[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011108263A1 - Light beam parallelism measuring device - Google Patents

Light beam parallelism measuring device Download PDF

Info

Publication number
WO2011108263A1
WO2011108263A1 PCT/JP2011/001213 JP2011001213W WO2011108263A1 WO 2011108263 A1 WO2011108263 A1 WO 2011108263A1 JP 2011001213 W JP2011001213 W JP 2011001213W WO 2011108263 A1 WO2011108263 A1 WO 2011108263A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
light
incident angle
optical axis
parallelism
Prior art date
Application number
PCT/JP2011/001213
Other languages
French (fr)
Japanese (ja)
Inventor
雅寛 酒井
保文 川鍋
一吉 山田
章人 江野口
芸英 武山
Original Assignee
岩崎電気株式会社
株式会社ジェネシア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社, 株式会社ジェネシア filed Critical 岩崎電気株式会社
Publication of WO2011108263A1 publication Critical patent/WO2011108263A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0242Control or determination of height or angle information of sensors or receivers; Goniophotometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0418Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using attenuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0448Adjustable, e.g. focussing

Definitions

  • the present invention relates to a light beam parallelism measuring device that measures the parallelism of a light beam.
  • a solar simulator device (pseudo-sunlight irradiation device) that emits light having a spectrum equivalent to that of sunlight is known and widely used for evaluating the characteristics of solar cells.
  • the solar simulator device for evaluating solar cell characteristics is configured to irradiate the entire area of the solar cell panel surface by spatially dispersing and collimating the luminous flux of the irradiation light.
  • an incoherent light source such as a xenon lamp is usually used as a light source of the solar simulator device instead of a coherent light source such as a laser light source.
  • the light source is a coherent light source
  • the parallelism of the light beam can be measured using a well-known interferometer.
  • the parallelism has an extension like an incoherent light source
  • the light beam can be measured with a well-known interferometer. It is difficult to measure the parallelism.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a light beam parallelism measuring device that can measure the parallelism of a light beam emitted from an incoherent light source with a small number of measurements.
  • the present invention provides an imaging optical system that forms an image of each light component contained in a light beam at a position separated from the optical axis by a distance corresponding to an incident angle with respect to the optical axis, and the light beam. And a detector for detecting an imaging position of the light beam, and converting the distance from the optical axis to the imaging position into the incident angle and outputting an incident angle distribution of a light beam component included in the light beam A light beam parallelism measuring device is provided.
  • the present invention provides the light beam parallelism measuring apparatus, wherein the detector detects the light intensity at the imaging position, and the analysis means outputs the incident angle distribution by associating the light intensity for each incident angle. It is characterized by doing.
  • the present invention provides the beam parallelism measuring apparatus, wherein the imaging optical system forms an image of each of the light components on a predetermined plane away from the optical axis by a distance proportional to an incident angle. It is characterized by.
  • the present invention is characterized in that, in the above-described apparatus for measuring the parallelism of light flux, the imaging optical system makes a principal ray traveling on the predetermined plane parallel to the optical axis.
  • the parallelism of the light beam with respect to the optical axis can be obtained together with the distribution in one measurement. it can.
  • FIG. 1 is a diagram schematically showing a configuration of a light beam parallelism measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the principle of measuring the light beam parallelism.
  • FIG. 3 is a diagram illustrating a measurement result output screen output to the display device.
  • FIG. 4 is an explanatory view of the measurement of the parallelism of the light beam in the irradiation surface of the pseudo sunlight, (A) shows the relationship between the irradiation surface and the measurement location, and (B) is obtained by the measurement at each measurement location. An example of an incident angle distribution chart is shown.
  • FIG. 5 is an explanatory diagram of an application example of the light beam parallelism measuring apparatus according to the present invention.
  • FIG. 1 is a diagram schematically illustrating a configuration of a light beam parallelism measuring apparatus 1 according to the present embodiment.
  • the light beam parallelism measuring device 1 of the present embodiment measures the parallelism of the light beam 9 irradiated from the solar simulator device 3.
  • the solar simulator device 3 includes an incoherent light source 4 such as a xenon lamp that emits light having a wavelength band as wide as sunlight, a parallel light optical system 6 that collimates the light emitted from the light source 4,
  • a homogenizer 8 such as a fly-eye lens is provided to make the spatial intensity distribution of the emitted light uniform, and a light beam 9 having a relatively large cross-sectional area is emitted as pseudo-sunlight.
  • a homogenizer 8 is laid out after the collimating optical system 6, but the homogenizer 8 is usually arranged in an array of the collimating optical system 6.
  • the beam parallelism measuring device 1 includes a sensing head 10, an analysis device 12, and a display device 14.
  • the sensing head 10 is disposed at the set position of the irradiation target of the pseudo-sunlight (wavelength 300 nm to 2000 nm) of the solar simulator device 3, and detects light.
  • the sensing head 10 includes a filter unit 16, an aperture stop ring 18, a lens unit 20, and A two-dimensional detector 22 is provided.
  • the filter unit 16 is configured by overlapping an ND filter and a color tone correction filter.
  • the ND filter is a neutral density filter and prevents saturation of the detection intensity in the two-dimensional detector 22.
  • the color tone correction filter corrects the spectral distribution of the light beam 9 according to the wavelength sensitivity characteristic of the two-dimensional detector 22 to prevent detection variations for each wavelength.
  • the aperture stop ring 18 adjusts the amount of light incident on the two-dimensional detector 22 and defines the range in the cross section of the light beam 9 incident on the two-dimensional detector 22. That is, the aperture resolution ring 18 defines the spatial resolution (minimum measurable area) of the beam parallelism measuring device 1.
  • the viewing angle of the sensing head 10 is configured to be a circular viewing angle of ⁇ 5 degrees around the optical axis K of the lens unit 20 described later.
  • the lens unit 20 is an imaging optical system that forms an image at a position corresponding to the incident angle ⁇ of the incident light beam 24. More specifically, as shown in FIG. 2, the lens unit 20 has a relationship between the incident angle ⁇ of the incident light beam 24 with respect to the optical axis K of the lens unit 20 and the distance L from the optical axis K of the imaging position P. Satisfies the relationship defined by the predetermined function f ( ⁇ ), and the image forming position P does not depend on the incident position of the incident light beam 24 on the lens unit 20 at least within the range of the circular viewing angle.
  • the optical design is made in consideration of the distortion characteristic of the lens unit 20 as determined only by ⁇ .
  • the incident angle ⁇ is obtained from the imaging position P by calculation based on the inverse function of the predetermined function f ( ⁇ ).
  • the imaging position P is configured to have a distance L from the optical axis K that is directly proportional to the angle ⁇ .
  • the lens unit 20 is configured as a so-called image side telecentric optical system in which the principal ray 25 on the imaging side is parallel to the optical axis K.
  • the center of gravity position of the imaging position P does not change only by increasing the area (image) of the imaging position P. . That is, by measuring the barycentric position (the point at which the light intensity is maximum) of the imaging position P as the imaging position P, the parallelism of the light beam 9 is measured while always maintaining a certain accuracy with respect to the temperature rise of the lens unit 20. it can.
  • the two-dimensional detector 22 incorporates a CCD image sensor, for example, and outputs the light intensity at each position (pixel) in the rectangular planar detection surface Q (FIG. 2) of the CCD image sensor to the analysis device 12.
  • the two-dimensional detector 22 includes a case body 28 having a flat surface 26 on the bottom surface, and the detection surface Q of the CCD image sensor is provided in parallel to the flat surface 26.
  • the lens unit 20 is provided so that the optical axis K is perpendicular to the detection surface Q.
  • the case body 28 is irradiated with the irradiation surface (or the irradiation target) of the pseudo-sunlight irradiation target.
  • the optical axis K of the lens unit 20 is positioned vertically with respect to the irradiation surface, and the parallelism of the light beam 9 with respect to the mounting surface is accurately measured.
  • the filter unit 16, the aperture stop ring 18, and the lens unit 20 are configured as an optical unit 29 that is integrally provided in a cylindrical case body so as to have the same optical axis, and is formed of optical components.
  • the end of the lens unit 20 is screwed into the case body 28 of the two-dimensional detector 22 so as to be detachable.
  • the total flux (W, lm) can be easily measured by removing the two-dimensional detector 22 from the optical unit 29 and attaching a power meter instead.
  • a power meter calibrated in accordance with NIST is attached to the sensing head 10 and measured by the beam parallelism measuring device 1, and the output value of the two-dimensional detector 22 and the power meter are measured. Thereafter, the total flux can be obtained only with the output value of the two-dimensional detector 22 and output as the light intensity on the measurement result output screen 40 (FIG. 3) described later. .
  • the analysis device 12 is connected to the sensing head 10 via a signal cable, and generates an incident angle distribution chart C (see FIG. 3) of the light flux 9 based on an output signal output from the two-dimensional detector 22 of the sensing head 10.
  • the data is output to the display device 14 which is an example of an output device.
  • the analysis device 12 is configured by causing a computer device having a general configuration to execute a program for generating the incident angle distribution chart C.
  • FIG. 3 is a diagram showing a measurement result output screen 40 of the display device 14.
  • the incident angle distribution chart C and the color scale bar 41 are displayed on the measurement result output screen 40.
  • the incident angle distribution chart C is obtained by mapping the incident angle distribution of each light beam component having a different incident angle ⁇ included in the measured light beam 9.
  • the relative light intensity for each incident angle ⁇ is displayed by a change in color tone, and the color tone and the light intensity are indicated by the color scale bar 41.
  • each light beam component included in the light beam 9 is On the detection surface Q, an image is formed at an imaging position P that is separated from the optical axis K in a direction corresponding to the incident direction by a distance L proportional to the incident angle ⁇ . Based on the light intensity at the imaging position P, the light intensity is determined for each incident angle ⁇ . Such calculation is performed by the analysis device 12.
  • the incident angle distribution chart C includes not only the magnitude of the incident angle ⁇ of the light component contained in the light beam 9 (that is, the parallelism with respect to the optical axis K) but also the traveling direction of the light component (deviation from the optical axis K). Direction) along with the intensity of the light component.
  • the pixel arrangement direction of the detection surface Q of the sensing head 10 and the coordinate axis direction in the incident angle distribution chart C are fixed, and when the detection surface Q is turned upside down and placed on the irradiation surface, the incident direction is changed.
  • the angle distribution chart C is a chart that is inverted upside down. In other words, the traveling direction of the light component appearing in the incident angle distribution chart C differs depending on how the sensing head 10 is placed.
  • the sensing head 10 is provided with a mark indicating the upward direction (for example, the Y axis positive direction), and when measuring a plurality of locations on the irradiation surface, By placing the sensing head 10 on the irradiation surface so that this mark is always directed in the same direction, the traveling direction of the light component in the measurement result at each measurement point can be aligned and compared with each other.
  • the shifting direction of the imaging position P on the detection surface Q with respect to the traveling direction of the light component corresponds to the one-to-one relationship, the shifting direction of the imaging position P does not indicate the traveling direction of the light component. .
  • the traveling direction of the light beam component, the shift direction of the imaging position P on the detection surface Q, and the opposite direction with respect to the optical axis K may be indicated. May be corrected so that they are aligned in the same direction, and the incident angle distribution chart C may be generated.
  • the incident angle distribution chart C shown in FIG. 3 shows a case where a fly-eye lens is used for the homogenizer 8 provided in the solar simulator device 3.
  • the light from the light source 4 is spatially discretized by passing through the fly-eye lens, and the deviation (that is, parallelism) of the discretized light components from the optical axis K is incident angle distribution chart C.
  • the irradiation light of the solar simulator device 3 is parallel light
  • spatial discretization is performed, so that all the light components contained in the light beam 9 are included. It does not become a parallel light beam, but includes a light ray component having an angle with respect to the parallel light.
  • the parallelism of the irradiation light should be evaluated based on the amount and angle of the light beam of the light component having an angle other than that of the parallel light beam. Then, according to the light beam parallelism measuring apparatus 1 of the present embodiment, as shown in the incident angle distribution chart C of FIG. 3, the respective angles and relative intensities of the light ray components having different angles included in the light beam 9 are distributed as distribution diagrams. Since it is the structure shown, the parallelism of the irradiation light of the solar simulator apparatus 3 can be evaluated easily and correctly.
  • an allowable range that can be regarded as a substantially parallel light beam as the light beam 9 of the solar simulator device 3 is indicated by a line 42 in the incident angle distribution chart C. The degree of success can be evaluated at a glance.
  • the lens unit 20 forms an image of each of the light components contained in the light flux 9 at an image formation position P that is separated from the optical axis K on the detection surface Q by a distance L proportional to the incident angle ⁇ . Therefore, it is possible to reduce the amount of calculation performed by the analysis device 12 in order to represent the incident angle distribution on the two-dimensional coordinates of the linear scale.
  • FIG. 4 is an explanatory diagram of the measurement of the light beam parallelism in the irradiation surface of the pseudo sunlight
  • FIG. 4 (A) shows the relationship between the irradiation surface 50 and the measurement location
  • FIG. 4 (B) is the measurement at each measurement location.
  • It is a figure which shows an example of the incident angle distribution chart C obtained by these.
  • the illustration of the light intensity scale display is omitted.
  • the measurement location includes a point T1 that intersects the optical axis center R of the emitted light of the solar simulator device 3, and each of four surrounding points T2 to T5 around the point T1. To be determined.
  • the optical axis K of the sensing head 10 and the traveling direction of the principal ray 52 incident on the sensing head 10 at the measurement points T1 to T5 substantially coincide with each other, the incidence of the measurement point T1 in FIG.
  • the center of the distribution of light ray components having different incident angles ⁇ is located at the origin of the incident angle distribution chart C.
  • the traveling direction of the principal ray 52 incident on the sensing head 10 is deviated from the optical axis K, the optical axis in the traveling direction of the principal ray 52 is at each incident angle ⁇ of the ray component of the principal ray 52.
  • the deviation angle ⁇ from the optical axis K in the traveling direction of the principal ray 52 incident on the sensing head 10 is detected as a deviation from the origin of the entire distribution in the incident angle distribution chart C.
  • the deviation angle ⁇ in the traveling direction of the light beam 9 (principal light beam 52).
  • Elements that cause the shift angle ⁇ in the principal ray 52 include variations in flatness of the irradiation surface 50 (mounting surface), and positions of the light source 4, the collimating optical system 6, and the homogenizer 8 provided in the solar simulator device 3. Misalignment etc. are mentioned.
  • the parallelism of the light beam 9 with respect to the optical axis K is It can be obtained together with its distribution in a single measurement.
  • the distribution of the incident angle ⁇ is output by associating the light intensity for each incident angle ⁇ , the light intensity of the light component having a large incident angle ⁇ is used for the intensity of the light component.
  • the parallelism of the light beam 9 can be evaluated.
  • the presence of stray light can be grasped by determining whether or not a light ray component having a strong light intensity is included at a position where the incident angle ⁇ is shifted from the optical axis K.
  • each of the light ray components is imaged at the imaging position P that is separated from the optical axis K on the detection surface Q by a distance L proportional to the incident angle ⁇ , each light ray component is thus, a linear scale distribution map that can intuitively grasp the magnitude of the incident angle ⁇ is obtained by simple calculation.
  • the lens unit 20 is configured as a so-called image-side telecentric optical system in which the principal ray 25 toward the detection surface Q is parallel to the optical axis K.
  • the above-described embodiment is merely an example of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
  • a bandpass filter for monochromating the light beam 9 is used as a sensing head.
  • the parallelism may be measured for each monochromatic light.
  • the intensity distribution of the incident angle ⁇ with respect to the optical axis K of each light component included in the light beam 9 incident on the sensing head 10 can be obtained. It can be applied to the evaluation of the diffusion degree of the diffusion plate. That is, a diffusion plate to be evaluated is arranged on the incident side of the sensing head 10, and a light beam with high parallelism is made incident on the sensing head 10 through this diffusion plate and measured, and an incident angle distribution chart C is generated. As shown in FIG. 5, in the incident angle distribution chart C, the higher the diffusivity, the more the incident angle ⁇ is distributed, and the diffuser plate can be evaluated from this distribution range.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a light beam parallelism measuring device that is able to measure the parallelism of a light beam radiated from an incoherent light source, with few measurements. The light beam parallelism measuring device (1) has: a lens section (20), which forms an image of the light components contained in a light beam (9) at a location distant from an optical axis, K, by a distance of only L according to the angle of incidence, θ, with respect to the optical axis, K; and a two-dimensional detector (22), which detects the image formation position, P, of the light beam (9). The light beam parallelism measuring device (1) is equipped with an analyzer (12) that converts the distance, L, from the optical axis, K, to the image formation position, P, to the angle of incidence, θ, and which outputs the distribution of the angles of incidence of the light components contained in the light beam (9).

Description

光束平行度測定装置Beam parallelism measuring device
 本発明は、光束の平行度を測定する光束平行度測定装置に関する。 The present invention relates to a light beam parallelism measuring device that measures the parallelism of a light beam.
 従来から、太陽光と同等のスペクトルを有する光を放射する太陽シミュレータ装置(疑似太陽光照射装置)が知られており、太陽電池の特性評価に広く用いられている。太陽電池の特性評価の際には、当該太陽電池のパネル面の全範囲に均等に光を照射する必要がある。このため、太陽電池特性評価用の太陽シミュレータ装置は、照射光の光束を空間的に分散し平行光化して太陽電池のパネル面の全域に照射する構成となっている。 Conventionally, a solar simulator device (pseudo-sunlight irradiation device) that emits light having a spectrum equivalent to that of sunlight is known and widely used for evaluating the characteristics of solar cells. When evaluating the characteristics of a solar cell, it is necessary to irradiate light evenly over the entire range of the panel surface of the solar cell. For this reason, the solar simulator device for evaluating solar cell characteristics is configured to irradiate the entire area of the solar cell panel surface by spatially dispersing and collimating the luminous flux of the irradiation light.
 ところで、太陽シミュレータ装置の光源には、通常、レーザ光源のようなコヒーレント光源ではなく、キセノンランプ等のインコヒーレント光源が用いられる。光源がコヒーレント光源の場合には、周知の干渉計を使用して光束の平行度を測定することができるものの、インコヒーレント光源のように平行度が拡がりを有する場合には周知の干渉計で光束の平行度を測定することは困難である。
 そこで近年では、疑似太陽光をバンドパスフィルタ及びアパーチャを通した後、光束の断面幅を光軸に沿った複数点で測定することで、比較的大きな光束の拡がり角を測定する技術が提案されている。
(例えば、特許文献1参照)。
By the way, an incoherent light source such as a xenon lamp is usually used as a light source of the solar simulator device instead of a coherent light source such as a laser light source. When the light source is a coherent light source, the parallelism of the light beam can be measured using a well-known interferometer. However, when the parallelism has an extension like an incoherent light source, the light beam can be measured with a well-known interferometer. It is difficult to measure the parallelism.
In recent years, therefore, a technique has been proposed for measuring the divergence angle of a relatively large light beam by measuring the cross-sectional width of the light beam at a plurality of points along the optical axis after passing pseudo-sunlight through a bandpass filter and an aperture. ing.
(For example, refer to Patent Document 1).
特開2008-89526号公報JP 2008-89526 A
 しかしながら、従来の技術では、光束の光軸に沿った複数箇所での測定が必要であるため測定に時間がかかる、という問題がある。
 本発明は、上述した事情に鑑みてなされたものであり、インコヒーレント光源から放射された光束の平行度を少ない測定回数で測定できる光束平行度測定装置を提供することを目的とする。
However, the conventional technique has a problem that the measurement takes time because measurement is required at a plurality of locations along the optical axis of the light beam.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a light beam parallelism measuring device that can measure the parallelism of a light beam emitted from an incoherent light source with a small number of measurements.
 この明細書には、2010年3月2日に出願された日本国出願・特願2010-45964の全ての内容が含まれる。
 上記目的を達成するために、本発明は、光束に含まれる光線成分のそれぞれを光軸に対する入射角度に応じた距離だけ前記光軸から離れた位置に結像する結像光学系と、前記光束の結像位置を検出する検出器と、を有し、前記光軸から前記結像位置までの距離を前記入射角度に変換し、前記光束に含まれる光線成分の入射角度分布を出力する解析手段を備えることを特徴とする光束平行度測定装置を提供する。
This specification includes all the contents of the Japanese application / Japanese Patent Application No. 2010-45964 filed on March 2, 2010.
In order to achieve the above object, the present invention provides an imaging optical system that forms an image of each light component contained in a light beam at a position separated from the optical axis by a distance corresponding to an incident angle with respect to the optical axis, and the light beam. And a detector for detecting an imaging position of the light beam, and converting the distance from the optical axis to the imaging position into the incident angle and outputting an incident angle distribution of a light beam component included in the light beam A light beam parallelism measuring device is provided.
 また本発明は、上記光束平行度測定装置において、前記検出器は、前記結像位置の光強度を検出し、前記解析手段は、入射角度ごとに光強度を対応付けて前記入射角度分布を出力することを特徴とする。 Further, the present invention provides the light beam parallelism measuring apparatus, wherein the detector detects the light intensity at the imaging position, and the analysis means outputs the incident angle distribution by associating the light intensity for each incident angle. It is characterized by doing.
 また本発明は、上記光束平行度測定装置において、前記結像光学系は、前記光線成分のそれぞれを入射角度に比例した距離だけ、所定平面上で前記光軸から離れた位置に結像することを特徴とする。 Further, the present invention provides the beam parallelism measuring apparatus, wherein the imaging optical system forms an image of each of the light components on a predetermined plane away from the optical axis by a distance proportional to an incident angle. It is characterized by.
 また本発明は、上記光束平行度測定装置において、前記結像光学系は、前記所定平面上に向かう主光線を前記光軸と平行にすることを特徴とする。 Also, the present invention is characterized in that, in the above-described apparatus for measuring the parallelism of light flux, the imaging optical system makes a principal ray traveling on the predetermined plane parallel to the optical axis.
 本発明によれば、光束に含まれる光線成分のそれぞれの光軸に対する入射角度の分布が出力されるため、当該光軸に対する光束の平行度を、1回の測定で、その分布とともに得ることができる。 According to the present invention, since the distribution of the incident angle with respect to each optical axis of the light beam component contained in the light beam is output, the parallelism of the light beam with respect to the optical axis can be obtained together with the distribution in one measurement. it can.
図1は、本発明の実施形態に係る光束平行度測定装置の構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a configuration of a light beam parallelism measuring apparatus according to an embodiment of the present invention. 図2は、光束平行度の測定原理の説明図である。FIG. 2 is an explanatory diagram of the principle of measuring the light beam parallelism. 図3は、表示装置に出力される測定結果出力画面を示す図である。FIG. 3 is a diagram illustrating a measurement result output screen output to the display device. 図4は、疑似太陽光の照射面内の光束平行度測定の説明図であり、(A)は照射面と測定箇所の関係を示し、(B)は各測定箇所での測定により得られた入射角度分布チャートの一例を示す。FIG. 4 is an explanatory view of the measurement of the parallelism of the light beam in the irradiation surface of the pseudo sunlight, (A) shows the relationship between the irradiation surface and the measurement location, and (B) is obtained by the measurement at each measurement location. An example of an incident angle distribution chart is shown. 図5は、本発明に係る光束平行度測定装置の応用例の説明図である。FIG. 5 is an explanatory diagram of an application example of the light beam parallelism measuring apparatus according to the present invention.
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本実施形態に係る光束平行度測定装置1の構成を模式的に示す図である。
 本実施形態の光束平行度測定装置1は、太陽シミュレータ装置3から照射される光束9の平行度を測定する。太陽シミュレータ装置3は、波長帯域が太陽光と同程度に広い光を放射する例えばキセノンランプ等のインコヒーレントな光源4と、光源4の放射光を平行光化する平行光化光学系6と、放射光の空間的強度分布を均一にする例えばフライアイレンズ等のホモジナイザー8とを備え、比較的大きな断面積の光束9を疑似太陽光として出射する。なお、同図において、平行光化光学系6の後段にホモジナイザー8がレイアウトされているが、ホモジナイザー8は、通常、平行光化光学系6の配列の中に配置される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a configuration of a light beam parallelism measuring apparatus 1 according to the present embodiment.
The light beam parallelism measuring device 1 of the present embodiment measures the parallelism of the light beam 9 irradiated from the solar simulator device 3. The solar simulator device 3 includes an incoherent light source 4 such as a xenon lamp that emits light having a wavelength band as wide as sunlight, a parallel light optical system 6 that collimates the light emitted from the light source 4, For example, a homogenizer 8 such as a fly-eye lens is provided to make the spatial intensity distribution of the emitted light uniform, and a light beam 9 having a relatively large cross-sectional area is emitted as pseudo-sunlight. In the figure, a homogenizer 8 is laid out after the collimating optical system 6, but the homogenizer 8 is usually arranged in an array of the collimating optical system 6.
 光束平行度測定装置1は、センシングヘッド10と、解析装置12と、表示装置14とを備えている。センシングヘッド10は、太陽シミュレータ装置3の疑似太陽光(波長300nm~2000nm)の照射対象のセット位置に配置されて光を検出するものであり、フィルタ部16、開口絞りリング18、レンズ部20及び二次元検出器22を備えている。
 フィルタ部16は、NDフィルタ及び色調補正フィルタを重ねて合わせて構成されている。NDフィルタは減光フィルタであり、二次元検出器22での検出強度の飽和を防止する。色調補正フィルタは、光束9のスペクトル分布を二次元検出器22の波長感度特性に応じて補正し、波長毎の検出のばらつきを防止する。
 開口絞りリング18は、二次元検出器22への入射光量を調整するとともに、二次元検出器22に入射する光束9の断面内の範囲を規定する。すなわち、開口絞りリング18によって光束平行度測定装置1の空間分解能(測定可能な最小面積)が規定される。本実施形態では、センシングヘッド10の視野角は、後述するレンズ部20の光軸Kを中心に±5度の円形視野角となるように構成されている。
The beam parallelism measuring device 1 includes a sensing head 10, an analysis device 12, and a display device 14. The sensing head 10 is disposed at the set position of the irradiation target of the pseudo-sunlight (wavelength 300 nm to 2000 nm) of the solar simulator device 3, and detects light. The sensing head 10 includes a filter unit 16, an aperture stop ring 18, a lens unit 20, and A two-dimensional detector 22 is provided.
The filter unit 16 is configured by overlapping an ND filter and a color tone correction filter. The ND filter is a neutral density filter and prevents saturation of the detection intensity in the two-dimensional detector 22. The color tone correction filter corrects the spectral distribution of the light beam 9 according to the wavelength sensitivity characteristic of the two-dimensional detector 22 to prevent detection variations for each wavelength.
The aperture stop ring 18 adjusts the amount of light incident on the two-dimensional detector 22 and defines the range in the cross section of the light beam 9 incident on the two-dimensional detector 22. That is, the aperture resolution ring 18 defines the spatial resolution (minimum measurable area) of the beam parallelism measuring device 1. In the present embodiment, the viewing angle of the sensing head 10 is configured to be a circular viewing angle of ± 5 degrees around the optical axis K of the lens unit 20 described later.
 レンズ部20は、入射光線24の入射角度θに応じた位置に結像する結像光学系である。より具体的には、レンズ部20は、図2に示すように、レンズ部20の光軸Kに対する入射光線24の入射角度θと、結像位置Pの光軸Kからの距離Lとの関係が所定関数f(θ)で規定された関係を満たすとともに、なおかつ、少なくとも上記円形視野角の範囲内で結像位置Pが入射光線24のレンズ部20への入射位置に依存せずに入射角度θのみにより決定されるようにレンズ部20の歪曲収差特性を考慮して光学設計されている。これにより、上記所定関数f(θ)の逆関数に基づいて、結像位置Pから入射角度θが演算により求められる。
 本実施形態では、レンズ部20は、関数f(θ)=aθ(ただし、aは比例定数)の関係を満足するように光学設計されており、これにより、入射角度θが大きくなるほど、当該入射角度θに正比例して結像位置Pが光軸Kからの距離Lが大きくなるように構成されている。
 当該レンズ部20は、等方性の光学系として構成され、入射光線24の入射方向に対応した方向に、光軸KからL=f(θ)だけ離れた結像位置Pに結像する。すなわち、検出面Qにおける原点O(K軸)に対する結像位置PのXY座標値に基づいて、入射光線24の進行方向を入射角度θとともに検出することができる。
The lens unit 20 is an imaging optical system that forms an image at a position corresponding to the incident angle θ of the incident light beam 24. More specifically, as shown in FIG. 2, the lens unit 20 has a relationship between the incident angle θ of the incident light beam 24 with respect to the optical axis K of the lens unit 20 and the distance L from the optical axis K of the imaging position P. Satisfies the relationship defined by the predetermined function f (θ), and the image forming position P does not depend on the incident position of the incident light beam 24 on the lens unit 20 at least within the range of the circular viewing angle. The optical design is made in consideration of the distortion characteristic of the lens unit 20 as determined only by θ. Thus, the incident angle θ is obtained from the imaging position P by calculation based on the inverse function of the predetermined function f (θ).
In the present embodiment, the lens unit 20 is optically designed so as to satisfy the relationship of function f (θ) = aθ (where a is a proportional constant), and as a result, the incident angle θ increases as the incident angle θ increases. The imaging position P is configured to have a distance L from the optical axis K that is directly proportional to the angle θ.
The lens unit 20 is configured as an isotropic optical system, and forms an image at an imaging position P separated from the optical axis K by L = f (θ) in a direction corresponding to the incident direction of the incident light beam 24. That is, based on the XY coordinate value of the imaging position P with respect to the origin O (K axis) on the detection surface Q, the traveling direction of the incident light beam 24 can be detected together with the incident angle θ.
 またレンズ部20は、結像側の主光線25を光軸Kと平行にする、いわゆる像側テレセントリック光学系として構成されている。これにより、被測定光束の照射による温度上昇によってレンズ部20のピントが変わったとしても、結像位置Pの面積(像)が大きくなるだけで当該結像位置Pの重心位置が変わることがない。すなわち、結像位置Pの重心位置(光量最大の点)を結像位置Pとして測定することで、レンズ部20の温度上昇に対し、常に一定の精度を維持して光束9の平行度を測定できる。 The lens unit 20 is configured as a so-called image side telecentric optical system in which the principal ray 25 on the imaging side is parallel to the optical axis K. As a result, even if the focus of the lens unit 20 changes due to a temperature rise due to irradiation of the light beam to be measured, the center of gravity position of the imaging position P does not change only by increasing the area (image) of the imaging position P. . That is, by measuring the barycentric position (the point at which the light intensity is maximum) of the imaging position P as the imaging position P, the parallelism of the light beam 9 is measured while always maintaining a certain accuracy with respect to the temperature rise of the lens unit 20. it can.
 二次元検出器22は、例えばCCDイメージセンサを内蔵し、CCDイメージセンサの矩形平面状の検出面Q(図2)内の各位置(画素)での光強度を解析装置12に出力する。また図1に示すように、二次元検出器22は、底面に平面26を有したケース体28を備え、この平面26に対してCCDイメージセンサの検出面Qが平行に設けられている。またレンズ部20は、光軸Kが検出面Qに対して垂直になるように設けられており、これらの構成により、ケース体28を疑似太陽光の照射対象の照射面(或いは、照射対象を載置する載置面)に載置することで、当該照射面に対してレンズ部20の光軸Kが垂直に位置決めされ、当該載置面に対する光束9の平行度が正確に測定される。 The two-dimensional detector 22 incorporates a CCD image sensor, for example, and outputs the light intensity at each position (pixel) in the rectangular planar detection surface Q (FIG. 2) of the CCD image sensor to the analysis device 12. As shown in FIG. 1, the two-dimensional detector 22 includes a case body 28 having a flat surface 26 on the bottom surface, and the detection surface Q of the CCD image sensor is provided in parallel to the flat surface 26. Further, the lens unit 20 is provided so that the optical axis K is perpendicular to the detection surface Q. With these configurations, the case body 28 is irradiated with the irradiation surface (or the irradiation target) of the pseudo-sunlight irradiation target. The optical axis K of the lens unit 20 is positioned vertically with respect to the irradiation surface, and the parallelism of the light beam 9 with respect to the mounting surface is accurately measured.
 センシングヘッド10のうち、フィルタ部16、開口絞りリング18及びレンズ部20は、互いの光軸が同一となるように筒状のケース体に一体に設けられて光学部品から成る光学ユニット29として構成されており、レンズ部20側の端部を上記二次元検出器22のケース体28に螺合して着脱自在に設けられている。この光学ユニット29から二次元検出器22を取り外し、パワーメータを代わりに取り付けることで、トータルフラックス(W、lm)が簡単に測定できる。また例えばNIST(National Institute of Standards and Technology)に準拠した校正が行われたパワーメータをセンシングヘッド10に取り付けて光束平行度測定装置1により測定を行い、二次元検出器22の出力値とパワーメータの検出値との対応付けを行うことで、それ以降、二次元検出器22の出力値のみでトータルフラックスを求め、後述の測定結果出力画面40(図3)に光強度として出力することもできる。 Of the sensing head 10, the filter unit 16, the aperture stop ring 18, and the lens unit 20 are configured as an optical unit 29 that is integrally provided in a cylindrical case body so as to have the same optical axis, and is formed of optical components. The end of the lens unit 20 is screwed into the case body 28 of the two-dimensional detector 22 so as to be detachable. The total flux (W, lm) can be easily measured by removing the two-dimensional detector 22 from the optical unit 29 and attaching a power meter instead. Further, for example, a power meter calibrated in accordance with NIST (National Institute of Standards and Technology) is attached to the sensing head 10 and measured by the beam parallelism measuring device 1, and the output value of the two-dimensional detector 22 and the power meter are measured. Thereafter, the total flux can be obtained only with the output value of the two-dimensional detector 22 and output as the light intensity on the measurement result output screen 40 (FIG. 3) described later. .
 解析装置12は、センシングヘッド10と信号ケーブルを介して接続され、センシングヘッド10の二次元検出器22から出力される出力信号に基づいて光束9の入射角度分布チャートC(図3参照)を生成し、例えば出力装置の一例たる表示装置14に出力する。この解析装置12は、一般的な構成のコンピュータ装置に、上記入射角度分布チャートCを生成させるためのプログラムを実行させることで構成されている。 The analysis device 12 is connected to the sensing head 10 via a signal cable, and generates an incident angle distribution chart C (see FIG. 3) of the light flux 9 based on an output signal output from the two-dimensional detector 22 of the sensing head 10. For example, the data is output to the display device 14 which is an example of an output device. The analysis device 12 is configured by causing a computer device having a general configuration to execute a program for generating the incident angle distribution chart C.
 図3は、表示装置14の測定結果出力画面40を示す図である。
 この図に示すように、測定結果出力画面40には、上記入射角度分布チャートCと、カラースケールバー41とが表示される。
 入射角度分布チャートCは、測定した光束9に含まれる、入射角度θが異なる各光線成分の入射角度分布をマッピングしたものである。また、この入射角度分布チャートCでは、入射角度θごとの相対的な光強度が色調変化によって表示されており、色調と光強度とが上記カラースケールバー41によって示されている。
FIG. 3 is a diagram showing a measurement result output screen 40 of the display device 14.
As shown in this figure, the incident angle distribution chart C and the color scale bar 41 are displayed on the measurement result output screen 40.
The incident angle distribution chart C is obtained by mapping the incident angle distribution of each light beam component having a different incident angle θ included in the measured light beam 9. In the incident angle distribution chart C, the relative light intensity for each incident angle θ is displayed by a change in color tone, and the color tone and the light intensity are indicated by the color scale bar 41.
 入射角度分布チャートCについて詳細には、図2を参照して説明したように、センシングヘッド10のレンズ部20に光束9が入射角度θで入射すると、当該光束9に含まれるそれぞれの光線成分は、検出面Qにおいて、入射角度θに比例した距離Lだけ光軸Kから入射方向に対応する方向に離れた結像位置Pで結像することから、結像位置Pに基づいて入射角度θが一義的に求まり、また、結像位置Pでの光強度に基づいて、入射角度θごとに光強度が求まる。かかる演算は上記解析装置12により行われる。
 入射角度分布チャートCは、このようにして求められた入射角度θの分布を、その入射角度θの光線成分の進行方向とともに示すべく、原点を入射角度θ=0(光軸K)とした2次元直交座標として表示し、なおかつ、入射角度の分布を光強度ごとに色調分けして表示する。
 これにより、入射角度分布チャートCには、光束9に含まれる光線成分の入射角度θの大きさ(すなわち光軸Kに対する平行度)のみならず、光線成分の進行方向(光軸Kからのずれ方向)が、その光線成分の強度とともに示されることとなる。
For details of the incident angle distribution chart C, as described with reference to FIG. 2, when the light beam 9 is incident on the lens unit 20 of the sensing head 10 at the incident angle θ, each light beam component included in the light beam 9 is On the detection surface Q, an image is formed at an imaging position P that is separated from the optical axis K in a direction corresponding to the incident direction by a distance L proportional to the incident angle θ. Based on the light intensity at the imaging position P, the light intensity is determined for each incident angle θ. Such calculation is performed by the analysis device 12.
In the incident angle distribution chart C, the origin is set at an incident angle θ = 0 (optical axis K) in order to show the distribution of the incident angle θ obtained in this way together with the traveling direction of the light ray component at the incident angle θ. It is displayed as dimensional orthogonal coordinates, and the distribution of the incident angle is displayed by color tone for each light intensity.
Thus, the incident angle distribution chart C includes not only the magnitude of the incident angle θ of the light component contained in the light beam 9 (that is, the parallelism with respect to the optical axis K) but also the traveling direction of the light component (deviation from the optical axis K). Direction) along with the intensity of the light component.
 なお、センシングヘッド10の検出面Qの画素の配列方向と、入射角度分布チャートCにおける座標軸方向とは固定されており、検出面Qを上下逆さにして照射面に載置した場合には、入射角度分布チャートCも同じく上下逆転したチャートとなってしまう。すなわち、センシングヘッド10の置き方によって、入射角度分布チャートCに現れた光線成分の進行方向が実際と異なってしまう。そこで、検出面Qを照射面に対して常に同じ向きで載置すべく、センシングヘッド10に上方向(例えばY軸正方向)を示す印を設け、照射面の複数箇所を測定する場合に、この印を常に同一方向に向けるようにセンシングヘッド10を照射面に載置することで、各測定箇所の測定結果における光線成分の進行方向を揃え、互いに比較することができる。
 なお、光線成分の進行方向に対する、検出面Qでの結像位置Pのずれ方向は、互いに1対1に対応するものの、結像位置Pのずれ方向が光線成分の進行方向を示す訳ではない。すなわち、レンズ部20の向き等によっては、光線成分の進行方向と、検出面Qでの結像位置Pのずれ方向と、例えば光軸Kに対して反対方向を示す場合もあり、この場合には、それぞれが同一方向に揃うように補正して入射角度分布チャートCを生成しても良い。
Note that the pixel arrangement direction of the detection surface Q of the sensing head 10 and the coordinate axis direction in the incident angle distribution chart C are fixed, and when the detection surface Q is turned upside down and placed on the irradiation surface, the incident direction is changed. Similarly, the angle distribution chart C is a chart that is inverted upside down. In other words, the traveling direction of the light component appearing in the incident angle distribution chart C differs depending on how the sensing head 10 is placed. Therefore, in order to always place the detection surface Q in the same direction with respect to the irradiation surface, the sensing head 10 is provided with a mark indicating the upward direction (for example, the Y axis positive direction), and when measuring a plurality of locations on the irradiation surface, By placing the sensing head 10 on the irradiation surface so that this mark is always directed in the same direction, the traveling direction of the light component in the measurement result at each measurement point can be aligned and compared with each other.
In addition, although the shift direction of the imaging position P on the detection surface Q with respect to the traveling direction of the light component corresponds to the one-to-one relationship, the shifting direction of the imaging position P does not indicate the traveling direction of the light component. . That is, depending on the orientation of the lens unit 20 or the like, the traveling direction of the light beam component, the shift direction of the imaging position P on the detection surface Q, and the opposite direction with respect to the optical axis K, for example, may be indicated. May be corrected so that they are aligned in the same direction, and the incident angle distribution chart C may be generated.
 ここで、図3に示す入射角度分布チャートCは、太陽シミュレータ装置3が備えるホモジナイザー8にフライアイレンズを用いた場合を示すものである。このため、光源4の光がフライアイレンズの通過することにより空間的に離散化され、これら離散化された光線成分のそれぞれの光軸Kからのずれ(すなわち平行度)が入射角度分布チャートCに現れる。
 すなわち、太陽シミュレータ装置3の照射光は平行光であることが望ましいものの、通常、光束がホモジナイザー8を通過した際に空間的な離散化が行われるため、光束9に含まれる全ての光線成分が平行光束になることはなく、平行光に対して角度を持った光線成分が含まれる。このため、太陽シミュレータ装置3にあっては、照射光の平行度が平行光の光束に対する、それ以外の角度を有する光線成分の光束の量や角度によって評価すべきである。そして、本実施形態の光束平行度測定装置1によれば、図3の入射角度分布チャートCに示すように、光束9に含まれる角度の異なる光線成分のそれぞれの角度及び相対強度が分布図として示される構成であるため、太陽シミュレータ装置3の照射光の平行度を簡単かつ正確に評価することができる。
 また、本実施形態の測定結果出力画面40では、入射角度分布チャートCの中に、太陽シミュレータ装置3の光束9として略平行光束と見なせる許容範囲が線42で示されており、光束9の平行度の良否を一目で評価できるようになっている。
Here, the incident angle distribution chart C shown in FIG. 3 shows a case where a fly-eye lens is used for the homogenizer 8 provided in the solar simulator device 3. For this reason, the light from the light source 4 is spatially discretized by passing through the fly-eye lens, and the deviation (that is, parallelism) of the discretized light components from the optical axis K is incident angle distribution chart C. Appear in
That is, although it is desirable that the irradiation light of the solar simulator device 3 is parallel light, normally, when the light beam passes through the homogenizer 8, spatial discretization is performed, so that all the light components contained in the light beam 9 are included. It does not become a parallel light beam, but includes a light ray component having an angle with respect to the parallel light. For this reason, in the solar simulator device 3, the parallelism of the irradiation light should be evaluated based on the amount and angle of the light beam of the light component having an angle other than that of the parallel light beam. Then, according to the light beam parallelism measuring apparatus 1 of the present embodiment, as shown in the incident angle distribution chart C of FIG. 3, the respective angles and relative intensities of the light ray components having different angles included in the light beam 9 are distributed as distribution diagrams. Since it is the structure shown, the parallelism of the irradiation light of the solar simulator apparatus 3 can be evaluated easily and correctly.
In the measurement result output screen 40 of the present embodiment, an allowable range that can be regarded as a substantially parallel light beam as the light beam 9 of the solar simulator device 3 is indicated by a line 42 in the incident angle distribution chart C. The degree of success can be evaluated at a glance.
 また、入射角度分布チャートCでは、入射角度分布がリニアスケールの二次元座標で示されているため、各光線成分の入射角度θの大きさが直感的に把握できる。このとき、上述の通り、レンズ部20は、光束9に含まれる光線成分のそれぞれを入射角度θに比例した距離Lだけ、検出面Q上で光軸Kから離れた結像位置Pに結像するため、入射角度分布をリニアスケールの二次元座標に表すために解析装置12が行う演算量を削減できる。 In addition, in the incident angle distribution chart C, since the incident angle distribution is indicated by two-dimensional coordinates of a linear scale, the magnitude of the incident angle θ of each light component can be intuitively grasped. At this time, as described above, the lens unit 20 forms an image of each of the light components contained in the light flux 9 at an image formation position P that is separated from the optical axis K on the detection surface Q by a distance L proportional to the incident angle θ. Therefore, it is possible to reduce the amount of calculation performed by the analysis device 12 in order to represent the incident angle distribution on the two-dimensional coordinates of the linear scale.
 図4は疑似太陽光の照射面内の光束平行度測定の説明図であり、図4(A)は照射面50と測定箇所の関係を示し、図4(B)は各測定箇所での測定により得られた入射角度分布チャートCの一例を示す図である。なお、同図においては、図面の煩雑化を防ぐため、光強度のスケール表示について図示を省略している。
 太陽シミュレータ装置3の疑似太陽光の照射面50が比較的広い場合、光束平行度測定は、その照射面50の複数の箇所を離散的に測定することで行われる。図4(A)に示すように、測定箇所は、太陽シミュレータ装置3の出射光の光軸中心Rと交差する点T1と、当該点T1を中心した周囲の4点T2~T5のそれぞれを含むように決定される。
FIG. 4 is an explanatory diagram of the measurement of the light beam parallelism in the irradiation surface of the pseudo sunlight, FIG. 4 (A) shows the relationship between the irradiation surface 50 and the measurement location, and FIG. 4 (B) is the measurement at each measurement location. It is a figure which shows an example of the incident angle distribution chart C obtained by these. In the figure, in order to prevent complication of the drawing, the illustration of the light intensity scale display is omitted.
When the simulated solar light irradiation surface 50 of the solar simulator device 3 is relatively wide, the light beam parallelism measurement is performed by discretely measuring a plurality of locations on the irradiation surface 50. As shown in FIG. 4A, the measurement location includes a point T1 that intersects the optical axis center R of the emitted light of the solar simulator device 3, and each of four surrounding points T2 to T5 around the point T1. To be determined.
 ここで、センシングヘッド10の光軸Kと、測定点T1~T5においてセンシングヘッド10に入射する主光線52の進行方向とが略一致している場合、図4(B)の測定点T1の入射角度分布チャートCに示されるように、入射角度θが異なる光線成分の分布の中心が、入射角度分布チャートCの原点に位置する。これに対して、センシングヘッド10に入射する主光線52の進行方向が光軸Kからずれている場合、主光線52の光線成分のそれぞれの入射角度θに、主光線52の進行方向の光軸Kからのずれ角βが加わるため、例えば図4(B)の測定点T2~T5の各入射角度分布チャートCに示されるように、光線成分の分布の中心Sが全体的に原点(光軸K)から当該光線成分の進行方向に応じた方向にずれることとなる。 Here, when the optical axis K of the sensing head 10 and the traveling direction of the principal ray 52 incident on the sensing head 10 at the measurement points T1 to T5 substantially coincide with each other, the incidence of the measurement point T1 in FIG. As shown in the angle distribution chart C, the center of the distribution of light ray components having different incident angles θ is located at the origin of the incident angle distribution chart C. On the other hand, when the traveling direction of the principal ray 52 incident on the sensing head 10 is deviated from the optical axis K, the optical axis in the traveling direction of the principal ray 52 is at each incident angle θ of the ray component of the principal ray 52. Since a deviation angle β from K is added, for example, as shown in each incident angle distribution chart C at the measurement points T2 to T5 in FIG. 4B, the center S of the distribution of the light component is entirely the origin (optical axis). K) deviates in a direction corresponding to the traveling direction of the light component.
 このように、センシングヘッド10に入射する主光線52の進行方向の光軸Kからのずれ角βが、入射角度分布チャートCにおいて当該分布全体の原点からのずれとして検出されるため、照射面50の各測定点T1~T5で平行度測定を行うことにより、それぞれにおいて、光束9に含まれる光線成分の入射角度θの分布に加え、当該光束9(主光線52)の進行方向のずれ角βを把握することができる。
 主光線52にずれ角βが生じる要素には、照射面50(載置面)の平面度のばらつきや、太陽シミュレータ装置3が備える光源4、平行光化光学系6及びホモジナイザー8のそれぞれの位置ずれ等が挙げられる。これらの要素を入射角度分布チャートCから得られるずれ角βに基づいて調整することで、照射面50の全域に亘って平行度の高い疑似太陽光が得られる。
As described above, the deviation angle β from the optical axis K in the traveling direction of the principal ray 52 incident on the sensing head 10 is detected as a deviation from the origin of the entire distribution in the incident angle distribution chart C. By measuring the parallelism at each of the measurement points T1 to T5, in each case, in addition to the distribution of the incident angle θ of the light component contained in the light beam 9, the deviation angle β in the traveling direction of the light beam 9 (principal light beam 52). Can be grasped.
Elements that cause the shift angle β in the principal ray 52 include variations in flatness of the irradiation surface 50 (mounting surface), and positions of the light source 4, the collimating optical system 6, and the homogenizer 8 provided in the solar simulator device 3. Misalignment etc. are mentioned. By adjusting these elements based on the deviation angle β obtained from the incident angle distribution chart C, pseudo-sunlight with high parallelism can be obtained over the entire irradiation surface 50.
 以上説明したように、本実施形態によれば、光束9に含まれる光線成分のそれぞれの光軸Kに対する入射角度θの分布が出力されるため、当該光軸Kに対する光束9の平行度を、1回の測定で、その分布とともに得ることができる。 As described above, according to the present embodiment, since the distribution of the incident angle θ with respect to each optical axis K of the light component contained in the light beam 9 is output, the parallelism of the light beam 9 with respect to the optical axis K is It can be obtained together with its distribution in a single measurement.
 これに加え、本実施形態によれば、入射角度θごとに光強度を対応付けて入射角度θの分布を出力する構成としたため、入射角度θが大きな光線成分の光強度の強弱等に用いて光束9の平行度を評価することができる。さらに、入射角度分布チャートCにおいて、入射角度θが光軸Kからずれた位置に強い光強度の光線成分が含まれているか否かを判断することで、迷光の存在を把握することもできる。 In addition, according to the present embodiment, since the distribution of the incident angle θ is output by associating the light intensity for each incident angle θ, the light intensity of the light component having a large incident angle θ is used for the intensity of the light component. The parallelism of the light beam 9 can be evaluated. Further, in the incident angle distribution chart C, the presence of stray light can be grasped by determining whether or not a light ray component having a strong light intensity is included at a position where the incident angle θ is shifted from the optical axis K.
 また、本実施形態によれば、光線成分のそれぞれを入射角度θに比例した距離Lだけ、検出面Q上で光軸Kから離れた結像位置Pに結像する構成としたため、各光線成分の入射角度θの大きさを直感的に把握できるリニアスケールの分布図が簡単な演算で求められる。 Further, according to the present embodiment, since each of the light ray components is imaged at the imaging position P that is separated from the optical axis K on the detection surface Q by a distance L proportional to the incident angle θ, each light ray component is Thus, a linear scale distribution map that can intuitively grasp the magnitude of the incident angle θ is obtained by simple calculation.
 また、本実施形態によれば、レンズ部20を、検出面Qに向かう主光線25を光軸Kと平行にする、いわゆる像側テレセントリック光学系として構成した。この構成により、レンズ部20が温度上昇によって結像位置Pにピンぼけが生じたとしても、当該結像位置Pの面積が増えるだけで重心位置が変わることがない。これにより、レンズ部20の温度上昇に対し、常に一定の精度を維持して光束9の平行度を測定できる。 Further, according to the present embodiment, the lens unit 20 is configured as a so-called image-side telecentric optical system in which the principal ray 25 toward the detection surface Q is parallel to the optical axis K. With this configuration, even if the lens unit 20 is out of focus at the imaging position P due to a temperature rise, the center of gravity position does not change only by increasing the area of the imaging position P. As a result, the parallelism of the light beam 9 can be measured while maintaining a constant accuracy with respect to the temperature rise of the lens unit 20.
 なお、上述した実施形態は、あくまでも本発明の一態様を例示するものであって、本発明の趣旨を逸脱しない範囲で任意に変形及び応用が可能である。
 例えば、太陽シミュレータ装置3が備える平行光化光学系6やホモジナイザー8等によって、光束9の平行度に大きな波長依存性が生じている場合には、光束9を単色化するバンドパスフィルタをセンシングヘッド10のフィルタ部16に設け、単色光ごとに平行度を測定してもよい。
The above-described embodiment is merely an example of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
For example, when the wavelength parallelism of the light beam 9 is greatly influenced by the collimating optical system 6 or the homogenizer 8 provided in the solar simulator device 3, a bandpass filter for monochromating the light beam 9 is used as a sensing head. The parallelism may be measured for each monochromatic light.
 また例えば、本実施形態に係る光束平行度測定装置1によれば、センシングヘッド10に入射した光束9に含まれる各光線成分の光軸Kに対する入射角度θの強度分布が得られるため、例えば光拡散板の拡散度の評価に応用することができる。
 すなわち、評価対象の拡散板をセンシングヘッド10の入射側に配置し、この拡散板を介して平行度の高い光束をセンシングヘッド10に入射して測定し、入射角度分布チャートCを生成する。図5に示すように、入射角度分布チャートCにおいては、拡散度が高いほど、入射角度θが広範囲に分布することとなり、この分布の範囲から拡散板の評価をすることができる。
Further, for example, according to the light beam parallelism measuring apparatus 1 according to the present embodiment, the intensity distribution of the incident angle θ with respect to the optical axis K of each light component included in the light beam 9 incident on the sensing head 10 can be obtained. It can be applied to the evaluation of the diffusion degree of the diffusion plate.
That is, a diffusion plate to be evaluated is arranged on the incident side of the sensing head 10, and a light beam with high parallelism is made incident on the sensing head 10 through this diffusion plate and measured, and an incident angle distribution chart C is generated. As shown in FIG. 5, in the incident angle distribution chart C, the higher the diffusivity, the more the incident angle θ is distributed, and the diffuser plate can be evaluated from this distribution range.
 1 光束平行度測定装置
 3 太陽シミュレータ装置
 9 光束
 10 センシングヘッド
 12 解析装置(解析手段)
 14 表示装置
 16 フィルタ部
 18 開口絞りリング
 20 レンズ部(結像光学系)
 22 二次元検出器
 24 入射光線
 29 光学ユニット
 40 測定結果出力画面
 41 カラースケールバー
 50 照射面
 52 主光線
 C 入射角度分布チャート
 K 光軸
 L 距離
 P 結像位置
 Q 検出面
DESCRIPTION OF SYMBOLS 1 Light flux parallelism measuring device 3 Solar simulator device 9 Light flux 10 Sensing head 12 Analysis device (analysis means)
14 Display device 16 Filter unit 18 Aperture stop ring 20 Lens unit (imaging optical system)
22 Two-dimensional detector 24 Incident light 29 Optical unit 40 Measurement result output screen 41 Color scale bar 50 Irradiation surface 52 Principal light C Incident angle distribution chart K Optical axis L Distance P Imaging position Q Detection surface

Claims (4)

  1.  光束に含まれる光線成分のそれぞれを光軸に対する入射角度に応じた距離だけ前記光軸から離れた位置に結像する結像光学系と、
     前記光束の結像位置を検出する検出器と、を有し、
     前記光軸から前記結像位置までの距離を前記入射角度に変換し、前記光束に含まれる光線成分の入射角度分布を出力する解析手段を備えることを特徴とする光束平行度測定装置。
    An imaging optical system that forms an image at a position away from the optical axis by a distance corresponding to an incident angle with respect to the optical axis for each of the light beam components contained in the light beam;
    A detector for detecting an imaging position of the luminous flux,
    An apparatus for measuring a parallelism of a light beam, comprising: an analyzing unit that converts a distance from the optical axis to the imaging position into the incident angle and outputs an incident angle distribution of a light ray component included in the light beam.
  2.  前記検出器は、前記結像位置の光強度を検出し、
     前記解析手段は、入射角度ごとに光強度を対応付けて前記入射角度分布を出力することを特徴とする請求項1に記載の光束平行度測定装置。
    The detector detects the light intensity at the imaging position;
    2. The beam parallelism measuring apparatus according to claim 1, wherein the analyzing unit outputs the incident angle distribution in association with light intensity for each incident angle.
  3.  前記結像光学系は、前記光線成分のそれぞれを入射角度に比例した距離だけ、所定平面上で前記光軸から離れた位置に結像することを特徴とする請求項1又は2に記載の光束平行度測定装置。 3. The light beam according to claim 1, wherein the image forming optical system forms an image of each of the light beam components at a position separated from the optical axis on a predetermined plane by a distance proportional to an incident angle. Parallelism measuring device.
  4.  前記結像光学系は、前記所定平面上に向かう主光線を前記光軸と平行にすることを特徴とする請求項1乃至3のいずれかに記載の光束平行度測定装置。 4. The beam parallelism measuring device according to claim 1, wherein the imaging optical system makes a principal ray traveling on the predetermined plane parallel to the optical axis.
PCT/JP2011/001213 2010-03-02 2011-03-02 Light beam parallelism measuring device WO2011108263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-045964 2010-03-02
JP2010045964A JP5725528B2 (en) 2010-03-02 2010-03-02 Beam parallelism measuring device

Publications (1)

Publication Number Publication Date
WO2011108263A1 true WO2011108263A1 (en) 2011-09-09

Family

ID=44541933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001213 WO2011108263A1 (en) 2010-03-02 2011-03-02 Light beam parallelism measuring device

Country Status (3)

Country Link
JP (1) JP5725528B2 (en)
TW (1) TWI485369B (en)
WO (1) WO2011108263A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888075A (en) * 2012-12-21 2014-06-25 中国科学院微电子研究所 Device for measuring power characteristic of PV assembly in full time
CN104204655A (en) * 2012-03-14 2014-12-10 山下电装株式会社 Irradiation light quantity control device and solar simulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109470450B (en) * 2018-10-16 2020-07-31 浙江舜宇光学有限公司 Method and device for evaluating parallelism of optical axes of double-camera lens group and computer medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309668A (en) * 2007-06-15 2008-12-25 Opcell Co Ltd Laser scanning interferometer
JP2009162614A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Optical wavefront measuring apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110639A (en) * 2007-10-10 2009-05-21 Panasonic Corp Wavefront aberration inspection apparatus, optical pickup assembly adjustment device, lens evaluation device, lens assembly device, objective lens actuator assembly adjustment device, optical pickup, optical disk drive, and optical information recording and reproducing device
US8619249B2 (en) * 2007-10-26 2013-12-31 Koninklijke Philips N.V. Light angle selecting light detector device
TWI366658B (en) * 2008-05-30 2012-06-21 Univ Nat Yunlin Sci & Tech Measurement method for parallelism verification of two plane mirrors by fabry-perot interferometric principle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309668A (en) * 2007-06-15 2008-12-25 Opcell Co Ltd Laser scanning interferometer
JP2009162614A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Optical wavefront measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204655A (en) * 2012-03-14 2014-12-10 山下电装株式会社 Irradiation light quantity control device and solar simulator
CN104204655B (en) * 2012-03-14 2016-08-24 山下电装株式会社 Irradiate light amount control device and solar simulator
CN103888075A (en) * 2012-12-21 2014-06-25 中国科学院微电子研究所 Device for measuring power characteristic of PV assembly in full time

Also Published As

Publication number Publication date
JP2011180044A (en) 2011-09-15
TWI485369B (en) 2015-05-21
JP5725528B2 (en) 2015-05-27
TW201200849A (en) 2012-01-01

Similar Documents

Publication Publication Date Title
Panigrahi et al. Schlieren and shadowgraph methods in heat and mass transfer
RU2653771C2 (en) Two bodies misalignment device and determination method
KR20140011258A (en) Method of detection of defects and defects detection device
JP2014126408A (en) Reflection characteristics measurement device
JP2010133934A5 (en)
JP2010133934A (en) Surface measuring apparatus having two measuring unit
US9952090B2 (en) Detecting apparatus and detecting method thereof
JP5725528B2 (en) Beam parallelism measuring device
JP2012104586A (en) Semiconductor measurement device
TW201326738A (en) Test device and method for camera module
US20190212129A1 (en) Apparatus for smart material analysis
US9250186B2 (en) Profilometry systems and methods based on absorption and optical frequency conversion
CN103512657B (en) The pick-up unit of bore hole 3D LED screen display effect and detection method thereof
JP2009276327A5 (en)
US9952034B2 (en) Optical interferometric system for measurement of a full-field thickness of a plate-like object in real time
JP2009174974A (en) 3-d sensor
WO2018012478A1 (en) Colorimeter
CN102853997B (en) Method and system for calibrating radiation heterogeneity of integrating sphere light source
CN207515908U (en) A kind of multi-pass self calibration polarization detecting device and system
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
WO2015052822A1 (en) Testing apparatus and testing method
JP2005224901A (en) Edge detector
CN105738298B (en) A kind of aqueous solution turbidimetry method and device based on chromaticity coordinates value
US20190003826A1 (en) Smart coating device for storage tank monitoring and calibration
US20230168478A1 (en) Lens and Optical System Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750376

Country of ref document: EP

Kind code of ref document: A1