[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011111219A1 - 無線通信装置および反射波取得方法 - Google Patents

無線通信装置および反射波取得方法 Download PDF

Info

Publication number
WO2011111219A1
WO2011111219A1 PCT/JP2010/054205 JP2010054205W WO2011111219A1 WO 2011111219 A1 WO2011111219 A1 WO 2011111219A1 JP 2010054205 W JP2010054205 W JP 2010054205W WO 2011111219 A1 WO2011111219 A1 WO 2011111219A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
output
wave
reflected wave
circulator
Prior art date
Application number
PCT/JP2010/054205
Other languages
English (en)
French (fr)
Inventor
滋 大川
収 黒田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012504244A priority Critical patent/JPWO2011111219A1/ja
Priority to PCT/JP2010/054205 priority patent/WO2011111219A1/ja
Publication of WO2011111219A1 publication Critical patent/WO2011111219A1/ja
Priority to US13/606,042 priority patent/US20130040585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0466Fault detection or indication

Definitions

  • This case relates to a wireless communication device that detects a voltage standing wave ratio (VSWR) of an antenna and a reflected wave acquisition method of the wireless communication device.
  • VSWR voltage standing wave ratio
  • the antenna of the base station in the wireless communication system is an important element that connects the space between the wireless transmission / reception circuit and a failure here has a great influence on the entire system. Accordingly, it is important for the operation of the radio communication system to quickly know the failure in the antenna portion and to predict the failure.
  • the wireless communication apparatus can detect or predict a failure in the antenna portion by monitoring the VSWR.
  • VSWR can be calculated based on the power and voltage of the transmission signal and the reflected wave, for example. Therefore, there is a problem in that an appropriate VSWR cannot be calculated if an unnecessary signal is included in the acquired reflected wave and the accuracy is low.
  • This case has been made in view of these points, and an object thereof is to provide a wireless communication apparatus and a reflected wave acquisition method capable of obtaining a reflected wave with high accuracy.
  • the wireless communication apparatus includes a first output unit that has a first port, a second port, and a third port, and that outputs a transmission signal input to the first port from the second port; It has the same port as the first output device, outputs the transmission signal input to the first port from the second port, and outputs the reflected wave from the antenna input to the second port to the third port.
  • a second output device that outputs from the first port, a phase shifter that inverts the phase of the signal output from the third port of the first output device, and an output from the third port of the second output device And an adder for adding the signal output from the phase shifter.
  • FIG. 4 is a second diagram illustrating a power difference between a reflected wave and a synthesized wave.
  • FIG. 6 is a first diagram illustrating a power difference between a reflected wave and a combined wave from which unnecessary waves are removed;
  • FIG. 6B is a second diagram illustrating a power difference between the reflected wave and the combined wave from which the unnecessary wave is removed. It is a figure explaining the error of reflected wave electric power. It is a block diagram of the radio
  • FIG. 1 is a block diagram of a wireless communication apparatus according to the first embodiment.
  • the wireless communication apparatus includes output devices 1 and 2, a phase shifter 3, an adder 4, and an antenna 5.
  • the output device 1 is a circulator, for example, and has ports p1 to p3.
  • the output device 1 outputs the transmission signal input to the port p1 from the port p2.
  • the output device 2 is, for example, a circulator, and has the same ports p1 to p3 as the output device 1.
  • the output device 2 outputs the transmission signal from the output device 1 input to the port p1 from the port p2, and outputs the reflected wave from the antenna 5 input to the port p2 to the port p3.
  • the phase shifter 3 inverts the phase of the signal output from the port p3 of the output device 1.
  • the adder 4 adds the signal output from the port p3 of the output device 2 and the signal output from the phase shifter 3.
  • the antenna 5 is connected to the port p2 of the output device 2.
  • a reflected wave due to the transmission signal is generated in accordance with the mismatch between the impedance of the antenna 5 and the impedance of the circuit in the wireless communication device viewed from the antenna 5.
  • each of the output device 1 and the output device 2 does not output the transmission signal input from the port p1 from the port p3, but the transmission input from the port p1 as indicated by the dotted arrow in FIG. A part of the signal is output as an unnecessary wave. Therefore, a synthesized wave obtained by synthesizing the reflected wave and the unnecessary wave is output from the port p3 of the output device 2, and a reflected wave with high accuracy cannot be obtained.
  • the phase shifter 3 inverts the phase of the unnecessary wave output from the port p3 of the output device 1 and outputs it to the adder 4. Since the adder 4 adds the unnecessary wave whose phase is inverted by the phase shifter 3 to the combined wave of the unnecessary wave and the reflected wave output from the port p3 of the output device 2, the unnecessary wave is added from the adder 4. The removed reflected wave with high accuracy can be obtained. Thereby, the wireless communication apparatus can calculate an appropriate VSWR.
  • the wireless communication apparatus adds the signal of the output device 1 whose phase is inverted by the phase shifter 3 to the signal output from the port p3 of the output device 2.
  • wireless communication apparatus can obtain the reflected wave with high precision which removed the unnecessary wave.
  • FIG. 2 is a block diagram of a wireless communication apparatus according to the second embodiment.
  • the wireless communication device includes an amplifier 11, circulators 12 and 13, a DUP (Duplexer) 14, an antenna 15, a phase shifter 16, an adder 17, a filter 18, a DET (Detector) 19, a VSWR calculation unit 20, And a determination unit 21.
  • the wireless communication apparatus in FIG. 2 is mounted on a base station, for example, and performs wireless communication with a mobile phone.
  • the amplifier 11 amplifies a transmission signal that is wirelessly transmitted to a mobile phone.
  • the circulator 12 is a circulator having ports p11 to p13.
  • the circulator 12 outputs a signal input from the port p11 to the port p12, outputs a signal input to the port p12 to the port p13, and outputs a signal input from the port p13 to the port p11. Therefore, the circulator 12 outputs the transmission signal from the amplifier 11 input to the port p11 from the port p12.
  • the circulator 13 is a circulator having the same ports p11 to p13 as the circulator 12. Therefore, the circulator 13 outputs the transmission signal from the circulator 12 input to the port p11 from the port p12.
  • the circulator 13 outputs a transmission signal reflected by the antenna 15 input to the port p12 (hereinafter also referred to as a reflected wave) from the port p13.
  • the circulator 13 preferably outputs the transmission signal input from the port p11 from the port p12 and does not output it to the port p13. However, a part of the transmission signal is output as an unnecessary wave from the port p13.
  • the circulator 12 is a matched pair type circulator having the same characteristics as the circulator 13, and, like the circulator 13, outputs a part of the transmission signal input to the port p 11 as an unnecessary wave from the port p 13.
  • the matched pair type means that the same kind of device is manufactured at the same time and the device characteristics are the same. Accordingly, the unnecessary wave output from the port p13 of the circulator 12 and the amplitude and phase of the unnecessary wave output from the port p13 of the circulator 13 are substantially the same.
  • the DUP 14 is an antenna duplexer and outputs a transmission signal output from the port p12 of the circulator 13 to the antenna 15. Further, the DUP 14 outputs the reception signal received by the antenna 15 to the reception processing unit.
  • the reception processing unit performs, for example, demodulation processing of the received signal and outputs the received signal to the host device of the base station.
  • the antenna 15 wirelessly transmits a transmission signal output from the DUP 14 to, for example, a mobile phone, and receives a wireless signal transmitted from the mobile phone.
  • the impedance of the antenna 15 is matched with the impedance viewed from the output side of the DUP 14 (hereinafter, a circuit in the wireless communication device).
  • a reflected wave is generated in the antenna 15 in accordance with the mismatch. For example, when a connector connecting the antenna 15 is loosened, or a cable or antenna is damaged, a reflected wave is generated.
  • the reflected wave is input to the port p12 of the circulator 13 via the DUP 14, and is output from the port p13 of the circulator 13 to the adder 17.
  • the phase shifter 16 inverts the phase of the unwanted wave output from the port p13 of the circulator 12. That is, the phase shifter 16 rotates the phase of the unnecessary wave output from the circulator 12 by 180 degrees.
  • the adder 17 adds the phase-inverted unnecessary wave output from the phase shifter 16 and the combined wave of the unnecessary wave and the reflected wave output from the circulator 13.
  • the amplitude of the unnecessary wave included in the synthesized wave output from the circulator 13 and the unnecessary wave output from the phase shifter 16 are the same, and the phases are different by 180 degrees. Therefore, the adder 17 outputs a reflected wave from which unnecessary waves are removed.
  • the filter 18 extracts the reflected wave output from the adder 17 and outputs it to the DET 19.
  • the filter 18 is, for example, a band-pass filter having a reflected wave frequency in the pass band.
  • the DET 19 measures the reflected wave power of the reflected wave output from the filter 18.
  • the VSWR calculation unit 20 calculates the VSWR based on the reflected wave power output from the DET 19 and the transmission power of the transmission signal.
  • the transmission power of the transmission signal can be known in advance at the time of design, for example.
  • VSWR calculation unit 20 can calculate VSWR by the following formulas (1) and (2).
  • ⁇ in Equation (1) is VSWR.
  • P r is reflected wave power
  • P f is transmission power.
  • the determination unit 21 detects or predicts a failure in the antenna 15 based on the VSWR calculated by the VSWR calculation unit 20. For example, if the VSWR calculated by the VSWR calculation unit 20 is greater than a predetermined threshold, the determination unit 21 determines that the connector that connects the antenna of the wireless communication device has loosened, or that the cable or the antenna has been damaged. To do.
  • FIG. 3 is a diagram for explaining reflected waves.
  • FIG. 3 shows the antenna 15 of the wireless communication apparatus shown in FIG.
  • the RF (Radio Frequency) circuit unit 31 in FIG. 3 corresponds to the amplifier 11 and the reception processing unit described in FIG. Further, the RF circuit unit 31 corresponds to a circuit or the like that performs modulation processing of the transmission signal in the previous stage of the amplifier 11 (not shown in FIG. 2).
  • the waveform W1 shown in FIG. 3 shows the waveform of the reflected wave when the transmission signal is reflected at the point A of the antenna 15.
  • a waveform W2 indicates a waveform of a reflected wave when the transmission signal is reflected at a point B of the antenna 15.
  • the level of the reflected wave varies depending on the looseness of the connector connection for connecting the antenna of the wireless communication device or the damage of the cable or antenna. That is, the level of the reflected wave varies depending on the degree of mismatch between the circuit in the wireless communication apparatus and the antenna 15.
  • the phase of the reflected wave differs depending on where the mismatch occurs at the antenna 15.
  • the waveform of the reflected wave reflected at the point A of the antenna 15 is as shown by the waveform W1
  • the waveform of the reflected wave reflected at the point B is as shown by the waveform W2.
  • the phase is different.
  • FIG. 4 is a diagram for explaining a composite wave of a reflected wave and an unnecessary wave.
  • the reflected wave reflected by the antenna 15 is input to the port p12 of the circulator 13 and output from the port p13 to the adder 17. Since the circulator 13 outputs a part of the transmission signal as an unnecessary wave to the adder 17, the adder 17 outputs a synthesized wave obtained by synthesizing the reflected wave and the unnecessary wave.
  • the vector V1 in FIG. 4 indicates an unnecessary wave vector output from the circulator 13 to the adder 17.
  • a vector V ⁇ b> 2 indicates a reflected wave vector output from the circulator 13 to the adder 17. Accordingly, the circulator 13 outputs a combined wave of the vector V obtained by adding the vector V1 and the vector V2.
  • FIG. 5 is a diagram for explaining a composite wave of a reflected wave, an unnecessary wave, and an unnecessary wave whose phase is inverted.
  • the combined wave output from the circulator 13 is output to the adder 17, and the adder 17 adds the phase-inverted unnecessary wave output from the phase shifter 16 to the combined wave output from the circulator 13.
  • phase shifter 16 represents an unnecessary wave output from the phase shifter 16.
  • the phase of the unnecessary wave output from the phase shifter 16 is rotated by 180 degrees with respect to the unnecessary wave (vector V1) included in the synthesized wave of the circulator 13.
  • the unnecessary wave included in the output of the port p13 of the circulator 13 is removed by the adder 17 as shown by the vector V1 'in FIG.
  • the adder 17 outputs a composite wave of the vector V ′ obtained by adding the vector V1 ′ and the vector V2.
  • the circulators 12 and 13 are of a matched pair type and desirably have the same characteristics, but actually have some deviation. Further, the amplitude of the unnecessary wave output from the phase shifter 16 and the unnecessary wave included in the output of the circulator 13 is slightly shifted depending on the characteristics of the line through which the signal propagates and the phase shifter 16. Therefore, some unwanted waves may remain in the output of the adder 17, as indicated by the vector V1 'in FIG.
  • FIG. 5 shows a vector V of synthesized waves when unnecessary waves included in the output of the circulator 13 are not removed. That is, the vector V of the composite wave at the port p13 of the circulator 13 is shown. For this vector V, the combined wave vector V 'output from the adder 17 is close to the reflected wave vector V2, as shown in FIG. That is, a highly accurate reflected wave is output from the adder 17.
  • the size of the combined wave is expressed by the following equation (4).
  • FIG. 6 is a first diagram illustrating the power difference between the reflected wave and the synthesized wave.
  • the horizontal axis of FIG. 6 shows the phase difference between the reflected wave of the synthesized wave output from the port p13 of the circulator 13 and the unnecessary wave.
  • the vertical axis represents the power difference between the reflected wave and the combined wave output from the port p13 of the circulator 13.
  • the waveforms W11 to W16 in FIG. 6 show the measurement error of the reflected wave due to the combined wave when the power of the unnecessary wave is attenuated by 25 dB with respect to the power of the transmission signal.
  • a waveform W11 in FIG. 6 shows a measurement error of the reflected wave due to the combined wave when the reflected wave is attenuated by 16 dB with respect to the transmission signal.
  • each of the waveforms W12 to W16 indicates a measurement error of the reflected wave due to the combined wave when the reflected wave is attenuated by 14 dB, 10.9 dB, 9.5 dB, 7.4 dB, and 6 dB with respect to the transmission signal. Yes.
  • the synthesized wave output from the port p13 of the circulator 13 causes a difference between the reflected wave and the power due to the phase difference between the reflected wave and the unnecessary wave as shown in FIG. That is, the synthesized wave output from the circulator 13 differs in power difference from the reflected wave depending on the reflection point of the reflected wave at the antenna 15.
  • the phase difference between the reflected wave and the unnecessary wave is 0 degree and 180 degrees
  • the power difference between the synthesized wave output from the circulator 13 and the reflected wave is the largest.
  • the measurement error of the combined wave output from the circulator 13 and the reflected wave increases as the power of the reflected wave decreases, that is, as the ratio of the unnecessary wave of the combined wave increases.
  • the measurement error of the reflected wave attenuated by 16 dB with respect to the transmission signal is larger than the measurement error of the reflected wave attenuated by 6 dB with respect to the transmission signal.
  • FIG. 7 is a second diagram illustrating the power difference between the reflected wave and the synthesized wave.
  • FIG. 7 shows a composite wave vector V31 in which the phase difference between the unnecessary wave (vector V11) and the reflected wave (vector V21) is ⁇ 1.
  • a composite wave vector V32 in which the phase difference between the unnecessary wave (vector V11) and the reflected wave (vector V22) is ⁇ 2 is shown.
  • the vector of the synthesized wave changes so as to indicate a circle of a one-dot chain line in FIG.
  • a circle indicated by a solid line indicates a locus of a vector of a synthetic wave output from the circulator 13 when no unnecessary wave exists. That is, a circle indicated by a solid line indicates a vector locus of only the reflected wave.
  • the synthesized wave output from the circulator 13 causes a power difference with respect to the reflected wave due to the unnecessary wave.
  • the phase of the unnecessary wave and the reflected wave is 0 degree and 180 degrees
  • the power difference between the synthesized wave and the reflected wave output from the circulator 13 is the largest.
  • the circle indicated by the solid line and the circle indicated by the alternate long and short dash line move away, and the power difference between the synthesized wave output from the circulator 13 and the reflected wave increases.
  • FIG. 8 is a first diagram illustrating a power difference between the reflected wave and the combined wave from which the unnecessary wave is removed.
  • the horizontal axis of FIG. 8 indicates the phase difference between the reflected wave of the combined wave output from the adder 17 and the unnecessary wave.
  • the vertical axis indicates the power difference between the reflected wave and the combined wave output from the adder 17.
  • FIG. 8 shows the power difference between the reflected wave and the combined wave when the power of the unnecessary wave is attenuated by 25 dB with respect to the power of the transmission signal.
  • FIG. 8 shows the power difference between the reflected wave and the combined wave when the reflected wave is attenuated by 14 dB, 10.9 dB, 9.5 dB, 7.4 dB, and 6 dB with respect to the transmission signal.
  • the synthesized wave output from the adder 17 causes a difference between the reflected wave and the power due to the phase difference between the reflected wave and the unnecessary wave as shown in FIG.
  • the adder 17 adds the unnecessary wave whose phase is inverted to the combined wave output from the circulator 13 and outputs the resultant wave, the power difference between the combined wave output from the adder 17 and the reflected wave is small. That is, the combined wave output from the adder 17 has a small power difference from the reflected wave regardless of the reflection point of the reflected wave at the antenna 15. That is, it can be considered that the reflected wave itself is output from the adder 17.
  • FIG. 9 is a second diagram illustrating a power difference between the reflected wave and the combined wave from which the unnecessary wave is removed.
  • FIG. 9 shows an unnecessary wave vector V41 included in the combined wave output from the circulator 13 and a phase-inverted unnecessary wave vector V42 output from the phase shifter 16.
  • FIG. 9 shows a composite wave vector V61 in which the phase difference between the unnecessary wave (vector V43) and the reflected wave (vector V51) is ⁇ 1. Further, a combined wave vector V62 in which the phase difference between the unnecessary wave (vector V43) and the reflected wave (vector V52) is ⁇ 2 is shown.
  • the vector of the synthesized wave changes so as to indicate a circle of a one-dot chain line in FIG.
  • Circles indicated by solid lines indicate vector trajectories with only reflected waves.
  • the vector of the synthesized wave output from the adder 17 changes as indicated by a one-dot chain line circle and almost overlaps with the circle indicated by a solid line. That is, it can be considered that the reflected wave itself is output from the adder 17.
  • FIG. 10 is a diagram for explaining an error of reflected wave power.
  • the horizontal axis of FIG. 10 shows the power of the reflected wave reflected by the antenna 15. That is, the power of the reflected wave input to the port p12 of the circulator 13 is shown.
  • the vertical axis indicates the power of the combined wave output from the circulator 13 and the combined wave output from the adder 17.
  • the waveform indicated by the arrow A1 indicates an ideal reflected wave to be output from the adder 17. For example, if the reflected wave power reflected by the antenna 15 is ⁇ 10 dB, it is desirable that the adder 17 outputs ⁇ 10 dB.
  • the waveforms shown by arrows A2a and A2b indicate the power of the synthesized wave actually output from the adder 17.
  • the adder 17 preferably outputs the power of a composite wave (that is, a reflected wave) such as the waveform shown by the arrow A1, but is slightly deviated from the ideal reflected wave due to a deviation in the characteristics of the circulators 12 and 13. Occurs.
  • the waveforms indicated by the arrows A3a and A3b indicate the power of the synthesized wave output from the circulator 13.
  • the power of the synthesized wave output from the circulator 13 is greatly different from the ideal reflected wave because unnecessary waves are not removed by the adder 17.
  • the two waveforms appear as indicated by arrows A3a and A3b because, for example, the reflected wave takes positive and negative values depending on the phase of the reflected wave as shown in FIG. Further, the smaller the reflected wave power is, the farther from the ideal reflected wave power. The same applies to the arrows A2a and A2b.
  • the wireless communication device adds the unnecessary wave of the circulator 12 whose phase is inverted by the phase shifter 16 to the combined wave of the unnecessary wave and the reflected wave output from the port p13 of the circulator 13.
  • wireless communication apparatus can obtain the reflected wave with high precision which removed the unnecessary wave.
  • the circulator 12 and the circulator 13 have the same characteristics. Thereby, the unnecessary waves output from the port p13 of the circulator 12 and the circulator 13 are the same, and the adder 17 can remove the unnecessary waves from the combined wave with high accuracy and obtain a reflected wave. In addition, a highly accurate reflected wave can be obtained even when the environment changes due to temperature, humidity, or the like. Further, even when the frequency of the transmission signal is changed, the circulator 12 and the circulator 13 behave in the same manner, so that unnecessary waves extracted from the port p13 are the same, and a reflected wave with high accuracy can be obtained.
  • a double circulator may be used for the circulator 12 and the circulator 13. In this case, the circuit can be reduced in size.
  • the VSWR is calculated based on the preset transmission power of the transmission signal.
  • the transmission power of a transmission signal that is actually wirelessly transmitted to a communication partner is measured, and VSWR is calculated using the measured transmission power.
  • FIG. 11 is a block diagram of a wireless communication apparatus according to the third embodiment. 11, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the wireless communication apparatus in FIG. 11 includes a coupler 41, an ATT (ATTenuater) 42, a SW (SWitch) 43, a SW control unit 44, a VSWR calculation unit 45, and a determination unit 46.
  • the coupler 41 is connected to the output of the amplifier 11.
  • the coupler 41 branches a part of the transmission signal output from the amplifier 11 to the port p11 of the circulator 12.
  • the circulator 12 outputs the transmission signal input to the port p11 from the port p12 and outputs it to the SW43.
  • An unnecessary wave that is a part of the transmission signal input to the port p11 is output from the port p13 of the circulator 12.
  • the transmission signal input to the circulator 12 is branched by the coupler 41. Therefore, the level of the unnecessary wave output from the port p13 of the circulator 12 and the level of the unnecessary wave output from the port p13 of the circulator 13 are different. Therefore, the ATT 42 attenuates the combined wave output from the circulator 13 so that the level of the unnecessary wave output from the circulator 13 is the same as the level of the unnecessary wave output from the circulator 12. That is, the ATT 42 compensates for the branch level of the coupler 41.
  • the transmission signal output from the port p12 of the circulator 12 and the combined wave (reflected wave) from which the unnecessary wave output from the adder 17 is removed are input to the SW 43.
  • the SW 43 outputs one of the transmission signal output from the circulator 12 and the reflected wave output from the adder 17 to the filter 18 under the control of the SW control unit 44.
  • the SW control unit 44 switches the signal output of the SW 43 under the control of the VSWR calculation unit 45.
  • the VSWR calculation unit 45 receives the VSWR request signal from the determination unit 46, controls the SW control unit 44, and calculates the VSWR based on the transmission signal output from the SW 43 and the reflected wave.
  • FIG. 12 is a diagram for explaining the SW control of the VSWR calculation unit.
  • FIG. 12 shows a transmission period in which the wireless communication apparatus transmits a transmission signal and a reception period in which a reception signal is received.
  • the VSWR calculation unit 45 receives the VSWR request signal during the transmission period of the transmission signal.
  • the VSWR calculation unit 45 instructs the SW control unit 44 to output the transmission signal from the SW 43 during the period t1 shown in FIG.
  • the VSWR calculation unit 45 instructs the SW control unit 44 so that a reflected wave is output from the SW 43 during a period t2 different from the period t1.
  • the VSWR calculation unit 45 calculates, for example, an average value of the transmission power output in the period t1, and calculates an average value of the reflected wave power output in the period t2.
  • the VSWR calculation unit 45 calculates the VSWR based on the average value of the calculated transmission power and reflected wave power.
  • the VSWR calculation unit 45 acquires in advance (for example, stores in a memory) the branch amount of the transmission signal by the coupler 41 and corrects the transmission power. Further, the VSWR calculation unit 45 acquires the attenuation amount of the reflected wave by the ATT 42 in advance and corrects the reflected wave power.
  • the determination unit 46 outputs a VSWR request signal to the VSWR calculation unit 45 during the transmission period of the transmission signal. For example, the determination unit 46 periodically outputs a VSWR request signal.
  • the determination unit 46 detects or predicts a failure in the antenna 15 based on the VSWR from the VSWR calculation unit 45. For example, if the VSWR calculated by the VSWR calculation unit 45 is larger than a predetermined threshold, the determination unit 46 determines that the connector for connecting the antenna of the wireless communication device has loosened, or the cable or the antenna has been damaged. To do.
  • the VSWR calculation unit 20 also outputs a VSWR request signal to the VSWR calculation unit 20 during the transmission period in the same manner as the determination unit 46.
  • the VSWR calculation unit 20 receives the VSWR request signal, calculates the VSWR, and outputs the VSWR to the determination unit 21.
  • FIG. 13 is a flowchart showing the VSWR calculation operation.
  • the SW control unit 44 controls the SW 43 so that a transmission signal is output from the SW 43 based on an instruction from the VSWR calculation unit 45. That is, the SW control unit 44 controls the SW 43 so that the transmission signal output from the circulator 12 is output from the SW 43.
  • the VSWR calculator 45 stores the transmission power output from the DET 19.
  • the VSWR calculation unit 45 stores a predetermined number of transmission powers.
  • the VSWR calculation unit 45 controls the SW control unit 44 so that a reflected wave is output from the SW 43.
  • the SW control unit 44 controls the SW 43 so that a reflected wave is output from the SW 43 based on an instruction from the VSWR calculation unit 45. That is, the SW control unit 44 controls the SW 43 so that the reflected wave output from the adder 17 is output from the SW 43.
  • the VSWR calculator 45 stores the reflected wave power output from the DET 19.
  • the VSWR calculation unit 45 stores a predetermined number of reflected wave powers.
  • the VSWR calculator 45 calculates the VSWR based on the stored transmission power and reflected wave power. For example, the VSWR calculation unit 45 calculates the average of the transmission power and the reflected wave power stored in a predetermined number, and calculates the VSWR. Note that the VSWR calculation unit 45 may calculate the VSWR by receiving the transmission power and the reflected wave power one sample at a time. That is, the VSWR calculation unit 45 may calculate the VSWR without calculating the average of the transmission power and the reflected wave power.
  • the VSWR calculation unit 45 outputs the calculated VSWR to the determination unit 46.
  • the wireless communication apparatus outputs the transmission signal output from the amplifier 11 to the circulator 13 and branches the transmission signal by the coupler 41 to input to the circulator 12.
  • the adder 17 adds the unnecessary wave output from the port p13 of the circulator 12 whose phase has been inverted by the phase shifter 16 to the combined wave output from the port p13 of the circulator 13 to obtain a reflected wave.
  • the SW 43 switches and outputs the transmission signal output from the port p12 of the circulator 12 and the reflected wave output from the adder 17.
  • the wireless communication apparatus can calculate the VSWR based on the reflected wave with high accuracy and the transmission signal that is actually output to the antenna 15, and can increase the accuracy of the VSWR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

アンテナでの反射波を精度よく得ることができる。 第1の出力器(1)は、第1乃至第3のポート(p1~p3)を有し、第1のポート(p1)に入力される送信信号を第2のポート(p2)から出力する。第2の出力器(2)は、第1の出力器(1)と同様の第1乃至第3のポート(p1~p3)を有し、第1のポート(p1)に入力される第1の出力器(1)からの送信信号を第2のポート(p2)から出力し、第2のポート(p2)に入力されるアンテナ(5)からの反射波を第3のポート(p3)から出力する。位相器(3)は、第1の出力器(1)の第3のポート(p3)から出力される信号の位相を反転する。加算器(4)は、第2の出力器(2)の第3のポート(p3)から出力される信号と、位相器(3)から出力される信号とを加算する。

Description

無線通信装置および反射波取得方法
 本件は、アンテナの電圧定常波比(VSWR:Voltage Standing Wave Ratio)を検出する無線通信装置および無線通信装置の反射波取得方法に関する。
 無線通信システムにおける基地局のアンテナは、無線送受信回路と空間を結ぶ重要な素子であり、ここでの故障はシステム全体に大きな影響を与えることになる。従って、アンテナ部分における故障をいち早く知ることや故障を予知することは、無線通信システムの運用上、重要である。
 例えば、無線通信装置のアンテナを接続するコネクタに緩みが生じ、またはケーブルやアンテナに損傷等が生じると、回路とアンテナとのインピーダンス整合がずれる。インピーダンス整合がずれると、その整合のずれに応じてアンテナでの送信信号の反射波が大きくなり、VSWRが大きくなる。従って、無線通信装置は、VSWRを監視することにより、アンテナ部分における故障を検出し、または予知することができる。
 なお、従来、送信信号の漏れ込み等による受信信号に対する干渉を除去する送受信間干渉除去装置が提案されている(例えば、特許文献1参照)。
特開平9-116459号公報
 VSWRは、例えば、送信信号と反射波の電力や電圧に基づいて算出することができる。そのため、取得する反射波に不要な信号が含まれ精度が低いと、適切なVSWRを算出することができないという問題点があった。
 本件はこのような点に鑑みてなされたものであり、精度の高い反射波を得ることができる無線通信装置および反射波取得方法を提供することを目的とする。
 上記課題を解決するために、無線通信を行う無線通信装置が提供される。この無線通信装置は、第1のポート、第2のポート、および第3のポートを有し、第1のポートに入力される送信信号を第2のポートから出力する第1の出力器と、前記第1の出力器と同様のポートを有し、第1のポートに入力される前記送信信号を第2のポートから出力し、第2のポートに入力されるアンテナからの反射波を第3のポートから出力する第2の出力器と、前記第1の出力器の第3のポートから出力される信号の位相を反転する位相器と、前記第2の出力器の第3のポートから出力される信号と前記位相器から出力される信号とを加算する加算器と、を有する。
 開示の無線通信装置および反射波取得方法によれば、反射波の量を精度よく確認することができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施の形態に係る無線通信装置のブロック図である。 第2の実施の形態に係る無線通信装置のブロック図である。 反射波を説明する図である。 反射波および不要波の合成波を説明する図である。 反射波、不要波、および位相反転した不要波の合成波を説明する図である。 反射波と合成波との電力差を説明する図のその1である。 反射波と合成波との電力差を説明する図のその2である。 反射波と不要波が除去された合成波との電力差を説明する図のその1である。 反射波と不要波が除去された合成波との電力差を説明する図のその2である。 反射波電力の誤差を説明する図である。 第3の実施の形態に係る無線通信装置のブロック図である。 VSWR算出部のSW制御を説明する図である。 VSWRの算出動作を示したフローチャートである。
 以下、第1の実施の形態を、図面を参照して詳細に説明する。
 図1は、第1の実施の形態に係る無線通信装置のブロック図である。図1に示すように無線通信装置は、出力器1,2、位相器3、加算器4、およびアンテナ5を有している。
 出力器1は、例えば、サーキュレータであり、ポートp1~p3を有している。出力器1は、ポートp1に入力される送信信号をポートp2から出力する。
 出力器2は、例えば、サーキュレータであり、出力器1と同様のポートp1~p3を有している。出力器2は、ポートp1に入力される出力器1からの送信信号をポートp2から出力し、ポートp2に入力されるアンテナ5からの反射波をポートp3に出力する。
 位相器3は、出力器1のポートp3から出力される信号の位相を反転する。
 加算器4は、出力器2のポートp3から出力される信号と位相器3から出力される信号とを加算する。
 アンテナ5は、出力器2のポートp2と接続されている。アンテナ5では、アンテナ5のインピーダンスと、アンテナ5から無線通信装置内の回路を見たインピーダンスとの不整合に応じて、送信信号による反射波が生じる。
 ここで、出力器1と出力器2のそれぞれは、ポートp1から入力される送信信号をポートp3から出力しないのが望ましいが、図1の点線矢印に示すように、ポートp1から入力される送信信号の一部を不要波として出力する。そのため、出力器2のポートp3からは、反射波と不要波とを合成した合成波が出力され、精度のよい反射波を得ることができない。
 しかし、位相器3は、出力器1のポートp3から出力される不要波の位相を反転し、加算器4に出力する。加算器4は、出力器2のポートp3から出力される不要波と反射波の合成波に、位相器3によって位相を反転された不要波を加算するので、加算器4からは、不要波を除去した精度の高い反射波を得ることができる。これにより、無線通信装置は、適切なVSWRを算出することができる。
 このように、無線通信装置は、出力器2のポートp3から出力される信号に、位相器3によって位相を反転された出力器1の信号を加算するようにした。これにより、無線通信装置は、不要波を除去した精度の高い反射波を得ることができる。
 次に、第2の実施の形態を、図面を参照して詳細に説明する。
 図2は、第2の実施の形態に係る無線通信装置のブロック図である。図2に示すように無線通信装置は、増幅器11、サーキュレータ12,13、DUP(Duplexer)14、アンテナ15、位相器16、加算器17、フィルタ18、DET(Detector)19、VSWR算出部20、および判断部21を有している。図2の無線通信装置は、例えば、基地局に搭載され、携帯電話と無線通信を行う。
 増幅器11は、例えば、携帯電話に無線送信する送信信号を増幅する。
 サーキュレータ12は、ポートp11~p13を備えたサーキュレータである。サーキュレータ12は、ポートp11から入力される信号をポートp12に出力し、ポートp12に入力される信号をポートp13に出力し、ポートp13から入力される信号をポートp11に出力する。従って、サーキュレータ12は、ポートp11に入力される増幅器11からの送信信号をポートp12から出力する。
 サーキュレータ13は、サーキュレータ12と同様のポートp11~p13を備えたサーキュレータである。従って、サーキュレータ13は、ポートp11に入力されるサーキュレータ12からの送信信号をポートp12から出力する。また、サーキュレータ13は、ポートp12に入力されるアンテナ15で反射された送信信号(以下、反射波と呼ぶこともある)をポートp13から出力する。
 サーキュレータ13は、ポートp11から入力される送信信号をポートp12から出力し、ポートp13へ出力しないのが望ましいが、送信信号の一部を不要波としてポートp13から出力してしまう。サーキュレータ12は、サーキュレータ13と同様の特性を有したマッチドペア型のサーキュレータであり、サーキュレータ13と同様に、ポートp11に入力される送信信号の一部を不要波としてポートp13から出力する。
 なお、マッチドペア型とは、同時期、同種素子で製造され、素子特性が同様であることをいう。従って、サーキュレータ12のポートp13から出力される不要波と、サーキュレータ13のポートp13から出力される不要波の振幅と位相はほぼ同じとなる。
 DUP14は、アンテナ共用器であり、サーキュレータ13のポートp12から出力される送信信号をアンテナ15に出力する。また、DUP14は、アンテナ15によって受信された受信信号を受信処理部へ出力する。受信処理部は、例えば、受信された受信信号の復調処理等を行い、基地局の上位装置へ出力する。
 アンテナ15は、DUP14から出力される送信信号を、例えば、携帯電話に無線送信し、また、携帯電話から送信される無線信号を受信する。アンテナ15のインピーダンスは、DUP14の出力側から見たインピーダンス(以下、無線通信装置内の回路)と整合がとれている。
 アンテナ15と無線通信装置内の回路とのインピーダンスの整合にずれが生じると、その整合のずれに応じてアンテナ15で反射波が生じる。例えば、アンテナ15を接続するコネクタに緩みが生じ、またはケーブルやアンテナに損傷等が生じると反射波が生じる。反射波は、DUP14を介してサーキュレータ13のポートp12に入力され、サーキュレータ13のポートp13から加算器17に出力される。
 位相器16は、サーキュレータ12のポートp13から出力される不要波の位相を反転する。すなわち、位相器16は、サーキュレータ12から出力される不要波の位相を180度回転する。
 加算器17は、位相器16から出力される位相反転された不要波と、サーキュレータ13から出力される不要波と反射波との合成波とを加算する。ここで、サーキュレータ13から出力される合成波に含まれる不要波と、位相器16から出力される不要波との振幅は同様であり、位相は180度異なる。従って、加算器17からは、不要波が除去された反射波が出力される。
 フィルタ18は、加算器17から出力される反射波を抽出し、DET19へ出力する。フィルタ18は、例えば、反射波の周波数を通過帯域に有するバンドパスフィルタである。
 DET19は、フィルタ18から出力される反射波の反射波電力を測定する。VSWR算出部20は、DET19から出力される反射波電力と、送信信号の送信電力とに基づいてVSWRを算出する。なお、送信信号の送信電力は、例えば、設計時において予め知ることができる。
 VSWR算出部20は、次の式(1)、式(2)によってVSWRを算出できる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、式(1)のρはVSWRである。式(2)のPrは反射波電力であり、Pfは送信電力である。
 判断部21は、VSWR算出部20の算出したVSWRに基づいて、アンテナ15部分における故障を検知し、または予知する。例えば、判断部21は、VSWR算出部20によって算出されたVSWRが所定の閾値より大きければ、無線通信装置のアンテナを接続するコネクタに緩みが生じ、またはケーブルやアンテナに損傷等が発生したと判断する。
 以下、反射波、不要波、および不要波の除去について説明する。
 図3は、反射波を説明する図である。図3には、図2に示した無線通信装置のアンテナ15が示してある。図3のRF(Radio Frequency)回路部31は、図2で説明した増幅器11および受信処理部が対応する。また、RF回路部31は、図2で図示していない増幅器11の前段の送信信号の変調処理等を行う回路等が対応する。
 図3のVSWR検出部32は、図2で説明したサーキュレータ12,13、DUP14、位相器16、加算器17、フィルタ18、DET19、VSWR算出部20、および判断部21が対応する。
 図3に示す波形W1は、送信信号がアンテナ15のA点において反射した場合の反射波の波形を示す。波形W2は、送信信号がアンテナ15のB点において反射した場合の反射波の波形を示す。
 反射波のレベルは、無線通信装置のアンテナを接続するコネクタ接続の緩みや、またはケーブルやアンテナの損傷等に応じて異なる。すなわち、反射波のレベルは、無線通信装置内の回路とアンテナ15との不整合の度合いに応じて異なる。
 また、反射波の位相は、アンテナ15での不整合が生じる場所により異なる。例えば、アンテナ15のA点で反射した反射波の波形は、波形W1に示すようになり、B点で反射した反射波の波形は、波形W2に示すようになり、反射するポイントによって反射波の位相が異なる。
 図4は、反射波および不要波の合成波を説明する図である。アンテナ15で反射した反射波は、サーキュレータ13のポートp12に入力され、ポートp13から加算器17へ出力される。サーキュレータ13では、送信信号の一部も不要波として加算器17へ出力するので、加算器17には、反射波と不要波とを合成した合成波が出力される。
 図4のベクトルV1は、サーキュレータ13から加算器17に出力される不要波のベクトルを示している。ベクトルV2は、サーキュレータ13から加算器17に出力される反射波のベクトルを示している。従って、サーキュレータ13からは、ベクトルV1とベクトルV2を加算したベクトルVの合成波が出力される。
 ここで、不要波のベクトルV1と、反射波のベクトルV2の合成時の位相角をθとすると、その合成波の大きさは次の式(3)で示される。
Figure JPOXMLDOC01-appb-M000003
 図5は、反射波、不要波、および位相反転した不要波の合成波を説明する図である。サーキュレータ13から出力される合成波は、加算器17に出力され、加算器17は、サーキュレータ13から出力される合成波に、位相器16から出力される位相反転された不要波を加算する。
 図5に示すベクトルV3は、位相器16から出力される不要波を示している。位相器16から出力される不要波は、サーキュレータ13の合成波に含まれる不要波(ベクトルV1)に対し、位相が180度回転している。
 従って、サーキュレータ13のポートp13の出力に含まれる不要波は、加算器17によって、図5のベクトルV1’に示すように除去される。そして、加算器17からは、ベクトルV1’とベクトルV2とを加算したベクトルV’の合成波が出力される。
 なお、サーキュレータ12,13は、マッチドペア型であり、特性が同じであることが望ましいが現実的には多少のずれを有する。また、信号の伝搬する線路や位相器16の特性によって、位相器16から出力される不要波と、サーキュレータ13の出力に含まれる不要波との振幅は多少ずれる。従って、図5のベクトルV1’に示すように、加算器17の出力には多少の不要波が残る場合がある。
 図5には、サーキュレータ13の出力に含まれる不要波を除去しなかった場合の合成波のベクトルVが示してある。すなわち、サーキュレータ13のポートp13における合成波のベクトルVが示してある。このベクトルVに対し、加算器17から出力される合成波のベクトルV’は、図5に示すように、反射波のベクトルV2に近づいている。すなわち、加算器17からは、精度の高い反射波が出力される。
 ここで、不要波が除去されたベクトルV1’と、反射波のベクトルV2の合成時の位相角をθとすると、その合成波の大きさは次の式(4)で示される。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、ベクトルV1とベクトルV1’の大きさが同じであれば、ベクトルV’の大きさは、反射波の大きさのみとなる。すなわち、サーキュレータ13の出力に含まれる不要波に対し、位相器16から、同じレベルの位相差180度の不要波が出力されれば、加算器17からは、反射波のみが出力されることになる。
 図6は、反射波と合成波との電力差を説明する図のその1である。図6の横軸は、サーキュレータ13のポートp13から出力される合成波の反射波と不要波との位相差を示している。縦軸は、反射波とサーキュレータ13のポートp13から出力される合成波との電力差を示している。
 図6の波形W11~W16は、不要波の電力が送信信号の電力に対し25dB減衰した場合の合成波による反射波の測定誤差を示している。また、図6の波形W11は、反射波が送信信号に対し16dB減衰した場合の合成波による反射波の測定誤差を示している。以下同様に、波形W12~W16のそれぞれは、反射波が送信信号に対し、14dB、10.9dB、9.5dB、7.4dB、6dB減衰した場合の合成波による反射波の測定誤差を示している。
 サーキュレータ13のポートp13から出力される合成波は、図6に示すように反射波と不要波との位相差によって、反射波と電力差が生じる。すなわち、サーキュレータ13から出力される合成波は、反射波のアンテナ15での反射ポイントによって、反射波との電力差が異なる。反射波と不要波との位相差が0度および180度のとき、サーキュレータ13から出力される合成波と反射波との電力差は最も大きくなる。
 また、図6より、反射波の電力が小さいほど、すなわち、合成波の不要波の割合が大きくなるほど、サーキュレータ13から出力される合成波と、反射波の測定誤差が大きくなることが分かる。例えば、波形W11と波形W16に示すように、送信信号に対して16dB減衰した反射波の測定誤差は、送信信号に対し6dB減衰した反射波の測定誤差が大きくなっている。
 図7は、反射波と合成波との電力差を説明する図のその2である。図7には、不要波(ベクトルV11)と、反射波(ベクトルV21)との位相差がθ1における合成波のベクトルV31が示してある。また、不要波(ベクトルV11)と、反射波(ベクトルV22)との位相差がθ2における合成波のベクトルV32が示してある。反射波の不要波に対する位相を変化させると、その合成波のベクトルは、図7の一点鎖線の円を示すように変化する。
 実線で示す円は、不要波が存在しない場合のサーキュレータ13から出力される合成波のベクトルの軌跡を示している。すなわち、実線で示す円は、反射波のみのベクトルの軌跡を示している。
 図7の2つの円に示すように、サーキュレータ13から出力される合成波は、不要波によって反射波に対して電力差を生じる。不要波と反射波の位相が0度および180度のとき、サーキュレータ13から出力される合成波と反射波との電力差は最も大きくなる。また、反射波の電力が小さくなるほど、実線で示す円と一点鎖線で示す円が離れ、サーキュレータ13から出力される合成波と反射波との電力差は大きくなる。
 図8は、反射波と不要波が除去された合成波との電力差を説明する図のその1である。図8の横軸は、加算器17から出力される合成波の反射波と不要波との位相差を示している。縦軸は、反射波と加算器17から出力される合成波との電力差を示している。
 図8には、不要波の電力が送信信号の電力に対し25dB減衰した場合の反射波と合成波との電力差を示している。また、図8には、反射波が送信信号に対し、14dB、10.9dB、9.5dB、7.4dB、6dB減衰した場合の反射波と合成波との電力差を示している。
 加算器17から出力される合成波は、図8に示すように反射波と不要波との位相差によって、反射波と電力差が生じる。しかし、加算器17は、サーキュレータ13から出力される合成波に、位相反転した不要波を加算して出力するので、加算器17から出力される合成波と反射波との電力差は小さい。すなわち、加算器17から出力される合成波は、アンテナ15での反射波の反射ポイントがどの地点であっても、反射波との電力差が小さい。つまり、加算器17からは、反射波そのものが出力されているとみなすことができる。
 図9は、反射波と不要波が除去された合成波との電力差を説明する図のその2である。図9には、サーキュレータ13から出力される合成波に含まれる不要波のベクトルV41と、位相器16から出力される位相反転された不要波のベクトルV42が示してある。
 サーキュレータ13から出力される合成波には、位相器16によって位相反転された不要波(ベクトルV42)が加算器17によって加算される。従って、加算器17から出力される合成波に含まれる不要波は、図9のベクトルV43に示すようになる。
 なお、図9には、不要波(ベクトルV43)と反射波(ベクトルV51)との位相差がθ1における合成波のベクトルV61が示してある。また、不要波(ベクトルV43)と反射波(ベクトルV52)との位相差がθ2における合成波のベクトルV62が示してある。反射波の不要波(ベクトルV43)に対する位相を変化させると、その合成波のベクトルは、図9の一点鎖線の円を示すように変化する。
 実線で示す円は、反射波のみのベクトルの軌跡を示している。加算器17から出力される合成波のベクトルは、一点鎖線の円に示すように変化し、実線で示す円とほぼ重なる。すなわち、加算器17からは、反射波そのものが出力されているとみなすことができる。
 図10は、反射波電力の誤差を説明する図である。図10の横軸は、アンテナ15で反射した反射波の電力を示す。すなわち、サーキュレータ13のポートp12に入力される反射波の電力を示す。縦軸は、サーキュレータ13から出力される合成波および加算器17から出力される合成波の電力を示す。
 矢印A1に示す波形は、加算器17から出力されるべき理想の反射波を示している。例えば、アンテナ15にて反射した反射波電力が-10dBならば、加算器17からは-10dBが出力されるのが望ましい。
 矢印A2a,A2bに示す波形は、加算器17から実際に出力される合成波の電力を示している。加算器17からは、矢印A1に示す波形のような合成波(すなわち反射波)の電力が出力されるのが望ましいが、サーキュレータ12,13の特性のずれ等によって、理想の反射波と多少ずれが生じる。
 矢印A3a,A3bに示す波形は、サーキュレータ13から出力される合成波の電力を示している。サーキュレータ13から出力される合成波の電力は、加算器17によって不要波が除去されていないため、理想の反射波とは大きく異なっている。
 なお、矢印A3a,A3bのように、2つの波形が現れるのは、例えば、図6に示すように反射波の位相によって、反射波が正負の値をとるからである。また、反射波の電力が小さいほど理想の反射波電力から離れている。矢印A2a,A2bについても同様である。
 このように、無線通信装置は、サーキュレータ13のポートp13から出力される不要波と反射波の合成波に、位相器16によって位相を反転されたサーキュレータ12の不要波を加算するようにした。これにより、無線通信装置は、不要波を除去した精度の高い反射波を得ることができる。
 また、サーキュレータ12とサーキュレータ13は同様の特性を有するようにした。これにより、サーキュレータ12とサーキュレータ13のポートp13から出力される不要波は同様となり、加算器17にて合成波から精度よく不要波を除去して反射波を得ることができる。また、温度や湿度等による環境の変化に対しても、精度の高い反射波を得ることができる。さらに、送信信号の周波数を変えた場合でも、サーキュレータ12とサーキュレータ13は同様の振る舞いをするので、ポートp13から取り出す不要波は同様となり、精度のよい反射波を得ることができる。
 なお、サーキュレータ12とサーキュレータ13に、2連サーキュレータを用いることもできる。この場合、回路の小型を図ることができる。
 次に、第3の実施の形態を、図面を参照して詳細に説明する。第2の実施の形態では、予め設定された送信信号の送信電力に基づいてVSWRを算出した。第3の実施の形態では、実際に通信相手に無線送信される送信信号の送信電力を測定し、測定した送信電力でVSWRを算出する。
 図11は、第3の実施の形態に係る無線通信装置のブロック図である。図11において、図2と同じものには同じ符号を付し、その説明を省略する。図11の無線通信装置は、カプラ41、ATT(ATTenuater)42、SW(SWitch)43、SW制御部44、VSWR算出部45、および判断部46を有している。
 カプラ41は、増幅器11の出力に接続されている。カプラ41は、増幅器11から出力される送信信号の一部を、サーキュレータ12のポートp11に分岐する。サーキュレータ12は、ポートp11に入力された送信信号をポートp12から出力し、SW43に出力する。また、サーキュレータ12のポートp13からは、ポートp11に入力される送信信号の一部である不要波が出力される。
 サーキュレータ12に入力される送信信号は、カプラ41によって分岐されたものである。従って、サーキュレータ12のポートp13から出力される不要波と、サーキュレータ13のポートp13から出力される不要波のレベルは異なる。そこで、ATT42は、サーキュレータ13から出力される不要波のレベルが、サーキュレータ12から出力される不要波のレベルと同じになるように、サーキュレータ13から出力される合成波を減衰する。すなわち、ATT42は、カプラ41の分岐レベルを補償している。
 SW43には、サーキュレータ12のポートp12から出力される送信信号と、加算器17から出力される不要波が除去された合成波(反射波)とが入力される。SW43は、SW制御部44の制御に応じて、サーキュレータ12から出力される送信信号と加算器17から出力される反射波の一方をフィルタ18に出力する。SW制御部44は、VSWR算出部45の制御に応じて、SW43の信号出力を切り替える。
 VSWR算出部45は、判断部46からVSWR要求信号を受けて、SW制御部44を制御し、SW43から出力される送信信号と反射波とに基づいてVSWRを算出する。
 図12は、VSWR算出部のSW制御を説明する図である。図12には、無線通信装置が送信信号を送信する送信期間と、受信信号を受信する受信期間とが示してある。VSWR算出部45は、送信信号の送信期間においてVSWR要求信号を受信する。VSWR算出部45は、VSWR要求信号を受信すると、例えば、図12に示す期間t1の間、SW43から送信信号が出力されるように、SW制御部44に指示をする。また、VSWR算出部45は、期間t1とは異なる期間t2の間、SW43から反射波が出力されるように、SW制御部44に指示をする。
 VSWR算出部45は、例えば、期間t1に出力される送信電力の平均値を算出し、また、期間t2に出力される反射波電力の平均値を算出する。VSWR算出部45は、算出した送信電力と反射波電力の平均値に基づいてVSWRを算出する。
 なお、VSWR算出部45は、カプラ41による送信信号の分岐量を予め取得(例えば、メモリに記憶)し、送信電力を補正する。また、VSWR算出部45は、ATT42による反射波の減衰量を予め取得し、反射波電力を補正する。
 判断部46は、送信信号の送信期間中に、VSWR算出部45にVSWR要求信号を出力する。判断部46は、例えば、周期的にVSWR要求信号を出力する。判断部46は、VSWR算出部45からのVSWRに基づいて、アンテナ15部分における故障を検知し、または予知する。例えば、判断部46は、VSWR算出部45によって算出されたVSWRが所定の閾値より大きければ、無線通信装置のアンテナを接続するコネクタに緩みが生じ、またはケーブルやアンテナに損傷等が発生したと判断する。
 なお、図2の判断部21も、判断部46と同様に送信期間においてVSWR要求信号をVSWR算出部20に出力する。VSWR算出部20は、VSWR要求信号を受けて、VSWRを算出し、判断部21に出力する。
 図13は、VSWRの算出動作を示したフローチャートである。
 [ステップS1]SW制御部44は、VSWR算出部45の指示に基づいて、SW43から送信信号が出力されるようにSW43を制御する。すなわち、SW制御部44は、SW43からサーキュレータ12から出力される送信信号が出力されるようにSW43を制御する。
 [ステップS2]VSWR算出部45は、DET19から出力される送信電力を記憶する。VSWR算出部45は、送信電力を所定数記憶する。
 [ステップS3]VSWR算出部45は、送信電力を所定数記憶すると、SW制御部44に、SW43から反射波が出力されるように制御する。SW制御部44は、VSWR算出部45の指示に基づいて、SW43から反射波が出力されるようにSW43を制御する。すなわち、SW制御部44は、SW43から加算器17から出力される反射波が出力されるようにSW43を制御する。
 [ステップS4]VSWR算出部45は、DET19から出力される反射波電力を記憶する。VSWR算出部45は、反射波電力を所定数記憶する。
 [ステップS5]VSWR算出部45は、記憶した送信電力と反射波電力とに基づいてVSWRを算出する。例えば、VSWR算出部45は、所定数記憶した送信電力と反射波電力のそれぞれの平均を算出して、VSWRを算出する。なお、VSWR算出部45は、送信電力と反射波電力とを1サンプルずつ受信してVSWRを算出してもよい。すなわち、VSWR算出部45は、送信電力と反射波電力の平均を算出しないでVSWRを算出してもよい。
 [ステップS6]VSWR算出部45は、算出したVSWRを判断部46に出力する。
 このように、無線通信装置は、増幅器11から出力される送信信号をサーキュレータ13に出力するとともに、送信信号をカプラ41で分岐してサーキュレータ12に入力する。加算器17は、サーキュレータ13のポートp13から出力される合成波に、位相器16で位相反転したサーキュレータ12のポートp13から出力される不要波を加算して反射波を得る。そして、SW43は、サーキュレータ12のポートp12から出力される送信信号と加算器17から出力される反射波を切り替えて出力する。これにより、無線通信装置は、精度のよい反射波と、実際にアンテナ15に出力される送信信号とに基づいてVSWRを算出し、VSWRの精度を高めることができる。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1,2 出力器
 3 位相器
 4 加算器
 5 アンテナ
 p1~p3 ポート

Claims (7)

  1.  無線通信を行う無線通信装置において、
     第1のポート、第2のポート、および第3のポートを有し、第1のポートに入力される送信信号を第2のポートから出力する第1の出力器と、
     前記第1の出力器と同様のポートを有し、第1のポートに入力される前記送信信号を第2のポートから出力し、第2のポートに入力されるアンテナからの反射波を第3のポートから出力する第2の出力器と、
     前記第1の出力器の第3のポートから出力される信号の位相を反転する位相器と、
     前記第2の出力器の第3のポートから出力される信号と前記位相器から出力される信号とを加算する加算器と、
     を有することを特徴とする無線通信装置。
  2.  前記第1の出力器と前記第2の出力器は、同様の特性を有していることを特徴とする請求の範囲第1項記載の無線通信装置。
  3.  前記第2の出力器は、前記第1の出力器の第2のポートから出力される前記送信信号を第1のポートから入力することを特徴とする請求の範囲第1項または第2項記載の無線通信装置。
  4.  前記第1の出力器は、結合器を介して第1のポートに前記送信信号が入力されることを特徴とする請求の範囲第1項または第2項記載の無線通信装置。
  5.  前記第2の出力器の第3のポートから出力される信号を減衰する減衰器をさらに有することを特徴とする請求の範囲第4項記載の無線通信装置。
  6.  前記第1の出力器の第2のポートから出力される信号と前記加算器から出力される信号との一方を出力するスイッチをさらに有することを特徴とする請求の範囲第4項記載の無線通信装置。
  7.  無線通信を行う無線通信装置の反射波取得方法において、
     第1のポート、第2のポート、および第3のポートを有する第1の出力器において、第1のポートに入力される送信信号を第2のポートから出力し、
     前記第1の出力器と同様のポートを有する第2の出力器において、第1のポートに入力される前記送信信号を第2のポートから出力して第2のポートに入力されるアンテナからの反射波を第3のポートから出力し、
     前記第1の出力器の第3のポートから出力される信号の位相を反転し、
     前記第2の出力器の第3のポートから出力される信号と位相が反転された信号とを加算する、
     ことを特徴とする反射波取得方法。
PCT/JP2010/054205 2010-03-12 2010-03-12 無線通信装置および反射波取得方法 WO2011111219A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012504244A JPWO2011111219A1 (ja) 2010-03-12 2010-03-12 無線通信装置および反射波取得方法
PCT/JP2010/054205 WO2011111219A1 (ja) 2010-03-12 2010-03-12 無線通信装置および反射波取得方法
US13/606,042 US20130040585A1 (en) 2010-03-12 2012-09-07 Radio communication apparatus and reflected wave acquisition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054205 WO2011111219A1 (ja) 2010-03-12 2010-03-12 無線通信装置および反射波取得方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/606,042 Continuation US20130040585A1 (en) 2010-03-12 2012-09-07 Radio communication apparatus and reflected wave acquisition method

Publications (1)

Publication Number Publication Date
WO2011111219A1 true WO2011111219A1 (ja) 2011-09-15

Family

ID=44563061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054205 WO2011111219A1 (ja) 2010-03-12 2010-03-12 無線通信装置および反射波取得方法

Country Status (3)

Country Link
US (1) US20130040585A1 (ja)
JP (1) JPWO2011111219A1 (ja)
WO (1) WO2011111219A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194344B (zh) * 2018-10-30 2020-02-07 天津津航计算技术研究所 一种射频发射机精细化驻波保护电路及方法
CN113092869B (zh) * 2021-04-06 2022-02-08 北京航空航天大学 一种天线/射频一体化辐射计的天线端口驻波比测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298534U (ja) * 1989-01-23 1990-08-06
JP2004286632A (ja) * 2003-03-24 2004-10-14 Mitsubishi Electric Corp Vswrモニタ回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816802B2 (ja) * 1978-04-17 1983-04-02 ケイディディ株式会社 高周波増幅器の非線形補償回路
US5701595A (en) * 1995-05-04 1997-12-23 Nippondenso Co., Ltd. Half duplex RF transceiver having low transmit path signal loss
JPH09116459A (ja) * 1995-08-17 1997-05-02 Fujitsu Ltd 送受信間干渉除去装置
US6313713B1 (en) * 1999-09-28 2001-11-06 The United States Of America As Represented By The Secretary Of The Navy Matched pair circulator antenna isolation circuit
US6707417B2 (en) * 2002-06-11 2004-03-16 Raytheon Company Accurate range calibration architecture
JP4879083B2 (ja) * 2007-05-07 2012-02-15 株式会社エヌ・ティ・ティ・ドコモ 漏洩電力低減装置および低減方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298534U (ja) * 1989-01-23 1990-08-06
JP2004286632A (ja) * 2003-03-24 2004-10-14 Mitsubishi Electric Corp Vswrモニタ回路

Also Published As

Publication number Publication date
JPWO2011111219A1 (ja) 2013-06-27
US20130040585A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US9722713B2 (en) Architecture and control of analog self-interference cancellation
US9031163B2 (en) Phased array transmission device
US8942658B2 (en) Directional notch filter for simultaneous transmit and receive of wideband signals
US9762416B2 (en) Reflection coefficient reader
US9712312B2 (en) Systems and methods for near band interference cancellation
US9774405B2 (en) Systems and methods for frequency-isolated self-interference cancellation
JP4524674B2 (ja) 無線タグ通信システムの質問器
US20130178175A1 (en) Voltage standing wave ratio detection circuit
US10243640B2 (en) Phased array transmission device and carrier leak correction method
US10230422B2 (en) Systems and methods for modified frequency-isolation self-interference cancellation
JP2008078743A (ja) 導波管装置
US20160380668A1 (en) Communication device and receiving method
US20170093441A1 (en) Radio frequency complex reflection coefficient reader
US20140287707A1 (en) Control device, frequency control method, and receiving device
EP3192194B1 (en) Method and apparatus for facilitating antenna calibration and transceiver
CN110912582A (zh) 同时同频全双工自干扰信号消除方法、设备和存储介质
WO2011111219A1 (ja) 無線通信装置および反射波取得方法
KR102232377B1 (ko) 피드포워드 기반의 무선 송수신 장치 및 그 동작방법
KR101828914B1 (ko) 레이더 안테나에서의 반사파 이중 감쇄시스템
JP2004056315A (ja) 経路差測定方法およびその方法をコンピュータに実行させるプログラムならびに無線中継装置
JP5583854B2 (ja) 無線通信装置の電力を較正する方法、および電力較正のために無線通信装置により実行される方法
US20180139031A1 (en) Device and method of generating self-interference cancellation signal for full-duplex communication device
US20110273274A1 (en) Transceiver which removes phase noise
JP2014115095A (ja) 送受信装置、送受信方法及び送受信プログラム
US20210088642A1 (en) Distance measuring apparatus and distance measuring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504244

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847449

Country of ref document: EP

Kind code of ref document: A1