WO2011120374A1 - 一种多相催化塔式碰撞流反应器 - Google Patents
一种多相催化塔式碰撞流反应器 Download PDFInfo
- Publication number
- WO2011120374A1 WO2011120374A1 PCT/CN2011/071708 CN2011071708W WO2011120374A1 WO 2011120374 A1 WO2011120374 A1 WO 2011120374A1 CN 2011071708 W CN2011071708 W CN 2011071708W WO 2011120374 A1 WO2011120374 A1 WO 2011120374A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heterogeneous catalytic
- flow reactor
- reactor
- collision flow
- liquid
- Prior art date
Links
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 100
- 238000006243 chemical reaction Methods 0.000 claims abstract description 157
- 239000007788 liquid Substances 0.000 claims abstract description 89
- 239000000463 material Substances 0.000 claims abstract description 62
- 239000012530 fluid Substances 0.000 claims abstract description 27
- 230000002706 hydrostatic effect Effects 0.000 claims description 41
- 239000012071 phase Substances 0.000 claims description 25
- 239000007790 solid phase Substances 0.000 claims description 9
- 239000007921 spray Substances 0.000 claims description 5
- 239000000376 reactant Substances 0.000 abstract description 10
- 230000003068 static effect Effects 0.000 abstract description 5
- 238000012856 packing Methods 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 description 45
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 39
- 239000007789 gas Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 20
- 239000007787 solid Substances 0.000 description 17
- 239000011949 solid catalyst Substances 0.000 description 17
- 239000007791 liquid phase Substances 0.000 description 13
- 239000011344 liquid material Substances 0.000 description 12
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 7
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 7
- FUDNBFMOXDUIIE-UHFFFAOYSA-N 3,7-dimethylocta-1,6-diene Chemical compound C=CC(C)CCC=C(C)C FUDNBFMOXDUIIE-UHFFFAOYSA-N 0.000 description 6
- 238000010574 gas phase reaction Methods 0.000 description 6
- 239000012295 chemical reaction liquid Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 208000012839 conversion disease Diseases 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 1
- 229930008394 dihydromyrcenol Natural products 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/006—Separating solid material from the gas/liquid stream by filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J10/00—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
- B01J10/007—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J14/00—Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
- B01J14/005—Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/008—Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
- B01J8/0449—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
- B01J8/0453—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0492—Feeding reactive fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/08—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
- B01J8/12—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
- B01J8/125—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow with multiple sections one above the other separated by distribution aids, e.g. reaction and regeneration sections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00265—Part of all of the reactants being heated or cooled outside the reactor while recycling
- B01J2208/00274—Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00265—Part of all of the reactants being heated or cooled outside the reactor while recycling
- B01J2208/00283—Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00823—Mixing elements
- B01J2208/00831—Stationary elements
- B01J2208/00849—Stationary elements outside the bed, e.g. baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00893—Feeding means for the reactants
- B01J2208/00902—Nozzle-type feeding elements
Definitions
- the invention relates to a heterogeneous catalytic tower collision flow reactor system and its core components.
- chemical reactors are often used to synthesize new products.
- chemical reactors According to their operation modes, they can be divided into batch operation reactors, continuous operation reactors and semi-continuous operation reactors. According to fluid flow and mixing types, they can be divided into flat flow reactors, ideal mixing reactors and Non-ideal reactor.
- most chemical synthesis reactions use tubular fixed bed reactors or stirred tank reactors.
- the heat transfer performance of the fixed bed reactor is poor, and the catalyst is difficult to replace during the operation; while the stirred tank reactor has a slow reaction speed, it is difficult to achieve continuous operation.
- These reactors generally have problems such as low production efficiency, difficulty in controlling side reactions, long reaction time, and high production cost.
- the object of the present invention is to solve the deficiencies in the performance of the above reactor, and propose a novel heterogeneous catalytic tower collision flow reactor, which comprises liquid-liquid treatment (reaction material and catalyst are liquid phase).
- liquid-solid liquid phase is the reaction material, the solid phase is the catalyst
- liquid-liquid-solid the two liquid phases are the reaction materials, the solid phase is the catalyst
- the liquid-liquid-liquid the two liquid phases are the reaction
- the material, the other liquid phase is the catalyst
- the gas-liquid-solid the gas phase is the reactant, the solid phase is the catalyst
- the gas-liquid-liquid the gas phase and one of the liquid phases are the reaction materials, and the other liquid phase is the catalyst
- a two-phase or three-phase reaction system A two-phase or three-phase reaction system.
- a heterogeneous catalytic tower collision flow reactor which is a tower-shaped reactor, as shown in Fig. 1, which is composed of two parts, the upper part is a plate type or a packed tower 4, and the lower part is a heterogeneous catalytic collision flow.
- the reaction vessel 2, the upper and lower portions are separated by a fluid passage plate 14, and the fluid passage plate 14 is provided with a plurality of circular holes as a fluid passage 62.
- the reaction material is sprayed downward together, and at the bottom of the heterogeneous catalytic collision flow reactor 2, there is a lower jet 8 opposite to the upper jet 3, which can spray the pumped reaction material upward, and the bottom of the lower jet 8 has a circular plate.
- the cloth device as shown in Fig. 4, has a vertical hole 60 in the center of the circular plate distributor, and an oblique hole 61 is evenly arranged around the vertical channel 60, so that the reaction material is sprayed upward and outward, so that the heterogeneous catalytic collision flow in the reactor 2 The reaction material undergoes a violent collision and is effectively stirred.
- hydrostatic zone baffle 5 near the side wall of the heterogeneous catalytic collision flow reactor 2, and the sides of the hydrostatic zone baffle 5 and the side of the heterogeneous catalytic collision flow reactor 2 The wall is connected and fixed, and the hydrostatic zone baffle 5 divides the heterogeneous catalytic collision flow reactor 2 into a small area to form a hydrostatic zone.
- the upper end of the hydrostatic zone baffle 5 and the heterogeneous catalytic collision flow reactor 2 are top and static.
- the lower end of the liquid zone baffle 5 and the bottom of the heterogeneous catalytic collision flow reactor 2 have a gap, so that the reaction material in the heterogeneous catalytic collision flow reactor 2 can flow freely into the hydrostatic zone without causing turbulence, in the hydrostatic solution.
- the heterogeneous catalytic collision flow reactor 2 has a reaction material outlet on the side wall of the reactor, and a filter 6 is arranged before the outlet, and a filter is arranged on the filter to prevent the solid phase material from flowing out of the heterogeneous catalytic collision flow reactor 2 .
- the heterogeneous catalytic tower collision flow reactor is suitable for treating a liquid-liquid, liquid-solid or liquid-liquid-solid two-phase or three-phase reaction system without a gas phase.
- the heterogeneous catalytic tower collision flow reactor of the present invention operates in this manner:
- the flow is as shown in Fig. 1, and the liquid raw material is pre-reacted by the pipe 1 into the plate type or packed column 4 (hereinafter referred to as the tower 4), and then The fluid passage 62 on the fluid passage plate 14 enters the heterogeneous catalytic collision flow reactor 2 (hereinafter referred to as the reactor 2), and the pressure in the reactor 2 can be designed and adjusted as needed.
- the catalyst is a resin or other solid catalyst which is insoluble in the liquid phase.
- the catalyst enters the reaction vessel 2 after being mixed with the liquid material in the solid catalyst storage tank 20; when it is a liquid-liquid-liquid reaction system, the catalyst is a liquid acid, and the liquid material and the liquid catalyst are piped into the tower 4 for pre-reaction. Then, the reaction is carried out through the fluid passage 62 on the fluid passage plate 14 into the reaction vessel 2.
- the material in the reactor 2 is filtered through the hydrostatic zone baffle 5 and the filter 6, and a relatively stable hydrostatic zone is formed between the baffle and the filter 6 due to the presence of the hydrostatic zone baffle 5, where there is no violent
- the solid phase catalyst in the reactor 2 is settled, and the reactor 2 is returned to the reactor 2 through the bottom of the hydrostatic zone, and is not adsorbed by the liquid stream and adsorbed onto the screen in the filter 6, thereby avoiding the discharge port.
- the clogging phenomenon, the liquid reaction material can be passed through the wire mesh, through the centrifugal pump 18, and then returned to the reaction vessel 2 from the upper jet 3 through the flow meter 9 and the heat exchanger 19 for reaction, and the liquid reaction material is circulated in this way. .
- the liquid-liquid-solid or liquid-liquid-liquid three-phase maintains extremely sufficient contact between the reactant molecules and the catalyst under the high turbulence in the reactor 2, which will effectively increase the reaction rate and the conversion rate, and simultaneously open the valve.
- a reaction liquid is introduced from the bottom of the reaction vessel 2 through the lower jet 8 from the bottom to the reaction vessel 2 at a high speed, and forced circulation is performed to cause collision between the upstream and downstream streams, thereby effectively enhancing the stirring effect.
- part of the solid catalyst can be prevented from being deposited at the bottom of the reactor 2, and uneven distribution of the catalyst in the reactor 2 can be avoided, so that the catalyst particles can be uniformly suspended in the reactor.
- the valve 12 When the reaction has proceeded for a certain period of time, the valve 12 is opened, a liquid is introduced from the top into the column 4, and further reaction is carried out, and the conversion rate can reach a higher level. Finally, the liquid phase at the bottom of the column 4 is returned to the reactor 2 through the fluid passage 62 on the fluid passage plate 14 to continue the reaction.
- the reaction system is liquid-liquid-solid, some of the catalyst particles may be worn or broken due to the violent collision of the fluid in the reaction vessel 2, and the fine particles may pass through the screen in the filter 6 and flow out together with the liquid flow. Outside the kettle 2, and then from the top of the tower 4 into the tower 4, which will effectively accelerate the progress of the reaction; when the reaction system is liquid-liquid, the material itself contains a catalyst, due to the reaction of the tower 4, the reaction conversion rate can be Can be further improved.
- the reaction material When the reaction is carried out for a certain period of time, the reaction material is discharged through the valve 24 to enter the subsequent stage. In synchronism with this, fresh material is replenished from line 1 to ensure that the entire system is conserved.
- the fluid passage plate 14 when the reaction material having a gas phase is treated, the fluid passage plate 14 can be replaced with a liquid collecting pan 55 (see Fig. 2), and the liquid collecting pan 55 is a non-porous blind plate.
- the lower part of the plate or packed tower 41 and the lower part of the liquid collecting tray 55 are connected to the heterogeneous catalytic collision flow reactor 37 by pipes and valves 54, so that the gas above the heterogeneous catalytic collision flow reactor 37 can enter the plate or the packing.
- the lower portion of the plate or packed column 41 is communicated with the self-priming device 52 on the upper jet 35 in the heterogeneous catalytic collision flow reactor 37 by means of a pipe 33 and a valve 56 to cause the reaction liquid in the lower portion of the plate or packed column 41.
- the heterogeneous catalytic tower collision flow reactor processes the reaction material system containing the gas phase
- the heterogeneous catalytic tower collision flow reactor is operated as shown in Fig. 2:
- the liquid raw material is preliminarily reacted by the pipe 26 into the plate type or packed column 41 (hereinafter referred to as the column 41), and then introduced into the heterogeneous catalytic collision flow reactor 37 (hereinafter referred to as the reactor 37), and the pressure in the reaction vessel 37 is 0.2 ⁇ 1.5MPa (gauge pressure), when it is a gas-liquid-solid reaction system, the catalyst is a resin or other solid catalyst which is insoluble in the liquid phase, and the catalyst is mixed with the liquid material in the solid catalyst storage tank 57 and then enters the reaction kettle 37.
- the reactor 37 the pressure in the reaction vessel 37 is 0.2 ⁇ 1.5MPa (gauge pressure)
- the catalyst is a resin or other solid catalyst which is insoluble in the liquid phase
- the catalyst is mixed with the liquid material in the solid catalyst storage tank 57 and then enters the reaction kettle 37.
- the catalyst is a liquid acid
- the liquid material and the liquid catalyst are introduced into the column 41 by the pipe 26 for pre-reaction, and then enter the reaction vessel 37 for reaction.
- the gas phase is passed from the line 25 through the gas distributor 36 to the reaction vessel 37 for reaction with the liquid.
- the material in the reactor 37 is filtered through the hydrostatic zone baffle 38 and the filter 53, and a relatively stable hydrostatic zone is formed between the baffle and the filter due to the presence of the hydrostatic zone baffle 38.
- the solid phase catalyst in the reactor 37 settles and returns to the reactor 37 through the bottom of the hydrostatic zone, and is not adsorbed by the high-speed liquid stream and adsorbed onto the screen in the filter 53, thereby avoiding In the phenomenon of clogging, the liquid phase reaction material passes through the centrifugal pump 40, passes through the flow meter 42 and the heat exchanger 51 and returns from the upward jet 35 to the reaction vessel 37 to react with the ascending gas.
- the liquid reaction material is circulated in such a manner that the gas-liquid-solid or gas-liquid-liquid three-phase is highly turbulent in the reactor 37, and the reactant molecules and the reactant molecules are kept between the reactant molecules and the catalyst.
- the valve 48 is opened, and a reaction liquid is introduced from the bottom of the reaction vessel 37 through the lower jet 39 to the reactor 37 at a high speed from the bottom to perform forced circulation to make the upward movement. Collision with the two downstream streams to further enhance the mixing effect.
- it is a gas-liquid-solid three-phase reaction
- the deposition of a part of the catalyst at the bottom of the reaction vessel 37 and the uneven distribution of the catalyst in the reaction vessel 37 can be avoided, so that the catalyst particles are more uniformly suspended in the reaction vessel 37; -
- the liquid-liquid three-phase reaction is carried out, the entire reaction system is brought into contact more fully.
- the reaction conversion rate can be remarkably improved.
- the unreacted gas rises above the liquid level of the reaction vessel 37, and is sucked by the high-speed moving fluid through the line 58 through the self-priming device 52 of the upper jet 35 at the low pressure region at the nozzle.
- the inside of the kettle 37 is sent to the liquid phase of the reactor main body to continue the reaction. This cycle is extremely effective in improving the gas utilization rate.
- the valve 54 When the reaction is allowed to proceed for a certain period of time, the valve 54 is opened, so that the gas phase at the top of the reactor 37, which has not yet completely reacted, enters the column reactor 41 from the bottom of the column reactor, while opening the valve 50, introducing a liquid material from the top of the column 41.
- the line 45 enters the column 41 and is further reacted with the ascending gas to further increase the gas conversion rate.
- the reaction When it is a gas-liquid-solid reaction system, the reaction here utilizes fine catalyst particles which appear after abrasion and crushing, and they can pass through the filter 53 and have strong catalytic activity, which can effectively improve the progress of the reaction;
- the liquid material itself contains a catalyst, and the reaction time of the column 41 increases the reaction time, resulting in a higher conversion rate of the reactants and gases.
- a very small amount of unreacted gas flows directly from the top of the column through the heat exchanger 29, and the liquid phase material at the bottom of the column 41 is lowered, and the reaction is continued through the pipe 33 to the reactor 37.
- the column 41 Due to the reaction of the column 41, the amount of gaseous reactants in the off-gas discharged from the overhead line 59 is very low. Further, the column 41 allows a certain degree of separation of the light and heavy components in the mixed gas because the inside of the tray is provided with a tray or a packing or a combination of the two. Therefore, the tower 41 not only effectively improves the gas utilization rate, increases the yield of the entire system, but also reduces the difficulty of post-processing, simplifies the process, reduces energy consumption, and contributes to environmental protection.
- the reaction is carried out for a certain period of time, the liquid reaction material starts to discharge through the valve 31 and enters a subsequent stage. In synchronism with this, fresh material is replenished from line 26 to ensure that the entire system material is conserved.
- the shape of the lower jet 8 or 39 is a trumpet shape,
- the cross-sectional view is shown in Fig. 3.
- the liquid passes through the middle vertical hole 60 of the circular plate distributor and a circle of oblique holes 61 with a slope of 5-20 ° (the top view is as shown in Fig. 4).
- the heterogeneous catalytic collision flow reactor is sprayed up and around the bottom of the reactor, which can effectively prevent the solid catalyst from being deposited on the bottom of the reactor due to gravity, so that it can be uniformly suspended and fully contacted with the liquid and reacted to mass transfer; if it is a liquid catalyst , there will be no dead angle, which makes the flow field distribution in the whole reaction system more ideal.
- the lower jet can be welded to the bottom of the heterogeneous catalytic collision flow reactor, or can be connected to the bottom of the heterogeneous catalytic collision flow reactor via a flange.
- the liquid collecting tray 55 is a fixed blind plate via a plurality of screws 64, as shown in Fig. 6, which functions to flow from the tower reactor.
- the liquid is collected, and when the liquid layer reaches a certain thickness, the valve 56 is opened, and the liquid on the liquid collecting tray 55 and the unreacted gas in the heterogeneous catalytic collision flow reaction system are introduced into the reactor through the self-suction device 52 through the line 33. 37.
- the hydrostatic zone baffle and the heterogeneous catalytic collision flow reactor have a gap between the bottom and the top, so that the materials in the hydrostatic zone and the turbulent zone can rely on the "U"
- the principle of the tube is circulated.
- the gap length is 5-20 mm.
- the hydrostatic zone baffle is detachable, and the fixing method in the heterogeneous catalytic collision flow reaction tank may be a slot type or a screw fixing.
- the liquid injected at a high speed downward collides with a liquid ejected upward from the bottom of the heterogeneous catalytic collision flow reactor to form a high turbulent flow, so that the heterogeneous catalytic collision flow reaction
- the multiphase material in the kettle is fully contacted, and the effective contact between the reactant molecules and the reactant molecules and the catalyst is enhanced, so that the catalyst is stirred more vigorously and uniformly distributed in the heterogeneous catalytic collision flow reactor.
- the highly turbulent flexible agitation protects the solid catalyst from large amounts of damage and accelerates the reaction.
- a self-priming device When the heterogeneous catalytic tower collision flow reactor processes the material system containing the gas phase reaction, a self-priming device is provided, and the negative pressure generated by the high-speed jetted fluid is used to catalyze the reaction of the heterogeneous reaction to the unreacted gas at the top of the reactor. Entrained into the heterogeneous catalytic collision flow reactor, and repeatedly enters the liquid reaction main body to maximize the shortcoming of the short-lived residence time in the gas-liquid reactor. Secondly, the self-priming device can flow into the plate or packed tower. The liquid on the liquid collecting tray is sucked into the upper jet and then injected into the heterogeneous catalytic collision flow reactor.
- a hydrostatic zone baffle is arranged before the filter, and a certain distance between the baffle and the filter is used to form a stable In the hydrostatic zone, there is no violent turbulence, so the solid phase catalyst in the heterogeneous catalytic collision flow reactor will settle and enter the heterogeneous catalytic collision flow reactor at the bottom of the hydrostatic zone without being affected by the high velocity liquid. The flow is entrained and adsorbed onto the screen in the filter to avoid clogging of the discharge port. Because the hydrostatic zone baffle is detachable, the reaction system can be removed when it does not contain a solid phase.
- a trumpet-shaped lower jet is disposed at the bottom of the heterogeneous catalytic collision flow reactor, in which the liquid passes through a vertical hole in the middle of the circular plate distributor and A radial slanting hole around it is sprayed upwards and from the bottom of the heterogeneous catalytic collision flow reactor; thus, if it is a solid catalyst, it will not form a pile at the bottom of the heterogeneous catalytic collision flow reactor, so that the solid catalyst is completely suspended and liquid It is in full contact, and if it is a liquid catalyst, no dead angle is generated, which makes the degree of turbulence in the entire reaction system more severe.
- the arrangement of the plate or packed column allows the fresh reaction material to be pre-reacted first, and the unreacted gas or liquid can be further converted into a product, and the light and heavy components in the mixed gas can be separated to some extent.
- the system not only improves the yield, but also simplifies the post-processing work, reduces energy consumption and costs, and reduces environmental pollution.
- a fluid channel plate is connected between the plate or packed column and the heterogeneous catalytic collision flow reactor, and the tower reaction system is combined with The phase-catalyzed collision flow reactors are intercommunicated, so that the liquid in the plate or packed column can be pre-reacted, and then directly into the heterogeneous catalytic collision flow reactor for reaction.
- a fluid channel plate can also be connected between the plate or packed column and the heterogeneous catalytic collision flow reactor, and the treatment method and the treatment without the gas phase
- the reaction material system is similar in phase, or a liquid collecting tray is connected between the plate or packed column and the heterogeneous catalytic collision flow reactor, which collects the liquid flowing from the plate or the packed column, when the liquid layer reaches a certain thickness, Opening the valve 56 to the self-priming device, through the line 33, the liquid on the liquid collecting pan and the unreacted gas in the heterogeneous catalytic collision flow reactor can be passed into the heterogeneous catalytic collision flow reactor.
- FIG. 1 is a heterogeneous catalytic tower collision flow reactor without a gas phase reaction material in a reaction system, wherein: 1 is a liquid material inlet, 2 is a heterogeneous catalytic collision flow reactor, 3 is an upper jet, 4 is Plate or packed tower, 5 is the hydrostatic zone baffle, 6 is the filter, 8 is the lower jet, 9-11 is the flowmeter, 14 is the fluid channel plate, 15 is the self-priming device, 18 is the centrifugal pump, 19 is The heat exchanger, 20 is a solid catalyst storage tank, and 7, 12, 13, 16, 17, 21-24 are valves.
- 2 is a heterogeneous catalytic tower collision flow reactor having a gas phase reaction material in a reaction system, wherein: 25 is a gas inlet, 26 is a liquid material inlet, 27 is a liquid circulating material outlet, 28 is a product material outlet, and 33 is a set.
- the liquid pan is connected to the self-priming device, 35 is the upper jet, 36 is the gas distributor, 37 is the heterogeneous catalytic collision flow reactor, 38 is the hydrostatic zone baffle, 39 is the lower jet, 40 is the centrifugal pump, 41 is a plate or packed tower, 42-44 is a flow meter, 45 is a material entering the top of the plate or packed tower, 29, 51 is a heat exchanger, 52 is a self-priming device, 53 is a filter, and 55 is a liquid collecting pan 30- 32, 34, 46-50, 54 and 56 are valves, 57 is a solid catalyst storage tank, 58 is a connecting line between a self-priming device and a heterogeneous catalytic collision flow reactor, and 59 is an exhaust gas outlet.
- Figure 3 is a cross-sectional view of the lower jet.
- Figure 4 shows the circular plate distributor at the top of the lower jet, where: 60 is the vertical tunnel and 61 is the oblique tunnel.
- Figure 5 is a fluid channel plate, where: 62 is a fluid channel and 63 is a screw hole.
- Figure 6 shows the liquid collection tray, where: 64 is a screw hole.
- FIG. 7 shows the baffle in the hydrostatic zone.
- Example 1 Liquid-liquid-solid three-phase reaction system
- Dihydromyrcene, water and acetone solvent were 1:1:1 in mass ratio, and after mixing, they were introduced into the column reactor 4 through the pipeline 1 for pre-reaction, and then Into the reactor 2, the volume of the reactor 2 is 6 m 3 , the ratio of the diameter of the reactor 2 to the height is 1: 1.5, the diameter of the column reactor 4 is half the diameter of the reactor 2, and the height is the height of the reactor 2 The height is equivalent.
- the packing type is ⁇ ring 4 X 4 and the material is 316L.
- the valve 21 is opened to introduce a liquid material from the pipe 1 into the catalyst charging device 20 and mixed with the solid catalyst (the amount of the catalyst is 10% by mass of the liquid material) and then introduced into the reactor 2.
- the solid catalyst was Amberlyst 15 (manufactured by Rohm and Haas Company, USA), and the reaction temperature was 100 ° C and the pressure was 0.5 MPa.
- the material in the reactor 2 passes through the hydrostatic zone baffle 5 (the hydrostatic zone baffle is in the slot type, the distance between the bottom and the top of the reactor 2 is 10 mm) and the filter 6 enters the centrifugal pump 18, The liquid flow meter 9 and the heat exchanger 19 are injected into the reactor 2 by the upper jet 3.
- valve 17 is opened, and a liquid is introduced into the reactor 2 through the lower jet 8 (the inclined angle of the inclined hole around the circular plate distributor in the lower jet is 5 °).
- the valve 12 was opened, a stream was introduced into the column reactor 4, and then the liquid was returned to the reactor 2 through the fluid passage 64 on the fluid passage plate 14, and after the reaction was carried out for 3 hours, it was opened.
- the valve 24 starts to discharge, and the material enters the subsequent section, and in synchronization with this, the fresh material is replenished from the pipeline 1 to ensure the conservation of the entire system material.
- the conversion rate of dihydromyrcene in the hydration process can reach 37%, and the selectivity can reach more than 70%.
- Example 2 Liquid-Liquid-Solid Three-Phase Reaction System Similar to the operation method of Example 1, the solvent ratio of dihydromyrcene, water and ethanol was 1: 1:2, the reaction temperature was 105 ° C, and the reaction pressure was 0.6 MPa, the solid catalyst is Amberlyst 35 (manufactured by Rohm and Haas Company, USA), and the catalyst accounts for 20% of the mass of the liquid material.
- the inclined angle of the inclined hole on the circular plate distributor in the lower jet is 10°, and the hydrostatic zone baffle is fixed by screws, and the distance between the bottom and the top of the reactor 2 is 5 mm.
- Example 3 Liquid-Liquid-Solid Reaction System Similar to the operation mode of Example 1, the molar ratio of acetic acid to n-butanol was 2:1, the reaction temperature was 85 ° C, the reaction pressure was 0.15 MPa, and the solid catalyst was Amberlyst. 15 (produced by Rohm and Haas Company, USA), the catalyst is 10% of the mass of acetic acid and reacts for two hours.
- the inclined angle of the inclined hole on the circular plate distributor in the lower jet is 15 °, and the hydrostatic zone baffle is fixed by screws, and the distance between the bottom and the top of the reactor 2 is 5 mm.
- the conversion of n-butanol can reach about 85%, and the selectivity can reach 100%.
- Example 4 Liquid-Liquid-Liquid Reaction System Similar to the operation method of Example 1, the solvent ratio of dihydromyrcene, water and isopropanol was 1:1:1, the reaction temperature was 110 ° C, and the reaction pressure was 0.8 MPa, the catalyst is a 10% sulfuric acid solution (added in an amount of 100% H 2 SO 4 to 1% of the total material). After mixing, it is introduced into the column reactor 4 for pre-reaction, and then enters the reactor 2 for reaction. At this time, the inclined angle of the inclined hole on the circular plate distributor in the lower jet is 20°. The process has a conversion rate of dihydromyrcene of 35% and a selectivity of more than 50%.
- Example 5 Liquid-Liquid-Liquid Reaction System Similar to the operation mode of Example 1, the molar ratio of acetic acid to n-butanol was 4:1, the reaction temperature was 100 ° C, and the catalyst was 5% sulfuric acid solution (addition amount was 100% H 2 SO 4 is 0.5% of the total material. After mixing, it enters the column reactor 4 to be pre-reacted, and then enters the reactor 2 to carry out the reaction. At this time, the inclined angle of the inclined hole on the circular plate distributor in the lower jet is 15 °, and the conversion rate of n-butanol can reach 90%, and the selectivity can reach 100%.
- the molar ratio of acetic acid to butene is 1:1.1, acetic acid is introduced into the tower reactor 41 through the conduit 26 for pre-reaction, and then enters the new reactor 37, and the butene is introduced into the novel reaction from the conduit 25 through the gas distributor 35.
- the reaction temperature is 110 ° C
- the pressure is 0.8 MPa (gauge pressure)
- the valve 30 is opened to lead a liquid material from the pipe 26 to the catalyst charging device 57 and the solid catalyst (the amount of the catalyst accounts for 10% of the mass of the acetic acid) After mixing, it enters the new reactor 37, and the solid catalyst is modified by Amberlyst 15 (manufactured by Rohm and Haas Company, USA).
- the material in the new reactor 37 passes through the hydrostatic zone baffle 38 (at this time, the hydrostatic zone block)
- the plate is slotted, the distance between the bottom and the top of the new reactor 37 is 20 mm, and the filter 53 enters the centrifugal pump 40.
- the liquid flow meter 42 and the heat exchanger 51 are injected into the new reaction by the upper jet 35.
- the valve 24 is simultaneously opened, and a liquid is introduced through the lower jet 39 (the inclined angle of the inclined hole around the circular plate distributor in the lower jet is 10°) into the new reactor 37.
- the gas above the new reactor 37 is drawn into the reaction liquid by the pipe 58 through the self-priming device 52.
- the valve 54 is opened, and the unreacted gas enters the column reaction system from the bottom of the column reaction system.
- the valve 50 is opened to introduce a liquid into the tower reactor 41, and the liquid flows to the liquid collecting tray.
- the valve 56 is opened through the pipeline 33 by the self-priming device. 52 is sucked into the reactor 37.
- the reaction liquid began to pass through the valve 31 from the pipe 28 to the subsequent stage. In synchronism with this, fresh material is replenished from line 26 to ensure that the entire system material is conserved. In this process, the conversion of acetic acid can reach 77.4%, and the content of butene in the tail gas can be reduced to 0.11%.
- Example 7 gas-liquid-solid three-phase reaction system Similar to the operation method of Example 6, the molar ratio of acetic acid to butene was 1:1.2, the reaction temperature was 115 ° C, and the pressure of the reactor 37 was 1.0 MPa ( Gauge), the catalyst used is D-72 (the amount of catalyst is 15% of the mass of acetic acid). At this time, the angle of the inclined hole around the circular plate distributor in the lower jet is 20°, and the hydrostatic zone baffle is screwed. Fixed, up and down distance The new reactor 37 has a gap between the bottom and the top of the gap of 15 mm. In this process, the conversion of acetic acid can reach 76.7%, and the content of butene in the tail gas can be reduced to 0.9% after the reaction.
- Example 8 gas-liquid one-liquid reaction system Similar to the operation method of Example 6, the molar ratio of acetic acid to butene was 1:1.2, the reaction temperature was 120 ° C, and the pressure of the reactor 37 was 1.2 MPa (gauge pressure).
- the liquid catalyst used was p-toluenesulfonic acid (the amount of catalyst was 7% of the mass of acetic acid), and the inclined angle of the inclined hole on the circular plate distributor in the lower jet was 15 °. In this process, the conversion of acetic acid can reach 72%, and the content of butene in the gas after the reaction can be reduced to 1.2%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Description
一种多相催化塔式碰撞流反应器
发明领域
本发明涉及一种多相催化塔式碰撞流反应器系统及其核心组件。
背景技术
在化工, 石化, 制药, 食品等工说业中, 经常用到化学反应器以合成新的产品。 化学 反应器的种类很多, 按其操作方式可分为间歇操作反应器、连续操作反应器和半连续操 作反应器; 按流体流动及混合型式可分为平推流反应器、理想混合反应器和非理想反应 器。 目前大多数化工合成反应采用管式固定床反应书器或搅拌釜式反应器。但是, 固定床 反应器的传热性能较差、 操作过程中催化剂难以更换; 而搅拌釜式反应器反应速度较 慢, 难以实现连续操作。 这些反应器普遍存在着生产效率较低, 副反应难以控制, 反应 时间长, 生产成本高等问题。
发明内容
本发明的目的是解决上述反应器性能方面存在的不足, 提出一种新型的多相催化 塔式碰撞流反应器, 该新型反应器系统处理包括液-液 (反应物料和催化剂均为液相)、 液-固 (液相为反应物料, 固相为催化剂)、 液-液-固 (两个液相为反应物料, 固相为催 化剂)、 液-液-液 (其中两个液相为反应物料, 另一个液相为催化剂)、 气-液-固 (气液 相为反应物, 固相为催化剂) 和气-液-液 (气相和其中一个液相为反应物料, 另一个液 相为催化剂) 两相或三相组成的反应系统。
本发明的技术方案如下:
一种多相催化塔式碰撞流反应器, 它是一个塔状的反应器, 如图 1所示, 它由两部 分组成, 上部分为板式或填料塔 4, 下部分为多相催化碰撞流反应釜 2, 上、 下两部分 以流体通道板 14分隔, 流体通道板 14上开有多个圆孔, 作为流体通道 62, 在多相催 化碰撞流反应釜 2顶部, 有上射流器 3, 它可以将泵入的反应物料向下喷射, 上射流器 3上有自吸装置 15, 多相催化碰撞流反应釜 2内的反应物料可以通过自吸装置 15随上 射流器 3向下喷射的反应物料一并向下喷射,在多相催化碰撞流反应釜 2底部与上射流 器 3相对有下射流器 8, 它可以将泵入的反应物料向上喷射, 下射流器 8顶部有圆板分
布器, 见图 4, 圆板分布器中央有垂直孔道 60, 垂直孔道 60四周均匀排布有斜孔道 61, 使反应物料向上、 向外喷射, 从而使多相催化碰撞流反应釜 2内的反应物料发生激烈碰 撞, 有效地搅拌, 在多相催化碰撞流反应釜 2的侧壁附近有静液区挡板 5, 静液区挡板 5的两边与多相催化碰撞流反应釜 2的侧壁相连并固定, 静液区挡板 5将多相催化碰撞 流反应釜 2划出一小区域形成静液区, 静液区挡板 5的上端与多相催化碰撞流反应釜 2 顶部和静液区挡板 5的下端与多相催化碰撞流反应釜 2底部都留有空隙,使多相催化碰 撞流反应釜 2内的反应物料能自由地流入静液区而又不引起湍流,在静液区内的多相催 化碰撞流反应釜 2侧壁上有反应物料出口, 在出口前有过滤器 6, 过滤器上有过滤网, 以阻止固相物料流出多相催化碰撞流反应釜 2。本多相催化塔式碰撞流反应器适用于处 理没有气相的液-液、 液-固或液 -液-固两相或三相的反应体系。
本发明的多相催化塔式碰撞流反应器是如此运行的:
本多相催化塔式碰撞流反应器处理无气相反应的体系时, 其流程如附图 1所示, 液 体原料由管道 1进入板式或填料塔 4 (以下简称塔 4) 中进行预反应, 然后经流体通道 板 14上的流体通道 62进入多相催化碰撞流反应釜 2 (以下简称反应釜 2) 中, 反应釜 2 中的压力可根据需要设计和调节。 当为液-液-固反应系统时, 催化剂为树脂或者其它 不溶于液相的固体催化剂。 催化剂在固体催化剂贮槽 20中与液体物料混合后进入反应 釜 2中; 当为液-液-液反应系统时, 催化剂为液体酸, 液体物料及液体催化剂由管道 1 进入到塔 4进行预反应,然后通过流体通道板 14上的流体通道 62进入反应釜 2中进行 反应。反应釜 2中物料经过静液区挡板 5和过滤器 6过滤, 由于静液区挡板 5的存在使 得该挡板与过滤器 6之间形成一段相对平稳的静液区, 这里没有剧烈的湍动, 因此反应 器 2中的固相催化剂就会沉降, 通过静液区的底部返回反应釜 2, 不会被液流夹带而吸 附到过滤器 6中的丝网上,从而避免了出料口的堵塞现象,液相反应物料则可通过丝网, 经过离心泵 18, 再经过流量计 9和换热器 19从上射流器 3重新回到反应釜 2中进行反 应, 液相反应物料如此循环。 液-液-固或液-液-液三相在反应釜 2内的高度湍流作用下, 反应物分子与催化剂之间保持极为充分的接触, 将有效地提高反应速度和转化率, 同时 开启阀门 17引一股反应液由反应釜 2的底部经下射流器 8从底部高速射入反应釜 2内, 进行强制循环, 使上行与下行两股物流发生碰撞, 从而有效强化搅拌效果。 同时, 当体 系是液-液-固三相反应时, 可避免部分固体催化剂在反应器 2底部沉积, 以及避免在催 化剂在反应釜 2内分布不均,使催化剂颗粒可均匀地悬浮于反应器 2中并随液流随机运 动; 当体系是液-液-液三相反应时, 整个反应系统物料接触更加充分, 尤其是当两个液
相 (如油水两相) 互不相溶时, 可显著地提高反应转化率。
当反应进行到一定时间后, 开启阀门 12, 引一股液体从顶部进入塔 4中, 再进一 步反应, 转化率可达到更高的水平。 最后塔 4底部的液相通过流体通道板 14上的流体 通道 62回到反应釜 2内继续反应。 当反应系统为液 -液-固时, 由于反应釜 2内流体的 剧烈碰撞可能会使部分催化剂颗粒被磨损或破碎,其细小颗粒可穿过过滤器 6中丝网而 随液流一起流出反应釜 2外, 并再从塔 4顶部进入塔 4, 这将有效加速反应的进程; 当 反应系统为液 -液液时, 则物料中本身含有催化剂, 由于塔 4的反应作用, 反应转化率 可得以进一步提高。
当反应进行到一定时间后, 反应物料通过阀门 24开始出料, 进入到后续工段。 与 此同步, 从管道 1开始补充新鲜物料, 从而保证整个系统物料守恒。 上述的多相催化塔式碰撞流反应器, 当处理有气相的反应物料时, 可以将流体通道 板 14置换成集液盘 55 (见图 2), 集液盘 55为无孔的盲板。 同时, 以管道及阀门 54将 板式或填料塔 41的下部、 集液盘 55下部与多相催化碰撞流反应釜 37连通, 使多相催 化碰撞流反应釜 37上方的气体可以进入到板式或填料塔 41中;以管道 33和阀门 56将 板式或填料塔 41的下部与多相催化碰撞流反应釜 37内上射流器 35上的自吸装置 52连 通,使板式或填料塔 41下部的反应液进入多相催化碰撞流反应釜 37内上射流器的自吸 装置 52内; 以管道 58将多相催化碰撞流反应釜 37内上射流器 35上部的自吸装置 52 与多相催化碰撞反应釜 37连通,使多相催化碰撞流反应釜 37内未反应完的气体可以循 环反应。 并且在多相催化碰撞流反应釜 37底部增加气体入口管道 25和气体分布器 36。
当多相催化塔式碰撞流反应器处理含气相的反应物料体系时,多相催化塔式碰撞流 反应器是如此运行的, 其流程如图 2所示:
液体原料由管道 26进入板式或填料塔 41 (以下简称塔 41 )中进行预反应, 然后进 入多相催化碰撞流反应釜 37 (以下简称反应釜 37)中进行反应, 反应釜 37中的压力为 0.2〜1.5MPa (表压), 当为气液.固反应系统时, 催化剂为树脂或者其它不溶于液相的 固体催化剂, 催化剂在固体催化剂贮槽 57中与液体物料混合后进入反应釜 37中; 当为 气液液反应系统时, 催化剂为液体酸, 液体物料及液体催化剂由管道 26进入到塔 41 中进行预反应, 然后再进入反应釜 37进行反应。 气相由管道 25经气体分布器 36进入 到反应釜 37中与液体进行反应。反应釜 37中物料经过静液区挡板 38和过滤器 53过滤, 由于静液区挡板 38的存在使得该挡板与过滤器之间形成一段相对平稳的静液区, 这里
没有剧烈的湍动, 因此反应釜 37中的固相催化剂就会沉降, 通过静液区的底部返回反 应釜 37,不会被高速液流夹带而吸附到过滤器 53中的丝网上,从而避免了堵塞的现象, 液相反应物料则经过离心泵 40, 再经过流量计 42和换热器 51从向上射流器 35重新回 到反应釜 37中, 与上升气体进行反应。 液相反应物料如此循环, 气-液 -固或气-液 -液三 相在反应釜 37内的高度湍流作用下, 反应物分子与反应物分子之间、 反应物分子与催 化剂之间保持极为充分的接触, 将有效地提高反应速度和转化率, 同时开启阀门 48引 一股反应液由反应釜 37的底部经下射流器 39从底部高速射入反应器 37内, 进行强制 循环, 使上行与下行两股物流发生碰撞, 从而进一步强化搅拌效果。 当为气 -液-固三相 反应时, 可避免部分催化剂在反应釜 37底部的沉积及催化剂在反应釜 37内分布不均, 使催化剂颗粒更加均匀地悬浮于反应釜 37 中; 当为气-液-液三相反应时, 则使整个反 应系统接触更加充分。 尤其是当多个液相互不相溶时, 可显著地提高反应转化率。 在反应釜 37中, 未反应完全的气体上升至反应釜 37的液面上方, 通过上射流器 35的自吸装置 52于喷嘴处的低压区通过管路 58被高速运动的流体卷吸到反应釜 37内 并送入反应器主体液相中继续反应。 如此循环不断, 可极有效地提高气体的利用率。 当反应进行到一定时间后, 开启阀门 54, 使得反应釜 37顶部尚未完全反应的气相 从塔式反应器底部进入塔式反应器 41 中, 同时开启阀门 50, 引一股液体物料从塔 41 顶部由管路 45进入塔 41, 与上行的气体再进一步反应, 以进一步提高气体的转化率。 当为气-液-固反应系统时, 这里的反应利用了磨损和破碎后出现的细小催化剂颗粒, 它 们可穿过过滤器 53 并具有较强的催化活性, 可有效地提高反应进程; 当为气-液 -液反 应系统时, 则液体物料中本身含有催化剂, 由于塔 41的反应作用, 增加了反应时间, 使反应物和气体的转化率更高。 最后极少量的未反应的气体经过换热器 29直接从塔顶 流出, 塔 41底部的液相物料则下降, 通过管道 33至反应釜 37内继续反应。 由于塔 41 的反应作用, 使从顶部管道 59排出的尾气中气体反应物的含量很低。此外, 该塔 41可 使混合气中的轻重组分得到一定程度的分离,因为里面设置的是塔板或填料或两者的组 合。 因此该塔 41不但有效提高了气体的利用率, 增加了整个系统的收率, 而且减轻了 后处理的难度, 简化了工艺, 降低了能耗, 也有助于环境保护。 当反应进行到一定时间后, 液相反应物料通过阀门 31开始出料, 进入到后续工段。 与此同步, 从管道 26开始补充新鲜物料, 从而保证整个系统物料守恒。
上述的多相催化塔式碰撞流反应器, 所述的下射流器 8或 39的外形为喇叭状, 其
剖面图如图 3所示, 液体通过其上的圆板分布器的中间垂直孔 60及其周围一圈辐射状 的斜度为 5— 20 ° 的斜孔 61 (俯视图如图 4所示)从多相催化碰撞流反应釜底部向上和 四周喷射, 这样可有效避免固体催化剂在反应器由于重力作用向反应器底部沉积, 使其 均匀悬浮而与液体进行充分接触与反应传质; 如果是液体催化剂, 则不会产生死角, 使 得整个反应系统中的流场分布更为理想。
上述的多相催化塔式碰撞流反应器,所述下射流器可以焊接在多相催化碰撞流反应 釜底部, 也可通过法兰与多相催化碰撞流反应釜底部相连。
本发明多相催化塔式碰撞流反应器,所述的集液盘 55是一块经由若干螺丝 64的固 定的盲板, 如图 6所示, 它的作用是将从塔式反应器中流下的液体收集, 当液层达到一 定厚度时, 打开阀门 56, 通过管路 33由自吸装置 52将集液盘 55上的液体和多相催化 碰撞流反应系统中的未反应气体一道通入反应器 37中。
上述的多相催化塔式碰撞流反应器,所述的静液区挡板与多相催化碰撞流反应釜底 部与顶部都有空隙,这样静液区与湍流区中的物料可以凭藉 "U"型管原理而相互流通。 其空隙长度为 5— 20mm。
上述的多相催化塔式碰撞流反应器, 所述静液区挡板可拆卸, 在多相催化碰撞流反 应釜中的固定方式可以为插槽式, 也可以通过螺丝固定。 本发明的优点:
( 1 ) 采用本发明的多相催化塔式碰撞流反应器, 向下高速喷射的液体与从多相催化碰 撞流反应釜底部向上喷射的液体相互碰撞形成高度湍流,使多相催化碰撞流反应釜内多 相物质得以充分接触, 强化了反应物分子之间以及反应物分子与催化剂之间的有效接 触, 使得催化剂在多相催化碰撞流反应釜内被搅拌得更加剧烈, 分布更加均匀, 这种高 度湍流的柔性搅拌既保护了固体催化剂免于大量破损, 又加速了反应的进行。
(2) 当多相催化塔式碰撞流反应器处理含气相反应的物料系统时, 设置了自吸装置, 利用高速喷射的流体产生的负压把多相催化碰撞流反应釜顶部尚未反应的气体卷吸到 多相催化碰撞流反应釜内, 让其反复进入液相反应主体, 最大限度地弥补气液反应器中 气相停留时间短促的不足; 其次, 自吸装置可以将板式或填料塔中流到集液盘上液体吸 进上射流器, 再将其射入多相催化碰撞流反应釜中。 有效地提高了原料的反应转化率、 产物的生成速度和反应选择性。
( 3 ) 多相催化塔式碰撞流反应器的多相催化碰撞流反应釜中, 在过滤器之前设置了一 块静液区挡板, 利用该挡板与过滤器之间一段距离而形成一段平稳的静液区, 这里没有 剧烈的湍动, 因此多相催化碰撞流反应釜中的固相催化剂就会沉降, 在静液区的底部进 入多相催化碰撞流反应釜中,不会被高速液流夹带而吸附到过滤器中的丝网上从而避免 了出料口的堵塞现象。 因为静液区挡板可拆卸, 所以当反应系统不含固相时, 可以将其 拆除。
(4) 多相催化塔式碰撞流反应器系统中, 在多相催化碰撞流反应器底部设置了一个喇 叭状下射流器, 在该射流器中, 液体通过其圆板分布器中间垂直孔及其周围一圈辐射状 斜孔从多相催化碰撞流反应器底部向上和四周喷射;这样如果是固体催化剂就不会在多 相催化碰撞流反应釜底部形成堆积, 使固体催化剂完全悬浮而与液体得到充分接触, 如 果是液体催化剂, 则不会产生死角, 使得整个反应系统中的湍动程度更加剧烈。
( 5 ) 板式或填料塔的设置, 可使新鲜反应物料先进行预反应, 还可使未反应的气体或 液体进一步转化为产品, 也可使混合气体中的轻重组分获得一定程度分离。该系统不但 提高了收率, 还能简化后处理工作, 降低能耗和成本, 减轻环境污染。
( 6) 当多相催化塔式碰撞流反应器处理无气相反应的物料系统时, 板式或填料塔与多 相催化碰撞流反应釜之间连接一个流体通道板,它将塔式反应系统与多相催化碰撞流反 应釜互通, 使得板式或填料塔中液体可以进行预反应, 然后直接进入到多相催化碰撞流 反应釜中进行反应。 当多相催化塔式碰撞流反应器处理含气相反应的物料系统时, 也可 以在板式或填料塔与多相催化碰撞流反应釜之间连接一个流体通道板,其处理方法与处 理无气相的反应物料体系时相类似,或者在板式或填料塔与多相催化碰撞流反应釜之间 连接一个集液盘, 其将从板式或填料塔中流下的液体收集, 当液层达到一定厚度时, 打 开通往自吸装置的阀门 56, 通过管路 33 由自吸装置 52可以将集液盘上的液体和多相 催化碰撞流反应釜中的未反应气体一道通入多相催化碰撞流反应釜 37中。 附图说明 图 1为反应体系中无气相反应物料的多相催化塔式碰撞流反应器, 其中: 1为液体 物料入口, 2为多相催化碰撞流反应釜, 3为上射流器, 4为板式或填料塔, 5为静液区 挡板, 6为过滤器, 8为下射流器, 9一 11为流量计, 14为流体通道板, 15为自吸装置, 18为离心泵, 19为换热器, 20为固体催化剂贮槽, 7、 12、 13、 16、 17、 21— 24为阀 门。
图 2为反应体系中有气相反应物料的多相催化塔式碰撞流反应器, 其中: 25为气 体入口, 26为液体物料入口, 27为液体循环物料出口, 28为产品物料出口, 33为集液 盘到自吸装置管路, 35为上射流器, 36为气体分布器, 37为多相催化碰撞流反应釜, 38为静液区挡板, 39为下射流器, 40为离心泵, 41为板式或填料塔, 42— 44为流量 计, 45为物料进入板式或填料塔顶部管路, 29、 51为换热器, 52为自吸装置, 53为过 滤器, 55为集液盘, 30— 32、 34、 46— 50、 54、 56为阀门, 57为固体催化剂贮槽, 58 为自吸装置与多相催化碰撞流反应釜之间连接管路, 59为尾气出口。
图 3为下射流器剖面图。
图 4为下射流器顶部的圆板分布器, 其中: 60为垂直孔道, 61为斜孔道。
图 5为流体通道板, 其中: 62为流体通道, 63为螺丝孔。
图 6为集液盘, 其中: 64为螺丝孔。
图 7为静液区挡板。 具体实施方式
实施例 1 (液一液一固三相反应体系) 二氢月桂烯、 水和丙酮溶剂按质量比为 1 : 1: 2, 混合后通过管道 1进入塔式反应 器 4中进行预反应, 然后进入到反应器 2中, 反应器 2体积为 6m3, 反应器 2的直径与 高度之比为 1 : 1.5, 塔式反应器 4的直径为反应器 2直径的一半, 高度与反应器 2的高 度相当, 填料型号为 Θ环 4 X 4, 材质为 316L。 打开阀门 21从管道 1中引一股液体物料 到催化剂加料装置 20中与固体催化剂 (催化剂量占液体物料质量的 10%) 混合后进入 反应器 2中。 固体催化剂为 Amberlyst 15 (美国罗门哈斯公司生产) , 反应温度 100°C, 压力 0.5MPa。 反应器 2 内的物料经静液区挡板 5 (此时静液区挡板为插槽式, 上下距 反应器 2底部与顶部的空隙距离为 10mm)和过滤器 6进入离心泵 18, 经液体流量计 9 和换热器 19, 由上射流器 3喷射入反应器 2内。 同时开启阀门 17, 引一股液流经下射 流器 8 (下射流器中圆板分布器上四周斜孔的倾斜角度为 5 ° ) 射入反应器 2内。 当反 应进行 1小时后, 打开阀门 12, 引一股物流进入塔式反应器 4中, 然后液体通过流体 通道板 14上的流体通道 64返回到反应器 2中, 当反应进行 3小时后, 打开阀门 24开 始出料, 物料进入到后续工段, 与此同步, 从管道 1开始补充新鲜物料, 从而保证整个 系统物料守恒。 本水合过程二氢月桂烯的转化率可达到 37%, 选择性可达到 70%以上,
二氢月桂烯醇的年产量可达到 7000吨。 实施例 2 (液一液一固三相反应体系) 与实施例 1操作方法类似, 二氢月桂烯、 水和乙醇溶剂按质量比为 1 : 1: 2, 反应 温度 105°C,反应压力为 0.6MPa,固体催化剂为 Amberlyst 35 (美国罗门哈斯公司生产), 催化剂占液体物料质量的 20%。 此时下射流器中圆板分布器上四周斜孔的倾斜角度为 10° , 静液区挡板用螺丝固定, 上下距反应器 2底部和顶部的空隙距离为 5mm。 该过 程二氢月桂烯的转化率可达到 33.5%, 选择性可达到 70%以上。 实施例 3 (液一液一固反应体系) 与实施例 1操作方式类似, 醋酸与正丁醇的摩尔比为 2: 1, 反应温度为 85°C, 反 应压力为 0.15MPa, 固体催化剂为 Amberlyst 15 (美国罗门哈斯公司生产)经改性而成, 催化剂占醋酸质量的 10%, 反应两小时。此时下射流器中圆板分布器上四周斜孔的倾斜 角度为 15 ° ,静液区挡板用螺丝固定,上下距反应器 2底部和顶部的空隙距离为 5mm。 该过程正丁醇的转化率可达到 85%左右, 选择性可达到 100%。
实施例 4 (液一液一液 反应体系) 与实施例 1操作方法类似, 二氢月桂烯、 水和异丙醇溶剂按质量比为 1 : 1: 1, 反 应温度 110°C, 反应压力为 0.8MPa, 催化剂为 10%硫酸溶液 (加入量为 100%H2SO4占 总物料的 1%) 混合后进入塔式反应器 4预反应, 然后进入反应器 2中进行反应。 此时 下射流器中圆板分布器上四周斜孔的倾斜角度为 20° 。 该过程的二氢月桂烯转化率可 达到 35%, 选择性可达到 50%以上。 实施例 5 (液一液一液 反应体系) 与实施例 1操作方式类似, 醋酸与正丁醇的摩尔比为 4: 1, 反应温度为 100°C, 催 化剂为 5%硫酸溶液(加入量为 100%H2SO4占总物料的 0.5%)混合后进入塔式反应器 4 预反应, 然后进入反应器 2中进行反应。此时下射流器中圆板分布器上四周斜孔的倾斜 角度为 15 ° , 该过程正丁醇的转化率可达到 90%, 选择性可达到 100%。
醋酸与丁烯按摩尔比为 1 : 1.1,醋酸通过管道 26进入塔式反应器 41中进行预反应, 然后进入到新型反应器 37中,丁烯由管道 25经气体分布器 35进入到新型反应器 37内, 反应温度 110°C, 压力为 0.8MPa (表压), 打开阀门 30从管道 26中引一股液体物料到 催化剂加料装置 57中与固体催化剂 (催化剂量占醋酸质量的 10%) 混合后进入新型反 应器 37中, 固体催化剂为 Amberlyst 15 (美国罗门哈斯公司生产) 经改性而成, 新型 反应器 37内的物料经静液区挡板 38 (此时静液区挡板为插槽式, 上下距新型反应器 37 底部与顶部的空隙距离为 20mm)和过滤器 53进入离心泵 40,经液体流量计 42和换热 器 51, 由上射流器 35喷射入新型反应器 37内, 同时开启阀门 24, 引一股液流经下射 流器 39(下射流器中圆板分布器上四周斜孔的倾斜角度为 10° )进入新型反应器 37内。 新型反应器 37上方的气体则通过自吸装置 52由管道 58被卷吸到反应液中, 当反应进 行 0.2 小时后, 打开阀门 54, 未反应完全的气体从塔反应系统底部进入到塔反应系统 41中, 同时开启阀门 50引一股液体进入塔式反应器 41中, 液体流到集液盘上, 当集 液盘上液层达到一定厚度时, 打开阀门 56通过管路 33由自吸装置 52而吸进反应器 37 中。 当反应进行 0.5小时后, 反应液开始通过阀门 31从管道 28进入到后续工段。 与此 同步, 从管道 26开始补充新鲜物料, 从而保证整个系统物料守恒。 该过程醋酸的转化 率可达到 77.4%反应后尾气中丁烯的含量可降到 0.11%。
实施例 7 (气一液一固三相反应系统) 与实施例 6操作方法类似, 醋酸与丁烯的摩尔比为 1 : 1.2, 反应温度 115 °C, 反应 器 37的压力为 l .OMPa (表压),所采用的催化剂为 D-72 (催化剂量占醋酸质量的 15%), 此时下射流器中圆板分布器上四周斜孔的倾斜角度为 20° , 静液区挡板用螺丝固定, 上下距新型反应器 37 底部与顶部的空隙距离为 15mm。 该过程醋酸的转化率可达到 76.7%,反应后尾气中丁烯的含量可降到 0.9%。
实施例 8 (气一液一液反应体系) 与实施例 6操作方法类似, 醋酸与丁烯的摩尔比为 1 : 1.2, 反应温度 120°C, 反应 器 37的压力为 1.2MPa (表压), 所采用的液体催化剂为对甲苯磺酸 (催化剂量占醋酸 质量的 7%), 此时下射流器中圆板分布器上四周斜孔的倾斜角度为 15 ° 。 该过程醋酸 的转化率可达到 72%, 反应后气体中丁烯的含量可降到 1.2%。
Claims
1. 一种多相催化塔式碰撞流反应器, 其特征是: 它是一个塔状的反应器, 它由两 部分组成, 上部分为板式或填料塔(4), 下部分为多相催化碰撞流反应釜(2), 上、 下 两部分以流体通道板(14)分隔,流体通道板(14)上开有多个圆孔,作为流体通道(62), 在多相催化碰撞流反应釜(2)顶部, 有上射流器(3 ), 它将泵入的反应物料向下喷射, 上射流器(3 )上有自吸装置(15 ), 在多相催化碰撞流反应釜 2底部与上射流器 3相对 有下射流器 (8), 它将泵入的反应物料向上喷射, 下射流器 (8 ) 顶部有圆板分布器, 圆板分布器中央有垂直孔道(60), 垂直孔道(60) 四周均匀排布有斜孔道(61 ), 使反 应物料向上、 向外喷射, 在多相催化碰撞流反应釜(2) 的侧壁附近有静液区挡板(5 ), 静液区挡板(5 ) 的两边与多相催化碰撞流反应釜(2) 的侧壁相连并固定, 静液区挡板
( 5 ) 将多相催化碰撞流反应釜 (2) 划出一小区域形成静液区, 静液区挡板 (5 ) 的上 端与多相催化碰撞流反应釜(2)顶部和静液区挡板(5 ) 的下端与多相催化碰撞流反应 釜(2)底部都留有空隙, 使多相催化碰撞流反应釜(2) 内的反应物料能自由地流入静 液区而又不引起湍流, 在静液区内的多相催化碰撞流反应釜 (2 ) 侧壁上有反应物料出 口, 在出口前有过滤器(6), 过滤器上有过滤网, 以阻止固相物料流出多相催化碰撞流 反应釜 (2)。
2. 根据权利要求 1 所述的反应器, 其特征是: 当处理有气相的反应物料时, 将流 体通道板 (14) 置换成集液盘 (55 ), 集液盘 55 为无孔的盲板, 同时, 以管道及阀门 54将板式或填料塔 41的下部、 集液盘 55下部与多相催化碰撞流反应釜 37连通, 使多 相催化碰撞流反应釜 37上方的气体可以进入到板式或填料塔 41中; 以管道 33和阀门 56将板式或填料塔 41的下部与多相催化碰撞流反应釜 37内上射流器 35上部的自吸装 置 52连通, 使板式或填料塔 41下部的反应液进入多相催化碰撞流反应釜 37内上射流 器的自吸装置 52内;以管道 58将多相催化碰撞流反应釜 37内上射流器 35上部的自吸 装置 52与多相催化碰撞反应釜 37连通, 使多相催化碰撞流反应釜 37内未反应完的气 体可以循环反应,并且在多相催化碰撞流反应釜 37底部增加气体入口管道 25和气体分 布器 36。
3. 根据权利要求 1或 2所述的反应器, 其特征是: 所述的下射流器 (8或 39) 的 外形为喇叭状, 其上的圆板分布器的中央有垂直孔 (60), 其周围一圈有辐射状的斜度 为 5—20 ° 的斜孔 (61 )。
4. 根据权利要求 1或 2所述的反应器, 其特征是: 所述的下射流器焊接在多相催 化碰撞流反应釜底部, 或通过法兰与多相催化碰撞流反应釜底部相连。
5. 根据权利要求 1或 2所述的反应器, 其特征是: 所述的静液区挡板与多相催化 碰撞流反应釜底部与顶部都有空隙, 其空隙长度为 5— 20mm。
6. 根据权利要求 1或 2所述的反应器, 其特征是: 所述的静液区挡板可拆卸, 在 多相催化碰撞流反应釜中的固定方式为插槽式或通过螺丝固定。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/699,140 US9095836B2 (en) | 2010-04-02 | 2011-03-11 | Multiphase catalytic tower-type impinging-stream reactor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010139533.X | 2010-04-02 | ||
CN201010139533.XA CN101804317B (zh) | 2010-04-02 | 2010-04-02 | 一种多相催化塔式碰撞流反应器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011120374A1 true WO2011120374A1 (zh) | 2011-10-06 |
Family
ID=42606371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/071708 WO2011120374A1 (zh) | 2010-04-02 | 2011-03-11 | 一种多相催化塔式碰撞流反应器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9095836B2 (zh) |
CN (1) | CN101804317B (zh) |
WO (1) | WO2011120374A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112427002A (zh) * | 2020-11-21 | 2021-03-02 | 贵州锦江生物能源科技有限公司 | 一种用于生物柴油塔式超细化接触反应装置 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101804317B (zh) | 2010-04-02 | 2012-10-17 | 南京大学 | 一种多相催化塔式碰撞流反应器 |
CN102092832A (zh) * | 2010-09-09 | 2011-06-15 | 浙江亿康环保工程有限公司 | 一种污水处理催化塔 |
CN104212494B (zh) * | 2014-02-23 | 2017-01-18 | 杨丕清 | 一种新型生物质制气炉 |
CN107519827B (zh) * | 2016-06-19 | 2020-07-03 | 中国石油化工股份有限公司 | 一种高效节能的二甲苯分离工艺 |
CN106395855B (zh) * | 2016-11-14 | 2018-06-26 | 中北大学 | 撞击流-微波加热耦合反应装置 |
CN108424435B (zh) * | 2018-03-20 | 2023-06-09 | 梁红光 | 角质蛋白营养液的生产方法及专用的反应釜 |
CN110270297B (zh) * | 2019-07-31 | 2024-02-06 | 新天地药业股份有限公司 | 一种合成乙醛酸的塔式反应器 |
CN112774615A (zh) * | 2019-11-09 | 2021-05-11 | 上海替末流体技术有限公司 | 一种连续可固载型多相反应器 |
CN114505094B (zh) * | 2020-11-17 | 2024-05-03 | 中国石油天然气集团有限公司 | Zsm-5分子筛的改性方法及zsm-5分子筛催化剂 |
CN112871093B (zh) * | 2021-01-14 | 2022-09-20 | 万华化学集团股份有限公司 | 一种连续脱除破损催化剂的反应系统 |
CN114735785B (zh) * | 2022-04-18 | 2023-07-18 | 沈阳工业大学 | 一种多层连续空化撞击流反应器 |
CN114832750B (zh) * | 2022-05-18 | 2023-07-21 | 沈阳工业大学 | 一种塔式空化撞击流反应器 |
CN116571080B (zh) * | 2023-07-12 | 2023-10-03 | 湖南九九智能环保股份有限公司 | 一种VOCs的多相集成处理系统及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4192856A (en) * | 1977-08-16 | 1980-03-11 | Basf Aktiengesellschaft | Manufacture of hydroxylammonium salts |
CN1037520A (zh) * | 1984-08-24 | 1989-11-29 | 联合碳化公司 | 流化床聚合反应器的改进 |
CN1220910A (zh) * | 1997-10-14 | 1999-06-30 | 阿吉佩罗里股份公司 | 三相化学反应器 |
CN101254444A (zh) * | 2007-12-05 | 2008-09-03 | 南京大学 | 一种催化反应、精馏集成工艺及其专用设备 |
US7531142B2 (en) * | 2001-04-10 | 2009-05-12 | Petroleo Brasileiro S.A. - Petrobras | Multifunctional entry device for a downward flow tube reactor |
CN101804317A (zh) * | 2010-04-02 | 2010-08-18 | 南京大学 | 一种多相催化塔式碰撞流反应器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2962362A (en) * | 1956-02-20 | 1960-11-29 | Lummus Co | Catalytic dehydrogenation apparatus |
US4933149A (en) | 1984-08-24 | 1990-06-12 | Union Carbide Chemicals And Plastics Company Inc. | Fluidized bed polymerization reactors |
-
2010
- 2010-04-02 CN CN201010139533.XA patent/CN101804317B/zh not_active Expired - Fee Related
-
2011
- 2011-03-11 US US13/699,140 patent/US9095836B2/en active Active
- 2011-03-11 WO PCT/CN2011/071708 patent/WO2011120374A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4192856A (en) * | 1977-08-16 | 1980-03-11 | Basf Aktiengesellschaft | Manufacture of hydroxylammonium salts |
CN1037520A (zh) * | 1984-08-24 | 1989-11-29 | 联合碳化公司 | 流化床聚合反应器的改进 |
CN1220910A (zh) * | 1997-10-14 | 1999-06-30 | 阿吉佩罗里股份公司 | 三相化学反应器 |
US7531142B2 (en) * | 2001-04-10 | 2009-05-12 | Petroleo Brasileiro S.A. - Petrobras | Multifunctional entry device for a downward flow tube reactor |
CN101254444A (zh) * | 2007-12-05 | 2008-09-03 | 南京大学 | 一种催化反应、精馏集成工艺及其专用设备 |
CN101804317A (zh) * | 2010-04-02 | 2010-08-18 | 南京大学 | 一种多相催化塔式碰撞流反应器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112427002A (zh) * | 2020-11-21 | 2021-03-02 | 贵州锦江生物能源科技有限公司 | 一种用于生物柴油塔式超细化接触反应装置 |
CN112427002B (zh) * | 2020-11-21 | 2024-06-07 | 贵州锦江生物能源科技有限公司 | 一种用于生物柴油塔式超细化接触反应装置 |
Also Published As
Publication number | Publication date |
---|---|
US20130129576A1 (en) | 2013-05-23 |
CN101804317B (zh) | 2012-10-17 |
US9095836B2 (en) | 2015-08-04 |
CN101804317A (zh) | 2010-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011120374A1 (zh) | 一种多相催化塔式碰撞流反应器 | |
CN101254444B (zh) | 一种催化反应、精馏集成工艺及其专用设备 | |
CN101735047B (zh) | 一种连续生产醋酸仲丁酯的工艺 | |
CN203648503U (zh) | 一种用于气-液-固三相催化反应的喷射回路反应装置 | |
CN102241558B (zh) | 一种苯选择性加氢制备环己烯反应装置及工艺 | |
CN103007862A (zh) | 一种乙炔羰基化法合成丙烯酸及酯的气液搅拌反应器 | |
CN101293195A (zh) | 搅拌/导流多相反应器 | |
CN100540133C (zh) | 一种气液喷射组合式浆态床的醋酸、醋酐羰基反应釜 | |
CN106278836A (zh) | 中等浓度甲醛与甲缩醛合成聚甲氧基二甲醚的装置和方法 | |
CN103962068A (zh) | 浆态床反应器 | |
CN110787762B (zh) | 制备特戊酸的方法及其装置 | |
CN202527171U (zh) | 一种用于气-液-液-固多相反应的反应装置 | |
WO2010081358A1 (zh) | 生产对苯二甲酸的px氧化反应器 | |
CN109865493A (zh) | 一种用于对二甲苯氧化的双鼓泡塔反应装置及反应工艺 | |
CN211487670U (zh) | 制备特戊酸的装置 | |
CN201969546U (zh) | 一种多相化学反应器 | |
CN202860529U (zh) | 一种用于苯部分加氢生产环己烯的反应装置 | |
WO2013004111A1 (zh) | 一种固定床和喷射浮动床与分离单元耦合的集成系统工艺 | |
CN202047018U (zh) | 一种苯选择性加氢制备环己烯反应装置 | |
CN108246222A (zh) | 新型长轴磁力泵式反应器 | |
CN108283820A (zh) | 带有爪式气体分布器的反应精馏塔板 | |
CN111151201A (zh) | 一种反应装置及甲醇羰基合成醋酸的系统和方法 | |
CN106146441A (zh) | 一种糠醛的制备工艺 | |
CN202912870U (zh) | 一种用于生产丁二酸二甲酯的装置 | |
CN205556513U (zh) | 有机中间体连续加氢反应器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11761948 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13699140 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11761948 Country of ref document: EP Kind code of ref document: A1 |