[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011113175A1 - 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途 - Google Patents

阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途 Download PDF

Info

Publication number
WO2011113175A1
WO2011113175A1 PCT/CN2010/000321 CN2010000321W WO2011113175A1 WO 2011113175 A1 WO2011113175 A1 WO 2011113175A1 CN 2010000321 W CN2010000321 W CN 2010000321W WO 2011113175 A1 WO2011113175 A1 WO 2011113175A1
Authority
WO
WIPO (PCT)
Prior art keywords
cytarabine
group
prodrug derivative
cytarabine prodrug
mmol
Prior art date
Application number
PCT/CN2010/000321
Other languages
English (en)
French (fr)
Inventor
高峰
徐峻
Original Assignee
Gao Feng
Xu Jun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gao Feng, Xu Jun filed Critical Gao Feng
Priority to PCT/CN2010/000321 priority Critical patent/WO2011113175A1/zh
Publication of WO2011113175A1 publication Critical patent/WO2011113175A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/09Pyrimidine radicals with arabinosyl as the saccharide radical

Definitions

  • the invention relates to the technical field of medicine, in particular to a novel cytarabine prodrug derivative and a synthetic route thereof, and the invention also relates to a cytarabine prodrug derivative preparation, a preparation method thereof and a cytarabine The use of drug derivatives and their preparations in anti-cancer and anti-tumor.
  • Cancer is currently the most important disease that threatens human health.
  • the existing methods of treating cancer include: surgical resection, radiotherapy, chemotherapy or the combination of these methods.
  • Chemotherapy has gained widespread use and has been used in the treatment of many different types of cancer.
  • most of the anticancer drugs used in chemotherapy are limited to delaying the deterioration of cancer and prolonging the life of the patient.
  • the pathogenesis of various types of cancer varies, they are actually a large group of syndromes with common characteristics.
  • the physiological difference from normal cells is not large. This is a huge challenge for developing drugs that selectively clear cancer cells without killing normal cells.
  • Another major challenge in the development of anticancer drugs is cancer cell resistance, which is the drug resistance caused by a period of chemotherapy.
  • Cytarabine is an analog of cytidine nucleoside, an inhibitor of DNA polymerase. It can block DNA synthesis, can also be incorporated into DNA, interfere with DNA replication, and can also block the reduction of cytosine nucleotides into Deoxycytosine (Sylvester, RK, Fisher, AJ, and Lobell, ⁇ , Drug Intelligence & Clinical Pharmacy: Vol. 21, No. 2, pp. 177-180 (1987); Boyer et al., Novel Cytarabine Monophospate Prodrugs, United States Patent Application Publication, Pub. No. : US 2007/0037774 A 1, (Feb.
  • cytarabine is mainly used for the treatment of acute leukemia. It is the best for acute myeloid leukemia. It is also effective for acute monocytic leukemia and acute lymphoblastic leukemia. It has certain curative effect on malignant lymphoma, lung cancer, digestive tract cancer, head and neck cancer. It has viral keratitis and epidemic. Conjunctivitis and the like also have a certain effect, however, it is ineffective for most solid tumors. The activity of cytarabine is not very high.
  • cytarabine is generally associated with other drugs, such as: methoxy daunorubicin, all-trans retinoic acid combined with arsenic trioxide, pirarubicin, topotecan - Etoposide-cyclophosphamide, fludarabine, etc. are used in combination.
  • Cytarabine has side effects such as myelosuppression and digestive tract reaction.
  • a few patients may have side effects such as abnormal liver function, fever, and rash (Bolwell, BJ, Cassileth, PA, Gale, RP Leukemia. 2(5): 253-60 ( 1988); Kimby, E., Nygren, P., Glimelius, B. Acta Oncol.
  • Cytarabine is an antimetabolite, which is phosphorylated by deoxycytidine in cells, converted to active cytarabine, and further converted to the corresponding diphosphate and cytarabine. effect. Cytarabine inhibits DNA polymerase by interfering with the deoxycytidine triphosphate required for DNA synthesis, interfering with nucleotide incorporation into DNA, and inhibiting nucleotide reductase, preventing nucleotides from being converted into Deoxynucleotide, but has no significant effect on the synthesis of RNA and protein.
  • miftine and adefovir have been approved as anti-viral therapeutics for hepatitis B (Starrett, et al., "Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9 - [2 - (pho sphonomethoxy)ethy 1] adenine (PMEA)," J Med Chem., 37(12): 1857-64 (1994); Shaw, et al”"Pharmacokinextics and Metabolism of Selected Prodrugs of PMEA in Rats," Drug Metabolism Dis., 25(3): 362-366 (1997); Wacher, VJ, et al., Advanced Drug Delivery Reviews 46:89-102 (2001); Wacher, et al., "Active Secretion And Enterocytic Drug Metabolism Barriers to Drug Absorption," Adv.
  • Cytarabine is generally not used to treat liver cancer because its N4 amino group (see Figure 1) is metabolically deactivated and causes toxicity when its nucleoside skeleton structure enters the liver; on the other hand, its glycocalyx structure
  • the O5 hydroxyl group (see Figure 1) must be activated by phosphorylation, and this activation process is too slow in the liver. Summary of the invention
  • the present invention aims to overcome the deficiencies of the above prior art and provide an efficient, low toxicity, non-resistance, a cytarabine prodrug derivative capable of being rapidly activated, and a synthetic route of a cytarabine prodrug derivative and a preparation method of a cytarabine prodrug derivative preparation, and the present invention also provides an arsenic cell Experimental data on the use of glycoside prodrug derivatives and their formulations in anticancer and antitumor applications.
  • the cytarabine prodrug derivative of the present invention characterized in that the cytarabine prodrug derivative has any one of the following general formulae (I), (II) and (III) compound of:
  • X represents any one of OH, O-P OXOR ⁇ and phosphorus Stt
  • the monument Stt is any one of a monophosphoric acid group, a diphosphate group and a triphosphate group
  • R 2 is a C 1S saturated or unsaturated aliphatic group containing one or more unsaturated groups, the unsaturated group comprising a cis or trans isomer;
  • A represents O or S or CH 2 or no group;
  • R 3 is an amino group, an alkyl-substituted amino group, an aryl-substituted amino group, a heterocyclic-substituted amino group, NHOH, NHOR 4 and any of the following groups:
  • R 4 is a halogen atom, an amino group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, a carboxyl group, a hydroxyl group, a cyano group, a trifluoromethyl group, a benzyl group, a phenyl group, an aromatic group, Any one of an acyl group, a carbonyl group, a substituted amino group, a yellow acid group, an amide group, a yellow amide group, an amino acid, a carbocyclic group and a heterocyclic group.
  • R 1 may be any one of H, Cw 8 alkyl, C 18 cycloalkyl, benzyl, phenyl and aromatic ring;
  • R 2 AH dC 18 alkyl, C 3-18 cycloalkyl Any one of C 2-18 alkenyl, C 2-18 alkynyl, cycloalkenyl, benzyl, phenyl, aryl, cyclic amino, carbocyclyl, heterocyclyl, anilino and substituted anilino .
  • Each of these groups may be further substituted, and may contain a hetero atom therein.
  • the cytarabine prodrug derivative of the formula (I) of the present invention includes a representative formula having the following structural formula
  • the cytarabine prodrug derivative of the formula (III) of the present invention includes a representative compound having the following structural formula:
  • alkyl means various saturated straight-chain, side-chain or cyclic hydrocarbon groups, particularly including small alkyl groups containing ten or ten carbons or less.
  • alkyl means various saturated straight-chain, side-chain or cyclic hydrocarbon groups, particularly including small alkyl groups containing ten or ten carbons or less.
  • a linear, branched or cyclic hydrocarbon group having at least one carbon-carbon double bond such as a vinyl group, a propenyl group, a butenyl group, a pentenyl group, and the like.
  • the "block group" used in the present invention is the above alkyl group or a sulfhydryl group and contains at least one carbon-carbon triple bond. Therefore, the alkynyl group includes a linear chain having two to ten carbon atoms and containing at least one carbon-carbon triple bond. A branched or cyclic hydrocarbon or alkynyl group such as ethynyl, propynyl, butynyl and pentynyl.
  • “Saturated” in the present invention means that the group does not contain an unsaturated bond, such as a carbon-carbon double bond or a carbon-carbon triple bond; and “unsaturated” means that the group contains one or more carbon-carbon doubles. Key or carbon-carbon triple bond.
  • the "cycloalkyl group” used in the present invention is a cyclic hydrocarbon group and preferably a cycloalkyl group having three to eight carbons.
  • cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane and cyclooctane are all under this definition typical example.
  • a cycloalkyl group contains one or two carbon-carbon double bonds to form a "cycloalkenyl group".
  • the cycloalkyl group may also carry an alkyl group, an alkenyl group, an alkynyl group, and other groups.
  • aromatic group used in the present invention is a cyclic conjugated aromatic system and may contain one or more non-carbon atoms (other than carbon other nitrogen such as nitrogen) such as phenyl, naphthyl and pyridine in the ring. Base.
  • heterocyclic group which is also commonly used in the present invention means a cyclic group and a compound in which any plurality of atoms are constituted by a covalent bond, and which contains at least one non-carbon atom.
  • a heterocyclic group includes a five- and six-membered ring system containing a nitrogen, sulfur or oxygen non-carbon atom such as pyrazole, pyrrole, pyridine or pyrimidine.
  • alkoxy group in the present invention means an alkyloxy group formed by linking an oxygen atom to a linear or branched alkyl group.
  • alkoxy groups include a decyloxy group, an ethoxy group, a propoxy group or an isopropoxy group and the like.
  • alkylthio refers to an alkylthio group formed by linking a sulfur atom to a straight or branched alkyl group.
  • alkylthio group examples include a methylthio group, an ethylthio group, a propylthio group or an isopropylthio group.
  • halogen atom group in the present invention is fluorine, chlorine, bromine or iodine.
  • amino acid in the present invention means a substituted natural and non-natural amino acid, a pure L- or D-configuration or a racemic mixture, and a group derived from an amino group.
  • substituents defined above also include groups which are further substituted, wherein these new substituents may also contain other groups.
  • a ruthenium atom on an alkyl or aromatic group is substituted by an amino group, a halogen or other group to become a new group belonging to each of the above definitions.
  • the "prodrug” in the present invention means a compound which cleaves or increases the biological action formed by a certain structural unit in the body after the cytarabine prodrug derivative of the present invention is used in the body.
  • the organic solvents mentioned in the present invention include: benzotriazole hexafluorophosphate-1 benzyl-oxytripyrrole Phosphorus (PyBOP), 4-dimethylaminopyridine (DMAP), hydrazine, hydrazine-dimercaptocarboxamide (DMF), dimethyl sulfoxide (DMSO), polyethylene glycol (PEG) and tetrahydrofuran (THF) ).
  • Another technical problem solved by the present invention is to provide a simple and effective synthetic route for a plurality of cytarabine prodrug derivatives of the formula (I), (II) or (III), the technical disclosures of which are as follows :
  • a synthetic route for cytarabine prodrug derivatives characterized by:
  • the acid anhydride compound is any one of succinic anhydride, glutaric anhydride, adipic anhydride, and diglycolic anhydride;
  • the fatty alcohol is methanol, ethanol, n-octanol, lauryl alcohol, n-nonanol, and tetradecyl Any of alcohol, n-hexadecanol and stearyl alcohol. (Refer to synthetic route 1 ⁇ 5, 8, 9, 11, 12, 16-23)
  • the acid anhydride compound is any one of succinic anhydride, glutaric anhydride, adipic anhydride, and diglycolic anhydride. (Refer to synthetic route 14, 15)
  • the acid anhydride compound is any one of succinic anhydride, glutaric acid, adipic anhydride, and diethylene glycol;
  • the fatty alcohol is decyl alcohol, ethanol, n-octanol, n-nonanol, lauryl alcohol, Any one of tetradecanol, n-hexadecanol and stearyl alcohol. (Refer to synthetic route 6, 7, 10, 13)
  • a method for preparing a cytarabine prodrug derivative preparation characterized in that:
  • the preparation solution is further diluted with physiological saline or glucose injection to prepare a cytarabine prodrug derivative preparation.
  • the organic solvent is any one of ethanol, propylene glycol, glycerin, glyceride, polyethylene glycol (PEG), hydrazine, fluorenyl-dimercapto amide (DMF) and dimercapto sulfoxide (DMSO) or A variety of combinations of solvents.
  • the cytarabine prodrug derivative preparation of the present invention is characterized in that it is a product prepared by the above-described preparation method of the cytarabine prodrug derivative.
  • Such cancers include, but are not limited to, leukemia, solid tumors, lung cancer, colon cancer, liver cancer, central nervous system tumors, ovarian cancer, and kidney cancer.
  • the cancer includes, but is not limited to, cancer including leukemia, solid tumor, lung cancer, colon cancer, liver cancer, central nervous system tumor, Ovarian cancer and kidney cancer.
  • the cytarabine prodrug derivative preparation may also be used in combination with other chemotherapeutic drugs in anti-cancer and anti-tumor, the other chemotherapeutic drugs including alkylating agents, plant alkaloids, antibacterial anti-tumor amides, platinum Drugs, anti-metabolites and other known anti-cancer drugs.
  • at least one of the representative cytarabine prodrug derivatives having the above-listed enumeration is employed.
  • the pharmaceutical preparation is prepared by using the cytarabine prodrug derivative of the present invention as a component, and can be administered orally or parenterally.
  • the parenteral administration referred to herein means subcutaneous, intravascular, intraarterial, ⁇ ! Within a few flesh, in the atria, in the synovium, intrathoracic injection or drip.
  • the present invention contemplates the design of cytarabine prodrugs using new design techniques.
  • Cytarabine (see Figure 1) cannot be used to treat liver cancer.
  • its nucleoside skeleton structure enters the liver, its N4 amino group is metabolically deactivated and causes toxicity.
  • its glycoside structure The O5 hydroxyl group on it must be activated by phosphorylation, and this activation process is too slow in the liver.
  • the cytarabine prodrug derivative of the present invention is designed by chemically modifying the position of N4, 05 to design a novel prodrug derivative, thereby avoiding metabolic failure of N4 amino group and causing toxicity; It is easily activated by phosphorylation.
  • the main beneficial effects are: increased bioavailability, reduced multi-drug resistance (multi-targeted design techniques), increased solubility, and increased ester solubility.
  • the invention provides a synthetic route of a cytarabine prodrug derivative, a cytarabine prodrug derivative preparation and a preparation method thereof, and proves the cytarabine prodrug derivative of the present invention through a large amount of experimental data. Use in anti-cancer and anti-tumor.
  • Figure 1 is a schematic diagram showing the structure of cytarabine and the position of modification of N4, 05.
  • Fig. 2 is a view showing the structure of a representative cytarabine prodrug derivative of the formula -I of the present invention.
  • Fig. 3 is a view showing the structure of a representative cytarabine prodrug derivative of the formula -II of the present invention.
  • Fig. 4 is a view showing the structure of a representative cytarabine prodrug derivative of the formula -III of the present invention.
  • Fig. 5 is a graph showing the drug concentration-inhibition rate of the cytosine prodrug derivative of the present invention inhibiting the BEL-7402 liver cancer cell line. detailed description
  • cytarabine prodrug derivative 8 (Scheme 8): cytarabine (1 g, 4.1 mmol), first intermediate ⁇ 8 (0.81 g, 5.0 mmol) PyBOP ( 2.35 g, 4.5 mmol) and DMAP (0.055 g, 0.41 mmol) dissolved in DMF (10 ml).
  • cytarabine prodrug derivative 10 (Scheme 10): cytarabine hydrochloride (1.4 g, 5 mmol) and third intermediate D10 (1.92 g, 6.0 mmol) are dissolved in DMF (12 ml) Stir at room temperature for 2 days. DMF was distilled off. The oil was stirred and solidified with 25 ml of acetic acid for three times. The obtained semisolid crude product was neutralized with 10 ml of a 1 mol/L aqueous solution of NaHC0 3 .
  • Second intermediate C15 (Scheme 15): cycloalkylbenzimidazole (0.53 g, 2.1 mmol), succinic anhydride (0.25 g, 2.5 ml) and DMAP (0.2 g, 1.6 mmol) in Route 15 above. ) Dissolved in tetrahydrofuran (20 ml) at a controlled temperature of 35. C, reaction for 3 hours. After pouring into water, a solid was precipitated, and the second intermediate C15 of the obtained solid was filtered and used directly to the next reaction without further purification.
  • the cytarabine prodrug derivatives encompassed by the present invention have a function of inhibiting tumor cell proliferation and an antitumor effect.
  • Tumor cell cancers include, but are not limited to, blood cancer, intestinal cancer, skin cancer, breast cancer, lung cancer, liver cancer, ovarian cancer, gastric cancer, uterine cancer, brain tumor, pigmentoma, prostate cancer, and the like. Synthetic drug tumor cytotoxicity
  • HL-60 cell line suspension growth, using RPMI 1640 containing 10% fetal bovine serum (Hyclone)
  • the cell culture medium was cultured, and the initial cell concentration was maintained at about 3*10 5 /ml, and passaged 1:3 once every three days. Passage (5* 10 5 /ml) one day before the experiment, the cell concentration during the experiment is between 7.5 ⁇ 10*10 5 /ml.
  • the BEL-7402 cell line and the HT-29 cell line were adherently grown and cultured in D-MEM cell culture medium of 10% fetal bovine serum (Hyclone).
  • the initial cell concentration of the conventional culture was about 3*10 5 /ml, 2 ⁇ 3 days 1: 3 pass once. On the day before the experiment, 1: 2 passage, the cell concentration during the experiment was between 5 ⁇ 10*10 5 /ml.
  • Cell seeding The cells were cultured 24 hours after passage and grew well. The cells were routinely harvested, and the cell concentration was adjusted to 2 x 10 5 /ml (adherent cells) ⁇ 3 x 10 5 /ml (suspended cells) with fresh medium. The adherent cells were inoculated at 100 ⁇ /well, cultured in a 37 ° C, 5% CO 2 incubator for 24 h, and the old culture solution was discarded, and fresh culture medium was added at 95 ⁇ M/well. Suspension cells were inoculated directly to 95 ⁇ /well.
  • Drug treatment There are 6 concentration gradients for each drug, 3 duplicate wells for each concentration, and 5 duplicate wells for the drug blank control group. Ara-C control was performed simultaneously for each test. The concentrations of HT-29 and BEL-7402 cells were 5, 2.5, 1.25, 0.625, 0.3125, 0.16 mM, 5 ⁇ l per well, and the final concentrations were 0.25, 0.125, 0.0625, 0.03125, 0.016, 0.008 mM, respectively.
  • the group was added with 5 ⁇ of normal saline; the concentration of HL-60 cells added to the drug was 5 ⁇ l (T 3 , 2.5xl0- 3, 1.25xl0- 3, 0.625xl0- 3 , 0.3125x10- 3, 0.16x10- 3 mM, corresponding to a final concentration followed 2.5 ⁇ 10 -4, 1.25 ⁇ 10 -4, 6 ⁇ 25 ⁇ 10 -5, 3 ⁇ 125 ⁇ 10 -5 , 1 ⁇ 6 ⁇ 10 -5 , 8xlO" 6 mM, 5 ⁇ saline was added to the control group.
  • Figure 5 is a graph showing the drug concentration-inhibition rate of cytosine prodrug derivative inhibiting BEL-7402 liver cancer cell line, wherein JF001, JF017, JF019, JF020 and JF033 are respectively according to the above synthetic routes 1, 17, 19, The cytarabine derivative obtained by synthesizing 20 and 33.
  • Table 1-2 lists representative cytarabine prodrug derivatives that inhibit the biological activity of different tumor cells.
  • JF004, JF006, JF007, JF009, JF010, JF013, JF014 and JF021 are cytarabine derivatives synthesized according to the above synthetic routes 4, 6, 7, 9, 10, 13, 14 and 21, respectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Description

说 明 书
阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途 技术领域
本发明涉及医学技术领域, 特别是涉及一种新型的阿糖胞苷前药衍生物及 其合成路线, 本发明还涉及阿糖胞苷前药衍生物制剂及其制备方法和阿糖胞苷 前药衍生物及其制剂在抗癌抗肿瘤中的用途。
背景技术
癌症是目前危害人类生命健康的最主要的疾病, 治疗癌症的现有手段主要 包括: 手术切除、 放射性疗法、 化学疗法或这些方法的并用。 化学疗法已经得 到了广泛的应用而且已经用于多种不同类型的癌症的治疗。 然而, 大多数化学 疗法所用的抗癌药物都仅限于延緩癌症的恶化从而延长病人的生命, 4艮难达到 治愈的目的。 各类癌症的发病机理虽然各不相同, 但是它们其实是具有共同特 征的一大类症候群。 癌细胞除了代谢旺盛、 不断地分化之外, 与正常细胞的生 理差别不是^ ί艮大。 这对于开发选择性地清除癌细胞、 且不杀伤正常细胞的药物 是个巨大的挑战。 抗癌药物开发的另一大挑战是癌细胞耐药性, 即经过一段时 间化疗之后引起的耐药抗药性, 用过的化疗药物, 即使增加剂量, 对癌细胞也 不再起作用。 肿瘤细胞的转移也常使得无法用化学疗法进行治疗。 到目前为止, 没有一种抗癌药物能够医治所有的癌症。 寻找高效、 高选择性、 低毒、 无耐药 性、 而且急需的新型抗癌药物仍然极具挑战性。 大多化疗抗癌药物都会产生严 重的副作用, 从而导致化学治疗不能继续进行。 因此, 现有药物在治疗不同种 类的肿瘤时受到极大的限制。 所以, 寻找高效、 低毒的新型抗癌药物对维护人 类健康仍然迫切需要。
阿糖胞苷是胞嘧啶核苷的类似物, DNA多聚酶的抑制剂。它能够阻止 DNA 合成, 也可掺入 DNA, 干扰 DNA的复制, 此外还可阻断胞嘧啶核苷酸还原成 脱氧胞嘧 核苷酸 (Sylvester, R. K., Fisher, A. J., and Lobell, Μ·, Drug Intelligence & Clinical Pharmacy: Vol. 21, No. 2, pp. 177-180(1987); Boyer et al., Novel Cytarabine Monophospate Prodrugs, United States Patent Application Publication, Pub. No. : US 2007/0037774 A 1, (Feb. 15, 2007); Colon-Cesario, M" Wang, J" Ramos, X., Garcia, H. G., Davila, J. J., Laguna, J., Rosado, C, and Pena de Ortiz, S. J. Neurosci., 26(20): 5524 -5533(2006))。
目前, 阿糖胞苷主要用于急性白血病的治疗。 对急性粒细胞白血病疗效最 好, 对急性单核细胞白血病及急性淋巴细胞白血病也有效, 对恶性淋巴瘤、 肺 癌、 消化道癌、 头颈部癌有一定疗效, 对病毒性角膜炎及流行性结膜炎等也有 一定疗效, 然而, 对多数实体肿瘤无效。 阿糖胞苷的活性不是很高, 为了提高 疗效, 阿糖胞苷一般均与其他药物, 如: 甲氧柔红霉素、 全反式维甲酸联合三 氧化二砷、 吡柔比星、 拓朴替康-足叶乙甙 -环磷酰胺、 氟达拉滨等合并使用。 阿糖胞苷具有骨髓抑制、 消化道反应等副作用, 少数病人可有肝功异常、 发热、 皮疹等副作用(Bolwell, B.J., Cassileth, P.A., Gale, R. P. Leukemia. 2(5):253-60 (1988); Kimby, E., Nygren, P., Glimelius, B. Acta Oncol. 40(2-3):231-52 (2001); Stamatopoulos, K. Leukemia Research , Volume 22 , Issue 8 , pp 759 - 761, (2003); Burnett, A.K., Milligan, D., Prentice, A.G., Goldstone, A.H., McMullin, M.F., Hills, R.K., Wheatley, K. Cancer. 109(6): 1007-10 (2007))。
阿糖胞苷为抗代谢药物, 在细胞内先经脱氧胞苷酶催化磷酸化, 转变为有 活性的阿糖胞苷酸, 再进一步转为相应的二磷酸及三磷酸阿糖胞苷而起作用。 阿糖胞苷主要通过与 DNA 合成过程中所需的三磷酸脱氧胞苷竟争, 而抑制 DNA多聚酶, 干扰核苷酸掺入 DNA, 并能抑制核苷酸还原酶, 阻止核苷酸转 变为脱氧核苷酸, 但对 RNA和蛋白质的合成无显著作用, 属于作用于 S期的 细胞周期特异性药物,对处于 S增殖期细胞的作用最为敏感,并对 G1/S及 S/G2 转换期也有作用。 静脉注射后迅速从血中消失, 40 %可通过血脑屏障, 药物在 体内主要在肝中代谢为无活性的阿糖尿苷, 70 % ~ 90 %通过肾排泄。 为了开发 对实体肿瘤如肝癌有疗效的抗癌新药, 必须寻找对肝脏靶向性的新药。 显然, 抗肝炎病毒的药物可以作为极好的借鉴。 例如, 米夫定及阿德福韦 (adefovir, PMEA)己被批准作为乙型肝炎抗病毒治疗药物 (Starrett, et al., "Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9 - [2 - (pho sphonomethoxy)ethy 1] adenine (PMEA)," J Med Chem., 37(12): 1857-64 (1994); Shaw, et al" "Pharmacokinextics and Metabolism of Selected Prodrugs of PMEA in Rats," Drug Metabolism Dis., 25(3):362-366 (1997); Wacher, V.J., et al., Advanced Drug Delivery Reviews 46:89-102 (2001); Wacher, et al., "Active Secretion and Enterocytic Drug Metabolism Barriers to Drug Absorption," Adv. Drug Del. Rev., 46:89-102 (2001); Murono, et al., "Prevention and inhibition of nasopharyngeal carcinoma growth by antiviral phosphonated nucleoside analogs," Cancer Res., 61(21):7875-7 (2001》。 2003 年, Metabasis Therapeutics, Inc 公司的科学家 K. Raja Reddy, Mark D. Erion, Michael C. Matelich, Joseph J. Kopcho 提出用环磷酸核苷类作为抗肝癌治疗药物的前药 (United States Patent 7,214,668;), 当化合物进入肝脏后, 被肝脏的 CYP 3A4代 谢酵催化解离成无环磷酸核苷类衍生物而具有抗癌的活性。 2007年, Metabasis Therapeutics, Inc公司又提出新的环磷酸阿糖胞苷衍生物作为抗癌前药的专利申 请 (Novel Cytarabine Monophospate Prodrugs, United States Patent Application Publication, Pub. No. : US 2007/0037774 A 1, Boyer et al., Feb. 15, 2007; Phosphonic acid based prodrugs of PMEA and its analogues, United States Patent 7,214,668, Reddy, et al. May 8, 2007)。 这些专利申请的核心是将环騎 S炱接入阿 糖胞苷的核糖环上的 -OCH2-核糖位置上, 即 O5位置, 而对阿糖胞苷胞嘧啶环 上的氨基不加修饰。
阿糖胞苷一般不能用于治疗肝癌, 其原因在于当其胞核苷骨架结构进入肝 脏之后, 它的 N4氨基(见图 1 )被代谢失效并引起毒性; 另一方面是其糖甙结 构上的 O5羟基(见图 1 )必须被磷酸化而激活,而此激活过程在肝内过于緩慢。 发明内容
本发明旨在克服上述已有技术的不足, 提供一种高效、 低毒, 无耐药性, 能够被迅速激活的阿糖胞苷前药衍生物, 并提供了阿糖胞苷前药衍生物的合成 路线以及阿糖胞苷前药衍生物制剂的制备方法, 本发明还提供了阿糖胞苷前药 衍生物及其制剂在抗癌抗肿瘤方面的应用的实验数据。
本发明的阿糖胞苷前药衍生物, 其特征在于: 所述阿糖胞苷前药衍生物是具 有下述通式 (I ) 、 ( II ) 、 ( III ) 中的任意一种通式的化合物:
Figure imgf000005_0001
其中, W表示 C=O、 S(O)O和 C(O)O中的任意一种基团;
其中, Y表示 ( CH2 ) n或 H2C-0-CH2 , 其中, n=2~6;
X表示 OH、 O-P OXOR^和磷 Stt中的任意一种基团, 所述碑 Stt为单磷 酸基、 二磷酸基和三磷酸基中的任意一种;
1. R2是 C 1S饱和的或不饱和的脂肪基团, 所述不饱和的脂肪基团中含有 一个或多个不饱和健, 所述不饱和健包括顺式或反式异构体; A表示 O或 S或 CH2或无基团;
P = l-5;
R3是氨基、 烷基取代氨基、 芳香基取代氨基、 杂环基取代氨基、 NHOH、 NHOR4和如下基团中的任意一种:
Figure imgf000006_0001
其中 R4是卤原子、 氨基、 硝基、 烷基、 烯基、 炔基、 烷氧基、 烷硫基、 羧基、 羟基、 氰基、 三氟甲基、 苄基、 苯基、 芳香基、 酰基、 羰基、 取代氨基、 黄酸 基、 酰胺基、 黄酰胺基、 氨基酸、 碳环基和杂环基中的任意一种。
其中, R1 可以是 H、 Cw8烷基、 C 18环烷基, 苄基, 苯基和芳环基中的任 意一种; R2 A H、 d-C18烷基、 C3-18环烷基、 C2-18烯基、 C2-18炔基、 环烯基、 苄基、 苯基、 芳香基, 环氨基、 碳环基、 杂环基、 苯胺基和取代苯胺基中的任 意一种。 其中每一个基团可以进而取代, 而且其中可含有杂原子。
本发明的通式(I )的阿糖胞苷前药衍生物包括具有下述结构式的代表性化
Figure imgf000006_0002
Figure imgf000007_0001
本发明的通式 (III) 的阿糖胞苷前药衍生物包括具有下述结构式的代表性 化合物:
Figure imgf000008_0001
为了清晰起见但并非限制本发明, 除另外说明之外, 本发明所使用的所有 科技术语和在本发明领域内技术人员常使用和理解的意义相同。 本发明所引用 的专利申请或已发表的申请及其他论文均属于原始引用并未加修改。
本专利所用"一个"或"一种"或"一类"意指最少一个 /种 /类或一个 /种 /类或一 个 /种 /类以上。
本发明所用"烷基" 意指各种饱和的直链的、 带侧链的或环状的碳氢基团, 特包括含有十个或十个碳以下的小烷基。 例如曱基、 乙基、 丙基、 异丙基、 正 丁基、 仲丁基、 叔丁基、 正戊基、 异戊基、 正己基、 异己基、 庚基、 辛基和壬 基等仅为本定义中的一些典型例子。
本发明所用 "婦基,, 与上述 "烷基 "定义相同, 但其中必须最少有一个碳碳 双键(C=C ) , 所以本发明所用的烯基包括含有两个到十个碳原子的直链的、 带有分支链的或环状的并至少含有一个碳碳双键的烃基, 如乙烯基、 丙烯基、 丁烯基和戊烯基等。
本发明所用的"块基"为上述烷基或婦基并含有至少一个碳碳三键, 所以, 炔基包括含有两个到十个碳原子并含有至少一个碳碳三键的直链的、 带有分支 链的或环状的烃基或炔基, 如乙炔基、 丙炔基、 丁炔基和戊炔基等。
本发明中的"饱和" 意指该基团中不含不饱和键, 如碳碳双键或碳碳三键; 而"不饱和" 则指该基团中含有一个或一个以上的碳碳双键或碳碳三键。
本发明所用 "环烷基"为环状的碳氢基团并优先选用含有三到八个碳的环烷 基。 因此环丙烷、 环丁烷、 环戊烷、 环己烷、 环庚烷和环辛烷均为本定义下的 典型例子。 环烷基中含有一个或两个碳碳双键即形成 "环烯基"。 环烷基上还可 带有烷基、 烯基、 炔基和其他基团。
本发明所使用的"芳香基"为环状共轭芳香系统并可在环中含有一个或一个 以上的非碳原子 (除碳以外的其他杂原子如氮) , 如苯基、 萘基和吡啶基等。
本发明中还常用到的 "杂环基"指任何多个原子通过共价键构成的环状基团 和化合物, 并且至少含有一个非碳原子。 特指杂环基团包括含有氮, 硫或氧非 碳原子的五元和六元环状系统如嘧唑、 吡咯、 吡啶或嘧啶等。
本发明中的"烷氧基 "指把氧原子与直链或带支链的烷基连接所形成的烷基 氧化基。 此类烷氧基团的例子包括曱氧基、 乙氧基、 丙氧基或异丙氧基等。
同样地, "烷硫基"指把硫原子与直链或带支链的烷基连接所形成的烷基硫 化基。 此类烷硫基团的例子包括甲硫基、 乙硫基、 丙硫基或异丙硫基等。
本发明中的"卤原子基"为氟, 氯, 溴, 碘。
本发明中的"氨基酸"指取代的天然和非天然的氨基酸,纯的 L- 或 D- 构型 或外消旋混合物, 以及其由氨基和 而衍生出来的基团。
特别值得进一步说明的是, 上述所定义的各种取代基还包括它们被进一步 取代而构成的基团, 其中这些新的取代基也可含有其他的基团。 例如烷基或芳 香基上的氲原子被氨基、 卤素或其他基团取代即成为新的属于上述各定义中的 基团。
本发明中所用的"騎酸" 或"磚酸酯" 是最高氧化态的五价磷原子上连有四 个氧原子, 一个氧原子以双键与磷原子相连, 两个氧原子以单键与磷原子相连, 而且, 这两个氧原子上可以是氢原子、 负电荷或如上所定义的各种烷基、 芳香 基等, 如 -P(=O)(O-)2, -P(O)(OR)2。磷原子上的另外一个氧原子与本发明中的衍 生物相连。
本发明中的 "前药 "指本发明的阿糖胞苷前药衍生物被用到体内后, 在体内 断裂或增加某个结构单元所形成的起生物作用的化合物。
本发明中提及的有机溶 包括: 六氟磷酸苯并三唑- 1基-氧基三吡咯垸 基磷 ( PyBOP )、 4-二甲氨基吡啶( DMAP )、 Ν,Ν-二曱基曱酰胺( DMF )、 二曱基亚砜 ( DMSO ) 、 多聚乙二醇 (PEG) 和四氢呋喃 (THF) 。
本发明解决的另一个技术问题是提供了多个通式(I) 、 (II) 或 (III) 的 结构式的阿糖胞苷前药衍生物的简单有效的合成路线, 其技术放案分别如下:
1. 阿糖胞苷前药衍生物的合成路线, 其特征在于:
( 1 ) 酸酐化合物与脂肪醇混和, 加热回流或室温搅拌, 反应 3-5个小时, 冷却得到的第一中间产物 (B) 不经进一步純化, 直接用于下一步反应;
(2) 阿糖胞香, 第一中间产物 (B) , PyBOP和 DMAP溶于 DMF, 室温 ~60°C搅拌 7~24小时, 得到反应液通过柱层析色 ·ΐ脊提純, 得到通式(I)的阿糖 3包苷 †生物。
所述酸酐化合物为丁二酸酐、 戊二酸酐、 己二酸酐和二甘醇酐中的任意一 中; 所述脂肪醇为甲醇、 乙醇、 正辛醇、 月桂醇、 正癸醇、 正十四醇、 正十六 醇和十八醇中的任意一种。 (参考合成路线 1~5, 8、 9、 11、 12、 16-23 )
2. 阿糖胞苷前药衍生物的合成路线, 其特征在于:
(1)将 2, 6-二曱基氨基苯或环烷基苯并咪唑、 酸酐化合物和 DMAP溶于 四氢呋喃,控制温度 35〜50°C反应 3~5小时,析出固体,所得第二中间产物( C ) 不经纯化, 直接用于下一步反应;
(2)将阿糖胞苷, 第二中间产物 (C) , PyBOP和 DMAP溶于 DMF, 室 温搅拌 12~24小时, 反应液倒入水中, 析出固体或将反应液通过柱层析色谱提 纯, 得到通式 (II) 的阿糖胞苷前药衍生物。
所述酸酐化合物为丁二酸酐、 戊二酸酐、 己二酸酐和二甘醇酐中的任意一 种。 (参考合成路线 14, 15)
3. 阿糖胞苷前药衍生物的合成路线, 其特征在于:
( 1 ) 酸酐化合物与脂肪醇混和, 加热回流或室温搅拌, 反应 3〜5个小时, 冷却得到的第一中间产物 (B) 不经进一步纯化, 直接用于下一步反应;
(2) 第一中间产物 (B) , SOCl2和 1~2滴 DMF溶于二氯曱烷, 加热回流 3~4小时, 旋转蒸发减压除去溶剂和过量的 SOCl2得到第三中间产物(D ) , 不 经进一步纯化, 直接用于下一步反应;
( 3 ) 阿糖胞苷盐酸盐和第三中间产物 (D )溶于 DMF, 室温搅拌 2〜4天, 减压蒸馏除去 DMF 后得到的油状物加乙醚搅拌固化, 得到的半固体产品用 NaHCO3水溶液中和、 过滤, 所得固体用水洗至中性后用乙酸乙酯重结晶、 过 滤或所得固体溶于甲醇, 过滤除去不溶物, 然后通过柱层析色谱提纯, 得到通 式 (III ) 的阿糖胞苷衍生物。
所述酸酐化合物为丁二酸酐、戊二酸 、己二酸酐和二甘醇 中的任意一种; 所述所述脂肪醇为曱醇、 乙醇、 正辛醇、 正癸醇、 月桂醇, 正十四醇、 正十六 醇和十八醇中的任意一种。 (参考合成路线 6、 7、 10, 13 )
阿糖胞苷前药衍生物制剂的制备方法, 其特征在于:
( 1 )将具有通式( I ) 、 ( II )或( III ) 中的任意一种结构式的阿糖胞苷前 药衍生物溶解到水、 生理盐水、 环糊精水溶液、 水溶性的有机溶剂、 非离子性 的表面活性剂、 水溶性的类脂、 脂肪酸、 脂肪酸酯和磷脂中的任意一种或多种 的组合溶剂而制得制剂溶液;
( 2 )将所述制剂溶液再用生理盐水或葡萄糖注射液稀释而制成阿糖胞苷前 药衍生物制剂。
所述有机溶剂是乙醇、 丙二醇、甘油、甘油酯、 多聚乙二醇(PEG ) 、 Ν,Ν- 二曱基曱酰胺(DMF )和二曱基亚砜(DMSO ) 中的任意一种或多种的组合溶 剂。
本发明的阿糖胞苷前药衍生物制剂, 其特征在于: 是由上述阿糖胞苷前药衍 生物制剂的制备方法制备得到的产品。
阿糖胞苷前药衍生物在抗癌抗肿瘤中的用途。 所述癌症包括但不仅限于白 血病、 固体瘤、 肺癌、 结肠癌、 肝癌、 中枢神经系统肿瘤、 卵巢癌和腎癌。
本发明的阿糖胞苷前药衍生物制剂在抗癌抗肿瘤中的用途。所述癌症包括但 不仅限于癌症包括白血病、 固体瘤、 肺癌、 结肠癌、 肝癌、 中枢神经系统肿瘤、 卵巢癌和肾癌。 所述阿糖胞苷前药衍生物制剂还可与其他化疗药物联合用在抗 癌抗肿瘤中, 所述其他化疗药物包括烷化剂、 植物生物碱类、 抗菌抗肿瘤横酰 胺类药物、 铂类药物、 抗代谢类及其它已知的抗癌药物。 在所述联合用药过程 中, 包括运用至少一种具有上述所列举的代表性的阿糖胞苷前药衍生物。
以本发明的阿糖胞苷前药衍生物为成份制备成药用制剂, 可以用于口服的 或非肠道途径给药。 此处所指的非肠道途径给药是指皮下皮内、 静脉内、 动脉 内、 ^!几肉内、 心房内、 滑膜内、 胸骨内注射或滴注。
本发明采用新的设计技术构思设计出阿糖胞苷前药衍生物。 阿糖胞苷 (参 照附图 1 ) 不能用于治疗肝癌的原因一方面在于当其胞核苷骨架结构进入肝脏 之后, 它的 N4氨基被代谢失效并引起毒性, 另一方面是其糖甙结构上的 O5羟 基必须被磷酸化而激活, 而此激活过程在肝内过于緩慢。
本发明的阿糖胞苷前药衍生物的设计是通过对 N4, 05位置进行化学修饰, 而设计出了新型的前药衍生物, 避免 N4氨基被代谢失效并引起毒性; 另外, 让 05 羟基容易被磷酸化而激活, 主要有益效果是: 增加生物利用度, 减少多 重抗药性 (多靶向设计技术), 增加溶解度, 增加酯溶性。 本发明详细提供了阿 糖胞苷前药衍生物的合成路线, 阿糖胞苷前药衍生物制剂及其制备方法, 并通 过大量的实验数据证明了本发明的阿糖胞苷前药衍生物在抗癌抗肿瘤方面的用 途。
附图说明
图 1表示阿糖胞苷的结构和 N4 , 05修饰位置的示意图。
图 2表示本发明的通式 -I的具有代表性的阿糖胞苷前药衍生物的结构示意 图。
图 3表示本发明的通式 -II的具有代表性的阿糖胞苷前药衍生物的结构示意 图。
图 4表示本发明的通式 -III 的具有代表性的阿糖胞苷前药衍生物的结构示 意图。 图 5表示本发明的阿糖胞苷前药衍生物抑制 BEL-7402肝癌细胞株的药物 浓度-抑制率曲线图。 具体实施方式
本发明的一些代表性阿糖胞苷前药衍生物的合成路线列举如下。 本发明专 利中的其他类似阿糖胞苷前药衍生物通过相同或类似的方法合成得到。
Figure imgf000013_0001
1
第一中间产物 B1的合成(路线 1 ): 丁二酸酐(25 g , 250 mmol )溶于曱醇(50 ml ) , 加热回流, 反应 3个小时。 得到的第一中间产物 B 1不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 1的合成(路线 1 ) : 阿糖胞苷( 1.0 g, 4.1 mmol ) , 第 一中间产物 Β 1 ( 0.6 g, 4,5 mmol ) , PyBOP ( 2.35 g, 4.5 mmol )和 DMAP ( 0.055 g, 0.41 mmol ) 溶于 DMF ( 20 ml ) , 室温搅拌 24小时。 反应液通过柱层析色 谱提纯(硅胶,展开剂: 二氯曱烷 /曱醇 =9/1 ),得到阿糖胞苷前药衍生物 1 ( 16.9 mg ) , LC ( UV 254 nm ) 纯度 >95%。 LC-MS m/z 358 [M + H]十 (分子式 C14H19N308, 分子量 357 ) 。 合成路线 2:
Figure imgf000014_0001
第一中间产物 B 2的合成(路线 2): 戊二酸酐(28.5g, 250mmol)溶于乙醇 ( 100 毫升) , 加热回流, 反应 5个小时。 得到的第一中间产物 B2不经进一 步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 2的合成(路线 2) : 阿糖胞苷( 1.0 g, 4.1 mmol) , 第 一中间产物 Β2 (0.79 g, 4.9 mmol ) , PyBOP (2.35 g, 4.5 mmol ) , 和 DMAP ( 0.055 g, 0.41 mmol )溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反应液通过柱 层析色 i普提纯 (硅肢, 展开剂: 二氯甲烷 /甲醇 =9/1) , 得到阿糖胞苷前药衍生 物 2 ( 46.9 mg) , LC ( UV 254 nm ) 純度 >95%。 LC-MS m/z 386 [M + H]+ (分 子式 C16H23N308, 分子量 385 ) 。
Figure imgf000014_0002
第一中间产物 B3的合成(路线 3) : 戊二酸酐( 11.4g, 100 mmol ) 溶于曱醇
(50 ml) , 加热回流, 反应 3个小时。 得到的第一中间产物 B3不经进一步纯 化, 直接用于下一步反应。
阿糖胞苷前药衍生物 3的合成(路线 3) : 阿糖胞苷( 1.0 g, 4.1 mmol) , 第 一中间产物 B3 ( 0.72 g, 4.9 mmol ) , PyBOP (2.35 g, 4,5 mmol )和 DMAP (0.055 g, 0.41 mmol )溶于 DMF ( 10 ml ) , 室温搅拌 Ί小时。 反应液通过柱层析色镨 提纯(硅胶, 展开剂: 二氯甲烷 /曱醇 =9/1 ) , 得到阿糖胞苷前药衍生物 3 (78.3 mg),LC( UV 254 nm )純度 91%。 LC-MS m/z 372 [M + H]+(分子式 C15H21N3O8, 分子量 371 ) 。
Figure imgf000015_0001
第一中间产物 B 4的合成(路线 4 ): 戊二酸酐( 3.4 g, 30 mmol )溶于月桂醇 ( 10 ml, 45 mmol) , 控制温度 30 。C, 反应 5个小时。 得到的第一中间产物 B4不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 4的合成(路线 4) : 阿糖胞苷(1.0 g, 4.1 mmol) , 第 一中间产物 Β 4 ( 1.36 g, 4.5 mmol) , PyBOP (2.35 g, 4.5 mmol)和 DMAP ( 0.055 g, 0.41 mmol )溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反应液通过柱 层析色 i普提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =9/1 ) , 得到阿糖胞苷前药衍生 物 4 ( 169.3 mg) , LC ( UV 254 nm ) 纯度 98%。 LC-MS m/z 526 [M + H]十(分 子式 C26H43N308, 分子量 525 ) ; 1H NMR (600 MHz, DMSO- d6) δ 10.84 (s, 1H) , 8.06 (d, 1H) , 7.20 ( d, 1H) , 6.05 ( d, 1H) , 5.49 ( d, 2H ) , 5.07 (t, 1H) , 4.06 (m, 1H) , 3.99 (t, 2H ) , 3.92 ( m, 1H) , 3.82 ( m, 1H) , 3.61 (m, 2H) , 2.43 (t, 2H ) , 2.32 ( t, 2H ) , 1.79 (m, 2H) , 1.55 (m, 2H) , 1.24 ( m, 18H) , 0.85 (t, 3H ) 。 合成路线 5:
Figure imgf000016_0001
第一中间产物 B 5的合成(路线 5 ): 丁二酸酐( 3.0 g, 30 mmol )溶于月桂醇 ( 8.37 g, 45 mmol ) , 室温搅拌, 反应 5个小时。 得到的第一中间产物 Β5不 经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 5的合成(路线 5) : 阿糖胞苷( 1 g, 4.1 mmol) , 第一 中间产物 Β5 ( 1.3 g, 4.5 mmol ) , PyBOP ( 2.35 g, 4.5 mmol )和 DMAP ( 0.055 g, 0.41 mmol ) 溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反应液通过柱层析色 谱提纯(硅胶,展开剂: 二氯甲烷 /甲醇 =9/1 ) ,得到阿糖胞苷前药衍生物 5 ( 16.3 mg),LC( UV 254 nm )纯度 98%。 LC-MS m/z 512 [M + H]+(分子式 C25H41N308, 分子量 511 ) 。
Figure imgf000016_0002
第一中间产物 B 6的合成(路线 4 ): 戊二酸酐( 3.4 g, 30 mmol )溶于月桂醇 ( 10 ml, 45 mmol) , 控制温度 30 。C, 反应 5个小时。 得到的第一中间产物 B6不经进一步纯化, 直接用于下一步反应。
第三中间产物 D6的合成(路线 6) : 第一中间产物 B6 (4.0g, 13.3 mmol) , SOCl2 (3.17 g, 26.6 mmol)和 1滴 DMF溶于二氯曱烷 ( 20 ml ) , 加热回流 3小 时。 旋转蒸发减压除去溶剂和过量的 SOCl2得到第三中间产物 D6。 得到的产物 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 6的合成 (路线 6 ): 阿糖胞苷盐酸盐 ( 0.7 g, 2.5 mmol ) 和第三中间产物 D6 ( 1.04 g, 3.26 mmol ) 溶于 DMF (6ml) , 室温搅拌 2天。 减压蒸馏除去 DMF。 油状物加 12.5 ml乙 ft搅拌固化, 共三次。 得到的半固体 促产品用 5 ml , 1 mol/L的 NaHC03水溶液中和。过滤- ,所得固体用水洗至中性, 用 60 ml乙酸乙酯重结晶, 过滤、, 得到阿糖胞苷前药衍生物 6 ( 89.4 mg ) , LC ( UV 254 nm ) 纯度 >95%。 LC-MS m/z 526 [M + H]十 (分子式 C26H43N3O8, 分 子量 525 ) ; 1HNMR ( 600 MHz, DMSO-^ ) 57.46 ( d, 1H) , 7.10 (brs, 1H) , 7.01 (brs, 1H ) , 6.08 ( d, 1H) , 5.65 ( d, 1H) , 5.57 ( m, 2H ) , 4.29 (dd, 1H) , 4.19 ( dd, 1H ) , 3.98 ( m, 3H ) , 3.90 (m, 1H ) , 3.88 ( s, 1H) , 2.38 (t, 2H) , 2.32 (t, 2H ) , 1.78 ( m, 2H ) , 1.55 ( m, 2H ) , 1.24 (m, 18H) , 0.85 (t, 3H ) 。
Figure imgf000017_0001
第一中间产物 B 7的合成(路线 2): 戊二酸酐(28.5 g, 250 mmol)溶于乙醇 ( 100 毫升) , 加热回流, 反应 5个小时。 得到的第一中间产物 B7不经进一 步纯化, 直接用于下一步反应。
第三中间产物 D7的合成(路线 7) : 第一中间产物 B7 (6.0g, 37.5 mmol ) , SOCl2 (8.9 g, 75 mmol), 和 1滴 DMF溶于二氯曱烷( 40 ml ) , 加热回流 3小 时。旋转蒸发除去溶剂和过量的 SOCl2得到第三中间产物 D7,不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 7的合成 (路线 7 ): 阿糖胞苷盐酸盐( 1.4 g, 5 mmol )和 第三中间产物 D7 ( 1.0 g, 5.6 mmol)溶于 DMF ( 12 ml) , 室温搅拌 2天。 蒸 馏除去 DMF。 油状物加 25 ml乙醚搅拌固化, 共三次。 得到的半固体粗产品用 10 ml, 1 mol/L的 NaHCO3水溶液中和。 用乙酸乙酯萃取三次, 合并乙酸乙酯 萃取液, 水洗后, 用无水硫酸钠干燥。 过滤、 浓缩, 放置后析出晶体。 过滤, 得到阿糖胞苷前药衍生物 7 (25.3 mg) , LC ( UV 254 nm )纯度 >95%。 LC-MS m/z 386 [M + H]+ (分子式 C16H23N308, 分子量 385 ) 。 合成路线 8:
Figure imgf000018_0001
第一中间产物 B8的合成(路线 8 ): 二甘醇酐( 0.58 g, 5 mmol )溶于乙醇( 20 ml) , 控制温度 40 C, 反应 5个小时。 得到的第一中间产物 B8不经进一步纯 化, 直接用于下一步反应。
阿糖胞苷前药衍生物 8的合成(路线 8) : 阿糖胞苷( 1 g, 4.1 mmol) , 第一 中间产物 Β8 ( 0.81 g, 5.0 mmol ) PyBOP ( 2.35 g, 4.5 mmol )和 DMAP ( 0.055 g, 0.41 mmol) 溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反应液通过柱层析色 谱提纯 (硅胶, 展开剂: 二氯甲烷 /甲醇 =15/1 ) , 得到阿糖胞苷前药衍生物 8 ( 191.5 mg) , LC ( UV 254 nm )纯度 >90% LC-MS m/z 388 [M + H]+ (分子式 C15H21N3O9, 分子量 387 ) 合成路线 9:
Figure imgf000019_0001
第一中间产物 B9的合成(路线 9) : 二甘醇酐( 1.276 g, 11 mmol) 溶于月桂 醇 (2.42 g, 13 mmol) , 控制温度 40 C, 反应 4个小时。 得到的第一中间产 物 B9不经进一步純化, 直接用于下一步反应。
阿糖胞苷前药衍生物 9的合成(路线 9) : 阿糖胞苷( 1 g 4.1 mmol) , 第一 中间产物 B 9 ( 1.51 g, 5.0 mmol) , PyBOP (2.35 g, 4.5 mmol) , 和 DMAP ( 0.055 g, 0.41 mmol )溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反应液通过柱 层析色谱提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ) , 得到阿糖胞苷前药衍 生物 9 ( 90.1 mg ) , LC (UV 254 nm ) 純度 >90%。 LC-MS m/z 528 [M+H]+ (分 子式 C25H41N3O9, 分子量 527) 。 合成路线 10:
Figure imgf000020_0001
第一中间产物 BIO的合成(路线 10) : 二甘醇酐( 1.276 g, ll mmol)溶于月 桂醇(2.42 g, 13 mmol) , 控制温度 40 。C, 反应 4个小时。 得到的第一中间 产物 B10不经进一步纯化, 直接用于下一步反应。
第三中间产物 D10的合成(路线 10) : 第一中间产物 B10( 1.81 g, 6.0 mmol ) , SOCl2 (1.43 g, 12 mmol)和 1滴 DMF溶于二氯曱烷( 20 ml ) ,加热回流 4小时。 旋转蒸发除去溶剂和过量的 SOCl2得到第三中间产物 D10, 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 10的合成 (路线 10 ): 阿糖胞苷盐酸盐 ( 1.4 g, 5 mmol ) 和第三中间产物 D10 ( 1.92 g, 6.0 mmol )溶于 DMF ( 12 ml) , 室温搅拌 2天。 蒸馏除去 DMF。 油状物加 25 ml乙酸搅拌固化, 共三次。 得到的半固体粗产品 用 10 ml, 1 mol/L的 NaHC03水溶液中和。 过滤, 所得固体用水洗至中性, 用 60 ml乙酸乙酯重结晶,过滤出固体, 然后通过柱层析色谱提纯(硅胶,展开剂: 二氯曱烷 /曱醇 =5/1 ) , 得到阿糖胞苷前药衍生物 10 ( 118.0mg) , LC ( UV 254 nm)纯度 >90%。 LC-MS mz 528 [M + H]+ (分子式 C25H41N3O9, 分子量 527)。 合成路线 11:
Figure imgf000021_0001
11
第一中间产物 Bll的合成(路线 11) : 己二酸 ( 1.276 g, 11 mmol)溶于甲 醇 (2.42 g, 13 mmol) , 控制温度 40。C, 反应 4个小时。 得到的第一中间产 物 B11 (己二酸单曱酯) 不经进一步純化, 直接用于下一步反应。
阿糖胞苷前药衍生物 11的合成(路线 11 ): 阿糖胞苷( 1 g, 4.1 mmol) , 第 一中间产物 Bl 1 (己二酸单曱酯)( 0.72 g, 4.1 mmol ) , PyBOP( 2.35 g, 4.5 mmol ) 和 DMAP (0.055 g, 0.41 mmol) 溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反 应液通过柱层析色谱提纯 (硅胶, 展开剂: 二氯甲烷 /甲醇 =10/1 ) , 得到阿糖 胞苷前药衍生物 11 (58.6mg) , LC ( UV 254 nm )纯度 >95%。 LC-MS 々386 [M + H]+ (分子式 C16H23N3O8, 分子量 385 ) 。
Figure imgf000021_0002
12 第一中间产物 B12的合成(路线 12) : 己二酸酐( 1.276 g, 11 mmol)溶于乙 醇 (2.42 g, 13 mmol) , 控制温度 40。C, 反应 4个小时。 得到的第一中间产 物 B12 (己二酸单乙酯) 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 12的合成(路线 12) : 阿糖胞苷( 1 g, 4.1 mmol) , 第 一中间产物 Β12(己二酸单乙酯)(0.8 g, 4.1 mmol), PyBOP(2.35 g, 4.5 mmol ) 和 DMAP (0.055 g, 0.41 mmol) 溶于 DMF ( 10 ml ) , 室温搅拌 12小时。 反 应液通过柱层析色谱提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =10/1 ) , 得到阿糖 胞苷前药衍生物 12 ( 47.9 mg ) , LC ( UV 254 nm )纯度〉 95%。 LC-MS m/z 400 [M + H]+ (分子式 C17H25N3O8, 分子量 399 ) 。
Figure imgf000022_0001
ol)溶于甲 醇 (2.42 g, 13 mmol) , 控制温度 40 。C, 反应 4个小时。 得到的第一中间产 物 B13 (丁二酸单甲酯) 不经进一步纯化, 直接用于下一步反应
第三中间产物 D13的合成(路线 13 ):第一中间产物 B13 ( 726 mg, 5.5 mmol ) , SOCl2 (1.31 g, 11 mmol)和 1滴 DMF溶于二氯曱烷( 10 ml ),加热回流 3小时。 减压旋转蒸发除去溶剂和过量的 SOCl2得到第三中间产物 D13, 不经进一步纯 化, 直接用于下一步反应。
阿糖胞苷前药衍生物 13的合成 (路线 13 ): 阿糖胞苷盐酸盐 ( 1.4 g, 5 mmol ) 和第三中间产物 D13 ( 820 mg, 5.5 mmol) 溶于 DMF ( 10 ml) , 室温搅拌 2 天。 蒸馏除去 DMF。 油状物加乙艇搅拌固化。 得到的半固体粗产品用 NaHCO3 水溶液中和。 旋干, 固体溶于曱醇, 过滤除去不溶物。 然后通过柱层析色谱提 纯(硅胶, 展开剂: 二氯曱烷 /曱醇 =4/1 ) , 得到阿糖胞苷前药衍生物 13 ( 128.4 mg ), LC( UV 254 nm )纯度 >90%。 LC-MS m/z 358 [M + H]+(分子式 C14H19N3O8, 分子量 357) 。 合成路线 14:
Figure imgf000023_0001
第二中间产物 C14的合成(路线 14) : 将如上合成路线中的 2, 6-二甲基氨基 苯(1.21 g, lOmmol)溶于 10毫升 THF, 然后加入戊二酸酐( 1.14 g, lOmmol) 和 DMAP (0.12 g, 1 mmol) , 50°C反应 5小时, 减压蒸干滤液, 所得第二中 间产物 C14不经纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 14的合成 (路线 14 ): 将阿糖胞苷( 2.43 g, 10 mmol ) , 第二中间产物 C14 (2.35 g, 10 mmol) , PyBOP (5.7 g, 11 mmol)和 DMAP ( 0.12 g, 1 mmol )溶于 DMF ( 10 ml) , 室温搅拌 24小时。 反应液通过柱层 析色谱提纯 (硅胶, 展开剂: 二氯甲烷 /曱醇 =10/1 ) , 得到阿糖胞苷前药衍生 物 14 ( 139.4 mg ) , LC ( UV 254 nm )纯度 >95% )。 LC-MS m/z 461 [M + H]+ (分 子式 C22H28N4O7, 分子量 460) 。
Figure imgf000023_0002
第二中间产物 C15的合成(路线 15):将上述路线 15中的环烷基苯并咪唑(0.53 g , 2.1 mmol) ,丁二酸酐( 0.25 g , 2.5 ml ) 与 DMAP ( 0.2 g , 1.6 mmol)溶 于四氢呋喃 (20 ml) 中, 控制温度 35。C, 反应 3个小时。 倒入水中, 析出固 体,过滤所得固体的第二中间产物 C15不经进一步纯化,直接用于下一步反应。 阿糖胞苷前药衍生物 15的合成(路线 15) : 阿糖胞苷(0.39g, 1.6 mmol) , 第二中间产物 C15 ( 0.47 g, 1.3 mmol ) , PyBOP ( 0.84 g, 1.5 mmol )和 DMAP ( 0.055 g, 0.41 mmol ) 溶于 DMF ( 10 ml ) , 室温搅拌过周末。 反应液倒入水 中, 析出固体, 得到阿糖胞苷前药衍生物 15 ( 104.8 mg) , LC ( UV 254 nm ) 纯度 >99%。 LC-MS w¾ 599 [M + Na]+ (分子式 C25H29ClN6Os, 分子量 576)。 合成路 16
Figure imgf000024_0001
第一中间产物 B16的合成(路线 16) :将正癸醇 (4g, 26 mmol )溶于 20毫升 四氢呋喃中, 然后加入戊二酸酐( 2.5 g, 22 mmol ), 60 °C下搅拌反应 4小时。 得到的第一中间产物 B16不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 16的合成(路线 16): 阿糖胞苷( 1 g, 4.1 mmol), 第一 中间产物 B16 ( 1.36 g, 5 mmol ), PyBOP ( 2.35 g, 4.5 mmol ), 和 DMAP ( 0.055 g, 0.45 mmol )溶于 DMF ( 10 ml) 中, 室温下搅拌 12小时。 反应液倒入水中, 析出固体, 固体再通过柱层析色语提纯(硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ), 得到阿糖胞苷前药衍生物 16 (70.2 mg)。 LC ( UV 254 nm ) 纯度 97%。 LC-MS m/z 498 [M + H]+ (分子式 C24H39N3O8, 分子量 497 )。 合成路线 17
HO
Figure imgf000025_0001
第一中间产物 B17的合成(路线 17): 戊二酸酐(2.28 g, 20 mmol ) 与正十四 醇 (4.28g, 20 mmol ) 混合, 加热融熔, 反应 4小时, 冷却, 得白色固体的第 一中间产物 B17, 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 17的合成(路线 17): 阿糖胞苷( 1 g, 4.1 mmol), 第一 中间产物 B17( 1.48 g, 4.5 mmol ), PyBOP(2.35 g, 4.5 mmol ),和 DMAP(0.055 g, 0.45 mmol )溶于 DMF ( 10 ml) 中, 40 °C下搅拌 12小时。 反应液倒入水中, 析出固体, 固体再通过柱层析色普提纯(硅胶, 展开剂: 二氯甲烷 /曱醇 =15/1 ), 得到阿糖胞苷前药衍生物 17 (31.6mg)。 LC ( UV 254 nm ) 纯度 95%。 LC-MS m/z 554 [M + H]+ (分子式 C28H47N3Os, 分子量 553 )„ 合成路线 18:
Figure imgf000025_0002
第一中间产物 B18的合成(路线 18): 戊二酸酐(0.51 g, 4.5 mmol)与正十六 醇 (1.2 g, 4.9 mmol ) 混合, 加热融熔, 反应 4个小时, 冷却, 得白色固体的 第一中间产物 B 18, 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 18的合成(路线 18): 阿糖胞苷( 1 g, 4.1 mmol ), 第一 中间产物 B18 ( 1.6 g, 4.5 mmol ), PyBOP ( 2.35 g, 4.5 mmol ), 和 DMAP ( 0.055 g, 0.45 mmol )溶于 DMF ( 10 ml) 中, 60°C下搅拌 12小时。 反应液倒入水中, 析出固体, 固体再通过柱层析色普提純(硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1), 得到阿糖胞苷前药 4汙生物 18 ( 166.7 mg)。 LC ( UV 254 nm )纯度 97%。 LC-MS m/z 604 [M+Na]+ (分子式 C30H51N3O8, 分子量 581)。
Figure imgf000026_0001
第一中间产物 B19的合成(路线 19): 戊二酸酐(2.24 g, 19.6 mmol) 与正十 八醇(5.4g, 20 mmol)混合, 加热融熔, 反应 4个小时, 冷却, 得白色固体的 第一中间产物 B 19, 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 19的合成(路线 19): 阿糖胞苷( 1 g, 4.1 mmol), 第一 中间产物 B19 ( 1.73 g, 4.9 mmol ), PyBOP ( 2.35 g, 4.5 mmol ),和 DMAP ( 0.055 g, 0.45 mmol )溶于 DMF (10 ml) 中, 50°C下搅拌 12小时。 反应液倒入水中, 析出固体, 固体再通过柱层析色普提純(硅胶, 展开剂: 二氯甲坑 /曱醇 =15/1), 得到阿糖胞苷前药衍生物 19 ( 149.6 mg)。 LC ( UV 254 nm )纯度 99%。 LC-MS m/z 632 [M+Na (分子式 C32H55N3O8, 分子量 609 )。 合成路线 20:
Figure imgf000027_0001
第一中间产物 B20的合成(路线 20): 将正癸醇(0.77 g, 4.9 mmol) 溶于 20 毫升四氢呋喃中, 然后加入二甘醇酐(0.52 g, 4.5 mmol), 回流搅拌反应 4小 时, 得到的第一中间产物 B20不用进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 20的合成(路线 20): 阿糖胞苷(l g, 4.1 mmol), 第一 中间产物 B20 ( 1.23 g, 4.5 mmol ), PyBOP ( 2.35 g, 4.5 mmol ),和 DMAP ( 0.055 g, 0.45 mmol )溶于 DMF ( 10 ml) 中, 40 °C下搅拌 12小时。 反应液倒入水中, 析出固体, 固体通过柱层析色谱提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ), 得到阿糖胞苷前药衍生物 20 ( 31.3 mg )。 LC ( UV 254 nm ) 纯度 97%。 LC-MS m/z 500 [M + H]+ (分子式 C23H37N3O9, 分子量 499 )。 合成路线 21:
A O
Figure imgf000027_0002
第一中间产物 B21的合成(路线 21 ): 二甘醇酐(0.52 g, 4.5 mmol)与十四醇 ( 1.05 g, 4.9 mmol ) 混合, 加热融榕, 反应 4小时, 冷却, 得白色固体的第一 中间产物 B 21, 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 21的合成(路线 21 ): 阿糖胞苷( 1 g, 4.1 mmol), 第一 中间产物 B21 ( 1.48 g, 4.5 mmol ), PyBOP ( 2.35 g, 4.5 mmol ),和 DMAP ( 0.055 g, 0.45 mmol )溶于 DMF ( 10 ml ) 中, 50°C下搅拌 12小时。 反应液倒入水中, 析出固体, 固体通过柱层析色谱提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ), 得到阿糖胞苷前药衍生物 21 ( 101.2 mg )。 LC ( UV 254 nm )纯度 95%。 LC-MS m/z 556 [M + H]+ (分子式 C27H45N3O9, 分子量 555 )。
Figure imgf000028_0001
第一中间产物 B22的合成(路线 22 ): 二甘醇酐(0.52 g, 4.5 mmol )与十六醇 ( 1.19 g, 4.9 mmol ) 混合, 加热融熔, 反应 4小时, 冷却, 得白色固体的第一 中间产物 B 22 , 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 22的合成(路线 22 ): 阿糖胞苷( l g, 4.1 mmol ), 第一 中间产物 B22 ( 1.6 g, 4.5 mmol ), PyBOP ( 2.35 g, 4.5 mmol ), 和 DMAP ( 0.055 g, 0.45 mmol )溶于 DMF ( 10 ml )中, 60 °C下搅拌 12小时。 反应液倒入水中, 析出固体, 固体通过柱层析色语提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ), 得到阿糖胞苷前药 4汙生物 22 ( 62.9 mg )。 LC ( UV 254 nm ) 纯度 95%。 LC-MS m/z 606 [M + Na]+ (分子式 C29H49N309, 分子量 583 )。 合成路线 23:
Figure imgf000029_0001
第一中间产物 B23的合成(路线 23 ): 二甘醇酐(0.52 g, 4.5 mmol )与十八醇 ( 1.33g, 4.9 mmol ) 混合, 加热融熔, 反应 4小时, 冷却, 得白色固体的第一 中间产物 B 23, 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷前药衍生物 23的合成(路线 23 ): 阿糖胞苷(l g, 4.1 mmol ), 第一 中间产物 B23 ( 1.74 g, 4.5 mmol ), PyBOP ( 2.35 g 4.5 mmol ),和 DMAP ( 0.055 g, 0.45 mmol )溶于 DMF ( 10 ml ) 中, 室温下搅拌 12小时。 反应液倒入水中, 析出固体, 固体通过柱层析色谱提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ), 得到阿糖胞苷前药 4汙生物 23 ( 43.2 mg )。 LC ( UV 254 nm ) 纯度 95% LC-MS m/z 612 [M + H]+ (分子式 C31H51N3O9, 分子量 611 )。 生物活性:
本发明所涵盖的阿糖胞苷前药衍生物具有抑制肿瘤细胞增生的功能, 以及 抗肿瘤作用。 肿瘤细胞癌症包括但不限于血癌、 肠癌、 皮肤癌、 乳腺癌、 肺癌、 肝癌、 卵巢癌、 胃癌、 子宫癌、 脑瘤、 色素瘤、 前列腺癌等。 合成药物肿瘤细胞毒性实臉搮作规程
本发明的阿糖胞苷前药衍生物及其制剂对肿瘤细胞的抑制作用试验
1. 试验材料
1) 细胞株:
HL-60细胞株, 悬浮生长, 用含 10%胎牛血清(Hyclone公司)的 RPMI 1640 细胞培养基培养, 常规培养保持初始细胞浓度在 3*105/ml左右, 三天一次 1 : 3 传代。 实验前一天传代( 5* 105/ml ) , 实验时细胞浓度在 7.5~10*105/ml之间。
BEL-7402细胞株和 HT-29细胞株, 贴壁生长, 用 10%胎牛血清 ( Hyclone公 司 ) 的 D-MEM细胞培养基培养, 常规培养初始细胞浓度在 3*105/ml左右, 2〜3 天 1 : 3传代一次。 实验前一天 1 : 2传代, 实验时细胞浓度在 5~10*105/ml之间。
2) 药物的溶解与稀释: 根据提供的阿糖胞苷前药衍生物的重量和分子量, 首先加入 DMSO 100~200 μΐ, 然后加入 NS , 使稀释后得到的药物浓度为 5 mM (注意 DMSO终浓度不超过 10% ) 。
3) D-MEM或 RPMI 1640细胞培养基, Gibco公司
4) 胎牛血清, Hyclone公司
5) 细包消化液, 0.25 % Trypsin + 0.02 % EDTA
6) PBS磷酸盐緩冲液
7) MTT液, MTT干粉 (Sigma), 用 PBS充分溶解配成 5 mg/ml, 0.22 μπι微孔 滤-膜过滤后分装, -20 °C保存
8) 10 %酸化 SDS, 0.01N HC1
9) 离心管、 吸管等 (BD公司) , 96孔板(Costar公司)
2. 步骤:
1) 细胞接种: 传代后 24小时的细胞, 生长状态良好。 常规收获细胞, 用新 鲜培养液调整细胞浓度为 2xl05/ml (贴壁细胞 ) ~3xl05/ml (悬浮细胞 )。 贴壁细胞接种 100 μΐ/孔, 37 °C、 5%CO2孵箱中培养 24 h后弃去旧培养 液, 加入新鲜培养液 95 μΐ/孔。 悬浮细胞直接接种 95 μΐ/孔。
2) 药物处理: 每一药物设 6个浓度梯度, 每一浓度设 3个复孔, 药物空白 对照组设 5个复孔。 每次试验同时做 Ara-C对照。 HT-29和 BEL-7402 细胞加入药物的浓度依次为 5、 2.5、 1.25、 0.625、 0.3125、 0.16 mM, 每 孔 5 μ1, 终浓度依次为 0.25、 0.125、 0.0625、 0.03125、 0.016、 0.008 mM, 对照组加入 5 μΐ生理盐水; HL-60细胞加入药物的浓度依次为 5xl(T3、 2.5xl0—3、 1.25xl0—3、 0.625xl0—3、 0.3125x10— 3、 0.16x10— 3 mM, 对应终浓 度依次为 2.5χ10-4、 1.25χ10-4、 6·25χ10-5、 3·125χ10-5、 1·6χ10-5、 8xlO"6mM, 对照组加入 5 μΐ生理盐水。
3) 细胞培养与检测: 加入药物后, 37。C、 5%C02孵箱中培养 72h, 然后每 孔加入 MTT 10 μ1,继续培养 4 h,每孔加 100 μΐ 10%SDS (含 0.01N HC1 ) 溶解, 24 h后用 Bio-rad 680型 ELISA读数仪测定各孔吸光度( A ) , 检 测波长为 570nm、 参考波长为 630nm。
4) 计算: 首先平均各复孔的吸光度(去除过于悬殊的数据) , 计算每种细 胞每个药物浓度下的抑制率 (IR), IR(%)=(1- An/A0) l00%, An为实验孔 平均吸光度, A。为药物空白对照孔平均吸光度。 用 EXCEL软件, 绘制 药物浓度效应曲线, 选择合理的计算方法计算 50%细胞存活的药物浓度 (IC50) 。
图 5是阿糖胞苷前药衍生物抑制 BEL-7402肝癌细胞株的药物浓度-抑制率 曲线图, 其中, JF001、 JF017、 JF019、 JF020和 JF033分别为根据上述合成路 线 1、 17、 19、 20和 33合成得到的阿糖胞苷衍生物。
表 1-2列举了代表性阿糖胞苷前药衍生物抑制不同肿瘤细胞的生物活性。 其中, JF004、 JF006、 JF007、 JF009、 JF010、 JF013、 JF014和 JF021分别为根 据上述合成路线 4、 6、 7、 9、 10、 13、 14和 21合成得到的阿糖胞苷衍生物。
Figure imgf000032_0001
Figure imgf000033_0001
0.06 18.62 19.46 20.01 对肠癌抑 制率高于 阿 糖 胞 苷, 其它
JF010 类似
表 2、 代表性阿糖胞苷前药衍生物的肿瘤细胞活性
Figure imgf000034_0001

Claims

权 利 要 求 书
1、 阿糖胞苷前药衍生物, 其特征在于: 所述阿糖胞苷前药衍生物是具有下述通 式 (I) 、 (II) 、 (III) 中的任意一种通式的化合物:
Figure imgf000035_0001
通式 -III 其中, w表示 c=o、 S(O)O和 C(O)O中的任意一种基团;
其中, Y表示 ( CH2 ) n或 H2C-O-CH2 , 其中, n=2~6;
X表示 OH、 O-P OXOR^和磷 §tt中的任意一种基团, 所述磷 §tt为单磷 酸基、 二磷酸基和三磷酸基中的任意一种;
R1, R2是 _1S饱和的或不饱和的脂肪基团, 所述不饱和的脂肪基团中含有 一个或多个不饱和健, 所述不饱和健包括顺式或反式异构体; A表示 O或 S或 CH2或无基团;
R3是氨基、 烷基取代氨基、 芳香基取代氨基、 杂环基取代氨基、 NHOH、 NHOR4和如下基团中的任意一种:
Figure imgf000036_0001
其中 R4是卤原子、 氨基、 硝基、 烷基、 烯基、 炔基、 烷氧基、 烷硫基、 羧基、 羟基、 氰基、 三氟甲基、 苄基、 苯基、 芳香基、 酰基、 羰基、 取代氨基、 黄酸 基、 酰胺基、 黄酰胺基、 氨基酸、 碳环基和杂环基中的任意一种。
2、 根据权利要求 1 所述的阿糖胞苷前药衍生物, 其特征在于: R1 是 H、 C1-18烷基、 C3-18环烷基, 苄基, 苯基和芳环基中的任意一种; 2是11、 d-C18 烷基、 C3-18环烷基、 C2-18烯基、 C2_18炔基, 环烯基, 苄基, 苯基、 芳香基, 环 氨基、 碳环基、 杂环基, 苯胺基和取代苯胺基中的任意一种。
3、根据权利要求 1或 2所述的阿糖胞苷前药衍生物, 其特征在于: 所述阿 糖胞苷前药衍生物是通式(I ) 中的 X=OH时的阿糖胞苷前药衍生物。
4、根据权利要求 1或 2所述的阿糖胞苷前药衍生物, 其特征在于: 所述阿 糖胞苷前药衍生物是通式( II ) 中的 X=OH时的阿糖胞苷前药衍生物。
5、根据权利要求 1或 2所述的阿糖胞苷前药衍生物, 其特征在于: 所述阿 糖胞苷前药衍生物是通式(III ) 的阿糖胞苷前药衍生物。
6、根据权利要求 3所述的阿糖胞苷前药衍生物,其特征在于:所述通式( I ) 的阿糖胞苷前药衍生物包括具有下述结构式的代表性化合物:
Figure imgf000037_0001
、根据权利要求 4所述的阿糖胞苷前药衍生物,其特征在于:所述通式( II ) 的阿糖
8、
Figure imgf000038_0001
于:所述通式( III ) 的阿糖胞苷前 :
Figure imgf000038_0002
9、 阿糖胞苷前药衍生物的合成路线, 其特征在于:
( 1 ) 酸酐化合物与脂肪醇混和, 加热回流或室温搅拌, 反应 3~5个小时, 冷却得到的第一中间产物 (B ) 不经进一步纯化, 直接用于下一步反应;
( 2 ) 阿糖胞香, 第一中间产物 (B ) , PyBOP和 DMAP溶于 DMF, 室温 ~60°C搅拌 7~24小时, 得到反应液通过柱层析色豫提纯, 得到通式(I )的阿糖 胞苷衍生物。
10、根据权利要求 9所述的阿糖胞苷前药衍生物的合成路线,其特征在于: 所述酸酐化合物为丁二酸酐、 戊二酸酐、 己二酸酐和二甘醇酐中的任意一种; 所述脂肪醇为甲醇、 乙醇、 正辛醇、 月桂醇、 正癸醇、 正十四醇、 正十六醇和 十八醇中的任意一种。
11、 阿糖胞苷前药衍生物的合成路线, 其特征在于:
( 1 )将 2, 6-二曱基氨基苯或环烷基苯并咪唑、 酸酐化合物和 DMAP溶于 四氢呋喃,控制温度 35〜50°C反应 3~5小时,析出固体,所得第二中间产物(C ) 不经纯化, 直接用于下一步反应;
( 2 )将阿糖胞香, 第二中间产物 (C ) , PyBOP和 DMAP溶于 DMF, 室 温搅拌 12~24小时, 反应液倒入水中, 析出固体或将反应液通过柱层析色谱提 纯, 得到通式 (Π ) 的阿糖胞苷前药衍生物。
12、根据权利要求 11所述的阿糖胞苷前药衍生物的合成路线,其特征在于: 所述酸酐化合物为丁二酸酐、 戊二酸酐、 己二酸酐和二甘醇酐中的任意一种。
13、 阿糖胞苷前药衍生物的合成路线, 其特征在于:
( 1 ) 酸酐化合物与脂肪醇混和, 加热回流或室温搅拌, 反应 3~5个小时, 冷却得到的第一中间产物 (B ) 不经进一步纯化, 直接用于下一步反应;
( 2 ) 第一中间产物 (B ) , SOCl2和 1~2滴 DMF溶于二氯甲烷, 加热回流 3〜4小时, 旋转蒸发减压除去溶剂和过量的 S0C12得到第三中间产物(D ) , 不 经进一步纯化, 直接用于下一步反应;
( 3 ) 阿糖胞苷盐酸盐和第三中间产物 ( D )溶于 DMF, 室温搅拌 2〜4天, 减压蒸馏除去 DMF 后得到的油状物加乙醚搅拌固化, 得到的半固体产品用 NaHCO3水溶液中和、 过滤、, 所得固体用水洗至中性后用乙酸乙酯重结晶、 过 滤或所得固体溶于甲醇, 过滤除去不溶物, 然后通过柱层析色语提纯, 得到通 式 (III ) 的阿糖胞苷衍生物。
14、 根据权利要求 13所述的阿糖胞苷前药衍生物的合成路线, 其特征在 于: 所述酸酐化合物为丁二酸酐、 戊二酸酐、 己二酸酐和二甘醇酐中的任意一 种; 所述脂肪醇为曱醇、 乙醇、 正辛醇、 正癸醇、 月桂醇, 正十四醇、 正十六 醇和十八醇中的任意一种。
15、 阿糖胞苷前药衍生物制剂的制备方法, 其特征在于:
( 1 )将具有通式( I ) 、 ( II )或( III ) 中的任意一种结构式的阿糖胞苷前 药衍生物溶解到水、 生理盐水、 环糊精水溶液、 水溶性的有机溶剂、 非离子性 的表面活性剂、 水溶性的类脂、 脂肪酸、 脂肪酸酯和磷脂中的任意一种或多种 的组合溶剂而制得制剂溶液;
( 2 )将所述制剂溶液再用生理盐水或葡萄糖注射液稀释而制成阿糖胞苷前 药衍生物制剂。
16、根据权利要求 15的一种制备阿糖胞苷前药衍生物制剂的方法, 其特征 在于: 所述有机溶剂是乙醇、 丙二醇、 甘油、 甘油酯、 多聚乙二醇、 N,N-二甲 基曱酰胺和二甲基亚砜中的任意一种或多种的组合溶剂。
17、 阿糖胞苷前药衍生物制剂, 其特征在于: 是由权利要求 15的阿糖胞苷 前药衍生物制剂的制备方法制备得到的产品。
18、 权利要求 1的阿糖胞苷前药衍生物在抗癌抗肿瘤中的用途。
19、根据权利要求 18的阿糖胞苷前药衍生物在抗癌抗肿瘤中的用途, 其特 征在于: 癌症包括白血病、 固体瘤、 肺癌、 结肠癌、 肝癌、 中枢神经系统肿瘤、 卵巢癌和腎癌。
20、 权利要求 17 的阿糖胞苷前药衍生物制剂在抗癌抗肿瘤中的用途。
21、 根据权利要求 20的阿糖胞苷前药衍生物制剂在抗癌抗肿瘤中的用途, 其特征在于: 癌症包括白血病、 固体瘤、 肺癌、 结肠癌、 肝癌、 中枢神经系统 肿瘤、 卵巢癌和肾癌。
22、 根据权利要求 20 的阿糖胞苷前药衍生物制剂在抗癌抗肿瘤中的用途, 其特征在于: 所述阿糖胞苷前药衍生物制剂与其他化疗药物联合用在抗癌抗肿 瘤中, 所述其他化疗药物包括烷化剂、 植物生物碱类、 抗菌抗肿瘤磺酰胺类药 物、 铂类药物、 抗代谢类及其它已知的抗癌药物。
23、 根据权利要求 22 的阿糖胞苷前药衍生物制剂在抗癌抗肿瘤中的用途, 其特征在于: 在所述联合用药过程中, 包括运用至少一种具有权利要求 6、 7 和 8所列举的代表性的阿糖胞苷前药衍生物。
PCT/CN2010/000321 2010-03-15 2010-03-15 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途 WO2011113175A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000321 WO2011113175A1 (zh) 2010-03-15 2010-03-15 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000321 WO2011113175A1 (zh) 2010-03-15 2010-03-15 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途

Publications (1)

Publication Number Publication Date
WO2011113175A1 true WO2011113175A1 (zh) 2011-09-22

Family

ID=44648401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000321 WO2011113175A1 (zh) 2010-03-15 2010-03-15 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途

Country Status (1)

Country Link
WO (1) WO2011113175A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351691A (zh) * 2011-09-26 2012-02-15 江苏同禾药业有限公司 一种己二酸单乙酯的合成方法
WO2015044365A1 (en) * 2013-09-27 2015-04-02 Astex Therapeutics Limited Dinucleoside derivatives as prodrugs of gemcitabine and cytarabine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163179A (en) * 1974-11-26 1976-06-01 Asahi Chemical Ind n44 omega karubokishiashirunukureoshidono seiho
WO2006030217A2 (en) * 2004-09-15 2006-03-23 Drug Discovery Laboratory As Drug conjugates of long chain fatty acid or ester moieties as protein binding prodrugs
WO2009115694A1 (fr) * 2008-02-21 2009-09-24 Centre National De La Recherche Scientifique Procede de preparation de nucleotides et analogues a façon par synthese sur support soluble et outils biologiques prepares
CN101787065A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途
CN101787064A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
WO2010085377A2 (en) * 2009-01-23 2010-07-29 Crystal Biopharmaceutical Llc Hydroxamic acid derivatives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163179A (en) * 1974-11-26 1976-06-01 Asahi Chemical Ind n44 omega karubokishiashirunukureoshidono seiho
WO2006030217A2 (en) * 2004-09-15 2006-03-23 Drug Discovery Laboratory As Drug conjugates of long chain fatty acid or ester moieties as protein binding prodrugs
WO2009115694A1 (fr) * 2008-02-21 2009-09-24 Centre National De La Recherche Scientifique Procede de preparation de nucleotides et analogues a façon par synthese sur support soluble et outils biologiques prepares
CN101787065A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途
CN101787064A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
WO2010085377A2 (en) * 2009-01-23 2010-07-29 Crystal Biopharmaceutical Llc Hydroxamic acid derivatives

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FADL, T. A. ET AL.: "Synthesis and investigation of N4-substituted cytarabine derivatives as prodrugs.", PHARMAZIE., vol. 50, no. 6, 1995, pages 382 - 387, XP001121355 *
MANFREDINI, S. ET AL.: "Peptide T-araC conjugates: solid-phase synthesis and biological activity of N4-(acylpeptidyl)-araC.", BIOORGANIC & MEDICINAL CHEMISTRY., vol. 8, no. 3, 2000, pages 539 - 547, XP002601972 *
MENGER, FREDRIC M. ET AL.: "Synthesis and Reactivity of 5-Fluorouracil/Cytarabine Mutual Prodrugs.", JOURNAL OF ORGANIC CHEMISTRY, vol. 62, no. 26, 1997, pages 9083 - 9088 *
QIAN, XUEQI ET AL.: "Facile synthesis of novel mutual derivatives of nucleosides and pyrimidines by regioselectively chemo-enzymatic protocol.", BIOORGANIC & MEDICINAL CHEMISTRY., vol. 16, no. 9, 2008, pages 5181 - 5188, XP022647309, DOI: doi:10.1016/j.bmc.2008.03.012 *
WANG, NA ET AL.: "Controllable selective synthesis of a polymerizable prodrug of cytarabine by enzymatic and chemical methods.", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS., vol. 15, no. 18, 2005, pages 4064 - 4067., XP025314073, DOI: doi:10.1016/j.bmcl.2005.06.011 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351691A (zh) * 2011-09-26 2012-02-15 江苏同禾药业有限公司 一种己二酸单乙酯的合成方法
WO2015044365A1 (en) * 2013-09-27 2015-04-02 Astex Therapeutics Limited Dinucleoside derivatives as prodrugs of gemcitabine and cytarabine

Similar Documents

Publication Publication Date Title
CN104640444B (zh) 双肝脏靶向氨基磷酸酯和氨基膦酸酯前药
AU2013307899B2 (en) Tenofovir prodrug and pharmaceutical uses thereof
AU781323B2 (en) Anti-viral pyrimidine nucleoside analogues
AU2008298592A2 (en) Drug carriers
JP2003528146A (ja) 脳血管疾患の治療
WO2006121820A1 (en) Phosphoramidate prodrugs for treatment of viral infection
JP2008523082A (ja) 抗菌活性および抗癌活性を有するヌクレオチド
AU4755601A (en) Nucleoside compounds and uses thereof
WO2010121486A1 (zh) 基于吉西他滨结构的前药及其合成方法及应用
KR20100102092A (ko) 아자시티딘 유사체 및 이들의 용도
WO2015101183A1 (zh) 尿嘧啶核苷酸类似物及其制备方法和应用
AU2007293377A1 (en) L- OddC prodrugs for cancer
CN101787064B (zh) 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
CA2980885C (en) Glycolipids and pharmaceutical compositions thereof for use in therapy
CN106977472B (zh) 苯并异硒唑酮修饰亚硝脲类化合物合成及其应用
JP2002504068A (ja) 改良された治療剤
WO2011113175A1 (zh) 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途
WO2011113173A1 (zh) 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
JP5826933B2 (ja) 水溶性カンプトテシン誘導体、医薬組成物およびそれらの使用
WO2020154742A1 (en) Inhibitors of the enzyme enolase for precision oncology
CN101787065B (zh) 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途
CN101787066B (zh) 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
WO2019080724A1 (zh) 核苷磷酸类化合物及其制备方法和用途
US8173610B2 (en) Derivatives of epirubicin, their medicinal application and pharmaceuticaly acceptable forms of drugs
WO2011113174A1 (zh) 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 24.01.2013.)

122 Ep: pct application non-entry in european phase

Ref document number: 10847644

Country of ref document: EP

Kind code of ref document: A1