WO2011117245A1 - Procédé de production de particules polymères absorbant l'eau - Google Patents
Procédé de production de particules polymères absorbant l'eau Download PDFInfo
- Publication number
- WO2011117245A1 WO2011117245A1 PCT/EP2011/054358 EP2011054358W WO2011117245A1 WO 2011117245 A1 WO2011117245 A1 WO 2011117245A1 EP 2011054358 W EP2011054358 W EP 2011054358W WO 2011117245 A1 WO2011117245 A1 WO 2011117245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer particles
- water
- absorbing polymer
- horizontal mixer
- monomer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/124—Treatment for improving the free-flowing characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/28—Selection of materials for use as drying agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/20—Organic adsorbents
- B01D2253/202—Polymeric adsorbents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/14—Water soluble or water swellable polymers, e.g. aqueous gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
Definitions
- the present invention relates to a process for producing water-absorbing polymer particles, wherein heated water-absorbing polymer particles are rewetted and cooled in a high-speed mixer.
- Water-absorbing polymer particles are used in the manufacture of diapers, tampons, sanitary napkins and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
- the water-absorbing polymer particles are also referred to as superabsorbers.
- the properties of the water-absorbing polymer particles can be adjusted, for example, via the amount of crosslinker used. As the amount of crosslinker increases, the centrifuge retention capacity (CRC) decreases and the absorption under a pressure of 21.0 g / cm 2 (AUL 0.3 psi) goes through a maximum.
- CRC centrifuge retention capacity
- water-absorbing polymer particles are generally surface postcrosslinked.
- the degree of crosslinking of the particle surface increases, whereby the absorption under a pressure of 49.2 g / cm 2 (AUL0.7 psi) and the centrifuge retention capacity (CRC) can be at least partially decoupled.
- This surface postcrosslinking can be carried out in aqueous gel phase.
- dried, ground and sieved polymer particles (base polymer) are coated on the surface with a surface postcrosslinker and thermally surface postcrosslinked.
- Crosslinkers suitable for this purpose are compounds which can form covalent bonds with at least two carboxylate groups of the water-absorbing polymer particles.
- the water-absorbing polymer particles often have a moisture content of less than 1% by weight after the thermal surface postcrosslinking. This increases the tendency of the polymer particles to static charge.
- the static charge of the polymer particles influences the metering accuracy, for example in diaper production. This problem is usually solved by setting a defined moisture content by adding water or aqueous solutions (rewetting). Methods for rewetting are described for example in EP 0 780 424 A1,
- the object of the present invention was to provide an improved process for rewetting water-absorbing polymer particles, in particular with a reduced tendency to agglomerate.
- the object has been achieved by a process for producing water-absorbing polymer particles by polymerization of a monomer solution or suspension comprising a) at least one ethylenically unsaturated, acid group-carrying monomer which may be at least partially neutralized,
- the horizontal mixer may have a water-cooled jacket. It is also possible to pass a cold gas, for example air or nitrogen, or to cool it by means of the water used for rewetting. Combinations of several measures are preferred. Mixers with rotating mixing tools are divided according to the position of the axis of rotation in vertical mixer and horizontal mixer.
- Horizontal mixers in the context of this invention are mixers with rotating mixing tools whose position of the axis of rotation to the product flow direction deviates from the horizontal by less than 20 °, preferably by less than 15 °, more preferably by less than 10 °, most preferably by less than 5 ° ,
- moving mixing tools such as screw mixers, disk mixers, plowshare mixers, paddle mixers, screw-belt mixers and continuous mixers.
- a preferred horizontal mixer is the disc mixer.
- the inner wall of the mixer has a contact angle with respect to water of preferably less than 70 °, more preferably less than 60 °, most preferably less than 50 °.
- the contact angle is a measure of the wetting behavior and is measured according to DIN 53900.
- mixers are used whose product-contacting inner wall is made of a stainless steel.
- Stainless steels usually have a chromium content of 10.5 to 13 wt .-% chromium.
- the high chromium content leads to a protective passivation of chromium dioxide on the steel surface.
- Other alloying components increase corrosion resistance and improve mechanical properties.
- austenitic steels with, for example, at least 0.08% by weight of carbon.
- the austenitic steels advantageously contain further alloy constituents, preferably niobium or titanium.
- the preferred stainless steels are steels with the material number 1.43xx or 1.45xx according to DIN EN 10020, where xx can be a natural number between 0 and 99.
- Particularly preferred materials are the steels with the material numbers 1 .4301, 1 .4541 and 1 .4571, in particular steel with the material number 1 .4301.
- the product-contacted inner wall of the mixer is polished. Polished non-corrosive steel surfaces have a lower roughness and a lower contact angle to water than dull or roughened steel surfaces.
- the Froude number is defined as follows: ro 2 r
- the Froude number is at least 0.05, preferably from 0.1 to 6, more preferably from 0.12 to 3, most preferably from 0.15 to 1.
- the temperature of the water-absorbing polymer particles fed to the horizontal mixer is at least 90.degree. C., preferably at least 95.degree. C., more preferably at least 100.degree. C., very particularly preferably at least 105.degree. If the temperatures are too high, water is already noticeably evaporating, so that the amount of water used must be correspondingly increased.
- the water-absorbing polymer particles are cooled in the horizontal mixer to a temperature of preferably less than 75 ° C, more preferably less than 70 ° C, most preferably less than 65 ° C, cooled.
- the moisture content is preferably by 1 to
- the peripheral speed of the mixing tools is preferably from 0.1 to 10 m / s, more preferably from 0.5 to 5 m / s, most preferably from 0.75 to 2.5 m / s.
- the degree of filling of the horizontal mixer is preferably from 30 to 80%, more preferably from 40 to 75%, most preferably from 50 to 70%.
- the residence time in the horizontal mixer is preferably from 1 to 180 minutes, more preferably from 2 to 60 minutes, most preferably from 5 to 20 minutes.
- the aqueous liquids which can be used for rewetting, for example water itself, are subject to no restriction.
- the aqueous liquid is preferably sprayed by means of a two-fluid nozzle, more preferably by means of an internally mixing two-fluid nozzle.
- Two-fluid nozzles enable atomization into fine droplets or a spray. As sputtering a circular or elliptical solid or hollow cone is formed.
- Two-fluid nozzles can be designed to mix externally or internally. In the externally mixing two-fluid nozzles, liquid and atomizing gas leave the nozzle head via separate openings. They are mixed in the spray jet only after leaving the spray nozzle. This allows a wide range of independent regulation of droplet size distribution and throughput.
- the spray cone of the spray nozzle can be adjusted via the air flap position.
- liquid and atomizing gas are mixed within the spray nozzle and the two-phase mixture leaves the nozzle head via the same bore (or via a plurality of holes connected in parallel).
- the quantitative and pressure ratios are more strongly coupled than in the case of the externally mixing spray nozzle. Small changes in throughput therefore lead to a change in the droplet size distribution.
- the adaptation to the desired throughput takes place over the selected cross section of the nozzle bore. Suitable atomizing gas are compressed air, nitrogen or steam of 0.5 bar and more.
- the droplet size can be adjusted individually via the ratio of liquid to nebulizer gas as well as gas and liquid pressure.
- the present invention is based on the finding that the agglomeration tendency of water-absorbing polymer particles during rewetting is influenced both by the stirrer speed and by the cooling of the water-absorbing polymer particles. However, it is particularly important to have a sufficiently high temperature of the water-absorbing polymer particles immediately before rewetting. Perhaps the faster diffusion into the particle inside outweighs the already noticeable evaporation.
- the preparation of the water-absorbing polymer particles is explained in more detail below:
- the water-absorbing polymer particles are prepared by polymerization of a monomer solution or suspension and are usually water-insoluble.
- the monomers a) are preferably water-soluble, ie the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 35 g / 100 g of water.
- Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
- Further suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
- AMPS 2-acrylamido-2-methylpropanesulfonic acid
- a suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 with 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight.
- Propionic acid 0.0001% by weight of furfural, 0.0001% by weight of maleic anhydride
- the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
- the monomers a) usually contain polymerization inhibitors, preferably hydroquinone half ethers, as a storage stabilizer.
- the monomer solution preferably contains up to 250 ppm by weight, preferably at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, particularly preferably at least 30 ppm by weight, in particular by 50% by weight .-ppm, hydroquinone, in each case based on the unneutralized monomer a).
- an ethylenically unsaturated, acid group-carrying monomer having a corresponding content of hydroquinone half-ether can be used to prepare the monomer solution.
- hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or alpha-tocopherol (vitamin E).
- Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically copolymerized into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts which can form coordinative bonds with at least two acid groups of the monomer a) are also suitable as crosslinking agents b).
- Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be incorporated in the polymer network in free-radically polymerized form.
- Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates, as in EP 0 547 847 A1, EP 0 559 476 A1,
- Preferred crosslinkers b) are pentaerythritol triallyl ether, tetraallyloxyethane, methylenebismethacrylamide, 15-tuply ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
- Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 2003/104301 A1.
- Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
- diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
- Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerol, in particular the triacrylate of 3-times ethoxylated glycerol.
- the amount of crosslinker b) is preferably from 0.05 to 1, 5 wt .-%, particularly preferably 0.1 to 1 wt .-%, most preferably 0.3 to 0.6 wt .-%, each based on Monomer a).
- the centrifuge retention capacity decreases and the absorption under a pressure of 21.0 g / cm 2 passes through a maximum.
- initiators c) it is possible to use all compounds which generate free radicals under the polymerization conditions, for example thermal initiators, redox initiators, photoinitiators.
- Suitable redox initiators are sodium peroxodisulfate / ascorbic acid, hydrogen peroxide / ascorbic acid, sodium peroxodisulfate / sodium bisulfite and hydrogen peroxide / sodium bisulfite.
- Preference is given to using mixtures of thermal initiators and redox initiators, such as sodium peroxodisulfate / hydrogen peroxide / ascorbic acid.
- the reducing component used is a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite.
- Such mixtures are available as Brüggolite® FF6 and Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE).
- Examples of ethylenically unsaturated monomers d) which can be copolymerized with the ethylenically unsaturated monomers having acid groups are acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate.
- water-soluble polymers e it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose, such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, preferably starch, starch derivatives and modified cellulose.
- an aqueous monomer solution is used.
- the water content of the monomer solution is preferably from 40 to 75 wt .-%, particularly preferably from 45 to 70 wt .-%, most preferably from 50 to 65 wt .-%.
- monomer suspensions i.
- Monomer solutions with excess monomer a), for example sodium acrylate, use With increasing water content, the energy expenditure increases during the subsequent drying and with decreasing water content, the heat of polymerization can only be dissipated insufficiently.
- the monomer solution may be polymerized prior to polymerization by inerting, i. Flow through with an inert gas, preferably nitrogen or carbon dioxide, are freed of dissolved oxygen.
- an inert gas preferably nitrogen or carbon dioxide
- the oxygen content of the monomer solution before polymerization is reduced to less than 1 ppm by weight, more preferably less than 0.5 ppm by weight, most preferably less than 0.1 ppm by weight.
- Suitable reactors are, for example, kneading reactors or belt reactors.
- the polymer gel formed during the polymerization of an aqueous monomer solution or suspension is comminuted continuously by, for example, counter-rotating stirring shafts, as described in WO 2001/038402 A1.
- the polymerization on the belt is described, for example, in DE 38 25 366 A1 and US Pat. No. 6,241,928.
- a polymer gel is formed, which must be comminuted in a further process step, for example in an extruder or kneader.
- the comminuted polymer gel obtained by means of a kneader may additionally be extruded.
- the process steps polymerization and drying can be summarized, as described in WO 2008/040715 A2 and WO 2008/052971 A1.
- the acid groups of the polymer gels obtained are usually partially neutralized.
- the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution or preferably as a solid.
- the degree of neutralization is preferably from 25 to 95 mol%, particularly preferably from 30 to 80 mol%, very particularly preferably from 40 to 75 mol%, the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or Alkalimetallhydrogenkarbonate and mixtures thereof.
- alkali metal salts and ammonium salts can be used.
- Sodium and potassium are particularly preferred as alkali metals, but most preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
- the polymer gel is at least partially neutralized after the polymerization, the polymer gel is preferably comminuted mechanically, for example by means of an extruder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed in. For this purpose, the gel mass obtained can be extruded several times for homogenization.
- the polymer gel is then preferably dried with a belt dryer until the residual moisture content is preferably 0.5 to 15 wt .-%, particularly preferably 1 to 10 wt .-%, most preferably 2 to 8 wt .-%, wherein the residual moisture content according to the EDANA recommended test method no. WSP 230.2-05 "Moisture Content". If the residual moisture content is too high, the dried polymer gel has too low a glass transition temperature T g and is difficult to process further. If the residual moisture content is too low, the dried polymer gel is too brittle and in the subsequent comminution steps undesirably large amounts of polymer particles having too small a particle size ("fines") are produced. , particularly preferably from 35 to 70 wt .-%, most preferably from 40 to 60 wt .-%. Optionally, however, a fluidized bed dryer or a paddle dryer can be used for drying.
- the dried polymer gel is then ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills, can be used.
- the average particle size of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
- the mean particle size of the product fraction can be determined by means of the EDANA recommended test method No. WSP 220.2-05 "Particle Size Distribution", in which the mass fractions of the sieve fractions are cumulatively applied and the average particle size is determined graphically.
- the mean particle size here is the value of the mesh size, which results for accumulated 50 wt .-%.
- the proportion of particles having a particle size of at least 150 ⁇ m is preferably at least 90% by weight, more preferably at least 95% by weight, very particularly preferably at least 98% by weight.
- Polymer particles with too small particle size lower the permeability (SFC). Therefore, the proportion of too small polymer particles ("fines") should be low, so that too small polymer particles are usually separated and recycled to the process, preferably before, during or immediately after the polymerization, ie before drying the polymer gel
- Polymer particles may be moistened with water and / or aqueous surfactant before or during recycling.
- the too small polymer particles are preferably added during the last third of the polymerization.
- the centrifugal retention capacity (CRC) of the lowered water-absorbing polymer particles can be compensated for example by adjusting the amount of crosslinker b).
- the polymer particles which are too small are added very late, for example only in an apparatus downstream of the polymerization reactor, for example an extruder, the polymer particles which are too small can only be incorporated into the resulting polymer gel with difficulty. Insufficiently incorporated too small polymer particles, however, dissolve again during the grinding of the dried polymer gel, are therefore separated again during classification and increase the amount of recycled too small polymer particles.
- the proportion of particles having a particle size of at most 850 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
- the proportion of particles having a particle size of at most 600 ⁇ m is preferably at least 90% by weight, more preferably at least 95% by weight, most preferably at least 98% by weight. Polymer particles with too large particle size reduce the swelling rate. Therefore, the proportion of polymer particles too large should also be low.
- Too large polymer particles are therefore usually separated and recycled to the grinding of the dried Polymergeis.
- the polymer particles are surface postcrosslinked to further improve the properties.
- Suitable surface postcrosslinkers are compounds containing groups that can form covalent bonds with at least two carboxylate groups of the polymer particles.
- Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 A1, DE 35 23 617 A1 and EP 0 450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US Pat. No. 6,239,230.
- Preferred surface postcrosslinkers are ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin and mixtures of propylene glycol and 1,4-butanediol.
- Very particularly preferred surface postcrosslinkers are 2-hydroxyethyl-2-oxazolidinone, 2-oxazolidinone and 1,3-propanediol.
- surface postcrosslinkers which contain additional polymerisable ethylenically unsaturated groups, as described in DE 37 13 601 A1.
- the amount of surface postcrosslinker is preferably from 0.001 to 2% by weight, particularly preferably from 0.02 to 1% by weight, completely more preferably 0.05 to
- polyvalent cations are applied to the particle surface in addition to the surface postcrosslinkers before, during or after the surface postcrosslinking.
- polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations, such as the cations of aluminum, iron,
- chloride, bromide, sulfate, hydrogen sulfate, carbonate, bicarbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate, such as acetate, citrate and lactate, are possible.
- Aluminum sulfate and aluminum acetate are preferred.
- polyamines can also be used as polyvalent cations.
- the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight. in each case based on the polymer particles.
- the surface postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the dried polymer particles. Subsequent to the spraying, the polymer particles coated with surface postcrosslinker are thermally dried, whereby the surface postcrosslinking reaction can take place both before and during drying.
- the spraying of a solution of the surface postcrosslinker is preferably carried out in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers. Particularly preferred are horizontal mixers, such as paddle mixers, very particularly preferred are vertical mixers.
- horizontal mixer and vertical mixer via the storage of the mixing shaft ie horizontal mixer have a horizontally mounted mixing shaft and vertical mixer have a vertically mounted mixing shaft.
- Suitable mixers are, for example, Horizontal Pflugschar® mixers (Gebr. Lödige Maschinenbau GmbH, Paderborn, DE), Vrieco-Nauta Continuous Mixers (Hosokawa Micron BV, Doetinchem, NL), Processall Mixmill Mixers (Processall Incorporated, Cincinnati, US) and Schugi Flexomix® (Hosokawa Micron BV, Doetinchem, NL).
- the surface postcrosslinkers are typically used as an aqueous solution.
- the penetration depth of the surface postcrosslinker into the polymer particles can be adjusted by the content of nonaqueous solvent or total solvent amount.
- solvent for example isopropanol / water, 1,3-propanediol / water and propylene glycol / water, the mixing mass ratio preferably being from 20:80 to 40:60.
- the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, very particularly preferably disk dryers.
- Suitable dryers include Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH, Leingart, DE), Hosokawa Bepex® Disc Dryer (Hosokawa Micron GmbH, Leingart, DE), and Nara Paddle Dryer (NARA Machinery Europe, Frechen, DE).
- fluidized bed dryers can also be used.
- the drying can take place in the mixer itself, by heating the jacket or blowing hot air.
- a downstream dryer such as a hopper dryer, a rotary kiln or a heatable screw. Particularly advantageous is mixed and dried in a fluidized bed dryer.
- Preferred drying temperatures are in the range 100 to 250 ° C, preferably 120 to 220 ° C, more preferably 130 to 210 ° C, most preferably 150 to 200 ° C.
- the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least at least 20 minutes, more preferably at least 30 minutes, and usually at most 60 minutes.
- the surface-postcrosslinked polymer particles can be re-classified, wherein too small and / or too large polymer particles are separated and recycled to the process.
- the surface postcrosslinked polymer particles can be coated to further improve the properties.
- Suitable coatings for improving the swelling rate and the permeability are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations.
- Suitable coatings for dust binding are, for example, polyols.
- Suitable coatings against the undesirable tendency for the polymer particles to cake are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
- the water-absorbing polymer particles produced by the process according to the invention have a moisture content of preferably 0 to 15 wt .-%, particularly preferably 0.2 to 10 wt .-%, most preferably 0.5 to 8 wt .-%, wherein the Moisture content according to the EDANA recommended test method No. WSP 230.2-05 "Moisture Content".
- the water-absorbing polymer particles prepared according to the method of the invention have a centrifuge retention capacity (CRC) of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, more preferably at least 24 g / g, most preferably at least 26 g / g, up.
- the centrifuge retention capacity (CRC) of the water-absorbent polymer particles is usually less than 60 g / g. Centrifuge retention capacity (CRC) will be determined according to the EDANA recommended test method
- the water-absorbing polymer particles produced by the process according to the invention have an absorption under a pressure of 49.2 g / cm 2 of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, particularly preferably at least 24 g / g, most preferably at least 26 g / g, on.
- the absorption under a pressure of 49.2 g / cm 2 of the water-absorbent polymer particles is usually less than 35 g / g.
- the absorption under a pressure of 49.2 g / cm 2 is determined analogously to the recommended by the EDANA test method no. WSP 242.2-05 "absorption under pressure", wherein instead of a pressure of 21, 0 g / cm 2, a pressure of 49 , 2 g / cm 2 is set.
- Measurements should be taken at an ambient temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 10%, unless otherwise specified.
- the water-absorbing polymer particles are thoroughly mixed before the measurement.
- the fluid transfer (SFC) of a swollen gel layer under compressive loading of 0.3 psi (2070 Pa) is determined, as described in EP 0 640 330 A1, as gel-layer permeability of a swollen gel layer of water-absorbing polymer particles has been modified to the effect that the glass frit (40) is no longer used, the punch (39) consists of the same plastic material as the cylinder (37) and now evenly distributed over the entire bearing surface 21st contains equal holes. The procedure and evaluation of the measurement remains unchanged compared to EP 0 640 330 A1. The flow is automatically detected. Fluid transfer (SFC) is calculated as follows:
- the centrifuge retention capacity (CRC) of the water-absorbing polymer particles is determined according to the EDANA-recommended test method no. WSP 241 .2-05 "Centrifuge Retention Capacity”.
- the absorption under a pressure of 63.0 g / cm 2 (AUL0.9psi) of the water-absorbing polymer particles is determined analogously to the EDANA recommended test method no. WSP 242.2-05 "Absorption under Pressure", whereby instead of a pressure of 21, 0 g / cm 2 (AUL0.3psi) a pressure of 63.0 g / cm 2 (AUL0.9psi) is set.
- Extractables The fraction of extractables of the water-absorbing polymer particles is determined according to the EDANA recommended test method No. WSP 270.2-05 "Extractables".
- the EDANA test methods are available, for example, from EDANA, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium.
- an acrylic acid / sodium acrylate solution is prepared so that the degree of neutralization is 65 mol%.
- the solids content of the monomer solution was 40% by weight.
- Polyethylene glycol 400 diacrylate (diacrylate starting from a polyethylene glycol having an average molecular weight of 400 g / mol) was used as the polyethylenically unsaturated crosslinker. The amount used was 1.35 g per kg of monomer solution.
- the throughput of the monomer solution was 1200 kg / h.
- the reaction solution had a temperature of 23.5 ° C. at the inlet.
- the resulting polymer gel was applied to a belt dryer. On the belt dryer, the polymer gel was continuously circulated with an air / gas mixture and dried at 175 ° C. The residence time in the belt dryer was 43 minutes.
- the dried polymer gel was ground and screened to a particle size fraction of 150 to 850 ⁇ .
- the base polymer thus obtained had the following properties: CRC: 32 g / g
- the surface postcrosslinking solution contained 2.0% by weight of N-hydroxyethyl-2-oxazolidinone, 97.5% by weight of deionized water and 0.5% by weight of sorbitan monococoate.
- the surface postcrosslinked polymer particles were then cooled to about 60 ° C. in a NARA paddle cooler of the NPD 3W9 (GMF Gouda, Waddinxveen, NL) type and then sieved off once again to 150 to 850 ⁇ m.
- NPD 3W9 GMF Gouda, Waddinxveen, NL
- the surface postcrosslinked water-absorbing polymer particles used had the following property profile: CRC: 26.5 g / g
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Procédé de production de particules polymères absorbant l'eau, consistant à réhumidifier et à refroidir dans un mélangeur rapide des particules polymères absorbant l'eau chauffées.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11709147.0A EP2550316B2 (fr) | 2010-03-25 | 2011-03-22 | Procédé de production de particules polymères absorbant l'eau |
JP2013500470A JP2013523903A (ja) | 2010-03-25 | 2011-03-22 | 吸水性ポリマー粒子の製造方法 |
CN201180015379.8A CN102844358B (zh) | 2010-03-25 | 2011-03-22 | 制备吸水性聚合物颗粒的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10157686 | 2010-03-25 | ||
EP10157686.6 | 2010-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011117245A1 true WO2011117245A1 (fr) | 2011-09-29 |
Family
ID=44072644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/054358 WO2011117245A1 (fr) | 2010-03-25 | 2011-03-22 | Procédé de production de particules polymères absorbant l'eau |
Country Status (5)
Country | Link |
---|---|
US (1) | US8461278B2 (fr) |
EP (1) | EP2550316B2 (fr) |
JP (2) | JP2013523903A (fr) |
CN (1) | CN102844358B (fr) |
WO (1) | WO2011117245A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015511247A (ja) * | 2012-01-12 | 2015-04-16 | エボニック インダストリーズ アーゲー | 吸水性ポリマーの連続的な製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104619357B (zh) * | 2012-08-29 | 2017-07-07 | 巴斯夫欧洲公司 | 用于制备吸水性聚合物颗粒的方法 |
KR102555380B1 (ko) * | 2018-01-19 | 2023-07-12 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
EP3840872B1 (fr) | 2018-08-20 | 2023-08-30 | Basf Se | Procédé de fabrication de superabsorbants |
KR102671013B1 (ko) * | 2019-11-05 | 2024-05-30 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
WO2021091240A1 (fr) * | 2019-11-05 | 2021-05-14 | 주식회사 엘지화학 | Procédé de préparation d'un polymère superabsorbant |
KR20240008694A (ko) | 2022-07-12 | 2024-01-19 | 주식회사 엘지화학 | 고흡수성 수지 복합체의 제조방법 |
Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0083022A2 (fr) | 1981-12-30 | 1983-07-06 | Seitetsu Kagaku Co., Ltd. | Résine absorbant l'eau ayant une capacité d'absorption et un effet de dispersion dans l'eau améliorés et procédé de préparation |
DE3314019A1 (de) | 1982-04-19 | 1984-01-12 | Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka | Absorbierender gegenstand |
DE3523617A1 (de) | 1984-07-02 | 1986-01-23 | Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka | Wasserabsorbierendes mittel |
DE3713601A1 (de) | 1987-04-23 | 1988-11-10 | Stockhausen Chem Fab Gmbh | Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats |
DE3825366A1 (de) | 1987-07-28 | 1989-02-09 | Dai Ichi Kogyo Seiyaku Co Ltd | Verfahren zur kontinuierlichen herstellung eines acrylpolymergels |
WO1990015830A1 (fr) | 1989-06-12 | 1990-12-27 | Weyerhaeuser Company | Polymere hydrocolloidal |
DE4020780C1 (fr) | 1990-06-29 | 1991-08-29 | Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De | |
EP0450922A2 (fr) | 1990-04-02 | 1991-10-09 | Nippon Shokubai Kagaku Kogyo Co. Ltd. | Procédé de préparation d'un agrégat stable à la fluidité |
EP0530438A1 (fr) | 1991-09-03 | 1993-03-10 | Hoechst Celanese Corporation | Polymère superabsorbant à propriétés de pouvoir absorbant perfectionné |
EP0543303A1 (fr) | 1991-11-22 | 1993-05-26 | Hoechst Aktiengesellschaft | Hydrogels hydrophiles à forte capacité de gonflement |
EP0547847A1 (fr) | 1991-12-18 | 1993-06-23 | Nippon Shokubai Co., Ltd. | Procédé de préparation d'une résine absorbant l'eau |
EP0559476A1 (fr) | 1992-03-05 | 1993-09-08 | Nippon Shokubai Co., Ltd. | Méthode de préparation d'une résine absorbante |
WO1993021237A1 (fr) | 1992-04-16 | 1993-10-28 | The Dow Chemical Company | Resines hydrophiles reticulees et procede de preparation |
EP0632068A1 (fr) | 1993-06-18 | 1995-01-04 | Nippon Shokubai Co., Ltd. | Procédé de préparation d'une résine absorbante |
EP0640330A1 (fr) | 1993-06-30 | 1995-03-01 | The Procter & Gamble Company | Produits absorbants hygiéniques |
DE19543368A1 (de) | 1995-11-21 | 1997-05-22 | Stockhausen Chem Fab Gmbh | Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung |
DE19646484A1 (de) | 1995-11-21 | 1997-05-22 | Stockhausen Chem Fab Gmbh | Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung |
EP0780424A1 (fr) | 1995-07-07 | 1997-06-25 | Nippon Shokubai Co., Ltd. | Poudre absorbant l'eau et son procede de fabrication |
WO1998049221A1 (fr) | 1997-04-29 | 1998-11-05 | The Dow Chemical Company | Polymeres superabsorbants ayant une usinabilite amelioree |
DE19807992C1 (de) | 1998-02-26 | 1999-07-15 | Clariant Gmbh | Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen |
EP0937736A2 (fr) | 1998-02-24 | 1999-08-25 | Nippon Shokubai Co., Ltd. | Réticulation d'un agent absorbant l'eau |
DE19807502A1 (de) | 1998-02-21 | 1999-09-16 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen |
DE19854574A1 (de) | 1998-11-26 | 2000-05-31 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen |
DE19854573A1 (de) | 1998-11-26 | 2000-05-31 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen |
US6239230B1 (en) | 1999-09-07 | 2001-05-29 | Bask Aktiengesellschaft | Surface-treated superabsorbent polymer particles |
WO2001038402A1 (fr) | 1999-11-20 | 2001-05-31 | Basf Aktiengesellschaft | Procede de preparation continue de polymerisats geliformes reticules a fines particules |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
EP1199327A2 (fr) | 2000-10-20 | 2002-04-24 | Nippon Shokubai Co., Ltd. | Agent absorbant l'eau et son procédé de préparation |
WO2002032962A2 (fr) | 2000-10-20 | 2002-04-25 | Millennium Pharmaceuticals, Inc. | Procedes et compositions des proteines humaines 80090, 52874, 52880, 63497, et 33425 et leurs utilisations |
WO2002055469A1 (fr) | 2001-01-12 | 2002-07-18 | Degussa Ag | Procede continu pour la production et la purification d'acide (meth)acrylique |
WO2003031482A1 (fr) | 2001-10-05 | 2003-04-17 | Basf Aktiengesellschaft | Procede de reticulation d'hydrogels contenant des morpholine-2,3-diones |
DE10204938A1 (de) | 2002-02-07 | 2003-08-21 | Stockhausen Chem Fab Gmbh | Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden |
DE10204937A1 (de) | 2002-02-07 | 2003-08-21 | Stockhausen Chem Fab Gmbh | Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten |
WO2003078378A1 (fr) | 2002-03-15 | 2003-09-25 | Stockhausen Gmbh | Cristal d'acide (meth)acrylique et procede pour produire et purifier de l'acide (meth)acrylique aqueux |
WO2003104299A1 (fr) | 2002-06-11 | 2003-12-18 | Basf Aktiengesellschaft | Procede de production d'esters de polyalcools |
WO2003104300A1 (fr) | 2002-06-01 | 2003-12-18 | Basf Aktiengesellschaft | Esters (meth)acryliques de trimethylolpropane polyalcoxyle |
WO2003104301A1 (fr) | 2002-06-11 | 2003-12-18 | Basf Aktiengesellschaft | (meth)acrylesters de glycerine polyalcoxy |
WO2004035514A1 (fr) | 2002-10-10 | 2004-04-29 | Basf Aktiengesellschaft | Procede de production d'acide acrylique |
WO2004037900A1 (fr) | 2002-10-25 | 2004-05-06 | Stockhausen Gmbh | Procede de melange en deux etapes pour preparer un polymere absorbant |
DE10249821A1 (de) * | 2002-10-25 | 2004-05-13 | Stockhausen Gmbh & Co. Kg | Absorbierende Polymergebilde mit verbesserter Rententionskapazität und Permeabilität |
DE10249822A1 (de) * | 2002-10-25 | 2004-05-13 | Stockhausen Gmbh & Co. Kg | Zweistufiges Mischverfahren zur Herstellung eines absorbierenden Polymers |
EP1462473A1 (fr) | 2003-03-14 | 2004-09-29 | Nippon Shokubai Co., Ltd. | Procédé pour la réticulation de la surface d'une poudre de résine absorbantl'eau |
DE10331450A1 (de) | 2003-07-10 | 2005-01-27 | Basf Ag | (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung |
DE10331456A1 (de) | 2003-07-10 | 2005-02-24 | Basf Ag | (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung |
DE10334584A1 (de) | 2003-07-28 | 2005-02-24 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen |
DE10355401A1 (de) | 2003-11-25 | 2005-06-30 | Basf Ag | (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung |
WO2008040715A2 (fr) | 2006-10-05 | 2008-04-10 | Basf Se | Procédé pour la préparation de particules de polymère absorbant l'eau grâce à une polymérisation de gouttes d'une solution de monomère |
WO2008052971A1 (fr) | 2006-10-31 | 2008-05-08 | Basf Se | Contrôle d'un procédé de fabrication de particules polymères absorbant l'eau dans une phase gazeuse chauffée |
WO2008113790A1 (fr) * | 2007-03-19 | 2008-09-25 | Basf Se | Procédé pour revêtir des particules polymères absorbant l'eau |
WO2008113788A2 (fr) * | 2007-03-19 | 2008-09-25 | Basf Se | Procédé pour revêtir des particules polymères absorbant l'eau |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3103754B2 (ja) * | 1995-10-31 | 2000-10-30 | 三洋化成工業株式会社 | 改質された吸水性樹脂粒子およびその製法 |
US6562879B1 (en) * | 1999-02-15 | 2003-05-13 | Nippon Shokubai Co., Ltd. | Water-absorbent resin powder and its production process and use |
US6414214B1 (en) * | 1999-10-04 | 2002-07-02 | Basf Aktiengesellschaft | Mechanically stable hydrogel-forming polymers |
JP4364020B2 (ja) * | 2003-03-14 | 2009-11-11 | 株式会社日本触媒 | 吸水性樹脂粉末の表面架橋処理方法 |
US7473739B2 (en) | 2004-02-05 | 2009-01-06 | Nippon Shokubai Co., Ltd. | Particulate water absorbent agent and production method thereof, and water absorbent article |
TWI377222B (en) | 2005-12-22 | 2012-11-21 | Nippon Catalytic Chem Ind | Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin |
KR101407176B1 (ko) * | 2006-04-21 | 2014-06-12 | 에보니크 데구사 게엠베하 | 압력하에서 향상된 투과성과 흡수성을 가지는 수분-흡수성 중합체 구조 |
CN101631819B (zh) † | 2007-03-12 | 2015-03-11 | 巴斯夫欧洲公司 | 再润湿的表面交联的超吸收剂的制备方法 |
JP5150717B2 (ja) | 2007-03-19 | 2013-02-27 | ビーエーエスエフ ソシエタス・ヨーロピア | 吸水性ポリマー粒子を被覆する方法 |
JP5611523B2 (ja) | 2007-03-29 | 2014-10-22 | 株式会社日本触媒 | 粒子状吸水剤及びその製造方法 |
EP2291416A1 (fr) * | 2008-06-19 | 2011-03-09 | Basf Se | Procédé de préparation en continu de particules polymères absorbant l'eau |
EP2307062B2 (fr) | 2008-07-15 | 2021-11-24 | Basf Se | Procédé pour produire des particules polymères hydrophiles |
-
2011
- 2011-03-22 CN CN201180015379.8A patent/CN102844358B/zh active Active
- 2011-03-22 EP EP11709147.0A patent/EP2550316B2/fr active Active
- 2011-03-22 JP JP2013500470A patent/JP2013523903A/ja active Pending
- 2011-03-22 WO PCT/EP2011/054358 patent/WO2011117245A1/fr active Application Filing
- 2011-03-24 US US13/071,041 patent/US8461278B2/en active Active
-
2015
- 2015-12-28 JP JP2015255648A patent/JP6076455B2/ja active Active
Patent Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0083022A2 (fr) | 1981-12-30 | 1983-07-06 | Seitetsu Kagaku Co., Ltd. | Résine absorbant l'eau ayant une capacité d'absorption et un effet de dispersion dans l'eau améliorés et procédé de préparation |
DE3314019A1 (de) | 1982-04-19 | 1984-01-12 | Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka | Absorbierender gegenstand |
DE3523617A1 (de) | 1984-07-02 | 1986-01-23 | Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka | Wasserabsorbierendes mittel |
DE3713601A1 (de) | 1987-04-23 | 1988-11-10 | Stockhausen Chem Fab Gmbh | Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats |
DE3825366A1 (de) | 1987-07-28 | 1989-02-09 | Dai Ichi Kogyo Seiyaku Co Ltd | Verfahren zur kontinuierlichen herstellung eines acrylpolymergels |
WO1990015830A1 (fr) | 1989-06-12 | 1990-12-27 | Weyerhaeuser Company | Polymere hydrocolloidal |
EP0450922A2 (fr) | 1990-04-02 | 1991-10-09 | Nippon Shokubai Kagaku Kogyo Co. Ltd. | Procédé de préparation d'un agrégat stable à la fluidité |
DE4020780C1 (fr) | 1990-06-29 | 1991-08-29 | Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De | |
EP0530438A1 (fr) | 1991-09-03 | 1993-03-10 | Hoechst Celanese Corporation | Polymère superabsorbant à propriétés de pouvoir absorbant perfectionné |
EP0543303A1 (fr) | 1991-11-22 | 1993-05-26 | Hoechst Aktiengesellschaft | Hydrogels hydrophiles à forte capacité de gonflement |
EP0547847A1 (fr) | 1991-12-18 | 1993-06-23 | Nippon Shokubai Co., Ltd. | Procédé de préparation d'une résine absorbant l'eau |
EP0559476A1 (fr) | 1992-03-05 | 1993-09-08 | Nippon Shokubai Co., Ltd. | Méthode de préparation d'une résine absorbante |
WO1993021237A1 (fr) | 1992-04-16 | 1993-10-28 | The Dow Chemical Company | Resines hydrophiles reticulees et procede de preparation |
EP0632068A1 (fr) | 1993-06-18 | 1995-01-04 | Nippon Shokubai Co., Ltd. | Procédé de préparation d'une résine absorbante |
EP0640330A1 (fr) | 1993-06-30 | 1995-03-01 | The Procter & Gamble Company | Produits absorbants hygiéniques |
EP0780424A1 (fr) | 1995-07-07 | 1997-06-25 | Nippon Shokubai Co., Ltd. | Poudre absorbant l'eau et son procede de fabrication |
DE19543368A1 (de) | 1995-11-21 | 1997-05-22 | Stockhausen Chem Fab Gmbh | Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung |
DE19646484A1 (de) | 1995-11-21 | 1997-05-22 | Stockhausen Chem Fab Gmbh | Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung |
WO1998049221A1 (fr) | 1997-04-29 | 1998-11-05 | The Dow Chemical Company | Polymeres superabsorbants ayant une usinabilite amelioree |
DE19807502A1 (de) | 1998-02-21 | 1999-09-16 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen |
EP0937736A2 (fr) | 1998-02-24 | 1999-08-25 | Nippon Shokubai Co., Ltd. | Réticulation d'un agent absorbant l'eau |
DE19807992C1 (de) | 1998-02-26 | 1999-07-15 | Clariant Gmbh | Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
DE19854573A1 (de) | 1998-11-26 | 2000-05-31 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen |
DE19854574A1 (de) | 1998-11-26 | 2000-05-31 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen |
US6239230B1 (en) | 1999-09-07 | 2001-05-29 | Bask Aktiengesellschaft | Surface-treated superabsorbent polymer particles |
WO2001038402A1 (fr) | 1999-11-20 | 2001-05-31 | Basf Aktiengesellschaft | Procede de preparation continue de polymerisats geliformes reticules a fines particules |
EP1199327A2 (fr) | 2000-10-20 | 2002-04-24 | Nippon Shokubai Co., Ltd. | Agent absorbant l'eau et son procédé de préparation |
WO2002032962A2 (fr) | 2000-10-20 | 2002-04-25 | Millennium Pharmaceuticals, Inc. | Procedes et compositions des proteines humaines 80090, 52874, 52880, 63497, et 33425 et leurs utilisations |
WO2002055469A1 (fr) | 2001-01-12 | 2002-07-18 | Degussa Ag | Procede continu pour la production et la purification d'acide (meth)acrylique |
WO2003031482A1 (fr) | 2001-10-05 | 2003-04-17 | Basf Aktiengesellschaft | Procede de reticulation d'hydrogels contenant des morpholine-2,3-diones |
DE10204938A1 (de) | 2002-02-07 | 2003-08-21 | Stockhausen Chem Fab Gmbh | Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden |
DE10204937A1 (de) | 2002-02-07 | 2003-08-21 | Stockhausen Chem Fab Gmbh | Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten |
WO2003078378A1 (fr) | 2002-03-15 | 2003-09-25 | Stockhausen Gmbh | Cristal d'acide (meth)acrylique et procede pour produire et purifier de l'acide (meth)acrylique aqueux |
WO2003104300A1 (fr) | 2002-06-01 | 2003-12-18 | Basf Aktiengesellschaft | Esters (meth)acryliques de trimethylolpropane polyalcoxyle |
WO2003104301A1 (fr) | 2002-06-11 | 2003-12-18 | Basf Aktiengesellschaft | (meth)acrylesters de glycerine polyalcoxy |
WO2003104299A1 (fr) | 2002-06-11 | 2003-12-18 | Basf Aktiengesellschaft | Procede de production d'esters de polyalcools |
WO2004035514A1 (fr) | 2002-10-10 | 2004-04-29 | Basf Aktiengesellschaft | Procede de production d'acide acrylique |
WO2004037900A1 (fr) | 2002-10-25 | 2004-05-06 | Stockhausen Gmbh | Procede de melange en deux etapes pour preparer un polymere absorbant |
DE10249821A1 (de) * | 2002-10-25 | 2004-05-13 | Stockhausen Gmbh & Co. Kg | Absorbierende Polymergebilde mit verbesserter Rententionskapazität und Permeabilität |
DE10249822A1 (de) * | 2002-10-25 | 2004-05-13 | Stockhausen Gmbh & Co. Kg | Zweistufiges Mischverfahren zur Herstellung eines absorbierenden Polymers |
EP1462473A1 (fr) | 2003-03-14 | 2004-09-29 | Nippon Shokubai Co., Ltd. | Procédé pour la réticulation de la surface d'une poudre de résine absorbantl'eau |
DE10331450A1 (de) | 2003-07-10 | 2005-01-27 | Basf Ag | (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung |
DE10331456A1 (de) | 2003-07-10 | 2005-02-24 | Basf Ag | (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung |
DE10334584A1 (de) | 2003-07-28 | 2005-02-24 | Basf Ag | Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen |
DE10355401A1 (de) | 2003-11-25 | 2005-06-30 | Basf Ag | (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung |
WO2008040715A2 (fr) | 2006-10-05 | 2008-04-10 | Basf Se | Procédé pour la préparation de particules de polymère absorbant l'eau grâce à une polymérisation de gouttes d'une solution de monomère |
WO2008052971A1 (fr) | 2006-10-31 | 2008-05-08 | Basf Se | Contrôle d'un procédé de fabrication de particules polymères absorbant l'eau dans une phase gazeuse chauffée |
WO2008113790A1 (fr) * | 2007-03-19 | 2008-09-25 | Basf Se | Procédé pour revêtir des particules polymères absorbant l'eau |
WO2008113788A2 (fr) * | 2007-03-19 | 2008-09-25 | Basf Se | Procédé pour revêtir des particules polymères absorbant l'eau |
Non-Patent Citations (2)
Title |
---|
F.L. BUCHHOLZ, A.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, pages: 71 - 103 |
See also references of EP2550316A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015511247A (ja) * | 2012-01-12 | 2015-04-16 | エボニック インダストリーズ アーゲー | 吸水性ポリマーの連続的な製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110237735A1 (en) | 2011-09-29 |
JP2016094625A (ja) | 2016-05-26 |
CN102844358B (zh) | 2014-09-17 |
EP2550316A1 (fr) | 2013-01-30 |
EP2550316B1 (fr) | 2015-09-23 |
JP2013523903A (ja) | 2013-06-17 |
EP2550316B2 (fr) | 2018-11-14 |
CN102844358A (zh) | 2012-12-26 |
JP6076455B2 (ja) | 2017-02-08 |
US8461278B2 (en) | 2013-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2951212B1 (fr) | Procédé de production de particules polymeres absorbant l'eau présentant une grande rapidite de gonflement et une capacite de retention apres centrifugation elevee, le lit de gel gonfle presentant simultanement une grande permeabilite | |
EP2411422B1 (fr) | Procédé de production de particules polymères hydrophiles à post-réticulation superficielle | |
EP2486084B1 (fr) | Procédé de post-humidification de particules polymères post-réticulées en surface, qui absorbent l'eau | |
EP2539382B1 (fr) | Procédé pour produire des particules de polymères hydroabsorbantes | |
EP2673011B1 (fr) | Procede pour la préparation des particules polymères absorbant de l'eau ayant une haute vitesse de gonflement | |
EP2432836B1 (fr) | Procédé de revêtement pour particules polymères hydrophiles | |
EP3140325B1 (fr) | Méthode produisant des particules de polymere absorbant l'eau | |
EP2550304B1 (fr) | Procédé pour éliminer des monomères résiduels de particules polymères absorbant l'eau | |
EP2550316B1 (fr) | Procédé de production de particules polymères absorbant l'eau | |
WO2011131526A1 (fr) | Procédé de préparation de particules polymères absorbant l'eau | |
EP2486066B1 (fr) | Procédé de réhumidification de particules polymères réticulées en surface, absorbant l'eau | |
WO2010066680A2 (fr) | Procédé d'élimination d'impuretés métalliques | |
WO2014005860A1 (fr) | Procédé de production de particules polymères absorbant l'eau, à propriétés améliorées | |
EP2814854B1 (fr) | Particules polymères hydrophiles présentant une vitesse de gonflement et une perméabilité élevées | |
EP2831153A1 (fr) | Procédé de post-réticulation thermique superficielle dans un échangeur thermique à tambour à vis hélicoïdale contrarotative | |
EP2424900B1 (fr) | Procédé de séparation d'impuretés métalliques | |
EP3140326B1 (fr) | Particules polymères absorbant l'eau | |
EP2714104B1 (fr) | Procédé de production de particules polymères absorbant l'eau | |
EP2714755B1 (fr) | Procédé de préparation continue de particules polymères hydroabsorbantes | |
EP2861631B1 (fr) | Procédé de fabrication de particules de polymère absorbant l'eau dans un réacteur de polymérisation comprenant au moins deux arbres rotatifs parallèles | |
WO2013189770A1 (fr) | Procédé de préparation de particules polymères absorbant l'eau | |
EP2485773B1 (fr) | Utilisation de condensat de vapeur de chauffage pour la production de particules polymères qui absorbent l'eau | |
EP3755730B1 (fr) | Procédé de production de particules superabsorbantes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180015379.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11709147 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013500470 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011709147 Country of ref document: EP |