPWO2017068813A1 (ja) * 2015-10-23 2017-10-19 株式会社カツラ・オプト・システムズ 光学素子特性測定装置
JP2020071212A (ja) * 2018-11-02 2020-05-07 キヤノン株式会社 偏心計測方法、レンズ製造方法、および偏心計測装置
JP7204428B2 (ja) 2018-11-02 2023-01-16 キヤノン株式会社 偏心計測方法、レンズ製造方法、および偏心計測装置

Also Published As

Publication number Publication date
US8665425B2 (en) 2014-03-04
US20130027692A1 (en) 2013-01-31
CN102822656A (zh) 2012-12-12
JP5582188B2 (ja) 2014-09-03
JPWO2011129068A1 (ja) 2013-07-11
CN102822656B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5582188B2 (ja) 偏心量測定方法
CN107076985B (zh) 具有弯曲焦面或目标基准元件和场补偿器的共焦成像设备
JP4767255B2 (ja) レンズにおける表裏面の光軸偏芯量の測定方法
JP6542355B2 (ja) レンズ及びレンズ金型の光学評価
JP2010281792A (ja) 非球面体測定方法および装置
JP5084327B2 (ja) 偏心検査装置及び偏心調整装置
JP2014163895A (ja) シャック・ハルトマンセンサーを用いた状計測装置、形状計測方法
JP6512673B2 (ja) 偏心測定装置及び偏心測定方法
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
JP5774546B2 (ja) レンズ調芯装置および撮像レンズ
US20020057495A1 (en) Measuring system for performance of imaging optical system
JP2011058872A (ja) オートコリメータを用いた光学素子の偏心調整方法及び偏心測定方法、並びにレンズ加工方法
JP2002250622A (ja) 光学素子及びその型の形状測定方法及び装置
JP2011085432A (ja) 軸上色収差光学系および三次元形状測定装置
CN110702036A (zh) 一种复光束角度传感器及小型非球面形貌检测方法
JP2010145468A (ja) 高さ検出装置、及びそれを用いたトナー高さ検出装置
JP3726028B2 (ja) 3次元形状計測装置
KR20180094152A (ko) 기판의 형상 변화 측정 방법
JP2009288075A (ja) 収差測定装置及び収差測定方法
CN206019600U (zh) 一种检测非球面透镜透射波面的系统
JP6429503B2 (ja) 計測装置、計測方法、光学素子の加工装置、および、光学素子
KR101679941B1 (ko) 임프린트 장치 및 디바이스 제조 방법
JP2003050109A (ja) 面形状測定装置および面形状測定方法
JP2013195410A (ja) 検出装置及び検出方法
CN107702641B (zh) 一种检测非球面透镜透射波面的系统及方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018489.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510550

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13640709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768594

Country of ref document: EP

Kind code of ref document: A1