[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011125654A1 - 加熱制御システム、それを備えた成膜装置、および温度制御方法 - Google Patents

加熱制御システム、それを備えた成膜装置、および温度制御方法 Download PDF

Info

Publication number
WO2011125654A1
WO2011125654A1 PCT/JP2011/057825 JP2011057825W WO2011125654A1 WO 2011125654 A1 WO2011125654 A1 WO 2011125654A1 JP 2011057825 W JP2011057825 W JP 2011057825W WO 2011125654 A1 WO2011125654 A1 WO 2011125654A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
temperature
heater
target
sub
Prior art date
Application number
PCT/JP2011/057825
Other languages
English (en)
French (fr)
Inventor
坂上 英和
俊範 岡田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/577,109 priority Critical patent/US8907254B2/en
Priority to CN2011800050950A priority patent/CN102668034A/zh
Priority to EP11765554.8A priority patent/EP2557591A4/en
Publication of WO2011125654A1 publication Critical patent/WO2011125654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a heating control system that controls the temperature of an object to be heated with a plurality of heaters, a film forming apparatus including the same, and a temperature control method.
  • MOCVD Metal-Organic-Chemical-Vapor Deposition
  • a substrate is mounted on a mounting table, and the substrate is heated by a heater. Then, by introducing an organic metal gas such as trimethylgallium (TMG) and a hydrogen compound gas such as ammonia (NH 3 ) as a source gas that contributes to the film formation on the substrate, a gas phase reaction is performed. A compound semiconductor crystal is formed thereon.
  • TMG trimethylgallium
  • NH 3 ammonia
  • a substrate temperature control method as described in Patent Document 1, for example, zone control for performing temperature control using a plurality of heaters is known.
  • FIG. 7 is a block diagram showing a configuration of a zone control system that performs temperature control using a plurality of heaters as described above.
  • FIG. 7 shows a case of zone control using three heaters of the main heater M and the two sub heaters S1 and S2.
  • the conventional heating control system is a power supply for each of the host control device 101 such as a sequencer, the temperature control means 102, the distributor 103, the main heater M, and the sub heaters S1 and S2.
  • Heater power supplies 104M, 104S1, and 104S2 and a thermocouple (TC) 105 are provided.
  • the target temperature SPm is set in the temperature control means 102 by the control device 101.
  • the temperature control means 102 inputs the current temperature PVm as the detected temperature of the thermocouple 105 installed in the vicinity of the heater. Then, a control output MVm obtained by PID calculation using the target temperature SPm and the current temperature PVm is output.
  • the control output MVm is once input to the distributor 103. Then, the power is output from the distributor 103 to the heater power supplies 104M, 104S1, and 104S2 of each heater.
  • the output value MVm of the temperature control means 102 is input from the distributor 103 to the heater power supply M for the main heater M.
  • Output values MVs1 and MVs2 are input to the heater power sources S1 and S2 for the sub-heaters S1 and S2, respectively.
  • the output values MVs1 and MVs2 are values obtained by multiplying the output value MVm of the temperature control means 102 by the constant ratios ⁇ s1 and ⁇ s2 inside the distributor 103 as shown in the following equations (1) and (2).
  • MVs1 MVm ⁇ ⁇ s1 (1)
  • MVs2 MVm ⁇ ⁇ s2 (2)
  • the heater power supplies 104S1 and 104S2 are power control specification power supplies
  • the sub-heaters S1 and S2 are respectively supplied with power at a constant ratio ( ⁇ s1, ⁇ s2) with respect to the power supplied to the main heater M. Will be.
  • JP 2009-74148 A released April 9, 2009
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a heating control system that does not depend on variations in characteristics of a plurality of heater power supplies, a film forming apparatus including the same, and a temperature control method. There is.
  • the heating control system of the present invention supplies a main heater and a sub heater for heating an object to be heated, a main heater power supply for supplying power to the main heater, and supplying power to the sub heater.
  • a sub-heater power supply, and the main heater is temperature-controlled so that the temperature of the object to be heated becomes a target temperature.
  • the sub-heater has a first power supplied to the main heater and a second power supplied to the sub-heater.
  • a heating control system in which electric power is controlled so as to have a predetermined ratio, a temperature detecting means for detecting the temperature of an object to be heated, a temperature control means for a main heater, a temperature control means for a sub heater, and the first electric power.
  • a main heater power detecting means for detecting, a sub heater power detecting means for detecting the second power, and a target value of the second power is calculated.
  • the main heater temperature control means inputs a target temperature setting value and a temperature detection value of the temperature detection means so that the temperature detection value matches the target temperature setting value.
  • the first power is controlled, and the target power calculation means inputs a first power detection value detected by the main heater power detection means, and multiplies the first power detection value by a predetermined ratio.
  • the sub-heater temperature control means receives the second power target value and the second power detection value detected by the sub-heater power detection means, and inputs the second power target value.
  • the second power is controlled so that the two-power detection value matches the target value of the second power.
  • a heating control system includes a main heater and a sub heater for heating an object to be heated, a main heater power source for supplying power to the main heater, and a sub heater power source for supplying power to the sub heater. Is controlled so that the temperature of the object to be heated becomes the target temperature, and the sub heater is controlled so that the first power supplied to the main heater and the second power supplied to the sub heater become a predetermined ratio. It is the system which performs heating control which is performed, ie, zone control.
  • the said main heater temperature control means inputs the setting value of target temperature, and the temperature detection value of the said temperature detection means, and this temperature detection value suits the setting value of target temperature, The first power is controlled.
  • the sub heater temperature control means inputs the second power target value and the second power detection value detected by the sub heater power detection means, and the second power detection value becomes the target power value.
  • the second power is controlled so as to match.
  • the target value of the second power of the sub heater is calculated by the target power calculation means.
  • the target power calculation means receives the first power detection value detected by the main heater power detection means, and multiplies the first power detection value by a predetermined ratio to obtain the target value of the second power. calculate.
  • the sub-heater temperature control means feeds back the second power detection value detected by the sub-heater power detection means to perform power control, so that variations in output characteristics are ignored regardless of the output specifications of the sub-heater power supply. can do.
  • the target power calculation means calculates the target value of the second power based on the first power detection value detected by the main heater power detection means, that is, the first power actually supplied to the main heater. Therefore, it is possible to eliminate the deviation between the ratio of the first power actually supplied to the main heater and the second power actually supplied to the sub-heater and the set predetermined ratio. Therefore, according to said structure, the ratio of 1st electric power and 2nd electric power can always be made into a constant state.
  • the temperature control method of the present invention supplies the first electric power supplied to the main heater and the sub heater when the object to be heated is heated using the main heater and the sub heater.
  • Second power test So that the value matches the target value of the second power, it is characterized in that it comprises a sub-heater power controlling process of controlling the second power.
  • FIG. 1 It is a block diagram which shows the structure of the heating control system of one Embodiment of this invention. The relationship of the control signal in a main heater and a sub heater is shown, (a) is a schematic diagram explaining the input / output signal of the temperature control means of a main heater, (b) demonstrates the input / output signal of the temperature control means of a sub heater. It is a schematic diagram, and (c) is a table showing signals and output signals input to the temperature control means for the main heater and the sub heater. It is a block diagram which shows the structure of the heating control system of other form of implementation of this invention.
  • maintains is shown, (a) is a table
  • FIG. 1 is a block diagram illustrating a configuration of a heating control system according to the present embodiment (hereinafter referred to as the present heating control system).
  • the same reference numerals represent the same or corresponding parts.
  • the heating control system a heating control system that performs temperature control in three zones using the main heater M and the two sub-heaters S1 and S2 will be described as an example.
  • the some heater used for the heating control system of this embodiment is not limited to said example, The main heater and the sub heater should just be included.
  • the heating control system includes a control device 1, a main heater power control system 2M that controls the power supply for the main heater M, and a sub heater power control system 2S1 that controls the power supply for the sub heater S1. And a sub-heater power supply control system 2S2 for controlling the power supply for the sub-heater S2.
  • the control device 1 includes target power calculation means 1S1 and 1S2 for the sub heaters S1 and S2 therein.
  • An example of such a control device 1 is a control device such as a PLC (Programmable Logic Controller).
  • the main heater power control system 2M includes a temperature control means 3M (main heater temperature control means), a main heater power supply 4M which is a power supply for the main heater M, and a current value and a voltage value output from the main heater power supply 4M.
  • Current / voltage detection means 5M main heater power detection means
  • TC thermocouple
  • the sub-heater power control system 2S1 includes a temperature control unit 3S1 (sub-heater temperature control unit), a sub-heater power source 4S1, which is a power source for the sub-heater S1, and a current value and a voltage value detected from the sub-heater power source 4S1.
  • a voltage detection means 5S1 (sub-heater power detection means) and a sub-heater S1 are provided.
  • the sub-heater power control system 2S2 includes a temperature control unit 3S2 (sub-heater temperature control unit), a sub-heater power source 4S2 that is a power source for the sub-heater S2, and a current value and a voltage value that are output from the sub-heater power source 4S2.
  • a voltage detection unit 5S2 (sub-heater power detection unit) and a sub-heater S2 are provided.
  • the temperature control method of the present embodiment using the heating control system (hereinafter referred to as the present temperature control method) will be described.
  • the temperature of the main heater M is controlled so that the detected temperature of the thermocouple 6M becomes the target temperature, and the power value Wm supplied to the main heater M and the sub-heaters S1 and S2 are applied to the sub-heaters S1 and S2.
  • This temperature control method includes a temperature detection step of detecting the temperature of the object to be heated by the thermocouple 6M, a main heater temperature control step, a target power calculation step, and a sub heater power control step.
  • the current temperature PVm is controlled by the power supply control of the main heater M so that the detected temperature of the thermocouple 6M becomes the target temperature SPm.
  • the control device 1 sets a target temperature SPm in the temperature control means 3M of the main heater power supply control system 2M. Further, the temperature control means 3M inputs the detected temperature of the thermocouple 6M installed in the vicinity of the main heater M as the current temperature PVm.
  • the temperature control means 3M calculates a control output MVm to be output to the main heater power supply 4M by PID calculation based on the input target temperature SPm and the current temperature PVm.
  • the main heater power supply 4M When the main heater power supply 4M receives the control output MVm, the main heater power supply 4M supplies a current / voltage corresponding to the control output MVm to the main heater M.
  • the current value and voltage value supplied to the main heater M are detected by the current / voltage detection means 5M.
  • the sub-heater power control step current power PVs1 and PVs2 supplied to the sub-heaters S1 and S2 are detected, and power control is performed so that the current power PVs1 and PVs2 matches the target power SPs1 and SPs2 by power control of the sub-heaters S1 and S2. .
  • the power control method for the sub heater S1 is basically the same as the power control method for the sub heater S2.
  • a power control method for the sub-heater S1 will be described.
  • the target power SPs1 is set from the control device 1 to the temperature control means 3S1 of the sub heater power control system 2S1. Further, the temperature control means 3S1 inputs the power supplied to the sub heater S1 as the current power PVs1. The current power PVs1 is detected by the current / voltage detection means 5S1. The temperature control means 3S1 calculates a control output MVs1 to be output to the sub heater power supply 4S1 by PID calculation based on the input target power SPs1 and the current power PVs1. When the sub-heater power supply 4S1 receives the control output MVs1, the sub-heater power supply 4S1 supplies a current / voltage corresponding to the control output MVs1 to the sub-heater S1.
  • the target power SPs1 and SPs2 of the sub-heaters S1 and S2 are calculated by the target power calculation means 1S1 and 1S2 inside the control device 1 in the target power calculation step.
  • the power value Wm supplied to the main heater M is detected, and the target power SPs1 and SPs2 are calculated by multiplying the power value Wm by a predetermined ratio.
  • the target power calculation means 1S1 inputs the power value Wm detected by the current / voltage detection means 5M.
  • the target power calculation means 1S1 holds a ratio ⁇ s1 of the power value of the sub heater S1 to the power value Wm (power value of the main heater M), and calculates the target power SPs1 by multiplying the power value Wm by the ratio ⁇ s1.
  • the target power SPs1 is expressed as the following formula (3).
  • SPs1 Wm ⁇ ⁇ s1 (3)
  • the target power calculation unit 1S2 inputs the power value Wm detected by the current / voltage detection unit 5M, similarly to the target power calculation unit 1S1.
  • the target power calculation means 1S2 holds a ratio ⁇ s2 of the power value of the sub heater S2 with respect to the power value Wm (power value of the main heater M), and calculates the target power SPs2 by multiplying the power value Wm by the ratio ⁇ s2.
  • the target power SPs2 is expressed as the following formula (4).
  • SPs2 Wm ⁇ ⁇ s2 (4)
  • FIG. 2 shows the relationship of the control signals in the main heater M and the sub-heaters S1 and S2, and FIG. 2A is a schematic diagram for explaining the input / output signals of the temperature control means 3M that outputs the control signal of the main heater M.
  • FIG. 2B is a schematic diagram for explaining the input / output signals of the temperature control means 3S1 (3S2) for outputting the control signal of the sub-heater S1 (S2).
  • FIG. It is the table
  • an input signal input from the controller or the target power calculation means to the temperature control means is “SP”, and is fed back to the temperature control means.
  • the input signal is “PV”, and the output signal of the temperature control means is “MV”.
  • the temperature control means 3M of the main heater power supply control system 2M receives a target temperature value as a signal SP and a feedback signal PV near the main heater M.
  • the detected temperature value (current temperature) of the installed thermocouple 6M is input.
  • the value of the target power is input as the signal SP to the temperature control means 3S1 (3S2) of the sub heater power control system 2S1 (2S2), and the feedback signal
  • the current / voltage value (current power) detected by the current / voltage detection means 5S1 (5S2) is input as PV.
  • the main heater power supply control system 2M performs temperature control by feeding back the detected temperature of the thermocouple 6M installed in the vicinity of the main heater M to the temperature control means 3M. Further, since the sub heater power control systems 2S1 and 2S2 perform power control by feeding back the detected power of the current / voltage detection means 5S1 and 5S2, respectively, the output characteristics are not affected by the output specifications of the sub heater power supplies S1 and S2. Can be ignored.
  • the power value of the main heater M is detected by the current / voltage detection means 5M and is input to the control device 1. Then, based on the power value of the main heater M input to the control device 1, the target power of each of the sub heaters S1 and S2 is set. The target power of each of the sub-heaters S1 and S2 is set at the setting ratio ⁇ s1 and ⁇ s2 according to the fluctuation of the power value of the main heater M.
  • the target power of each sub-heater is calculated at a constant ratio of the power of the main heater, so that the power ratio between the main heater and each sub-heater does not deviate from the set ratios ⁇ s1 and ⁇ s2, and is always controlled to be constant.
  • the deterioration of the resistance values of the main heater M and the sub heaters S1 and S2 differs depending on the use environment and individual heaters. For this reason, in the conventional heating control system, the time-dependent changes in the resistance value of the heater in each zone do not become the same rate, and the initially set control adjustment values such as the P value, I value, and D value in PID control do not match. . As a result, the problem that temperature stability worsens arises.
  • the main heater power control system 2M and the sub heater power control systems 2S1 and 2S2 are provided with temperature control means (3M, 3S1, 3S2) for performing PID control. Therefore, even when the balance of the resistance values changes due to the temporal change of the resistance values of the main heater M and the sub-heaters S1 and S2, the control parameters (P value, I value, By individually adjusting the (D value), temperature controllability can be stably maintained, and variations in the in-plane temperature distribution of the object to be heated can be suppressed.
  • FIG. 3 is a block diagram showing the configuration of the heating control system of the present embodiment (hereinafter referred to as the present heating control system).
  • the heating control system is configured such that the detected temperature value of the thermocouple 6 ⁇ / b> M installed near the main heater M is input to the control device 1.
  • the control device 1 outputs the input detected temperature value as the current temperature PVm to the temperature control means 3M.
  • the temperature control means 3M calculates a control output MVm to be output to the main heater power supply 4M by PID calculation based on the input target temperature SPm and the current temperature PVm.
  • the target power calculation means 1S1 and 1S2 hold a table T indicating the relationship between the detected temperature value (current temperature PVm) of the thermocouple 6M and the ratio ⁇ s1 and ⁇ s2.
  • the target power calculating unit 1S1 collates the detected temperature value with the table T and determines the ratio ⁇ s1 corresponding to the current temperature. Then, the target power SPs1 is calculated by multiplying the input power value Wm of the main heater M by the ratio ⁇ s1.
  • the target power calculation unit 1S2 collates the detected temperature value with the table T, A ratio ⁇ s2 corresponding to the temperature is determined. Then, the target power SPs2 is calculated by multiplying the input power value Wm of the main heater M by the ratio ⁇ s2.
  • FIG. 4 shows a table T held by the target power calculation means 1S1 and 1S2, and FIG. 4A shows a correspondence relationship between the current temperature PVm stored in the table T and the ratios ⁇ s1 and ⁇ s2.
  • FIG. 4B is a graph showing the correspondence between the current temperature PVm and the ratios ⁇ s1 and ⁇ s2.
  • the target power SPs1 is defined as a function of PVm as in the following formula (5).
  • SPs1 Wm ⁇ ⁇ s1 (PVm) (5)
  • the target power SPs2 is defined as a function of PVm as in the following formula (6), similarly to the target power SPs1.
  • SPs2 Wm ⁇ ⁇ s2 (PVm) (6)
  • the sub heaters S1 and S2 are adjusted in accordance with the temperature range of the detected temperature of the thermocouple 6M. It becomes possible to adjust the ratio of the power values. Therefore, according to the present heating control system, it is possible to adjust the three zones to the same temperature distribution in the entire temperature range detected by the thermocouple 6M.
  • FIG. 5 is a block diagram showing the configuration of the heating control system of the present embodiment (hereinafter referred to as the present heating control system).
  • the heating control system is configured to include target power calculation means 1S1 and 1S2 inside the temperature control means 3S1 and 3S2.
  • target power calculation means 1S1 and 1S2 inside the temperature control means 3S1 and 3S2.
  • temperature control means 3S1, 3S2 for example, a programmable temperature controller such as DMC50 manufactured by Yamatake Corporation can be used.
  • the power value Wm of the main heater and the current power PVs1 supplied to the sub heater S1 are input to the temperature control means 3S1 of the sub heater power control system 2S1.
  • the target power calculation means 1S1 holds the ratio ⁇ s1.
  • the target power calculation unit 1S1 calculates the target power of the sub heater S1 by multiplying the power value Wm by the ratio ⁇ s1.
  • the temperature control means 3S1 calculates a control output MVs1 to be output to the sub heater power supply 4S1 by PID calculation based on the target power calculated by the internal target power calculation means 1S1 and the current power PVs1.
  • the target power of the sub-heater S1 is calculated not in the control device 1 but in the temperature control means 3S1. Therefore, since the power control of the sub heater S1 is performed without using the control device 1, the temperature control process of the sub heater S1 can be executed without depending on the processing time of the control device 1. Further, when the number of zones to be heated is increased (for example, the number of sub-heaters is increased), it is possible to cope with the control device 1 without changing the program. Therefore, according to the present heating control system, the temperature control processing time can be shortened.
  • FIG. 6 is a block diagram showing the configuration of the heating control system of the present embodiment (hereinafter referred to as the present heating control system).
  • the heating control system includes target power calculation means 1S1 and 1S2 in the temperature control means 3S1 and 3S2, and the value of the detected temperature of the thermocouple 6M installed near the main heater M. (Current temperature PVm) is input to the temperature control means 3S1 and 3S2.
  • the target power calculation means 1S1 and 1S2 inside the temperature control means 3S1 and 3S2 hold a table T indicating the relationship between the detected temperature value (current temperature PVm) of the thermocouple 6M and the ratio ⁇ s1 and ⁇ s2.
  • the target power calculating unit 1S1 collates the detected temperature value with the table T to determine the ratio ⁇ s1 corresponding to the current temperature. Then, the target power of the sub heater S1 is calculated by multiplying the input power value Wm of the main heater M by the ratio ⁇ s1.
  • the target power calculation unit 1S2 collates the detected temperature value with the table T, The ratio ⁇ s2 corresponding to the current temperature is determined. Then, the target power of the sub heater S2 is calculated by multiplying the input power value Wm of the main heater M by the ratio ⁇ s2.
  • the temperature control means 3S1 calculates a control output MVs1 output to the sub heater power supply 4S1 by PID calculation based on the target power calculated by the internal target power calculation means 1S1 and the current power PVs1. Further, the temperature control means 3S2 calculates a control output MVs1 output to the sub heater power supply 4S2 by PID calculation based on the target power calculated by the internal target power calculation means 1S2 and the current power PVs2.
  • the target power of the sub heaters S1 and S2 is calculated not in the control device 1 but in the temperature control means 3S1 and 3S2. Therefore, since the power control of the sub heaters S1 and S2 is performed without using the control device 1, the temperature control processing of the sub heaters S1 and S2 can be executed without depending on the processing time of the control device 1. Become. Further, when the number of zones to be heated is increased (for example, the number of sub-heaters is increased), it is possible to cope with the control device 1 without changing the program.
  • the target power calculation means 1S1 and 1S2 hold the table T indicating the relationship between the detected temperature value (current temperature PVm) of the thermocouple 6M and the ratio ⁇ s1 and ⁇ s2, and thus are detected by the thermocouple 6M. In the entire temperature range, the three zones can be adjusted to the same temperature distribution.
  • the heating control system described above can be applied to a film forming apparatus that forms a thin film on a substrate.
  • the film forming apparatus to which the present heating control system can be applied is preferably an MOCVD apparatus for growing a compound semiconductor crystal by MOCVD.
  • the MOCVD apparatus to which the present heating control system can be applied may be a conventionally known apparatus that zone-heats a substrate.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of an MOCVD apparatus which is an example of a film forming apparatus to which the present heating control system is applied.
  • the MOCVD apparatus 100 includes a reaction furnace 10 having a reaction chamber 11 as a growth chamber that maintains an airtight state by isolating the inside from the atmosphere side, and a plurality of chambers provided in the reaction chamber 11.
  • a substrate holding member 13 for placing the processing substrate 12 and a gas supply unit 20 provided at a position facing the substrate holding member 13 and supplying a plurality of source gases toward the substrate to be processed 12 are provided.
  • the substrate holding member 13 is provided at one end of the rotation transmission member 14, and the rotation transmission member 14 can be rotated by a rotation mechanism (not shown).
  • a substrate heater 15 is provided below the substrate holding member 13.
  • a source gas is introduced from the gas supply unit 20 into the reaction chamber 11.
  • the substrate heater 12 is heated by the substrate heater 15 via the substrate holding member 13, and a film forming chemical reaction on the substrate 12 is promoted to form a thin film on the substrate 12. Is done.
  • the gas that has passed over the substrate 12 is discharged from the gas discharge port 11a.
  • the gas supply unit 20 provided on the upper side of the reaction furnace 10 has a substantially cylindrical shape.
  • the substrate heater 15 includes a main heater M, a sub heater S1, and a sub heater S2.
  • the main heater M, the sub heater S1, and the sub heater S2 are all concentric with the rotation transmission member 14 as an axis, and are provided outward from the rotation transmission member 14 in this order.
  • zone control is performed by the main heater M, the sub heater S1, and the sub heater S2 in order to make the temperature of the substrate 12 to be processed uniform.
  • the heating control system of this embodiment is applied.
  • the heating control system of the present invention is characterized by the following configuration. That is, a main heater and a plurality of sub heaters for heating an object to be heated, a heater power supply for supplying power to each heater, a temperature control means for controlling each heater power supply, a current supplied to the plurality of heaters, a current for detecting a voltage, Voltage detection means, temperature detection means located in the vicinity of the object to be heated, and target power calculation means for calculating the target power of each sub-heater, the main heater based on the temperature detection value of the temperature detection means
  • each sub-heater has a current / voltage supplied to each sub-heater to a target power value calculated by the target power calculation means based on a predetermined value and a detected value of the current / voltage supplied to the main heater.
  • the temperature control unit includes a target power calculation unit.
  • the heating control system of the present invention includes a main heater and a sub heater for heating an object to be heated, a main heater power source for supplying power to the main heater, and a sub heater power source for supplying power to the sub heater.
  • the main heater is temperature-controlled so that the temperature of the object to be heated reaches the target temperature, and the sub heater has a predetermined ratio between the first power supplied to the main heater and the second power supplied to the sub heater.
  • a heating control system in which power is controlled so as to comprise temperature detection means for detecting the temperature of an object to be heated, temperature control means for main heater and temperature control means for sub heater, and main heater for detecting the first power Power detection means, sub-heater power detection means for detecting the second power, and target power calculation for calculating a target value of the second power
  • the main heater temperature control means inputs a set value of a target temperature and a temperature detection value of the temperature detection means, and the first heater temperature control value matches the set value of the target temperature.
  • the target power calculation means inputs a first power detection value detected by the main heater power detection means, and multiplies the first power detection value by a predetermined ratio to obtain the second power.
  • a power target value is calculated, and the sub heater temperature control means inputs the second power target value and a second power detection value detected by the sub heater power detection means, and the second power detection value Is a configuration in which the second power is controlled so as to match the target value of the second power.
  • the film forming apparatus of the present invention has the above-described heating control system as described above.
  • the temperature control method of the present invention controls the temperature of the main heater so that the temperature of the object to be heated becomes the target temperature when the object to be heated is heated using the main heater and the sub heater.
  • a main heater temperature control step for controlling the first power so that the temperature detection value of the object to be heated detected in the temperature detection step matches the set value of the target temperature, and the main heater is supplied.
  • a target power calculation step of detecting a first power multiplying the detected first power detection value by a predetermined ratio to calculate a target value of the second power, and detecting a second power supplied to the sub heater. And, as the second power detection value detected matches a target value of the second power, a configuration including a sub-heater power controlling process of controlling the second power.
  • the target power calculation means holds a table indicating a relationship between the temperature detection value and the predetermined ratio, and collates the input temperature detection value with the table. It is preferable to determine the predetermined ratio.
  • the target power calculation means holds the table indicating the relationship between the temperature detection value and the predetermined ratio, and collates the input temperature detection value with the table to Since the predetermined ratio is determined, the ratio between the first power and the second power can be changed according to the temperature detection value.
  • heating control with an appropriate temperature distribution can be realized over the entire temperature range from the low temperature range to the high temperature range in the temperature detection value detected by the temperature detection means.
  • the target power calculation means is provided inside the sub heater temperature control means.
  • the temperature control process can be performed only by the sub-heater temperature control means by using the sub-heater temperature control means having a function of calculating the target value of the second power inside. Therefore, according to the above configuration, for example, a temperature control loop that does not depend on the processing time of the control device can be constructed as compared with a case where the target value of the second power is calculated by a control device such as a PLC.
  • the film forming apparatus of the present invention is characterized by including the above-described heating control system in order to solve the above-described problems.
  • the reproducibility of the substrate temperature distribution can be ensured even when the heater is replaced or the heater resistance changes with time. Therefore, a compound semiconductor crystal having stable characteristics can be formed.
  • the present invention can be used for temperature control in an apparatus for heating an object to be heated with a plurality of heaters, such as a film forming apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Resistance Heating (AREA)
  • Chemical Vapour Deposition (AREA)
  • Control Of Temperature (AREA)

Abstract

 複数のヒータで被加熱物を加熱するにあたり、複数のヒータ電源の特性ばらつきに依存しない加熱制御システムを実現するため、本発明の加熱制御システムは、被加熱物の温度を検出する熱電対(6M)と、温度制御手段(3M)および温度制御手段(3S1)と、電力値(Wm)を検出する電流・電圧検出手段(5M)および現在電力(PVs1)を検出する電流・電圧検出手段(5S1)と、目標電力(SPs1)を算出する目標電力算出手段(1S1)とを備えている。温度制御手段(3M)は、目標温度(SPm)および現在温度(PVm)を入力し、現在温度(PVm)が目標温度(SPm)に合うように電力を制御し、目標電力算出手段(1S1)は、電力値(Wm)を入力し、電力値(Wm)に所定の比率を乗じて目標電力(SPs1)を算出し、温度制御手段(3S1)は、目標電力(SPs1)、および現在電力(PVs1)を入力し、現在電力(PVs1)が目標電力(SPs1)に合うように電力を制御している。

Description

加熱制御システム、それを備えた成膜装置、および温度制御方法
 本発明は、被加熱物を複数のヒータで温度制御する加熱制御システム、それを備えた成膜装置、および温度制御方法に関する。
 基板に薄膜を成膜させるプロセスの1つとして、化合物半導体結晶を成長させるMOCVD(Metal Organic Chemical Vaper Deposition)法がある。このMOCVD法は、例えば、発光ダイオード、半導体レーザー、宇宙用ソーラーパワーデバイス、及び高速デバイスの製造において、使用される。
 MOCVD法では、まず、載置台上に基板を載置し、ヒータにより基板を加熱する。そして、その基板上に、成膜に寄与する原料ガスとして、トリメチルガリウム(TMG)等の有機金属ガスとアンモニア(NH3 )等の水素化合物ガスとを導入することで、気相反応させ、基板上に化合物半導体結晶を成膜させる。この成膜処理において、高い面内均一性を確保するために基板の温度を均一にする、あるいはその装置に見合った適切な温度分布パターンに設定する必要がある。このため、基板の温度制御法として、例えば特許文献1に記載のように、複数のヒータを用いて温度制御を行うゾーン制御が知られている。
 図7は、上記のように複数のヒータを用いて温度制御を行うゾーン制御システムの構成を示すブロック図である。なお、図7では、メインヒータMと2つのサブヒータS1・S2との3つのヒータを用いたゾーン制御の場合を示す。
 図7に示されるように、従来の加熱制御システムは、例えばシーケンサ等といった上位の制御機器101と、温度制御手段102と、分配器103と、メインヒータMおよびサブヒータS1・S2それぞれの電源であるヒータ電源104M、104S1および104S2と、熱電対(TC)105とを備えている。
 従来の加熱制御システムでは、制御機器101より目標温度SPmが、温度制御手段102に設定される。温度制御手段102は、ヒータ近傍に設置された熱電対105の検出温度として現在温度PVmを入力する。そして、目標温度SPmと現在温度PVmとによりPID演算された制御出力MVmを出力する。制御出力MVmは一旦、分配器103に入力される。そして、分配器103から各ヒータのヒータ電源104M、104S1および104S2へ出力される。
 メインヒータM用のヒータ電源Mへは、分配器103から、温度制御手段102の出力値MVmが入力される。また、サブヒータS1およびS2用のヒータ電源S1およびS2へはそれぞれ、出力値MVs1およびMVs2が入力される。出力値MVs1およびMVs2はそれぞれ、下記式(1)および(2)のように、分配器103内部で温度制御手段102の出力値MVmに一定比率αs1およびαs2を乗じた値である。
MVs1=MVm×αs1   (1)
MVs2=MVm×αs2   (2)
 このとき、ヒータ電源104S1および104S2がそれぞれ、電力制御仕様の電源であれば、サブヒータS1およびS2にはそれぞれ、メインヒータMに供給される電力に対し一定比率(αs1、αs2)の電力が供給されることになる。
日本国公開特許公報「特開2009-74148号公報(2009年 4月 9日公開)」
 しかしながら、ヒータ電源の出力特性(入力信号に対する出力値の関係)に個々のばらつきがある。このため、図7に示される従来の加熱制御システムでは、実際にサブヒータS1およびS2に供給される電力比率(メインヒータMに供給される電力に対する)と設定比率(αs1、αs2)との間にずれが生じる。
 本発明は、上記従来の問題点を鑑みなされたものであり、その目的は、複数のヒータ電源の特性ばらつきに依存しない加熱制御システム、それを備えた成膜装置、および温度制御方法を提供することにある。
 本発明の加熱制御システムは、上記の課題を解決するために、被加熱物を加熱するためのメインヒータおよびサブヒータと、前記メインヒータに電力を供給するメインヒータ電源、および前記サブヒータに電力を供給するサブヒータ電源とを備え、メインヒータは、被加熱物の温度が目標温度になるように温度制御され、サブヒータは、メインヒータに供給される第1電力とサブヒータに供給される第2電力とが所定の比率になるように電力制御される加熱制御システムであって、被加熱物の温度を検出する温度検出手段と、メインヒータ用温度制御手段およびサブヒータ用温度制御手段と、前記第1電力を検出するメインヒータ用電力検出手段、および前記第2電力を検出するサブヒータ用電力検出手段と、前記第2電力の目標値を算出する目標電力算出手段とを備え、前記メインヒータ用温度制御手段は、目標温度の設定値、および前記温度検出手段の温度検出値を入力し、該温度検出値が目標温度の設定値に合うように、前記第1電力を制御し、前記目標電力算出手段は、前記メインヒータ用電力検出手段にて検出される第1電力検出値を入力し、該第1電力検出値に所定の比率を乗じて前記第2電力の目標値を算出し、前記サブヒータ用温度制御手段は、前記第2電力の目標値、およびサブヒータ用電力検出手段にて検出される第2電力検出値を入力し、該第2電力検出値が前記第2電力の目標値に合うように、第2電力を制御することを特徴としている。
 本発明の加熱制御システムは、被加熱物を加熱するためのメインヒータおよびサブヒータと、前記メインヒータに電力を供給するメインヒータ電源、および前記サブヒータに電力を供給するサブヒータ電源とを備え、メインヒータは、被加熱物の温度が目標温度になるように温度制御され、サブヒータは、メインヒータに供給される第1電力とサブヒータに供給される第2電力とが所定の比率になるように電力制御される加熱制御、すなわちゾーン制御を行うシステムである。
 上記の構成によれば、前記メインヒータ用温度制御手段は、目標温度の設定値、および前記温度検出手段の温度検出値を入力し、該温度検出値が目標温度の設定値に合うように、前記第1電力を制御している。一方、前記サブヒータ用温度制御手段は、前記第2電力の目標値、およびサブヒータ用電力検出手段にて検出される第2電力検出値を入力し、該第2電力検出値が前記目標電力値に合うように、第2電力を制御している。このとき、サブヒータの第2電力の目標値は、前記目標電力算出手段により算出される。そして、前記目標電力算出手段は、メインヒータ用電力検出手段にて検出される第1電力検出値を入力し、該第1電力検出値に所定の比率を乗じて前記第2電力の目標値を算出する。
 このようにサブヒータ用温度制御手段がサブヒータ用電力検出手段にて検出される第2電力検出値をフィードバックして電力制御を行うので、サブヒータ電源の出力仕様に左右されず、出力特性のばらつきを無視することができる。さらに、目標電力算出手段は、メインヒータ用電力検出手段にて検出される第1電力検出値、すなわち、実際にメインヒータに供給される第1電力を元に第2電力の目標値を算出するので、実際にメインヒータに供給される第1電力と実際にサブヒータに供給される第2電力との比率と、設定された所定の比率とのずれをなくすことができる。それゆえ、上記の構成によれば、第1電力と第2電力との比率を常に一定な状態にすることができる。
 以上のように、上記の構成によれば、複数のヒータ電源の特性ばらつきに依存しない加熱制御システムを実現することが可能になる。
 また、本発明の温度制御方法は、上記の課題を解決するために、メインヒータおよびサブヒータを用いて被加熱物を加熱するときに、メインヒータに供給される第1電力およびサブヒータに供給される第2電力が所定の比率になるように電力制御し、被加熱物の温度が目標温度になるように温度制御を行う温度制御方法であって、被加熱物の温度を検出する温度検出工程と、前記温度検出工程にて検出された被加熱物の温度検出値が目標温度の設定値に合うように、前記第1電力を制御するメインヒータ温度制御工程と、メインヒータに供給される第1電力を検出し、検出された第1電力検出値に所定の比率を乗じて前記第2電力の目標値を算出する目標電力算出工程と、サブヒータに供給される第2電力を検出し、検出された第2電力検出値が前記第2電力の目標値に合うように、前記第2電力を制御するサブヒータ電力制御工程と、を含むことを特徴としている。
 これにより、複数のヒータ電源の特性ばらつきに依存しない温度制御方法を実現することができる。
 本発明によれば、複数のヒータ電源の特性ばらつきに依存しない加熱制御システムを実現することができるという効果を奏する。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
本発明の実施の一形態の加熱制御システムの構成を示すブロック図である。 メインヒータおよびサブヒータにおける制御信号の関係を示し、(a)はメインヒータの温度制御手段の入出力信号を説明する模式図であり、(b)はサブヒータの温度制御手段の入出力信号を説明する模式図であり、(c)はメインヒータおよびサブヒータについて、温度制御手段に入力される信号および出力信号を示した表である。 本発明の実施の他の形態の加熱制御システムの構成を示すブロック図である。 目標電力算出手段が保持するテーブルを示し、(a)は、テーブルに記憶されている現在温度と所定の比率との対応関係を示す表であり、(b)は、現在温度と所定の比率との対応関係を示すグラフである。 本発明の実施のさらに他の形態の加熱制御システムの構成を示すブロック図である。 本発明の実施のさらに他の形態の加熱制御システムの構成を示すブロック図である。 従来の加熱制御システムの構成を示すブロック図である。 本発明の実施の一形態の加熱制御システムを適用した成膜装置の一例であるMOCVD装置の概略構成を示す断面図である。
 (実施の形態1)
 本発明の実施の一形態について、図1および図2に基づいて、以下に説明する。図1は、本実施形態の加熱制御システム(以下、本加熱制御システムと記す)の構成を示すブロック図である。なお、本発明の図面において、同一の参照符号は、同一部分又は相当部分を表わすものとする。
 本加熱制御システムとして、メインヒータMおよび2つのサブヒータS1およびS2を用いて、3ゾーンの温度制御を行う加熱制御システムを例に挙げて説明する。なお、本実施形態の加熱制御システムに用いられる複数のヒータは、上記の例に限定されず、メインヒータとサブヒータとを含んでいればよい。
 図1に示されるように、本加熱制御システムは、制御機器1と、メインヒータM用の電源を制御するメインヒータ電源制御系2Mと、サブヒータS1用の電源を制御するサブヒータ電源制御系2S1と、サブヒータS2用の電源を制御するサブヒータ電源制御系2S2とを備えている。
 制御機器1は、その内部に、サブヒータS1・S2のための目標電力算出手段1S1・1S2を備えている。このような制御機器1としては、例えば、PLC(Programmable Logic Controller)といった制御装置が挙げられる。
 メインヒータ電源制御系2Mは、温度制御手段3M(メインヒータ用温度制御手段)と、メインヒータM用の電源であるメインヒータ電源4Mと、メインヒータ電源4Mから出力される電流値および電圧値を検出する電流・電圧検出手段5M(メインヒータ用電力検出手段)と、メインヒータMと、メインヒータM近傍に設置された熱電対(TC)6M(温度検出手段)とを備えている。
 また、サブヒータ電源制御系2S1は、温度制御手段3S1(サブヒータ用温度制御手段)と、サブヒータS1用の電源であるサブヒータ電源4S1と、サブヒータ電源4S1から出力される電流値および電圧値を検出する電流・電圧検出手段5S1(サブヒータ用電力検出手段)と、サブヒータS1とを備えている。また、サブヒータ電源制御系2S2は、温度制御手段3S2(サブヒータ用温度制御手段)と、サブヒータS2用の電源であるサブヒータ電源4S2と、サブヒータ電源4S2から出力される電流値および電圧値を検出する電流・電圧検出手段5S2(サブヒータ用電力検出手段)と、サブヒータS2とを備えている。
 次に、加熱制御システムによる本実施形態の温度制御方法(以下、本温度制御方法と記す)について説明する。本温度制御方法は、メインヒータMについて、熱電対6Mの検出温度が目標温度となるように温度制御し、サブヒータS1・S2について、メインヒータMに供給される電力値WmおよびサブヒータS1・S2に供給される現在電力PVs1・PVs2が所定の比率になるように電力制御し、被加熱物の温度が目標温度SPmになるように温度制御を行うための方法である。本温度制御方法は、熱電対6Mにより被加熱物の温度を検出する温度検出工程と、メインヒータ温度制御工程と、目標電力算出工程と、サブヒータ電力制御工程とを含む。
 メインヒータ温度制御工程では、メインヒータMの電源制御により、熱電対6Mの検出温度が目標温度SPmになるように現在温度PVmを制御する。まず、制御機器1より、メインヒータ電源制御系2Mの温度制御手段3Mに目標温度SPmが設定される。また、温度制御手段3Mは、メインヒータMの近傍に設置された熱電対6Mの検出温度を現在温度PVmとして入力する。温度制御手段3Mは、入力された目標温度SPmおよび現在温度PVmを元に、PID演算により、メインヒータ電源4Mに出力する制御出力MVmを算出する。メインヒータ電源4Mは、制御出力MVmを入力すると、該制御出力MVmに対応する電流・電圧をメインヒータMへ供給する。メインヒータ電源制御系2Mにおいては、メインヒータMへ供給する電流値および電圧値は、電流・電圧検出手段5Mにより検出される。電流・電圧検出手段5Mにより検出された電流値Imおよび電圧値Vm(電力値Wm=Im×Vm)は、制御機器1に入力される。
 サブヒータ電力制御工程では、サブヒータS1・S2に供給される現在電力PVs1・PVs2を検出し、サブヒータS1・S2の電源制御により、現在電力PVs1・PVs2が目標電力SPs1・SPs2に合うように電力制御する。サブヒータS1の電力制御方法は、サブヒータS2の電力制御方法と基本的に同じである。ここでは、サブヒータS1の電力制御方法について、説明する。
 まず、制御機器1より、サブヒータ電源制御系2S1の温度制御手段3S1に目標電力SPs1が設定される。また、温度制御手段3S1は、サブヒータS1へ供給される電力を現在電力PVs1として入力する。なお、現在電力PVs1は、電流・電圧検出手段5S1により検出される。温度制御手段3S1は、入力する目標電力SPs1および現在電力PVs1を元に、PID演算により、サブヒータ電源4S1に出力する制御出力MVs1を算出する。サブヒータ電源4S1は、制御出力MVs1を入力すると、該制御出力MVs1に対応する電流・電圧をサブヒータS1へ供給する。
 ここで、サブヒータS1・S2の目標電力SPs1・SPs2は、目標電力算出工程にて、制御機器1内部の目標電力算出手段1S1・1S2により算出される。目標電力算出工程では、メインヒータMに供給される電力値Wmを検出し、電力値Wmに所定の比率を乗じて目標電力SPs1・SPs2を算出する。
 目標電力算出手段1S1は、電流・電圧検出手段5Mにより検出された電力値Wmを入力する。目標電力算出手段1S1は、電力値Wm(メインヒータMの電力値)に対するサブヒータS1の電力値の比率αs1を保持しており、電力値Wmに比率αs1を乗じて目標電力SPs1を算出する。目標電力SPs1は、下記式(3)として表わされる。
SPs1=Wm×αs1   (3)
 また、目標電力算出手段1S2は、目標電力算出手段1S1と同様に、電流・電圧検出手段5Mにより検出された電力値Wmを入力する。目標電力算出手段1S2は、電力値Wm(メインヒータMの電力値)に対するサブヒータS2の電力値の比率αs2を保持しており、電力値Wmに比率αs2を乗じて目標電力SPs2を算出する。目標電力SPs2は、下記式(4)として表わされる。
SPs2=Wm×αs2   (4)
 図2は、メインヒータMおよびサブヒータS1・S2における制御信号の関係を示し、図2の(a)はメインヒータMの制御信号を出力する温度制御手段3Mの入出力信号を説明する模式図であり、図2の(b)はサブヒータS1(S2)の制御信号を出力する温度制御手段3S1(3S2)の入出力信号を説明する模式図であり、図2の(c)はメインヒータMおよびサブヒータS1について、温度制御手段に入力される信号および出力信号を示した表である。なお、図2の(a)~(c)では、メインヒータMおよびサブヒータS1について、制御器または目標電力算出手段から温度制御手段に入力される入力信号を「SP」、温度制御手段にフィードバックして入力される入力信号を「PV」、温度制御手段の出力信号を「MV」として、標記を統一している。
 図2の(a)および(c)に示されるように、メインヒータ電源制御系2Mの温度制御手段3Mには、信号SPとして目標温度の値が入力され、フィードバック信号PVとしてメインヒータM近傍に設置された熱電対6Mの検出温度の値(現在温度)が入力される。
 また、図2の(b)および(c)に示されるように、サブヒータ電源制御系2S1(2S2)の温度制御手段3S1(3S2)には、信号SPとして目標電力の値が入力され、フィードバック信号PVとして電流・電圧検出手段5S1(5S2)にて検出された電流・電圧の値(現在電力)が入力される。
 このように、本加熱制御システムにおいては、メインヒータ電源制御系2Mは、メインヒータM近傍に設置された熱電対6Mの検出温度を温度制御手段3Mへフィードバックして温度制御を行う。また、サブヒータ電源制御系2S1・2S2はそれぞれ、電流・電圧検出手段5S1・5S2の検出電力をフィードバックして電力制御を行うので、サブヒータ電源S1・S2の出力仕様に左右されず、出力特性のばらつきを無視することができる。
 また、本加熱制御システムによれば、メインヒータMの電力値は、電流・電圧検出手段5Mにより検出され、制御機器1に入力される構成になっている。そして、制御機器1に入力されたメインヒータMの電力値に基づいてサブヒータS1・S2それぞれの目標電力が設定される。サブヒータS1・S2それぞれの目標電力は、メインヒータMの電力値の変動に応じて、設定比率αs1・αs2で設定されることになる。このように各サブヒータの目標電力がメインヒータの電力の一定比率で算出されることより、メインヒータと各サブヒータとの電力比率は、設定比率αs1・αs2とずれが生じず、常に一定に制御される。
 また、メインヒータMおよびサブヒータS1・S2の各ヒータの抵抗値の劣化は、使用環境や個々のヒータで異なる。このため、従来の加熱制御システムでは、各ゾーンにおけるヒータの抵抗値の径時変化が同じ割合にならず、PID制御におけるP値、I値、D値等の初期設定した制御調整値が合わなくなる。その結果、温度安定性が悪くなるという問題が生じる。
 本加熱制御システムによれば、メインヒータ電源制御系2M、およびサブヒータ電源制御系2S1・2S2にそれぞれ、PID制御を行う温度制御手段(3M、3S1、3S2)が備えられている。それゆえ、メインヒータMおよびサブヒータS1・S2の各ヒータの抵抗値の経時変化により抵抗値のバランスが変わった場合でも、温度制御手段3M・3S1・3S2について、制御パラメータ(P値、I値、D値)を個別に調整することで、温度制御性を安定に維持して被加熱物の面内温度分布のばらつきを抑えることができる。
 (実施の形態2)
 本発明の実施の他の形態について、図3に基づいて以下に説明する。図3は、本実施形態の加熱制御システム(以下、本加熱制御システムと記す)の構成を示すブロック図である。
 図3に示されるように、本加熱制御システムは、制御機器1にメインヒータM近傍に設置された熱電対6Mの検出温度の値が入力される構成になっている。制御機器1は、入力された検出温度の値を、現在温度PVmとして温度制御手段3Mへ出力する。温度制御手段3Mは、入力された目標温度SPmおよび現在温度PVmを元に、PID演算により、メインヒータ電源4Mに出力する制御出力MVmを算出する。
 また、本加熱制御システムでは、目標電力算出手段1S1・1S2は、熱電対6Mの検出温度の値(現在温度PVm)と比率αs1・αs2との関係を示すテーブルTを保持している。目標電力算出手段1S1は、制御機器1に検出温度の値(現在温度)が入力されると、この検出温度の値とテーブルTとを照合し、現在温度に対応する比率αs1を決定する。そして、入力されるメインヒータMの電力値Wmに比率αs1を乗じて、目標電力SPs1を算出する。また、目標電力算出手段1S2は、目標電力算出手段1S1と同様に、制御機器1に検出温度の値(現在温度)が入力されると、この検出温度の値とテーブルTとを照合し、現在温度に対応する比率αs2を決定する。そして、入力されるメインヒータMの電力値Wmに比率αs2を乗じて、目標電力SPs2を算出する。
 次に、目標電力算出手段1S1・1S2が保持するテーブルTについて、具体的に説明する。図4は、目標電力算出手段1S1・1S2が保持するテーブルTを示し、図4の(a)は、テーブルTに記憶されている現在温度PVmと比率αs1およびαs2との対応関係を示す表であり、図4の(b)は、現在温度PVmと比率αs1およびαs2との対応関係を示すグラフである。
 図4の(a)(b)に示されるテーブルTにおいて、例えば現在温度PVmが300℃である場合、目標電力算出手段1S1は、比率αs1=0.16と決定し、目標電力算出手段1S2は、比率αs2=0.23と決定する。そして、この決定された比率αs1・αs2を電力値Wmに乗じて目標電力SPs1・SPs2が算出される。すなわち、本加熱制御システムにおいては、メインヒータMの電力値Wmに対するサブヒータS1・S2の電力値の比率はそれぞれ、現在温度PVmの関数(αs1(PVm)、αs2(PVm)とする)として表わされる。よって、目標電力SPs1は、下記式(5)のような、PVmの関数として定義される。
SPs1=Wm×αs1(PVm)   (5)
 また、目標電力SPs2は、目標電力SPs1と同様に、下記式(6)のような、PVmの関数として定義される。
SPs2=Wm×αs2(PVm)   (6)
 このようにメインヒータMの電力値Wmに対するサブヒータS1・S2の電力値の比率が、現在温度PVmの関数として表わされるので、熱電対6Mの検出温度の温度域に合わせて、サブヒータS1・S2の電力値の比率を調整することが可能になる。それゆえ、本加熱制御システムによれば、熱電対6Mで検出される全温度域において、3ゾーンを同じ温度分布に調整することが可能になる。
 (実施の形態3)
 本発明の実施のさらに他の形態について、図5に基づいて以下に説明する。図5は、本実施形態の加熱制御システム(以下、本加熱制御システムと記す)の構成を示すブロック図である。
 図5に示されるように、本加熱制御システムは、温度制御手段3S1・3S2内部に目標電力算出手段1S1・1S2を備えた構成になっている。このような温度制御手段3S1・3S2としては、例えば山武(株)製のDMC50等のようなプログラマブルな調温器を使用することができる。
 本加熱制御システムでは、サブヒータ電源制御系2S1の温度制御手段3S1に、メインヒータの電力値Wm、およびサブヒータS1へ供給されている現在電力PVs1が入力される。目標電力算出手段1S1は、比率αs1を保持している。温度制御手段3S1にメインヒータMの電力値Wmが入力されると、目標電力算出手段1S1は、電力値Wmに比率αs1を乗じてサブヒータS1の目標電力を算出する。温度制御手段3S1は、内部の目標電力算出手段1S1により算出された目標電力、および現在電力PVs1を元に、PID演算により、サブヒータ電源4S1に出力する制御出力MVs1を算出する。
 このように、本加熱制御システムにおいては、サブヒータS1の目標電力は、制御機器1内部でなく、温度制御手段3S1内部で算出される。それゆえ、サブヒータS1の電源制御は、制御機器1を介さずに行われるので、制御機器1の処理時間に依存することなく、サブヒータS1の温度制御処理を実行することが可能になる。また、加熱するゾーン数を増やす(サブヒータの数を増やす等)場合には、制御機器1のプログラム変更なしに対応することが可能になる。したがって、本加熱制御システムによれば、温度制御処理時間の短縮が可能になる。
 (実施の形態4)
 本発明の実施のさらに他の形態について、図6に基づいて以下に説明する。図6は、本実施形態の加熱制御システム(以下、本加熱制御システムと記す)の構成を示すブロック図である。
 図6に示されるように、本加熱制御システムは、温度制御手段3S1・3S2内部に目標電力算出手段1S1・1S2を備え、かつ、メインヒータM近傍に設置された熱電対6Mの検出温度の値(現在温度PVm)が温度制御手段3S1・3S2に入力される構成になっている。
 温度制御手段3S1・3S2内部の目標電力算出手段1S1・1S2は、熱電対6Mの検出温度の値(現在温度PVm)と比率αs1・αs2との関係を示すテーブルTを保持している。目標電力算出手段1S1は、温度制御手段3S1に検出温度の値(現在温度)が入力されると、この検出温度の値とテーブルTとを照合し、現在温度に対応する比率αs1を決定する。そして、入力されるメインヒータMの電力値Wmに比率αs1を乗じて、サブヒータS1の目標電力を算出する。また、目標電力算出手段1S2は、目標電力算出手段1S1と同様に、温度制御手段3S2に検出温度の値(現在温度)が入力されると、この検出温度の値とテーブルTとを照合し、現在温度に対応する比率αs2を決定する。そして、入力されるメインヒータMの電力値Wmに比率αs2を乗じて、サブヒータS2の目標電力を算出する。
 温度制御手段3S1は、内部の目標電力算出手段1S1により算出された目標電力、および現在電力PVs1を元に、PID演算により、サブヒータ電源4S1に出力する制御出力MVs1を算出する。また、温度制御手段3S2は、内部の目標電力算出手段1S2により算出された目標電力、および現在電力PVs2を元に、PID演算により、サブヒータ電源4S2に出力する制御出力MVs1を算出する。
 本加熱制御システムによれば、サブヒータS1・S2の目標電力は、制御機器1内部でなく、温度制御手段3S1・3S2内部で算出される。それゆえ、サブヒータS1・S2の電源制御は、制御機器1を介さずに行われるので、制御機器1の処理時間に依存することなく、サブヒータS1・S2の温度制御処理を実行することが可能になる。また、加熱するゾーン数を増やす(サブヒータの数を増やす等)場合には、制御機器1のプログラム変更なしに対応することが可能になる。
 さらには、目標電力算出手段1S1・1S2は、熱電対6Mの検出温度の値(現在温度PVm)と比率αs1・αs2との関係を示すテーブルTを保持しているので、熱電対6Mで検出される全温度域において、3ゾーンを同じ温度分布に調整することが可能になる。
 (成膜装置)
 上述した本加熱制御システムは、基板に薄膜を成膜させる成膜装置に適用することができる。本加熱制御システムを適用し得る成膜装置は、MOCVD法により化合物半導体結晶を成長させるMOCVD装置が好適である。本加熱制御システムを適用し得るMOCVD装置は、基板をゾーン加熱する従来公知の装置であればよい。
 図8は、本加熱制御システムを適用した成膜装置の一例であるMOCVD装置の概略構成を示す断面図である。
 MOCVD装置100は、図8に示されるように、内部を大気側と隔離して気密状態を保持する成長室としての反応室11を有する反応炉10と、反応室11内に設けられ複数の被処理基板12を載置する基板保持部材13と、基板保持部材13と対向する位置に設けられ、被処理基板12に向けて複数の原料ガスを供給するガス供給部20とを備えている。
 基板保持部材13は、回転伝達部材14の一端に備え付けられており、回転伝達部材14は、図示しない回転機構によって、自転可能となっている。また、基板保持部材13の下側には、基板加熱ヒータ15が設けられている。
 MOCVD装置100にて被処理基板12の主表面に薄膜を形成するときは、原料ガスをガス供給部20から反応室11へ導入する。このとき基板加熱ヒータ15により、基板保持部材13を介して被処理基板12が加熱され、被処理基板12上での成膜化学反応が促進されることにより、被処理基板12上に薄膜が形成される。被処理基板12上を通過したガスは、ガス排出口11aより排出される。また、反応炉10の上側に設けられたガス供給部20は、略円筒形状になっている。
 また、基板加熱ヒータ15は、メインヒータM、サブヒータS1、およびサブヒータS2を備えている。メインヒータM、サブヒータS1、およびサブヒータS2はともに、回転伝達部材14を軸とした同心円形状になっており、回転伝達部材14から外側へこの順に設けられている。
 MOCVD装置100においては、被処理基板12の温度を均一にするためにメインヒータM、サブヒータS1、およびサブヒータS2によりゾーン制御が行われる。このゾーン制御のために、本実施形態の加熱制御システムが適用される。
 本発明の加熱制御システムは、以下の構成を特徴としていると換言することができる。
すなわち、被加熱物を加熱するメインヒータと複数のサブヒータ、各ヒータに電力を供給するヒータ電源、各ヒータ電源を制御する温度制御手段、複数のヒータへ供給される電流、電圧を検出する電流・電圧検出手段、被加熱物の近傍に位置する温度検出手段、及び、各サブヒータの目標電力を算出する目標電力算出手段を備え、前記メインヒータを前記温度検出手段の温度検出値に基づいて、目標温度に制御するとともに、各サブヒータは、メインヒータへ供給される電流・電圧の検出値と予め定められた比率から目標電力算出手段により算出される目標電力値に、各サブヒータへ供給される電流・電圧値(電力値)を制御することを特徴としていると換言することができる。また、上記の構成において、各サブヒータの目標電力値を算出する比率は、現在温度により可変できることが好ましい。また、上記の構成において、前記温度制御手段は、内部に目標電力算出手段を含むが好ましい。
 本発明の加熱制御システムは、以上のように、被加熱物を加熱するためのメインヒータおよびサブヒータと、前記メインヒータに電力を供給するメインヒータ電源、および前記サブヒータに電力を供給するサブヒータ電源とを備え、メインヒータは、被加熱物の温度が目標温度になるように温度制御され、サブヒータは、メインヒータに供給される第1電力とサブヒータに供給される第2電力とが所定の比率になるように電力制御される加熱制御システムであって、被加熱物の温度を検出する温度検出手段と、メインヒータ用温度制御手段およびサブヒータ用温度制御手段と、前記第1電力を検出するメインヒータ用電力検出手段、および前記第2電力を検出するサブヒータ用電力検出手段と、前記第2電力の目標値を算出する目標電力算出手段とを備え、前記メインヒータ用温度制御手段は、目標温度の設定値、および前記温度検出手段の温度検出値を入力し、該温度検出値が目標温度の設定値に合うように、前記第1電力を制御し、前記目標電力算出手段は、前記メインヒータ用電力検出手段にて検出される第1電力検出値を入力し、該第1電力検出値に所定の比率を乗じて前記第2電力の目標値を算出し、前記サブヒータ用温度制御手段は、前記第2電力の目標値、およびサブヒータ用電力検出手段にて検出される第2電力検出値を入力し、該第2電力検出値が前記第2電力の目標値に合うように、第2電力を制御する構成である。
 また、本発明の成膜装置は、以上のように、上記加熱制御システムを備えた構成である。
 また、本発明の温度制御方法は、以上のように、メインヒータおよびサブヒータを用いて被加熱物を加熱するときに、メインヒータについて、被加熱物の温度が目標温度になるように温度制御し、サブヒータについて、メインヒータに供給される第1電力およびサブヒータに供給される第2電力が所定の比率になるように電力制御する温度制御方法であって、被加熱物の温度を検出する温度検出工程と、前記温度検出工程にて検出された被加熱物の温度検出値が目標温度の設定値に合うように、前記第1電力を制御するメインヒータ温度制御工程と、メインヒータに供給される第1電力を検出し、検出された第1電力検出値に所定の比率を乗じて前記第2電力の目標値を算出する目標電力算出工程と、サブヒータに供給される第2電力を検出し、検出された第2電力検出値が前記第2電力の目標値に合うように、前記第2電力を制御するサブヒータ電力制御工程と、を含む構成である。
 それゆえ、複数のヒータ電源の特性ばらつきに依存しない加熱制御システムを実現することができるという効果を奏する。
 また、本発明の加熱制御システムにおいて、前記目標電力算出手段は、前記温度検出値と前記所定の比率との関係を示すテーブルを保持しており、入力される温度検出値と前記テーブルとを照合して前記所定の比率を決定することが好ましい。
 上記の構成によれば、前記目標電力算出手段は、前記温度検出値と前記所定の比率との関係を示すテーブルを保持しており、入力される温度検出値と前記テーブルとを照合して前記所定の比率を決定するので、温度検出値に応じて第1電力と第2電力との比率を変化させることができる。これにより、温度検出手段にて検出される温度検出値における低温域から高温域に至る全温度域にわたって、適切な温度分布の加熱制御を実現することができる。
 また、本発明の加熱制御システムにおいて、前記目標電力算出手段は、前記サブヒータ用温度制御手段の内部に備えられていることが好ましい。
 上記の構成によれば、内部に第2電力の目標値を演算する機能を有するサブヒータ用温度制御手段を用いることにより、サブヒータ用温度制御手段のみで温度制御処理を行うことができる。それゆえ、上記の構成によれば、例えばPLC等の制御機器により第2電力の目標値を算出する場合と比較して、制御機器の処理時間に依存しない温度制御ループを構築することができる。
 本発明の成膜装置は、上記の課題を解決するために、上述の加熱制御システムを備えたことを特徴としている。
 上述の加熱制御システムを成膜装置に使用することにより、ヒータ交換時やヒータ抵抗の経時変化に対しても基板温度分布の再現性が確保される。よって、安定した特性の化合物半導体結晶を成膜させることができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、成膜装置などといった、被加熱物を複数のヒータで加熱する装置において、温度制御する場合に利用可能である。
 1        制御機器
1S1,1S2   目標電力算出手段
2M        メインヒータ電源制御系
3M        温度制御手段(メインヒータ用温度制御手段)
4M        メインヒータ電源
5M        電流・電圧検出手段(メインヒータ用電力検出手段)
6M        熱電対(温度検出手段)
2S1,2S2   サブヒータ電源制御系
3S1,3S2   温度制御手段(サブヒータ用温度制御手段)
4S1,4S2   サブヒータ電源
5S1,5S2   電流・電圧検出手段(サブヒータ用電力検出手段)
SPm       目標温度(目標温度の設定値)
PVm       現在温度(温度検出値)
Wm        電力値(第1電力検出値)
SPs1,SPs2 目標電力(第2電力の目標値)
PVs1,PVs2 現在電力(第2電力検出値)
T         テーブル

Claims (5)

  1.  被加熱物を加熱するためのメインヒータおよびサブヒータと、
     前記メインヒータに電力を供給するメインヒータ電源、および前記サブヒータに電力を供給するサブヒータ電源とを備え、メインヒータは、被加熱物の温度が目標温度になるように温度制御され、サブヒータは、メインヒータに供給される第1電力とサブヒータに供給される第2電力とが所定の比率になるように電力制御される加熱制御システムであって、
     被加熱物の温度を検出する温度検出手段と、
     メインヒータ用温度制御手段およびサブヒータ用温度制御手段と、
     前記第1電力を検出するメインヒータ用電力検出手段、および前記第2電力を検出するサブヒータ用電力検出手段と、
     前記第2電力の目標値を算出する目標電力算出手段とを備え、
     前記メインヒータ用温度制御手段は、目標温度の設定値、および前記温度検出手段の温度検出値を入力し、該温度検出値が目標温度の設定値に合うように、前記第1電力を制御し、
     前記目標電力算出手段は、前記メインヒータ用電力検出手段にて検出される第1電力検出値を入力し、該第1電力検出値に所定の比率を乗じて前記第2電力の目標値を算出し、
     前記サブヒータ用温度制御手段は、前記第2電力の目標値、およびサブヒータ用電力検出手段にて検出される第2電力検出値を入力し、該第2電力検出値が前記第2電力の目標値に合うように、第2電力を制御することを特徴とする加熱制御システム。
  2.  前記目標電力算出手段は、前記温度検出値と前記所定の比率との関係を示すテーブルを保持しており、入力される温度検出値と前記テーブルとを照合して前記所定の比率を決定することを特徴とする請求項1に記載の加熱制御システム。
  3.  前記目標電力算出手段は、前記サブヒータ用温度制御手段の内部に備えられていることを特徴とする請求項1または2に記載の加熱制御システム。
  4.  請求項1~3の何れか1項に記載の加熱制御システムを備えたことを特徴とする成膜装置。
  5.  メインヒータおよびサブヒータを用いて被加熱物を加熱するときに、メインヒータについて、被加熱物の温度が目標温度になるように温度制御し、サブヒータについて、メインヒータに供給される第1電力およびサブヒータに供給される第2電力が所定の比率になるように電力制御する温度制御方法であって、
     被加熱物の温度を検出する温度検出工程と、
     前記温度検出工程にて検出された被加熱物の温度検出値が目標温度の設定値に合うように、前記第1電力を制御するメインヒータ温度制御工程と、
     メインヒータに供給される第1電力を検出し、検出された第1電力検出値に所定の比率を乗じて前記第2電力の目標値を算出する目標電力算出工程と、
     サブヒータに供給される第2電力を検出し、検出された第2電力検出値が前記第2電力の目標値に合うように、前記第2電力を制御するサブヒータ電力制御工程と、を含むことを特徴とする温度制御方法。
PCT/JP2011/057825 2010-04-08 2011-03-29 加熱制御システム、それを備えた成膜装置、および温度制御方法 WO2011125654A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/577,109 US8907254B2 (en) 2010-04-08 2011-03-29 Heating control system, deposition device provided therewith, and temperature control method
CN2011800050950A CN102668034A (zh) 2010-04-08 2011-03-29 加热控制系统及具备该加热控制系统的成膜装置、以及温度控制方法
EP11765554.8A EP2557591A4 (en) 2010-04-08 2011-03-29 HEATING CONTROL SYSTEM, DEPOSITION DEVICE PROVIDED THEREWITH, AND TEMPERATURE CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010089545A JP5026549B2 (ja) 2010-04-08 2010-04-08 加熱制御システム、それを備えた成膜装置、および温度制御方法
JP2010-089545 2010-04-08

Publications (1)

Publication Number Publication Date
WO2011125654A1 true WO2011125654A1 (ja) 2011-10-13

Family

ID=44762601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057825 WO2011125654A1 (ja) 2010-04-08 2011-03-29 加熱制御システム、それを備えた成膜装置、および温度制御方法

Country Status (7)

Country Link
US (1) US8907254B2 (ja)
EP (1) EP2557591A4 (ja)
JP (1) JP5026549B2 (ja)
KR (1) KR20120096021A (ja)
CN (1) CN102668034A (ja)
TW (1) TW201208497A (ja)
WO (1) WO2011125654A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572260A (zh) * 2012-07-25 2014-02-12 北京北方微电子基地设备工艺研究中心有限责任公司 加热装置及具有其的cvd设备的反应腔、cvd设备
JP2017157855A (ja) * 2014-11-20 2017-09-07 住友大阪セメント株式会社 静電チャック装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726033A (zh) * 2012-10-10 2014-04-16 无锡尚德太阳能电力有限公司 一种用于控制等离子体增强化学气相沉积炉体温度的方法
CN103076826A (zh) * 2012-12-11 2013-05-01 光垒光电科技(上海)有限公司 多温区温度控制系统及其控制方法
CN104213104B (zh) * 2013-05-31 2016-07-13 理想晶延半导体设备(上海)有限公司 化学气相沉积中衬底温度的控制方法
DE102013109155A1 (de) * 2013-08-23 2015-02-26 Aixtron Se Substratbehandlungsvorrichtung
JP6197680B2 (ja) * 2014-02-12 2017-09-20 信越半導体株式会社 シリコン単結晶製造装置
CN105489526B (zh) * 2014-09-17 2018-08-14 沈阳芯源微电子设备有限公司 一种半导体设备用分流增压装置及其控制方法
JP6323315B2 (ja) * 2014-12-01 2018-05-16 住友電気工業株式会社 炭化珪素単結晶の製造方法
US9660114B2 (en) * 2015-06-25 2017-05-23 International Business Machines Corporation Temperature stabilization of an on-chip temperature-sensitive element
CN106332339A (zh) * 2015-07-03 2017-01-11 财团法人精密机械研究发展中心 感应加热装置及其控制方法
US11183400B2 (en) * 2018-08-08 2021-11-23 Lam Research Corporation Progressive heating of components of substrate processing systems using TCR element-based heaters
US20220172925A1 (en) * 2019-03-13 2022-06-02 Lam Research Corporation Electrostatic chuck heater resistance measurement to approximate temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335500A (ja) * 2006-06-13 2007-12-27 Hitachi Kokusai Electric Inc 基板処理装置の温度制御方法
JP2009074148A (ja) 2007-09-21 2009-04-09 Tokyo Electron Ltd 成膜装置
JP2009170822A (ja) * 2008-01-19 2009-07-30 Tokyo Electron Ltd 載置台装置、処理装置、温度制御方法及び記憶媒体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009148A1 (en) * 1989-12-11 1991-06-27 Hitachi, Ltd. Device for vacuum treatment and device for and method of film formation using said device
US5873781A (en) * 1996-11-14 1999-02-23 Bally Gaming International, Inc. Gaming machine having truly random results
JP2001210596A (ja) 2000-01-28 2001-08-03 Hitachi Kokusai Electric Inc 半導体製造装置の温度制御方法、半導体製造装置、および半導体デバイスの製造方法
WO2001079943A1 (fr) * 2000-04-14 2001-10-25 Omron Corporation Unite de commande, regulateur de temperature et appareil de traitement thermique
JP3966137B2 (ja) * 2002-09-20 2007-08-29 株式会社Sumco 熱処理方法および熱処理装置
JP4384538B2 (ja) * 2003-06-16 2009-12-16 東京エレクトロン株式会社 基板処理装置及び基板処理方法
WO2005010970A1 (ja) * 2003-07-28 2005-02-03 Hitachi Kokusai Electric Inc. 基板処理装置及び基板処理方法
JP4607576B2 (ja) * 2004-12-28 2011-01-05 東京エレクトロン株式会社 半導体製造装置
JP4634197B2 (ja) * 2005-03-25 2011-02-16 株式会社日立国際電気 基板処理装置、半導体装置の製造方法
JP4786925B2 (ja) * 2005-04-04 2011-10-05 東京エレクトロン株式会社 基板処理方法および基板処理装置
US7195934B2 (en) * 2005-07-11 2007-03-27 Applied Materials, Inc. Method and system for deposition tuning in an epitaxial film growth apparatus
JP2008244224A (ja) * 2007-03-28 2008-10-09 Sumitomo Precision Prod Co Ltd プラズマ処理装置
JP2009186933A (ja) * 2008-02-08 2009-08-20 Canon Inc 加熱制御方法と加熱装置、及び該加熱装置を具備する画像形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335500A (ja) * 2006-06-13 2007-12-27 Hitachi Kokusai Electric Inc 基板処理装置の温度制御方法
JP2009074148A (ja) 2007-09-21 2009-04-09 Tokyo Electron Ltd 成膜装置
JP2009170822A (ja) * 2008-01-19 2009-07-30 Tokyo Electron Ltd 載置台装置、処理装置、温度制御方法及び記憶媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2557591A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572260A (zh) * 2012-07-25 2014-02-12 北京北方微电子基地设备工艺研究中心有限责任公司 加热装置及具有其的cvd设备的反应腔、cvd设备
CN103572260B (zh) * 2012-07-25 2016-06-08 北京北方微电子基地设备工艺研究中心有限责任公司 加热装置及具有其的cvd设备的反应腔、cvd设备
JP2017157855A (ja) * 2014-11-20 2017-09-07 住友大阪セメント株式会社 静電チャック装置
US10475687B2 (en) 2014-11-20 2019-11-12 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device

Also Published As

Publication number Publication date
JP2011222703A (ja) 2011-11-04
JP5026549B2 (ja) 2012-09-12
US20130020311A1 (en) 2013-01-24
EP2557591A1 (en) 2013-02-13
US8907254B2 (en) 2014-12-09
KR20120096021A (ko) 2012-08-29
EP2557591A4 (en) 2016-12-14
CN102668034A (zh) 2012-09-12
TW201208497A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5026549B2 (ja) 加熱制御システム、それを備えた成膜装置、および温度制御方法
TWI744344B (zh) 基於射頻功率之基板支撐件前饋溫度控制系統及方法
TWI706504B (zh) 用以降低靜電夾頭中之溫度變遷的系統及方法
TWI775749B (zh) 多站沉積系統中之膜厚度匹配用可變循環與時間射頻活化方法
CN107093547B (zh) 用于半导体制造的陶瓷基座的公共端子加热器
US20220277982A1 (en) Temperature tunable multi-zone electrostatic chuck
US9851151B2 (en) Apparatus and method for controlling heating of base within chemical vapour deposition chamber
TWI686506B (zh) 被帶走的蒸汽之測量系統及方法
JP2000183072A (ja) 半導体製造装置およびその温度制御方法
US20130260328A1 (en) Heat treatment system, heat treatment method, and program
US20160244881A1 (en) Heat treatment system, heat treatment method, and program
US9207665B2 (en) Heat treatment apparatus and method of controlling the same
US10186429B2 (en) Heat treatment apparatus, heat treatment method, and program
US20220406631A1 (en) Temperature correction information calculating device, semiconductor manufacturing apparatus, recording medium, and temperature correction information calculating method
KR101268822B1 (ko) 웨이퍼 가열용 히터
US20160312361A1 (en) Method of forming a film
KR100763681B1 (ko) 고밀도 플라즈마 화학기상증착 장치의 제어 장치 및 그방법
KR20070025305A (ko) 전력이 조절되는 스테이지 히터를 갖는 반도체 제조 장치
KR20130057231A (ko) 기판 온도 제어 방법 및 이를 이용한 기판 처리 장치
KR20080090823A (ko) 듀얼 온도 제어구조를 구비하는 반도체 제조장치
KR20070027883A (ko) 히터블록 레벨 조절 유닛을 구비한 반도체 제조설비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127016086

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011765554

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13577109

Country of ref document: US

Ref document number: 2011765554

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE