WO2011118035A1 - パティキュレートフィルタの故障検出装置及び故障検出方法 - Google Patents
パティキュレートフィルタの故障検出装置及び故障検出方法 Download PDFInfo
- Publication number
- WO2011118035A1 WO2011118035A1 PCT/JP2010/055436 JP2010055436W WO2011118035A1 WO 2011118035 A1 WO2011118035 A1 WO 2011118035A1 JP 2010055436 W JP2010055436 W JP 2010055436W WO 2011118035 A1 WO2011118035 A1 WO 2011118035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amount
- filter
- collection rate
- failure
- particulate filter
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1466—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/04—Filtering activity of particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/05—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0408—Methods of control or diagnosing using a feed-back loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0412—Methods of control or diagnosing using pre-calibrated maps, tables or charts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/0601—Parameters used for exhaust control or diagnosing being estimated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1606—Particle filter loading or soot amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0812—Particle filter loading
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1466—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
- F02D41/1467—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a failure detection device and failure detection of a particulate filter (hereinafter referred to as PM filter) that is provided in an exhaust passage of an internal combustion engine and collects particulate matter (hereinafter referred to as PM) in exhaust gas. Regarding the method.
- PM filter particulate filter
- PM filter particulate filter
- failure such as breakage or melting may occur due to thermal deterioration and deterioration over time.
- a technique for detecting such a failure of the PM filter a technique for detecting the failure based on a difference in exhaust pressure between the upstream side and the downstream side of the PM filter is known.
- the flow rate of the exhaust gas that passes through the PM filter increases, so that the difference in the exhaust pressure between the upstream side and the downstream side of the PM filter becomes smaller than in the normal state. Therefore, a PM filter failure can be detected based on the differential pressure.
- Patent Document 1 discloses a technique for determining a failure of a PM filter based on a PM amount detected by a PM sensor provided on the downstream side of the PM filter. Further, this Patent Document 1 describes that failure determination of the PM filter is prohibited when the PM accumulation amount in the PM filter is equal to or less than the reference accumulation amount.
- Patent Document 2 describes the PM trapper based on the ratio of the detected value of the incoming PM sensor provided upstream of the PM trapper and the detected value of the outgoing PM sensor provided downstream of the PM trapper. A technique for determining a failure is disclosed.
- the detection value of the PM sensor may vary from product to product. That is, even if the actual PM amount in the exhaust is the same, the detection value for each PM sensor may be slightly different. When such variation occurs, it becomes difficult to detect a failure of the PM filter with high accuracy based on the detection value of the PM sensor.
- This invention is made in view of the said problem, Comprising: It aims at providing the technique which can detect the failure of PM filter with higher precision.
- the PM collection rate which is the ratio of the amount of PM collected by the PM filter to the amount of PM flowing into the PM filter, is calculated, and the failure of the PM filter is determined based on the tendency of the change in the PM collection rate. It is to detect.
- the particulate filter failure detection apparatus is: A particulate filter failure detection device for detecting a failure of a particulate filter provided in an exhaust passage of an internal combustion engine, A filter regeneration process execution unit for performing a filter regeneration process for removing particulate matter deposited on the particulate filter; An inflow PM amount acquisition unit for acquiring an inflow PM amount that is an amount of particulate matter flowing into the particulate filter; A PM sensor for detecting an outflow PM amount which is an amount of particulate matter flowing out from the particulate filter; Based on the inflow PM amount acquired by the inflow PM acquisition unit and the outflow PM amount detected by the PM sensor, the PM collection that is a ratio of the PM amount collected by the particulate filter to the inflow PM amount A PM collection rate calculation unit for calculating the rate; The PM collection rate calculated by the PM collection rate calculation unit tends to decrease after the filter regeneration process is completed by the filter regeneration process execution unit and before the next filter regeneration process is started.
- a failure detection unit that determines that a failure of a failure of
- the PM collection rate tends to increase after the completion of the execution of the filter regeneration process until the next execution of the filter regeneration process is started.
- the PM filter has a failure
- the PM accumulation amount exceeds a certain amount after the completion of the filter regeneration process
- the outflow PM increases as the flow rate of the exhaust gas passing through the failure portion of the PM filter increases.
- the amount increases.
- the PM collection rate decreases. Therefore, when the tendency for the PM collection rate to decrease appears, it can be determined that a failure has occurred in the PM filter.
- the PM filter failure can be detected with higher accuracy by determining the PM filter failure based on the tendency of the change in the PM collection rate.
- the failure detection unit lowers the PM collection rate when the integrated value of the inflow PM amount after the completion of the filter regeneration process by the filter regeneration process execution unit is equal to or greater than the failure determination execution threshold. When it is in a tendency, it may be determined that a failure has occurred in the PM filter.
- the failure determination execution threshold is a value that can be determined that the amount of accumulated PM in the PM filter has increased to an amount that causes a decrease in the PM collection rate if a failure occurs in the PM filter. Such a threshold value can be obtained in advance based on experiments or the like.
- the failure detection unit determines that a failure has occurred in the PM filter when the amount of decrease in the PM collection rate calculated by the PM collection rate calculation unit during a certain period is equal to or greater than a predetermined reference amount. May be.
- the failure detection unit is a PM trapping value that is a value obtained by dividing the amount of decrease in the PM trapping rate calculated by the PM trapping rate calculation unit during a certain period by the integrated value of the inflow PM amount during the certain period. It may be determined that a failure has occurred in the PM filter when the reduction rate of the collection rate is equal to or greater than a predetermined reference value.
- the predetermined reference amount or the predetermined reference value is a threshold with which it can be determined that a failure has occurred in the PM filter. Such a threshold value can be obtained in advance based on experiments or the like.
- a particulate filter failure detection method includes: A particulate filter failure detection method for detecting a failure of a particulate filter provided in an exhaust passage of an internal combustion engine, A filter regeneration process execution step for executing a filter regeneration process for removing particulate matter deposited on the particulate filter; An inflow PM amount acquired by an inflow PM acquisition unit that acquires an inflow PM amount that is an amount of particulate matter flowing into the particulate filter, and an outflow PM amount that is an amount of particulate matter that flows out of the particulate filter A PM collection rate calculating step of calculating calculating a PM collection rate which is a ratio of the PM amount collected by the particulate filter to the inflow PM amount based on the outflow PM amount detected by the PM sensor for detecting , The PM collection rate calculated in the PM collection rate calculation step tends to decrease after the completion of the filter regeneration processing in the filter regeneration processing execution step and before the execution of
- failure of the PM filter can be detected with higher accuracy.
- Example> a case where the present invention is applied to detection of a failure of a PM filter provided in an exhaust passage of a diesel engine for driving a vehicle will be described as an example.
- the internal combustion engine which concerns on this invention is not restricted to a diesel engine, A gasoline engine may be sufficient.
- FIG. 1 is a diagram showing a schematic configuration of an intake / exhaust system of an internal combustion engine according to the present embodiment.
- the internal combustion engine 1 is a diesel engine for driving a vehicle.
- An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1.
- An air flow meter 4 and a throttle valve 5 are provided in the intake passage 2.
- the air flow meter 4 detects the intake air amount of the internal combustion engine 1.
- the throttle valve 5 adjusts the flow rate of the intake air flowing through the intake passage 2 by changing the cross-sectional area of the intake passage 2.
- the exhaust passage 3 is provided with a PM filter 6 for collecting PM in the exhaust.
- An oxidation catalyst 7 is supported on the PM filter 6.
- the catalyst supported on the PM filter 6 may be a catalyst having an oxidation function other than the oxidation catalyst (for example, an occlusion reduction type NOx catalyst).
- a catalyst having an oxidation function may be provided in the exhaust passage 3 upstream of the PM filter 6.
- a fuel addition valve 8 for adding fuel to the exhaust is provided in the exhaust passage 3 upstream of the PM filter 6.
- a temperature sensor 13 and an upstream PM sensor 14 are provided between the fuel addition valve 8 and the PM filter 6 in the exhaust passage 3.
- a downstream PM sensor 15 is provided downstream of the filter 6 in the exhaust passage 3.
- the temperature sensor 13 detects the temperature of the exhaust gas flowing into the PM filter 6.
- the upstream PM sensor 14 detects the amount of PM contained in the exhaust gas flowing into the PM filter 6 (that is, the inflow PM amount).
- the downstream PM sensor 15 detects the amount of PM contained in the exhaust gas flowing out from the PM filter 6 (that is, the outflow PM amount).
- any known PM sensor such as those disclosed in Japanese Patent Application Laid-Open Nos. 2008-190502, 2007-304068, and 2009-191694 can be applied. it can.
- the PM sensor (soot sensor) disclosed in Japanese Patent Application Laid-Open No. 2008-190502 has an insulating structure in which electrodes are alternately arranged. When PM adheres to and accumulates on the electrode, the PM sensor (soot sensor) conducts and has a characteristic that the resistance value is reduced. Use to detect PM amount.
- the PM sensor disclosed in Japanese Patent Laid-Open No. 2007-304068 has an oxidation catalyst, and detects the amount of PM based on the amount of temperature rise when PM deposited on the oxidation catalyst is burned.
- the PM sensor disclosed in Japanese Patent Laid-Open No. 2009-191694 detects the PM concentration of exhaust gas by an optical method.
- the internal combustion engine 1 is provided with an electronic control unit (ECU) 10 for controlling the internal combustion engine 1.
- ECU electronice control unit
- An air flow meter 4, a temperature sensor 13, an upstream PM sensor 14, and a downstream PM sensor 15 are electrically connected to the ECU 10.
- the ECU 10 is electrically connected to a crank position sensor 11 of the internal combustion engine 1 and an accelerator opening sensor 12 of a vehicle on which the internal combustion engine 1 is mounted. These output signals are input to the ECU 10.
- the ECU 10 can derive the engine speed of the internal combustion engine 1 based on the output signal of the crank position sensor 11. Further, the ECU 10 can derive the engine load of the internal combustion engine 1 based on the output signal of the accelerator opening sensor 12.
- the ECU 10 is electrically connected to the throttle valve 5 and the fuel addition valve 8. These operations are controlled by the ECU 10.
- the upstream PM sensor 14 corresponds to the inflow PM amount acquisition unit according to the present invention.
- the inflow PM amount may be estimated by the ECU 10 based on the engine load and the engine speed of the internal combustion engine 1 without using the PM sensor.
- the downstream PM sensor 15 corresponds to the PM sensor according to the present invention.
- the PM in the exhaust gas collected by the PM filter 6 gradually accumulates on the PM filter 6.
- a filter regeneration process is executed to remove PM accumulated on the PM filter 6.
- the filter regeneration process according to the present embodiment is realized by supplying the fuel to the oxidation catalyst 7 by adding the fuel into the exhaust gas from the fuel addition valve 8. Oxidation heat is generated when the fuel supplied to the oxidation catalyst 7 is oxidized. This oxidation heat raises the temperature of the oxidation catalyst 7 and the PM filter 6. As a result, the PM deposited on the PM filter 6 is oxidized and removed.
- the amount of fuel added from the fuel addition valve 8 is adjusted based on the temperature of the exhaust detected by the temperature sensor 13. By adjusting the fuel addition amount, the temperature of the oxidation catalyst 7 and the PM filter 6 is raised to a temperature at which PM can be oxidized.
- the ECU 10 that controls the fuel addition valve 8 and executes the filter regeneration process corresponds to the filter regeneration process execution unit according to the present invention.
- the filter regeneration process can be realized by other methods.
- fuel instead of fuel addition by the fuel addition valve 8, fuel may be supplied to the oxidation catalyst 7 by performing sub fuel injection at a timing after the main fuel injection in the internal combustion engine 1.
- PM may be oxidized by raising the temperature of the PM filter 6 with an electric heater.
- the filter regeneration process is started when the integrated value of the inflow PM amount after the previous execution of the filter regeneration process has reached a predetermined regeneration process start threshold.
- the execution is stopped when a predetermined time for the regeneration process execution threshold elapses. Note that the method for determining the timing for starting and stopping execution of the filter regeneration processing is not limited to these.
- FIG. 2 is a diagram illustrating a change in the PM collection rate with respect to the PM accumulation amount after the filter regeneration process is completed.
- the horizontal axis represents the amount of accumulated PM in the PM filter 6
- the vertical axis represents the PM collection rate in the PM filter 6.
- a solid line L1 indicates a change in the PM collection rate when the PM filter 6 is normal
- a broken line L2 indicates a change in the PM collection rate when a failure occurs in the PM filter 6. Yes.
- the amount of accumulated PM in the PM filter 6 gradually increases again.
- the PM trapping rate gradually increases as the PM deposition amount increases until the PM deposition amount increases to a certain amount. To increase. Then, when the PM accumulation amount becomes a certain amount or more, the PM collection rate becomes substantially constant.
- the PM collection rate increases to some extent as the PM accumulation amount increases after the filter regeneration process is completed. To do.
- the PM accumulation amount reaches a certain amount, the flow rate of the exhaust gas that passes through the failure portion of the PM filter 6 increases as the pressure in the PM filter 6 increases. Therefore, the amount of PM flowing out from the PM filter 6 through the faulty portion also increases. As a result, even if the PM deposition amount increases, the PM collection rate decreases.
- the PM collection rate is calculated, and a failure of the PM filter 6 is detected based on the change in the PM collection rate.
- the threshold for execution of failure determination is the amount by which the PM accumulation amount in the PM filter 6 tends to decrease in the PM collection rate if the PM filter 6 has a failure (for example, the amount indicated by Qf0 in FIG. 2). It is a value that can be determined to have increased to.
- the threshold value is determined in advance based on experiments and the like, and is stored in the ECU 10.
- step S101 it is determined whether or not the execution of the filter regeneration process is completed.
- step S102 an integrated value ⁇ PMfr1 of the inflow PM amount from the completion of the execution of the process is calculated.
- step S103 it is determined whether or not the integrated value ⁇ PMfr1 of the inflow PM amount calculated in step S102 is equal to or greater than the threshold value ⁇ PM0 for failure determination execution.
- the calculation of the integrated value ⁇ PMfr1 of the inflow PM amount in step S102 is repeated.
- the process of step S104 is performed next.
- step S104 the PM collection rate Rpm1 in the current PM filter 6 is calculated.
- the PM collection rate Rpm is calculated based on the following formula (1).
- Rpm 1 ⁇ (PMrr / PMfr) (1)
- PMfr is an inflow PM amount
- PMrr is an outflow PM amount.
- step S105 it is determined whether or not a predetermined period t0 has elapsed since the PM collection rate Rpm1 was calculated.
- the predetermined period t0 is a predetermined period set in advance as a period during which the tendency of the change in the PM collection rate in the PM filter 6 can be determined. If it is determined that the predetermined period t0 has elapsed, then in step S106, the PM collection rate Rpm2 in the current PM filter 6 is calculated based on the above formula (1) in the same manner as the PM collection rate Rpm1. Is done.
- step S107 the PM collection rate Rpm1 calculated in step 104 is subtracted from the PM collection rate Rpm2 calculated in step 106, thereby calculating the PM collection rate change amount ⁇ Rpm. If the PM collection rate Rpm is reduced, the change amount ⁇ Rpm of the PM collection rate becomes a negative value.
- step S108 it is determined whether or not the change amount ⁇ Rpm of the PM collection rate calculated in step S107 is equal to or smaller than a predetermined reference value ⁇ R0.
- the reference value ⁇ R0 is a negative value, and is a threshold value with which it can be determined that a failure has occurred in the PM filter 6.
- step S108 when it is determined that the change amount ⁇ Rpm of the PM collection rate is equal to or less than the predetermined reference value ⁇ R0, it is determined that a failure has occurred in the PM filter 6. In this case, next, in step S109, the failure flag of the PM filter 6 is turned ON. On the other hand, if it is determined in step S108 that the change amount ⁇ Rpm of the PM collection rate is not less than or equal to the predetermined reference value ⁇ R0, it is determined that the PM filter 6 is normal. In this case, next, in step S110, the failure flag of the PM filter 6 is turned OFF.
- the ECU 10 that executes steps S104 and S106 in the above flow corresponds to the PM collection rate calculation unit according to the present invention.
- step S104 and S106 in the said flow correspond to the PM collection rate calculation process which concerns on this invention.
- ECU10 which performs step S108 and S109 in the said flow is equivalent to the failure detection part which concerns on this invention. Steps S108 and S109 in the above flow correspond to the failure detection step according to the present invention.
- the value of the PM collection rate itself may be smaller than that in a normal state.
- the PM collection rate values calculated based on the output values of the PM sensors 14 and 15 also vary. In this case, it is difficult to detect a failure of the PM filter 6 with high accuracy based on the value of the PM collection rate itself.
- the parameter for determining the failure of the PM filter 6 is the amount of change (amount of decrease) in the PM collection rate.
- the amount of change (decrease amount) in the PM collection rate is not a value that changes due to variations in the output values of the PM sensors 14 and 15 for each product. Therefore, according to the PM filter failure detection method according to the present embodiment, the failure of the PM filter 6 can be detected with higher accuracy.
- the change rate of the PM collection rate is calculated by dividing the change amount of the PM collection rate by the integrated value of the inflow PM amount during the period in which the change amount occurs.
- the failure determination of the PM filter 6 may be performed using the rate of change of the rate as a parameter.
- step S206 the integrated value ⁇ PMfr2 of the inflow PM amount is calculated during a predetermined period t0 from when the PM collection rate Rpm1 is calculated in step S104 until the PM collection rate Rpm2 is calculated in step S106. Is done.
- step S207 the change rate RRpm of the PM collection rate is obtained by dividing the change amount ⁇ Rpm of the PM collection rate calculated in step S107 by the integrated value ⁇ PMfr2 of the inflow PM amount calculated in step S206. Calculated.
- step S208 it is determined whether or not the change rate RRpm of the PM collection rate calculated in step 207 is equal to or less than a predetermined reference value RR0.
- the reference value RR0 is a negative value, and is a threshold value with which it can be determined that a failure has occurred in the PM filter 6.
- Step S208 when it is determined that the PM collection rate change rate RRpm is equal to or less than the predetermined reference value RR0, it is determined that the PM filter 6 has failed. On the other hand, if it is determined in step S208 that the PM collection rate change rate RRpm is not less than or equal to the predetermined reference value RR0, it is determined that the PM filter 6 is normal.
- the ECU 10 that executes steps S208 and S109 in the above flow corresponds to the failure detection unit according to the present invention.
- Steps S208 and S109 in the above flow correspond to a failure detection step according to the present invention.
- the change rate (decrease rate) of the PM collection rate which is a parameter for determining the failure of the PM filter 6, is not a value that changes due to variations in the output values of the PM sensors 14 and 15 for each product. Therefore, the failure of the PM filter 6 can be detected with higher accuracy also by the PM filter failure detection method according to this modification.
- the inflow PM amount integrated value ⁇ PMfr1 is equal to or greater than the failure determination execution threshold value ⁇ PM0 until the next filter regeneration process is started.
- the change amount ⁇ Rpm or the change rate RRpm of the PM collection rate may be calculated a plurality of times. Then, it may be determined whether or not the PM collection rate tends to decrease based on the value of the change amount ⁇ Rpm or the change rate RRpm of the PM collection rate for a plurality of times. According to this, the failure detection system of the PM filter 6 can be further improved.
- the change amount or change rate of the PM collection rate may be continuously calculated after the completion of the filter regeneration process. Then, it may be determined that a failure has occurred in the PM filter 6 when these values become negative before the next execution of the filter regeneration process is started.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
本発明は、PMフィルタの故障をより高精度で検出することを目的とする。本発明は、流入PM取得部によって取得される流入PM量とPMセンサによって検出される流出PM量とに基づいて、PM捕集率(流入PM量に対するPM捕集量の割合)を算出するPM捕集率算出部と、フィルタ再生処理の実行完了後、次回のフィルタ再生処理の実行が開始されるまでの間に、PM捕集率が低下する傾向が現れた場合に、PMフィルタに故障が生じたと判定する故障検出部と、を備えている。
Description
本発明は、内燃機関の排気通路に設けられ排気中の粒子状物質(Particulate Matter:以下、PMと称する)を捕集するパティキュレートフィルタ(以下、PMフィルタと称する)の故障検出装置及び故障検出方法に関する。
内燃機関の排気通路に設けられたPMフィルタにおいては、熱劣化及び経時劣化により破損又は溶損等の故障が発生する場合がある。このようなPMフィルタの故障を検出する技術として、PMフィルタの上流側と下流側との排気圧力の差に基づいて該故障を検出する技術が知られている。PMフィルタが故障していると、PMフィルタを通過する排気の流量が増加するため、PMフィルタの上流側と下流側との排気圧力の差が正常時に比べて小さくなる。そのため、該差圧に基づいてPMフィルタの故障を検出することができる。
しかしながら、PMフィルタの故障の程度が比較的大きくなければ、このような差圧の値に正常時と比べて明確な差は生じない。そこで、近年では、PMフィルタの故障をより高精度で検出するために、該故障検出に排気中のPM量を検出するPMセンサを用いることが提案されている。
例えば、特許文献1には、PMフィルタの下流側に設けられたPMセンサによって検出されるPM量に基づいてPMフィルタの故障を判定する技術が開示されている。また、この特許文献1には、PMフィルタでのPM堆積量が基準堆積量以下の時はPMフィルタの故障判定を禁止することが記載されている。
また、特許文献2には、PMトラッパの上流側に設けられた入PMセンサの検出値と、PMトラッパの下流側に設けられた出PMセンサの検出値との比に基づいて、PMトラッパの故障を判定する技術が開示されている。
PMフィルタに故障が生じると、PMフィルタから流出するPM量が増加する。そのため、内燃機関の排気通路におけるPMフィルタより下流側にPMセンサを設けた場合、該PMセンサの検出値に基づいてPMフィルタの故障を検出することができる。
しかしながら、PMセンサの検出値には製品毎にばらつきが生じる場合がある。つまり、排気中における実際のPM量が同一であっても、PMセンサ毎の検出値が多少異なる場合がある。このようなばらつきが生じると、PMセンサの検出値に基づいてPMフィルタの故障を高精度で検出することが困難となる。
本発明は、上記問題に鑑みてなされたものであって、PMフィルタの故障をより高精度で検出することが可能な技術を提供することを目的とする。
本発明では、PMフィルタに流入するPM量に対するPMフィルタに捕集されるPM量の割合であるPM捕集率を算出し、このPM捕集率の変化の傾向に基づいてPMフィルタの故障を検出するものである。
より詳しくは、本発明に係るパティキュレートフィルタの故障検出装置は、
内燃機関の排気通路に設けられたパティキュレートフィルタの故障を検出するパティキュレートフィルタの故障検出装置であって、
前記パティキュレートフィルタに堆積した粒子状物質を除去するフィルタ再生処理を実行するフィルタ再生処理実行部と、
前記パティキュレートフィルタに流入する粒子状物質の量である流入PM量を取得する流入PM量取得部と、
前記パティキュレートフィルタから流出する粒子状物質の量である流出PM量を検出するPMセンサと、
前記流入PM取得部によって取得される流入PM量と前記PMセンサによって検出される流出PM量とに基づいて、流入PM量に対する前記パティキュレートフィルタに捕集されたPM量の割合であるPM捕集率を算出するPM捕集率算出部と、
前記フィルタ再生処理実行部によるフィルタ再生処理の実行完了後、次回のフィルタ再生処理の実行が開始されるまでの間に、前記PM捕集率算出部によって算出されるPM捕集率が低下する傾向が現れた場合に、前記パティキュレートフィルタに故障が生じたと判定する故障検出部と、
を備えている。
内燃機関の排気通路に設けられたパティキュレートフィルタの故障を検出するパティキュレートフィルタの故障検出装置であって、
前記パティキュレートフィルタに堆積した粒子状物質を除去するフィルタ再生処理を実行するフィルタ再生処理実行部と、
前記パティキュレートフィルタに流入する粒子状物質の量である流入PM量を取得する流入PM量取得部と、
前記パティキュレートフィルタから流出する粒子状物質の量である流出PM量を検出するPMセンサと、
前記流入PM取得部によって取得される流入PM量と前記PMセンサによって検出される流出PM量とに基づいて、流入PM量に対する前記パティキュレートフィルタに捕集されたPM量の割合であるPM捕集率を算出するPM捕集率算出部と、
前記フィルタ再生処理実行部によるフィルタ再生処理の実行完了後、次回のフィルタ再生処理の実行が開始されるまでの間に、前記PM捕集率算出部によって算出されるPM捕集率が低下する傾向が現れた場合に、前記パティキュレートフィルタに故障が生じたと判定する故障検出部と、
を備えている。
PMフィルタが正常の場合、フィルタ再生処理の実行完了後から次回のフィルタ再生処理の実行が開始されるまでの間は、PM捕集率は増加する傾向にある。一方、PMフィルタに故障が生じている場合は、フィルタ再生処理の実行完了後、PM堆積量がある程度の量以上となると、PMフィルタの故障部分を通過する排気の流量の増加に伴い、流出PM量が増加する。その結果、PM捕集率が低下する。従って、PM捕集率が低下する傾向が現れた場合、PMフィルタに故障が生じたと判定できる。
また、実際の流出PM量に対するPMセンサの出力値に製品毎のばらつきがあったとしても、実際の流出PM量の変化量に対するPMセンサの出力値の変化量は一定となる。そのため、流出PM量が増加したときの増加量に対するPM捕集率の低下量も一定となる。従って、PM捕集率の変化の傾向に基づいてPMフィルタの故障を判定することで、PMフィルタの故障をより高精度で検出することができる。
ここで、PMフィルタに故障が生じていても、フィルタ再生処理の実行完了後、PMフィルタにおけるPM堆積量がある程度の量に達するまでは、正常時と同様、PM捕集率は上昇する傾向にある。そこで、本発明において、故障検出部は、フィルタ再生処理実行部によるフィルタ再生処理の実行完了後における流入PM量の積算値が故障判定実行の閾値以上となった時に、PM捕集率が低下する傾向にある場合に、PMフィルタに故障が生じたと判定してもよい。
ここで、故障判定実行の閾値は、PMフィルタにおけるPM堆積量が、PMフィルタに故障が生じていればPM捕集率に低下傾向が現れる量まで増加していると判断できる値である。このような閾値は実験等に基づいて予め求めることができる。
本発明において、故障検出部は、PM捕集率算出部によって算出されるPM捕集率の一定期間の間の低下量が所定の基準量以上のときに、PMフィルタに故障が生じたと判定してもよい。また、故障検出部は、PM捕集率算出部によって算出されるPM捕集率の一定期間の間の低下量を該一定期間の間の流入PM量の積算値で除算した値であるPM捕集率の低下率が所定の基準値以上のときに、PMフィルタに故障が生じたと判定してもよい。これらの場合、所定の基準量又は所定の基準値は、PMフィルタに故障が生じていると判断できる閾値である。このような閾値は実験等に基づいて予め求めることができる。
本発明は、パティキュレートフィルタの故障検出方法として捕らえることもできる。例えば、本発明の一態様としてのパティキュレートフィルタの故障検出方法は、
内燃機関の排気通路に設けられたパティキュレートフィルタの故障を検出するパティキュレートフィルタの故障検出方法であって、
前記パティキュレートフィルタに堆積した粒子状物質を除去するフィルタ再生処理を実行するフィルタ再生処理実行工程と、
前記パティキュレートフィルタに流入する粒子状物質の量である流入PM量を取得する流入PM取得部によって取得される流入PM量と、前記パティキュレートフィルタから流出する粒子状物質の量である流出PM量を検出するPMセンサによって検出される流出PM量とに基づいて、流入PM量に対する前記パティキュレートフィルタに捕集されたPM量の割合であるPM捕集率を算出するPM捕集率算出工程と、
前記フィルタ再生処理実行工程におけるフィルタ再生処理の実行完了後、次回のフィルタ再生処理の実行が開始されるまでの間に、前記PM捕集率算出工程において算出されるPM捕集率が低下する傾向が現れた場合に、前記パティキュレートフィルタに故障が生じたと判定する故障検出工程と、
を有する。
内燃機関の排気通路に設けられたパティキュレートフィルタの故障を検出するパティキュレートフィルタの故障検出方法であって、
前記パティキュレートフィルタに堆積した粒子状物質を除去するフィルタ再生処理を実行するフィルタ再生処理実行工程と、
前記パティキュレートフィルタに流入する粒子状物質の量である流入PM量を取得する流入PM取得部によって取得される流入PM量と、前記パティキュレートフィルタから流出する粒子状物質の量である流出PM量を検出するPMセンサによって検出される流出PM量とに基づいて、流入PM量に対する前記パティキュレートフィルタに捕集されたPM量の割合であるPM捕集率を算出するPM捕集率算出工程と、
前記フィルタ再生処理実行工程におけるフィルタ再生処理の実行完了後、次回のフィルタ再生処理の実行が開始されるまでの間に、前記PM捕集率算出工程において算出されるPM捕集率が低下する傾向が現れた場合に、前記パティキュレートフィルタに故障が生じたと判定する故障検出工程と、
を有する。
本発明によれば、PMフィルタの故障をより高精度で検出することができる。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
<実施例>
ここでは、本発明を車両駆動用のディーゼルエンジンの排気通路に設けられたPMフィルタの故障検出に適用した場合を例に挙げて説明する。尚、本発明に係る内燃機関はディーゼルエンジンに限られるものではなく、ガソリンエンジンであってもよい。
ここでは、本発明を車両駆動用のディーゼルエンジンの排気通路に設けられたPMフィルタの故障検出に適用した場合を例に挙げて説明する。尚、本発明に係る内燃機関はディーゼルエンジンに限られるものではなく、ガソリンエンジンであってもよい。
(内燃機関の吸排気系の概略構成)
図1は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。内燃機関1は車両駆動用のディーゼルエンジンである。この内燃機関1には、吸気通路2および排気通路3が接続されている。
図1は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。内燃機関1は車両駆動用のディーゼルエンジンである。この内燃機関1には、吸気通路2および排気通路3が接続されている。
吸気通路2にはエアフローメータ4及びスロットル弁5が設けられている。エアフローメータ4は内燃機関1の吸入空気量を検出する。スロットル弁5は、吸気通路2の流路断面積を変更することで、該吸気通路2を流通する吸気の流量を調節する。
排気通路3には、排気中のPMを捕集するPMフィルタ6が設けられている。PMフィルタ6には酸化触媒7が担持されている。尚、PMフィルタ6に担持される触媒は、酸化触媒以外の酸化機能を有する触媒(例えば、吸蔵還元型NOx触媒)であってもよい。また、酸化機能を有する触媒がPMフィルタ6より上流側の排気通路3に設けられていてもよい。
PMフィルタ6より上流側の排気通路3には、排気中に燃料を添加する燃料添加弁8が設けられている。排気通路3における燃料添加弁8とPMフィルタ6との間には温度センサ13及び上流側PMセンサ14が設けられている。また、排気通路3におけるフィルタ6より下流側には下流側PMセンサ15が設けられている。
温度センサ13は、PMフィルタ6に流入する排気の温度を検出する。上流側PMセンサ14は、PMフィルタ6に流入する排気に含まれるPM量(即ち、流入PM量)を検出する。下流側PMセンサ15は、PMフィルタ6から流出する排気に含まれるPM量(即ち、流出PM量)を検出する。
PMセンサ14,15としては、特開2008-190502号公報や特開2007-304068号公報、特開2009-191694号公報に開示されたもの等、公知のどのようなPMセンサでも適用することができる。特開2008-190502号公報に開示されたPMセンサ(スートセンサ)は、電極が交互に配置された絶縁構造となっており、PMが電極に付着・堆積すると導通し、抵抗値が小さくなる特性を利用してPM量を検出する。特開2007-304068号公報に開示されたPMセンサは、酸化触媒を有し、該酸化触媒に堆積したPMを燃焼させた時の温度上昇量に基づいてPM量を検出する。特開2009-191694号公報に開示されたPMセンサは、光学的手法により排気のPM濃度を検出する。
また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(ECU)10が併設されている。ECU10には、エアフローメータ4、温度センサ13、上流側PMセンサ14、下流側PMセンサ15が電気的に接続されている。さらに、ECU10には、内燃機関1のクランクポジションセンサ11、及び内燃機関1が搭載された車両のアクセル開度センサ12が電気的に接続されている。そして、これらの出力信号がECU10に入力される。ECU10は、クランクポジションセンサ11の出力信号に基づいて内燃機関1の機関回転速度を導出することができる。また、ECU10は、アクセル開度センサ12の出力信号に基づいて内燃機関1の機関負荷を導出することができる。
ECU10には、スロットル弁5及び燃料添加弁8が電気的に接続されている。ECU10によってこれらの動作が制御される。
尚、本実施例においては、上流側PMセンサ14が本発明に係る流入PM量取得部に相当する。流入PM量は、PMセンサを用いずに、内燃機関1の機関負荷及び機関回転速度等に基づいてECU10によって推定してもよい。また、本実施例においては、下流側PMセンサ15が本発明に係るPMセンサに相当する。
(フィルタ再生処理)
PMフィルタ6には、該PMフィルタ6に捕集された排気中のPMが徐々に堆積する。本実施例においては、PMフィルタ6に堆積したPMを除去するためにフィルタ再生処理が実行される。本実施例に係るフィルタ再生処理は、燃料添加弁8から排気中に燃料を添加することによって該燃料を酸化触媒7に供給することで実現される。酸化触媒7に供給された燃料が酸化することによって酸化熱が生じる。この酸化熱によって酸化触媒7及びPMフィルタ6の温度が上昇する。その結果、PMフィルタ6に堆積したPMが酸化され除去される。
PMフィルタ6には、該PMフィルタ6に捕集された排気中のPMが徐々に堆積する。本実施例においては、PMフィルタ6に堆積したPMを除去するためにフィルタ再生処理が実行される。本実施例に係るフィルタ再生処理は、燃料添加弁8から排気中に燃料を添加することによって該燃料を酸化触媒7に供給することで実現される。酸化触媒7に供給された燃料が酸化することによって酸化熱が生じる。この酸化熱によって酸化触媒7及びPMフィルタ6の温度が上昇する。その結果、PMフィルタ6に堆積したPMが酸化され除去される。
本実施例に係るフィルタ再生処理では、温度センサ13によって検出される排気の温度に基づいて、燃料添加弁8から添加される燃料の量を調整する。該燃料添加量を調整することで、酸化触媒7及びPMフィルタ6の温度をPMの酸化が可能な温度まで上昇させる。尚、本実施例においては、燃料添加弁8を制御してフィルタ再生処理を実行するECU10が、本発明に係るフィルタ再生処理実行部に相当する。
フィルタ再生処理は、他の手法によっても実現することができる。例えば、燃料添加弁8による燃料添加に代えて、内燃機関1において主燃料噴射より後のタイミングで副燃料噴射を行うことで酸化触媒7に燃料を供給してもよい。また、PMフィルタ6を電気ヒータによって昇温させることでPMを酸化させてもよい。
本実施例において、上記フィルタ再生処理は、前回のフィルタ再生処理の実行が完了してからの流入PM量の積算値が、所定の再生処理実行開始の閾値に達した時に、その実行が開始される。また、フィルタ再生処理の実行開始後、所定の再生処理実行停止の閾値となる時間が経過した時に、その実行が停止される。尚、フィルタ再生処理の実行開始及び実行停止のタイミングの決定方法はこれらに限られるものではない。
(PM捕集率)
ここで、PMフィルタ6におけるPM堆積量とPMフィルタ6のPM捕集率(流入PM量に対するPMフィルタ6に捕集されるPM量の割合)との関係について図2に基づいて説明する。図2は、フィルタ再生処理完了後における、PM堆積量に対するPM捕集率の変化を示す図である。図2において、横軸はPMフィルタ6におけるPM堆積量を表しており、縦軸はPMフィルタ6におけるPM捕集率を表している。また、図2において、実線L1はPMフィルタ6が正常の場合のPM捕集率の変化を示しており、破線L2はPMフィルタ6に故障が生じた場合のPM捕集率の変化を示している。
ここで、PMフィルタ6におけるPM堆積量とPMフィルタ6のPM捕集率(流入PM量に対するPMフィルタ6に捕集されるPM量の割合)との関係について図2に基づいて説明する。図2は、フィルタ再生処理完了後における、PM堆積量に対するPM捕集率の変化を示す図である。図2において、横軸はPMフィルタ6におけるPM堆積量を表しており、縦軸はPMフィルタ6におけるPM捕集率を表している。また、図2において、実線L1はPMフィルタ6が正常の場合のPM捕集率の変化を示しており、破線L2はPMフィルタ6に故障が生じた場合のPM捕集率の変化を示している。
フィルタ再生処理の実行完了後は、再度、PMフィルタ6におけるPM堆積量が徐々に増加する。このとき、PMフィルタ6が正常の場合は、図2の実線L1に示すように、PM堆積量がある程度の量に増加するまでは、該PM堆積量の増加に伴ってPM捕集率は徐々に増加する。そして、PM堆積量がある程度の量以上となると、PM捕集率は略一定となる。
一方、図2の破線L2に示すように、PMフィルタ6に故障が生じている場合においても、フィルタ再生処理の実行完了後、PM堆積量の増加に伴ってPM捕集率はある程度までは増加する。しかしながら、PM堆積量がある程度の量に達すると、PMフィルタ6内の圧力の増加に伴い、PMフィルタ6の故障部分を通過する排気の流量が増加する。そのため、該故障部分を通ってPMフィルタ6から流出するPM量も増加する。その結果、PM堆積量が増加しても、PM捕集率が低下することになる。
(PMフィルタの故障検出)
そこで、本実施例においては、PM捕集率を算出し、このPM捕集率の変化に基づいてPMフィルタ6の故障を検出する。つまり、フィルタ再生処理の実行完了後における流入PM量の積算値が故障判定実行の閾値以上となった時に、PM捕集率が低下する傾向にあれば、PMフィルタ6に故障が生じたと判定する。ここで、故障判定実行の閾値は、PMフィルタ6におけるPM堆積量が、PMフィルタ6に故障が生じていればPM捕集率に低下傾向が現れる量(例えば、図2におけるQf0で示す量)まで増加していると判断できる値である。該閾値は実験等に基づいて予め定められており、ECU10に記憶されている。
そこで、本実施例においては、PM捕集率を算出し、このPM捕集率の変化に基づいてPMフィルタ6の故障を検出する。つまり、フィルタ再生処理の実行完了後における流入PM量の積算値が故障判定実行の閾値以上となった時に、PM捕集率が低下する傾向にあれば、PMフィルタ6に故障が生じたと判定する。ここで、故障判定実行の閾値は、PMフィルタ6におけるPM堆積量が、PMフィルタ6に故障が生じていればPM捕集率に低下傾向が現れる量(例えば、図2におけるQf0で示す量)まで増加していると判断できる値である。該閾値は実験等に基づいて予め定められており、ECU10に記憶されている。
以下、本実施例に係るPMフィルタの故障検出のフローについて図3に示すフローチャートに基づいて説明する。本フローは、ECU10に予め記憶されており、ECU10によって所定の間隔で繰り返し実行される。
本フローでは、先ずステップS101において、フィルタ再生処理の実行が完了したか否かが判別される。フィルタ再生処理の実行が完了したと判定された場合、ステップS102において、該処理の実行完了時点からの流入PM量の積算値ΣPMfr1が算出される。
次に、ステップS103において、ステップS102で算出された流入PM量の積算値ΣPMfr1が故障判定実行の閾値ΣPM0以上となったか否かが判別される。該積算値ΣPMfr1が閾値ΣPM0に達していないと判定された場合は、ステップS102における流入PM量の積算値ΣPMfr1の算出が繰り返される。一方、該積算値ΣPMfr1が閾値ΣPM0以上となったと判定された場合は、次にステップS104の処理が実行される。
ステップS104においては、現時点のPMフィルタ6におけるPM捕集率Rpm1が算出される。尚、本実施例において、PM捕集率Rpmは下記の式(1)に基づいて算出される。
Rpm=1-(PMrr/PMfr)・・・式(1)
式(1)において、PMfrは流入PM量であり、PMrrは流出PM量である。
Rpm=1-(PMrr/PMfr)・・・式(1)
式(1)において、PMfrは流入PM量であり、PMrrは流出PM量である。
次に、ステップS105において、PM捕集率Rpm1が算出されてから所定期間t0が経過したか否かが判別される。該所定期間t0は、PMフィルタ6におけるPM捕集率の変化の傾向を判断することが可能な期間として予め設定された一定の期間である。該所定期間t0が経過したと判定された場合、次に、ステップS106において、現時点のPMフィルタ6におけるPM捕集率Rpm2が、PM捕集率Rpm1と同様、上記式(1)に基づいて算出される。
次に、ステップS107において、ステップ106で算出されたPM捕集率Rpm2からステップ104で算出されたPM捕集率Rpm1を減算することで、PM捕集率の変化量ΔRpmが算出される。PM捕集率Rpmが低下していれば、該PM捕集率の変化量ΔRpmは負の値となる。
次に、ステップS108において、ステップS107で算出されたPM捕集率の変化量ΔRpmが所定の基準値ΔR0以下であるか否かが判別される。ここで、基準値ΔR0は、負の値であって、PMフィルタ6に故障が生じていると判断できる閾値である。
ステップS108において、PM捕集率の変化量ΔRpmが所定の基準値ΔR0以下であると判定された場合、PMフィルタ6に故障が生じていると判定される。この場合、次に、ステップS109において、PMフィルタ6の故障フラグがONにされる。一方、ステップS108において、PM捕集率の変化量ΔRpmが所定の基準値ΔR0以下ではないと判定された場合、PMフィルタ6は正常であると判定される。この場合、次に、ステップS110において、PMフィルタ6の故障フラグがOFFにされる。
尚、本実施例においては、上記フローにおけるステップS104及びS106を実行するECU10が、本発明に係るPM捕集率算出部に相当する。また、上記フローにおけるステップS104及びS106が、本発明に係るPM捕集率算出工程に相当する。また、上記フローにおけるステップS108及びS109を実行するECU10が、本発明に係る故障検出部に相当する。上記フローにおけるステップS108及びS109が、本発明に係る故障検出工程に相当する。
ここで、図2に示すように、PMフィルタ6に故障が生じると、PM捕集率の値自体が正常時に比べて小さくなる場合がある。しかしながら、PMセンサ14,15の出力値に製品毎のばらつきが存在すると、該PMセンサ14,15の出力値に基づいて算出されるPM捕集率の値にもばらつきが生じることになる。この場合、PM捕集率の値自体に基づいてPMフィルタ6の故障を高精度で検出することは困難である。
一方、上記のように、本実施例において、PMフィルタ6の故障判定のパラメータとなるのは、PM捕集率の変化量(低下量)である。該PM捕集率の変化量(低下量)は、PMセンサ14,15の出力値の製品毎のばらつきに起因して変化する値ではない。従って、本実施例に係るPMフィルタの故障検出方法によれば、PMフィルタ6の故障をより高精度で検出することができる。
(変形例)
本実施例においては、PM捕集率の変化量を、該変化量が生じた期間の間における流入PM量の積算値で除算してPM捕集率の変化率を算出し、該PM捕集率の変化率をパラメータとしてPMフィルタ6の故障判定を行なってもよい。
本実施例においては、PM捕集率の変化量を、該変化量が生じた期間の間における流入PM量の積算値で除算してPM捕集率の変化率を算出し、該PM捕集率の変化率をパラメータとしてPMフィルタ6の故障判定を行なってもよい。
以下、本実施例の変形例に係るPMフィルタの故障検出のフローについて図4に示すフローチャートに基づいて説明する。本フローは、ECU10に予め記憶されており、ECU10によって所定の間隔で繰り返し実行される。尚、図4に示すフローチャートにおいては、図3に示すフローチャートと同一の処理を行なうステップには同一の参照番号が付されている。ここでは、図3に示す上記フローと異なる点についてのみ説明する。
本フローでは、ステップS206において、ステップS104でPM捕集率Rpm1が算出されてからステップS106でPM捕集率Rpm2が算出されるまでの所定期間t0の間における流入PM量の積算値ΣPMfr2が算出される。次に、ステップS207において、ステップS107で算出されたPM捕集率の変化量ΔRpmをステップS206で算出された流入PM量の積算値ΣPMfr2で除算することで、PM捕集率の変化率RRpmが算出される。
次に、ステップS208において、ステップ207で算出されPM捕集率の変化率RRpmが所定の基準値RR0以下であるか否かが判別される。ここで、基準値RR0は、負の値であって、PMフィルタ6に故障が生じていると判断できる閾値である。
ステップS208において、PM捕集率の変化率RRpmが所定の基準値RR0以下であると判定された場合、PMフィルタ6に故障が生じていると判定される。一方、ステップS208において、PM捕集率の変化率RRpmが所定の基準値RR0以下ではないと判定された場合、PMフィルタ6は正常であると判定される。
尚、本変施例においては、上記フローにおけるステップS208及びS109を実行するECU10が、本発明に係る故障検出部に相当する。また、上記フローにおけるステップS208及びS109が、本発明に係る故障検出工程に相当する。
本変形例においてPMフィルタ6の故障判定のパラメータとなるPM捕集率の変化率(低下率)も、PMセンサ14,15の出力値の製品毎のばらつきに起因して変化する値ではない。従って、本変形例に係るPMフィルタの故障検出方法によっても、PMフィルタ6の故障をより高精度で検出することができる。
また、本実施例においては、フィルタ再生処理の実行完了後、流入PM量の積算値ΣPMfr1が故障判定実行の閾値ΣPM0以上となってから、次回のフィルタ再生処理の実行が開始されるまでの間に、PM捕集率の変化量ΔRpmまたは変化率RRpmを複数回算出してもよい。そして、複数回分のPM捕集率の変化量ΔRpmまたは変化率RRpmの値に基づいて、PM捕集率が低下傾向にあるか否かを判別してもよい。これによれば、PMフィルタ6の故障の検出制度をさらに向上させることができる。
また、本実施例においては、フィルタ再生処理の実行完了後、PM捕集率の変化量または変化率を継続的に算出してもよい。そして、次回のフィルタ再生処理の実行が開始されるまでの間に、これらの値が負の値となったときに、PMフィルタ6に故障が生じたと判定してもよい。
1・・・内燃機関
3・・・排気通路
6・・・パティキュレートフィルタ(PMフィルタ)
7・・・酸化触媒
8・・・燃料添加弁
10・・ECU
11・・クランクポジションセンサ
12・・アクセル開度センサ
14・・上流側PMセンサ
15・・下流側PMセンサ
3・・・排気通路
6・・・パティキュレートフィルタ(PMフィルタ)
7・・・酸化触媒
8・・・燃料添加弁
10・・ECU
11・・クランクポジションセンサ
12・・アクセル開度センサ
14・・上流側PMセンサ
15・・下流側PMセンサ
Claims (5)
- 内燃機関の排気通路に設けられたパティキュレートフィルタの故障を検出するパティキュレートフィルタの故障検出装置であって、
前記パティキュレートフィルタに堆積した粒子状物質を除去するフィルタ再生処理を実行するフィルタ再生処理実行部と、
前記パティキュレートフィルタに流入する粒子状物質の量である流入PM量を取得する流入PM量取得部と、
前記パティキュレートフィルタから流出する粒子状物質の量である流出PM量を検出するPMセンサと、
前記流入PM取得部によって取得される流入PM量と前記PMセンサによって検出される流出PM量とに基づいて、流入PM量に対する前記パティキュレートフィルタに捕集されたPM量の割合であるPM捕集率を算出するPM捕集率算出部と、
前記フィルタ再生処理実行部によるフィルタ再生処理の実行完了後、次回のフィルタ再生処理の実行が開始されるまでの間に、前記PM捕集率算出部によって算出されるPM捕集率が低下する傾向が現れた場合に、前記パティキュレートフィルタに故障が生じたと判定する故障検出部と、
を備えたパティキュレートフィルタの故障検出装置。 - 前記故障検出部が、前記フィルタ再生処理実行部によるフィルタ再生処理の実行完了後における流入PM量の積算値が故障判定実行の閾値以上となった時に、前記PM捕集率算出部によって算出されるPM捕集率が低下する傾向にある場合に、前記パティキュレートフィルタに故障が生じたと判定する請求項1に記載のパティキュレートフィルタの故障検出装置。
- 前記故障検出部が、前記PM捕集率算出部によって算出されるPM捕集率の一定期間の間の低下量が所定の基準量以上のときに、前記パティキュレートフィルタに故障が生じたと判定する請求項1又は2に記載のパティキュレートフィルタの故障検出装置。
- 前記故障検出部が、前記PM捕集率算出部によって算出されるPM捕集率の一定期間の間の低下量を該一定期間の間の流入PM量の積算値で除算した値であるPM捕集率の低下率が所定の基準値以上のときに、前記パティキュレートフィルタに故障が生じたと判定する請求項1又は2に記載のパティキュレートフィルタの故障検出装置。
- 内燃機関の排気通路に設けられたパティキュレートフィルタの故障を検出するパティキュレートフィルタの故障検出方法であって、
前記パティキュレートフィルタに堆積した粒子状物質を除去するフィルタ再生処理を実行するフィルタ再生処理実行工程と、
前記パティキュレートフィルタに流入する粒子状物質の量である流入PM量を取得する流入PM取得部によって取得される流入PM量と、前記パティキュレートフィルタから流出する粒子状物質の量である流出PM量を検出するPMセンサによって検出される流出PM量とに基づいて、流入PM量に対する前記パティキュレートフィルタに捕集されたPM量の割合であるPM捕集率を算出するPM捕集率算出工程と、
前記フィルタ再生処理実行工程におけるフィルタ再生処理の実行完了後、次回のフィルタ再生処理の実行が開始されるまでの間に、前記PM捕集率算出工程において算出されるPM捕集率が低下する傾向が現れた場合に、前記パティキュレートフィルタに故障が生じたと判定する故障検出工程と、
を有するパティキュレートフィルタの故障検出方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/055436 WO2011118035A1 (ja) | 2010-03-26 | 2010-03-26 | パティキュレートフィルタの故障検出装置及び故障検出方法 |
EP10848428.8A EP2551479B8 (en) | 2010-03-26 | 2010-03-26 | Failure detection apparatus and failure detection method for a particulate filter |
US13/637,586 US8845783B2 (en) | 2010-03-26 | 2010-03-26 | Failure detection apparatus and failure detection method for a particulate filter |
JP2012506745A JP5344084B2 (ja) | 2010-03-26 | 2010-03-26 | パティキュレートフィルタの故障検出装置及び故障検出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/055436 WO2011118035A1 (ja) | 2010-03-26 | 2010-03-26 | パティキュレートフィルタの故障検出装置及び故障検出方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118035A1 true WO2011118035A1 (ja) | 2011-09-29 |
Family
ID=44672624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055436 WO2011118035A1 (ja) | 2010-03-26 | 2010-03-26 | パティキュレートフィルタの故障検出装置及び故障検出方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8845783B2 (ja) |
EP (1) | EP2551479B8 (ja) |
JP (1) | JP5344084B2 (ja) |
WO (1) | WO2011118035A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231728A (ja) * | 2010-04-29 | 2011-11-17 | Ngk Spark Plug Co Ltd | パティキュレートフィルタの故障検出装置 |
JP2014059218A (ja) * | 2012-09-18 | 2014-04-03 | Toyota Motor Corp | Pmセンサの異常検出装置および方法 |
JP2014098362A (ja) * | 2012-11-15 | 2014-05-29 | Toyota Motor Corp | フィルタの異常判定装置 |
WO2016125735A1 (ja) * | 2015-02-06 | 2016-08-11 | いすゞ自動車株式会社 | 内燃機関及び排気ガスの成分量推定方法 |
JP2016164410A (ja) * | 2015-02-12 | 2016-09-08 | デルファイ・インターナショナル・オペレーションズ・ルクセンブルク・エス・アー・エール・エル | 微粒子フィルタを監視するための方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012063364A1 (ja) * | 2010-11-12 | 2012-05-18 | トヨタ自動車株式会社 | パティキュレートフィルタの故障検出装置 |
WO2013073006A1 (ja) * | 2011-11-15 | 2013-05-23 | トヨタ自動車株式会社 | 内燃機関の制御装置及び制御方法 |
WO2013094021A1 (ja) * | 2011-12-20 | 2013-06-27 | トヨタ自動車株式会社 | 電気加熱式触媒の故障検出装置 |
DE102013210896A1 (de) * | 2013-06-11 | 2014-12-11 | Mtu Friedrichshafen Gmbh | Verfahren zum Betrieb einer Abgasnachbehandlung und Einrichtung zum Steuern einer Abgasnachbehandlung sowie Abgasnachbehandlung, Motorsteuergerät und Brennkraftmaschine mit einer Abgasnachbehandlung |
CN105899776B (zh) * | 2014-01-10 | 2019-07-23 | 佛吉亚排放控制技术美国有限公司 | 用于排气组件的模块化混合器 |
DE112014000017B4 (de) * | 2014-02-26 | 2021-07-22 | Komatsu Ltd. | Vorrichtung zum Feststellen von Fehlfunktion für Abgasreinigungsvorrichtung sowie Verfahren zum Feststellen von Fehlfunktion für Abgasreinigungsvorrichtung |
JP6201822B2 (ja) * | 2014-03-05 | 2017-09-27 | トヨタ自動車株式会社 | 内燃機関の排気浄化システム及び、内燃機関の排気浄化システムのフィルタ故障判定方法 |
EP3137377B1 (en) * | 2014-04-29 | 2019-11-06 | Sikorsky Aircraft Corporation | Radially compliant quill shaft |
KR101862225B1 (ko) * | 2015-01-05 | 2018-05-29 | 자동차부품연구원 | 차량의 dpf 상태 모니터링 장치 및 방법 |
JP2016153610A (ja) * | 2015-02-20 | 2016-08-25 | いすゞ自動車株式会社 | 排気浄化装置 |
JP6004028B2 (ja) * | 2015-03-20 | 2016-10-05 | トヨタ自動車株式会社 | 排気浄化システムの故障診断装置 |
CN109297886A (zh) * | 2017-07-25 | 2019-02-01 | 上海云杉信息科技有限公司 | 一种空气净化装置中滤网效率的测量装置、系统及方法 |
IT201800000951A1 (it) * | 2018-01-15 | 2019-07-15 | Magneti Marelli Spa | Metodo per controllare la portata di particolato in uscita da un filtro antiparticolato per un motore a combustione interna |
JP7087530B2 (ja) * | 2018-03-23 | 2022-06-21 | コベルコ建機株式会社 | 排ガス異常検出装置 |
CN112771255B (zh) * | 2018-09-28 | 2023-03-28 | 康明斯排放处理公司 | 用于动态控制过滤效率和燃料经济性的系统和方法 |
DE102020215291A1 (de) | 2020-12-03 | 2022-06-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und Recheneinheit zum Betreiben einer Brennkraftmaschine mit einem Partikelfilter |
CN113757918B (zh) * | 2021-08-23 | 2023-01-13 | 重庆海尔空调器有限公司 | 过滤模块更换提醒方法、装置及空调系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005325812A (ja) * | 2004-05-17 | 2005-11-24 | Honda Motor Co Ltd | フィルタの故障判定装置 |
JP2006316647A (ja) * | 2005-05-11 | 2006-11-24 | Honda Motor Co Ltd | 内燃機関の排気浄化装置 |
JP2007132290A (ja) | 2005-11-11 | 2007-05-31 | Toyota Motor Corp | Pmトラッパ故障検出装置 |
JP2007304068A (ja) | 2006-05-15 | 2007-11-22 | Toyota Motor Corp | 排気微粒子の測定装置 |
JP2007315275A (ja) | 2006-05-25 | 2007-12-06 | Nissan Motor Co Ltd | 排気浄化フィルタ故障診断装置及び方法 |
JP2008190502A (ja) | 2007-02-07 | 2008-08-21 | Nissan Motor Co Ltd | 内燃機関のpm排出量検出装置 |
JP2009512814A (ja) | 2005-10-21 | 2009-03-26 | ハネウェル・インターナショナル・インコーポレーテッド | 粒子状物質センサ信号処理用のシステム |
JP2009191694A (ja) | 2008-02-13 | 2009-08-27 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2009293518A (ja) * | 2008-06-05 | 2009-12-17 | Denso Corp | 内燃機関の排気浄化装置 |
-
2010
- 2010-03-26 JP JP2012506745A patent/JP5344084B2/ja not_active Expired - Fee Related
- 2010-03-26 US US13/637,586 patent/US8845783B2/en not_active Expired - Fee Related
- 2010-03-26 WO PCT/JP2010/055436 patent/WO2011118035A1/ja active Application Filing
- 2010-03-26 EP EP10848428.8A patent/EP2551479B8/en not_active Not-in-force
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005325812A (ja) * | 2004-05-17 | 2005-11-24 | Honda Motor Co Ltd | フィルタの故障判定装置 |
JP2006316647A (ja) * | 2005-05-11 | 2006-11-24 | Honda Motor Co Ltd | 内燃機関の排気浄化装置 |
JP2009512814A (ja) | 2005-10-21 | 2009-03-26 | ハネウェル・インターナショナル・インコーポレーテッド | 粒子状物質センサ信号処理用のシステム |
JP2007132290A (ja) | 2005-11-11 | 2007-05-31 | Toyota Motor Corp | Pmトラッパ故障検出装置 |
JP2007304068A (ja) | 2006-05-15 | 2007-11-22 | Toyota Motor Corp | 排気微粒子の測定装置 |
JP2007315275A (ja) | 2006-05-25 | 2007-12-06 | Nissan Motor Co Ltd | 排気浄化フィルタ故障診断装置及び方法 |
JP2008190502A (ja) | 2007-02-07 | 2008-08-21 | Nissan Motor Co Ltd | 内燃機関のpm排出量検出装置 |
JP2009191694A (ja) | 2008-02-13 | 2009-08-27 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2009293518A (ja) * | 2008-06-05 | 2009-12-17 | Denso Corp | 内燃機関の排気浄化装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2551479A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231728A (ja) * | 2010-04-29 | 2011-11-17 | Ngk Spark Plug Co Ltd | パティキュレートフィルタの故障検出装置 |
JP2014059218A (ja) * | 2012-09-18 | 2014-04-03 | Toyota Motor Corp | Pmセンサの異常検出装置および方法 |
JP2014098362A (ja) * | 2012-11-15 | 2014-05-29 | Toyota Motor Corp | フィルタの異常判定装置 |
WO2016125735A1 (ja) * | 2015-02-06 | 2016-08-11 | いすゞ自動車株式会社 | 内燃機関及び排気ガスの成分量推定方法 |
CN107208512A (zh) * | 2015-02-06 | 2017-09-26 | 五十铃自动车株式会社 | 内燃机和排气气体的成分量推定方法 |
US10526942B2 (en) | 2015-02-06 | 2020-01-07 | Isuzu Motors Limited | Internal combustion engine and exhaust-gas-component estimating method |
CN107208512B (zh) * | 2015-02-06 | 2020-03-27 | 五十铃自动车株式会社 | 内燃机和排气气体的成分量推定方法 |
JP2016164410A (ja) * | 2015-02-12 | 2016-09-08 | デルファイ・インターナショナル・オペレーションズ・ルクセンブルク・エス・アー・エール・エル | 微粒子フィルタを監視するための方法 |
Also Published As
Publication number | Publication date |
---|---|
US8845783B2 (en) | 2014-09-30 |
EP2551479B1 (en) | 2016-06-29 |
JP5344084B2 (ja) | 2013-11-20 |
EP2551479A1 (en) | 2013-01-30 |
JPWO2011118035A1 (ja) | 2013-07-04 |
EP2551479B8 (en) | 2016-09-21 |
US20130014641A1 (en) | 2013-01-17 |
EP2551479A4 (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5344084B2 (ja) | パティキュレートフィルタの故障検出装置及び故障検出方法 | |
JP5382210B2 (ja) | パティキュレートフィルタの故障検出装置及び故障検出方法 | |
JP4403961B2 (ja) | 内燃機関の排気浄化装置 | |
JP4103813B2 (ja) | 内燃機関の排気浄化装置 | |
EP2392792B1 (en) | Diagnostic apparatus and diagnostic method for particulate filter | |
JP2006226119A (ja) | 内燃機関の排気ガス浄化装置 | |
JP2004286019A (ja) | 内燃機関の排気ガス浄化装置 | |
WO2012063364A1 (ja) | パティキュレートフィルタの故障検出装置 | |
JP2011185167A (ja) | パティキュレートフィルタの故障判別装置 | |
JP2006291788A (ja) | 内燃機関の排気浄化装置 | |
JP5365550B2 (ja) | パティキュレートフィルタの故障診断装置 | |
JP2006090153A (ja) | 内燃機関の排気ガス浄化装置 | |
JP2012077716A (ja) | Pmセンサの異常検出装置及び方法 | |
JP5533362B2 (ja) | Pmセンサの故障検出装置 | |
WO2020138180A1 (ja) | 検出装置、検出方法及び、検出装置を備えた排気浄化装置 | |
JP5540927B2 (ja) | 差圧センサの故障検出装置 | |
JP4103732B2 (ja) | 内燃機関の排気浄化システム | |
JP6677008B2 (ja) | 内燃機関の排気浄化装置 | |
JP4349219B2 (ja) | 内燃機関の排気浄化装置 | |
JP3930724B2 (ja) | 排気浄化装置 | |
JP4352745B2 (ja) | 内燃機関の排気浄化装置 | |
JP4844349B2 (ja) | 内燃機関の排気浄化システム | |
JP2007154729A (ja) | 内燃機関の排気浄化装置 | |
WO2012095943A1 (ja) | Pm量検出装置及びパティキュレートフィルタの故障検出装置 | |
JP5605302B2 (ja) | パティキュレートフィルタの劣化抑制装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10848428 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13637586 Country of ref document: US Ref document number: 2012506745 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010848428 Country of ref document: EP |